
603: Electromagnetic Theory I

CONTENTS

• Maxwell’s Equations: Introduction; units; boundary conditions.

• Electrostatics: Uniqueness theorem; Green’s theorem; gauge potentials; energy

• Boundary value problems in electrostatics: Method of images; separation of variables

in Cartesian, spherical polar and cylindrical polar coordinates.

• Dielectric media

• Multipole expansion

• Magnetostatics

• Time-dependent fields



Contents

1 Introduction 3

1.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Gaussian units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Macroscopic media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Boundary conditions at media interfaces . . . . . . . . . . . . . . . . . . . . 8

1.5 Gauge potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Electric field of a point charge; Coulomb’s law . . . . . . . . . . . . . . . . . 13

1.7 Gauss’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Electrostatic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 Uniqueness theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.10 Green’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.11 Green functions and the boundary-value problem . . . . . . . . . . . . . . . 22

1.12 Electrostatic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Method of Images 27

2.1 Infinite planar conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Dirichlet and Neumann Green functions for infinite planar boundary . . . . 29

2.3 Spherical conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Dirichlet Green function for spherical boundary . . . . . . . . . . . . . . . . 33

3 Separation of Variables in Cartesian Coordinates 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Separation of variables in Cartesian coordinates . . . . . . . . . . . . . . . . 36

3.3 Generalised Fourier expansions . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Separation of variables in spherical polar coordinates 40

4.1 Series solution of the Legendre equation . . . . . . . . . . . . . . . . . . . . 42

4.2 Rodrigues formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 The generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Expansion in Legendre polynomials . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Azimuthally-symmetric solutions of Laplace’s equation . . . . . . . . . . . . 51

4.6 Some useful techniques for azimuthally-symmetric problems . . . . . . . . . 53

4.7 The spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 General solution of Laplace’s equation without azimuthal symmetry . . . . 63

1



4.9 Another look at the generating function . . . . . . . . . . . . . . . . . . . . 65

4.10 Dirichlet Green function expansion . . . . . . . . . . . . . . . . . . . . . . . 71

5 Separation of Variables in Cylindrical Polar Coordinates 72

5.1 Solutions of Bessel’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Properties of the Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 A boundary-value problem in cylindrical polar coordinates . . . . . . . . . . 83

5.4 Green function in cylindrical polar coordinates . . . . . . . . . . . . . . . . 84

6 Multipole Expansion 87

6.1 Index notation for Cartesian vectors and tensors . . . . . . . . . . . . . . . 87

6.2 Multipole expansion in Cartesian coordinates . . . . . . . . . . . . . . . . . 89

6.3 Multipole expansion using spherical harmonics . . . . . . . . . . . . . . . . 92

6.4 Another construction of the spherical harmonics . . . . . . . . . . . . . . . 94

6.5 Multipole expansion of the energy in an external field . . . . . . . . . . . . 95

7 Dielectric Media 97

7.1 Microscopic description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Examples of dielectric media . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3 Boundary-value problems with dielectric interfaces . . . . . . . . . . . . . . 102

7.4 Electrostatic energy in dielectric media . . . . . . . . . . . . . . . . . . . . . 109

8 Magnetostatics 112

8.1 Ampère’s law and the Biot-Savat law . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Magnetic field of a circular current loop . . . . . . . . . . . . . . . . . . . . 117

8.3 Localised Current Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.4 Force on a current distribution in an external ~B field . . . . . . . . . . . . . 125

8.5 Magnetically permeable media . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.6 Boundary conditions at medium interfaces . . . . . . . . . . . . . . . . . . . 129

8.7 Techniques for solving boundary-value problems in magnetostatics . . . . . 130

9 Electromagnetism and Quantum Mechanics 136

9.1 The Schrödinger equation and gauge transformations . . . . . . . . . . . . . 136

2



1 Introduction

1.1 Maxwell’s equations

The equations now known as Maxwell’s equations were obtained over an extended period,

principally during the early nineteenth century. Here, we shall take as our starting point the

set of four differential equations as they were presented by Maxwell in about 1861. It was

Maxwell who completed the process of constructing the equations, thereby achieving the

first unification of fundamental theories in physics. Prior to Maxwell, there were two essen-

tially independent theories, one describing electricity and the other describing magnetism,

and it was he who brought about the synthesis that unified them into a single theory of

electromagnetism. It was only later, after Einstein developed the theory of Special Relativity

in 1905, that the magnitude of Maxwell’s achievement really became clear. Especially, a

quite remarkable feature of Maxwell’s 1861 equations is that they are already completely

compatible with special relativity, with no need for modification of any kind.1 Aside from

changes in notation and units, Maxwell’s equations have remained otherwise unaltered since

1861.

Let us begin by considering Maxwell’s equations in free space, by which is meant that

the space outside of any conducting surfaces is assumed to be a vacuum. Using the SI

system of units, Maxwell’s equations are:

~∇ · ~E′ =
ρ′

ǫ0
, ~∇× ~B′ − µ0ǫ0

∂ ~E′

∂t
= µ0

~J ′ ,

~∇ · ~B′ = 0 , ~∇× ~E′ +
∂ ~B′

∂t
= 0 . (1.1)

Observe that I have written these equations with a “prime” on the electric field ~E the

magnetic field ~B, the electric charge density ρ and the electric current density ~J . This

is to indicate that these quantities are all expressed in the SI system of units. (The SI

system typically maximises the number of “redundant” dimensionful constants, and so one

might say that it is Super Inconvenient.) The remaining quantities appearing in (1.1)

are the constants ǫ0 and µ0, which are, respectively, the permitivity of free space and the

permeability of free space. They have the values

ǫ0 ≈ 8.85419 × 10−12 Farads/metre , µ0 = 4π × 10−7 Henries/metre (1.2)

1This contrasts with the case of Newtonian mechanics, which is not compatible with special relativity

and therefore did not survive as a “fundamental” theory after 1905.
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1.2 Gaussian units

SI units have their virtues for some purposes, but they can also be quite inconvenient in

practice. This seems to be especially true in electromagnetism, and for this reason it is

often more convenient to stick with an earlier system, known as Gaussian units. In this

system, Maxwell’s equations in free space take the form

~∇ · ~E = 4πρ , ~∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~J ,

~∇ · ~B = 0 , ~∇× ~E +
1

c

∂ ~B

∂t
= 0 , (1.3)

where c is the speed of light. Observe that here, we are writing the equations using the

unprimed quantities ~E, ~B, ρ and ~J , and it will probably therefore come as no surprise that

it is this Gaussian system of units that I prefer to use. It should already be evident upon

comparing (1.1) and (1.3) that Gaussian system is somewhat simpler, in that one needs only

one “fundamental constant” (i.e. the speed of light) rather than two (the permittivity and

the permeability of free space).2 The introduction of the 4π factors in (1.3) may perhaps

seem tiresome, but the advantage of doing so will become apparent in due course. (There

can be no escape from having 4π factors somewhere, because of the fact that a unit sphere

has area 4π.)

In order to ensure that we can, whenever desired, revert to SI units, it is useful to work

out explicitly the relation between the Gaussian quantities (denoted without primes, as in

(1.3)) and the SI quantities (denoted with primes, as in (1.1)). In order to do this, we first

need to understand a very important property of the Maxwell equations, namely that they

imply the existence of electromagnetic waves that propagate at the speed of light.

Consider the Maxwell equations (1.1) in a completely empty region of space, where there

is no charge density ρ′ and no current density ~J
′
. Taking the curl of the last equation, and

using the vector identity ~∇× (~∇× ~V ) = ~∇(~∇ · ~V ) −∇2~V , we obtain

−∇2 ~E′ + ~∇(~∇ · ~E′) +
∂

∂t
~∇× ~B′ = 0 . (1.4)

Using the first equation in (1.1) (with ρ′ = 0) and the second equation (with ~J
′
= 0) then

2Actually, one can do even better by changing the units in which one measures length from the metre to

the light second, or alternatively, changing the unit of time to the light metre (the time light takes to travel

1 metre). In either of these systems of units, the speed of light becomes equal to 1.

4



gives

∇2 ~E′ − µ0ǫ0
∂2

∂t2
~E′ = 0 . (1.5)

Analogous manipulations show that ~B′ satisfies an identical equation. We see, therefore,

that the electric and magnetic fields satisfy an equation for waves that propagate at the

speed

c =
1√
µ0ǫ0

≈ 2.99792 × 108 metres/second . (1.6)

This is precisely the speed of light in vacuo, and these wave solutions describe the propa-

gation of radio waves, light, etc.

With this preliminary, we are nearly ready to establish the relation between the SI units

used in (1.1), and the Gaussian units used in (1.3). The procedure for doing this is to

introduce constant factors α, β, γ and δ that relate the primed to the unprimed quantities,

~E′ = α~E , ~B′ = β ~B , ρ′ = γρ , ~J
′
= δ ~J , (1.7)

and to fix the values of these constants by demanding that plugging (1.7) into (1.1) should

give (1.3). It is essential, in doing so, that we have the relation (1.6) between c, µ0 and ǫ0.

Elementary algebra then gives

α =
γ

4πǫ0
, β =

γ

4π

√
µ0

ǫ0
, δ = γ . (1.8)

Observe that the value of the constant γ has not yet been determined. This means that

we can choose any value for γ, and we may use this freedom in order to make some other

equation as nice as possible by removing superfluous constant factors. Consider Coulomb’s

law, giving the force between two electric charges separated by a distance R. We again need

to distinguish between the charges q′1 and q′2 expressed in SI units, and the charges q1 and

q2 expressed in Gaussian units. Since we have the relation ρ′ = γρ between charge densities

in the two systems, and since the unit of volume is the same in the two systems, it follows

that the charges will also be related by the same factor of γ:

q′ = γq . (1.9)

Now, in the SI system the force between the two charges is given by

F =
q′1q

′
2

4πǫ0R2
=

γ2q1q2
4πǫ0R2

. (1.10)

Clearly, since we are free to choose γ to be whatever we like, the sensible choice is to take

γ =
√

4πǫ0 , (1.11)
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so that the force between charges q1 and q2 is simply

F =
q1q2
R2

. (1.12)

This is precisely the choice made in the Gaussian system of units.

Going back to (1.8), and combining it with the additional relation (1.11), we see that the

four constants α, β, γ and δ are now uniquely determined in terms of µ0 and ǫ0. Thus we

arrive at the following “dictionary” for relating the SI (primed) quantities to the Gaussian

(unprimed) quantities:

~E′ =
1√
4πǫ0

~E , ~B′ =

√
µ0

4π
~B ,

ρ′ =
√

4πǫ0 ρ , ~J
′
=

√
4πǫ0 ~J , q′ =

√
4πǫ0 q . (1.13)

With these relations established, we can happily proceed by using the more convenient

Gaussian units in this course, and anyone who wishes to re-express things in SI units can

do so using the SI-Gauss Dictionary (1.13).

1.3 Macroscopic media

In principle, every problem in classical electromagnetism can be viewed as a problem for-

mulated in free space, together with a number of electric point charges carried by electrons,

protons, etc. In practice, however, it is often the case that the number of individual point

charges is so large that it would not be convenient to consider them all separately, and

instead, it is preferable to make a “macroscopic approximation.” One obvious example is

the notion of a conductor: It would be very clumsy and unwieldy to treat every electro-

statics problem involving a conducting surface as a problem involving 1023 or so positive

and negative point charges that are bound together in such a way as to make what we

conventionally think of as a sheet of metal. Instead, we can typically just forget about the

microscopic explanation of why the protons, neutrons and electrons have formed themselves

into a metal, and instead simply abstract from this the macroscopic notion of a surface on

which the electrostatic potential is constant.

Another example where a macroscopic viewpoint is very useful is when one considers

materials (such as glass) that exhibit a dielectric permittivity, or else materials that exhibit

a magnetic permeability. One certainly can give a microscopic understanding of why these

materials behave as they do, but it is convenient not to have to delve into these details

every time we want to work out the effect of a slab of glass in an electrostatics problem.
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In order to give a macroscopic formulation of Maxwell’s theory in the presence of media,

we now interpret ~E and ~B as averaged values of the electric and magnetic fields, where

the averaging is performed over the distance scale of order the interatomic spacing in the

medium. The point here is that we don’t want to get involved in looking at the (enormous)

microscopic variations in the fields that occur on the atomic length scale as one moves

around close to individual electrons and protons. Having performed this averaging, the

meanings of ~E and ~B are the same as they are in free space. For example, ~E still measures

the potential difference between neighbouring points divided by their spatial separation.

We must also introduce two new quantities, called ~D and ~H, which are related to ~E and

~B respectively. The standard names for all four fields are:

~E : Electric field ,

~D : Electric displacement ,

~B : Magnetic induction ,

~H : Magnetic field .

In free space, we have

~D = ~E , ~H = ~B . (1.14)

In a medium, on the other hand, ~D represents a “back-reacted” version of ~E, which takes

into account the fact that the positive and negative charges in the medium are displaced

because of the presence of the externally-applied ~E field, and thus they feed back into the

system. To leading order, the system of positive and negative charges in the medium (which

is neutral on balance) distorts so that there is an effective electric dipole, or polarisation ~P ,

and

~D = ~E + 4π ~P . (1.15)

In a similar way, if the medium has magnetic properties there will be a similar relation

~H = ~B − 4π ~M , (1.16)

where ~M is a dipole magnetisation term.

The effect of all this is that the Maxwell equations are modified in the presence of the
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medium. Instead of the free-space equations (1.3) we shall now have

~∇ · ~D = 4πρ , ~∇× ~H − 1

c

∂ ~D

∂t
=

4π

c
~J ,

~∇ · ~B = 0 , ~∇× ~E +
1

c

∂ ~B

∂t
= 0 , (1.17)

Notice that it is the first two equations, the ones that have the ρ and ~J source-terms on the

right-hand side, that are modified. The remaining two equations are completely unchanged

from their free-space forms.

A common situation is when the medium is completely uniform and isotropic (meaning

that it is the same in all directions), and for which ~D and ~H are simply constant multiples

of ~E and ~B respectively:

~D = ǫ ~E , ~B = µ ~H . (1.18)

The constant ǫ is called the relative permittivity of the medium, and the constant µ is called

the relative permeability of the medium. In free space, where (1.14) holds, we clearly have

ǫ = 1 , µ = 1 . (1.19)

In this course, when we consider electromagnetism in a medium, we shall assume the rela-

tions (1.18).

1.4 Boundary conditions at media interfaces

A situation that one encounters frequently when studying physical problems in electromag-

netism is where there is a boundary or interface between two different materials or media.

The simplest such situation in electrostatics is the case where there is a conducting surface

in otherwise free space. Another example would be an interface between two materials with

different dialectric constants. In fact the conductor in free space can just be viewed as a

special case of the interface between two dielectric materials, with one of them (free space)

having ǫ = 1 and the other (the conductor) having ǫ = ∞.

The boundary conditions on the electric and magnetic fields at an interface between

two media can be determined by performing appropriate integrals of the Maxwell equations

(1.17). Let us label the media by “1” and “2,” and likewise place “1” and “2” subscripts

on the various electric and magnetic fields on the two sides of the interface.

Beginning with ~D, we can integrate ~∇ · ~D = 4πρ over a so-called “Gaussian pillbox”

that straddles the interface. The pillbox is a like a very short length of circular cylinder,
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with the ends capped off so as to form a closed surface. One should imagine that the size

of the whole pillbox is very small, and in fact eventually one takes the limit where the size

tends to zero. At all stages in the limiting process, the height of the box (i.e. the length of

the cylinder) is very small compared with its radius. The caps of the cylinder are taken to

be parallel to the interface, with the interface slicing through the box; one cap on each side.

The divergence theorem states that for any vector field ~v we have
∫

V

~∇ · ~v dV =

∫

S
~v · d~S , (1.20)

where S is a closed surface enclosing a volume V . Integrating ~∇ · ~D = 4πρ over the pillbox

and using (1.20), we therefore find
∫

S

~D · d~S = 4π

∫

V
ρdV = 4πq , (1.21)

where q is the charge inside the pillbox. Because the height of the pillbox is taken to be

very small compared to its diameter, we can neglect the contributions to the ~D integral

coming from the sides. Since the pillbox itself will be taken to have infinitesimal size we can

think of the interface where the pillbox is placed as being planar. Let ~n be the unit normal

vector pointing from medium 1 into medium 2. If the cross-sectional area of the pillbox is

∆A, then (1.21) gives

~n · ( ~D2 − ~D1)∆A = 4πσ∆A , (1.22)

where σ is the surface charge density (i.e. charge per unit area) at the interface. Thus we

have

~n · ( ~D2 − ~D1) = 4πσ (1.23)

at the interface.

By the same same token, the integration of the Maxwell equation ~∇ · ~B = 0 over the

same pillbox gives

~n · ( ~B2 − ~B1) = 0 (1.24)

at the interface. The zero on the right-hand side reflects the fact that there are no magnetic

charges.

Further boundary conditions follow by appropriately integrating the remaining two

Maxwell equations across the interface. This time, we consider a rectangular loop formed

by two infinitesimally-separated parallel line elements that straddle the interface, joined by

adding connecting lines at the two ends. Eventually the size of this loop is scaled to zero.

We now make use of Stokes’ theorem, which states that for any vector field ~v we have
∫

Σ
(~∇× ~v) · d~S =

∮

C
~v · d~ℓ , (1.25)
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where Σ denotes an (open) surface whose boundary is the closed loop C.

Suppose again the unit normal from medium 1 to medium 2 is ~n at the chosen point on

the interface that we are considering. We also choose a unit vector ~m that is tangent to the

interface at the selected point. There is a 1-parameter family of such unit vectors, since we

can rotate ~m arbitrarily around the axis defined by ~n. Integrating the Maxwell equation

~∇× ~E = −(1/c)∂ ~B/∂t over the area Σ of the loop and applying (1.25) gives

∮
~E · d~ℓ = −1

c

∂

∂t

∫

Σ

~B · d~S . (1.26)

Since ~B is assumed to be finite, as also is ∂ ~B/∂t, it follows that the right-hand side is

infinitesimal since the separation between the two line elements of the loop is infinitesimal,

implying that the area Σ is infinitesimal. If the length of each line element in the loop is

∆ℓ, and if the lines are taken to be perpendicular to ~m (and, of course, also perpendicular

to ~n), then it follows that

0 =

∮
~E · d~ℓ = (~m× ~n) · (~E2 − ~E1)∆ℓ . (1.27)

Uisng the vector identity ~a · (~b× ~c) = ~b · (~c× ~a) it follows that

~m · [~n× ( ~E2 − ~E1)] = 0 . (1.28)

This must hold for any choice of the direction for the unit tangent vector ~m, and so it must

be that

~n× ( ~E2 − ~E1) = 0 . (1.29)

Finally, we perform an analogous integral over the last Maxwell equation, ~∇ × ~H =

1/c ∂ ~D/∂t + (4π/c) ~J . The finiteness of ∂ ~D/∂t means that its area integral over the loop

gives zero, but ~J will have a non-zero area integral in general, since there can be a surface

current density ~K (analogous to the surface charge density σ). Thus we find

∮
~H · d~ℓ = (~m× ~n) · ( ~H2 − ~H1)∆ℓ =

4π

c
~m · ~K∆ℓ , (1.30)

and since the left-hand side can be rewritten as ~m · [~n× ( ~H2 − ~H1)], and the equation must

hold for all choices of direction for the tangent vector ~m, we conclude that

~n× ( ~H2 − ~H1) =
4π

c
~K . (1.31)

To sumarise, the boundary conditions we have derived above in (1.23), (1.24), (1.29)
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and (1.31) are

~n · ( ~D2 − ~D1) = 4πσ , ~n · ( ~B2 − ~B1) = 0 ,

~n× ( ~E2 − ~E1) = 0 , ~n× ( ~H2 − ~H1) =
4π

c
~K . (1.32)

These give the junction conditions at the interface between medium 1 and medium 2, where

~n is the unit normal vector pointing from 1 to 2 at the interface, σ is the surface charge

density and ~K is the surface current density. Note that the first line of (1.32) comprises

conditions on the components of the fields normal to the interface, whilst the second line

comprises conditions on the components parallel to the interface.

A special case of frequent interest arises for an electric field in free space, in the presence

of a conducting surface. In the free-space region we have ~D = ~E, and the conductor can

be viewed as the surface of a medium having infinite dielectric constant, which means that

~E = 0 there. Thus the pillbox integration of ~∇ · ~D = 4πρ becomes just the integral of

~∇ · ~E = 4πρ, with ~E = 0 in “medium 1.” Th upshot is that the first and third junction

conditions in (1.32) become (dropping the “2” subscript in the free-space region outside the

conductor)

~n · ~E = 4πσ , ~n× ~E = 0 (1.33)

at the surface. The second equation says that there is no component of ~E tangent to the

conducting surface, and the first equation says that the normal component of the electric

field at the conductor is equal to 4πσ.

1.5 Gauge potentials

When solving Maxwell’s equations, it is often convenient to express the electric and magnetic

fields in terms of potentials. This has the advantage that two of the four Maxwell equations

are then explicitly solved from the outset, leaving just two more, which now become second

order equations for the potentials.

Specifically, the two Maxwell equations that are solved by introducing potentials are the

two that do not have ρ or ~J as sources, namely

~∇ · ~B = 0 , ~∇× ~E +
1

c

∂ ~B

∂t
= 0 . (1.34)
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Notice that these two equations are exactly the same whether one is considering the free-

space case (1.3) or the case where media are present (1.17).3

To introduce potentials we begin by considering ~∇· ~B = 0. This can be solved by writing

~B as the curl of a vector:

~B = ~∇× ~A , (1.35)

since the divergence of the curl of any vector vanishes identically. Passing now to the second

equation in (1.34), we plug in (1.35) and deduce (after using the fact that the partial time

derivative commutes with ~∇) that

~∇×
(
~E +

1

c

∂ ~A

∂t

)
= 0 . (1.36)

If a vector has vanishing curl it can be written as the gradient of a function, and so we can

write ~E + (1/c)∂ ~A/∂t = −~∇φ.

To summarise, we can write ~E and ~B in terms of a scalar potential φ and a vector

potential ~A as

~E = −~∇φ− 1

c

∂ ~A

∂t
, ~B = ~∇× ~A . (1.37)

A feature that now arises is that the choice of potentials that give rise to given ~E and

~B fields via (1.37) is not unique. Since the curl of a gradient vanishes identically, we get

the same ~B if the gradient of an arbitrary function λ is added to ~A. Thus if we define

~A′ = ~A+ ~∇λ , (1.38)

then ~A′ gives the same ~B as does ~A:

~∇× ~A′ = ~∇× ~A+ ~∇× ~∇λ = ~∇× ~A = ~B . (1.39)

It is now evident that if, at the same time, we transform φ to

φ′ = φ− 1

c

∂λ

∂t
, (1.40)

then we shall also find that φ′ and ~A′ give rise to the same ~E, via (1.37), as do φ and ~A.

To summarise, the expressions (1.37) for the electromagnetic fields give the same ~E and

~B if we transform the potentials φ and ~A according to

φ −→ φ′ = φ− 1

c

∂λ

∂t
, ~A −→ ~A′ = ~A+ ~∇λ , (1.41)

3These two Maxwell equations are known as Bianchi identities. By contrast, the remaining two Maxwell

equations are known as the Maxwell field equations.
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where λ is an arbitrary function of ~r and t. The transformations (1.41) are known as gauge

transformations. The potentials φ and ~A are known as gauge potentials.

In this course, we shall mostly be concerned with the situation when the electric and

magnetic fields are static, i.e. they are independent of time. It is evident from the Maxwell

equations (1.3) that under these circumstances the electric and magnetic fields are totally

decoupled from one another. Just because ~E and ~B are static, it does not necessarily

mean that the the potentials φ and ~A have to be taken to be time independent (as can

be seen by considering (1.37)). However, one would have to be quite perverse to choose to

complicate a time-independent problem by opting to describe it in terms of time-dependent

potentials! Thus in practice, in the static case, we always choose to take φ and ~A to be

time-independent, and so (1.37) becomes simply

~E = −~∇φ , ~B = ~∇× ~A . (1.42)

The residual part of the gauge transformations (1.41) that preserves the time-independence

of the gauge potentials is given by taking the gauge parameter λ to be of the form

λ(~r, t) = −ckt+ λ(~r) , (1.43)

where k is a constant and λ(~r) is an arbitrary function of position. Thus in the static case

we have independent gauge transformations under which

φ −→ φ′ = φ+ k , ~A −→ ~A′ = ~A+ ~∇λ(~r) . (1.44)

The gauge transformation for φ is just the familiar freedom to add an arbitrary constant to

the electrostatic potential.

1.6 Electric field of a point charge; Coulomb’s law

It was found experimentally long ago, by Cavendish, Coulomb and others, that the force be-

tween two charges q1 and q2 in free space was proportional to the product q1 q2; was inversely

proportional to the square of the distance bewteen them (let us assume point charges, for

simplicity); and was directed along the line joining the two charges. Furthermore, the force

is attractive if q1 q2 is negative, and repulsive if q1 q2 is positive. If we work in Gaussian

units, then as discussed in section 1.2, the magnitude of the force is simply equal to q1 q2

divided by the square of the separation. All this is summarised in the equation

~F = q1 q2
~r1 − ~r2
|~r1 − ~r2|3

, (1.45)
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which gives the force on q1 due to q2, where ~r1 and ~r2 are the position vectors of the two

point charges q1 and q2.

Coulomb also found that the force on a charge q was given by

~F = q ~E , (1.46)

and so we can read off from (1.45) that the electric field at the point ~r due to a charge q1

located at the point ~r1 is given by

~E(~r) = q1
~r − ~r1
|~r − ~r1|3

. (1.47)

A very important and fundamental feature of electromagnetism is that it is described

by a system of linear equations (see (1.3)), and so it obeys the principal of superposition. In

particular, this means that if there are N point charges qa located at positions ~ra, then the

total electric field at ~r is simply the sum of the individual contributions from each charge:

~E(~r) =
N∑

a=1

qa
~r − ~ra
|~r − ~ra|3

. (1.48)

We can generalise this result to the case where there is a continuum of charge, with

charge density ρ. In the infinitesimal volume dxdydz in the neighbourhood of the point ~r

there will be an infinitesimal charge ρ(~r)dxdydz. For convenience, we may write the volume

element dxdydz as dxdydz ≡ d3~r. Then, we simply generalise the discrete sum (1.48) to an

integral, and obtain

~E(~r) =

∫
ρ(~r ′)

~r − ~r ′

|~r − ~r ′|3 d
3~r ′ . (1.49)

The inverse process, of passing from the continuum result (1.49) to the discrete sum

(1.48), can be achieved by means of the Dirac delta function. In one dimension the Dirac

delta function δ(x− a) is a “spike” of zero width, infinite height, and total area=1 that has

the property

f(a) =

∫ x2

x1

f(x)δ(x− a)dx (1.50)

for any function f(x), provided that the integration interval [x1, x2] encompasses the point

x = a. (The integral would give zero if a did not lie inside the integration interval.) We

then define the three-dimensional delta function δ3(~r − ~a) as

δ3(~r − ~a) ≡ δ(x − a1)δ(y − a2)δ(z − a3) , (1.51)

where a1, a2 and a3 are the x, y and z components of the vector ~a: i.e. ~a = (a1, a2, a3).

Clearly, the three-dimensional delta function has the property that

f(~a) =

∫

V
f(~r)δ3(~r − ~a)d3~r , (1.52)
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provided that the integration volume V encompasses the point ~r = ~a where the delta

function has its “spike.”

Using the delta function, we can then write the charge density ρ for the set of charges

in (1.48) as

ρ(~r) =
N∑

a=1

qa δ
3(~r − ~ra) . (1.53)

Substituting this into (1.49), and using (1.52), we indeed recover (1.48).

1.7 Gauss’s law

If we are considering electrostatics, i.e. the situation where there is a time-independent

electric field and no magnetic field, the Maxwell equations (1.3) in free space reduce to

~∇ · ~E = 4πρ , ~∇× ~E = 0 . (1.54)

By integrating the first equation over a volume V , and using the divergence theorem (1.20),

we obtain Gauss’s law ∫

S

~E · d~S = 4πQ , (1.55)

where S is the closed surface surrounding the volume V , and Q is the total charge contained

within the volume V :

Q = 4π

∫

V
ρdV . (1.56)

(Actually, historically, the Maxwell equation ~∇ · ~E = 4πρ was discovered experimentally in

its equivalent integrated form (1.55).)

It is instructive to examine Gauss’s law in the special case of a single point charge q.

Since, when we set up a Cartesian coordinate system we can choose the origin to be at any

arbitrary point, it is convenient to choose it so that the charge sits at the origin. Using

(1.47) we see that the electric field of the charge will be given by

~E =
q ~r

r3
. (1.57)

Let us check that this is consistent with the Maxwell equation ~∇· ~E = 4πρ, and its integrated

form (1.55).

First, we calculate the divergence of ~r/r3. Clearly we have ~∇ · ~r = ∂x/∂x + ∂y/∂y +

∂z/∂z = 3, and since r2 = x2 + y2 + z2 we have, differentiating, 2r∂r/∂x = 2x, etc., and

hence ∂r/∂x = x/r, etc. Thus we have

~∇ · ~r = 3 , ~∇r =
~r

r
, (1.58)
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and so

~∇ ·
( ~r
r3

)
=
~∇ · ~r
r3

− 3~r

r4
· ~r
r

=
3

r3
− 3

r3
= 0 . (1.59)

This shows that for (1.57) we have in general ~∇ · ~E = 0. This is perfectly correct away

from the origin, since we hope to find ~∇ · ~E = 4πρ and indeed ρ = 0 away from the

origin. However, at the origin the calculation (1.59) is not trustworthy, because there are

denominators that go to zero at r = 0. The safe way to handle this is to consider the

integrated form of the equation, in (1.55).

Let us take the volume V in (1.55) to be a sphere of radius R centred on the origin.

Plugging in (1.57), we shall then have on the left-hand side

q

∫

S

~r

r3
· d~S = q

∫

S

~n · d~S
R2

= q

∫
dΩ = 4πq , (1.60)

where we have defined the unit vector ~n ≡ ~r/r which is the unit outward normal on the

sphere of radius r, and where dΩ is the area element on the unit sphere (i.e. the solid angle

element).

We obtained the result (1.60) by choosing to integrate over a sphere of radius R centred

on the origin, but it is obvious that the result would be the same for any closed surface that

surrounded the origin, and that instead we would get zero if the integration surface did not

surround the origin. The conclusion from this is that the function ρ on the right-hand side

of the Maxwell equation ~∇ · ~E = 4πρ must be a three-dimensional delta function centred

on the origin, and that therefore the precise calculation of ~∇ · ~E gives

~∇ · ~E = 4πq δ3(~r) . (1.61)

1.8 Electrostatic potential

In section 1.5 we introduced gauge potentials in terms of which the electric and magnetic

fields could be expressed. For the case of electrostatics, we have the particularly simple

situation that the electric field is written purely in terms of a scalar potential φ, with

~E = −~∇φ , (1.62)

where an arbitrary constant k can clearly be added to φ without altering ~E. We can see by

inspection that the second Maxwell equation in (1.54) is identically satisfied when we write

~E = −~∇φ, and also that the first Maxwell equation in (1.54) becomes the Poisson equation

∇2φ = −4πρ . (1.63)

16



Solving any problem in electrostatics is therefore reduced to solving the Poisson equation

(1.63) for a given charge density ρ, subject to given boundary conditions. This is called the

Boundary Value Problem.

First, let us consider the potential due to a point charge q in an infinte free space. Taking

the charge to be located at the origin for convenience, we therefore need to find a function

φ such that −~∇φ is equal to ~E = q ~r/r3 as in (1.57). From the second equation in (1.58)

we see that ~∇(1/r) = −~r/r3, and so we may take the electrostatic potential to be

φ =
q

r
. (1.64)

Of course having the charge located at the origin was an inessential convenience, and

we can readily write down the answer in the case where the charge is instead located at the

point ~r1 just by shifting the origin of the Cartesian axes, giving

φ(~r) =
q

|~r − ~r1|
. (1.65)

Note that we can add an arbitrary constant if we wish, but in fact the choice of this

“integration constant” that has been made in writing (1.65) is already rather natural, since

it means that φ(~r) goes to zero as ~r goes to infinity.

Because of the linearity of the equations the generalisation to a system of N point

charges qa located at positions ~ra is immediate:

φ(~r) =
N∑

a=1

qa
|~r − ~ra|

. (1.66)

For the case of a continuous charge distribution, we similarly have

φ(~r) =

∫
ρ(~r ′)

|~r − ~r ′| d
3~r ′ . (1.67)

These expressions are analogous to equations (1.48) and (1.49) for the electric field. Indeed,

one can easily explicitly see that calculating −~∇φ for (1.66) or (1.67) gives (1.48) or (1.49)

respectively. To do these calculations, one must be careful to note that ~∇ means the gradient

with respect to the coordinates in ~r, and that ~ra in (1.66), or ~r ′ in (1.67), are treated as

constants in the differentiation. Thus one uses the result that

~∇ 1

|~r − ~r ′| = − ~r − ~r ′

|~r − ~r ′|3 . (1.68)

We had previously obtained the result (1.61) that the electric field for a point charge q

at the origin, namely ~E = q ~r/r3, satisfies ~∇· ~E = 4πq δ3(~r). Since ~E = −~∇φ with φ = q/r,

we therefore have

∇2φ = −4πq δ3(~r) . (1.69)
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More generally, if the charge q is located at ~r = ~r ′ so that the potential is given in (1.65),

then we shall therefore have

∇2φ = −4πq δ3(~r − ~r ′) . (1.70)

From this we can read off a result that will be useful frequently in the future, namely that

∇2 1

|~r − ~r ′| = −4π δ3(~r − ~r ′) . (1.71)

1.9 Uniqueness theorem

Whenever one is solving a differential equation, such as the Poisson equation ∇2φ = −4πρ

that we encounter in electrostatics, the question arises as to what boundary conditions one

must impose in order to obtain a unique solution. Expressed more physically, one may ask

how much boundary information must be specified in order to pin down the physics of the

problem completely.

The answer for Poisson’s equation is that the solution for the potential φ inside a volume

V will be uniquely determined once its value at all points on the (closed) surface S that

bounds V is specified. For example, if we are solving ∇2φ = −4πρ inside a sphere, then

the solution will be uniquely determined provided the value of φ at every point on the

surface of the sphere is specified. This type of boundary condition, in which φ is specified

on S, is known as a Dirichlet boundary condition. An alternative is to specify not φ itself,

but its normal derivative ∂φ/∂n, on the boundary. This is known as a Neumann boundary

condition. In this case the solution for φ is again unique, except for the (trivial) point that

an arbitrary additive constant is undetermined. One can also consider mixed boundary

conditions, which are Dirichlet on parts of the boundary and Neumann on the rest.

To prove these statements, we suppose that for given boundary conditions on S there

exist two different solutions to ∇2φ = −4πρ. Let these solutions be φ1 and φ2. The idea

will be to prove that actually φ1 = φ2, and so the solution is unique. With

∇2φ1 = −4πρ , ∇2φ2 = −4πρ , (1.72)

it follows by subtraction that the function ψ defined by

ψ ≡ φ1 − φ2 (1.73)

will satisfy Laplace’s equation

∇2ψ = 0 (1.74)
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in the volume V . Since φ1 and φ2 by definition satisfy identical boundary conditions on S,

it follows that ψ will satisfy either ψ = 0 (Dirichlet) or ∂ψ/∂n = 0 (Neumann) on S.

We now multiply (1.74) by ψ, integrate over V , and then perform an integration by

parts:

0 =

∫

V
ψ∇2ψ dV ,

=

∫

V

[
~∇ · (ψ~∇ψ) − ~∇ψ · ~∇ψ

]
dV ,

=

∫

S
ψ~∇ψ · d~S −

∫

V
|~∇ψ|2 dV . (1.75)

(The first term on the last line comes by using the divergence theorem (1.20).) Now we see

that since either ψ or its normal derivative ∂ψ/∂n ≡ ~n · ~∇ψ vanishes at all points on S, we

are left with ∫

V
|~∇ψ|2 dV = 0 . (1.76)

The integrand is everywhere non-negative, and so the integral can only be zero if the

integrand vanishes everywhere in V . But if |~∇ψ|2=0 it follows that

~∇ψ = 0 (1.77)

everywhere in V , and so we conclude that ψ = constant everywhere in V . In other words,

we have proved that

φ1 = φ2 + k , (1.78)

where k is a constant.

In the case of Dirichlet boundary conditions we know that φ1 = φ2 on S, and so the

constant k must be zero. This proves that φ1 = φ2 everywhere in V , thus establishing that

the solution is unique.

