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1 Introduction

1.1 Major sources

The textbooks which I have consulted most frequently whilst developing course
material are:

Classical electrodynamics: J.D. Jackson, 2nd edition (John Wiley & Sons,
New York NY, 1975).

Classical electricity and magnetism: W.K. Panofsky and M. Phillips, 2nd
edition, (Addison-Wesley, Reading MA, 1962).

Special relativity: W. Rindler, 2nd edition (Oliver and Boyd, Edinburg and
London, 1966).

Foundations of electromagnetic theory: J.R. Reitz and F.J. Milford, 2nd
edition (Addison-Wesley, Reading MA, 1967).



Lectures on theoretical physics: A. Sommerfeld, (Academic Press, New York,
1954).

Wave propagation and group velocity: Léon Brillouin, (Academic Press, New
York NY, 1960).

Methods of theoretical physics: P.M. Morse and H. Feshbach, (McGraw-Hill,
New York NY, 1953).

An introduction to phase-integral methods: J. Heading, (Meuthen & Co.,
London, 1962).

Radio waves in the ionosphere: K.G. Budden, (Cambridge University Press,
Cambridge, 1961).

Classical electromagnetic radiation: M.A. Heald and J.B. Marion, 3rd edi-
tion (Saunders College Publishing, Fort Worth TX, 1995).

1.2 Outline of course

You have all presumably taken the standard undergraduate electromagnetism
course in which Maxwell’s equations are derived and explained. The basic aim
of my course is to cover some material which is usually inadequately treated or
omitted altogether in undergraduate courses. In fact, I intend to concentrate on
three main topics:

1. The relativistically invariant formulation of the laws of electromagnetism.

2. The effect of dielectric and magnetic materials on electric and magnetic
fields.

3. The generation, propagation, and scattering of electromagnetic waves.



1.3 The validity of classical electromagnetism

In this course we shall investigate the classical theory of electromagnetism in
Fuclidian space-time. This theory is valid over a huge range of different condi-
tions, but, nevertheless, breaks down under certain circumstances. On very large
length-scales (or close to collapsed objects such as black holes) the theory must be
modified to take general relativistic effects into account. On the other hand, the
theory breaks down completely on very small length-scales because of quantum
effects. It is legitimate to treat a gas of photons as a classical electromagnetic field
provided that we only attempt to resolve space-time into elements that contain a
great many photons. In conventional applications of electromagnetic theory (e.g.,
the generation and propagation of radio waves) this is not a particularly onerous
constraint.

1.4 Units

In 1960 physicists throughout the world adopted the so-called S.I. system of units,
whose standard measures of length, mass, time, and electric charge are the meter,
kilogram, second, and coloumb, respectively. Nowadays, the S.I. system is used
almost exclusively in most areas of physics. In fact, only one area of physics
has proved at all resistant to the adoption of S.I. units, and that, unfortunately,
is electromagnetism, where the previous system of units, the so-called Gaussian
system, simply refuses to die out. Admittedly, this is mostly an Anglo-Saxon
phenomenon; the Gaussian system is most prevalent in the U.S., followed by
Britain (although, the Gaussian system is rapidly dying out in Britain under
the benign influence of the European Community). One major exception to this
rule is astrophysics, where the Gaussian system remains widely used throughout
the world. Incidentally, the standard units of length, mass, time, and electric
charge in the Gaussian system are the centimeter, gram, second, and statcoloumb,
respectively.

You might wonder why anybody would wish to adopt a different set units in
electromagnetism to that used in most other branches of physics. The answer is
that in the Gaussian system the laws of electromagnetism look a lot “prettier”



than in the S.I. system. There are no ¢y s and g s in any of the formulae. In fact,
in the Gaussian system the only normalizing constant appearing in Maxwell’s
equations is ¢, the velocity of light. However, there is a severe price to pay for the
aesthetic advantages of the Gaussian system. The standard measures of potential
difference and electric current in the S.I. system are the volt and the ampere,
respectively. I presume that you all have a fairly good idea how large a voltage 1
volt is, and how large a current 1 ampere is. The standard measures of potential
difference and electric current in the Gaussian system are the statvolt and the
statampere, respectively. I wonder how many of you have even the slightest idea
how large a voltage 1 statvolt is, or how large a current 1 statampere is? Nobody,
I bet! Let me tell you: 1 statvolt is 300 volts, and 1 statampere is 1/3 x 107°
amperes. Clearly, these are not particularly convenient units!

In order to decide which system of units we should employ in this course,
we essentially have to answer a single question. What is more important to us:
that our equations should look pretty, or that the our fundamental units should
be sensible? I think that sensible units are of vital importance, especially if we
are going to make quantitative calculations (we are!), whereas the prettiness or
otherwise of our equations is of marginal concern. For this reason, I intend to use
the S.I. system throughout this course.

If, unaccountably, you prefer the Gaussian system of units, there is no reason
to despair. Converting formulae from the S.I. system to the Gaussian system is
trivial: just use the following transformation
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The transformation (1.1c) also applies to quantities which are directly related to
magnetic field strength, such as the vector potential. Unfortunately, converting
formulae from the Gaussian system to the S.I. system is far less straightforward.



As an example of this, consider Coulomb’s law in S.I. units:
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Employing the above transformation, this formula converts to
T — 1T
= 1.3
Jo=q1g2 7y — 713 (1.3)

in Gaussian units. However, applying the inverse transformation is problematic.
In Eq. (1.3) the geometric 47 in the S.I. formula has canceled with the 1/4x
obtained from transforming ey to give unity. It is not at all obvious that the
reverse transformation should generate a factor 4mey in the denominator. In fact,
the only foolproof way of transforming Eq. (1.3) back into Eq. (1.2) is to use
dimensional analysis. This is another good reason for not using the Gaussian
system.

There are four fundamental quantities in electrodynamics; mass, length, time,
and charge, denoted M, L, T, and (), respectively. Each of these quantities has
its own particular units, since mass, length, time, and charge are fundamentally
different from one another. The units of a general physical quantity, such as
force or capacitance, can always be expressed as some appropriate power law
combination of the four fundamental units, M, L, T', and ). Equation (1.2) makes
dimensional sense because the constant ey possesses the units M 1L 73T2Q2.
Likewise, the Biot-Savart law only makes dimensional sense because the constant
po possesses the units MLQ 2. On the other hand, Eq. (1.3) does not make
much dimensional sense; i.e., the right-hand side and the left-hand side appear
to possess different units. In fact, we can only reconcile Egs. (1.2) and (1.3) if we
divide the right-hand side of (1.3) by some constant, 47eq, say, with dimensions
M~1L=3T2Q?, which happens to have the numerical value unity for the particular
choice of units in the Gaussian scheme. Likewise, the Gaussian version of the
Biot-Savart law contains a hidden constant with the numerical value unity which
also possesses dimensions. It can be seen that the apparent simplicity of the
equations of electrodynamics in the Gaussian scheme is only achieved at the
expense of wrecking their dimensionality. This is, perhaps, the best reason of all
for not using Gaussian units.