In the case of Neumann boundary conditions, where only the normal derivative is speci-

fied on S, it is clear that the constant k can never be determined. This is of no consequence,

since φ and φ + k give rise to the same physical ~E field in any case. So in the Neumann

case too, the solution is unique.

Note that the results above can apply not only to the problem of solving for φ inside a

finite volume V with finite-sized closed boundary S, but also in the case where the volume V

is infinite. A typical example would be when there is a finite-sized surface S1 (for example

a spherical conductor) and the volume V is taken to be the entire infinite space outside

it. In this case there is no actual boundary at infinity, but we can treat the problem by

imagining that we introduce a spherical boundary surface S2 at some very large radius R,
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and eventually we send R to infinity. When R is large but finite, we have a finite volume V

bounded by the disconnected sum of the two surfaces S1 (in the middle) and S2 (at large

distance).

The uniqueness arguments discussed above can then be applied to this situation, with

the surface integral in (1.75) becoming the sum of two integrals, one over the component

S1 of the total boundary and the other over the component S2. Dirichlet or Neumann

boundary conditions are specified on S1, and so that contribution to the surface integral

will vanish. The surface integral over S2 will become zero in the limit that the radius R is

sent to infinity, provided that φ goes to zero sufficiently fast at infinity. Thus in practice we

think of S2 as “the sphere at infinity,” and we impose the boundary condition that φ goes

to zero at infinity, thereby ensuring that the S2 component of the surface integral in (1.75)

will vanish too. This ensures that again we are left with just the volume integral (1.76),

and so the uniqueness proof goes through as before.

Note also that we can allow multiple disconnected surfaces at finite distance, provided

that Dirichlet or Neumann boundary conditions are imposed on all of them.

In summary, therefore, we have a uniqueness proof too in the case where the volume

V is infinite, provided that we not only impose Dirichlet or Neumann boundary conditions

on any boundary surfaces at finite distance, but we also impose a fall-off condition on the

potential at infinity.

Note that we have established uniqueness of the solution subject to the imposition of

either Dirichlet or Neumann boundary conditions at each point on the boundary. It could

be Dirichlet for some points, and Neumann for others, but at any given point one must

specify only one of Dirichlet or Neumann. With such boundary conditions specified, the

problem is said to be well posed. This means that these boundary conditions are neither

too weak, leaving the problem underdetermined and not fully pinned down, nor are they

too strong, leaving the problem overdetermined and therefore admitting no solution.

An example of an overdetermined problem would be if one tried to impose both Dirichlet

and Neumann boundary conditions at each point on S. In other words, if one tried to

specify both the potential and its normal derivative at each point on S. Specifying both φ

and ∂φ/∂n on S is known as specifying Cauchy boundary conditions. That this would be

an overdetermination is obvious from the fact that Dirichlet conditions alone are sufficient

to give a unique solution. And, on the other hand, Neumann conditions alone are sufficient

to give another unique solution. Except in the unlikely event that one picked precisely the

“matching” set of Neumann conditions that would reproduce the solution with the Dirichlet
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conditions, there will be a conflict between the two, implying that no solution would exist.

1.10 Green’s theorem

In section 1.8 we gave the expression (1.67) for the electrostatic potential due to a distri-

bution of charge with charge density ρ:

φ(~r) =

∫
ρ(~r ′)

|~r − ~r ′| d
3~r ′ (1.79)

This result assumes that the charge distribution exists in otherwise free space, with no

conductors or other boundaries present. In practice, as we have already remarked, a typ-

ical realistic situation is one where there are other conductors, etc., on which boundary

conditions are specified.

To handle the case where there are boundaries, the following procedure can be useful.

We first derive a simple result known as Green’s theorem, and then apply it to the case of

interest.

Let φ and ψ be two scalar functions. We can then consider

~∇ · (φ~∇ψ − ψ~∇φ) = ~∇φ · ~∇ψ + φ∇2ψ − ~∇ψ · ~∇φ− ψ∇2φ ,

= φ∇2ψ − ψ∇2φ . (1.80)

Integrating this over a volume V bounded by surface S, and using the divergence theorem

(1.20), we therefore find

∫

V
(φ∇2ψ − ψ∇2φ)dV =

∫

S
(φ~∇ψ − ψ~∇φ) · d~S . (1.81)

This is Green’s theorem.

We apply it to our electrostatics problem by taking φ to be the electrostatic potential

satisfying Poisson’s equation (1.63), and taking

ψ =
1

|~r − ~r ′| . (1.82)

We shall take ~r ′ to be the integration variable in (1.81), and so the derivatives in (1.81)

will also be with respect to ~r ′. We shall therefore denote these with primes also. Note from

(1.71) that we shall have

∇′2 1

|~r − ~r ′| = −4πδ3(~r ′ − ~r) . (1.83)
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This can be used on the left-hand side of (1.81), and we also use ∇′2φ(~r ′) = −4πρ(~r ′).

Thus we obtain

φ(~r) =

∫

V

ρ(~r ′)

|~r − ~r ′| d
3~r ′ +

1

4π

∫

S

[
1

|~r − ~r ′|
~∇′φ(~r ′) − φ(~r ′) ~∇′

( 1

|~r − ~r ′|
)]

· d~S′ . (1.84)

The first term on the right-hand side of (1.84) is of the same form as the expression

(1.79) that held in free space. The surface integrals in (1.84) represent the contribution

from charge distributions on the boundary S that we are now including.

We can interpret (1.84) as giving the expression for the potential everywhere in V in

terms of the charge density ρ in V and the potential (and its normal derivative) on S.

However, we cannot view (1.84) in itself as providing the answer we are seeking for how to

solve for the potential in a general electrostatics problem. It can be seen from (1.84) that

we would need to feed in the information about φ on the boundary and also about ∂φ/∂n

on the boundary in order to obtain the expression for φ in V . But we saw in the discussion

of the uniqueness theorem that we are not allowed to specify independently the values of

φ and also of its normal derivative on the boundary; that would give an overdetermined

problem that admitted no solution.

Thus we can only regard (1.84) as an integral equation which will tell us what φ is

everywhere, once we know what it and its normal derivative are on the boundary. To solve

the general boundary-value problem we will need to introduce another tool, which is called

the Green function.

1.11 Green functions and the boundary-value problem

Although (1.84) solves the desired Poisson equation (1.63) with the desired boundary con-

ditions, it is unsatisfactory as a solution of the boundary-value problem because one would

have to know both φ and its normal derivative on the boundary, whereas in fact these are

not independent pieces of information and so they cannot be independently specified. The

difficulty would be overcome if we could somehow arrange that only one of the two surface-

integral terms in (1.84) were present. This can be achieved by changing the choice for the

function ψ in (1.82) that we inserted into Green’s theorem (1.81) in order to obtain (1.84).

Instead of taking ψ to be simply given by (1.82), we need to be a little more ingenious. The

function we require is known as a Green function.4

4One sometimes sees this referred to as “a Green’s function.” This is a grammatical abomination, which

is as wrong as calling an apple pie “an apple’s pie.” There are numerous offenders in the physics community.
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The key point about the function ψ = |~r = ~r ′|−1 that we needed in deriving the

result (1.84) was that it satisfied (1.83). In fact there is a much broader class of functions

that satisfy equation (1.83). This is an inhomogeneous equation with the delta function

providing a source on the right-hand side, and so we can add to the solution (1.82) an

arbitrary solution of the homogeneous equation. Thus we may take ψ in (1.81) to be any

function of the form

G(~r,~r ′) =
1

|~r − ~r ′| + F (~r,~r ′) , (1.85)

where F (~r,~r ′) is any solution of the homogeneous equation

∇′2F (~r,~r ′) = 0 . (1.86)

(i.e. F (~r,~r ′) is an harmonic function.) Thus we have

∇′2G(~r,~r ′) = −4πδ3(~r − ~r ′) . (1.87)

The idea now is that we will choose F (~r,~r ′) so that G(~r,~r ′), which is called a Green

function, satisfies appropriate boundary conditions.

To see how this works, we first note that there is an analogous result to (1.84) where

we take ψ in (1.81) to be G(~r,~r ′) rather than |~r − ~r ′|−1, namely

φ(~r) =

∫

V
ρ(~r ′)G(~r,~r ′)d3~r ′ +

1

4π

∫

S

[
G(~r,~r ′) ~∇′φ(~r ′) − φ(~r ′) ~∇′G(~r,~r ′)

]
· d~S′ . (1.88)

Consider first the case where we wish to specify Dirichlet boundary conditions for the

potential on the surface S. We achieve this by choosing the harmonic function F (~r,~r ′) in

(1.85) so that G(~r,~r ′) vanishes when ~r ′ lies in the surface S. Thus, denoting this Dirichlet

Green function by GD(~r,~r ′), we have

GD(~r,~r ′) = 0 when ~r ′ ∈ S . (1.89)

Using GD(~r,~r ′) in (1.88) we therefore obtain

φ(~r) =

∫

V
ρ(~r ′)GD(~r,~r ′)d3~r ′ − 1

4π

∫

S
φ(~r ′) ~∇′GD(~r,~r ′) · d~S′ . (1.90)

This has achieved the goal of giving an expression for φ(~r) everywhere in the volume V ,

expressed in terms of the given charge density ρ(~r) and the values of φ(~r) on the boundary

surface S. Thus, we may say that the Dirichlet boundary-value problem is solved, albeit

somwhat formally.

J.D. Jackson used to be one of them, but although he referred to “a Green’s function” in the first edition of

Classical Electrodynamics, he had reformed by the time the second edition appeared.
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One might worry that (1.90) has done little more than replace one difficult problem

(solving ∇2φ = 4πρ for φ) by another equivalently difficult problem (solving for the har-

monic function F (~r,~r ′) that is needed in order to ensure the Green function satisfies (1.89)).

However, this is not quite true, and moreover, a very important advantage of adopting this

Green-function approach is that solving just once for the Green function for the given

geometry then allows us to solve many different boundary-value problems.

The point is the following. Having once solved for GD(~r,~r ′) in the given geometry (i.e.

for the specified boundary surface S), one can now construct the solution for φ(~r) for any

choice of charge density ρ(~r) and for any choice of the boundary-value potential on the

surface S. Thus finding the Dirichlet Green function just once for the chosen geometry

allows us to solve any Dirichlet boundary-value problem for that geometry.

The solution to the Neumann problem goes rather similarly, although with a minor

subtlety. One might think that now one should choose F (~r,~r ′) in (1.85) so that the normal

derivative of the Green function vanished on S,

∂GN (~r,~r ′)

∂n′
= 0 when ~r ′ ∈ S . (1.91)

But this would lead to a contradiction, since by integrating (1.87) over V and using the

divergence theorem (1.20) gives

∫

S

~∇′GN (~r,~r′) · d~S′ = −4π , (1.92)

and so we cannot impose the boundary condition (1.91) on S. The simplest choice is to

impose
∂GN (~r,~r ′)

∂n′
= −4π

A
when ~r ′ ∈ S , (1.93)

where A is the area of the boundary S.

Substituting (1.93) into (1.88), we therefore find

φ(~r) = 〈φ〉S +

∫

V
ρ(~r ′)GN (~r,~r ′)d3~r ′ +

1

4π

∫

S
GN (~r,~r ′) ~∇′φ(~r ′) · d~S′ , (1.94)

where 〈φ〉S denotes the average value of φ over the surface S,

〈φ〉S =
1

A

∫

S
φdS . (1.95)

The solutions (1.90) or (1.94) for φ in terms of the Dirichlet or Neumann Green function

provide at least a formal solution to the boundary-value problem. How useful they are in

practice depends upon the details of the geometry of the problem. It all comes down to the
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question of whether one can solve explicitly for the Green function GD(~r,~r ′) or GN (~r,~r ′).

For a boundary S of some generic type it will certainly be impossible in closed form. In

certain special cases one can obtain closed-form expressions. We shall meet examples later

on where this can be done, in the case of an infinite planar boundary S, and in the case of

a spherical boundary.

It is worth making a few closing remarks about the physical interpretation of the Green

function. The simplest example is when

G(~r,~r ′) =
1

|~r − ~r ′| , (1.96)

which is, as we have seen, the Green function for the Dirichlet problem where the only

boundary is the “sphere at infinity.” We can recognise (1.96) as being the electric potential

at the point ~r due to a unit point charge at the point ~r ′. In fact (1.96) is symmetrical under

the exchange of ~r and ~r ′, and so it can be equivalently viewed as the potential at ~r ′ due to

a unit charge at ~r.

In the more general case, the Green function is of the form (1.85), where F (~r,~r ′) is

an harmonic function. This means that G(~r,~r ′) again has the interpretation of being the

potential at ~r due to a unit charge at ~r ′, but now in the more complicated case where

G(~r,~r ′) (or its normal derivative, in the Neumann case) vanishes on S.

One can show quite generally that in the case of Dirichlet boundary conditions, the

Green function GD(~r,~r ′) is necessarily symmetrical under the exchange of ~r and ~r ′:

GD(~r,~r ′) = GD(~r ′, ~r) . (1.97)

(This can be done by using Green’s theorem (1.81).) In the case of Neumann boundary

conditions, symmetry under the exchange of ~r and ~r ′ is not automatic, but it can always

be imposed.

1.12 Electrostatic energy

The force on a charge q in an electric field ~E is given by ~F = q ~E. It follows that the work

done in moving it from a point P1 to a point P2 is given by

∆W = −
∫ P2

P1

~F · d~ℓ = −q
∫ P2

P1

~E · d~ℓ . (1.98)

Using ~E = −~∇φ therefore gives

∆W = q

∫ P2

P1

~∇φ · d~ℓ = qφ(P2) − qφ(P1) . (1.99)
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From this, we can read off the potential energy U of the charge q in the electrostatic field

as being

U = q φ . (1.100)

If we consider a system of N charges qa at point ~ra in free space, then the the electrostatic

energy of a particular charge qa in to the potential due to the other N − 1 charges will

therefore be

Ua = qa
∑

b6=a

qb
|~ra − ~rb|

, (1.101)

where the sum is taken over the remaining N − 1 charges. The total potential energy will

then be given by

U =
N∑

a=1

∑

b<a

qaqb
|~ra − ~rb|

. (1.102)

(The second summation is over b < a rather than over all b 6= a to avoid a double counting:

the energy of charge 1 in the field of charge 2 is the same as the energy of charge 2 in the

field of charge 1, but this energy counts only once to the total energy, not twice.) Another

way of writing this is

U = 1
2

∑

a

∑

b6=a

qaqb
|~ra − ~rb|

, (1.103)

where it is understood that, aside from the exclusion b 6= a, the indices a and b range over

1 to N . The exclusion of b = a is necessary since otherwise the formula (1.103) would

give a nonsensical infinite result. The excluded terms can be thought of as the infinite

“self-energy” contributions.

Generalising (1.103) to the case of a continuous charge distribution clearly gives

U = 1
2

∫ ∫
ρ(~r)ρ(~r ′)

|~r − ~r ′| d3~r d3~r ′ . (1.104)

In view of the fact that the potential φ(~r) is given by (1.67), we can rewrite (1.104) as

U = 1
2

∫
ρ(~r)φ(~r)d3~r . (1.105)

We can also rewrite the energy purely in terms of the electric field. To do this, we use

the Poisson equation (1.63) to write ρ in (1.105) as ρ = −1/(4π)∇2φ, giving

U = − 1

8π

∫
φ∇2φd3~r ,

= − 1

8π

∫
~∇ · (φ~∇φ)d3~r +

1

8π

∫
|~∇φ|2 d3~r ,

= − 1

8π

∫

S
φ~∇φ · d~S +

1

8π

∫
|~∇φ|2 d3~r ,

=
1

8π

∫
|~∇φ|2 d3~r . (1.106)
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Note that after performing the integration by parts here, we have dropped the surface term

coming from the “sphere at infinity” since the fields are assumed to go to zero there.

Since ~E = −~∇φ we therefore have

U =
1

8π

∫
| ~E|2d3~r , (1.107)

integrated over all space. This leads naturally to the definition of energy density in the

electric field as

w =
1

8π
| ~E|2 . (1.108)

It is of interest to apply this result to the electric field at the surface of a conductor.

Recall from section 1.4 that we found that the electric field is always normal to the surface

of a conductor, and that there is a surface-charge density σ given by ~n · ~E = 4πσ (see(1.33)).

Therefore, in the neighbourhood of the conductor there is an energy density

w =
1

8π
| ~E|2 = 2πσ2 . (1.109)

If an element of the surface of area δA is displaced outwards by a distance δx, the electro-

static energy will then change by an amount

δU = −wδAδx = −2πσ2δA δx . (1.110)

This implies an outward force per unit area (i.e. pressure) given by

p = 2πσ2 . (1.111)

2 Method of Images

Sometimes, if there is a boundary surface of particularly simple and symmetrical geometry, it

is possible to solve the boundary-value problem by means of the Method of Images. Suppose,

for example, the potential is specified to be zero on a surface S in otherwise free space, and

that one wishes to calculate the potential everywhere outside (in the volume V ) due to a

point charge located outside the surface. If S is suitably symmetrical, it may be possible

to “mock up” the same zero-potential surface by considering a totally free space, with no

surfaces anywhere, but with one or more additional image charges judiciously introduced in

the region of the total space that does not include V . (i.e. , the additional image charges are

on the “other side” of where the surface S of the original problem was located.) Suppose

that by introducing image charges in this way, one can arrange that the total potential due

to the original charge plus the image charges is zero on the “virtual” surface S. It is then
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clear, by invoking the uniqueness theorem (see section 1.9), that the potential at all points

in V must be the same in the image-charge “mock-up” and in the original problem with

the actual physical conducting surface.

The challenge is to figure out how to achieve the “virtual” zero-potential surface by

means of image charges. In practice, there are very few cases where it can be done. We

shall discuss two of them now.

2.1 Infinite planar conductor

The simplest example where the method of images can be employed is in the case of an

infinite planar conductor. Let us suppose, for convenience, that Cartesian axes are chosen

so that the conductor lies in the plane z = 0. We shall take the volume V that lies “outside”

the conductor to be the whole of the half-space z > 0. Suppose the conductor is fixed at

zero potential.

If a point charge q is located at some point in V , then it is obvious that if an image

charge −q is placed “behind” the conductor at precisely the mirror-image location, then by

symmetry it must be the case that the total potential of original plus image charge, now

taken to be in a completely free space with no conductor at all, will vanish on the plane

z = 0. Therefore, the potential at any point in V in the original problem with conductor

will be given by the total potential in the image-charge “mock up.”

To be more precise, let us suppose that the original charge q is located at

~r1 = (x1, y1, z2) , z > 0 . (2.1)

The image charge −q will then be located at

~r2 = (x2, y2, z2) = (x1, y1,−z1) . (2.2)

Therefore, the total potential is given by

φ(~r) =
q

|~r − ~r1|
− q

|~r − ~r2|
, (2.3)

=
q√

(x− x1)2 + (y − y1)2 + (z − z1)2
− q√

(x− x1)2 + (y − y1)2 + (z + z1)2
.

Clearly this potential indeed vanishes on the surface z = 0, and so therefore by the unique-

ness theorem φ(~r) describes the potential, at all points with z > 0, of the single charge q in

the presence of the infinite conductor at z = 0.
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2.2 Dirichlet and Neumann Green functions for infinite planar boundary

We are now in a position to construct the Dirichlet and Neumann Green functions for this

case. Recall that the Dirichlet Green function GD(~r,~r ′) is defined to be the potential at ~r

due to a unit strength charge at ~r ′, subject to the condition that GD(~r,~r ′) should vanish

on the boundary S. Thus we can read off from (2.4) that the Dirichlet Green function in

the case of the infinite planar boundary at z = 0 is given by

GD(x, y, z;x′, y′, z′) =
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
− 1√

(x− x′)2 + (y − y′)2 + (z + z′)2
.

(2.4)

Note that, as asserted in section 1.11, this is indeed symmetric under the exchange of ~r

and ~r ′. Note that the first term here is a solution of the inhomogeneous equation ∇2|~r −
~r ′|−1 = −4πδ3(~r − ~r ′), while the second term is a solution of the homogeneous equation

∇2F (~r,~r ′) = 0 (in the region of interest, i.e. when z and z′ lie in the upper half-space). As

discussed in chapter 1.11, the solution F (~r,~r ′) is added in order to ensure that the total

expression GD(~r,~r ′) = |~r − ~r ′|−1 + F (~r,~r ′) obeys the Dirichlet boundary condition on the

plane z = 0.

To use (2.4) in order to solve Dirichlet boundary-value problems in this geometry, we

just plug it into the general expression (1.90). This requires that we evaluate the normal

derivative of GD on the boundary, which in the present case means that we need

−∂GD(x, y, z;x′, y′, z′)

∂z′

∣∣∣
z′=0

= − 2z

[(x− x′)2 + (y − y′)2 + z2]3/2
. (2.5)

(The normal derivative in (1.90) is directed outwards from the volume V , which means in

this case in the negative direction along the z′ axis.) Suppose, for simplicity, we consider

the situation where there is no charge distribution ρ in the problem, and so the entire

contribution to the potential φ(~r) comes from the boundary contribution in (1.90). Then

we find

φ(x, y, z) =
z

2π

∫
φ(x′, y′, 0) dx′dy′

[(x− x′)2 + (y − y′)2 + z2]3/2
. (2.6)

Thus we have constructed the solution of the source-free equation ∇2φ = −4πρ = 0, in

which the boundary value of φ on the infinite planar surface z′ = 0 is specified.

We can also easily construct the Neumann Green function GN (~r,~r ′) for this geometry.

In this case, it is defined to be the potential at ~r due to a unit strength charge at ~r ′, subject

to the condition that the normal derivative of GN should vanish on the plane z′ = 0.5 This

5In our general discussion for the Green function for Neumann boundary conditions, we had the require-

ment (1.93) that the normal derivative should equal −π/A, where A was the area of the boundary. In the
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time, we can suspect that a small modification of the image-charge trick should give us the

required result. Indeed this works, and all we need to do is to replace the minus sign in

front of the second term in (2.4) by a plus sign, to give

GN (x, y, z;x′, y′, z′) =
1√

(x− x′)2 + (y − y′)2 + (z − z′)2
+

1√
(x− x′)2 + (y − y′)2 + (z + z′)2

.

(2.7)

It is easily seen that this satisfies the required condition that

∂GN (x, y, z;x′, y′, z′)

∂z′

∣∣∣
z′=0

= 0 . (2.8)

We now plug the Neumann Green function into (1.94), in order to solve the general class

of boundary-value problems in which the normal derivative of φ is specified on the infinite

planar surface z = 0. Suppose again, for simplicity, we consider the case where ρ = 0.

Plugging (2.7) into (1.94) then gives

φ(x, y, z) = − 1

2π

∫
1√

(x− x′)2 + (y − y′)2 + z2

(
∂φ(x′, y′, z′)

∂z′

∣∣∣
z′=0

)
dx′dy′ . (2.9)

(The minus sign arises because the outward normal derivative at z′ = 0 is −∂/∂z′.) Of

course, since ~E = −~∇φ, we may write (2.10) as

φ(x, y, z) =
1

2π

∫
Ez(x

′, y′, 0) dx′dy′√
(x− x′)2 + (y − y′)2 + z2

. (2.10)

2.3 Spherical conductor

A slightly more subtle example where the method of images can be employed is in the case

of a spherical conductor. Suppose a conducting sphere of radius a is held at zero potential,

and that a charge q is placed outside the sphere, at a distance b from its origin. It turns out

that this situation can be “mocked up” by considering instead entirely free space containing

the original charge and also a certain charge q′ placed at a certain distance c from the origin

of the sphere, on the line joining the charge q and the origin.

The quickest way to derive this result is as follows. Imagine that the sphere is centred

on the origin of Cartesian coordinates, and that the charge q is placed at distance b along

the z axis, i.e. at (x, y, z) = (0, 0, b). The claim is that the image charge q′ should also lie

on the z axis, at some point (x, y, z) = (0, 0, c). If this does indeed give rise to a spherical

surface of radius a that has zero potential, then in particular it must be that the potential

is zero at the two points (0, 0, a) and (0, 0,−a) on the sphere. Since these two points are

present case this area is infinite, and so we can simply require that the normal derivative of GN should

vanish.
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aligned on the same axis as the charges, it is particularly easy to write down the conditions

that the potential should be zero:

q

b+ a
+

q′

a+ c
= 0 ,

q

b− a
+

q′

a− c
= 0 . (2.11)

These two conditions determine q′ and c, giving

q′ = −aq
b
, c =

a2

b
. (2.12)

Observe that since b > a, we have c = a(a/b) < a. Thus, as one would expect, the image

charge is inside the spherical surface. It remains to verify that the potential then vanishes

for an arbitrary point on the sphere. The problem has rotational symmetry around the z

axis, so it suffices to consider a point P at angle θ from the z-axis. If the distance from q

to P is ℓq, and the distance from q′ to P is ℓq′ , then the cosine rule gives

ℓ2q = a2 + b2 − 2ab cos θ , ℓ2q′ = a2 + c2 − 2ac cos θ . (2.13)

After using (2.12) we see that ℓq′ = (a/b) ℓq and that indeed we have

q

ℓq
+
q′

ℓq′
= 0 (2.14)

for all θ, and so the potential vanishes everywhere on the sphere x2 + y2 + z2 = a2.

It is useful also to give the result in a more general fashion, in which the original charge

q is placed at an arbitrary point ~r1 located outside the sphere, rather than lying specifically

on the z axis.

Clearly, if the charge q lies at ~r1 then the charge q′ must lie at a point ~r2 along the same

direction, and since the second relation in (2.4) can be written as c = (a2/b2) b, we must

have

~r2 =
a2

r12
~r1 . (2.15)

Thus, the potential at ~r outside the zero-potential sphere at r = a due to a charge q located

at ~r1 outside the sphere is given by

φ(~r) =
q

|~r − ~r1|
− qa/r1

|~r − (a2/r21)~r1|
. (2.16)

If we define γ to be the angle between ~r and ~r1, so that ~r · ~r1 = rr1 cos γ, then (2.16)

can be expressed as

φ(~r) =
q

(r2 + r21 − 2rr1 cos γ)1/2
− qa

(r2r21 + a4 − 2a2 rr1 cos γ)1/2
. (2.17)
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Using the expression for the surface charge density on a conductor, σ = ~n · ~E/(4π) (see

(1.33)), we have

σ = − 1

4π

∂φ

∂r

∣∣∣
r=a

= − q (r21 − a2)

4πa(a2 + r21 − 2a r1 cos γ)3/2
. (2.18)

If (2.18) is integrated over the area of the sphere, it gives a total charge q′ = −qa/r1.
In other words, the total induced charge on the surface of the sphere is equal to the image

charge. This is in accordance with Gauss’s law.

Some simple generalisations:

Because of the linearity of the Maxwell equations, it is straightforward to generalise the

above result in a variety of ways. For example, instead of taking the conducting sphere to

be at zero potential, we could consider a situation where it is held at a non-zero potential

V (relative to zero at infinity, still). All that need be done is to add another term to the

potential (2.16), corresponding to the introduction of a point charge at the origin. Thus if

we now take

φ(~r) =
q

|~r − ~r1|
− qa/r1

|~r − (a2/r21)~r1|
+
Q

r
, (2.19)

then the potential on the surface of the sphere becomes φ = Q/a. Choosing Q = V a

therefore gives the required result.

As another generalisation, we can calculate the solution for a grounded sphere placed in

a previously-uniform electric field. Without loss of generality, let us take the electric field

to be directed along the z axis. The uniform field can be achieved via a limiting process

in which two point charges ±Q are placed at z = ∓b respectively. Close to the origin,

there will therefore be an approximately uniform electric field E0 ≈ 2Q/b2 directed along z.

Eventually, we take b to infinity, whilst holding E0 = 2Q/b2 fixed, and the approximation

becomes exact.

In the presence of the grounded sphere, each of the above charges will have its image

charge, with +Q at −b having an image charge −Qa/b at z = a2/b, and −Q at +b having

an image charge +Qa/b at z = −a2/b. If we use spherical polar coordinates to write

~r = (x, y, z) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) , (2.20)

then from (2.17) we deduce that the total potential for the system we are considering will

be

φ(r, θ, ϕ) =
Q

(r2 + b2 + 2rb cos θ)1/2
− Q

(r2 + b2 − 2rb cos θ)1/2
(2.21)

− Qa/b

(r2 + a4/b2 + 2a2r/b cos θ)1/2
+

Qa/b

(r2 + a4/b2 − 2a2r/b cos θ)1/2
.
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Expanding as a power series in 1/b, we find

φ = −2Q

b2
r cos θ +

2Q

b2
a3

r2
cos θ + · · · (2.22)

where the higher-order terms involve higher inverse powers of b and therefore they will go

to zero when b is sent to infinity holding E0 = 2Q/b2 fixed. In this limit, we therefore find

that

φ = −E0

(
r − a3

r2

)
cos θ . (2.23)

The first term in (2.23) can be written using Cartesian coordinates as φ = −E0 z, and

so it just describes the purely uniform electric field ~E = −~∇φ = (0, 0, E0) that would

occur in the absence of the grounded sphere. The second term describes an electric dipole

contribution to the potential, arising from the two pairs of charges plus images.

2.4 Dirichlet Green function for spherical boundary

We can use the results in section 2.3 to construct the Dirichlet Green function for the

boundary-value problem where the potential is specified on the surface of a sphere. We just

need to set q = 1 and ~r1 = ~r ′ in (2.16), leading to

GD(~r,~r ′) =
1

|~r − ~r ′| −
a/r′

|~r − (a2/r′2)~r ′| . (2.24)

As in the previous planar example, here the first term is a solution of the inhomogeneous

equation ∇2|~r − ~r ′|−1 = −4πδ3(~r − ~r ′), while the second term satisfies the homogeneous

equation ∇2F (~r,~r ′) = 0 in the region of interest (outside the sphere), and is added in order

to ensure that GD(~r,~r ′) satisfies the Dirichlet boundary condition on the sphere of radius

a.

If we introduce γ as the angle between ~r and ~r ′, then (2.24) can be written as

GD(~r,~r ′) =
1√

r2 + r′2 − 2rr′ cos γ
− 1√

a2 + r2 r ′2/a2 − 2rr′ cos γ
. (2.25)

Written in this form, it is manifest that GD(~r,~r ′) is symmetric under the exchange of ~r and

~r ′. It is also manifest that GD(~r,~r ′) vanishes, as it should, if ~r or ~r ′ lies on the surface of

the sphere.

To use this expression in the general boundary-value integral in (1.90), we need to

calculate the normal derivative with respect to ~r ′, evaluated on the sphere at r′ = a.

Bearing in mind that the outward normal from the volume V (external to the sphere) is

directed inwards towards the centre of the sphere, we therefore need

∂GD(~r,~r ′)

∂n′

∣∣∣
r′=a

= −∂GD(~r,~r ′)

∂r′

∣∣∣
r′=a

= − r2 − a2

a [r2 + a2 − 2ar cos γ]3/2
. (2.26)
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Substituting into (1.90) (and taking ρ = 0 for simplicity), we obtain

φ(~r) =
a(r2 − a2)

4π

∫
φ(a, θ′, ϕ′)

[r2 + a2 − 2ar cos γ]3/2
dΩ′ , (2.27)

where in the boundary integral we express the potential φ in terms of spherical polar

coordinates (r′, θ′, ϕ′). The area element on the sphere of radius a is written as ~n · d~S′ =

a2dΩ′, where dΩ′ = sin θ′ dθ′dϕ′ is the area element on the unit sphere (i.e. the solid angle

element). The expression (2.27) gives the result for the potential everywhere outside a

spherical surface of radius a, on which the potential is specified to be φ(a, θ′, ϕ′).

Note that the integration in (2.27) is actually rather complicated, even if φ(a, θ′, ϕ′) itself

is a simple function, because of the cos γ appearing in the denominator. Using spherical

polar coordinates, the Cartesian components of ~r and ~r ′ are

~r = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) , ~r ′ = (r′ sin θ′ cosϕ′, r′ sin θ′ sinϕ′, r′ cos θ′) ,

(2.28)

and so cos γ, which is defined by ~r · ~r ′ = rr′ cos γ, is given by

cos γ = sin θ sin θ′ cos(ϕ− ϕ′) + cos θ cos θ′ . (2.29)

Consider, as an example, the case where one hemisphere of the boundary surface is held

at a constant potential V , while the other hemisphere is held at potential −V . Since we

are using standard spherical polar coordinates, it is natural to orient things so that the two

hemispheres correspond to the parts of the sphere with z > 0 and z < 0 respectively. In

other words, we have

φ(a, θ, ϕ) = +V for 0 ≤ θ <
π

2
,

φ(a, θ, ϕ) = −V for
π

2
< θ ≤ π . (2.30)

Equation (2.27) therefore gives

φ(~r) =
aV (r2 − a2)

4π

∫ 2π

0
dϕ′
[ ∫ π/2

0

sin θ′

(r2 + a2 − 2ar cos γ)3/2
dθ′

−
∫ π

π/2

sin θ′

(r2 + a2 − 2ar cos γ)3/2
dθ′
]
, (2.31)

where cos γ is given by (2.29). By making the change of variables θ′ → π−θ′ and ϕ′ → ϕ′+π

in the second integral, this can be written as

φ(~r) =
aV (r2 − a2)

4π

∫ 2π

0
dϕ′

∫ π/2

0

[ sin θ′

(r2 + a2 − 2ar cos γ)3/2
− sin θ′

(r2 + a2 + 2ar cos γ)3/2

]
dθ′(2.32)
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Unfortunately, the integrations are too complicated to admit a useful explicit closed-form

result.6

We can easily integrate (2.32) if we ask for the potential φ only in the special case where

we are on the positive z axis, i.e. for θ = 0. It then follows from (2.29) that cos γ = cos θ′,

and then elementary integration of (2.32) gives, for z > a,

φ(z) = V

(
1 − z2 − a2

z
√
z2 + a2

)
. (2.33)

In the absence of a closed-form expression for the general off-axis potential, one could

resort to making a power-series expansion of the integrand in (2.32) in powers of cos γ, and

then performing the integrations term by term. This is a somewhat clumsy approach, and

so instead we shall postpone further discussion of this example until a little later in the

course, when we shall have developed an approach which will allow us to obtain the power

series expression for the off-axis potential very easily.

3 Separation of Variables in Cartesian Coordinates

3.1 Introduction

The boundary-value problem in electrostatics is formulated as the problem of solving Pois-

son’s equation ∇2φ = −4φρ in a volume V bounded by a surface S on which appropriate

boundary conditions are imposed. Quite commonly, we are interested in the situation where

ρ = 0 in V , so that the potential φ in V is governed entirely by the conditions that it, or

its normal derivative, satisfy on S.

The geometry of the boundary surface S typically dictates what type of coordinate

system is best adapted to the problem. For example, if S is formed by one or more planar

surfaces, then Cartesian coordinates are likely to be the most convenient choice. If, on the

other hand, the boundary S is spherical, then spherical polar coordinates will probably be

the best choice. For a boundary of cylindrical shape, cylindrical polar coordinates will be

most convenient.

All three of these coordinate systems share the special property that when using them

the Laplacian operator ∇2 is separable. This would not be true for some arbitrary choice of

coordinate system. The defining property of a separable coordinate system is that Laplace’s

6This illustrates an important point, that although we may say that the boundary-value problem for the

spherical boundary has been “solved” once we obtained an explicit closed-form result for the Green function,

it does not necessarily mean that we can present an explicit closed-form expression for the solution.
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equation, which is itself a second-order partial differential equation, can be factored into a

system of second-order ordinary differential equations. This is of enormous benefit when

one tries to construct solutions.

We shall describe the process of separation of variables in the three cases of Cartesian,

spherical polar, and cylindrical polar, coordinates. In each case, the solution of the factored

ordinary differential equations requires an understanding of certain classes of special func-

tions. In the Cartesian case, the relevant special functions are just the familiar sine and

cosine trigonometric functions. In the case of spherical polar coordinates, the Legendre and

associated Legendre functions arise, whilst in the case of cylindrical polar coordinates it is

Bessel functions that arise.

We begin in this section with the separation of variables in Cartesian coordinates.

3.2 Separation of variables in Cartesian coordinates

The Laplace equation in Cartesian coordinates is simply

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 . (3.1)

The separation of variables is achieved by considering a solution φ of the factorised form

φ(x, y, z) = X(x)Y (y)Z(z) . (3.2)

Substituting this into (3.1), and dividing out by φ, yields

1

X(x)

d2X(x)

dx2
+

1

Y (y)

d2Y (y)

dy2
+

1

Z(z)

d2Z(z)

dz2
= 0 . (3.3)

The first term is independent of y and z, the second is independent of x and z, and the

third is independent of x and y. It therefore follows that each term must separately be a

constant, with the three constants summing to zero. Therefore either two of the constants

are positive with the third negative, or two are negative with the third positive. Let us take

the constants in the first two terms to be negative, and the last to be positive, so that we

may write
d2X

dx2
+ α2X = 0 ,

d2Y

dy2
+ β2Y = 0 ,

d2Z

dz2
− γ2Z = 0 , (3.4)

with

γ2 = α2 + β2 . (3.5)

The solutions for X, Y and Z will therefore be of the forms

X ∼ e±iαx , Y ∼ e±iβy , Z ∼ e±γz . (3.6)
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Equivalently, the solutions for X and Y can be taken to be linear combinations of sine and

cosine functions of their respective arguments, while Z can be written in terms of hyperbolic

functions.

The general solution to (3.1) can now be written as a sum over all the “basic” solutions

of the form (3.2) that we have now constructed. Since α and β are at this stage arbitrary

constants, the general solution will have the form

φ(x, y, z) =

∫ ∞

−∞
dα

∫ ∞

−∞
dβei(αx+βy)

(
a(α, β) eγx + b(α, β) e−γz

)
, (3.7)

where a(α, β) and b(α, β) are arbitrary functions, and γ is given by (3.5).

The general solution to (3.1) is expressed as an integral over a continuum of the basic

solutions, as in (3.7). However, as soon as we also impose boundary conditions on the

solution, the continuous integrals will be replaced by a discrete sum over basic solutions.

Example: A rectangular hollow box:

Suppose, for example, we wish to solve Laplace’s equation inside a hollow rectangular

box, with sides of length a, b and c in the x, y and z directions respectively. We may set

up the axes so that the origin is at one corner of the box, so that the faces are located at

x = 0 and x = a; at y = 0 and y = b; and at z = 0 and z = c. Suppose that the faces are

all held at zero potential, except for the face at z = c, on which the potential is specified to

be

φ(x, y, c) = V (x, y) , (3.8)

for some specified voltage profile function V (x, y).

Since the potential vanishes at x = 0 for all y and z, it follows that we must arrange for

X(x) to vanish at x = 0. Since the general solution for X(x) is

X(x) = a1e
iαx + b1e

−iαx , (3.9)

this means we must have b1 = −a1, and so X(x) ∼ sinαx. The potential also vanishes at

x = a for all y and z, and this means that we must have X(a) = 0. This implies that α

must be restricted to take only a discrete (but infinite) set of values,

α =
mπ

a
, (3.10)

where m is any integer. Without loss of generality we may assume that m is a positive

integer, since the negative values will just reproduce the same set of functions (multiplied

by −1).
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In the same way, the vanishing of φ at y = 0 and y = b implies that Y (y) must be

proportional to sinβy, and that β must be of the form

β =
nπ

b
, (3.11)

where n is any positive integer.

The vanishing of φ at z = 0 implies that Z(z) must be proportional to sinh γz. Since γ

is given in terms of α and β by (3.5), it follows that the general solution for φ that satisfies

all the boundary conditions except the one on the remaining face at z = c can be written

as

φ(x, y, z) =
∑

m≥1

∑

n≥1

Amn sin
mπx

a
sin

nπy

b
sinh



πz

√
m2

a2
+
n2

b2



 , (3.12)

where Amn are arbitrary constants.

The constants Amn are determined by matching φ to the given boundary condition (3.8)

at z = c. This amounts to constructing a two-dimensional Fourier series expansion for the

function V (x, y). To do this, it is useful to recall a few facts about expansions in terms of

complete sets of orthogonal functions.

3.3 Generalised Fourier expansions

Suppose that the functions un(x) for n ≥ 1 form a complete set in the interval a ≤ x ≤ b.

They may be either real, or complex, and so for generality we shall assume that they are

complex, with complex conjugation denoted by a bar. We furthermore assume that the

functions are orthogonal, meaning that

∫ b

a
ūm(x)un(x)dx = 0 , m 6= n . (3.13)

The integral when m = n is non-zero and finite, and so we may for convenience scale the

functions so that when m = n the integral gives unity. Thus we may assume orthonormal

functions, satisfying ∫ b

a
ūm(x)un(x)dx = δmn . (3.14)

Suppose now we have an arbitrary function f(x), which is assumed to be square-

integrable on the interval a ≤ x ≤ b. (i.e.
∫ b
a |f(x)|2dx is finite.) We may expand f(x)

in terms of the complete set of functions un(x), by writing

f(x) =
∑

n≥1

anun(x) , (3.15)
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where the an are certain constants. These constants can be determined by multiplying

(3.15) by ūm(x), integrating over the interval a ≤ x ≤ b, and using the orthonormality

relations (3.14):

∫ b

a
ūm(x)f(x)dx =

∑

n≥1

an

∫ b

a
ūm(x)un(x)dx =

∑

n≥1

anδmn = am , (3.16)

Thus we have

an =

∫ b

a
ūn(x)f(x)dx . (3.17)

If we plug (3.17) into (3.15), being careful to distinguish between the argument x in

(3.15) and the integration variable x in (3.17) (which we shall now call x′), we obtain

f(x) =

∫ b

a



∑

n≥1

ūn(x′)un(x)


 f(x′)dx′ . (3.18)

Comparing this with the defining property of the delta function, given in (1.50), we see that

we may conclude that

∑

n≥1

ūn(x′)un(x) = δ(x′ − x) . (3.19)

The delta function is an even function, and so this is also equal to δ(x− x′).

The generalisation to expansions in more than one dimension is immediate. For example,

suppose in two dimensions we have the orthonormal functions um(x) as before, defined in

a ≤ x ≤ b, and another orthonormal set vn(y) defined in the interval c ≤ y ≤ d. We can

expand

f(x, y) =
∑

m≥1

∑

n≥1

amn um(x)vn(y) , (3.20)

and read off the coefficients amn by first multiplying by ūp(x)v̄q(y) and integrating, to give

amn =

∫ b

a
dx

∫ d

c
dy ūm(x)v̄n(y)f(x, y) . (3.21)

Now we can go back to our boundary-value problem in the rectangular box. Recall that

we had obtained the expression (3.12) for φ(x, y, z) everywhere inside the box, expressed as

a double summation. It remained for us to determine the expansion coefficients Amn, by

matching φ(x, y, z) to the given boundary potential V (x, y) at z = c. In other words, we

must find Amn such that

V (x, y) =
∑

m≥1

∑

n≥1

Amn sin
mπx

a
sin

nπy

b
sinh


πc

√
m2

a2
+
n2

b2


 , (3.22)
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This amounts to solving for the coefficients amn such that

V (x, y) =
∑

m≥1

∑

n≥1

amn sin
mπx

a
sin

nπy

b
, (3.23)

since then the Amn will be given by

Amn =
amn

sinh

(
πc
√

m2

a2 + n2

b2

) . (3.24)

To determine the coefficients amn in (3.23), we recognise that this is an example of a two-

dimensional expansion in terms of the complete sets of functions sin mπx
a and sin nπy

b , and

so to read off amn we just need to multiply by sin pπx
a sin qπy

b and integrate. The functions

sin mπx
a are not normalised. We can either scale them appropriately to normalise them, or

else work with unnormalised functions and take care to keep track of the additional factors

that this will give. The latter is the simpler way to proceed. We just need to note that
∫ a

0
sin

mπx

a
sin

pπx

a
dx = 1

2

∫ a

0

(
cos

(m− p)πx

a
− (cos

(m+ p)πx

a

)
dx , (3.25)

=
[ a

2(m− p)π
sin

(m− p)πx

a
− a

2(m+ p)π
sin

(m+ p)πx

a

]a
0

= 0

when m 6= p, whilst
∫ a

0
sin2 mπx

a
dx =

∫ a

0

(
1
2 − 1

2 cos
2mπx

a

)
dx = 1

2a−
a

4mπ

[
sin

2mπx

a

]a
0

= 1
2a . (3.26)

Thus we have

∫ a

0
sin

mπx

a
sin

pπx

a
dx = 1

2a δmp . (3.27)

Using this, we deduce from (3.23) that

amn =
4

ab

∫ a

0
dx

∫ b

0
dy V (x, y) sin

mπx

a
sin

nπy

b
. (3.28)

4 Separation of variables in spherical polar coordinates

The spherical polar coorinates (r, θ, ϕ) are related to Cartesian coordinates (x, y, z) by

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ . (4.1)

In terms of (r, θ, ϕ), Laplace’s equation (3.1) becomes7

1

r2
∂

∂r

(
r2
∂φ

∂r

)
+

1

r2
∇2

(θ,ϕ) φ = 0 , (4.2)

7This can be seen by using the chain rule to convert from derivatives with respect to x, y and z to

derivatives with respect to r, θ and ϕ. Thus, ∂/∂x = (∂r/∂x)∂/∂r + (∂θ/∂x)∂/∂θ + (∂ϕ/∂x)∂/∂ϕ, etc.
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where ∇2
(θ,ϕ) is the two-dimensional Laplace operator on the surface of the unit-radius

sphere,

∇2
(θ,ϕ) ≡

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
. (4.3)

Laplace’s equation can be separated by first writing φ(r, θ, ϕ) in the form

φ(r, θ, ϕ) =
1

r
R(r)Y (θ, ϕ) . (4.4)

Substituting into (4.2), and dividing out by φ, we get

r2

R

d2R

dr2
+

1

Y
∇2

(θ,ϕ)Y = 0 . (4.5)

(It is useful to note that r−2∂(r2∂φ/∂r)/∂r can be rewritten as r−1∂2(r φ)/∂r2, when doing

this calculation.)

The last term in (4.5) depends only on θ and ϕ, while the first term depends only on r,

and so consistency for all (r, θ, ϕ) therefore means that each term must be constant, and so

∇2
(θ,ϕ) Y = −λY , d2R

dr2
=

λ

r2
R . (4.6)

The key point now is that one can show that the harmonics Y (θ, ϕ) on the sphere are well-

behaved only if the separation constant λ takes a certain discrete infinity of non-negative

values. The most elegant way to show this is by making use of the symmetry properties

of the sphere, but since this takes us away from the main goals of the course, we shall

not follow that approach here.8 Instead, we shall follow the more “traditional,” if more

pedestrian, approach of examining the conditions under which singular behaviour of the

eigenfunction solutions of the differential equation can be avoided.

8The essential point is that the surface of the unit sphere can be defined as x2 + y2 + z2 = 1, and this is

invariant under transformations of the form



x

y

z


 −→M



x

y

z


 ,

where M is any constant 3 × 3 orthogonal matrix, satisfying MT M = 1l. This shows that the sphere is

invariant under the 3-parameter group O(3), and hence the eigenfunctions Y must fall into representations

under O(3). The calculation of the allowed values for λ, and the forms of the associated eigenfunctions Y ,

then follow from group-theoretic considerations. Anticipating the result that we shall see by other means,

the eigenvalues λ take the form λℓ = ℓ(ℓ + 1), where ℓ is any non-negative integer. The eigenfunctions

are classified by ℓ and a second integer m, with −ℓ ≤ m ≤ ℓ, and are the well-known spherical harmonics

Yℓm(θ, φ). The fact that λ depends on ℓ but not m means that the eigenvalue λℓ = ℓ(ℓ+1) has a degeneracy

(2ℓ+ 1).
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To study the eigenvalue problem ∇2
(θ,φ) Y = −λY in detail, we make a further separation

of variables by taking Y (θ, ϕ) to be of the form Y (θ, ϕ) = Θ(θ)Φ(ϕ). Substituting this in,

and multiplying by sin2 θ Y −1, we get

1

Θ
sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λ sin2 θ +

1

Φ

d2Φ

dϕ2
= 0 . (4.7)

By now-familiar arguments the last term depends only on ϕ, while the first two depend only

on θ. Consistency for all θ and ϕ therefore implies that the last term must be a constant,

and so we have

d2Φ

dϕ2
+m2 Φ = 0 , (4.8)

sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+ (λ sin2 θ −m2)Θ = 0 . (4.9)

The solution to the Φ equation is Φ ∼ e±im ϕ. The constant m2 could, a priori, be positive

or negative, but we must recall that the coordinate ϕ is periodic on the sphere, with period

2π. The periodicity implies that the eigenfunctions Φ should be periodic too, and hence

it must be that m2 is non-negative. In order that we have Φ(ϕ + 2π) = Φ(ϕ) it must

furthermore be the case that m is an integer.

4.1 Series solution of the Legendre equation

To analyse the eigenvalue equation (4.9) for Θ, it is advantageous to define a new inde-

pendent variable x, related to θ by x = cos θ. (Do not confuse this variable x with the

Cartesian coordinate x!) At the same time, let us now use y instead of Θ as our symbol for

the dependent variable. Equation (4.9) therefore becomes

d

dx

(
(1 − x2)

dy

dx

)
+
(
λ− m2

1 − x2

)
y = 0 . (4.10)

This equation is called the Associated Legendre Equation, and it will become necessary to

study its properties, and solutions, in some detail in order to be able to construct solutions

of Laplace’s equation in spherical polar coordinates. In fact, as we shall see, it is convenient

first to study the simpler equation when m = 0, which corresponds to the case where the

harmonics Y (θ, ϕ) on the sphere are independent of the azimuthal angle ϕ. The equation

(4.10) in the case m = 0 is called the Legendre Equation.

Taking m = 0 for now, the associated Legendre equation (4.10) reduces to the Legendre

equation

[(1 − x2) y′]′ + λ y = 0 . , (4.11)
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which we can also write as

(1 − x2) y′′ − 2x y′ + λ y = 0 . (4.12)

Note that here we are denoting a derivative with respect to x by a prime, so that dy/dx is

written as y′, and so on. We can construct the solutions to (4.12) by applying a procedure

known as the Frobenius Method, in which y(x) is obtained as a power series in x.

The general theory of how to construct series solutions to ordinary differential equations

is quite involved. However, in the present case things are very simple, because the point

x = 0 around which we wish to expand the power series is a so-called ordinary point of the

differential equation. (i.e. if the equation is written in the form y′′ +P (x)y′ +Q(x)y = 0 by

dividing out by (1 − x2), the functions P = −2x/(1 − x2) and Q = λ/(1 − x2) are regular

and analytic around x = 0.) This means that the two independent solutions to (4.12) can

both be expanded in Taylor series around x = 0.9

Thus, we begin by writing the series expansion

y =
∑

n≥0

an x
n . (4.13)

Clearly we shall have

y′ =
∑

n≥0

n an x
n−1 , y′′ =

∑

n≥0

n (n− 1) an x
n−2 . (4.14)

Substituting into equation (4.12), we find

∑

n≥0

n (n− 1) an x
n−2 +

∑

n≥0

(λ− n (n+ 1)) an x
n = 0 . (4.15)

Since we want to equate terms order by order in x, it is useful to shift the summation

variable by 2 in the first term, by writing n = m+ 2;

∑

n≥0

n (n−1) an x
n−2 =

∑

m≥−2

(m+2)(m+1) am+2 x
m =

∑

m≥0

(m+2)(m+1) am+2 x
m . (4.16)

9In more general cases where one is expanding around a singular point of the equation (say at x = b), one

needs to consider a series of the form y(x) =
∑

n≥0
an(x− b)n+σ, where σ is a constant that may be non-

integer. It is rather common to see people automatically considering this more general type of expansion,

even when they are expanding around an ordinary point of the equation. Although this is not actually wrong,

it is rather inconvenient, since it represents an over-parameterisation of the problem and therefore it obscures

the essential simplicity of the procedure. Possibly they do it because they are unaware of the theorem that

both solutions of a second-order ordinary differential equation are analytic in the neighbourhood of an

ordinary point.
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(The last step, where we have dropped the m = −2 and m = −1 terms in the summation,

clearly follows from the fact that the (m+ 2)(m + 1) factor gives zero for these two values

of m.) Finally, relabelling m as n again, we get from (4.15)

∑

n≥0

(
(n+ 2)(n + 1) an+2 + (λ− n (n+ 1)) an

)
xn = 0 . (4.17)

Since this must hold for all values of x, it follows that the coefficient of each power of x

must vanish separately, giving

(n+ 2)(n + 1) an+2 + (λ− n (n+ 1)) an = 0 (4.18)

for all n ≥ 0. Thus we have the recursion relation

an+2 =
n (n+ 1) − λ

(n + 1)(n + 2)
an . (4.19)

We see from (4.19) that all the coefficients an with n ≥ 2 can be solved for, in terms

of a0 and a1. In fact all the an for even n can be solved for in terms of a0, while all the

an for odd n can be solved for in terms of a1. Since the equation is linear, we can take the

even-n series and the odd-n series as the two linearly independent solutions of the Legendre

equation, which we can call y(1)(x) and y(2)(x):

y(1)(x) = a0 + a2 x
2 + a4 x

4 + · · · ,

y(2)(x) = a1 + a3 x
3 + a5 x

5 + · · · . (4.20)

The first solution involves only the even an, and thus has only even powers of x, whilst

the second involves only the odd an, and has only odd powers of x. We can conveniently

consider the two solutions separately, by taking either a1 = 0, to discuss y(1), or else taking

a0 = 0, to discuss y(2).

Starting with y(1), we therefore have from (4.19) that a2 = −1
2λa0, a3 = 0, a4 =

1
12 (6− λ) a2, a5 = 0, etc. In the expression for a4, we can substitute the expression already

found for a2, and so on. Thus we shall get

a2 = −1
2λa0 , a4 = − 1

24λ (6 − λ) a0 , . . .

a3 = a5 = a7 = · · · = 0 . (4.21)

The series solution in this case is therefore given by

y(1) = a0

(
1 − 1

2λx
2 − 1

24λ (6 − λ)x4 + · · ·
)
. (4.22)
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To discuss the solution y(2) instead, we can take a0 = 0 and a1 6= 0. The recursion

relation (4.19) now gives a2 = 0, a3 = 1
6 (2 − λ) a1, a4 = 0, a5 = 1

20 (12 − λ) a3, a5 = 0, etc,

and so we find

a3 = 1
6(2 − λ) a1 , a5 = 1

120 (2 − λ) (12 − λ) a1 , . . .

a2 = a4 = a6 = · · · = 0 . (4.23)

The series solution in this case therefore has the form

y(2) = a1

(
x+ 1

6 (2 − λ)x3 + 1
120(2 − λ) (12 − λ)x5 + · · ·

)
. (4.24)

To summarise, we have produced two linearly independent solutions to our differential

equation (4.12), which are given by (4.22) and (4.24). The fact that they are independent

is obvious, since the first is an even function of x whilst the second is an odd function.

So far in the discussion, the separation constant λ has been allowed to be completely

arbitrary. As we shall now see, it must be restricted to take a discrete infinite set of values

in order to have solutions that are non-singular. In other words, λ can only take values

in this discrete set if one insists that the power series expansion should converge for all

relevant values of x.

The convergence of an infinite series can be tested by applying the ratio test. The

statement of this test is that the series converges if the ratio of successive terms in the

series is of magnitude less than 1, in the limit as one looks further and further down the

series. If, on the other hand, the ratio is greater than 1, then the series diverges. If the

ratio equals 1, then the test is inconclusive.

Since the two independent series we obtained correspond to the even powers of x and

the odd power of x in (4.13), the ratio of successive terms in either series will be

Rn =
an+2x

n+2

anxn
=
an+2x

2

an
,

=
n(n+ 1) − λ

(n+ 1)(n + 2)
x2 . (4.25)

(We used the recursion relation (4.19) in getting to the second line.) In the limit when

n→ ∞, holding λ fixed, we therefore have

R∞ = x2 . (4.26)

Thus the series (4.13) converges if |x| < 1 and diverges if |x| > 1. The test is inconclusive

for x = ±1.
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Recalling that x = cos θ here, we see that the values x = ±1 are in fact attained in the

physical problems we are studying, since these values correspond to θ = 0 and θ = π (the

north and south poles of the sphere). It is therefore important to establish how the series

expansion behaves at x = ±1.

We shall not present a detailed discussion of the convergence here, but we simply state

the result, which is that in fact, for generic values of λ, the series (4.13) diverges at x = ±1;

i.e. both solutions (even and odd) diverge. Thus, in order to obtain regular solutions for

the Legendre equation, we must instead arrange, by judicious choice of the values for λ, to

make the series terminate.

Looking at the recursion relation (4.19), it is evident that the series will terminate if λ

is chosen to be given by

λ = ℓ(ℓ+ 1) , ℓ = integer ≥ 0 . (4.27)

Then, we shall have that the coefficients an are non-zero for n < ℓ, but an will vanish

for n = ℓ, All the an will be zero for n > ℓ. Thus, we obtain a polynomial solution, of

degree ℓ, when λ satisfies (4.27). Obviously, since it is a sum of a finite numer of terms, the

polynomial solution is non-singular for all x.

Note that if ℓ is an even integer then it is the even series that terminates to give a

finite polynomial solution, but the odd series does not terminate. Conversely, if ℓ is an odd

integer then it is the odd series that terminates, while the even series does not. Thus we

only ever get one terminating polynomial solution, for each integer ℓ.

As an example to illustrate the divergent behaviour if the series does not terminate,

consider the odd series y2(x), with ℓ = 0, i.e. λ = 0. From (4.19) we then have an+2 =

n an/(n+2) (with n odd), which has the solution an = a1/n. Thus the series (4.13) becomes

y = a1 (x+ 1
3x

3 + 1
5x

5 + 1
7x

7 + · · ·) , (4.28)

which can be recognised as the power-series expansion of

y = 1
2a1 log

(1 + x

1 − x

)
, (4.29)

which clearly diverges at x = ±1. For all other values of λ that lead to non-terminating

series, one similarly finds a logarithmic divergence at x = ±1.

To summarise, we have established that if λ is given by (4.27), there exists one polyno-

mial solution to the Legendre equation, and it is in particular regular for all −1 ≤ x ≤ 1.

This solution is called the Legendre Polynomial Pℓ(x), satisfying

(1 − x2)
d2Pℓ(x)

dx2
− 2x

dPℓ(x)

dx
+ ℓ(ℓ+ 1)Pℓ(x) = 0 . (4.30)
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By convention, the Legendre polynomial Pℓ(x) is normalised so that

Pℓ(1) = 1 . (4.31)

The first few are therefore given by

P0(x) = 1 , P1(x) = x , P2(x) = 1
2(3x2 − 1) ,

P3(x) = 1
2(5x3 − 3x) , P4(x) = 1

8(35x4 − 30x2 + 3) . (4.32)

With λ given by (4.27), and with the corresponding Legendre polynomial normalised

according to (4.31), it is not hard to solve the recursion relation (4.19) explicitly, giving the

result that

Pℓ(x) =

[ℓ/2]∑

k=0

(−1)k (2ℓ− 2k)!

2ℓ k! (ℓ− k)! (ℓ − 2k)!
xℓ−2k , (4.33)

where [ℓ/2] is the integer part of ℓ/2.10

The expression (4.33) for the ℓ’th Legendre polynomial is somewhat unwieldy, and it is

often useful to have alternative ways of writing Pℓ(x). We shall give two such alternative

expressions in the next two subsections.

4.2 Rodrigues formula

First, noting that dℓxp/dxℓ = p!xp−ℓ/(p − ℓ)!, we observe that (4.33) can be written as

Pℓ(x) =
dℓ

dxℓ

[ℓ/2]∑

k=0

(−1)k

2ℓ k! (ℓ− k)!
x2ℓ−2k , (4.34)

and that the summation can then be extended up to k = ℓ since the extra terms are all

zero. (The dℓ/dxℓ kills off all the extra terms in the sum, since they all have fewer than ℓ

powers of x.) Inserting and dividing out by a factor of ℓ! thus gives

Pℓ(x) =
1

2ℓ ℓ!

dℓ

dxℓ

ℓ∑

k=0

(−1)k ℓ!

k! (ℓ− k)!
x2ℓ−2k , (4.35)

10To see this, read off the coefficients an in (4.13) by equating the coefficients of each power of x with

those in (4.33), and then show that these expressions for an indeed satisfy the recursion relation (4.19). This

proves that (4.33) indeed satisfies the Legendre equation (4.30). The only slightly tricky point is establishing

that the normalisation in (4.33) is indeed such that Pℓ(x) satisfies (4.31). We give a simple proof of this in

the next section.
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and we can recognise the sum as the binomial expansion of (x2 − 1)ℓ. Thus we arrive at

Rodrigues’ formula for Pℓ(x):

Pℓ(x) =
1

2ℓ ℓ!

dℓ

dxℓ
(x2 − 1)ℓ . (4.36)

Having shown that the expessions (4.33) and (4.36) agree, we can now easily confirm

that Pℓ(x) so defined does indeed satisfy the normalisation (4.31). To do this, write (4.36)

as

Pℓ(x) =
1

2ℓ ℓ!

dℓ

dxℓ

[
(x− 1)ℓ (x+ 1)ℓ

]
, (4.37)

and note that when we differentiate the product (x − 1)ℓ (x + 1)ℓ a total of ℓ times, the

only term that survives after then setting x = 1 is the term where all ℓ derivatives land on

(x− 1)ℓ. Since dℓ(x− 1)ℓ/dxℓ = ℓ!, we see that indeed

Pℓ(1) =
1

2ℓ ℓ!
ℓ!(1 + 1)ℓ = 1 . (4.38)

4.3 The generating function

Another very useful way of representing the Legendre polynomials is by means of a Gener-

ating Function. The claim is that the Legendre polynomials Pℓ(x) satisfy

G(x, t) ≡ (1 − 2x t+ t2)−1/2 =
∑

ℓ≥0

tℓ Pℓ(x) , (4.39)

where, for convergence of the series, we must have |t| < 1. We can see how this is working by

looking at the first few terms in the power-series expansion of the left-hand side in powers

of t, giving

G(x, t) = 1 + x t+ 1
2(3x2 − 1) t2 + 1

2(5x3 − 3x) t3 + 1
8(35x4 − 30x2 + 3) t4 + · · · . (4.40)

Equating this with the right-hand side of (4.39), and comparing the coefficients of each

power of t, we read off

P0(x) = 1 , P1(x) = x , P2(x) = 1
2 (3x2 − 1) , P3(x) = 1

2(5x3 − 3x) (4.41)

and so on, which is precisely what we were finding in (4.32).

To prove that (4.39) correctly generates all the Legendre polynomials, we note that if

Pℓ(x) satisfies the Legendre equation (4.30) for all ℓ, then multiplying by tℓ and summing

over ℓ implies that H defined by

H ≡
∑

ℓ≥0

tℓ [(1 − x2)P ′′
ℓ − 2xP ′

ℓ + ℓ(ℓ+ 1)Pℓ] (4.42)
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should vanish. Now, looking at (4.39) we can see that H can be written as

H = (1 − x2)
∂2G(x, t)

∂x2
− 2x

∂G(g, t)

∂x
+ t

∂2(tG(x, t))

∂t2
. (4.43)

(The three terms here correlate exactly with the three terms in H.) It is now just a simple

exercise in differentiation to show that indeed we have H = 0, which proves that the func-

tions Pℓ(x) defined by (4.39) satisfy the Legendre equation. They are clearly polynomials,

because the power-series expansion of the left-hand side of (4.39) in powers of t will clearly

have x-dependent coefficients that are polynomial in x.

Finally, we must check the normalisation, i.e. that Pℓ(1) = 1. This is very easy; we just

set x = 1 in (4.39), to get

(1 − 2t+ t2)−1/2 =
∑

ℓ≥0

tℓ Pℓ(1) . (4.44)

But the left-hand side is just (1 − t)−1, which has the binomial expansion

1

1 − t
= 1 + t+ t2 + t3 + t4 + · · · =

∑

ℓ≥0

tℓ , (4.45)

and so by comparing with the right-hand side in (4.44) we immediately get Pℓ(1) = 1.

4.4 Expansion in Legendre polynomials

Recall that our goal is to construct solutions of Laplace’s equation (4.2) written in spherical

polar coordinates, and that we have established that for azimuthally-symmetric solutions

the relevant functions in the θ direction are expressed in terms of Legendre polynomials.

Constructing a general azimuthally-symmetric solution will therefore require that we expand

a general function of θ as a sum over Legendre polynomials Pℓ(cos θ). In terms of x = cos θ,

the first task then is to expand a general function f(x) in the form

f(x) =
∑

ℓ≥0

aℓ Pℓ(x) . (4.46)

We can establish the following properties of the Legendre polynomials. Firstly,
∫ 1

−1
dxPℓ(x)Pℓ′(x) = 0 , if ℓ 6= ℓ′ . (4.47)

This can be seen by taking the Legendre equation (4.30) and multiplying it by Pℓ′(x), then

subtracting the same expression but with ℓ and ℓ′ interchanged, and finally, integrating over

the interval −1 ≤ x ≤ 1. This gives
∫ 1

−1
dx
[
Pℓ′(x)

d

dx

(
(1 − x2)

dPℓ(x)

dx

)
− Pℓ(x)

d

dx

(
(1 − x2)

dPℓ′(x)

dx

)

+[ℓ(ℓ+ 1) − ℓ′(ℓ′ + 1)]Pℓ(x)Pℓ′(x)
]

= 0 . (4.48)
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Integrating by parts shows that the first two terms cancel, leaving

[ℓ(ℓ+ 1) − ℓ′(ℓ′ + 1)]

∫ 1

−1
dxPℓ(x)Pℓ′(x) = 0 . (4.49)

Thus if ℓ 6= ℓ′, we see that the orthogonality condition (4.47) must hold.

We also need to know what the integral in (4.47) gives when ℓ = ℓ′. Here is a slightly

unorthodox derivation, which is actually quite elegant. Using the generating function (4.39)

twice over, once for
∑

ℓ t
ℓPℓ(x) and once for

∑
ℓ′ s

ℓ′Pℓ′(x), we can deduce that

∫ 1

−1
dx(1 − 2xt+ t2)−1/2(1 − 2xs+ s2)−1/2 =

∑

ℓ≥0

∑

ℓ′≥0

tℓsℓ′
∫ 1

−1
dxPℓ(x)Pℓ′(x) . (4.50)

Setting s = t, and using the already-established orthogonality result (4.47), we find

∫ 1

−1

dx

1 − 2xt+ t2
=
∑

ℓ≥0

t2ℓ
∫ 1

−1
dx(Pℓ(x))

2 . (4.51)

Performing the integral on the left-hand side gives

1

t
log

(
1 + t

1 − t

)
=
∑

ℓ≥0

t2ℓ
∫ 1

−1
dx(Pℓ(x))

2 , (4.52)

and expanding the logarithm in a Taylor series implies

∑

ℓ≥0

2t2ℓ

2ℓ+ 1
=
∑

ℓ≥0

t2ℓ
∫ 1

−1
dx(Pℓ(x))

2 . (4.53)

Equating the coefficients of each power of t then gives11

∫ 1

−1
dx(Pℓ(x))

2 =
2

2ℓ+ 1
. (4.55)

In summary, we have shown that

∫ 1

−1
dxPℓ(x)Pℓ′(x) =

2

2ℓ+ 1
δℓ,ℓ′ , (4.56)

where δℓ,ℓ′ is the Kronecker delta symbol, which equals 1 if ℓ and ℓ′ are equal, and is 0

otherwise.

11With a little more work, one can perform the integral on the left-hand side of (4.50) without setting

s = t. This gives
1√
st

[
2 log(1 +

√
st) − log(1 − st)

]
=
∑

p≥0

2

2p+ 1
(st)p , (4.54)

and so matching the powers of s and t with those on the right-hand side of (4.50), one can deduce immediately

the orthogonality (4.47) and the result (4.55).
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With this result, we can now determine the coefficients Aℓ in the generalised Fourier

expansion (4.46). Multiplying this equation by Pn(x), integrating over the interval −1 ≤
x ≤ 1, and using (4.56), we find

∫ 1

−1
dxf(x)Pn(x) =

∑

ℓ≥0

aℓ

∫ 1

−1
dxPℓ(x)Pn(x) =

∑

ℓ≥0

2

2ℓ+ 1
δℓn aℓ =

2

2n+ 1
an , (4.57)

and hence the coefficients in (4.46) are given by

aℓ = 1
2(2ℓ+ 1)

∫ 1

−1
dxf(x)Pℓ(x) . (4.58)

4.5 Azimuthally-symmetric solutions of Laplace’s equation

With these preliminaries, we can now return to the original problem, of finding solutions

to Laplace’s equation in spherical polar coordinates. For now, we are restricting attention

to the case where the problem has azimuthal symmetry, meaning that it is independent of

the azimuthal coordinate ϕ. This means that we take m = 0 in (4.7), and so the original

potential φ has been separated by writing

φ(r, θ) =
1

r
R(r)Θ(θ) , (4.59)

with R and Θ satisfying

d2R

dr2
=

λ

r2
R ,

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λΘ = 0 . (4.60)

(See equations (4.6) and (4.7).) As we now know, the equation for Θ becomes the Legendre

equation (4.10) after making the change of variable cos θ = x, and its regular solutions are

the Legendre polynomials Pℓ(x), occurring when λ = ℓ(ℓ+ 1).

It is easy to see, by looking for trial solutions of the form R(r) = rα, that the two

linearly independent solutions of the radial equation in (4.60) are given by

R = rℓ+1 and R = r−ℓ . (4.61)

Thus by summing over all possible factorised solutions of the form (4.59), we arrive at the

general azimuthally-symmetric solution

φ(r, θ) =
∑

ℓ≥0

(
Aℓ r

ℓ +Bℓ r
−ℓ−1

)
Pℓ(cos θ) , (4.62)

where Aℓ and Bℓ are arbitrary constants. These will be determined by the boundary

conditions that specify a particular physical configuration.
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Exterior Problem:

Suppose, for example, we are considering the exterior problem, in which the potential

is specified on a spherical surface at r = a, and one wishes to calculate the potential at

all points outside this surface. It follows therefore that the potential should go to zero at

infinity, and so we must have

Aℓ = 0 . (4.63)

(Strictly, we could allow A0 to be non-zero since a non-zero constant potential at infinity

would be allowable, but there is no particular point in doing so, since the addititive constant

has no physical effect.) The Bℓ coefficients are determined in the manner we established

in the previous subsection. Note that after transforming back to the variable θ from the

variable x = cos θ, the integral (4.56) becomes

∫ π

0
dθ sin θ Pℓ(cos θ)Pℓ′(cos θ) =

2

2ℓ+ 1
δℓ,ℓ′ , (4.64)

and so the coefficients Bℓ in (4.62) are given in terms of the boundary values φ(a, θ) of the

potential by

Bℓ = 1
2(2ℓ+ 1) aℓ+1

∫ π

0
dθ sin θ φ(a, θ)Pℓ(cos θ) . (4.65)

Interior Problem:

A related case arises for the interior problem, where the potential is specified on a

closed spherical surface r = a and one wishes to solve for the potential everywhere inside

this surface. Assuming there are no charges inside the sphere (i.e. it is just a vacuum inside),

then the coefficients Bℓ in the general expansion (4.62) must now be zero, since we require

that the potential be regular at r = 0. The Aℓ coefficients will now be given by

Aℓ = 1
2(2ℓ+ 1) a−ℓ

∫ π

0
dθ sin θ φ(a, θ)Pℓ(cos θ) . (4.66)

Region Between Two Spherical Surfaces:

A third related example arises if one wishes to solve for φ in the free-space region between

two concentric spherical surfaces with r = a and r = b. Let us assume that b > a. Now,

both the Aℓ and Bℓ coefficients will in general be non-vanishing. The boundary values for

φ must be specified on both the surfaces, and so one again has the correct total number of

equations to solve for all of the coefficients. Thus one will have

Aℓa
ℓ +Bℓa

−ℓ−1 = 1
2(2ℓ+ 1)

∫ π

0
dθ sin θ φ(a, θ)Pℓ(cos θ) ,

Aℓb
ℓ +Bℓb

−ℓ−1 = 1
2(2ℓ+ 1)

∫ π

0
dθ sin θ φ(b, θ)Pℓ(cos θ) , (4.67)
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which can be solved for all Aℓ and Bℓ.

Further examples:

Of course one can easily consider other classes of problem too. For example, one may

consider Neumann cases where it is the normal derivative of φ, rather than φ itself, that

is specified on the spherical boundary or boundaries. Consider, for example, the exterior

problem in this case. From (4.62), after setting Aℓ = 0 for regularity at infinity, one has

∂φ(r, θ)

∂r

∣∣∣
r=a

= −
∑

ℓ≥0

(ℓ+ 1)Bℓa
−ℓ−2 Pℓ(cos θ) . (4.68)

Multiplying by Pn(cos θ) and integrating, we therefore find

Bℓ = −(2ℓ+ 1)

2(ℓ+ 1)
aℓ+2

∫ π

0
dθ sin θ

(
∂φ(r, θ)

∂r

∣∣∣
r=a

)
Pℓ(cos θ) . (4.69)

Analogous results can be obtained for the interior problem and for the case of the region

between two concentric spheres.