2 Relativity and electromagnetism

2.1 The relativity principle

Physical phenomena are conventionally described relative to some frame of refer-
ence which allows us to define fundamental quantities such as position and time.
Of course, there are very many different ways of choosing a reference frame, but
it generally convenient to restrict our choice to the set of rigid inertial frames.
A classical rigid reference frame is the imagined extension of a rigid body. For
instance, the Earth determines a rigid frame throughout all space, consisting of
all those points which remain rigidly at rest relative to the Earth and each other.
We can associate an orthogonal Cartesian coordinate system .S with such a frame,
by choosing three mutually orthogonal planes within it and measuring x, y, and
z as distances from these planes. A time coordinate must also be defined in order
that the system can be used to specify events. A rigid frame, endowed with such
properties, is called a Cartesian frame. The description given above presupposes
that the underlying geometry of space is Euclidian, which is reasonable provided
that gravitational effects are negligible (we shall assume that this is the case).
An inertial frame is a Cartesian frame in which free particles move without ac-
celeration, in accordance with Newton’s first law of motion. There are an infinite
number of different inertial frames, each moving with some constant velocity with
respect to a given inertial frame.

The key to understanding special relativity is Einstein’s relativity principle,
which states that

All inertial frames are totally equivalent for the performance of all
physical experiments.

In other words, it is impossible to perform a physical experiment which differen-
tiates in any fundamental sense between different inertial frames. By definition,
Newton’s laws of motion take the same form in all inertial frames. Einstein gen-
eralized this result in his special theory of relativity by asserting that all laws of
physics take the same form in all inertial frames.



Consider a wave-like disturbance. In general, such a disturbance propagates
at a fixed velocity with respect to the medium in which the disturbance takes
place. For instance, sound waves (at S.T.P.) propagate at 343 meters per second
with respect to air. So, in the inertial frame in which air is stationary sound
waves appear to propagate at 343 meters per second. Sound waves appear to
propagate at a different velocity in some other inertial frame which is moving
with respect to the first frame. However, this does not violate the relativity
principle, since if the air were stationary in the second frame then sound waves
would appear to propagate at 343 meters per second in this frame as well. In other
words, exactly the same experiment (e.g., the determination of the speed of sound
relative to stationary air) performed in two different inertial frames of reference
yields exactly the same result, in accordance with the relativity principle.

Consider, now, a wave-like disturbance which is self-regenerating and does not
require a medium through which to propagate. The most well known example of
such a disturbance is a light wave. Another example is a gravity wave. According
to electromagnetic theory the speed of propagation of a light wave through a
vacuum is
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where €y and pg are physical constants which can be evaluated by performing
two simple experiments which involve measuring the force of attraction between
two fixed changes and two fixed parallel current carrying wires. According to the
relativity principle these experiments must yield the same values for ¢y and ug in
all inertial frames. Thus, the speed of light must be the same in all inertial frames.
In fact, any disturbance which does not require a medium to propagate through
must appear to travel at the same velocity in all inertial frames, otherwise we
could differentiate inertial frames using the apparent propagation speed of the
disturbance, which would violate the relativity principle.

= 2.99729 x 10°® meters per second, (2.1)
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2.2 The Lorentz transform

Consider two Cartesian frames S(z,y,z,t) and S’(2',y’,2',t') in the standard
configuration in which S’ moves in the z-direction of S with uniform velocity v
and the corresponding axes of S and S’ remain parallel throughout the motion,



having coincided at ¢ = ¢/ = 0. It is assumed that the same units of distance
and time are adopted in both frames. Suppose that an event (e.g., the flashing
of a light-bulb, or the collision of two point particles) has coordinates (z, y, z, t)
relative to S and (2/, ¢/, 2/, t') relative to S’. The “common sense” relationship
between these two sets of coordinates is given by the Galilean transformation:

¢ = z-—ut, (2.2a)
y = v, (2.2b)
2 =z (2.2¢)
t = t (2.2d)

This transformation is tried and tested and provides a very accurate description
of our everyday experience. Nevertheless, it must be wrong! Consider a light wave
which propagates along the z-axis in S with velocity c. According to the Galilean
transformation the apparent speed of propagation in S’ is ¢ — v, which violates
the relativity principle. Can we construct a new transformation which makes the
velocity of light invariant between different inertial frames, in accordance with the
relativity principle, but reduces to the Galilean transformation at low velocities,
in accordance with our everyday experience?

Consider an event P and a neighbouring event () whose coordinates differ
from those of P by dz, dy, dz, dt in S and by dx’, dy’, dz’, dt’ in S’. Suppose
that at the event P a flash of light is emitted and that () is an event in which
some particle in space is illuminated by the flash. In accordance with the laws
of light-propagation, and the invariance of the velocity of light between different
inertial frames, an observer in S will find that

dz® + dy* + dz* — 2dt* =0 (2.3)
for dt > 0, and an observer in S’ will find that
dz'? +dy'? + d2'* — dt"”* =0 (2.4)

for dt’ > 0. Any event near P whose coordinates satisfy either (2.3) or (2.4) is
illuminated by the flash from P and therefore its coordinates must satisfy both



(2.3) and (2.4). Now, no matter what form the transformation between coordi-
nates in the two inertial frames takes, the transformation between differentials at
any fixed event P is linear and homogeneous. In other words, if

¥ = F(z,y,2,t), (2.5)

where F' is a general function, then

OF OF OF OF
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dz’ = 9 dr + By dy + 5, dz + 5 dt. (2.6)