4.6 Some useful techniques for azimuthally-symmetric problems

The procedure for solving Laplace’s equation described in the previous subsection is straigh-

forward, but evaluating the integrals in order to read off the expansion coefficients in (4.46)

can sometimes be a little involved. There is a very useful “trick” which can often be em-

ployed to obtain the answer in a more elegant way, with considerably less effort. We describe

this, and a couple of further techniques, below.

Solution by off-axis extrapolation:

In an electrostatics problem with azimuthal symmetry, it is often very easy to obtain

the expression for the potential along the axis of symmetry by elementary means. Thus, if

we make the natural choice and align the z axis along the axis of azimuthal symmetry, this

means that φ(z) is easily calculated. In terms of spherical polar coordinates, points along

the z axis correspond to θ = 0 (for the positive z axis), or θ = π (for the negative z axis).

Suppose that we are considering an “exterior” azimuthally-symmetric electrostatics

problem, for which we wish to find φ(r, θ) in an exterior region, say r ≥ a. From (4.46), the

general such solution to Laplace’s equation will take the form

φ(r, θ) =
∑

ℓ≥0

Bℓ

rℓ+1
Pℓ(cos θ) . (4.70)
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On the positive z axis, where θ = 0, we shall therefore have

φ(z) = φ(z, 0) =
∑

ℓ≥0

Bℓ

zℓ+1
Pℓ(1) =

∑

ℓ≥0

Bℓ

zℓ+1
, (4.71)

where, in getting to the final expression, we have used the normalisation property Pℓ(1) = 1

of the Legendre polynomials.

It is evident, therefore, that if we already know the on-axis expression for φ(z) from

some elementary calculation, then by expanding it in inverse powers of z and comparing

terms with (4.71), the coefficients Bℓ can all be read off. Having found them from the on-

axis calculation, we just plug them into (4.70) and thereby we obtain the complete solution

for all r and θ.

As an example, consider the problem that we discussed in section (2.4), when illus-

trating the use of the Dirichlet Green function for the sphere. The potential on the upper

hemishpere of a sphere of radius a was taken to be the constant +V , and on the lower hemi-

sphere the potential was −V . The exact expression for the potential in the region r > a

was obtained in the form of the integral (2.32), but this cannot be evaluated explicitly in

any useful form. We observed at the time that the expression for φ on the (positive) z axis

took the form (2.33), i.e.

φ(z) = V

(
1 − z2 − a2

z
√
z2 + a2

)
. (4.72)

Writing this as

φ(z) = V


1 −

(
1 − a2

z2

)(
1 +

a2

z2

)−1/2

 , (4.73)

it is a simple matter to expand the inverse square root using the binomial theorem, and

therby obtain the expansion for φ(z) as an infinite series in powers of 1/z:

φ(z) = V



1 −
(

1 − a2

z2

)
∑

n≥0

(−1)n (2n)!

22n (n!)2

(
a

z

)2n




= V
∑

n≥1

(−1)n+1 (4n − 1)(2n − 2)!

22n−1 n! (n− 1)!

(
a

z

)2n

=
3V

2

a2

z2
− 7V

8

a4

z4
+

11V

16

a6

z6
− 75V

128

a8

z8
+ · · · . (4.74)

Reading off the coefficients in the expansion (4.74), we can therefore immediately con-

clude that the general off-axis series for the potential is

φ(r, θ) = V
∑

n≥1

(−1)n+1 (4n− 1)(2n − 2)!

22n−1 n! (n− 1)!

(
a

r

)2n

P2n−1(cos θ) (4.75)

=
3V

2

a2

r2
P1(cos θ) −

7V

8

a4

r4
P3(cos θ) +

11V

16

a6

r6
P5(cos θ) −

75V

128

a8

r8
P7(cos θ) + · · · .
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The technique of off-axis extrapolation is clearly very powerful. Indeed, it can really

be viewed as the default approach that one should try first, when solving electrostatics

problems where there is azimuthal symmetry.

Solution by inversion:

It is sometimes the case that one already has the result for the series expansion in, say,

the exterior region r > a, and one now wishes to find the series expansion in the interior

region r < a. This can, of course, be done by going back and re-solving the problem from

scratch, in the region r < a, where now it will be the Aℓ coefficients in (4.46), rather than

the Bℓ coefficients, that are non-zero. Sometimes, an easier method is to use the following

procedure, known as Inversion.

Suppose we have already found that the solution in the exterior region is given by

φ(r, θ) =
∑

ℓ≥0

Bℓ

rℓ+1
Pℓ(cos θ) , (4.76)

where the coefficients Bℓ are known. On general grounds, we know that the solution in the

interior region will be of the general form

φ(r, θ) =
∑

ℓ≥0

Aℓ r
ℓ Pℓ(cos θ) . (4.77)

(We are assuming there are no free charges in the interior region.)

Under the assumption that there are no charges that could give rise to singularities at

the r = a interface, it follows that we can use either of the expressions (4.76) or (4.77) at

r = a itself, and so equating the two, we find

∑

ℓ≥0

Bℓ

aℓ+1
Pℓ(cos θ) =

∑

ℓ≥0

Aℓ a
ℓ Pℓ(cos θ) . (4.78)

Since this equation must hold for all θ, and since the Legendre polynomials are linearly

independent, it follows that the coefficients of each Pℓ separately must be equal on the two

sides of the equation. Therefore we can deduce that

Aℓ =
Bℓ

a2ℓ+1
, (4.79)

and hence the series expansion (4.77) in the interior region is given by

φ(r, θ) =
∑

ℓ≥0

Bℓ r
ℓ

a2ℓ+1
Pℓ(cos θ) , (4.80)

in terms of the already-determined coefficients Bℓ of the exterior region.

55



On could, of course, equally well apply the inversion procedure the other way around,

and instead find the expansion in the exterior region if the expansion in the interior region

is already known.

The example we discussed previously, of the potential outside the two hemispheres held

at potentials V and −V , provides a nice illustration of the method of inversion. The general

solution for the potential outside the two hemispheres was found to be given by (4.75). Using

the inversion relation (4.79), it therefore follows that all we need to do to obtain the solution

inside the two hemispheres is to apply the replacement rule

(
a

r

)ℓ+1

−→
(
r

a

)ℓ

(4.81)

to the term in Pℓ(cos θ) in (4.75), for each value of ℓ. This therefore gives the interior

solution

φ(r, θ) = V
∑

n≥1

(−1)n+1 (4n− 1)(2n − 2)!

22n−1 n! (n− 1)!

(
r

a

)2n−1

P2n−1(cos θ) (4.82)

=
3V

2

r

a
P1(cos θ) −

7V

8

r3

a3
P3(cos θ) +

11V

16

r5

a5
P5(cos θ) −

75V

128

r7

a7
P7(cos θ) + · · · .

The method of inversion is clearly a very convenient way of solving the interior problem,

once the exterior problem has been solved, or vice versa. One must, however, be careful

about the circumstances under which it can be applied. It is essential that the series

expansion that is valid in the region r > a should also be valid actually at r = a, and

likewise that the solution valid for r < a should be valid at r = a. This is an issue of

convergence of the series, and in turn this is related to the question of the analyticity of the

solution.

In general, the exterior and interior series will be convergent on the surface r = a itself

as long as there are no singularities at r = a. This is true in the example we considered,

where the potential is perfectly finite at all points on the r = a surface (it is either +V

or −V ). However, an example where it may not be true is if we considered a situation

where there was an infinite charge density somewhere on the r = a surface, such as would

result from point charges or other kinds of singular charge densities. In fact the singularities

need not be so extreme as in this example, and still the method of inversion may fail. For

example, a function such as f(x) = (x− x0)
5/2 is singular at x = x0, in the sense that it is

not analytic there. (The third derivative, and above, do not exist at x = x0, and so f(x)

does not admit a Taylor expansion around x = x0.)

In summary, while the method of inversion can sometimes be useful, it must be applied

with great care. It is often in practice safer to recalculate from scratch in the inner region
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(for example, using the off-axis extrapolation method discussed previously), rather than

applying inversion to the solution in the outer region.

4.7 The spherical harmonics

So far in our discussion of solutions of Laplace’s equation in spherical polar coordinates,

we have focused on situations with azimuthal symmetry, for which the associated Legendre

equation (4.10) reduced to the Legendre equation (4.12). Now, we have to restore the

integer m, and consider the associated Legendre equation itself.

For convenience, we present again the Associated Legendre Equation:

d

dx

(
(1 − x2)

dy

dx

)
+
(
λ− m2

1 − x2

)
y = 0 . (4.83)

Luckily, it turns out that we can construct the relevant solutions of this equation rather

simply, in terms of the Legendre polynomials that we have already studied.

To begin, we write y = (1 − x2)m/2 w, and substitute this into (4.83). After simple

algebra we find, after extracting an overall factor of (1 − x2)m/2, that w must satisfy

(1 − x2)w′′ − 2(m+ 1)xw′ + [λ−m (m+ 1)]w = 0 . (4.84)

(We are using a prime to denote differentiation d/dx here.) Now suppose that we have a

solution u of the ordinary Legendre equation:

(1 − x)2 u′′ − 2xu′ + λu = 0 . (4.85)

Next, we differentiate this m times. Let us use the notation ∂m as a shorthand for dm/dxm.

It is useful to note that we have the following lemma, which is just a consequence of Leibnitz’

rule for the differentiation of a product, iterated m times:

∂m(f g) = f (∂mg) +m (∂f) (∂m−1g) +
m(m− 1)

2!
(∂2f) (∂m−2g)

+
m(m− 1)(m− 2)

3!
(∂3f) (∂m−3g) + · · · . (4.86)

We only need the first two or three terms in this expression if we apply it to the products

in (4.85), and so we easily find that

(1 − x2) ∂m+2u− 2(m+ 1)x ∂m+1u+ [λ−m(m+ 1] ∂m u = 0 . (4.87)

Thus we see that setting w = ∂mu, we have constructed a solution of (4.84) in terms of a

solution u of the Legendre equation (4.85). The upshot, therefore, is that if we define

Pm
ℓ (x) ≡ (−1)m (1 − x2)m/2 dm

dxm
Pℓ(x) , (4.88)
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where Pℓ(x) is a Legendre polynomial, then Pm
ℓ (x) will be a solution of the Associated

Legendre Equation with λ = ℓ (ℓ+ 1):

d

dx

(
(1 − x2)

dPm
ℓ

dx

)
+
(
ℓ (ℓ+ 1) − m2

1 − x2

)
Pm

ℓ = 0 . (4.89)

Since Pℓ(x) is regular everywhere including x = ±1, it is clear that Pm
ℓ (x) will be too.

(Recall that x = cos θ, so (1 − x2)m/2 = (sin θ)m.) It is understood here that we are taking

the integer m to be non-negative. It is clear that we must have m ≤ ℓ too, since if m exceeds

ℓ then the m-fold derivative of the ℓ’th Legendre polynomial (which itself is of degree ℓ)

will give zero.

Recall next that we have Rodrigues’ formula (4.36), which gives us an expression for

Pℓ(x). Substituting this into (4.88), we get the Generalised Rodrigues Formula

Pm
ℓ (x) =

(−1)m

2ℓ ℓ!
(1 − x2)m/2 dℓ+m

dxℓ+m
(x2 − 1)ℓ . (4.90)

A nice little miracle now occurs: this formula makes sense for negative values of m too,

provided that m ≥ −ℓ. Thus we have a construction of Associated Legendre Functions for

all integers m in the interval −ℓ ≤ m ≤ ℓ.

Looking at the Associated Legendre Equation (4.89), we note that the equation itself is

invariant under sending

m −→ −m, (4.91)

since m appears only as m2 in the equation. This means that if we take a solution with a

given m, then sending m to −m gives us another solution. What is more, only one solution

at fixed ℓ and m2 can be regular at x = ±1, since the second solution will have logarithmic

singularities there (just like we saw for the Legendre functions). Since Pm
ℓ (x) and P−m

ℓ (x)

given by 4.90 are both regular at x = ±1 (and therefore neither of them can involve the

second solution with logarithmic singularities at x = ±1), it follows that they must be

linearly dependent; i.e. P−m
ℓ (x) must be some constant multiple of Pm

ℓ (x):

P−m
ℓ (x) = k Pm

ℓ (x) . (4.92)

It is easy to determine what the constant k is, by using (4.90). From (4.92) we get

∂ℓ−m(x2 − 1)ℓ = k (1 − x2)m ∂ℓ+m(x2 − 1)ℓ . (4.93)

It is good enough just to look at the highest power of x, since we have already argued that
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(4.92) must hold, and so all we need to do is to calculate what k is.12 Thus we get

(2ℓ)!

(ℓ+m)!
xℓ+m = k (−1)m x2m (2ℓ)!

(ℓ−m)!
xℓ−m (4.94)

at the leading order in x, which fixes k and hence establishes that

P−m
ℓ (x) = (−1)m

(ℓ−m)!

(ℓ+m)!
Pm

ℓ (x) . (4.95)

Using this result we can now very easily work out the normalisation integral for the

associated Legendre functions Pm
ℓ (x). The relevant integral we shall need to evaluate is
∫ 1

−1
dxPm

ℓ (x)Pm
n (x) . (4.96)

(It will become clear later why we have set the upper indices m equal here.) Using the same

method as we used for the Legendre polynomials, it is easy to show that (4.96) vanishes

unless ℓ = n. For ℓ = n, we can make use of (4.95) to write the required integral as

Cℓm ≡
∫ 1

−1
dx [Pm

ℓ (x)]2 = (−1)m
(ℓ+m)!

(ℓ−m)!

∫ 1

−1
dxPm

ℓ (x)P−m
ℓ (x) . (4.97)

Our task is to calculate the constants Cℓm.

Using (4.88), and knowing from (4.90) that (4.88) actually makes perfectly good sense

for the negative values of m as well as the positive ones,13 we shall have
∫ 1

−1
dxPm

ℓ (x)P−m
ℓ (x) =

∫ 1

−1
dx (−1)m(1 − x2)m/2∂mPℓ(x) (−1)m(1 − x2)−m/2∂−mPℓ(x)

=

∫ 1

−1
dx ∂mPℓ(x)∂

−mPℓ(x) . (4.98)

We now integrate by parts m times, to push the ∂m derivatives onto ∂−mPℓ(x), noting that

the boundary terms will cancel for each integration by parts. (Bear in mind the precise

definition of ∂−mPℓ(x), as explained in footnote 13.) Thus we have
∫ 1

−1
dxPm

ℓ (x)P−m
ℓ (x) = (−1)m

∫ 1

−1
dx(Pℓ(x))

2 =
2(−1)m

2ℓ+ 1
, (4.99)

where we have used the previous result (4.55) in getting to the final result. Looking back

to (4.97), we have therefore established that
∫ 1

−1
dxPm

ℓ (x)Pm
ℓ′ (x) =

2

(2ℓ+ 1)

(ℓ+m)!

(ℓ−m)!
δℓℓ′ . (4.100)

12One could, more adventurously, give another proof that P−m
ℓ (x) and Pm

ℓ (x) are linearly dependent by

checking all powers of x. We leave this as an exercise for the reader.
13∂−mPℓ(x) means the m’th indefinite integral of Pℓ(x). Each integration will bring in an associated

integration constant, and so in general ∂−mPℓ(x) would have m arbitrary constants of integration, in the

form of coefficients in a polynomial in x of degree (m− 1). When we write ∂−mPℓ(x), it is to be understood

that we mean precisely (2−ℓ/ℓ!) ∂ℓ−m(x2 −1)ℓ; in other words, this defines the choices we are making for the

m integration constants.
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Recalling that in the separation of variables discussed in section 4 we had considered

factorised solutions of the form φ(r, θ, ϕ) = r−1R(r)Y (θ, ϕ), and that Y (θ, ϕ) was itself

factorised in the form Θ(θ)Φ(ϕ) with Φ(ϕ) ∼ eimϕ and Θ(θ) satisfying the associated

Legendre equation, we see that Y (θ, ϕ) will be of the general form Pm
ℓ (cos θ)eimϕ. To be

precise, we shall define

Yℓm(θ, ϕ) ≡
√

(2ℓ+ 1)

4π

√
(ℓ−m)!

(ℓ+m)!
Pm

ℓ (cos θ) eim ϕ , ℓ ≥ 0 , −ℓ ≤ m ≤ ℓ . (4.101)

The Spherical Harmonics Yℓm(θ, ϕ) satisfy

−∇2
(θ,ϕ) Yℓm(θ, ϕ) = ℓ (ℓ+ 1)Yℓm(θ, ϕ) . (4.102)

These spherical harmonics form the complete set of regular solutions of ∇2
(θ,ϕ) Y = −λY

on the unit sphere. Note from (4.95) that we have

Yℓ,−m(θ, ϕ) = (−1)m Ȳℓm(θ, ϕ) , (4.103)

where the bar denotes complex conjugation.

We can easily see that the spherical harmonics satisfy the orthogonality properties

∫
dΩ Ȳℓ′m′(θ ϕ)Yℓm(θ, ϕ) = δℓℓ′ δmm′ , (4.104)

where

dΩ ≡ sin θ dθ dϕ (4.105)

is the area element on the unit sphere, and
∫
dΩX means

∫ 2π

0
dϕ

∫ π

0
sin θ dθ X . (4.106)

Thus (4.104) just says that the integral on the left-hand side is zero unless ℓ′ = ℓ andm′ = m.

Note that it is the integration over φ that is responsible for producing the Kronecker delta

δmm′ , since the φ dependent factors in (4.104) are

∫ 2π

0
dϕ ei (m−m′) ϕ . (4.107)

This integrates to zero if the integers m and m′ are unequal, whilst giving 2π if m = m′.

The remaining integration over θ in (4.104) then reduces, with m and m′ equal, to the

integral in (4.100), which then gives rise to the Kronecker delta function δℓℓ′ in (4.104).
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It is instructive to look at the first few spherical harmonics explicitly. From (4.101), and

using (4.90) to give the expressions for the Pm
ℓ , we find

Y0,0(θ, ϕ) =
1√
4π

,

Y1,1(θ, ϕ) = −
√

3

8π
sin θ eiϕ ,

Y1,0(θ, ϕ) =

√
3

4π
cos θ ,

Y1,−1(θ, ϕ) =

√
3

8π
sin θ e−iϕ ,

Y2,2(θ, ϕ) =

√
15

32π
sin2 θ e2i ϕ ,

Y2,1(θ, ϕ) = −
√

15

8π
sin θ cos θ ei ϕ ,

Y2,0(θ, ϕ) =

√
5

16π
(3 cos2 θ − 1) ,

Y2,−1(θ, ϕ) =

√
15

8π
sin θ cos θ e−i ϕ ,

Y2,−2(θ, ϕ) =

√
15

32π
sin2 θ e−2i ϕ . (4.108)

It is also instructive to rewrite the spherical harmonics in terms of Cartesian, rather

than spherical polar, coordinates. Recall that the two coordinate systems are related by

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ . (4.109)

We can write the expressions for x and y more succinctly in a single complex equation,

x+ i y = r sin θ ei ϕ , (4.110)

since we have the well-known result that eiϕ = cosϕ + i sinϕ. Thus for the spherical

harmonics listed in (4.108) we have

Y0,0 =
1√
4π

,

Y1,1 = −
√

3

8π

x+ i y

r
,

Y1,0 =

√
3

4π

z

r
,

Y1,−1 =

√
3

8π

x− i y

r
,

Y2,2 =

√
15

32π

(x+ i y)2

r2
,
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Y2,1 = −
√

15

8π

z (x+ i y)

r2
,

Y2,0 =

√
5

16π

(3z2

r2
− 1

)
=

√
5

16π

2z2 − x2 − y2

r2
,

Y2,−1 =

√
15

8π

z (x− i y)

r2
,

Y2,−2 =

√
15

32π

(x− i y)2

r2
. (4.111)

What we are seeing here is that for each value of ℓ, we are getting a set of functions, labelled

by m with −ℓ ≤ m ≤ ℓ, that are all of the form of polynomials of degree ℓ in (x, y, z), divided

by rℓ:

Yℓm ∼ xi1 xi2 · · · xiℓ

rℓ
. (4.112)

(Here xi, with 1 ≤ i ≤ 3, denotes the three Cartesian coordinates; x1 = x, x2 = y, x3 = z.)

The larger ℓ is, the larger the number of possible such polynomials. Looking at ℓ = 1, we

have in total three Y1,m functions, which could be reorganised, by taking appropriate linear

combinations, as
x

r
,

y

r
,

z

r
. (4.113)

Thus once we know one of them, the other two just correspond to rotating the coordinate

system through 90 degrees about one or another axis. The same is true of all the higher

harmonics too. The spherical harmonics thus have built into them the “knowledge” of the

rotational symmetries of the sphere. Our procedure for deriving the spherical harmonics was

completely “non-transparent,” in the sense that no explicit use of the rotational symmetry

of the sphere was made in the derivation. But at the end of the day, we see that the

harmonics we have obtained do indeed reflect the symmetries. In the language of group

theory, one says that the spherical harmonics Yℓm fall into representations of the rotation

group. One of the rather remarkable “miracles” that we encountered during our derivation,

namely that the solutions to the associated Legendre equation could be constructed from

solutions of the ordinary Legendre equation, ultimately has its explanation in the fact that

the harmonics Yℓm with m 6= 0 are simply related to the m = 0 harmonic Yℓ0 by symmetry

rotations of the sphere.
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4.8 General solution of Laplace’s equation without azimuthal symmetry

We have now established that the most general solution of Laplace’s equation in spherical

polar coordinates14 can be written as

φ(r, θ, ϕ) =
∑

ℓ≥0

ℓ∑

m=−ℓ

(Aℓm rℓ +Bℓm r−ℓ−1)Yℓm(θ, ϕ) . (4.114)

The constants Aℓm and Bℓm, which depend on both ℓ and m, are as yet arbitrary. Their

values are determined by boundary conditions, as in the previous potential-theory examples

that we have looked at. Because we are now allowing the azimuthal separation constant m

to be non-zero, the class of solutions described by (4.114) includes those that are dependent

on the azimuthal angle ϕ.

In a boundary-value problem where the potential φ(r, θ, ϕ) is specified on a spherical

boundary surface at r = a, one simply uses the orthogonality conditions (4.104) in order

to determine the coefficients Aℓm and Bℓm in the general solution (4.114). For example,

suppose we are solving for φ in the exterior region r > a. This means that Aℓm = 0, and

so, setting r = a, multiplying by Ȳℓ′,m′(θ, ϕ) and integrating, we shall have

∫
φ(a, θ, ϕ)Ȳℓ′,m′(θ, ϕ)dΩ =

∑

ℓ≥0

ℓ∑

m=−ℓ

Bℓm a−ℓ−1
∫
Yℓm(θ, ϕ)Ȳℓ′,m′(θ, ϕ)dΩ

=
∑

ℓ≥0

ℓ∑

m=−ℓ

Bℓm a−ℓ−1 δℓ,ℓ′ δm,m′

= Bℓ′,m′ a−ℓ′−1 , (4.115)

and so we have

Bℓm = aℓ+1
∫
φ(a, θ, ϕ)Ȳℓm(θ, ϕ)dΩ . (4.116)

The specification of an electrostatics problem is not always given in the convenient

form of boundary values on a spherical surface. Consider, for example, our discussion of

the Green function for an infinite planar surface, in section 2.2. Equation (2.6) gives the

expression for φ(x, y, z) everywhere in the half-space z > 0 in terms of its boundary value

on the plane z = 0. Suppose we take the boundary potential to be equal to 1 within the

square of side 2 whose vertices are located at x = ±1, y = ±1, and take the potential to

be zero everywhere outside this square in the z = 0 plane. Thus, the potential for z > 0 is

14That is, the most general solution that is regular on the spherical surfaces at constant r.
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given by

φ(x, y, z) =
z

2π

∫ 1

−1
dx′

∫ 1

−1
dy′

φ(x′, y′, 0)

[(x− x′)2 + (y − y′)2 + z2]3/2
. (4.117)

Although this can be integrated explicitly, the result is rather complicated. Instead, let us

write x, y and z in terms of spherical polar coordinates, expand the integrand in inverse

powers of r, and integrate term by term. After some algebra, which is easily done using

Mathematica, we find

φ(r, θ, ϕ) =
2c

πr2
+

3c− 5c3

πr4
+

7c(15 − 70c2 + 63c4 − 9s4 cos 4ϕ)

24πr6
(4.118)

+
3c(35 − 315c2 + 693c4 − 429c6 + 11s4(13c2 − 3) cos 4ϕ)

16πr8
+ · · · ,

where we have defined c = cos θ and s = sin θ. From the definition of Yℓm(θ, ϕ), it is not

hard to express (4.118) as a series in the spherical harmonics, giving

φ(r, θ, ϕ) =
4√
3π

1

r2
Y1,0(θ, ϕ) − 4√

7π

1

r4
Y3,0(θ, ϕ) (4.119)

+
1

r6

(
14

3
√

11π
Y5,0(θ, ϕ) −

√
14

55π
(Y5,4(θ, ϕ) + Y5,−4(θ, ϕ))

)

+
1

r8

(
−2

√
3

5π
Y7,0(θ, ϕ) +

√
22

35π
(Y7,4(θ, ϕ) + Y7,−4(θ, ϕ))

)
+ · · ·

Observe that the expression for the potential is azimuthally symmetric at the first couple

of orders in inverse powers of 1/r. The non-azimuthal symmetry, which must of course be

present since the original boundary value specification involves a square of non-zero potential

at z = 0, sets in at orders 1/r6 and above.

Observe also that the potential exhibits the four-fold symmetry that we should expect,

given that the boundary value specification itself has a four-fold rotational symmetry. In

other words, the potential must exhibit the property of quarter-rotational symmetry:

φ(r, θ, ϕ) = φ(r, θ, ϕ + 1
2π) . (4.120)

Note that this means that the answer must involve only those spherical harmonics Yℓm(θ, ϕ)

for which Yℓm(θ, ϕ) = Yℓm(θ, ϕ+ 1
2π), and hence

m = 4n , n = integer . (4.121)

Since we have |m| ≤ ℓ, this means that it would be impossible for any azimuthal dependence

to appear before order 1/r5 at the absolute earliest. In fact, because other symmetries of

the problem mean that only even inverse powers of r occur here, the azimuthal dependence

is deferred until order 1/r6.
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4.9 Another look at the generating function

We now return to the generating function for the Legendre polynomials, defined in (4.39).

There is a nice physical interpretation of this construction, which we shall now describe.

Consider the problem of a point charge of unit strength, sitting on the z axis at a

point z = r′. We know, since it is an axially-symmetric situation, that the potential at an

arbitrary point must be expressible in the form (4.62)

φ(r, θ) =
∑

ℓ≥0

(Aℓ r
ℓ +Bℓ r

−ℓ−1)Pℓ(cos θ) . (4.122)

To determine the coefficients, we must first make a choice between considering either the

region where r > r′, or the region where r < r′.

For r > r′, the solution should be an infinite series in inverse powers of r, so that it dies

off at infinity. Thus for r > r′ we must have Aℓ = 0. On the other hand, for r < r′ the

solution should be an infinite series in positive powers of r, so that it remains regular at

r = 0. For r < r′, therefore, we must have Bℓ = 0.

The non-zero coefficients Bℓ or Aℓ in the two regions can be determined by the method

we discussed earlier, of first finding the potential when ~r is on the z axis. This is easy; we

shall have

r > r′ : φ =
1

r − r′
=

1

r

(
1 − r′

r

)−1
=
∑

ℓ≥0

r′ℓ

rℓ+1
,

r < r′ : φ =
1

r′ − r
=

1

r′

(
1 − r

r′

)−1
=
∑

ℓ≥0

rℓ

r′ℓ+1
, (4.123)

The general off-axis solution, where ~r is arbitrary, is therefore given by

φ(r, θ) =
∑

ℓ≥0

r′ℓ

rℓ+1
Pℓ(cos θ) , r > r′ ,

φ(r, θ) =
∑

ℓ≥0

rℓ

r′ℓ+1
Pℓ(cos θ) , r < r′ . (4.124)

These expressions give the potential at a point (r, θ, ϕ) due to a unit point charge at the

point z = r′ on the z axis. The answer is, of course, independent of the azimuthal angle ϕ

because the point charge is on the z axis.

Note that it is sometimes convenient to write the two expressions in (4.124) in the form

of a single equation

φ(r, θ) =
∑

ℓ≥0

rℓ
<

rℓ+1
>

Pℓ(cos θ) , (4.125)
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where r< means whichever of r and r′ is the smaller, and r> means whichever of r and r′

is the larger.

We can relate these results to the generating function, by observing that we can in fact

write down the solution to this problem in closed form. The potential φ(r, θ) will just be

the inverse of the distance from the point (r, θ) to the point z = r′ on the z axis where the

unit charge is located. Using the cosine rule, this distance is (r2 − 2r r′ cos θ + r′2)1/2, and

so

φ(r, θ) =
1

(r2 − 2r r′ cos θ + r′2)1/2
. (4.126)

When r > r′, this can be expanded in powers of r′/r. Letting t = r′/r, we therefore have

φ(r, θ) =
1

r

1

(1 − 2t cos θ + t2)1/2
, (4.127)

and recalling the generating function formula (4.39), we see that this gives

φ(r, θ) =
1

r

∑

ℓ≥0

tℓPℓ(cos θ) =
∑

ℓ≥0

r′ℓ

rℓ+1
Pℓ(cos θ) . (4.128)

This agrees precisely with the r > r′ expansion we obtained in (4.124).

It is straightforward to repeat the above exercise for the region where r < r′. This time,

one must pull out a factor of r′ in the denominator of (4.126), and expand it in powers of

t = r/r′, to give, using (4.39),

φ(r, θ) =
1

r′

∑

ℓ≥0

tℓ Pℓ(cos θ) =
∑

ℓ≥0

rℓ

r′ℓ+1
Pℓ(cos θ) , (4.129)

and this agrees precisely with the r < r′ series we obtained in (4.124).

The discussions above show how the generating function (4.39) admits a very simple

physical interpretation as giving the expansion, in terms of Legendre polynomials, of the

potential due to a unit point charge on the z axis.

We may also generalise the discussion, to the case where the unit charge is placed at a

general position (r′, θ′, ϕ′) that need not lie on the z axis. The expression for the potential

at (r, θ, ϕ) is therefore no longer azimuthally symmetric, and so it must be expanded in the

general form (4.114), in terms of spherical harmonics. Of course we can expand it simply

using Legendre polynomials by introducing the angle γ between ~r and ~r ′, so that we may

write

φ(r, θ, ϕ) = (r2 + r′
2 − 2rr′ cos γ)−1/2 . (4.130)
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Using the generating function formula (4.39) we may therefore write

1

|~r − ~r ′| =
∑

ℓ≥0

r′ℓ

rℓ+1
Pℓ(cos γ) , r > r′ ,

1

|~r − ~r ′| =
∑

ℓ≥0

rℓ

r′ℓ+1
Pℓ(cos γ) , r < r′ . (4.131)

However, as noted earlier the expression for γ in terms of θ, ϕ, θ′ and ϕ′ is actually rather

complicated (see (2.29)).

To obtain the expression for |~r − ~r ′|−1 in terms of a series in spherical harmonics, we

first note from (4.114) that in the region r > r′ we shall have

1

|~r − ~r ′| =
∑

ℓ≥0

ℓ∑

m=−ℓ

1

rℓ+1
Bℓm(r′, θ′, ϕ′)Yℓm(θ, ϕ) , (4.132)

where we have indicated explicitly that the “constants” Bℓm(r′, θ′, ϕ′) will depend upon the

chosen location (r′, θ′, ϕ′) for the unit charge. On the other hand, in the region r < r′ we

shall have
1

|~r − ~r ′| =
∑

ℓ≥0

ℓ∑

m=−ℓ

rℓAℓm(r′, θ′, ϕ′)Yℓm(θ, ϕ) . (4.133)

How do we determine the expansion coefficients Aℓm(r′, θ′, ϕ′) and Bℓm(r′, θ′, ϕ′)? The

first thing to notice is that the function |~r− ~r ′|−1 itself is symmetrical under the exchange

of ~r and ~r ′. This means that the way in which r′, θ′ and ϕ′ enter into the expansions (4.132)

and (4.133) should be symmetrically related to the way in which r, θ and ϕ enter. In saying

this, due allowance must be made for the fact that if r > r′, then, of course r′ < r, so the

way in which r′ appears in (4.132) should be very like the way that r appears in (4.133),

and vice versa. At this point, we shall write down the answer, and then prove it afterwards.

The result is that

1

|~r − ~r ′| =
∑

ℓ≥0

ℓ∑

m=−ℓ

4π

2ℓ+ 1

r′ℓ

rℓ+1
Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ) , r > r′ , (4.134)

1

|~r − ~r ′| =
∑

ℓ≥0

ℓ∑

m=−ℓ

4π

2ℓ+ 1

rℓ

r′ℓ+1
Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ) , r < r′ , (4.135)

This result can also be written as the single equation

1

|~r − ~r ′| =
∑

ℓ≥0

ℓ∑

m=−ℓ

4π

2ℓ+ 1

rℓ
<

rℓ+1
>

Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ) . (4.136)
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To prove this, we shall need to establish a couple of preliminary results. First, we note

that since the spherical harmonics form, by construction, a complete set of functions on the

unit sphere, we can expand an arbitrary smooth function f(θ, ϕ) defined on the sphere in

the form of a generalised Fourier expansion

f(θ, ϕ) =
∑

ℓ≥0

ℓ∑

m=−ℓ

bℓm Yℓm(θ, ϕ) . (4.137)

Using the orthonormality relation (4.104) for the spherical harmonics, we find

bℓm =

∫
dΩȲℓm(θ, ϕ) f(θ, ϕ) , (4.138)

and hence substituting this back into (4.137) we obtain

f(θ, ϕ) =

∫
dΩ′f(θ′, ϕ′)



∑

ℓ≥0

ℓ∑

m=−ℓ

Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ)


 . (4.139)

This implies the completeness relation

∑

ℓ≥0

ℓ∑

m=−ℓ

Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ) =
δ(θ − θ′)δ(ϕ − ϕ′)

sin θ′
. (4.140)

(The sin θ′ in the denominator is needed to cancel the sin θ′ factor in the area element

dΩ′ = sin θ′ dθ′dϕ′.)

Secondly, it is useful to introduce the Heaviside function ϑ(x), whose definition is

ϑ(x) = 0 , x < 0 ,

ϑ(x) = 1 , x > 0 , (4.141)

The discontinuous jump as x passes through zero implies that there is an infinite spike in

the derivative of ϑ(x) at x = 0, and in fact

ϑ′(x) = δ(x) . (4.142)

This can be verified by integrating ϑ′(x) over the interval x1 ≤ x ≤ x2:

∫ x2

x1

ϑ′(x)dx =
[
ϑ(x)

]x2

x1

. (4.143)

From the definition (4.141), we see that this is equal to 1 if x = 0 lies in the integration

range, but it is instead 0 if x = 0 lies outside the integration range. The integral of δ(x)

has exactly the same features.
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Using the Heaviside function, the two expressions (4.134) and (4.135) for |~r− ~r ′|−1 can

be combined into the single formula:

1

|~r − ~r ′| =
∑

ℓ≥0

ℓ∑

m=−ℓ

4π

2ℓ+ 1

(
ϑ(r′ − r)

rℓ

r′ℓ+1
+ ϑ(r − r′)

r′ℓ

rℓ+1

)
Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ) .

(4.144)

We are now in a position to verify that (4.144) is indeed correct, by verifying that it

does indeed satisfy the proper equation

∇2 1

|~r − ~r ′| = −4πδ3(~r − ~r ′) . (4.145)

(This, together with the fact that the right-hand side of (4.144) obviously satisfies the

proper boundary condition that it goes to zero as r or r′ goes to infinity, pins down the

Green function |~r − ~r ′|−1 uniquely.)

Viewed as a function of r, θ and ϕ, the right-hand side of (4.144) by construction is

annihilated by the Laplacian in the bulk, i.e. away form the crossover at r = r′. This is

obvious from the fact that in each region r > r′ and r < r′, it is a particular instance

of an infinite series of the form (4.114), which by construction is a solution of Laplace’s

equation. Therefore, when we act with ∇2 on the right-hand side of (4.144), all the terms

involving θ and ϕ derivatives, together with those from the r derivatives that do not act on

the Heaviside functions, will add to zero. We therefore need only to retain those terms in

which the r derivatives act on the Heaviside functions.