It follows that

dz'? + dy'? + d2'* — 2dt’”? = adz®+bdy® + cdz? + ddt®> + gdz dt + hdy dt
+kdzdt +ldydz +mdzrdz +ndzdy, (2.7)

where a, b, ¢, etc. are functions of z, y, z, and . We know that the right-hand
side of the above expression vanishes for all real values of the differentials which
satisfy Eq. (2.3). It follows that the right-hand side is a multiple of the quadratic
in Eq. (2.3); i.e.,

dz® + dy® + dz* — 2dt* = K(dz'? + dy'* + dz'? — c2dt"?), (2.8)

where K is a function of z, y, z, and t. [We can prove this by substituting into
Eq. (2.7) the following obvious zeros of the quadratic in Eq. (2.3): (£+1,0,0,1),
(0,41,0,1), (0,0,%1,1), (0,1/v2,1/v/2,1), (1/4/2,0,1/v/2,1), (1//2,1/+/2,0,1):
and solving the resulting conditions on the coefficients.] Note that K at P is also
independent of the choice of standard coordinates in S and S’. Since the frames
are Euclidian, the values of dz? + dy? + dz? and dz'? + dy'? + dz'? relevant to P
and Q are independent of the choice of axes. Furthermore, the values of dt? and
dt'’? are independent of the choice of the origins of time. Thus, without affecting
the value of K at P we can choose coordinates such that P = (0,0,0,0) in both
S and S’. Since the orientations of the axes in S and S’ are, at present, arbitrary,
and since inertial frames are isotropic, the relation of S and S’ relative to each
other, to the event P, and to the locus of possible events () is now completely
symmetric. Thus, we can write

dz'? + dy'? + d2"* — ?dt’? = K (dz® + dy® + dz* — c*dt?), (2.9)



in addition to Eq. (2.8). It follows that K = +1. K = —1 can be dismissed
immediately, since the intervals dz?+dy?+dz? —c?dt? and dz'? +dy'?+dz'? —c2dt'?
must coincide exactly when there is no motion of S’ relative to S. Thus,

dz'? + dy'? + d2'* — Pdt’* = dx? + dy* + dz* — 2dt>. (2.10)

Equation (2.10) implies that the transformation equations between primed and
unprimed coordinates must be linear. The proof of this statement is postponed
until later.

The linearity of the transformation allows the coordinate axes in the two
frames to be orientated so as to give the standard configuration mentioned earlier.
Consider a fixed plane in S with the equation lz + my + nz +p = 0. In S’ this
becomes, say, l(a12' +b1y' +c12' +dit' +e1)+m(azz’+---)+n(azz’+--)+p =0,
which represents a moving plane unless ld; + mds + nds = 0. That is, unless the
normal vector to the plane (I, m,n) in S is perpendicular to the vector (di,d2, ds3).
All such planes intersect in lines which are fixed in both S and S’, and which
are parallel to the vector (dy,ds,ds) in S. These lines must correspond to the
direction of relative motion of the frames. By symmetry, two such frames which
are orthogonal in S must also be orthogonal in S’. This allows the choice of two
common coordinate planes.

Under a linear transformation the finite coordinate differences satisfy the same
transformation equations as the differentials. It follows from Eq. (2.10), assum-
ing that the events (0,0,0,0) coincide in both frames, that for any event with
coordinates (z,y, z,t) in S and (2’,y',2’,t") in S’ the following relation holds:

.’172 _|_y2 _|_22 . CQtQ — 213,2 +y12 +Z/2 . CQt,Q. (211)

By hypothesis, the coordinate planes y = 0 and 3’ = 0 coincide permanently.
Thus, y = 0 must imply y’ = 0, which suggests that

y' = Ay, (2.12)

where A is a constant. We can reverse the directions of the z- and z-axes in
S and S’, which has the effect of interchanging the roles of these frames. This
procedure does not affect Eq. (2.12), but by symmetry we also have

y = Ay’ (2.13)

10



It is clear that A = 1. The negative sign can again be dismissed, since y = v’
when there is no motion between S and S’. The argument for z is similar. Thus,
we have

y = v, (2.14a)
2 = 2z, (2.14b)
as in the Galilean transformation.

Equations (2.11) and (2.14) yield

2 2t2

r? — 2t = 2'? — At (2.15)

Since, £’ = 0 must imply x = vt, we can write
' = B(z — vt), (2.16)

where B is a constant (possibly depending on v). It follows from the previous
two equations that
t' = Cz + Dt, (2.17)

where C and D are constants (possibly depending on v). Substituting Egs. (2.16)
and (2.17) into Eq. (2.15) and comparing the coefficients of z2, xt, and t?, we
obtain

1

B=D = :I:(l — U2/62)1/27 (218&)

—v/c?
C = . 2.18b
+(1 —v2/c2)1/2 ( )
We must choose the positive sign in order to ensure that 2’ — z as v/c — 0.
Thus, collecting our results, the transformation between coordinates in .S and S’

is given by

/ T — vt

T = (1 — /U2/C2)1/2 , (219&)

y =y, (2.19b)

7 =z, (2.19c¢)
_ 2

poo _tovele (2.194)

(1 _ ,02/62)1/2’

11



This is the famous Lorentz transform. It ensures that the velocity of light is
invariant between different inertial frames, and also reduces to the more familiar
Galilean transform in the limit v/c < 1. We can solve Egs. (2.19) for z, y, z, and
t to obtain the tnverse Lorentz transform:

z’' + ot!
r = 2/ (2.20a)
y = v, (2.20b)
z = 2, (2.20c)
/ 172
N R (2.20d)

(1 _ ’02/62)1/2 )

Clearly, the inverse transform is equivalent to a Lorentz transform in which the
velocity of the moving frame is —v along the x-axis instead of +wv.

2.3 Transformation of velocities

Consider two frames S and S’ in the standard configuration. Let u be the velocity
of a particle in S. What is the particle velocity in S’? The components of the
velocity are

up = Z—?, (2.21a)

ug = Ccli—gz, (2.21Db)

uz = Z—i, (2.21c¢)
and, similarly, the components of u’ are

uy = C(ij—f:, (2.22a)

uy = Z—Z:, (2.22b)

12



dz’
up = (2.22¢)
Now we can write Egs. (2.19) in the form dz’ = v(dz — vdt), dy’ = dy, dz’ = dz,
and dt' = vy(dt — vdz/c?), where

1
7= (1 _ '02/02)1/2

(2.23)

is the well known Lorentz factor. If we substitute these differentials into Egs. (2.22)
and make use of Egs. (2.21), we obtain the transformation formulae

/ U1 — v
= - 2.24
/ U2
= 2.24b
U2 7(]_—’(,[,1’0/02)’ ( )
uy = s (2.24c)

v(1 —uiv/e?)’