To save some writing, let us temporarily define

Wℓm ≡ 4π

2ℓ+ 1
Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ) . (4.146)

Recalling that the radial part of ∇2φ can be written as r−1∂2(rφ)/∂r2, we shall have

1

r

∂2

∂r2

∑

ℓ≥0

ℓ∑

m=−ℓ

Wℓm

(
ϑ(r′ − r)

rℓ+1

r′ℓ+1
+ ϑ(r − r′)

r′ℓ

rℓ

)

=
1

r

∂

∂r

∑

ℓ≥0

ℓ∑

m=−ℓ

Wℓm

(
ϑ′(r′ − r)

rℓ+1

r′ℓ+1
+ (ℓ+ 1)ϑ(r′ − r)

rℓ

r′ℓ+1
+ ϑ′(r − r′)

r′ℓ

rℓ
− ℓϑ(r − r′)

r′ℓ

rℓ+1

)

=
1

r

∂

∂r

∑

ℓ≥0

ℓ∑

m=−ℓ

Wℓm

(
−δ(r − r′)

rℓ+1

r′ℓ+1
+ (ℓ+ 1)ϑ(r′ − r)

rℓ

r′ℓ+1
+ δ(r − r′)

r′ℓ

rℓ
− ℓϑ(r − r′)

r′ℓ

rℓ+1

)

=
1

r

∂

∂r

∑

ℓ≥0

ℓ∑

m=−ℓ

Wℓm

(
(ℓ+ 1)ϑ(r′ − r)

rℓ

r′ℓ+1
− ℓϑ(r − r′)

r′ℓ

rℓ+1

)
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=
∑

ℓ≥0

ℓ∑

m=−ℓ

Wℓm

[
ℓ(ℓ+ 1)

(
ϑ(r′ − r)

rℓ−1

r′ℓ+1
+ ϑ(r − r′)

r′ℓ

rℓ+2

)

+(ℓ+ 1)θ′(r′ − r)
rℓ

r′ℓ+1
− ℓϑ′(r − r′)

r′ℓ

rℓ+1

]
.

(4.147)

(Note that ϑ′(r′ − r) = −δ(r − r′). Of course one should be careful to distinguish between

the two totally different usages of the “prime” symbol, with a prime on a function such

as ϑ(r − r′) denoting the derivative with respect to r, while a prime on the coordinates

(r′, θ′, ϕ′) denotes the location of the charge, as opposed to the located (r, θ, ϕ) of the

observation point!)

The terms on the first line of the last expression here are just the usual “bulk” terms,

with no derivatives on the Heaviside functions, which will cancel againts the terms from the

angular derivatives in ∇2, as we mentioned above. It is the second line of the last expression

that we are after. This second line then becomes

=
1

r

∑

ℓ≥0

ℓ∑

m=−ℓ

Wℓm

(
−(ℓ+ 1)δ(r − r′)

rℓ

r′ℓ+1
− ℓδ(r − r′)

r′ℓ

rℓ+1

)

= − 1

r2

∑

ℓ≥0

ℓ∑

m=−ℓ

Wℓm(2ℓ+ 1)δ(r − r′)

= −4π

r2
δ(r − r′)

∑

ℓ≥0

ℓ∑

m=−ℓ

Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ)

= −4π
δ(r − r′)δ(θ − θ′)δ(ϕ − ϕ′)

r2 sin θ

= −4πδ3(~r − ~r′) . (4.148)

Note that in the derivation above a prime on ϑ always means a derivative with respect to

r, and we have used the results ϑ′(r−r′) = δ(r−r′) and ϑ′(r′−r) = −δ(r′−r) = −δ(r−r′).
We have also used the property that since δ(r − r′) is non-zero only when r = r′, then in

any function of r and r′ that is multiplied by δ(r − r′), we can always set r′ = r. Thus, for

example, δ(r − r′)r′ℓ/rℓ = δ(r − r′).

To summarise, we have shown that indeed |~r − ~r ′|−1 can be written as (4.134) and

(4.135) (or, equivalently, as (4.144)), since we have verified that these infinite sums imply

that |~r − ~r ′|−1 does indeed satisfy (4.145), as it should. It is interesting to see how the

delta function on the right-hand side of (4.145) arises in this representation of |~r− ~r ′|−1 in

(4.144). The factors in the θ and ϕ directions come from the completeness relation (4.140),

but the factor in the radial direction arises quite differently. It comes from the fact that the
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expressions (4.134) and (4.135) in the r > r′ and r < r′ regions, which are combined into

one formula in (4.144), are themselves equal at r = r′, but there is a discontinuity in the

gradient. This in turn implies that there is a delta function in the second derivative with

respect to r, and it is this that produces the radial delta function factor.

Observe also that by comparing the expansions (4.131) with those in (4.134) and (4.135),

we can deduce that

Pℓ(cos γ) =
4π

2ℓ+ 1

ℓ∑

m=−ℓ

Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ) , (4.149)

where, it will be recalled, γ is given by (2.29).

4.10 Dirichlet Green function expansion

The expression (4.144) obtained in the previous section is useful in its own right, in situ-

ations where there is a charge distribution ρ(~r) and one wants to calculate the resulting

contribution to the potential as given by (1.79) in the case that there are no boundaries.

We can also make use of (4.144) in order to obtain an expansion for the Dirichlet Green

function for a spherical boundary. Recall that we used the method of images in order to

construct the Dirichlet Green function (2.24) for the exterior boundary value problem in

which the potential is specified on the spherical surface r = a, and one wants to determine

φ(r, θ, ϕ) for all r ≥ a. For convenience, we give the expression (2.24) again here:

GD(~r,~r ′) =
1

|~r − ~r ′| −
a/r′

|~r − (a2/r′2)~r ′| . (4.150)

It then follows straightforwardly from (4.134) and (4.135) that the expansion for GD(~r,~r ′)

in (4.150) will be given by

GD(~r,~r ′) =
∑

ℓ≥0

ℓ∑

m=−ℓ

4π

2ℓ+ 1

1

rℓ+1

(
r′

ℓ − a2ℓ+1

r′ℓ+1

)
Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ) , r > r′ ,

GD(~r,~r ′) =
∑

ℓ≥0

ℓ∑

m=−ℓ

4π

2ℓ+ 1

1

r′ℓ+1

(
rℓ − a2ℓ+1

rℓ+1

)
Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ) , r < r′ ,

(4.151)

Recall from our original discussion of the Green function that for the Dirichlet boundary-

value problem, the potential inside a volume V bounded by a surface S is given by (1.90)

φ(~r) =

∫

V
ρ(~r ′)GD(~r,~r ′)d3~r ′ − 1

4π

∫

S
φ(~r ′) ~∇′GD(~r,~r ′) · d~S′ . (4.152)
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We therefore need to calculate the normal derivative of the upper expression in (4.151) at

r′ = a (approached from r′ > a, since we are solving the exterior Dirichlet problem). The

normal derivative should be directed out of the volume V , which in our case is all of space

in the region r > a, and so the normal derivative that we require is (−∂GD(~r,~r ′)/∂r′)|r′=a.

From the upper expression in (4.151), this is therefore given by

−∂GD(~r,~r ′)

∂r′

∣∣∣
r′=a

= −4π

a2

∑

ℓ≥0

ℓ∑

m=−ℓ

(a
r

)ℓ+1
Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ) . (4.153)

Consider, for simplicity, the case where ρ = 0 in the entire region r > a. It then follows

from (4.152) and (4.153) that φ(r, θ, ϕ) outside the surface r = a is given in terms of the

boundary values φ(a, θ, ϕ) on the sphere by

φ(r, θ, ϕ) =
∑

ℓ≥0

ℓ∑

m=−ℓ

(∫
φ(a, θ′, ϕ′)Ȳℓm(θ′, ϕ′)dΩ′

)(a
r

)ℓ+1
Yℓm(θ, ϕ) . (4.154)

This can be seen to be contained, as it must be, within the general class of solutions (4.114).

It corresponds to Aℓm = 0 and

Bℓm = aℓ+1
∫
φ(a, θ′, ϕ′)Ȳℓm(θ′, ϕ′)dΩ′ . (4.155)

An analogous discussion can be given for the interior problem, where one solves for

φ(r, θ, ϕ) for 0 < r < a in terms of boundary values φ(a, θ, ϕ) on the sphere at r = a.

5 Separation of Variables in Cylindrical Polar Coordinates

Another common situation that arises when considering boundary-value problems in elec-

trostatics is when there is a cylindrical symmetry, in which case cylindrical polar coordinates

are typically the most convenient choice. We shall take these to be (ρ, ϕ, z), where

x = ρ cosϕ , y = ρ sinϕ , z = z . (5.1)

In other words, we still use z as the coordinate along the Cartesian z axis, but in the (x, y)

plane we use polar coordinates (ρ, ϕ). A straighforward calculation shows that Laplace’s

equation (3.1) becomes
1

ρ

∂

∂ρ

(
ρ
∂φ

∂ρ

)
+

1

ρ2

∂2φ

∂ϕ2
+
∂2φ

∂z2
= 0 . (5.2)

We can separate variables by writing φ(ρ, ϕ, z) = R(ρ)Φ(φ)Z(z), which leads, after

dividing out by φ, to

1

ρR

d

dρ

(
ρ
dR

dρ

)
+

1

ρ2 Φ

d2Φ

dϕ2
+

1

Z

d2Z

dz2
= 0 . (5.3)
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The first two terms depend on ρ and ϕ but not z, whilst the last term depends on z but

not ρ and ϕ. Thus the last term must be a constant, which we shall call k2, and then

1

ρR

d

dρ

(
ρ
dR

dρ

)
+

1

ρ2 Φ

d2Φ

dϕ2
+ k2 = 0 . (5.4)

Multiplying by ρ2, we obtain

ρ

R

d

dρ

(
ρ
dR

dρ

)
+ k2 ρ2 +

1

Φ

d2Φ

dϕ2
= 0 . (5.5)

The first two terms depend on ρ but not ϕ, whilst the last term depends on ϕ but not ρ.

We deduce that the last term is a constant, which we shal call −ν2. The separation process

is now complete, and we have

d2Z

dz2
− k2 Z = 0 ,

d2Φ

dϕ2
+ ν2 Φ = 0 , (5.6)

d2R

dρ2
+

1

ρ

dR

dρ
+
(
k2 − ν2

ρ2

)
R = 0 , (5.7)

where k2 and ν2 are separation constants.

The Z equation and Φ equation in (5.6) are easily solved, giving

Z(z) ∼ e±kz , Φ(ϕ) ∼ e±iνϕ . (5.8)

Usually, we shall be seeking solutions where the potential should be periodic in the polar

angle ϕ in the (x, y) plane, so that Φ(ϕ+ 2π) = Φ(ϕ), and hence

ν = integer . (5.9)

However, it will still be useful to think of ν as being a more general real variable for now.

The reason for this will emerge when we investigate the solutions of the radial equation

(5.7).

Rescaling the radial coordinate by defining x = k ρ, and renaming R as y (these functions

x and y are not to be confused with the original Cartesian coordinates x and y!), the radial

equation (5.7) takes the form

x2 y′′(x) + x y′(x) + (x2 − ν2) y = 0 , (5.10)

where y′ means dy/dx. This is known as Bessel’s Equation, and we can construct solutions

in the form of power-series expansions, by applying Frobenius’s method as we did when

discussing the Legendre equation.

73



5.1 Solutions of Bessel’s equation

It may be recalled that when seeking power-series solutions of Legendre’s equation in the

form of expansions around x = 0, it was sufficient to consider Taylor expansions in non-

negative integer powers of x, since x = 0 was an ordinary point of the Legendre equation.

By contrast, the point x = 0 is a singular point of the Bessel equation. This can be seen by

dividing out (5.10) by x2 so that the y′′ term has unit coefficient, and then noting that the

coefficients of y′ and y become singular at x = 0. Technically, the nature of the behaviour

at x = 0 implies that it is a regular singular point, and the upshot is that we should now

seek solutions of the form

y(x) =
∑

n≥0

an x
n+σ , (5.11)

where σ is a constant. Substituting into (5.10), we obtain

∑

n≥0

[(n+ σ)2 − ν2] an x
n+σ +

∑

n≥0

an x
n+σ+2 = 0 . (5.12)

Since this must hold for all x, we can now equate to zero the coefficient of each power

of x. To do this, in the first sum we make the replacement n → n + 2, so that (5.12) is

re-expressed as15

∑

n≥0

{
[(n+ σ + 2)2 − ν2] an+2 + an

}
xn+σ+2

+(σ2 − ν2) a0 x
σ + [(σ + 1)2 − ν2] a1 x

σ+1 = 0 . (5.13)

From this we see that

an+2 =
an

ν2 − (n+ σ + 2)2
, (5.14)

for n ≥ 0. In addition we have, from the two “extra” terms,

(σ2 − ν2) a0 = 0 , [(σ + 1)2 − ν2] a1 = 0 . (5.15)

We begin with the first equation in (5.15). This is the Indicial Equation. Notice that

we can in general insist, without any loss of generality, that a0 6= 0. The reason for this is

as follows. Suppose a0 were equal to zero. The series (5.11) would then begin with the a1

term, so it would be a series whose powers of x were (xσ+1, xσ+2, xσ+3, . . .). But since at

the stage when we write (5.11) σ is a completely arbitrary constant, not yet determined, we

15Recall that “sending n→ n+ 2 in the first sum” means first setting n = m+ 2, so that the summation

over m runs from −2 up to +∞. Then, we write this as the sum from m = 0 to +∞ together with the

“extra” two terms m = −2 and m = −1 added on in addition. Finally, we relabel the m summation variable

as n.
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could as well relabel it by writing σ = σ′ − 1. We would then have a series whose powers

of x are (xσ′

, xσ′+1, xσ′+2, . . .). But this is exactly what we would have had if the a0 term

were in fact non-zero, after relabelling σ′ as σ. So insisting that a0 be non-zero loses no

generality at all.

Proceeding, we then have the indical equation σ2 − ν2 = 0, i.e.

σ = ±ν . (5.16)

Now we look at the second equation in (5.15). Since we already know from the indicial

equation that σ2 = ν2, we can rewrite the second equation as

(2σ + 1) a1 = 0 . (5.17)

Thus either a1 = 0 or else σ = −1
2 . But since we already know from the indicial equation

that σ = ±ν, it follows that except in the very special case where ν = 1
2 , which has to be

analysed separately, we must have that a1 = 0. Let us assume that ν 6= ±1
2 , for simplicity.

In fact, we shall assume for now that ν takes a generic value, which is not equal to any

integer or half integer.

Finally, in the recursion relation (5.14), we substitute the two possible values for σ, i.e.

σ = ν or σ = −ν. In each of these two cases, the recursion relation then gives us expressions

for all the an with n ≥ 2, in terms of a0 (which is non-zero), and a1 (which is zero since we

are assuming ν 6= ±1
2).

We can check the radius of convergence of the series solutions, by applying the ratio

test. The ratio of successive terms (bearing in mind that a1 = 0, which means all the odd

an are zero) is given by
an+2 x

2

an
=

x2

ν2 − (n+ σ + 2)2
, (5.18)

where σ = ±ν. In either case, at large n we see that the absolute value of the ratio tends

to x2/n2, and thus the ratio becomes zero for any fixed x, no matter how large. Thus the

radius of convergence is infinite.

To summarise, we have obtained two solutions to the Bessel equation, y1(x) and y2(x),

given by

y1(x) = xν
∑

n≥0

a+
n x

n , y2(x) = x−ν
∑

n≥0

a−n x
n , (5.19)

where a±0 is arbitrary, a±1 = 0, and from the recursion relation (5.14) we have

a+
n+2 =

a+
n

ν2 − (n + ν + 2)2
, a−n+2 =

a−n
ν2 − (n − ν + 2)2

. (5.20)
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It is straightforward to see that these two recursion relations can be solved, to give the two

solutions, called Jν(x) and J−ν(x):

Jν(x) =
(x

2

)ν ∑

p≥0

(−1)p

p! Γ(p+ν+1)

(x
2

)2p
, J−ν(x) =

(x
2

)−ν ∑

p≥0

(−1)p

p! Γ(p−ν+1)

(x
2

)2p
.

(5.21)

Here Γ is the Gamma function, which can be defined by

Γ(z) =

∫ ∞

0
e−t tz−1dt . (5.22)

If z is an integer, it is related to the factorial function by Γ(n + 1) = n!. In general, it

satisfies the relation

zΓ(z) = Γ(z + 1) . (5.23)

The two Bessel functions Jν(x) and J−ν(x) are linearly independent, if ν takes a generic

real value. This is obvious from the fact that the leading term in Jν(x) is proportional to

xν , while the leading term in J−ν(x) is proportional to x−ν .

However, if ν is an integer (which, it should be recalled, is generally going to be the

case in physical situations where we are solving Laplace’s equation for the electrostatic

potential), the two Bessel functions become proportional to one another. For example, if

ν = 1 we find from (5.21) that

J1(x) = 1
2x− 1

16x
3 + 1

384x
4 + · · · , J−1(x) = −1

2x+ 1
16x

3 − 1
384x

4 + · · · , (5.24)

and in fact J1(x) = −J−1(x). (One might have thought from the expression for J−1(x) in

(5.21) that its leading term would be proportional to 1/x, but the coefficient of the p = 0

term in the summation is 1/Γ(0), and Γ(0) is in fact infinite (see (5.23), with z = 0, bearing

in mind that Γ(1) = 0! = 1).) It is not hard to see from the series expansions (5.21) that

when ν = n is an integer, we shall have

J−n(x) = (−1)nJn(x) . (5.25)

Since when ν is an integer the two generically-independent solutions Jν and J−ν to

Bessel’s equation become linearly dependent, it follows that the actual “second solution”

cannot be of the originally-assumed form (5.11) when ν is an integer. In fact, what is

missing is that the actual second solution acquires a dependence on log x when ν is an

integer.
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The second solution can be constructed by applying a limiting procedure. Essentially,

we take the linear combination of Jν(x) and J−ν(x) that vanishes when ν approaches an

integer, and divide it by a ν-dependent factor that also vanishes as ν approaches an integer.

This ratio of “0/0” is actually finite and non-zero, and provides us with the second solution.

Thus, we define

Yν(x) =
Jν(x) cos νπ − J−ν(x)

sin νπ
. (5.26)

We may take Jν(x) and Yν(x) to be the two linearly-independent solutions of Bessel’s

equation (5.10) for arbitrary ν, integer or non-integer. (When ν is not an integer, Yν is a

nonsingular linear combination of Jν and J−ν , and so it is linearly independent of Jν .) The

function Jν(x) is sometimes called the Bessel function of the first kind, and Yν(x) is called

the Bessel function of the second kind.

It is evident from the series expansion (5.21) that at small x, the Bessel function Jν(x)

behaves like

Jν(x) =
1

Γ(ν + 1)

(x
2

)ν
+ O(xν+2) . (5.27)

By means of a more intricate analysis, which requires first finding a suitable integral rep-

resentation for Jν(x), one can show that at large x it takes roughly the form of a cosine

function, with a slowly decaying amplitude:

Jν(x) ∼
√

2

πx
cos

(
x− νπ

2
− π

4

)
, x −→ ∞ . (5.28)

The Yν(x) Bessel function has a similar decaying oscillatory behaviour at large x:

Yν(x) ∼
√

2

πx
sin

(
x− νπ

2
− π

4

)
, x −→ ∞ . (5.29)

If ν is not an integer its small-x behaviour is just that which is implied by the two series

expansions in (5.21), combined according to the definition (5.26). As mentioned previously,

Yν(x) involves dependence on log x if ν is an integer. The small-x behaviour for the first

couple of Yn(x) functions for integer n are:

Y0(x) =
2

π

(
log 1

2x+ γ
)(

1 − 1
4x

2 + 1
64x

4 + · · ·
)

+
1

2π

(
x2 − 3

32x
4 + · · ·

)
, (5.30)

Y1(x) =
1

π

(
log 1

2x+ γ
)(
x− 1

8x
3 + 1

192x
5 + · · ·

)
− 2

π

(1

x
+ 1

4x− 5
64x

3 · · ·
)
,

where γ ≈ 0.5772157 is the Euler-Mascheroni constant. In general, for ν > 0, the leading-

order small-x behaviour of Yν(x) is of the form

Yν(x) ∼ −Γ(ν)

π

(
2

x

)ν

. (5.31)

The three figures below contain plots of the J0(x), J1(x) and J5(x) Bessel functions.
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Figure 1: The J0(z) Bessel Function
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Figure 2: The J1(z) Bessel Function
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Figure 3: The J5(z) Bessel Function
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5.2 Properties of the Bessel functions

From the asymptotic forms (5.28) and (5.29) of the Jν and Yν Bessel functions, it can be

seen to be natural to define also the complex combinations

H(1)
ν (x) = Jν(x) + iYν(x) , H(2)

ν (x) = Jν(x) − iYν(x) . (5.32)

These are known as the Hankel functions, or as “Bessel functions of the third kind.” They

bear the same relation to Jv and Yν as e±iθ does to cos θ and sin θ.

All the Bessel functions can be shown to satisfy the recurrence relations

Wν−1(x) +Wν+1(x) =
2ν

x
Wν(x) , (5.33)

Wν−1(x) −Wν+1(x) = 2
dWν(x)

dx
, (5.34)

where Wν is taken to be any one of Jν , Yν , H
(1)
ν or H

(2)
ν . These relations can be proven

directly, using the expression in (5.21) for the series expansion of Jν(x).

We have seen from the plots of the Jν Bessel functions, and from their asymptotic

behaviour, that Jν(x) has a discrete infinite set of zeros, at points on the x axis that

asymptotically approach an equal spacing. Let us say that the m’th zero of Jν(x) occurs at

x = ανm , so Jν(ανm) = 0 . (5.35)

Thus x = αν 1 is the location of the first zero, x = αν 2 is the location of the second, and

so on, as x increases from 0. They occur at definite values of ανm, though it is not easy to

give explicit expressions for ανm.

Recall that the Bessel equation arose from our separation of variables in cylindrical polar

coordinates (ρ, ϕ, z), and that the independent variable x in the Bessel equation (5.10) was

related to the radial coordinate ρ by x = kρ, where k was one of the separation constants

in (5.6) and (5.7). We shall now show that the functions ρ1/2 Jν(ανnρ/a), for a fixed ν ≥ 0

and with n taking all the positive integer values, form an orthogonal set in the interval

0 ≤ ρ ≤ a.

It follows from Bessel’s equation (5.10) that Jν(ανmρ/a) satisfies

d

dρ

(
ρ
dJν(ανmρ/a)

dρ

)
+
(α2

νmρ

a2
− ν2

ρ

)
Jν(ανmρ/a) = 0 . (5.36)

We prove orthogonality by multiplying by Jν(ανnρ/a), and then subtracting off the equation

where the rôles of m and n are exchanged, to give

Jν(ανn ρ/a)
d

dρ

(
ρ
d

dρ
Jν(ανm ρ/a)

)
− Jν(ανm ρ/a)

d

dρ

(
ρ
d

dρ
Jν(ανn ρ/a)

)

=
α2

νn − α2
νm

a2
ρ Jν(ανm ρ/a)Jν(ανn ρ/a) . (5.37)
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Next, we integrate this from ρ = 0 to ρ = a. On the left-hand side we integrate by parts,

finding that there is now a cancellation of the resulting two integrands, leaving only the

“boundary terms.” Thus we have

[
ρ Jν(ανn ρ/a)

d

dρ
Jν(ανm ρ/a)

]a
0
−
[
ρ Jν(ανm ρ/a)

d

dρ
Jν(ανn ρ/a)

]a
0

=
α2

νn − α2
νm

a2

∫ a

0
Jν(ανm ρ/a)Jν(ανn ρ/a) ρ dρ . (5.38)

Recalling that near ρ = 0, Jν(ανn ρ/a) is proportional to ρν , we see that with our

assumption that ν ≥ 0 the lower limits on the left-hand side of (5.38) will give zero. Fur-

thermore, the upper limits will also give zero, since by construction Jν(ανm) = 0. Thus we

arrive at the conclusion that for m 6= n (which implies ανm 6= ανn), we shall have

∫ a

0
Jν(ανm ρ/a)Jν(ανn ρ/a) ρ dρ = 0 . (5.39)

Having established orthogonality whenm 6= n, it remains to determine the normalisation

of the integral that we get when instead we take m = n. To do this, let x = ανm ρ/a, so

that ∫ a

0
[Jν(ανn ρ/a)]

2 ρ dρ =
a2

α2
νn

∫ ανn

0
[Jν(x)]2 x dx . (5.40)

To evaluate the integral on the right-hand side, we integrate by parts, by writing [Jν(x)]2 x =

1
2d/dx(x

2 [Jν(x)]2) − 1
2x

2 d/dx([Jν(x)]2), so that

∫ ανn

0
[Jν(x)]2 x dx =

[
1
2x

2 J2
ν

]ανn

0
−
∫ ανn

0
x2 Jν J

′
ν dx . (5.41)

Now use the Bessel equation (5.10) to write x2 Jν as ν2 Jν − xJ ′
ν − x2 J ′′

ν , so that we get

∫ ανn

0
[Jν(x)]2 x dx =

[
1
2x

2 J2
ν

]ανn

0
−
∫ ανn

0

(
ν2 Jν J

′
ν − xJ ′

ν
2 − x2 J ′

ν J
′′
ν

)
dx ,

=
[

1
2x

2 J2
ν

]ανn

0
−
∫ ανn

0

(
1
2ν

2 (J2
ν )′ − 1

2 (x2 J ′
ν
2
)′
)
dx

= 1
2

[
x2 J2

ν − ν2 J2
ν + x2 J ′

ν
2
]ανn

0
. (5.42)

The first two terms in the final line vanish at both our endpoints (recall that ανn are

precisely the values of argument for which Jν(ανn) = 0). For the final term, we subtract

(5.33) from (5.34) to give

J ′
ν(x) =

ν

x
Jν(x) − Jν+1(x) . (5.43)

Thus, with our assumption that ν ≥ 0 we see that x2 J ′
ν
2 will vanish at x = 0. Also, from

(5.43) we see that J ′
ν(ανn) = −Jν+1(ανn), and so

∫ ανn

0
[Jν(x)]2 x dx = 1

2α
2
νn [Jν+1(ανn)]2 , (5.44)
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implying finally that

∫ a

0
Jν(ανm ρ/a)Jν(ανn ρ/a) ρ dρ = 1

2a
2 [Jν+1(ανn)]2 δmn . (5.45)

We can expand an arbitrary function f(ρ) defined in the interval 0 ≤ ρ ≤ a in a Fourier-

Bessel series

f(ρ) =
∑

n≥1

AνnJν

(
ανn

ρ

a

)
. (5.46)

Multiplying by ρJν(ανmρ/a), integrating over ρ, and using the orthogonality relation (5.45),

we can solve for the coefficients Aνn, finding

Aνn =
2

a2[Jν+1(ανn)]2

∫ a

0
dρρf(ρ)Jν

(
ανn

ρ

a

)
. (5.47)

Going back to our separation of variables in cylindrical polar coordinates, where φ was

written in the factorised form φ(ρ, ϕ, z) = R(ρ)Φ(ϕ)Z(z), we see that the general solution

of Laplace’s equation can be written in the form

φ(ρ, ϕ, z) =
∑

m

∫
dk
(
Am(k)Jm(kρ) +Bm(k)Ym(kρ)

)
eimϕ ekz , (5.48)

where Am(k) and Bm(k) are arbitrary coefficients. (We have assumed here that φ is periodic

in ϕ, but that boundary conditions that would restrict k to taking a discrete set of values

have not yet been imposed.) In a situation where, for example, the potential was zero on a

cylinder at ρ = a (and regular at ρ = 0), the continuous integral over k would be replaced

by a discrete sum of the form

φ(ρ, ϕ, z) =
∑

m,n

AmnJm(αmn
ρ

a
) eimϕ eαmnz/a . (5.49)

Note that in our separation of variables in cylindrical polar coordinates, there was a

separation constant k2 that arose in the equations (5.6) and (5.7). If this constant had been

chosen to be of the opposite sign, then the separated equations would instead have been

d2Z

dz2
+ k2 Z = 0 ,

d2Φ

dϕ2
+ ν2 Φ = 0 , (5.50)

d2R

dρ2
+

1

ρ

dR

dρ
−
(
k2 +

ν2

ρ2

)
R = 0 , (5.51)

The solutions for Z would then be of the form

Z ∼ e±ikz , (5.52)
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Writing x = kρ, y = R as before we now obtain the Modified Bessel Equation

x2 y′′(x) + x y′(x) − (x2 + ν2) y = 0 , (5.53)

The two linearly-independent solutions of the modified Bessel equation can be taken to

be Iν(x) and Kν(x), defined by

Iν(x) ≡ e−
1
2πνi Jν(xe

1
2πi) , (5.54)

Kν(x) = 1
2πe

1
2 (ν+1)πiH(1)

ν (xe
1
2πi) . (5.55)

Note that from these definitions we have that when ν is an integer, ν = n,

I−n(x) = In(x) , K−n(x) = Kn(x) . (5.56)

The function Iν(x) has a simple power-series expansion

Iν(x) =
∑

r≥0

1

r! Γ(ν + r + 1)

(
x

2

)ν+2r

. (5.57)

This is convergent for any finite x. At small x we therefore have

Iν(x) =
1

Γ(ν + 1)

(
x

2

)ν

+ O(xν+2) . (5.58)

At large x, it can be shown that Iν(x) has the asymptotic form

Iν(x) ∼
1√
2πx

ex
(
1 + O(x−1

)
. (5.59)

The Kν(x) Bessel functions for the first couple of integer values for ν have the small-x

expansions

K0(x) = −(log 1
2x+ γ)(1 + 1

4x
2 + 1

64x
4 + · · ·) + 1

4x
2 + 3

128x
4 + · · · ,

K1(x) = 1
2 (log 1

2x+ γ)(x+ 1
8x

3 + 1
192x

5 + · · ·) +
1

x
− 1

4x− 5
64x

3 + · · · . (5.60)

In general, when ν > 0, the leading-order behaviour is

Kν(x) ∼ 1
2Γ(ν)

(
2

x

)ν

. (5.61)

At large x, Kν(x) has the asymptotic form

Kν(x) ∼
√
π

2x
e−x

(
1 + O(x−1

)
. (5.62)
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5.3 A boundary-value problem in cylindrical polar coordinates

We can now apply some of the technology of Bessel functions to the solution of electrostatics

problems in cylindrical polar coordinates. Consider the following example. A conducting

cylinder of height h and radius a is held at zero potential. A flat conductor closes off the

cylinder at z = 0, and is also at zero potential. The top face, at z = h, is held at some

specified potential

φ(ρ, ϕ, h) = V (ρ, ϕ) . (5.63)

The problem is to determine the potential everywhere inside the cavity.

Given that the potential vanishes at ρ = a, and it must be finite at ρ = 0, it follows

that the Iν and Kν Bessel functions are not the appropriate ones for this problem. In

other words, we must choose the sign of the separation constant k2 that we had in the

original construction (5.6) and (5.7), so that the Jν and Yν Bessel functions appear in the

expansion. Specifically, we shall need just the Jν Bessel functions here, since there will be

no logarithmic singularities on the axis of the cylinder.

From (5.6) we see that the z dependence and ϕ dependence of the separation functions

Z(z) and Φ(ϕ) will be

Z(z) ∼ sinh kz , cosh kz ,

Φ(ϕ) ∼ cos νϕ , sin νϕ . (5.64)

The vanishing of the potential on the plate at z = 0 means that for Z(z), we shall have

only the sinh kz solution. The periodicity in ϕ means that ν must be an integer.

The general solution of Laplace’s equation for this problem will be

φ(ρ, ϕ, z) =
∞∑

m=0

∞∑

n=1

Jm(αmn ρ/a) (amn sinmϕ+ bmn cosmϕ) sinh(αmn z/a) . (5.65)

The expansion coefficients amn and bmn are determined by matching this solution to the

specified boundary condition (5.63) at z = h. Thus we have

V (ρ, ϕ) =
∞∑

m=0

∞∑

n=1

Jm(αmn ρ/a) (amn sinmϕ+ bmn cosmϕ) sinh(αmn h/a) . (5.66)

The orthogonality relation (5.45) for the Bessel functions, together with the standard or-

thogonality for the trigonometric functions, means that all we need to do is to multiply

(5.66) by ρJp(αpq ρ/a) sin pϕ or ρJp(αpq ρ/a) cos pϕ and integrate over ρ and ϕ in order to

read off the integrals that determine the individual coefficients apq and bpq. It is easy to see

83



that the result is

apq =
2

π a2 sinh(αpqh/a)Jp+1(αpq)2

∫ 2π

0
dϕ

∫ a

0
ρ dρV (ρ, ϕ)Jp(αpq ρ/a) sin pϕ ,

(5.67)

bpq =
2

π a2 sinh(αpqh/a)Jp+1(αpq)2

∫ 2π

0
dφ

∫ a

0
ρ dρV (ρ, ϕ)Jp(αpq ρ/a) cos pϕ .

(When p = 0, we must send b0q → 1
2b0q. This is because

∫ 2π
0 cosmϕ cos pϕdϕ = πδpq for

p 6= 0, but it equals 2π if p = q = 0.)

5.4 Green function in cylindrical polar coordinates

Recall that in section 4.10 we obtained an expansion for |~r − ~r ′|−1 (i.e. the Green function

in free space) in spherical polar coordinates, in terms of the spherical harmonics. From

this, we were then able to obtain an expansion for the Green function for the Dirichlet

boundary-value problem on a sphere.

The essential idea involved in obtaining the expansion for |~r−~r ′|−1 in terms of spherical

harmonics was to consider the most general solution of Laplace’s equation in each of the

regions r < r′ and r > r′, with the radial functions r−1R(r) in each of the two regions

being taken to be the ones appropriate to the regularity requirements in that region. Thus,

with the radial functions being rℓ and r−(ℓ+1), we took the former choice for the region

r < r′, and the latter for the region r > r′. The discontinuity between the two solutions

of Laplace’s equation as the radial coordinate made the transition from r < r′ to r > r′

was responsible for producing the delta function factor δ(r − r′) when the Laplacian of the

expressions was carefully evaluated. The δ(θ− θ′) and δ(ϕ−ϕ′) factors, on the other hand,

arose through the completeness relation (4.140).

The same idea can be applied to obtain an expansion for |~r − ~r ′|−1 in cylindrical polar

coordinates. This time, the radial functions R(ρ) are either Jν(kρ) and Yν(kρ) or else Iν(kρ)

and Kν(kρ), depending upon whether the separation constant k2 enters the equations as in

(5.6) and (5.7) or else in (5.50) and (5.51). We can make the (5.50) and (5.51) sign choice

here, and so the radial functions are Iν(kρ) and Kν(kρ), and the functions Z(z) and Φ(ϕ)

are of the forms

Z(z) ∼ cos kz or sin kz ,

Φ(ϕ) ∼ cos νϕ or sin νϕ . (5.68)

Single-valuedness of Φ(ϕ) under ϕ→ ϕ+ 2π implies that we must take ν = m =integer.
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The relevant completeness relations that will generate the delta function factors δ(z−z′)
and δ(ϕ − ϕ′) are the standard ones from Fourier analysis:

δ(z − z′) =
1

2π

∫ ∞

−∞
dkeik(z−z′) =

1

π

∫ ∞

0
dk cos k(z − z′) ,

δ(ϕ − ϕ′) =
1

2π

∞∑

m=−∞

eim(ϕ−ϕ′) . (5.69)

The Green function can now be expanded in the form

G(~r,~r ′) =
1

2π2

∞∑

m=−∞

∫ ∞

0
dk R(k,m)(ρ, ρ

′) eim(ϕ−ϕ′) cos k(z − z′) , (5.70)

where R(k,m)(ρ, ρ
′) is the appropriate radial function of ρ, which in general must be some

linear combination of Im(kρ) and Km(kρ). It will take two different forms in the two regions

ρ < ρ′ and ρ > ρ′. From our construction of the general solution of Laplace’s equation in

cylindrical polar coordinates, it is manifest thatG(~r,~r ′) in (5.70) satisfies Laplace’s equation

everywhere except at the transition where ρ = ρ′.

From the asymptotic forms of Iν(x) and Kν(x) described in section 5.2, it is evident

that the solution well behaved at small ρ must be proportional to Iν , whilst the solution

well behaved at large ρ must be proportional to Kν . Because of the symmetry of the Green

function under exchanging ρ and ρ′, we can expect that R(k,m)(ρ, ρ
′) will be proportional

to Im(kρ)Km(kρ′) when ρ < ρ′, and proportional to Km(kρ)Im(kρ′) when ρ > ρ′. (We saw

precisely the analogous feature previously, in the expansion in spherical polar coordinates.)

Since we still need to determine the constants of proportionality in each case, let us for

now write

R(k,m)(ρ, ρ
′) = α

[
Im(kρ)Km(kρ′)ϑ(ρ′ − ρ) +Km(kρ)Im(kρ′)ϑ(ρ− ρ′)

]
, (5.71)

where α is a constant to be determined. Differentiating, and making use of the standard

properties of the derivative of the Heaviside ϑ function, and the fact that δ(ρ − ρ′)f(ρ′) =

δ(ρ − ρ′)f(ρ), we see that

dR(k,m)(ρ, ρ
′)

dρ
= α

[
Km(kρ′)

dIm(kρ)

dρ
θ(ρ′ − ρ) + Im(kρ′)

dKm(kρ)

dρ
θ(ρ− ρ′)

]
,

d2R(k,m)(ρ, ρ
′)

dρ2
= α

[
Km(kρ′)

d2Im(kρ)

dρ2
θ(ρ′ − ρ) + Im(kρ′)

d2Km(kρ)

dρ2
θ(ρ− ρ′)

]

+
[
Im(kρ)

dKm(kρ)

dρ
−Km(kρ)

dIm(kρ)

dρ

]
δ(ρ − ρ′) . (5.72)

When we apply the Laplace operator to the expression (5.70), all the terms in (5.72)

where the ϑ functions remain undifferentiated will combine with the z and ϕ derivative terms
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to give the “bulk” result that G(~r,~r ′) satisfies Laplace’s equation, in the way we discussed

above. The only terms left over will be those in (5.72) involving the delta function. For

these, we need to derive a simple result about properties of the solutions of the modified

Bessel equation (5.53). Suppose y1(x) and y2(x) are two such solutions. Plugging y1 into

(5.53) and multiplying by y2, and then subtracting the expession where the roles of y1 and

y2 are exchanged, we obtain

xy2(xy
′
1)

′ − xy1(xy
′
2)

′ = 0 . (5.73)

(Note that x2y′′ + xy′ can be written as x(xy′)′.) Dividing out by x, we can then rewrite

this as

(xy2y
′
1)

′ − xy′2y
′
1 − (xy1y

′
2)

′ + xy′1y
′
2 = 0 , (5.74)

and hence [x(y′1y2 − y′2y1)]
′ = 0. From this, we deduce that for any two solutions of the

modified Bessel equation, their Wronskian W (y1, y2) ≡ y1y
′
2 − y2y

′
1 satisfies

W (y1, y2) = y1y
′
2 − y2y

′
1 =

c

x
, (5.75)

where c is some constant that depends on which particular solutions y1 and y2 are chosen.

We can calculate the Wronskian for Iν(x) and Kν(x) easily, by using the small-x ex-

pansions (5.58) and (5.61). Since we have only to determine the value of the constant

c in (5.75) for this particular pair of solutions, it suffices to use their small-x expan-

sions (5.58) and (5.61), and calculate the leading-order term when substituting them into

Im(x)K ′
m(x) −Km(x)I ′m(x). This gives

Iν(x)K
′
ν(x) −Kν(x)I

′
ν(x) = −1

x
, (5.76)

and hence we read off that c = −1. Going back to our trial expansion (5.70), we see that

we should choose

R(k,m)(ρ, ρ
′) = 4πIm(kρ)Km(kρ′)ϑ(ρ′ − ρ) + 4πKm(kρ)Im(kρ′)ϑ(ρ− ρ′) . (5.77)

This then ensures that G(~r,~r ′) in (5.70) satisfies

∇2G(~r,~r ′) = −4πδ3(~r − ~r ′) = −4π

ρ
δ(ρ− ρ′)δ(ϕ − ϕ′)δ(z − z′) . (5.78)

To summarise, we have shown that in cylindrical polar coordinates we have the expansion

1

|~r − ~r ′| =
2

π

∞∑

m=−∞

∫ ∞

0
dk Im(kρ<)Km(kρ>)eim(ϕ−ϕ′) cos k(z − z′) , (5.79)
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where the notation here is that ρ< means whichever of ρ and ρ′ is the smaller, and ρ> means

whichever of them is the larger.

Recall that for the integer degrees, as we have here, In and Kn are each the same for

positive and negative n (see eqn (5.56)). Thus we may also write (5.79) as

1

|~r − ~r ′| =
4

π

∫ ∞

0
dk



1
2I0(kρ<)K0(kρ>) +

∑

m≥1

Im(kρ<)Km(kρ>) cosm(ϕ− ϕ′)





× cos k(z − z′) , (5.80)

6 Multipole Expansion

The multipole expansion provides a way of organising the expression for the electrostatic

potential due to a localised distribution of charges, as a sum over terms proportional to the

total charge, the dipole moment, the quadrupole moment, and so on. In order to discuss

this, it will be convenient first to introduce an index notation for vectors and tensors in

three-dimensional Cartesian space.

6.1 Index notation for Cartesian vectors and tensors

Until now, we have typically been writing a vector V as an ordered triplet of components,

in the form

~V = (Vx, Vy, Vz) . (6.1)

In the index notation, we instead label the three components by the numbers 1, 2 and 3,

rather than by x, y and z. Thus we write

~V = (V1, V2, V3) . (6.2)

In the same way, instead of writing ~r = (x, y, z), we can write it as

~r = (x1, x2, x3) . (6.3)

In other words, we call the three Cartesian coordinates x1, x2 and x3, rather than x, y and

z.

The scalar product ~A · ~B between any two vectors ~A and ~B can now be written as

~A · ~B =
3∑

i=1

AiBi . (6.4)

87



At this point, the index notation is looking somewhat clumsy and long-winded. It becomes

much simpler to write if we now adopt the Einstein summation convention. The idea here

is that in any valid vector or tensor expression written using index notation, if a particular

index occurs exactly twice in a term, then it will always be summed over, as in the right-

hand side in (6.4). It is therefore redundant to write the summation explicitly, and so we

can simply rewrite (6.4) as

~A · ~B = AiBi . (6.5)

By the Einstein summation convention, it is understood that the index i is to be summed

over.

The i index in (6.5) is called a dummy index, meaning that it is just an index “internal”

to the term AiBi that is summed over. The term could just as well be written as AjBj

or AkBk, etc. The dummy index is like a summation index in a computer programme; for

example, in Mathematica one would write AiBi as

Sum[A[i]B[i], {i, 1, 3}] , (6.6)

and obviously any other name could equally well have been chosen for the summation

variable.

The index notation is extremely useful, but there are pitfalls for the unwary. Suppose,

for example, we wish to write ( ~A · ~B)(~C · ~D) in index notation. It will be

( ~A · ~B)(~C · ~D) = AiBiCjDj . (6.7)

It is absolutely essential to make sure that a different index is chosen for the second factor,

~C · ~D, that has not been used in writing the first factor, ~A · ~B. Thus, for example,

AiBiCiDi (6.8)

is completely meaningless. There will never be any occasion when a valid vector or tensor

expression has a term where the same index occurs more than twice. It should be clear that

(6.8) is meaningless and that it is not what is wanted.

In fact in a valid vector or tensor expression, a particular index can appear either

once, or twice (or not at all) in each term. For example, suppose we want to write ~V =

( ~A · ~B)~C + (~E · ~F ) ~G in index notation. This is a vector-valued expression, and so we need

a free index that labels the three components. We can write it as

Vi = AjBjCi +EjFjGi . (6.9)
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This could equally well be written, for example, as

Vi = AjBjCi + EkFkGi , (6.10)

since the summation over the dummy index j in the first term on the right-hand side of

(6.9) is completely independent of the summation over the dummy index j in the second

term. But we must not, under any circumstances, choose the label i for either of the dummy

indices in (6.10), since i is already being used as the free index.

The reason for emphasising so strongly the need to be careful about not violating the

rules when using indices is that it is by far the most common mistake that people make

when they first meet the index notation. If you find you have written a term such as AiBiCi,

or AiBiCiDi, it is simply wrong; there is no point in continuing the calculation until the

source of the trouble has been located and corrected.

One final piece of notation before we move on concerns the gradient operator ~∇ =

(∇1,∇2,∇3) = (∂/∂x, ∂/∂y, ∂/∂z). In index notation we therefore have

∇i =
∂

∂xi
. (6.11)

It will be convenient to abbreviate the writing of ∂/∂xi, by defining

∂i =
∂

∂xi
. (6.12)

Note that by the rules of partial differentiation, we have

∂ixj = δij . (6.13)

Note also, since it is a point that is often overlooked by those meeting the index notation

for the first time, that

δii = 3 , (6.14)

and so also we have ∂i xi = 3. Another useful observation is that

δijAj = Ai (6.15)

for any vector ~A.

6.2 Multipole expansion in Cartesian coordinates

Now back to the multipole expansion. Consider the electrostatic potential of N point

charges qa, located at fixed positions ~ra. It is given by

φ(~r) =
N∑

a=1

qa
|~r − ~ra|

. (6.16)
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In the continuum limit, the potential due to a charge distrubution characterised by the

charge density ρ(~r) is given by

φ(~r) =

∫
ρ(~r ′)d3~r ′

|~r − ~r ′| . (6.17)

Since we shall assume that the charges are confined to a finite region, it is useful to

perform a multipole expansion of the potential far from the region where the charges are

located. This amounts to an expansion in inverse powers of r = |~r|. This can be achieved

by performing a Taylor expansion of |~r − ~r ′|−1.

Recall that in one dimension, Taylor’s theorem gives

f(x+ a) = f(x) + af ′(x) +
a2

2!
f ′′(x) +

a3

3!
f ′′′(x) + · · · . (6.18)

In three dimensions, the analogous expansion is

f(~r + ~a) = f(~r) + ai∂if(~r) +
1

2!
aiaj∂i∂jf(~r) +

1

3!
aiajak∂i∂j∂kf(~r) + · · · . (6.19)

We now apply this 3-dimensional Taylor expansion to the function f(~r) = 1/|~r| = 1/r,

taking ~a = −~r ′. This gives

1

|~r − ~r ′| =
1

r
− x′i∂i

1

r
+

1

2!
x′ix

′
j∂i∂j

1

r
− 1

3!
x′ix

′
jx

′
k∂i∂j∂k

1

r
+ · · · . (6.20)

Now since r2 = xjxj, it follows that ∂ir
2 = 2r ∂ir = 2xi, and so

∂ir =
xi

r
. (6.21)

Note that we have (assuming r 6= 0) that

∂i∂i
1

r
= ∂i

(
− xi

r3

)
= − 3

r3
+

3xi

r4
xi

r
= 0 , (6.22)

or, in other words

∇2 1

r
= 0 . (6.23)

A consequence of this is that the multiple derivatives

∂i∂j
1

r
, ∂i∂j∂k

1

r
, ∂i∂j∂k∂ℓ

1

r
, · · · (6.24)

are all traceless on any pair of indices:

δij∂i∂j
1

r
= 0 , δij∂i∂j∂k

1

r
= 0 , etc. (6.25)

We can use this property in order to replace the quantities

x′ix
′
j , x′ix

′
jx

′
k , · · · (6.26)
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that multiply the derivative terms in (6.20) by the totally tracefree quantities

(x′ix
′
j − 1

3δijr
′2) , (x′ix

′
jx

′
k − 1

5 [x′iδjk + x′jδik + x′kδij ]r
′2) , · · · (6.27)

where r′2 = x′ix
′
i. (We can do this because the trace terms that we are subtracting out

here give zero when they are contracted onto the multiple derivatives of 1/r in (6.20).) It

therefore follows from (6.17) and (6.20) that we have

φ(~r) =
1

r

∫
ρ(~r ′)d3~r ′ −

(
∂i

1

r

) ∫
x′iρ(~r

′)d3~r ′ + 1
2

(
∂i∂j

1

r

) ∫
(x′ix

′
j − 1

3δijr
′2)ρ(~r ′)d3~r ′

−1
6

(
∂i∂j∂k

1

r

) ∫
(x′ix

′
jx

′
k − 1

5 [x′iδjk + x′jδik + x′kδij ]r
′2)ρ(~r ′)d3~r ′ + · · · . (6.28)

The expansion here can be written as

φ(~r) =
Q

r
− pi∂i

1

r
+

1

3 × 2!
Qij∂i∂j

1

r
− 1

5 × 3!
Qijk∂i∂j∂k

1

r
+ · · · (6.29)

where

Q =

∫
ρ(~r ′)d3~r ′ ,

pi =

∫
x′iρ(~r

′)d3~r ′ ,

Qij =

∫
(3x′ix

′
j − δijr

′2)ρ(~r ′)d3~r ′ ,

Qijk =

∫
(5x′ix

′
jx

′
k − [x′iδjk + x′jδik + x′kδij]r

′2)ρ(~r ′)d3~r ′ , (6.30)

and so on. The quantity Q is the total charge of the system, pi is the dipole moment, Qij

is the quadrupole moment, and Qijk, Qijkℓ, etc., are the higher multipole moments. Note

that by construction, all the multipole moments with two or more indices are symmetric

and traceless on all indices.

Note that the terms in the multipole expansion (6.29) do indeed fall off with increasing

inverse powers of r. For example, the dipole term is given by

φDipole = −pi∂i
1

r
=
pixi

r3
=
pini

r2
, (6.31)

which falls off like 1/r2, since ni ≡ xi/r is a unit-length vector. The quadrupole term is

given by

φQuadrupole = 1
6Qij∂i∂j

1

r
= 1

6Qij
(3xixj − r2δij)

r5
= 1

2Qij
xixj

r5
= 1

2Qij
ninj

r3
, (6.32)

which falls off like 1/r3. (The penultimate equality above follows because Qij is traceless.)
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In summary, we see that the multipole expansion of the potential due to a localised

charge distribution takes the form

φ(~r) =
Q

r
+
~p · ~n
r2

+
1

2!

Qijninj

r3
+

1

3!

Qijkninjnk

r4
+ · · · . (6.33)

The electric field due to the monopole potential φMonopole = Q/r is the familiar one

~EMonopole =
Q~r

r3
=
Q~n

r2
, (6.34)

which falls off as the square of the distance. For the dipole potential (6.31), the electric

field is easily calculated using index notation:

∂i

(
pjxj

r3

)
=
pjδij
r3

− 3pjxjxi

r5
= −3ninjpj − pi

r3
, (6.35)

and hence

~EDipole =
3~n (~n · ~p) − ~p

r3
. (6.36)

This falls off as the cube of the distance. The electric fields for the higher multipole terms

can be calculated in a similar way.

The total charge Q (the electric monopole moment) is of course a single quantity. The

dipole moment pi is a 3-vector, so it has three independent components in general. The

quadrupole moment Qij is a symmetric 2-index tensor in three dimensions, which would

mean 3 × 4/2 = 6 independent components. But it is also traceless, Qii = 0, which is one

condition. Thus there are 6 − 1 = 5 independent components.

The octopole moment Qijk is a 3-index symmetric tensor, which would mean 3 × 4 ×
5/3! = 10 independent components. But it is also traceless, Qiij = 0, which is 3 conditions.

Thus the octopole has in general 10− 3 = 7 independent components. It is straightforward

to see in the same way that the 2ℓ-pole moment

Qi1i2···iℓ = (2ℓ− 1)

∫
(x′i1x

′
i2 · · · x

′
iℓ
− traces)ρ(~r ′)d3~r ′ , ℓ ≥ 1 , (6.37)

has (2ℓ+ 1) independent components.

6.3 Multipole expansion using spherical harmonics

In fact, the multipole expansion (6.29) is equivalent to an expansion in spherical polar

coordinates, using the spherical harmonics Yℓm(θ, φ):

φ(r, θ, φ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

Bℓm Yℓm(θ, φ)
1

rℓ+1
. (6.38)
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At a given value of ℓ the terms fall off like r−ℓ−1, and there are (2ℓ + 1) of them, with

coefficients Bℓm, since m ranges over the integers −ℓ ≤ m ≤ ℓ. For each value of ℓ, there is

a linear relationship between the (2ℓ+ 1) components of Bℓm and the (2ℓ+ 1) components

of the multipole moments Q, pi. Qij, Qijk, etc. Likewise, for each ℓ there is a linear

relationship between r−ℓ−1 Yℓm(θ, ϕ) and the set of functions ∂i1∂i2 · · · ∂iℓr
−1.

Consider, for example, ℓ = 1. The three functions Zi ≡ ∂ir
−1 = −xi/r

3 are given by

Z1 = −sin θ cosϕ

r2
, Z2 = −sin θ sinϕ

r2
, Z3 = −cos θ

r2
, (6.39)

when expressed in terms of spherical polar coordinates, for which

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ . (6.40)

On the other hand, the ℓ = 1 spherical harmonics are given by (see (4.108))

Y11 = −
√

3

8π
sin θ eiϕ , Y10 =

√
3

4π
cos θ , Y1,−1 =

√
3

8π
sin θ e−iϕ . (6.41)

Thus we see that

Z1 =

√
8π

3

(Y11 − Y1,−1)

2r2
, Z2 =

√
8π

3

(Y11 + Y1,−1)

2i r2
, Z3 = −

√
4π

3

Y10

r2
. (6.42)

Analogous relations can be seen for all higher values of ℓ.

Working directly with the spherical harmonics, we may substitute the expansion (4.134)

for |~r − ~r ′|−1 into (6.17), obtaining

φ(~r) = 4π
∑

ℓ,m

qℓm
(2ℓ+ 1)

1

rℓ+1
Yℓm(θ, ϕ) , (6.43)

where the multipole moments qℓm are given by

qℓm ≡
∫
ρ(~r ′) r′

ℓ
Ȳℓm(θ′, ϕ′)d3~r ′ . (6.44)

Note that because of (4.103), they satisfy

q̄ℓm = (−1)m qℓ,−m . (6.45)

Clearly, in view of (6.45), the total number of real quantities encoded in qℓm for a given

value of ℓ is 2ℓ + 1, which is exactly the same as the number of independent components

Qi1···iℓ in the ℓ’th multipole moment tensor. Using the expressions (4.111) for the first few

spherical harmonics, we can see that the qℓm for ℓ = 0, 1 and 2 are related to Q, pi and Qij
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by

q00 =
1√
4π

Q ,

q11 = −
√

3

8π
(p1 − ip2) , q10 =

√
3

4π
p3 , (6.46)

q22 = 1
12

√
15

2π
(Q11 − 2iQ12 −Q22) , q21 = −1

3

√
15

8π
(Q13 − iQ23) , q20 = 1

2

√
5

4π
Q33 .

(The expressions for qℓm with negative m follow from (6.45).) Analogous relations hold for

all the qℓm.

6.4 Another construction of the spherical harmonics

The multipole expansion using Cartesian coordinates, which we discussed in section 6.2,

points the way to a very simple construction of the spherical harmonics that sidesteps the

need for the elaborate investigation of the separation of variables and the properties of

the associated Legendre functions that we examined in great depth previously. We saw in

section 6.2 that the tensor

∂i1 · · · ∂iℓ

1

r
(6.47)

satisfies Laplace’s equation, is symmetric under the exchange of any pair of indices, and it

is traceless with respect to the contraction of any pair of indices. Let us define

ψℓ ≡ Ci1···iℓ ∂i1 · · · ∂iℓ

1

r
, (6.48)

where Ci1···iℓ is a constant, traceless, symmetric tensor.

In view of the fact that ∂ir = xi/r = ni, and bearing in mind that

n1 = sin θ cosϕ , n2 = sin θ sinϕ , n3 = cos θ , (6.49)

it is evident that when we calculate the result of acting with all the derivatives in (6.48),

we shall find that ψℓ is of the form

ψ(ℓ) =
1

rℓ+1
Y (θ, ϕ) , (6.50)

where Y (θ, ϕ) is some function that depends on θ and ϕ but not on r.16

16One way to see this is to note that r has the dimensions of length, i.e. [r] = L, whilst ∂i has dimension

L−1. Therefore we have that [ψ(ℓ)] = L−ℓ−1. Since ψ(ℓ) can be written in terms of r, θ and ϕ, and since θ

and ϕ are dimensionless, it must be that ψ(ℓ) is of the form r−ℓ−1 multiplied by a (necessarily dimensionless)

function of θ and ϕ.
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Since we have seen that ∇2ψ(ℓ) = 0, and since we have

1

r2
∂

∂r

(
r2
∂φ

∂r

)
+

1

r2
∇2

(θ,ϕ) φ = 0 , (6.51)

it follows that Y (θ, ϕ), which is defined by (6.48) and (6.50), must satisfy

∇2
(θ,ϕ) Y (θ, ϕ) = −ℓ(ℓ+ 1)Y (θ, ϕ) . (6.52)

This is precisely the equation satisfied by the spherical harmonics Yℓm(θ, ϕ). So we have

shown that the construction (6.48), together with (6.50), gives spherical harmonics.

It remains to verify that we get the full set of spherical harmonics by this means. In

fact, we essentially already did this in section (6.2). We saw there that there are (2ℓ + 1)

independent components to an ℓ-index symmetric traceless tensor. Thus, the construction

in (6.48), together with (6.50), yields all (2ℓ + 1) spherical harmonics at each level ℓ. We

obtain them all by considering all possible symmetric traceless tensors Ci1···iℓ .

The relation between this construction and the usual one can be seen for the first few

values of ℓ by comparing (4.108) and (4.111).

6.5 Multipole expansion of the energy in an external field

Recall that the energy U of a localised charge distribution was discussed in section 1.12,

and shown to be given by (1.105)

Uint = 1
2

∫
ρ(~r)φ(~r)d3~r . (6.53)

We have added the subscript “int” here to emphasise that that result gave the “self energy”

or “internal energy” of the charge distribution itself, in its own self-generated electrostatic

field.

A different question, with a different answer, concerns the energy of a charge distribution

in an externally-applied electrostatic field. If the external field is expressed in terms of the

potential Φ(~r) (as opposed to the potential φ(~r) in (6.53), which is the potential due to the

charge distribution itself), then the “external” energy of the system is simply calculated

by integrating up the energy of assembling all the charges that form the distribution ρ(~r).

This gives

Uext =

∫
ρ(~r)Φ(~r)d3~r . (6.54)

We shall assume that the external electric field ~E = −~∇Φ is generated by distant sources

(i.e. distant charges), so that we can take ∇2Φ = 0 in the region where the localised charge

distribution ρ is non-zero. Let us choose the origin to lie in the vicinity of the localised
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charge distribution, and furthermore we assume that the external field is a slowly varying

function of ~r in this region. We may then Taylor expand Φ(~r), to give

Φ(~r) = Φ(0) + xi∂iΦ(0) + 1
2xixj∂i∂jΦ(0) + · · · . (6.55)

(Of course ∂iΦ(0) means ∂iΦ(~r) evaluated at ~r = 0, and so on.) Equation (6.55) can be

written in terms of the external electric field as

Φ(~r) = Φ(0) − xiEi(0) − 1
2xixj∂iEj(0) + · · · . (6.56)

Since we are assuming there are no sources for the external electric field within the

localised region of interest, it follows that ∂iEi = 0, and so (6.56) may be re-expressed as

Φ(~r) = Φ(0) − xiEi(0) − 1
6(3xixj − r2δij)∂iEj(0) + · · · . (6.57)

(The extra term we have added in is actually zero.)

Using the definitions (6.30) for the multipole moments, we see that when (6.57) is

substituted into the expression (6.54) for the “external” energy, it gives

Uext = QΦ(0) − piEi(0) − 1
6Qij ∂iEj(0) + · · · . (6.58)

The first term is the familiar result for the energy of a charge Q in an electrostatic field.

The second term is the energy −~p · ~E of a dipole in an electric field. The third term, which

depends on the gradient of the electric field, is the energy of a quadrupole. The higher

multipole moments will be associated with higher derivatives of the electric field.

As an application of the result in equation (6.58), we may calculate the interaction

energy between a pair of electric dipoles ~p1 and ~p2. Suppose they are located, respectively,

at points ~r = ~r1 and ~r = ~r2. From the expression (6.36) for the electric field due to a dipole,

we see that the electric field at ~r1 due to a dipole moment ~p2 located at ~r = ~r2 is given by

~E(~r1) =
3~n (~n · ~p2) − ~p2

|~r1 − ~r2|3
, (6.59)

where ~n is the unit vector in the direction from ~r2 to ~r1. From (6.58), we then see that the

energy of the dipole ~p1 in this electric field is given by

U12 =
~p1 · ~p2 − 3(~n · ~p1)(~n · ~p2)

|~r1 − ~r2|3
. (6.60)

As one would expect, this expression is completely symmetrical between ~p1 and ~p2.
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7 Dielectric Media

7.1 Microscopic description

So far, we have considered situations in which isolated charges or isolated boundary surfaces

are present in an otherwise free space (vacuum). In principle, to the extent that classical

electromagnetism can be applied at all on the scale of atomic or subatomic particles, one

could describe the electrostatic fields in any configuration of matter by means of the Maxwell

equations in the form we have been using so far. However, this description would become

exteremely unwieldy in cases where one wanted to calculate the electric field inside a lump

of matter.

Suppose, for example, we wanted to study the electric field inside an insulator such as

salt crystal. At some level one could say that there is a huge array of positive Na ions and

negative Cl ions arranged in a lattice. Close to an Na ion the electrostatic potential would

grow to huge postive values, whilst near Cl ions the potential would grow to huge negative

values. The electric field would, correspondingly, be fluctuating wildly in magnitude and

direction, as a function of position within the crystal.

These huge fluctuations would be occurring on the atomic length scale. However, as

we know very well, on a macroscopic length scale one sees no direct evidence of the wild

goings-on at the atomic scale, and it must therefore be possible to average out over some

appropriate intermediate length scale that lies somewhere between the atomic and the

macroscopic scales. Having done this, one should arrive at a microscopic understanding of

why the salt crystal has the properties that it does, and in the process one should obtain a

phenomenological description of its macroscopic properties.

As far as studying electrostatics in the presence of the salt crystal is concerned, one

should arrive at a macroscopic system of modified Maxwell equations that incorporate the

phenomenology whose underlying understanding stems from the appropriate averaging-out

procedure.

Let us denote the actual, atomic-scale, electric field and charge density by ~E and ρ′.

These will satisfy the standard free-space Maxwell equations

~∇ · ~E = 4πρ′ , ~∇× ~E = 0 . (7.1)

From our earlier results, we know that ~E can be calculated from ρ′ using

~E(~r) =

∫
~r − ~r ′

|~r − ~r ′|3 ρ
′(~r ′) d3~r ′ . (7.2)
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This, however, is the field mentioned above that fluctuates wildly, at the atomic length

scale, as a function of ~r.

We want to consider averaging over scales that are small by macroscopic standards, but

which are huge in relation to the atomic length scale. Thus we consider averaged quantities

〈~E(~r)〉 =
1

∆V

∫

∆V

~E(~r + ~ξ) d3~ξ ,

〈ρ′(~r)〉 =
1

∆V

∫

∆V
ρ′(~r + ~ξ) d3~ξ , (7.3)

where ∆V is some macroscopically small volume that nonetheless contains a huge number

of atoms.

Note that actually, the ions in the substance are in motion and so one might think

that it would be inappropriate to be trying to describe the situation purely by means of

electrostatics. However, this motion is random in nature, resulting from thermal excitations,

and so once the averaging is performed there will be no significant effects resulting from it.

(At least, assuming that the temperatures are not so high that the motion could actually

lead to significant electromagnetic radiation.)

Consider a substance composed of atoms or molecules, and first focus attention on the

electric field due to the distribution of charge ρ′i in the i’th molecule, assumed to be centred

at ~ri. The potential outside it will be given by

φi(~r) =

∫
ρ′i(~r

′)

|~r − ~ri − ~r ′| d
3~r ′ , (7.4)

where the ~r ′ integration is over positions within the molecule. Thus, the electric field will

be

~Ei(~r) = −~∇
∫

ρ′i(~r
′)

|~r − ~ri − ~r ′| d
3~r ′ , (7.5)

Applying Taylor’s theorem as we did earlier when considering the multipole expansion,

we find

~Ei(~r) = −~∇
[

qi
|~r − ~ri|

+ ~pi · ~∇i

( 1

|~r − ~ri|
)

+ · · ·
]
, (7.6)

where qi is the total charge of the i’th molecule and ~pi is its electric dipole moment:

qi =

∫
ρ′i(~r

′)d3~r ′ , ~pi =

∫
~r ′ ρ′i(~r

′)d3~r ′ . (7.7)

Note that in (7.6), the symbol ~∇i means the gradient with respect to ~ri, and that the

integrations in (7.7) are taken over the volume of the i’th molecule. The higher-order terms

in (7.6), involving the quadrupole moment, etc., can be neglected in what follows.
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The total microscopic electric field is obtained by summing over the molecules:

~E(~r) = −~∇
∑

i

[
qi

|~r − ~ri|
+ ~pi · ~∇i

( 1

|~r − ~ri|
)]

, (7.8)

It is helpful at this stage to replace the discrete sum over molecules by a continuous

integral, which is achieved in the standard way by representing their charges by a charge

density with delta functions, and similarly for their dipole moments:

ρmol(~r) =
∑

i

qi δ(~r − ~ri) , ~πmol(~r) =
∑

i

~pi δ
3(~r − ~ri) . (7.9)

Thus (7.8) becomes

~E(~r) = −~∇
∫
d3~r ′

[
ρmol(~r

′)

|~r − ~r ′| + ~πmol(~r
′) · ~∇′

( 1

|~r − ~r ′|
)]

, (7.10)

where the integration of ~r ′ now ranges over the entire volume of the substance.

We now wish to perform the averaging procedure (7.3). Consider first the contribution

from the charge term in (7.10); we shall then make an analogous analysis for the dipole

term. From (7.3), the charge contribution in (7.10) will give

〈~Echarge(~r)〉 = −~∇
[

1

∆V

∫

∆V
d3~ξ

∫
d3~r ′ ρmol(~r

′)

|~r + ~ξ − ~r ′|

]
. (7.11)

By shifting variables according to

~r ′ −→ ~r ′ + ~ξ , (7.12)

this becomes

〈~Echarge(~r)〉 = −~∇
[

1

∆V

∫

∆V
d3~ξ

∫
d3~r ′ ρmol(~r

′ + ~ξ)

|~r − ~r ′|

]
. (7.13)

If we denote by 〈qmol(~r
′)〉 the average charge per molecule within the volume ∆V at

~r ′, and if we denote by N(~r ′) the macroscopic number density of molecules at ~r ′, then we

shall have
1

∆V

∫

∆V
d3~ξ ρmol(~r

′ + ~ξ) = N(~r ′) 〈qmol(~r
′)〉 . (7.14)

The contribution (7.13) may then be written as

〈~Echarge(~r)〉 = −~∇
∫
N(~r ′) 〈qmol(~r

′)〉
|~r − ~r ′| d3~r ′ . (7.15)

In a similar manner, we introduce the average dipole moment per molecule 〈~pmol(~r
′)〉

at ~r ′, so that
1

∆V

∫

∆V
d3~ξ ~πmol(~r

′ + ~ξ) = N(~r ′) 〈~pmol(~r
′)〉 . (7.16)
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The total average of the electric field (7.10) is therefore given by

〈~E(~r)〉 = −~∇
∫
N(~r ′)

[〈qmol(~r
′)〉

|~r − ~r ′| + 〈~pmol(~r
′)〉 · ~∇′

( 1

|~r − ~r ′|
)]

d3~r ′ . (7.17)

Taking the divergence of (7.17), and recalling that ∇2|~r − ~r ′|−1 = −4πδ3(~r − ~r ′), gives

~∇ · 〈~E(~r)〉 = 4π

∫
N(~r ′)

[
〈qmol(~r

′)〉δ3(~r − ~r ′) + 〈~pmol(~r
′)〉 · ~∇′ δ3(~r − ~r ′)

]
d3~r ′ . (7.18)

Performing the integrations17 then gives

~∇ · 〈~E(~r)〉 = 4πN(~r)〈qmol(~r)〉 − 4π~∇ ·
(
N(~r)〈~pmol(~r)〉

)
. (7.19)

Equation (7.19) is the phenomenological replacement for the Maxwell equation ~∇ · ~E =

4πρ, in the case where we average out over molecules in a dielectric medium. Effectively,

the usual charge density on the right-hand side is replaced by the sum of two terms. The

first is the average charge per unit volume of the molecules themselves, and the second is

the average polarisation charge per unit volume. The equation can be rewritten by taking

this second term over to the left-hand side, giving

~∇ ·
(
〈~E(~r)〉 + 4πN(~r)〈~pmol(~r)〉

)
= 4πN(~r)〈qmol(~r)〉 . (7.20)

We may now define macroscopic quantities as follows:

~E ≡ 〈~E〉 , ~P ≡ N 〈~pmol〉 , ρ ≡ N〈qmol〉 , ~D ≡ ~E + 4π ~P . (7.21)

~E is called the electric field; ~P is the polarisation (i.e. the electric dipole moment per unit

volume); ~D is called the displacement; and ρ is the charge density.

If there are various different types of molecules or atoms comprising the medium, and

if, furthermore, there are additional “external” charges present, then ~P and ρ defined above

admit a natural generalisation, obtained by summing over all the contributions:

~P =
∑

i

Ni〈~pi〉 , ρ = ρext +
∑

i

Ni〈qi〉 . (7.22)

Commonly, the molecules themselves are electrically neutral, and so the charge density ρ is

just given by the external charge density ρext.

In terms of these definition, we see that the effective phenomenological Maxwell equa-

tions describing electrostatics in the presence of dielectric media will be

~∇ · ~D = 4πρ , ~∇× ~E = 0 . (7.23)

17Recall that
∫
f(y)δ′(y − x)dy = −

∫
f ′(y)δ(y − x)dy = −f ′(x), where a prime denotes the derivative

with respect to the argument, and so analogously
∫
~f(~r ′) · ~∇′δ3(~r−~r ′)d3~r ′ = −~∇ · ~f(~r) for any vector field

~f(~r).
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(The second equation follows by taking the curl of (7.17).)

It is evident from the second equation in (7.23) that ~E can still be written in terms of

a potential,

~E = −~∇φ . (7.24)

Conversely, by integrating ~E along a path, one still obtains the potential difference between

the initial and final points:

∫ B

A

~E · d~ℓ = −
∫
~∇φ · d~ℓ = φ(A) − φ(B) . (7.25)

The potential φ can be solved for, in terms of the macroscopic quantities, as

φ(~r) =

∫
d3~r ′

[
ρ(~r ′)

|~r − ~r ′| + ~P (~r ′) · ~∇′
( 1

|~r − ~r ′|
)]

. (7.26)

(See equation (7.17).)

7.2 Examples of dielectric media

The polarisation ~P of the molecules or atoms of which a medium is composed is related

to the local electric field in their neighbourhood. Typically, if no external electric field is

applied the polarisation will be zero. To a very good approximation, the polarisation will

increase linearly with increasing applied electric field. Thus, using the index notation, and

Einstein summation convention, for vector and tensor fields, we can say that

Pi = aij Ej , (7.27)

where the tensor aij is independent of ~E. It is known as the electric susceptibility tensor.

In general, in a medium that is not homogeneous, it can depend on position. If the medium

is homogeneous (i.e. it is the same throughout), then aij will be a constant tensor.

If the medium is in addition isotropic, then the polarisation will be parallel to the electric

field.18 In such cases, we shall have

aij = χe δij , (7.28)

where χe is called the electric susceptibility of the medium. Then we shall have

~P = χe
~E . (7.29)

18There are substances, such as calcite or quartz, which ar non-isotropic, and for these the electric sus-

ceptibility is necessarily a tensor.
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From the definition of ~D in (7.21), we then have

~D = ǫ ~E , (7.30)

where

ǫ ≡ 1 + 4π χe (7.31)

is called the dielectric constant of the medium.

If we assume, therefore, a homogeneous isotropic medium, we shall have (7.30) for some

constant ǫ, and so the effective Maxwell equation for ~D given in (7.23) implies

~∇ · ~E =
4π

ǫ
ρ . (7.32)

This means that, compared with the free-space solutions that we discussed in previous

chapters, the solutions in the presence of the medium will be exactly the same, except that

~E is scaled down by a factor of 1/ǫ. (The dielectric constant is usually greater than 1.)

For example, suppose we place a point charge q in an infinite medium of dielectric

constant ǫ. Choosing coordinates so that the charge is located at the origin, it follows that

the electrostatic potential will be given by

φ =
q

ǫ r
, (7.33)

and therefore that the electric field ~E = −~∇φ is given by

~E =
q ~r

ǫ r3
. (7.34)

The physical interpretation of what is happening in the medium is that when an external

electric field is applied, the charges in the atoms or molecules tend to be displaced slightly,

in such a way that the positive charges are pulled in the direction of the lower electrostatic

potential, whilst the negative charges are pulled in the direction of the larger potential.

This induces a dipole moment that points in the opposite direction to the electric field. In

other words, the the dipole moment that develops when external charges are introduced is

such as to tend to oppose the external charges.