As in the transformation of coordinates, we can obtain the inverse transform by
interchanging primed and unprimed symbols and replacing +v with —v. Thus,

uj v

- L 2.25
“ 14 ujv/c?’ (2.25)
)
_ , 2.95b
R Ty (2.25b)
i
— . 2.25
e ) (2.25¢)

Equations (2.25) can be regarded as giving the resultant, u = (u1,u9,us),
of two velocities, v = (v,0,0) and ' = (u),uf,us), and are therefore usually
referred to as the relativistic velocity addition formulae. The following relation
between the magnitudes u = (u? + uo? + ug?)'/? and v’ = (u}> + ub” + uj”)"/?

of the velocities is easily demonstrated:

20,2 _ 2 12\(p2 _ 2
62_u2:C(C u'")(c* —v?)
(@ +ulv)?

(2.26)
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If v’ < ¢ and v < ¢ the right-hand side is positive, implying that u < ¢. In other
words, the resultant of two subluminal velocities is another subluminal velocity.
It is evident that a particle can never attain the velocity of light relative to a given
inertial frame, no matter how many subluminal velocity increments it is given.
It follows that no inertial frame can appear to propagate with a superluminal
velocity with respect to any other inertial frame (since we can track the origin of
a given inertial frame using a particle which remains at rest at the origin in that
frame).

According to Eq. (2.26), if v’ = ¢ then v = ¢ no matter what value v takes;
i.e., the velocity of light is invariant between different inertial frames. Note that
the Lorentz transform only allows one such invariant velocity (i.e., the velocity
¢ which appears in Egs. (2.19)). Einstein’s relativity principle tells us that any
disturbance which propagates through a vacuum must appear to propagate at the
same velocity in all inertial frames. It is now evident that all such disturbances
must propagate at the velocity c. It follows immediately that all electromagnetic
waves must propagate through the vacuum with this velocity, irrespective of
their wavelength. In other words, it is impossible for there to be any dispersion
of electromagnetic waves propagating through a vacuum. Furthermore, gravity
waves must also propagate with the velocity c¢. It is convenient to label ¢ as
“the velocity of light” since electromagnetic radiation is, by far, the most well
known and easily measurable type of disturbance which can propagate through
a vacuum.

The Lorentz transformation implies that not only the velocities of material
particles but the velocities of propagation of all physical effects are limited by c in
deterministic physics. Consider a general process by which an event P causes an
event () at a velocity U > ¢ in some frame S. In other words, information about
the event P appears to propagate to the event () with a superluminal velocity.
Let us choose coordinates such that these two events occur on the z-axis with
(finite) time and distance separations At > 0 and Az > 0, respectively. The time
separation in some other inertial frame S’ is given by (see Eq. (2.19d))

At = y(At —vAz/c?) = yAt(1 —vU/c?). (2.27)

Thus, for sufficiently large v < ¢ we obtain At’ < 0; i.e., there exist inertial frames
in which cause and effect appear to be reversed. Of course, this is impossible in

14



deterministic physics. It follows, therefore, that information can never appear to
propagate with a superluminal velocity in any inertial frame, otherwise causality
would be violated.

2.4 Tensors

It is now convenient to briefly review the mathematics of tensors. Tensors are
of primary importance in connection with coordinate transforms. They serve to
isolate intrinsic geometric and physical properties from those that merely depend
on coordinates.

A tensor of rank r in an n-dimensional space possesses n” components which
are, in general, functions of position in that space. A tensor of rank zero has
one component A and is called a scalar. A tensor of rank one has n components
(Ay,As,---,A,) and is called a vector. A tensor of rank two has n? components,
which can be exhibited in matrix format. Unfortunately, there is no convenient
way of exhibiting a higher rank tensor. Consequently, tensors are usually repre-
sented by a typical component; e.g., we talk of the tensor A;j; (rank 3) or the
tensor A;;x; (rank 4), etc. The suffixes i, j, k, - - - are always understood to range
from 1 to n.

For reasons which will become apparent later on, we shall represent tensor
components using both superscripts and subscripts. Thus, a typical tensor might
look like A (rank 2), or B! (rank 2), etc. It is convenient to adopt the Einstein
summation convention. Namely, if any suffix appears twice in a given term, once
as a subscript and once as a superscript, a summation over that suffix (from 1 to
n) is implied.

To distinguish between various coordinate systems we shall use primed and

multiply primed suffixes. A first system of coordinates (z!,z2,---,z") can then

be denoted by z*, a second system (:1:1',:1:2', . -,:1:”') by z¢, etc. Similarly the
general components of a tensor in various coordinate systems are distinguished
by their suffixes. Thus, the components of some third rank tensor are denoted

A;jk in the z! system, by Ajrjrg in the zt system, etc.

When making a coordinate transformation from one set of coordinates z* to

15



another :ci/, it is assumed that the transformation in non-singular. In other words,
the equations which express the 7% in terms of the z! can be inverted to express
the z' in terms of the z¢. It is also assumed that the functions specifying a
transformation are differentiable. It is convenient to write

(9:1:"' -/
= 4. (2.280)
oz’ :

Note that
p::/ pz:/ = pz:// y (229&)
pipl = 6 (2.29b)

by the chain rule, where 5; (the Kronecker delta ) equals 1 or 0 when ¢ = j or
t # 7, respectively.

The formal definition of a tensor is as follows:
(1) An entity having components A;;..., in the z* system and Ajrjr..r in the ot
system is said to behave as a covariant tensor under the transformation z¢ — z*
if _
Aifjl...kl = Aij---kp;:/pg'/ ---pz,. (230)
(i) Similarly, A¥* is said to behave as a contravariant tensor under z* — ' if

)

AR _ Aij---kpzj’p;' --'pﬁl- (2.31)

(iii) Finally, A} is said to behave as a mized tensor (contravariant in ¢ - - - j and
covariant in k- - - 1) under z* — ¥ if

Ay = AL DE D) DRl (2.32)

When an entity is described as a tensor it is generally understood that it
behaves as a tensor under all non-singular differentiable transformations of the

16



relevant coordinates. An entity which only behaves as a tensor under a cer-
tain subgroup of non-singular differentiable coordinate transformations is called
a qualified tensor, because its name is conventionally qualified by an adjective
recalling the subgroup in question. For instance, an entity which only exhibits
tensor behaviour under Lorentz transformations is called a Lorentz tensor or,
more commonly, a 4-tensor.

When applied to a tensor of rank zero (a scalar), the above definitions imply
that A* = A. Thus, a scalar is a function of position only, and is independent of
the coordinate system. A scalar is often termed an invariant.

The main theorem of tensor calculus is as follows:

If two tensors of the same type are equal in one coordinate system,
then they are equal in all coordinate systems.