7.3 Boundary-value problems with dielectric interfaces

In section 1.4, we derived the boundary conditions that must hold at an interface between

two media. In the case of electrostatics, with dielectric media, the relevant conditions are

(see eqn 1.32))

~n · (~D2 − ~D1) = 4πσ , ~n× ( ~E2 − ~E1) = 0 , (7.35)
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where the subscripts 1 and 2 indicate the fields on either side of the interface, in medium

1 and medium 2 respectively; ~n is the unit normal vector at the interface, pointing from

medium 1 to medium 2; and σ is the surface charge density at the interface. Note that σ

does not include polarisation charges.

The two conditions in (7.35) came from integrating the phenomenological Maxwell equa-

tion ~∇ · ~D = 4πρ in (7.23) over a Gaussian pillbox straddling the interface, and integrating

~∇ × ~E = 0 around a loop straddling the interface, respectively. The first condition says

that there is a discontinuity in the normal component of ~D, given by 4π times the surface

charge density. The second condition says that the tangential components of the electric

field ~E must be continuous across the interface.

We now consider several example electrostatic problems involving dielectric media.

7.3.1 Method of images for two semi-infinite dielectrics

Suppose that a medium with dielectric constant ǫ1 fills the entire half-space z > 0, and

that a medium with dielectric constant ǫ2 fills the other half of space, for z < 0. Thus we

have an interface in the plane z = 0. Suppose that a point charge q is placed at the point

~r = (0, 0, d), in dielectric 1. The problem is to solve for the electric field everywhere.

From (7.23), the equations to be solved are

ǫ1 ~∇ · ~E = 4πρ = 4πqδ(x)δ(y)δ(z − d) , z > 0 ,

ǫ2 ~∇ · ~E = 0 , z < 0 ,

~∇× ~E = 0 , all z . (7.36)

Since ~∇ × ~E = 0, we can write the electric field in terms of a scalar potential, ~E = −~∇φ,

as always. The boundary conditions (7.35) imply that

ǫ1Ez(x, y, 0
+) = ǫ2Ez(x, y, 0

−) ,

Ex(x, y, 0+) = Ex(x, y, 0−) ,

Ey(x, y, 0
+) = Ey(x, y, 0

−) , (7.37)

where 0+ indicates 0 approached from above (and so z = 0+ means that z is in medium 1),

and 0− indicates 0 approached from below (medium 2).

In section (2.1), we solved the problem of a point charge q above an infinite planar

conductor by introducing an image charge −q at the mirror-image reflection point below

the conductor. Here, we can apply a similar image-charge technique. However, because of
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the fact that we now have dielectric media rather than a conducting plane, the necessary

procedure is less intuitively clear. A crucial point, though, is that, as we saw earlier, there is

a uniqueness theorem in electrostatics which means that if, by hook or by crook, we obtain

a solution to the equations that works, then we are guaranteed that it is the unique and

correct solution to the problem. (By “works,” we mean that is satisfies the equations and

the given boundary conditions.)

The approach we shall take here in solving the problem will be to try some plausible

guesses, and discover that they work. This then means that the problem is solved.

To proceed, we must choose suitable “trial solutions” in each of the two regions z > 0

and z < 0.

Considering the region z > 0 first, it is natural, by analogy with the usual method of

images procedure, to guess that here we should introduce an image charge at the mirror-

reflection of the location of the actual charge q; i.e. introduce an image charge at ~r =

(0, 0,−d). However, clearly the value of the image charge will no longer in general be

simply −q.19 Thus for z > 0 we shall look for a solution of the form

φ =
q

ǫR1
+

α

R2
, (7.38)

where α is an unknown constant, and

R2
1 = x2 + y2 + (z − d)2 , R2

2 = x2 + y2 + (z + d)2 . (7.39)

It is convenient to reparameterise α by writing α = q′/ǫ1, so the trial solution for z > 0 will

be of the form

φ =
1

ǫ1

( q

R1
+

q′

R2

)
, z > 0 , (7.40)

where q′ is an as-yet unknown constant.

The expression (7.40) is intended to apply only to observation points in the upper half-

space. We also need an expression for the potential that is valid instead in the lower

half-space, z < 0. Here, we make the plausible guess that it takes the form

φ =
β

R1
, (7.41)

where β is an unknown constant. In other words, we are guessing that the potential in

the region z < 0 has the form that would result from a charge placed at the location of

19This is obvious from the fact that if ǫ1 = ǫ2 = 1, so that the original charge q is in an infinite free space,

no image charge at all is needed. On the other hand, if ǫ1 = 1 and ǫ2 = ∞, we are back to the situation of

the infinite planar conductor, for which we know the image charge should be −q.

104



the original physical charge q, but with some as-yet unknown coefficient. (Note that the

trial expression for φ in the region z < 0) should certainly not contain any charges that

are themselves located in the region z < 0; if there were any such charge, it would imply

(incorrectly) that the potential in z < 0 would diverge somewhere.) It is convenient to

reparameterise β as β = q′′/ǫ2, and so in the region z < 0 we choose the trial solution

φ =
q′′

ǫ2R1
, z < 0 , (7.42)

where q′′ is an as-yet unknown constant.

In case the reader is feeling doubtful at this point, recall again that the only thing that

matters in the end is that the proposed solution should (a) satisfy the equations (7.23),

and (b) satisfy the boundary conditions (7.37) and at infinity. Thus, we take (7.40) and

(7.42) as the guess20, and now check to see if we can choose q′ and q′′ so that the boundary

conditions (7.37) are satisfied.

To impose the boundary conditions, we need to calculate the derivatives of 1/R1 and

1/R2 with respect to x, y and z, evaluated at the interface z = 0. We see that

∂

∂x

( 1

R1

)∣∣∣
z=0

=
∂

∂x

( 1

R2

)∣∣∣
z=0

= − x

(x2 + y2 + d2)3/2
,

∂

∂y

( 1

R1

)∣∣∣
z=0

=
∂

∂y

( 1

R2

)∣∣∣
z=0

= − y

(x2 + y2 + d2)3/2
,

∂

∂z

( 1

R1

)∣∣∣
z=0

= − ∂

∂z

( 1

R2

)∣∣∣
z=0

=
d

(x2 + y2 + d2)3/2
. (7.43)

Thus we see that the boundary conditions (7.37) imply

q′′ = q − q′ ,

1

ǫ1
(q + q′) =

1

ǫ2
q′′ . (7.44)

The solution to these equations is

q′ =
ǫ1 − ǫ2
ǫ1 + ǫ2

q , q′′ =
2ǫ2

ǫ1 + ǫ2
q . (7.45)

Observe that (7.45) clearly makes sense in two limiting cases. Firstly, consider the case

when ǫ1 = ǫ2, meaning that all of space is filled with a single dielectric medium. Obviously,

there is no interface at all in this case, and so no image charge is needed. And indeed, (7.45)

gives q′ = 0. Furthermore, the formula for the potential that is valid when z < 0 should be

the same as the one valid for z > 0. And indeed, q′′ = q in this case.

20Or ansatz, to use a slightly more scientific-sounding word that means a guess.
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Secondly, consider the limit when ǫ2 = ∞. This means that effectively, the region z < 0

is just a semi-infinite slab of conductor. And indeed, we see that the expression for the

potential in the region z > 0 just reduces to the original image-charge result for an infinite

conductor, as discussed in section (2.1).

In the derivation above, we have been careful not to attach any direct physical signifi-

cance to the “fictitious” charges q′ and q′′ that were introduced in order to obtain the correct

solution for the electrostatic potential in the two half-spaces z > 0 and z < 0. Observe,

indeed, that it was never necessary to give them any direct interpretation; they are just

coefficients of terms we introduced in the candidate expressions for the potential in the two

half-spaces, and by “lucky chance,” it turned out that by tuning q′ and q′′ appropriately,

we were able to solve the problem.

By definition, the polarisation charge density is given by

ρpol = −~∇ · ~P . (7.46)

Inside each dielectric, we have (see (7.29))

~P = χe
~E , (7.47)

where χe = (ǫ1−1)/(4π) in medium 1, and χe = (ǫ2−1)/(4π) in medium 2. Since ~∇· ~E = 0

everywhere in each region (except for the location of the physical charge q), it follows that

the polarisation charge density is zero inside each medium.

However, there is a discontinuity in χe at the interface z = 0; it jumps by an amount

∆χe =
ǫ1 − ǫ2

4π
. (7.48)

This implies that there is a surface polarisation charge density σpol on the boundary surface,

given by integrating (7.46) over a pill-box straddling the interface at z = 0:

σpol = −(~P2 − ~P1) · ~n , (7.49)

where ~n is the unit normal vector pointing from medium 1 to medium 2. ~P1 and ~P2 are the

polarisations in the two media, at the surface z = 0.

With

~Pi =
ǫi − 1

4π
~E = −ǫi − 1

4π
∇φ , (7.50)

for i = 1 or 2 in the two media, we see that

σpol = − q (ǫ2 − ǫ1)

2πǫ1(ǫ2 + ǫ1)

d

(x2 + y2 + d2)3/2
=

q′

2πǫ1

d

(x2 + y2 + d2)3/2
. (7.51)

If this is integrated over the entire z = 0 plane, it gives a total polarisation charge

Qpol = q′ . (7.52)
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7.3.2 Dielectric sphere

Consider a sphere of radius a and dielectric constant ǫ, placed in an originally-uniform

electric field ~E. Thus we imagine that prior to introducing the sphere, there is a uniform

electric field ~E directed along the z direction. Let its magnitude be denoted by E0. Thus

in the absence of the dielectric sphere, we have

φ = −E0 z , ⇒ ~E = (0, 0, E0) . (7.53)

Note that in spherical polar coordinates we therefore have

φ = −E0 r cos θ . (7.54)

After we have introduced the spherical dielectric, we shall take (7.54) as the asymptotic

form of the potential at large r. (This implements the notion of the “originally uniform

electric field.”)

Now we introduce the dielectric sphere. For convenience, we choose our coordinates so

that it is centred on the origin of spherical polar coordinates. There will be no free charges

either inside or outside the sphere, and so in each region we must have ∇2φ = 0. In the

regions inside and outside the sphere we therefore must have

r < a : φ<(r, θ) =
∑

ℓ≥0

Aℓ r
ℓ Pℓ(cos θ) ,

r > a : φ>(r, θ) =
∑

ℓ≥0

(
Ãℓ r

ℓ +Bℓ r
−ℓ−1

)
Pℓ(cos θ) . (7.55)

Note that normally, we would have assumed in the large-r region that only the terms with

inverse powers of r should be included, since the potential is normally assumed to fall off

as r goes to infinity. However, here we are going to impose the boundary condition (7.54)

at large r. This means, since P1(cos θ) = cos θ, that we must take

Ã1 = −E0, Ãℓ = 0 for ℓ 6= 1 . (7.56)

We must now match the two expressions for the potential at the interface at r = a,

using the boundary conditions (7.35). These give

−1

a

∂φ<(r, θ)

∂θ

∣∣∣
r=a

= −1

a

∂φ>(r, θ)

∂θ

∣∣∣
r=a

,

−ǫ ∂φ<(r, θ)

∂r

∣∣∣
r=a

= −∂φ>(r, θ)

∂r

∣∣∣
r=a

. (7.57)

(The first equation comes from matching the tangential components of ~E across the bound-

ary, and the second from matching the normal component of ~D.)
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The first equation in (7.57) implies

A1 = −E0 +B1 a
−3 , Aℓ = Bℓ a

−2ℓ−1 for ℓ 6= 1 . (7.58)

The second equation in (7.57) implies

ǫA1 = −E0 − 2B1 a
−3 , ℓǫAℓ = −(ℓ+ 1)Bℓ a

−2ℓ−1 for ℓ 6= 1 . (7.59)

The ℓ 6= 1 equations in (7.58) and (7.59) imply that Aℓ = Bℓ = 0 for all ℓ 6= 1. The

ℓ = 1 equations imply

A1 = −
(

3

ǫ+ 2

)
E0 , B1 =

(
ǫ− 1

ǫ+ 2

)
a3E0 . (7.60)

Thus the potentials inside and outside the sphere are given by

φ<(r, θ) = −
(

3

ǫ+ 2

)
E0 r cos θ ,

φ>(r, θ) = −E0 r cos θ +

(
ǫ− 1

ǫ+ 2

)
E0

a3

r2
cos θ . (7.61)

The potential inside the sphere implies that the electric field is uniform for r < a, and

parallel to the external applied field. Its magnitude is given by

E< =
3

ǫ+ 2
E0 . (7.62)

The potential outside the sphere is a sum of two terms. The first just gives the original

uniform electric field E0 (see (7.54)). The second term in the expression for φ> in (7.61)

can be written as (
ǫ− 1

ǫ+ 2

)
a3E0

~z · ~r
r3

, (7.63)

where ~z = (0, 0, 1) is the unit vector along the z axis. This term can be recognised (see

(6.31) as the potential due to a dipole of moment

~p =

(
ǫ− 1

ǫ+ 2

)
a3 ~E0 , (7.64)

pointing along the direction of the applied electric field (i.e. along the z axis).

Inside the sphere, the polarisation ~P is given by

~P =

(
ǫ− 1

4π

)
~E =

3

4π

(
ǫ− 1

ǫ+ 2

)
~E0 . (7.65)

Since this is constant inside the sphere, we see that its volume integral is given by

∫

sphere

~P = 4
3 πa

3 ~P =

(
ǫ− 1

ǫ+ 2

)
a3 ~E0 . (7.66)
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Comparing with (7.64), we see that the dipole moment ~p is nothing but the volume integral

of the polarisation ~P inside the sphere.

From (7.49), it can be seen that the polarisation surface-charge density on the surface

of the sphere is given by ~P · ~r/r, and so

σpol =
3

4π

(
ǫ− 1

ǫ+ 2

)
E0 cos θ . (7.67)

This can be understood as generating an internal electric field that tends to oppose the

applied field, thus reducing the electric field inside the sphere to the value given by (7.62).

7.4 Electrostatic energy in dielectric media

In free space, we saw that the electrostatic self energy of a charge distribution ρ was given

by

U = 1
2

∫
ρ(~r)φ(~r)d3~r . (7.68)

Using ~∇ · ~E = 4πρ and ~E = −~∇φ, this could be rewritten as

U =
1

8π

∫
| ~E|2 d3~r . (7.69)

We may derive the analogous expression in a dielectric medium as follows. Suppose that

a charge distribution ρ gives rise to the potential φ, and that we then make an infinitesimal

change δρ to the charge distribution. The work done in making this change will be given

by

δU =

∫
δρ φd3~r . (7.70)

Using ~∇ · ~D = 4πρ, we have δρ = (~∇ · δ ~D)/(4π), and so

δU =
1

4π

∫
φ(~∇ · δ ~D) d3~r = − 1

4π

∫
(~∇φ) · δ ~D d3~r , (7.71)

where we have dropped the boundary term in the integration by parts, on account of the fact

that the charge distribution is taken to be localised in some finite region. Using ~E = −~∇φ,

we therefore have

δU =
1

4π

∫
~E · δ ~D d3~r . (7.72)

The energy of the charge distribution can thus be calculated by integrating up from ~D = 0

to its final value. In general, this integration could be non-trivial, since ~D and ~E could be

related in a complicated way.

Suppose, however, that the medium is linear, in the sense that ~D is proportional to ~E.

This is true, for example, if ~D = ǫ ~E. For a linear medium, we must have that

~E · δ ~D = (δ ~E) · ~D , (7.73)
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and hence we can write

~E · δ ~D = 1
2δ(

~E · ~D) . (7.74)

It is then straightforward to integrate up from ~D = 0 to its final value, and so we find from

(7.72) that

U =
1

8π

∫
~E · ~D d3~r . (7.75)

Interestingly, if we now use ~E = −~∇φ in (7.75), integrate by parts, and then use

~∇ · ~D = 4πρ, we obtain

U = 1
2

∫
ρ(~r)φ(~r)d3~r , (7.76)

which is the same as the free-space result. However, it should be emphasised that in deriving

(7.75) it was necessary to use the assumption of linearity of the relation between ~D and ~E,

and so although (7.76) holds in dielectric media with a linear response, it does not hold if

the relation between ~D and ~E is non-linear.

Suppose that a distribution of charge ρ0(x) inside a medium of dielectric constant ǫ0

gives rise to an electric field ~E0. We may allow ǫ0 to be position dependent in the medium.

We know from the discussion above that this configuration will have electrostatic energy U

given by

U0 =
1

8π

∫
~E0 · ~D0 d

3~r , (7.77)

with ~D0 = ǫ0 ~E0.

While keeping the charge distribution fixed, suppose now that a piece of dielectric ma-

terial of volume V and dielectric constant ǫ1 is introduced into the field. This has the effect

of making the dielectric constant ǫ equal to ǫ1 inside V , while it remains at its original value

ǫ0 outside V . We can think of ǫ = ǫ(~r), with ǫ(~r) changing smoothly but rapidly from ǫ1

inside V to ǫ0 outside V . The electric field is now ~E. The energy is given by

U1 =
1

8π

∫
~E · ~D d3~r , (7.78)

where ~D = ǫ(~r) ~E.

The change in energy, ∆U = U1 − U0, is given by

∆U =
1

8π

∫
( ~E · ~D − ~E0 · ~D0)d

3~r . (7.79)

Clearly this can be written as

∆U =
1

8π

∫
( ~E · ~D0 − ~E0 · ~D)d3~r +

1

8π

∫
( ~E + ~E0) · ( ~D − ~D0)d

3~r . (7.80)
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Since ~∇× ~E = 0 and ~∇× ~E0 = 0, it follows that we can write ~E+ ~E0 = ~∇ψ for some scalar

function ψ, and so the second integral gives

1

8π

∫
~∇ψ · (~D − ~D0)d

3~r = − 1

8π

∫
ψ~∇ · ( ~D − ~D0)d

3~r . (7.81)

Since we assumed that the charge distribution ρ0 was unaltered by the introduction of the

dielectric medium ǫ1, it follows that ~∇ · ~D = ~∇ · ~D0 = 4πρ0, and hence the integral (7.81)

gives zero. Thus we have

∆U =
1

8π

∫
( ~E · ~D0 − ~E0 · ~D)d3~r . (7.82)

Since ~D = ǫ0 ~E at points outside V , it follows that the integration in (7.82) need be

performed only within V , and so we get

∆U = − 1

8π

∫

V
(ǫ1 − ǫ0) ~E · ~E0d

3~r . (7.83)

If the original medium was in fact just free space, so that ǫ0 = 1, then it follows from

~D = ~E + 4π ~P , and ~D = ǫ ~E, that (7.83) becomes

∆U = −1
2

∫

V

~P · ~E0 d
3~r , (7.84)

where ~P is the polarisation of the dielectric material. From this we see that if a dielectric

object has polarisation ~P when placed in an electric field ~E0 that is generated by fixed

sources, then it will have an energy density

w = −1
2
~P · ~E0 . (7.85)

This expression is analogous to the contribution in (6.58) giving the energy of a dipole ~p

in an electric field. The reason for the factor of 1
2 in (7.85) is that, rather than being like

a fixed dipole moment, the polarisation ~P in (7.85) is itself caused by the presence of the

electric field ~E0.

The implication of the above calculation is that a dielectric object (with ǫ > 1) will tend

to be drawn into a region of increasing electric field ~E0. The force can be calculated by

making a virtual infinitesimal displacement δ~r of the object, leading to a change δU in the

energy. Since the charges are held fixed, there is no change in the external energy, and so

the change in the field energy can be interpreted as a change in the potential energy of the

object. There will therefore be a force acting on the object, given by

~F = −~∇U . (7.86)
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It is important to emphasise that this is when we hold the charges that generate the electric

field fixed.

An alternative situation, and in fact one that in practice is more likely to arise, is that the

electric field is generated by means of electrodes or plates that are held at a fixed potential,

rather than with fixed charge. This would arise if the electrodes are attached to a battery

or some other constant-voltage source. The situation is then like the classic problem in

elementary electrostatics, in which one calculates the atttractive force between the plates

of a parallel plate capacitor. The easier calculation is when one assumes that the charge on

the plates is fixed (achieved by connecting the plates to the battery and then disconnecting

the battery). The force is calculated by working out the energy change when a small virtual

displacement is made. A more complicated way of reaching the same conclusion is to keep

the battery connected during the virtual displacement, so that now the potential, instead

of the charge, is held fixed. Naively, one now arrives at the (incorrect) conclusion that the

potential energy is increased if the plates are moved together, implying a repulsive force

that is equal in magnitude to the previously-calculated attractive force. Of course, what

the constant-potential argument has neglected is that the battery has to do work in order

to keep the potential fixed during the virtual displacement. In fact it does twice as much

work as the field energy-change, and so when the changes in field energy plus work done by

the battery are added, the net energy change is the same in magnitdude and in sign as the

net energy change in the constant-charge virtual displacement. Thus the force between the

capacitor plates comes out to be the same in magnitude and sign, regardless of whether the

potential difference or the charge is held fixed.

Of course it is clear from common sense that this must be the case. A fixed capacitor

(assumed to be ideal, with no leakage) holds the same potential difference whether the bat-

tery is connecetd or not, and so the force cannot possibly suddenly switch in sign depending

on whether the battery is connected or not.

In the same way, one can do the analogous constant-potential calculation for a dielectric

object being drawn into an electric field. The final conclusion is that it is drawn in, with

the same force, whether the battery is connected or not.

8 Magnetostatics

We now turn to the magnetic analogue of electrostatics, namely magnetostatics. This

describes the situation when everything is independent of time, and only magnetic fields
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and electric currents are present.

8.1 Ampère’s law and the Biot-Savat law

From the general form of Maxwell’s equations (1.3), we see that the only non-trivial equa-

tions to be considered are

~∇ · ~B = 0 , ~∇× ~B =
4π

c
~J . (8.1)

(Recall that we are using Gaussian units, and that c is the speed of light.)

In view of ~∇ · ~B = 0, we can write ~B in terms of a vector potential ~A, as

~B = ~∇× ~A . (8.2)

The choice of vector potential is not unique, and we can perform a gauge transformation of

the form

~A −→ ~A+ ~∇λ , (8.3)

where λ is any function of ~r, since obviously when (8.3) is substituted into (8.2), the term

involving λ gives zero.

We may employ the gauge invariance of the system under the transformations (8.3) in

order to impose a convenient gauge condition called the Coulomb gauge

~∇ · ~A = 0 . (8.4)

This can be seen by supposing that we started with a gauge potential ~̃A that was not in

the Coulomb gauge, and transforming it according to (8.3) to give

~A = ~̃A+ ~∇λ , (8.5)

where ~A is in Coulomb gauge; i.e. ~∇ · ~A = 0. Taking the divergence of (8.5), we therefore

see that

∇2λ = −~∇ · ~̃A . (8.6)

This Poisson equation can always be solved; in fact, we are familiar with its solution from

solving the same equation in electrostatics (i.e. ∇2φ = −4πρ). Thus we can immediately

write down the solution for the required gauge transformation function λ:

λ(~r) =
1

4π

∫ ~∇′ · ~̃A(~r ′)

|~r − ~r ′| d3~r ′ . (8.7)
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We can now proceed under the assumption that ~A is in Coulomb gauge. Substituting

into the second equation in (8.1), we find

4π

c
~J = ~∇× ~B = ~∇× (~∇× ~A) = ~∇(~∇ · ~A) −∇2 ~A ,

= −∇2 ~A . (8.8)

This equation also can be solved immediately; it is just a vector-valued version of the

equation ∇2φ = −4πρ from electrostatics. Thus we have

~A(~r) =
1

c

∫ ~J (~r ′)

|~r − ~r ′| d
3~r ′ . (8.9)

We may easily calculate the magnetic field ~B from (8.9), by taking the curl. It is useful

to note that for any vector ~V and any scalar f , we have the identity

~∇× (f ~V ) = (~∇f) × ~V + f ~∇× ~V . (8.10)

Using this (and bearing in mind that ~∇ acts only on functions of ~r, and not on functions

of ~r ′), we see from (8.9) that

~B(~r) = −1

c

∫
~J (~r ′) × ~∇

( 1

|~r − ~r ′|
)
d3~r ′ , (8.11)

and hence

~B(~r) =
1

c

∫
~J (~r ′) × (~r − ~r ′)

|~r − ~r ′|3 d
3~r ′ , (8.12)

Suppose we consider a charge q moving along the path ~r = ~r0(t). It will give rise to the

current density

~J(~r) = qδ(~r − ~r0(t))
d~r0(t)

dt
. (8.13)

Substituting this into (8.12), we therefore have

~B(~r) =
q

c

∫
δ(~r′ − ~r0(t))

d~r0(t)

dt
× (~r − ~r ′)

|~r − ~r ′|3 d
3~r ′ ,

=
q

c

d~r0(t)

dt
× (~r − ~r0(t))

|~r − ~r0(t)|3
. (8.14)

Suppose at some instant t = t0 , the particle is at the origin, so ~r0(t0) = 0. Writing its

velocity as ~v = d~r0(t)/dt, we therefore have

~B =
q~v × ~r

cr3
. (8.15)

(This result assumes that the velocity ~v is small compared with the speed of light, so that

relativistic effects can be neglected.)
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One can think of the charge moving along an infinitesimal segment of its path as being

equivalent to a current I passing through the corresponding infinitesimal line element d~ℓ,

in the sense that q~v −→ Id~ℓ. Thus, if the current element is located at the origin, then it

gives a contribution

d ~B(~r) =
I (d~ℓ× ~r)

c r3
(8.16)

to the magnetic field. This result is known as the Biot-Savat law. Note that it only really

makes sense in the context of an integral around a current loop or circuit, since current

cannot simply materialise from nowhere and then disappear again. (It would violate charge

conservation.) Historically, of course, the Biot-Savat law came first, and (8.12) was deduced

from it.

Suppose that a current element I1 d~r1 is placed in a magnetic field ~B. Experiments by

Ampère in the 19th century established that it would experience a force d~F given by

d~F =
I1
c
d~ρ1 × ~B . (8.17)

If the magnetic field is itself due to an infinitesimal current element I2 d~r2, then from

(8.16), the (doubly infinitesimal) force d~F12 experienced by the first current element will be

given by

d~F12 =
I1 I2
c2

d~r1 × (d~r2 × ~r12)

r312
, (8.18)

where ~r12 is the vector from d~r2 to d~r1. In other words, ~r12 = ~r2 − ~r1.

The expression (8.18) can be integrated up around the two current loops, to give

~F12 =
I1 I2
c2

∮ ∮
d~r1 × (d~r2 × ~r12)

r312
, (8.19)

As it stands, this expression is not manifestly (anti)symmetric under the exchange of the

rôles of the two current loops. However, this can be made manifest as follows:

Using the standard identity for the vector triple product, we can write

d~r1 × (d~r2 × ~r12) = d~r2 (d~r1 · ~r12) − (d~r1 · d~r2)~r12 , (8.20)

and so (8.18) can be written as

d~F12 =
I1 I2
c2

d~r2
(d~r1 · ~r12

r312

)
− I1 I2

c2
(d~r1 · d~r2)

~r12
r312

. (8.21)

If we consider just the Loop 1 integration for now, the first term in (8.21) can be written

as the exact differential
I1 I2
c2

d~r2 d
( 1

r12

)
. (8.22)
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This follows from the fact that r212 = (~r2 − ~r1) · (~r2 − ~r1), and so (with ~r2 held fixed),

2r12 dr12 = −2d~r1 · (~r2 − ~r1) = −2d~r1 · ~r12 . (8.23)

Thus if we first integrate (8.21) around Loop 1, the first term gives zero (since
∮
df = 0

whenever any exact differential df is integrated around a closed loop). Thus we arrive at

the alternative expression for the total force,

~F12 = −I1 I2
c2

∮ ∮
(dr1 · dr2)~r12

r312
. (8.24)

This makes manifest the total symmetry between the rôles of the two loops.

The expression (8.17) for the force on a current element I d~ℓ in a magnetic field ~B can be

generalised immediately to the situation where there is a current density ~J in an external

~B field. The infinitesimal force on the current density in the volume element d3~r will be

given by

d~F =
1

c
~J (~r) × ~B(~r) d3~r , (8.25)

and so the total force on the current distribution will be given by

~F =
1

c

∫
~J (~r) ∧ ~B(~r) d3~r . (8.26)

It also follows from (8.25) that the infinitesimal torque on the element d3~r will be

d ~N = ~r × d~F =
1

c
~r ×

(
~J (~r) × ~B(~r)

)
d3~r , (8.27)

and so the total torque (measured relative to the origin) is

~N =
1

c

∫
~r ×

(
~J (~r) × ~B(~r)

)
d3~r . (8.28)

A further application of the expression (8.17) for the force on a current element in an

external magnetic field is to the situation where a particle of charge q is moving with velocity

~v in the field ~B. It then follows that it will experience a force given by

~F =
q

c
~v × ~B . (8.29)

This is known as the Lorentz force. (We are assuming here that the velocity ~v is small in

comparison to the speed of light.)

Finally, in this section, we note that the Maxwell equation ~∇ × ~B = (4π/c) ~J can be

integrated to give the result known as Ampère’s Law. Thus, integrating over an open surface

Σ, with closed 1-dimensional boundary C, we have, by using Stokes’ theorem

∫

Σ
(~∇× ~B) · d~S =

∮

C

~B · d~ℓ , (8.30)
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the result that ∮

C

~B · d~ℓ =
4π

c

∫

Σ

~J · d~S . (8.31)

The integral ~J · d~S on the right-hand side is equal to the total current I passing through

the area bounded by the loop C, and so we obtain Ampère’s law

∮

C

~B · d~ℓ =
4π

c
I . (8.32)

(Of course historically, Ampère’s law was discovered (empirically) first, and only later was

it re-expressed in the differential form ~∇× ~B = (4π/c) ~J .)

8.2 Magnetic field of a circular current loop

A relatively simple, and highly symmetrical, illustration of some of the methods of the

previous section is provided by considering a circular conducting loop, of radius a, around

which a current I is passing. We may take the loop to be centred on the origin, lying in

the (x, y) plane. Using spherical polar coordinates, it is described by a current density ~J

whose spherical-polar components Jr and Jθ vanish, whilst

Jϕ(r′, θ′, ϕ′) =
I

a
δ(cos θ′) δ(r′ − a) . (8.33)

It is actually helpful to re-express the current density in terms of its Cartesian coordinate

components, the reason being that only in this case can we straightforwardly apply the

equation (8.9) giving the vector potential ~A as an integral involving ~J . Thus we shall have

Jx = −Jϕ sinϕ′ , Jy = Jϕ cosϕ′ , Jz = 0 . (8.34)

Clearly, the system is azimuthally symmetric, and so we can, without loss of generality, take

the observation point to be at ϕ = 0 in order to simplify the calculation. In other words, we

take the observation point to lie in the (x, z) plane. This means that only the y component

of ~A will be non-vanishing. This is the direction tangent to the circles of increasing ϕ, and

so, in view of the azimuthal symmetry, it means that Ay in the (x, z) plane is equal to Aϕ.

Thus, from (8.9) and (8.33) we shall have

Aϕ(r, θ) = Ay

∣∣∣
ϕ=0

=
I

ac

∫
dr′dΩ′ r

′2 cosϕ′ δ(cos θ′) δ(r′ − a)

|~r − ~r ′| , (8.35)

where dΩ′ = sin θ′ dθ′ dϕ′. With

~r = (r sin θ, 0, r cos θ) , ~r ′ = (r′ sin θ′ cosϕ′, r′ sin θ′ sinϕ′, r′ cos θ′) , (8.36)
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we have |~r − ~r ′|2 = r2 + r′2 − 2rr′ (cos θ cos θ′ + sin θ sin θ′ cosϕ′), and so, after performing

the integrations over the delta functions, we have

Aϕ(r, θ) =
Ia

c

∫ 2π

0

cosϕ′ dϕ′

(a2 + r2 − 2ar sin θ cosϕ′)1/2
. (8.37)

The integral in (8.37) can actually be performed explicitly, although the result involves

the complete elliptic integrals K(k) and E(k):

Aϕ(r, θ) =
4Ia√

a2 + r2 + 2ar sin θ

(
(2 − k2)K(k2) − 2E(k2)

k2

)
, (8.38)

where

k2 ≡ 4ar sin θ

a2 + r2 + 2ar sin θ
, (8.39)

and the complete elliptic integrals are defined by

K(z) =

∫ π/2

0

dθ√
1 − z sin2 θ

, E(z) =

∫ π/2

0

√
1 − z sin2 θ dθ . (8.40)

The spherical-polar components of the ~B field are then given by

Br =
1

r sin θ

∂(sin θ Aϕ)

∂θ
, Bθ = −1

r

∂(rAϕ)

∂r
, Bϕ = 0 . (8.41)

If z is small, the elliptic integrals (8.40) admit power-series expansions

K(z) =
π

2

(
1 +

1

4
z +

9

64
z2 +

25

256
z3 +

1225

16384
z4 + · · ·

)
,

E(z) =
π

2

(
1 − 1

4
z − 3

64
z2 − 5

256
z3 − 175

16384
z4 + · · ·

)
, (8.42)

implying that

(2 − k2)K(k2) − 2E(k2)

k2
=
πk2

16

(
1 +

3

4
k2 +

75

128
k4 + · · ·

)
. (8.43)

We see from (8.39) that k will be small if

r << a , or r >> a , or |θ| << 1 . (8.44)

Keeping just the leading-order term in the expansion (8.43), we see that Aϕ in (8.38) is

given approximately by

Aϕ(r, θ) ≈ Iπa2

c

r sin θ

(a2 + r2 + 2ar sin θ)3/2
, (8.45)

whenever any of the conditions (8.44) holds.
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Substituting (8.45) into (8.41), we obtain the approximate expressions

Br ≈ Iπa2

c

(2a2 + 2r2 + ar sin θ)

(a2 + r2 + 2ar sin θ)5/2
cos θ ,

Bθ ≈ −Iπa
2

c

(2a2 − r2 + ar sin θ)

(a2 + r2 + 2ar sin θ)5/2
sin θ , (8.46)

whenever (8.44) holds.

The leading-order behaviour of the fields at large r can be read off from (8.45) and

(8.46), giving

Aϕ ≈ Iπa2

c

sin θ

r2
, (8.47)

and

Br ≈ Iπa2

c

2 cos θ

r3
, Bθ ≈ Iπa2

c

sin θ

r3
. (8.48)

It is interesting to compare the ~B field of a current loop with the ~E field due to an

electric dipole. Recall from (6.31) that the potential due to an electric dipole ~p at the origin

is given by

φ =
~p · ~r
r3

, (8.49)

and so if it is parallel to the z axis we shall have

φ(r, θ) =
p cos θ

r2
. (8.50)

This implies that the spherical-polar components of ~E will be given by

Er = −∂φ
∂r

=
2p cos θ

r3
,

Eθ = −1

r

∂φ

∂θ
=
p sin θ

r3
,

Eϕ = − 1

r sin θ

∂φ

∂ϕ
= 0 . (8.51)

Comparison with (8.48) shows that the magnetic field of a current loop, seen from afar, is

dipole in character. We also see that it is natural to define the magnetic dipole moment m

for the current loop by

m =
Iπa2

c
. (8.52)

Although we were able to obtain the exact expression (8.38) for the vector potential

due to a circular current loop, we ended up looking at a power-series expansion in order

to understand the nature of the solution. We could also have performed a series expansion

prior to evaluating the integral (8.37), thereby avoiding the need to introduce the elliptic
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integrals. One way of doing this is to go back to the expression (8.35), and then to substitute

in the expansion (4.136), which we reproduce here:

1

|~r − ~r ′| =
∑

ℓ≥0

ℓ∑

m=−ℓ

4π

2ℓ+ 1

rℓ
<

rℓ+1
>

Ȳℓm(r′, θ′, ϕ′)Yℓm(θ, ϕ) . (8.53)

Writing cosϕ′ = ℜ(eiϕ
′
), where ℜ denotes the real part, and recalling that Yℓm(θ′, ϕ′) has

ϕ′ dependence of the form eimϕ′
(see (4.101)), we can perform the ϕ′ integration, as well as

the r′ and θ′ integrations, to give

Aϕ =
8Iπ2a2

c
ℜ


∑

ℓ≥1

Yℓ,1(
1
2π, 0)

2ℓ+ 1

rℓ
<

rℓ+1
>

Yℓ,1(θ, 0)


 , (8.54)

where r< and r> denotes the lesser, and greater, of a and r.

Note that the Yℓ,1(
1
2π, 0) are just ℓ-dependent constants that can be read off the defini-

tion (4.101):

Yℓ,1(
1
2π, 0) =

√
2ℓ+ 1

4πℓ(ℓ+ 1)
P 1

ℓ (0) . (8.55)

Thus Yℓ,1(
1
2π, 0) = 0 when ℓ is even, and when ℓ = 2n+ 1,

Y2n+1,1(
1
2π, 0) =

√
2ℓ+ 1

4πℓ(ℓ+ 1)

[
(−1)n+1Γ(n+ 3

2)

Γ(n+ 1)Γ(3
2 )

]
. (8.56)

The gauge potential for the circular current loop can therefore be written as

Aϕ = −πIa
c

∑

n≥0

(−1)n(2n − 1)!!