The simplest example of a contravariant vector (tensor of rank one) is provided
by the differentials of the coordinates, dx*, since

-/
-/ 8:(;’

dz* = o dz' = da'p? . (2.33)

The coordinates themselves do not behave as tensors under all coordinate trans-
formations. However, since they transform like their differentials under linear
homogeneous coordinate transformations, they do behave as tensors under such
transformations.

The simplest example of a covariant vector is provided by the gradient of a

function of position ¢ = ¢(z!,---,2™). Since, if we write
0¢
P = - 2.34
5= (2.34)
then we have 9 96 o'
x* ,
1 - p— - - pu— ’L 'L., . 2.

¢’L 8:13" axz 8337'1 ¢ pz ( 35)

An important example of a mixed second rank tensor is provided by the
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Kronecker delta introduced previously. Since,
8% D} ply = D% Pl = 6. (2.36)

Tensors of the same type can be added or subtracted to form new tensors.
Thus, if A;; and B;; are tensors, then C;; = A;; £ B;; is a tensor of the same
type. Note that the sum of tensors at different points in space is not a tensor if
the p’s are position dependent. However, under linear coordinate transformations
the p’s are constant, so the sum of tensors at different points behaves as a tensor
under this particular type of coordinate transformation.

If A% and B are temsors, then C,Zm = AY By, is a tensor of the type
indicated by the suffixes. The process illustrated by this example is called outer
multiplication of tensors.

Tensors can also be combined by inner multiplication, which implies at least
one dummy suffix link. Thus, CY; = A" B;; and Cy, = A" B, are tensors of the
type indicated by the suffixes.

Finally, tensors can be formed by contraction from tensors of higher rank.
Thus, if A}, is a tensor then C}, = A%, and C} = A, ; are tensors of the type
indicated by the suffixes. The most important type of contraction occurs when
no free suffixes remain: the result is a scalar. Thus, A} is a scalar provided that

Al is a tensor.

Although we cannot usefully divide tensors, one by another, an entity like
C% in the equation A7 = C¥ B;, where A and B; are tensors, can be formally
regarded as the quotient of A* and B;. This gives the name to a particularly
useful rule for recognizing tensors, the quotient rule. This rule states that if a set
of components, when combined by a given type of multiplication with all tensors
of a given type yields a tensor, then the set is itself a tensor. In other words, if
the product A = C¥ Bj transforms like a tensor for all tensors B; then it follows
that C is a tensor.

Let .
A o
a;ml = Ay . (2.37)

-I,m
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Then if A::Jl is a tensor, differentiation of the general tensor transformation
(2.32) yields

Arll;rl......]ll,ml —_ AZ:.-?l,mp: ,..p‘;_ p”:/ ...p;, pml —|—P1 —I—P2 + "” (2.38)
where Pi, P,, etc., are terms involving derivatives of the p’s. Clearly, Z”l is
not a tensor under a general coordinate transformation. However, under a linear
coordinate transformation (p’s constant) A}, 7, , behaves as a tensor of the type
indicated by the suffixes, since the P;, Ps, etc., all vanish. Similarly, all higher
partial derivatives,

Geeej
i _0ALTY
etc., also behave as tensors under linear transformations. Each partial differenti-
ation has the effect of adding a new covariant suffix.

(2.39)

So far the space to which the coordinates z! refer has been without structure.
We can impose a structure on it by defining the distance between all pairs of
neighbouring points by means of a metric

ds® = g;jdz‘dx? (2.40)

where the g;; are functions of position. We can assume that g;; = g;; without
loss of generality. The above metric is analogous to, but more general than, the
metric of Euclidian n-space, ds? = (dz!)? + (dz?)? + - - - + (dz™)2. A space whose
structure is determined by a metric of the type (2.40) is called Riemannian. Since
ds? is invariant, it follows from a simple extension of the quotient rule that g;;
must be a tensor. It is called the metric tensor.

The elements of the inverse of the matrix g;; are denoted by g". These
elements are uniquely defined by the equations

9" g1 = ot (2.41)

It is easily seen that the g%/ constitute the elements of a contravariant tensor. This
tensor is said to be conjugate to g;;. The conjugate metric tensor is symmetric
(i.e., g” = g7*) just like the metric tensor itself.
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The tensors g;; and g* allow us to introduce the important operations of
ratsing and lowering suffizes. These operations consist of forming inner products
of a given tensor with g;; or g”/. For example, given a contravariant vector A*,
we define its covariant components A; by the equation

Ai = gijAj. (242)

Conversgly, given a covariant vector B;, we can define its contravariant compo-
nents B* by the equations _ N

B* = ¢" B;. (2.43)
More generally, we can raise or lower any or all of the free suffixes of any given
tensor. Thus, if A;; is a tensor we define A*; by the equation

Aij = gipApj. (244)

Note that once the operations of raising and lowering suffixes has been defined
the order of raised suffixes relative to lowered suffixes becomes significant.

By analogy with Euclidian space we define the squared magnitude (A)? of a
vector A* with respect to the metric g;;dz’dz? by the equation

A vector A® termed a null vector if (A)?2 = 0. Two vectors A* and B' are said to
be orthogonal if their inner product vanishes, i.e., if

gijA"B? = A;B" = A'B; = 0. (2.46)

Finally, let us consider differentiation with respect to distance s. The tangent
vector dz'/ds to a given curve in space is a contravariant tensor, since

dzt  0z' dz*  dxt ;
ds Ozt ds  ds Pi - (2.47)

The derivative d(A*7}...;)/ds of some tensor with respect to distance is not, in
general, a tensor, since

d(Ai'"jk...l) - dx™
RE Tkel) g, ST 2.4
ds Rebm = (2.48)
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and, as we have seen, the first factor on the right is not generally a tensor.
However, under linear transformations it behaves as a tensor, so under linear
transformations the derivative of a tensor with respect to distance behaves as a
tensor of the same type.

2.5 Transformations

In this course we shall only concern ourselves with coordinate transformations
which transform an inertial frame into another inertial frame. This limits us to
four classes of transformations: displacements of the coordinate axes, rotations
of the coordinate axes, parity reversals (i.e., ,y,z — —x, —y, —z), and Lorentz
transformations. All of these transformations possess group properties. As a re-
minder, the requirements for an abstract multiplicative group are:

(i) The product of two elements is an element of the group.

(i) The associative law (ab)c = a(bc) holds.

(#4i) There is a unit element e satisfying ae = ea = a for all a.

(iv) Each element a possesses an inverse a~! such that a=la = aa™! =,

Consider Lorentz transformations (in the standard configuration). It is easily
demonstrated that the resultant of two successive Lorentz transformations, with
velocities v1 and vq, respectively, is equivalent to a Lorentz transformation with
velocity v = (v1+v2)/(1+v1v2/c?). Lorentz transformations obviously satisfy the
associative law. The unit element of the transformation group is just a Lorentz
transformation with v = 0. Finally, the inverse of a Lorentz transformation with
velocity v is a transformation with velocity —v. We can use similar arguments
to show that translations, rotations, parity inversions, and general Lorentz trans-
formations (i.e., transformations between frames which are not in the standard
configuration) also possess group properties.

If we think carefully, we can see that the group properties of the above men-
tioned transformations are a direct consequence of the relativity principle. Let
us again consider Lorentz transformations. Suppose that we have three iner-
tial frames S, S’, and S§”. According to (i), if we can get from S to S’ by a
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Lorentz transformation, and from S’ to S” by a second Lorentz transformation,
then it must always be possible to go directly from S to S” by means of a third
Lorentz transformation. Suppose, for the sake of argument, that we can find
three frames for which this is not the case. In this situation, the frame S’ could
be distinguished from the frame S because it is possible to make a direct Lorentz
transformation from S to the former frame, but not to the latter. This violates
the relativity principle and, therefore, this situation can never arise. We can use
a similar argument to demonstrate that a Lorentz transformation must possess
an inverse. The associative law and the requirement that a unit element exists
are trivially satisfied.

2.6 The physical significance of tensors

One of the central tenets of physics is that experiments should be repeatable.
In other words, if somebody performs a physical experiment today and obtains
a certain result, then somebody else performing the same experiment next week
ought to obtain the same result, within the experimental errors. Presumably, in
performing these hypothetical experiments both experimentalists find it neces-
sary to set up a coordinate frame. Usually, these two frames do not coincide.
After all, the experiments are, in general, performed in different places and at
different times. Also, the two experimentalists are likely to orientate their coor-
dinate axes differently. For instance, one experimentalist might align his z-axis
with the North Star, whilst the other might align the same axis to point towards
Mecca. Nevertheless, we still expect both experiments to yield the same result.
What exactly do we mean by this statement? We do not mean that both ex-
perimentalists will obtain the same numbers when they measure something. For
instance, the numbers used to denote the position of a point (i.e., the coordinates
of the point) are, in general, different in different coordinate frames. What we do
expect is that any physically significant interrelation between physical quantities
(i.e., position, velocity, etc.) which appears to hold in the coordinate system of
the first experimentalist will also appear to hold in the coordinate system of the
second experimentalist. We usually refer to such interrelationships as “laws of
physics.” So, what we are really saying is that the laws of physics do not depend
on our choice of coordinate system. In particular, if a law of physics is true in one
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coordinate system then it is automatically true in every other coordinate system,
subject to the proviso that both coordinate systems are inertial.

Recall that tensors are geometric objects which possess the property that if
a certain interrelationship holds between various tensors in one particular co-
ordinate system, then the same interrelationship holds in any other coordinate
system which is related to the first system by a certain class of transformations.
It follows that the laws of physics are expressible as interrelationships between
tensors. In special relativity the laws of physics are only required to exhibit
tensor behaviour under transformations between different inertial frames; i.e.,
translations, rotations, and Lorentz transformations. This set of transformations
forms a group known as the Poincaré group. Parity inversion is a special type of
transformation, and will be dealt with later on. In general relativity the laws of
physics are required to exhibit tensor behaviour under all non-singular coordinate
transformations.

Consider Newton'’s first law of motion. These take the form of three differential
equations,

d’z
d?y
d?z
m ﬁ = fza (249C)

in a general inertial frame. However, we can also write them as a single vector
differential equation,

m-—— = f. (2.50)

What is the advantage of the vector notation? Many people would say that it is
just a convenient form of shorthand. However, there is another, far more impor-
tant, advantage. Before we can accept Newton’s first law of physics as a proper
law of physics we need to convince ourselves that it is coordinate independent;
i.e., that it also holds in coordinate frames which are related to the original frame
via a general translation or rotation of the coordinate axes. It is indeed possible
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to prove this, but the demonstration is rather tedious because a general rotation
is a rather complicated transformation. A vector is a geometric object (in fact,
it is a rank one tensor in three dimensional Euclidean space) whose three compo-
nents transform under a general translation and rotation of the coordinate axes
in an analogous manner to the difference in coordinates between two fixed points
in space. This ensures that any vector equation which is true in one coordinate
frame is also true in any other coordinate frame which is related to the original
frame via a general rotation or translation of the axes. Thus, the main advantage
of Eq. (2.50) is that it makes the coordinate independent nature of Newton’s
first law of motion manifestly obvious. Of course, we cannot deny that Newton’s
first law also looks simpler when it is expressed in terms of vectors. This is one
example of a rather general feature of physical laws. Namely, when the laws of
physics are expressed in a manner which makes their invariance under various
transformation groups manifest then they tend to take a particularly simple form.
In general, the larger the group of transformations the simpler the form taken by
the laws of physics. One of the major goals of modern physics is to find the largest
possible group of transformations under which the laws of physics are invariant,
and then prove that when expressed in a manner which makes this invariance
manifest these laws reduce to a single unifying principle.

We already know how to write the laws of physics in terms of vectors and vec-
tor fields. This means that these laws are automatically invariant under transla-
tions and rotations. However, according to the relativity principle, there is a third
class of transformations under which the laws of physics must also be invariant;
namely, Lorentz transformations. There are two ways in which we could verify
that the laws of physics are Lorentz invariant. The direct method is extremely
tedious, since Lorentz transformations are rather complicated. An alternative
method is to write the laws of physics in terms of geometric objects which trans-
form as tensors under translations, rotations, and Lorentz transformations. This
method has the advantage that it makes the Lorentz invariant nature of the laws
of physics obvious. We also expect that when the laws of physics are written in
manifestly Lorentz invariant form then they will look even simpler than they do
when written just in terms of vectors. The laws of electromagnetism provide a
particularly good illustration of this effect.
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2.7 Space-time

In special relativity we are only allowed to use inertial frames to assign coordi-
nates to events. There are many different types of inertial frames. However, it
is convenient to adhere to those with standard coordinates. That is, spatial co-
ordinates which are right-handed rectilinear Cartesians based on a standard unit
of length and time-scales based on a standard unit of time. We shall continue to
assume that we are employing standard coordinates. However, from now on we
shall make no assumptions, unless specifically stated, about the relative configu-
ration of the two sets of spatial axes and the origins of time when dealing with
two inertial frames. Thus, the most general transformation between two inertial
frames consists of a Lorentz transformation in the standard configuration plus a
translation (this includes a translation in time) and a rotation of the coordinate
axes. The resulting transformation is called a general Lorentz transformation,
as opposed to a Lorentz transformation in the standard configuration which will
henceforth be termed a standard Lorentz transformation.