2n (n+ 1)!

r2n+1
<

r2n+2
>

P 1
2n+1(cos θ) , (8.57)

where

(2n − 1)!! ≡ (2n − 1)(2n − 3)(2n − 5) × · · · × 5 × 3 × 1 , (8.58)

and by definition (2n − 1)!! is equal to 1 when n = 0.

The fact that the associated Legendre functions Pm
ℓ (cos θ) with m = 1 enter here in the

expansion for Aϕ is a reflection of the vectorlike nature of the potential ~A.

In order to calculate the component Br of the ~B field, we see from (8.41) that it is

necessary to evaluate the derivative of the associated Legendre functions P 1
ℓ (x) with respect

to x. Recalling from (4.88) that

Pm
ℓ (x) ≡ (−1)m (1 − x2)m/2 dm

dxm
Pℓ(x) , (8.59)

we see that

d

dx

(
(1 − x2)1/2P 1

ℓ (x)
)

= − d

dx

(
(1 − x2)

dPℓ(x)

dx

)
= ℓ(ℓ+ 1)Pℓ(x) , (8.60)
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since we know that the Legendre polynomials Pℓ(x) satisfy the standard Legendre equation

((1 − x2)P ′
ℓ)

′ + ℓ(ℓ+ 1)Pℓ = 0.

The upshot from this is that the radial component of the ~B field for the circular current

loop is given by

Br =
2πIa

cr

∑

n≥0

(−1)n(2n+ 1)!!

2n n!

r2n+1
<

r2n+2
>

P2n+1(cos θ) . (8.61)

The θ component of ~B is given by

Bθ =
2πI

ca

∑

n≥0

(−1)n(2n − 1)!!

2n n!

(
r

a

)2n

P 1
2n+1(cos θ) , when r < a , (8.62)

or by

Bθ = −πIa
2

cr3

∑

n≥0

(−1)n(2n + 1)!!

2n (n+ 1)!

(
a

r

)2n

P 1
2n+1(cos θ) , when r > a , (8.63)

and the ϕ component is zero.

8.3 Localised Current Distribution

Suppose now we consider a localised region of space within which currents are flowing,

described by the current density ~J(~r). Outside this region, it is assumed that ~J(~r) = 0. We

can proceed in a manner that is precisely analogous to earlier discussion we gave of localised

charge distributions, using the expression

~A(~r) =
1

c

∫ ~J (~r ′)

|~r − ~r ′| d
3~r ′ (8.64)

for the magnetic vector potential, and then Taylor expanding |~r − ~r ′|−1 in inverse powers

of r, using (6.20). Thus, keeping just the first couple of orders in the expansion, we shall

have

1

|~r − ~r ′| =
1

r
− x′i ∂i

1

r
+ · · · ,

=
1

r
+
~r ′ · ~r
r3

+ · · · . (8.65)

It follows from (8.64) that we shall have

Ai(~r) =
1

cr

∫
~Ji(~r

′)d3~r ′ +
xj

cr3

∫
x′j Ji(~r

′) d3~r ′ + · · · . (8.66)

The first term in (8.66) vanishes, as can be seen from the following argument. We know

that the current density is conserved, ~∇· ~J = 0. Now consider the quantity ∂i(xj Ji), which
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is therefore given by

∂i(xj Ji) = (∂ixj)Ji + xj ∂iJi ,

= δij Ji ,

= Jj . (8.67)

If we integrate ∂i(xj Ji) over all space it will give zero by the divergence theorem, since ~J

vanishes outside some bounded domain:
∫
∂i(xj Ji) d

3~r =

∫

(sphere at ∞)
(xj Ji dΣi = 0 , (8.68)

and hence we conclude that
∫
Jj d

3~r = 0.

To discuss the second term in (8.66), it is useful first to review the way in which one

describes the vector product using index notation. This is done by introducing the totally

antisymmetric tensor ǫijk, which is defined by

ǫ123 = 1 . (8.69)

The total antisymmetry under the exchange of any pair of indices implies that we must

therefore have

ǫ123 = ǫ231 = ǫ312 = +1 , ǫ132 = ǫ321 = ǫ213 = −1 , (8.70)

with all other components vanishing. Using this, we can clearly write the vector product

~V = ~A× ~B as

Vi = ǫijkAj Bk . (8.71)

It is straightforward to show, by enumerating all the possible assignments for the indices,21

that

ǫijm ǫkℓm = δik δjℓ − δiℓ δjk . (8.72)

Using this, many vector identities involving a pair of vector products can easily be proven.

For example, if ~V ≡ ~A× ( ~B × ~C), then we shall have

Vi = ǫijmAj ( ~B × ~C)m ,

= ǫijmAj ǫmkℓBk Cℓ ,

= ǫijm ǫkℓmAj Bk Cℓ ,

= (δik δjℓ − δiℓ δjk)Aj Bk Cℓ ,

= BiAj Cj −CiAj Bj , (8.73)

21The labour involved in this proof is hugely reduced, becoming almost a triviality, if one takes note of

the symmetries of the problem!
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or, in 3-vector notation, the well-known identity22

~V ≡ ~A× ( ~B × ~C) = ~B ( ~A · ~C) − ~C ( ~A · ~B) . (8.74)

Returning to the problem in hand we note, since ∂iJi = 0, that

∂i(xj xk Ji) = xk Jj + xj Jk . (8.75)

Using the divergence theorem, the integral of the left-hand side over all space is zero, and

so we conclude that ∫
xj Jk d

3~r = −
∫
xk Jj d

3~r . (8.76)

This means that the integral in the second term in (8.66) can be written as

∫
x′j Ji(~r

′) d3~r ′ = −1
2

∫
(x′i Jj − x′j Ji) d

3~r ′ . (8.77)

Now, as can easily be seen using (8.72),

1
2(x′i Jj − x′j Ji) = 1

2ǫijk (~r ′ × ~J)k , (8.78)

and so we conclude that the second term in (8.66) can be written as

~A(~r) =
~m× ~r

r3
, (8.79)

where we have defined the magnetic moment ~m

~m =
1

2c

∫
~r ′ × ~J(~r ′) d3~r ′ (8.80)

of the current distribution ~J . Prior to performing the volume integration, we may define

the magnetisation ~M by

~M =
1

2c
~r × ~J . (8.81)

We have shown that (8.79) is the leading-order term in the multipole expansion describ-

ing the magnetic vector potential ~A of a localised current distribution. Let us now calculate

the magnetic field ~B = ~∇× ~A. In index notation we have

Bi = ǫijk ∂jAk = ǫijk ǫkℓm ∂j

(mℓ xm

r3

)
,

= (δiℓ δjm − δim δjℓ) ∂j

(mℓ xm

r3

)
,

= mi ∂j

(xj

r3

)
−mj ∂j

(xi

r3

)
. (8.82)

22Remembering just the simple expression (8.72) enables one to prove easily, “on demand,” almost all the

identities of three-dimensional vector calculus.
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Now, away from the origin (i.e. for r > 0) we have

∂j

(xj

r3

)
=
∂jxj

r3
− 3xj

r4
xj

r
=

3

r3
− 3

r3
= 0 , (8.83)

and

∂j

(xi

r3

)
=
δij
r3

− 3xi xj

r5
, (8.84)

and hence we find

~B =
3(~m · ~n)~n− ~m

r3
, for r > 0 , (8.85)

where as usual we define the unit vector ~n = ~r/r. Thus ~B has exactly the same form as the

electric field of an electric dipole ~p (see (6.36)).

It is of interest also to consider the expression for ~B including the origin r = 0.23

Recalling that ∇2(1/r) = −4π δ3(~r), we see that

∂j

(xj

r3

)
= 4π δ3(~r) . (8.86)

What about the other term in the last line of (8.82)? It is clear that ∂j(xi/r
3) must also

have a delta-function term at the origin, since we already know that taking its trace gives

∂j(xj/r
3) = 4π δ3(~r). Obviously no direction in 3-dimensional space can be preferred over

any other, and so the delta-function term in ∂j(xi/r
3) must be isotropic, i.e. proportional to

δij . To be consistent with the trace formula, it follows that the full expression for ∂j(xi/r
3)

must be the r > 0 result given in (8.84) plus a delta function term, giving in total

∂j

(xi

r3

)
=
δij
r3

− 3xi xj

r5
+

4π

3
δij δ

3(~r) , (8.87)

Putting all the above results together, it follows from (8.82) that

~B =
3(~m · ~n)~n− ~m

r3
+

8π

3
~mδ(~r) . (8.88)

If the current distribution takes the form of a planar closed loop of current (i.e. a current

flowing round a planar wire loop), then the general expression (8.80) for the magnetic

moment reduces to

~m =
I

2c

∮
~r × d~r , (8.89)

where I is the current. Note that the magnetic moment is perpendicular to the plane of

the loop. Since 1
2~r × d~r is the area element of the triangular wedge whose vertices lie at

the origin, and the points ~r and ~r+ d~r on the loop, it follows that 1
2

∮
~r× d~r gives the area

23Note that it only really makes sense to do this in the case of a “point dipole” of zero size.
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of the loop, and so the magnitude m of the magnetic moment for a planar current loop of

area A is just given by

m =
IA

c
. (8.90)

This result generalises, to a planar loop of arbitray shape, the result obtained in (8.52) in

the case of a circular current loop.

Another special case we may consider is when the current distribution is generated by N

point charges qa, for 1 ≤ a ≤ N , located at points ~ra and moving with velocities ~va = d~ra/dt.

The current density is therefore given by

~J(~r) =
N∑

a=1

qa ~va δ
3(~r − ~ra) . (8.91)

Inserting this into (8.80), the integration can be performed, giving

~m =
1

2c

N∑

a=1

qa (~ra × ~va) . (8.92)

Now, if the a’th particle has mas Ma, then its orbital angular momentum is given by

~La = Ma (~ra × ~va) , (8.93)

and so we have

~m =
N∑

a=1

qa
2cMa

~La . (8.94)

If all the particles have the same charge to mass ratio,

qa
Ma

=
q

M
, for each a , (8.95)

then we have the simple relation

~m =
q

2Mc
~L , (8.96)

where

~L =
N∑

a=1

~La (8.97)

is the total orbital angular momentum of the system of particles.

8.4 Force on a current distribution in an external ~B field

Suppose a localised current distribution is located in a region where there is an externally-

generated magnetic field ~B(~r) (which may be position dependent). If we assume that the

magnetic field varies slowly with position, then we can make a Taylor expansion of ~B(~r)
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around some point (which can conveniently be taken to be the origin), and keep just the

leading-order terms. Thus we shall have

Bi(~r) = Bi(0) + ~r · ~∇Bi(0) + · · · , (8.98)

where, of course, in the second term the argument is set to zero after taking the gradient.

Substituting into the expression

~F =
1

c

∫
~J (~r) ∧ ~B(~r) d3~r (8.99)

for the force on a current distribution, we therefore find

~F = −1

c
~B(0) ×

∫
~J (~r ′) d3~r ′ +

1

c

∫
~J (~r ′) × [(~r ′ · ~∇) ~B(0)] d3~r ′ + · · · . (8.100)

As we already saw earlier, the integral in the first term vanishes, and so the leading-

order contribution to the force comes from the second term. In index notation, the second

term is

Fi =
1

c
ǫijk (∂ℓBk)(0)

∫
xℓ Jj(~r) d

3~r . (8.101)

Using (8.77), (8.78) and (8.80), we therefore have

Fi = −ǫijk ǫjℓmmm ∂ℓBk(0) ,

= −mi ∂kBk(0) +mk ∂iBk(0) ,

= mk ∂iBk(0) , (8.102)

where, in getting to the final line, we have used ~∇ · ~B = 0. Thus, since ~m is a constant, we

can write

~F = ~∇(~m · ~B) . (8.103)

The expression (8.103) for the force on a magnetic dipole ~m in a magnetic field ~B shows

that we can define a potential energy

U = −~m · ~B , (8.104)

in terms of which the force is given by ~F = −~∇U .

Note that since ~B is assumed to be generated by distant current sources, and so ~∇× ~B =

0 in the region under consideration, we have ǫkℓm∂ℓBm = 0 and hence ǫijk ǫkℓm∂ℓBm = 0.

Using (8.72), this implies that

∂iBj − ∂jBi = 0 . (8.105)
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Using also the constancy of ~m, we can then manipulate (8.103) to give

Fi = ∂i(mjBj) = mj ∂iBj = mj ∂jBi , (8.106)

and so we can give the alternative expression

~F = (~m · ~∇) ~B (8.107)

for the force on the magnetic moment.

To calculate the torque on the current distribution, we substitute (8.98) into the general

expression for the torque that we derived previously,

~N =
1

c

∫
~r ×

(
~J (~r) × ~B(~r)

)
d3~r . (8.108)

Unlike in the calculation of the force, here the first term in (8.98) gives a non-zero contri-

bution, and so to leading order we have

~N =
1

c

∫
~r ×

(
~J (~r) × ~B(0)

)
d3~r . (8.109)

Expanding out the vector triple product, and writing in index notation, we have

Ni =
1

c
Bj(0)

∫
xj Ji(~r) d

3~r − 1

c
Bi(0)

∫
xj Jj(~r) d

3~r . (8.110)

The second term in (8.110) integrates to zero. This can be seen by integrating the

identity

~∇ · (r2 ~J ) = 2~r · ~J + r2 ~∇ · ~J = 2~r · ~J (8.111)

over all space, and using the divergence theorem to turn the left-hand side into a surface

integral at infinity. Using (8.77), (8.78) and (8.80), the first term in (8.110) can be seen to

give

~N = ~m× ~B(0) . (8.112)

8.5 Magnetically permeable media

In section 7, we discussed the phenomenological description of dielectric media, in which

one introduces a macroscopic ~D field in addition to the fundamental electric field ~E. The

essential idea is that for many purposes, one can give a macroscopic description of the effect

of a piece of dielectric medium, such as a salt crystal or a block of glass, in which the

microscopic contributions of each atom or molecule within the medium are averaged over,

so that on the large scale a relatively simple description of the electrical properties of the

material as a whole can be given.
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In a very similar vein, in magnetostatics one may give a macroscopic description of mag-

netically permeable materials. As in the case of electrostatics, the idea here is that whilst

one could, in principle, simply apply the fundamental Maxwell equations of magnetostatics,

~∇ · ~B = 0 , ~∇× ~B =
4π

c
~J , (8.113)

at the microscopic level, to the entire system of atoms or molecules, it instead suffices, for

many purposes, to work with a macroscopically averaged description. In this description,

one introduces a phenomenological field ~H in addition to the fundamental field ~B of mag-

netostatics. Rather confusingly, ~H is called the magnetic field, while the fundamental field

~B is called the magnetic induction.

Since the derivation of the phenomenological equations for magnetostatics is closely

parallel to the derivation for electrostatics in section 7, we shall just present the final

conclusions here; a derivation can be found in any of the standard textbooks.

The effect of the ensemble of atoms or molecules in the medium is to give rise to a

magnetic moment density ~M(~r), which comes from an averaging over all the atoms or

molecules. The magnetic induction ~B still satisfies the original Maxwell equation ~∇· ~B = 0,

and so we may still write

~B = ~∇× ~A , (8.114)

but the equation (8.64) giving the vector potential for a localied current distribution is now

modified to

~A(~r) =
1

c

∫ ~J(~r ′) + c ~∇′ × ~M(~r ′)

|~r − ~r ′| d3~r ′ . (8.115)

The magnetisation can thus be thought of as giving rise to an effective current density

~JM = c ~∇× ~M . (8.116)

The second of the Maxwell equations in (8.113) now becomes

~∇× ~B =
4π

c
~J + 4π ~∇× ~M . (8.117)

We are therefore led to define a new field ~H by

~H = ~B − 4π ~M . (8.118)

The free-space Maxwell equations (8.113) therefore become

~∇ · ~B = 0 , ~∇× ~H =
4π

c
~J (8.119)
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in the presence of a magnetically-permeable medium. Recall that in electrostatics, we had

the Maxwell equations

~∇ · ~D = 4π ρ , ~∇× ~E = 0 , (8.120)

in the presence of a dielectric medium. Note that in each case it is the field equation with

the source term on the right-hand side that is modified in the presence of the medium, whilst

the equation that has no source term is unmodified. In other words, the phenomenological

description of dielectric or permeable media modifies the field equations but leaves the

Bianchi identities unchanged.

In order to apply the phenomenological description of magnetostatics, it is necessary to

know the so-called constitutive relation between ~B and ~H. This can be quite a complicated

business in general, especially in the case of ferromagnetic materials where there is not even

a single-valued functional relation between ~B and ~H.

The simplest materials to consider are paramagnetic and diamagnetic media. For these,

there is a linear relation between ~B and ~H, with

~B = µ ~H , (8.121)

where µ is a constant called the magnetic permeability. For paramagnetic materials, µ is

slightly greater than 1, whilst for diamagnetic materials, µ is slightly less than 1. (The

deviations from 1 are only a few parts in 105.)

For many ferromagnetic materials, a relation of the form (8.121) is approximately valid,

provided the fields are sufficiently weak. In these materials, µ is typically in the range

between 10 and 104.

In the remainder of our consideration of magnetically-permeable media, we shall assume

that the simple linear constitutive relation (8.121) holds.

8.6 Boundary conditions at medium interfaces

In section (1.4) we gave a discussion of the boundary condition that must be satisfied at an

interface between two magnetically-permeable media. These were obtained by considering a

“pill-box” volume integration of the equation ~∇· ~B = 0, and integrations of ~∇× ~H = (4π/c) ~J

over slender rectangular loops straddling the boundary. These lead, respectively, to the

conditions

~n · ( ~B2 − ~B1) = 0 ,

~n× ( ~H2 − ~H1) =
4π

c
~K , (8.122)
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where ~n is the unit vector normal to the interface, pointing from medium 1 into medium 2,

and ~K is the surface current density.

The first equation in (8.122) says that the normal component of ~B must be continuous

across the boundary. In many common situations there will be no surface currents at the

interface, and then the second equation in (8.122) just says that the tangential components

of ~H must be continuous across the boundary.

8.7 Techniques for solving boundary-value problems in magnetostatics

There are various techniques that can be applied in order to solve for the magnetic fields

in a boundary-value problem in magnetostatics. Depending upon the the circumstances,

one or another may be more convenient. For concreteness and simplicity, we shall typically

focus on situations where the simple relation ~B = µ ~H holds, with the assumption that

in any given region µ is a constant. (We shall allow µ to take different constant values in

different regions, as would be the case in a typical boundary-value problem with an interface

between media.)

8.7.1 Using the vector potential

The most direct way to formulate the problem is just to take the Maxell equations of

magnetostatics,

~∇ · ~B = 0 , ~∇× ~H =
4π

c
~J , (8.123)

solve the first equation by writing ~B in terms of the vector potential,

~B = ~∇× ~A , (8.124)

and then plug this into the second of the Maxwell equations. Of course in general, this will

give a very complicated result if there is a complicated constitutive relation between ~B and

~H, but if we make the assumption that ~B = µ ~H, where µ is piecewise constant, then in the

various regions we shall have ~∇ × (~∇ × ~A) = (4πµ/c) ~J . Expanding out the vector triple

product, we then obtain, by working in the Coulomb gauge ~∇ · ~A = 0, the equation

∇2 ~A = −4πµ

c
~J . (8.125)

This is very similar to the equation in free space, except that now we have the permeability

µ appearing on the right-hand side.
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8.7.2 Magnetic scalar potential satisfying Laplace’s equation

If there are no free currents in the problem, as is often the case, the Maxwell field equation

becomes

~∇× ~H = 0 , (8.126)

and this can be solved by writing ~H as the gradient of a scalar, just as one does for the

electric field in electrostatics. Thus we may write

~H = −~∇ΦM , (8.127)

where ΦM is the magnetic vector potential. If we assume the simple constitutive relation

~B = µ ~H between ~B and ~H, where µ is piecewise constant, then in each region the remaining

Maxwell equation ~∇ · ~B = 0 becomes

∇2ΦM = 0 . (8.128)

Solving boundary-value magnetostatics problems where ~J = 0 is thus closely analogous to

solving boundary-value problems in electrostatics; one just has to solve Laplace’s equation

in the various regions, and then impose the boundary conditions at interfaces as discussed

in section 8.6.

As an illustration of the method, consider a spherical shell of material with magnetic

permeability µ, with inner radius a and outer radius b. The regions inside and outside the

shell are assumed to be empty space. Outside the shell, we take the magnetic field to be

asymptotically uniform, ~B −→ ~B0, with ~B0 directed along the z axis. The problem is to

solve for the magnetic fields everywhere. A particular point of interest will be to calculate

the magnetic field inside the shell, in order to study the phenomenon of magnetic shielding.

In the regions 0 ≤ r < a and r > b we have ~B = ~H, whilst in the region a < r < b

we have ~B = µ ~H. There are no external currents, and so the conditions discussed above

apply. There is azimuthal symmetry around the z axis, and so in spherical polar coordinates

the magnetic scalar potential will depend only on r and θ. Since it must satisfy Laplace’s

equation in the three regions, it must take the form

0 < r < a : ΦM (r, θ) =
∑

ℓ≥0

αℓ r
ℓ Pℓ(cos θ) ,

a < r < b : ΦM (r, θ) =
∑

ℓ≥0

(
βℓ r

ℓ +
γℓ

rℓ+1

)
Pℓ(cos θ) ,

r > b : ΦM (r, θ) = −B0 r cos θ +
∑

ℓ≥0

δℓ
rℓ+1

Pℓ(cos θ) . (8.129)
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The boundary conditions at r = a and r = b require that the radial components of ~B

be continuous, and the tangential components of ~H be continuous (as in (8.122), with the

surface current ~K = 0). We therefore have the conditions

µ
∂ΦM

∂r

∣∣∣
r=a+

=
∂ΦM

∂r

∣∣∣
r=a−

,
∂ΦM

∂θ

∣∣∣
r=a+

=
∂ΦM

∂θ

∣∣∣
r=a−

,

µ
∂ΦM

∂r

∣∣∣
r=b−

=
∂ΦM

∂r

∣∣∣
r=b+

,
∂ΦM

∂θ

∣∣∣
r=b−

=
∂ΦM

∂θ

∣∣∣
r=b+

, (8.130)

where a± and b± mean that a and b are approached from above (plus sign) or below (minus

sign) respectively. Plugging in the expansions, and using the linear independence of the

Legendre polynomials (and their derivatives with respect to θ), we obtain the equations

ℓ µ βℓ a
ℓ−1 − (ℓ+ 1)µγℓ a

−ℓ−2 − ℓ αℓ a
ℓ−1 = 0 ,

βℓ a
ℓ + γℓ a

−ℓ−1 − αℓ a
ℓ = 0 ,

ℓ µ βℓ b
ℓ−1 − (ℓ+ 1)µ b−ℓ−2 + (ℓ+ 1) δℓ b

−ℓ−2 = −B0 δℓ,1 ,

βℓ b
ℓ + γℓ b

−ℓ−1 − δℓ b
−ℓ−1 = −bB0 δℓ,1 , (8.131)

where δℓ,1 is a Kronecker delta which vanishes except when ℓ = 1, in which case it equals

1. It is straightforward to solve the four equations (8.131) for the four unknowns αℓ, βℓ, γℓ

and δℓ, for each value of ℓ. The result is

αℓ = βℓ = γℓ = δℓ = 0 , for ℓ 6= 1 , (8.132)

while for ℓ = 1 we obtain

α1 = − 9µ

(µ+ 2)(2µ + 1) − 2a3 b−3 (µ− 1)2
B0 ,

β1 = − 3(2µ + 1) a3

(µ+ 2)(2µ + 1) − 2a3 b−3 (µ− 1)2
B0 ,

γ1 = − 3(µ− 1) a3

(µ+ 2)(2µ + 1) − 2a3 b−3 (µ− 1)2
B0 ,

δ1 =
(2µ+ 1)(µ− 1)(b3 − a3)

(µ+ 2)(2µ + 1) − 2a3 b−3 (µ− 1)2
B0 . (8.133)

The magnetic field inside the shell is uniform, parallel to ~B0, and has magnitude (−α1).

If µ >> 1, as is easily possible for a high permeability material, which might have µ ∼ 106,

we see that

−α1 ≈ 9

2µ(1 − a3 b−3)
B0 . (8.134)

This shows that even with a fairly thin shell of the permeable medium, a high degree of

magnetic shielding can be achieved.

Outside the shell, the magnetic field is the sum of the uniform field ~B0 plus a magnetic

dipole term of magnitude α1.
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8.7.3 Magnetic scalar potential for hard ferromagnets

Another circumstance where we can make use of the magnetic scalar potential is in the case

of a so-called hard ferromagnet. Such a ferromagnet is commonly also called a permanent

magnet, namely a ferromagnetic material that has its own intrinsic magnetisation, even in

the absence of externally-applied magnetic fields. In fact, to a good approximation, the

magnetisation inside the hard ferromagnet is independent of any external magnetic field.

Thus a common situation is to have a hard ferromagnet, with known magnetisation ~M ,

immersed in free space. One might also include externally-applied magnetic fields.

Let us consider such a situations where there are no external currents, and so we have

the Maxwell equations

~∇ · ~B = 0 , ~∇× ~H = 0 , (8.135)

where, as always,

~H = ~B − 4π ~M . (8.136)

We solve the second equation in (8.135) by writing

~H = −~∇ΦM . (8.137)

The first equation becomes, upon using (8.136),

~∇ · ~H = −4π ~∇ · ~M , (8.138)

and hence

∇2ΦM = 4π ~∇ · ~M . (8.139)

This may be solved by writing

ΦM (~r) = −
∫ ~∇′ · ~M(~r ′)

|~r − ~r ′| d3~r ′ . (8.140)

The magnetisation ~M will be non-zero only inside the ferromagnet.

Let us consider, as an example, a uniformly magnetised sphere of ferromagnetic material

in free space, with no externally-appplied magnetic fields. We shall assume that inside the

sphere, of radius a, there is a uniform magnetisation ~M0; i.e. ~M0 is constant. It will be

convenient presently to assume that axes are chosen so that ~M0 is aligned along the z

direction, and that the sphere is centred on the origin.

Naively, one might think that since the magnetisation is piecewise constant in this

problem (equal to ~M0 inside the sphere, and equal to zero outside the sphere), then ~∇ · ~M
would be zero and hence (8.140) would be zero. (A manifestly absurd conclusion, since
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obviously the magnet will produce a non-vanishing magnetic field outside the sphere.) The

flaw in the naive argument is, of course, that the magnetisation undergoes a discontinuous

jump at the surface of the sphere, and so ~∇ · ~M will be equal to a delta-function at r = a.

One way to calculate (8.140) is to note, using the vector identity ~∇ · (f ~M) = ~M · ~∇f +

f ~∇ · ~M , that ΦM can be written as

ΦM (~r) = −
∫
~∇′ ·

[ ~M(~r ′)

|~r − ~r ′|
]
d3~r ′ +

∫
~M(~r ′) · ~∇′

[ 1

|~r − ~r ′|
]
d3~r ′ . (8.141)

Using the divergence theorem, the first term can be turned into a surface integral over the

sphere at infinity, and therefore it gives zero since ~M = 0 outside the ferromagnet. For the

second term, we use the fact that

~∇′
[ 1

|~r − ~r ′|
]

= −~∇
[ 1

|~r − ~r ′|
]
, (8.142)

and so we have

ΦM (~r) = −~∇ ·
∫ ~M(~r ′)

|~r − ~r ′| d
3~r ′ . (8.143)

In the problem at hand, the magnetisation ~M is equal to the constant vector ~M0, parallel

to the z axis, inside the sphere of radius a. Outside the sphere, we have ~M = 0. Thus

(8.143) becomes

ΦM(~r) = − ~M0 · ~∇
∫ a

0
r′

2
dr′
∫
dΩ′ 1

|~r − ~r ′| , (8.144)

where dΩ′ = sin θ′ dθ′ dϕ′. Now recall from equation (4.136) that we can write

1

|~r − ~r ′| =
∑

ℓ≥0

ℓ∑

m=−ℓ

4π

2ℓ+ 1

rℓ
<

rℓ+1
>

Ȳℓm(θ′, ϕ′)Yℓm(θ, ϕ) r., (8.145)

Since ∫
dΩ Ȳℓ′m′(θ ϕ)Yℓm(θ, ϕ) = δℓℓ′ δmm′ , (8.146)

and Y0,0(θ, ϕ) = 1/
√

4π, it follows that
∫
Ȳℓm(θ′, ϕ′) dΩ′ =

√
4π δℓ,0 δm,0 . (8.147)

Thus we have

∫
dΩ′

|~r − ~r ′| =
∑

ℓ≥0

ℓ∑

m=−ℓ

4π

2ℓ+ 1

rℓ
<

rℓ+1
>

Yℓm(θ, ϕ)

∫
dΩ′ Ȳℓm(θ′, ϕ′) ,

=
(4π)3/2

r>
Y0,0(θ, ϕ) =

4π

r>
, (8.148)

with r> being the greater of r and r′. Equation (8.144) therefore becomes

ΦM (~r) = −4π ~M0 · ~∇
∫ a

0

r′2 dr′

r>
. (8.149)
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At points outside the sphere, we have r > a. On the other hand, the integration over

r′ runs only up to r′ = a. Therefore in the exterior region we have r> = r, and so (8.149)

gives

ΦM (~r) = −4πa3

3
~M0 · ~∇

1

r
, (r > a) . (8.150)

If, on the other hand, we look at the magnetic potential inside the sphere, i.e. for points

with 0 ≤ r < a, then r> is equal to r for 0 ≤ r′ < r, while r> is equal to r′ for r < r′ < a.

In this case we have

∫ a

0

r′2 dr′

r>
=

1

r

∫ r

0
r′

2
dr′ +

∫ a

r
r′ dr′ = −1

6r
2 + 1

2a
2 , (8.151)

and so

ΦM(~r) =
2π

3
~M0 · ~∇r2 , (r < a) . (8.152)

Since we are taking ~M0 to be parallel to the z axis, and since ~∇r = ~r/r, we therefore have

ΦM =
4πa3M0

3

cos θ

r2
, (r > a) ,

ΦM =
4πM0

3
r cos θ , (r < a) . (8.153)

We see that outside the sphere, the magnetic field ~B = −~∇ΦM is a magnetic dipole

field with magnetic moment

~m =
4πa3

3
~M0 . (8.154)

Inside sphere, we have ~H = −~∇ΦM = −~∇(4πM0 z/3) and so

~H = −4π

3
~M0 . (8.155)

Using (8.136), we then have

~B =
8π

3
~M0 . (8.156)

8.7.4 Magnetised sphere in an external field

As an elaboration of the discussion above of a magnetised sphere, we can superpose on it

a uniform magnetic induction ~B0 = ~H0 throughout all space. This means that inside the

sphere, the expressions (8.155) and (8.156) will be modified to become

~H = ~B0 +
8π

3
~M0 , ~B = ~B0 −

4π

3
~M0 . (8.157)

One can now replace the original problem, in which the sphere was composed of a

permanently magnetised ferromagnetic material, by a problem in which the sphere is instead
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a permeable medium of magnetic permeability µ. This means that ~B and ~H in (8.157) will

now be related by ~B = µ ~H. This allows us to solve for the magnetisation ~M0, finding

~M0 =
3(µ− 1)

4π(µ+ 2)
~B0 . (8.158)

This result is a direct magnetic analogue of the expression (7.65) that we found when

calculating the polarisation of a dielectric sphere in an asymptotically uniform electric field.

9 Electromagnetism and Quantum Mechanics

9.1 The Schrödinger equation and gauge transformations

The Schrödinger equation for a particle of mass m and charge e in an electromagnetic field

is

− h̄2

2m

(
~∇− i e

h̄c
~A
)2
ψ + eφψ = i h̄

∂ψ

∂t
. (9.1)

The Schrödinger equation (9.1) is written in terms of the scalar and vector potentials φ

and ~A that describe the electromagnetic field. Thus, if we perform a gauge transformation

~A −→ ~A ′ = ~A+ ~∇λ , φ −→ φ′ = φ− 1

c

∂λ

∂t
, (9.2)

the Schrödinger equation will change its form. On the other hand, we expect that the

physics should be unaltered by a mere gauge transformation, since this leaves the physically-

observable electric and magnetic fields unchanged. It turns out that we should simultane-

ously perform a very specific phase transformation on the wavefunction ψ,

ψ −→ ψ′ = ei eλ/(h̄c) ψ (9.3)

then the Schrödinger equation expressed entirely in terms of the primed quantities (i.e.

wavefunction ψ′ and electromagnetic potentials φ′ and ~A ′) will take the identical form to

the original unprimed equation (9.1). Thus, we may say that the Schrödinger equation

transforms covariantly under gauge transformations.

To see the details of how this works, it is useful first to define what are called covariant

derivatives. We do this both for the three spatial derivatives, and also for the time derivative.

Thus we define

Di ≡ ∂i −
i e

h̄c
Ai , D0 ≡ ∂

∂t
+

i e

h̄c
φ . (9.4)

Note that the original Schrödinger equation (9.1) is now written simply as

− h̄2

2m
DiDiψ − i h̄ D0ψ = 0 . (9.5)
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Next, perform the transformations

~A −→ ~A ′ = ~A+ ~∇λ , φ −→ φ′ = φ− 1

c

∂λ

∂t
,

ψ −→ ψ′ = ei eλ/(h̄c) ψ (9.6)

The crucial point about this is that we have the following:

D′
i ψ

′ ≡
(
∂i −

i e

h̄c
A′

i

)
ψ′ =

(
∂i −

i e

h̄c
Ai −

i e

h̄c
(∂iλ)

) (
ei eλ/(h̄c) ψ

)
,

= ei eλ/(h̄c)
(
∂i −

i e

h̄c
Ai −

i e

h̄c
(∂iλ) +

i e

h̄c
(∂iλ)

)
ψ ,

= ei eλ/(h̄c)
(
∂i −

i e

h̄c
Ai

)
ψ , (9.7)

and

D′
0 ψ

′ ≡
( ∂
∂t

+
i e

h̄
φ′
)
ψ′ =

( ∂
∂t

+
i e

h̄
φ− i e

h̄c

∂λ

∂t

)(
ei eλ/(h̄c) ψ

)
,

= ei eλ/(h̄c)
( ∂
∂t

+
i e

h̄
φ− i e

h̄c

∂λ

∂t
+

i e

h̄c

∂λ

∂t

)
ψ ,

= ei eλ/(h̄c)
( ∂
∂t

+
i e

h̄
φ
)
ψ . (9.8)

In other words, we have

D′
iψ

′ = ei eλ/(h̄c)Diψ , D′
0ψ

′ = ei eλ/(h̄c)D0ψ . (9.9)

This means that Diψ and D0ψ transform the same way as ψ itself under the gauge trans-

formations (9.6), namely just by acquiring the phase factor ei eλ/h̄. This is a non-trivial

statement, since the gauge parameter λ is an arbitrary function of space and time. Had

we been considering standard partial derivatives ∂i and ∂/∂t rather than the covariant

deriavtives defined in (9.4), it would most certainly not have been true. For example,

∂iψ
′ = ∂i

(
ei eλ/(h̄c) ψ

)
= ei eλ/(h̄c) ∂iψ + ei eλ/(h̄c) i e

h̄c
(∂iλ)ψ 6= ei eλ/(h̄c) ∂iψ , (9.10)

precisely because the derivative can land on the space-time dependent gauge-transformation

parameter λ and thus give the second term, which spoils the covariance of the transforma-

tion. The point about the covariant derivatives is that the contributions from the gauge

transformation of the gauge potentials precisely cancels the “unwanted” second term in

(9.10).

By iterating the calculation, it also follows that D′
iD

′
iψ

′ = ei eλ/h̄DiDiψ, and so we see

that the Schrödinger equation (9.5) written in terms of the primed fields, i.e.

− h̄2

2m
D′

iD
′
iψ

′ − i h̄ D′
0ψ

′ = 0 , (9.11)
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just implies the Schrödinger equation in terms of unprimed fields, since

0 = − h̄2

2m
D′

iD
′
iψ

′ − i h̄ D′
0ψ

′ ,

= ei eλ/(h̄c)
(
− h̄2

2m
DiDiψ − i h̄ D0ψ

)
. (9.12)

What we have proved above is that the Schrödinger equation transforms covariantly

under electromagnetic gauge transformations, provided that at the same time the wave

function is scaled by a space-time dependent phase factor, as in (9.6).
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