In Section 2.2 we proved quite generally that corresponding differentials in
two inertial frames S and S’ satisfy the relation

12

dz? + dy® + d2® — Pdt®* = da'” + dy'” + d2'” — Pdt (2.51)

Thus, we expect this relation to remain invariant under a general Lorentz trans-
formation. Since such a transformation is linear it follows that

(x2 — 1) + (Y2 —v1)® + (22 — 21)* = E(ta — t1)* =
(2 — 1) + (yy —v1)% + (25 — 21)° — (85 — 11)?, (2.52)
where (21,y1,21,t1) and (z2,y2, 22,t2) are the coordinates of any two events in

S and the primed symbols denote the corresponding coordinates in S’. It is
convenient to write

—dz? — dy? — d2* + 2dt* = ds?, (2.53)

and
—(332 — 331)2 — (y2 - y1)2 — (Zg — 21)2 + 62(t2 — t1)2 = 82. (254)

The differential ds, or the finite number s, defined by these equations is called the
interval between the corresponding events. Equations (2.51) and (2.52) express
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the fact that the interval between two events is invariant, in the sense that it has
the same value in all inertial frames. In other words, the interval between two
events is invariant under a general Lorentz transformation.

Let us consider entities defined in terms of four variables

=z 2?=y, 3=z 2'=ct, (2.55)
and which transform as tensors (see Eqs. (2.30)—(2.32) ) under a general Lorentz
transformation. From now on such entities will be referred to as /-tensors.

Tensor analysis cannot proceed very far without the introduction of a non-
singular tensor g;;, the so-called fundamental tensor, which is used to define
the operations of raising and lowering suffixes (see Eqgs. (2.42)-(2.44)). The
fundamental tensor is usually introduced using a metric ds? = g;; dz'dz?, where
ds? is a differential invariant. We have already come across such an invariant,
namely

ds? = —dz?—dy?® — dz? + 2dt?
= —(de")? — (da?)? — (d2?)? + (da®)?
= g dztdz”, (2.56)

where p, v run from 1 to 4. Note that the use of Greek suffixes is conventional
in 4-tensor theory. Roman suffixes are reserved for tensors in three dimensional
Euclidian space, so-called 3-tensors. The 4-tensor g,, has the components g1 =
922 = g33 = —1,944 = 1, and g,, = 0 when p # v, in all permissible coordinate
frames. From now on g,,, as defined above, is adopted as the fundamental
tensor for 4-tensors. g,, can be thought of as the metric tensor of the “space”
whose points are the events (z!,22 23, 2%). This “space” is usually referred to
as space-time, for obvious reasons. Note that space-time cannot be regarded as a
straightforward generalization of Euclidian 3-space to four dimensions, with time
as the fourth dimension. The distribution of signs in the metric ensures that the
time coordinate z* is not on the same footing as the three space coordinates.
Thus, space-time has a non-isotropic nature which is quite unlike Euclidian space
with its positive definite metric. According to the relativity principle, all physical
laws are expressible as interrelationships between 4-tensors in space-time.
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A tensor of rank one is called a 4-vector. We shall also have occasion to use
ordinary vectors in three dimensional Euclidian space. Such vectors are called
3-vectors and are conventionally represented by boldface symbols. We shall use
the Latin suffixes ¢, 7, k, etc. to denote the components of a 3-vector; these suffixes
are understood to range from 1 to 3. Thus, u = u® = dz'/dt denotes a velocity
vector. For 3-vectors we shall use the notation u* = u; interchangeably; i.e., the
level of the suffix has no physical significance.

When tensor transformations from one frame to another actually have to be
computed, we shall usually find it possible to choose coordinates in the standard
configuration, so that the standard Lorentz transform applies. Under it, any con-
travariant 4-vector T* transforms according to the same scheme as the difference
in coordinates =5 — ' between two points in space-time. It follows that

TV = ~y(T'=8TY, (2.57a)
T = T2 (2.57h)
T8 = T3, (2.57¢)
T = ~y(T*=8T", 2.57d)

(
where = v/c. Higher rank 4-tensors transform according to the rules (2.30)-
(2.32). The transformation coefficients take the form

(v 0 0 —B
: 0 1 0 0
7
P = o 01 0 (2.58a)
\ _'YB 0 0 i
(v 0 0 8
0 1.0 0
mo_
Py = 0 0 1 o0 (2.58b)
L8 0 0 «

Often the first three components of a 4-vector coincide with the components of
a 3-vector. For example, the 2!, 22, 23 in R* = (x!, 22, 23, %) are the components

of r, the position 3-vector of the point at which the event occurs. In such cases
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we adopt the notation exemplified by R* = (v, ct). The covariant form of such a
vector is simply R, = (—7,ct). The squared magnitude of the vector is (R)? =
R, R* = —r? 4+ c*t%. The inner product g,, RFQ" = R,Q" of R* with a similar
vector Q" = (q, k) is given by R, Q" = —r-q + ct k. The vectors R* and Q* are

said to be orthogonal if R,Q" = 0.

Since a general Lorentz transformation is a linear transformation, the partial
derivative of a 4-tensor is also a 4-tensor;

pAve
oo = A (2.59)

Clearly, a general 4-tensor acquires an extra covariant index after partial differ-
entiation with respect to the contravariant coordinate z*. It is helpful to define
a covariant derivative operator

0 10
= _— i 2.
0= g0 = (Vi) (260
where
0,A" = A" ,. (2.61)
There is a corresponding contravariant derivative operator
0 10
oH=—=|(-V,—— 2.62
oz, ( v, c (975) ’ (262)
where
OHAY = gHhmA”? . (2.63)
The 4-divergence of a 4-vector A* = (A, A°) is the invariant
10A°
o*A, =0,A" =V-A+ —aa—t. (2.64)
c

The four dimensional Laplacian operator, or d’Alembertian, is equivalent to the
invariant contraction
1 92

0= Bua“ = —V2 + Cjﬁ

(2.65)
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Recall that we still need to prove (from Section 2.2) that the invariance of the
differential metric,

ds? = da'” + dy'® + d2'° — 2dt'* = dz® + dy?® + d2* — 2dt?, (2.66)

between two general inertial frames implies that the coordinate transformation
between such frames is necessarily linear. To put it another way, we need to
demonstrate that a transformation which transforms a metric g,, dz#dz” with
constant coefficients into a metric g,/ dz* dz¥" with constant coefficients must
be linear. Now

Guv = Gu'v' pZ pzlj . (267)
Differentiating with respect to 7 we get
Iu'v' pZoPZ + Gu'v pZ Pue =0, (2.68)
where , /
/ apﬁ aZZE'u /

o= T = pt 2,
Pue = gpe = 9agrdze ~ Pon (2:69)

etc. Interchanging the indices u and o yields

G PGPl + Gurr P2 DY, = 0. (2.70)
Interchanging the indices v and o gives

Ju'v' pg’pllj;.t + Gu'v pZ,pZ:r =0, (2.71)

where the indices ' and v’ have been interchanged in the first term. It follows
from Eqgs. (2.68), (2.70), and (2.71) that

Gurv DDl = 0. (2.72)
Multiplication by pl, yields
Gurv? Dlso DY, Py = Grot Do = 0. (273)
Finally, multiplication by ¢ o’ gives
Guorg” " Phy =Py = 0. (2.74)

This proves that the coefficients pl’;' are constants and, hence, that the transfor-
mation is linear.
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2.8 Proper time

It is often helpful to write the invariant differential interval ds? in the form
ds® = c*dr?. (2.75)
The quantity dr is called the proper time. It follows that

_da:2 + dy? + dz?

dr? = 5
c

+ dt*. (2.76)

Consider a series of events on the world-line of some material particle. If the
particle has speed u then

dz? + dy? + dz? u?
2 _ 3,2 )
implying that
dt

It is clear that dt = d7 in the particle’s rest frame. Thus, d7 corresponds to the
time difference between two neighbouring events on the particle’s world-line, as
measured by a clock attached to the particle (hence, the name “proper time”).
According to Eq. (2.78), the particle’s clock appears to run slow, by a factor vy(u),
in an inertial frame in which the particle is moving with velocity u. This is the
celebrated time dilation effect.

Let us consider how a small 4-dimensional volume element in space-time trans-
forms under a general Lorentz transformation. We have

d*s’ = J d*z, (2.79)

where o
ozt %, 2% zh)
O(zt, 22, z3, )

is the Jacobian of the transformation; :.e., the determinant of the transformation
matrix p/; . A general Lorentz transformation is made up of a standard Lorentz

J =

(2.80)
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transformation plus a displacement and a rotation. Thus, the transformation ma-
trix is the product of that for a standard Lorentz transformation, a translation,
and a rotation. It follows that the Jacobian of a general Lorentz transformation
is the product of that for a standard Lorentz transformation, a translation, and a
rotation. It is well known that the Jacobian of the latter two transformations is
unity, since they are both volume preserving transformations which do not affect
time. Likewise, it is easily seen (e.g., by taking the determinant of the transfor-
mation matrix (2.58a) ) that the Jacobian of a standard Lorentz transformation
is also unity. It follows that

d*s’ = d*z (2.81)

for a general Lorentz transformation. In other words, a general Lorentz transfor-
mation preserves the volume of space-time. Since time is dilated by a factor v in
a moving frame, the volume of space-time can only be preserved if the volume of
ordinary 3-space is reduced by the same factor. As is well known, this is achieved
by length contraction along the direction of motion by a factor ~.

2.9 4-velocity and 4-acceleration

We have seen that the quantity dz* /ds transforms as a 4-vector under a general
Lorentz transformation (see Eq. (2.47) ). Since ds o d7 it follows that

dx*
po_
v dr

(2.82)
also transforms as a 4-vector. This quantity is known as the j-velocity. Likewise,

the quantity

d2gt dUP
A= = (2.83)

is a 4-vector, and is called the 4-acceleration.

For events along the world-line of a particle traveling with 3-velocity u we

© dx* dx* dt
2
U* = = = fy(u)(u, c), (2.84)

31



where use has been made of Eq. (2.78). This gives the relationship between a par-
ticle’s 3-velocity and its 4-velocity. The relationship between the 3-acceleration
and the 4-acceleration is less straightforward. We have

Ar =2 22 2 —~ (2L udl) 9.
(s vdt(vu,’w) v u+va,c (2.85)

_ dU* dUH d dy dy
dr dt dt )’

where a = du/dt is the 3-acceleration. In the rest frame of the particle U* = (0, ¢)
and A* = (a,0). It follows that

U, A" =0 (2.86)

(note that U, A* is an invariant quantity). In other words, the 4-acceleration of
a particle is always orthogonal to its 4-velocity.

2.10 The current density 4-vector

Let us now consider the laws of electromagnetism. We wish to demonstrate that
these laws are compatible with the relativity principle. In order to achieve this it
is necessary for us to make an assumption about the transformation properties of
electric charge. The assumption which we shall make, which is well substantiated
experimentally, is that charge, unlike mass, is invariant. That is, the charge car-
ried by a given particle has the same measure in all inertial frames. In particular,
the charge carried by a particle does not vary with the particle’s velocity.

Let us suppose, following Lorentz, that all charge is made up of elementary
particles, each carrying the invariant amount e. Suppose that n is the number
density of such charges at some given point and time, moving with velocity wu,
as observed in a frame S. Let ny be the number density of charges in the frame
So in which the charges are momentarily at rest. As is well known, a volume of
measure V in S has measure y(u) V in Sy (because of length contraction). Since
observers in both frames must agree on how many particles are contained in the
volume, and, hence, on how much charge it contains, it follows that n = v(u) no.
If p = en and py = eng are the charge densities in S and Sy, respectively, then

p = (uw)po- (2.87)
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The quantity pg is called the proper density and is obviously Lorentz invariant.

Suppose that x* are the coordinates of the moving charge in S. The current
density 4-vector is constructed as follows:

dz#
M pu _— = IJ,. 2.
JH = po 77 poU (2.88)
Thus,
J* = poy(u)(u,c) = (3, pc), (2.89)

where 3 = pu is the current density 3-vector. Clearly, charge density and current
density transform as the time-like and space-like components of the same 4-vector.

Consider the invariant 4-divergence of J*:

. 0
0" = V-5 + 8—5. (2.90)
We know that one of the caveats of Maxwell’s equations is the charge conservation
law

dp :
5 V=0 (2.91)

It is clear that this expression can be rewritten in the manifestly Lorentz invariant
form

o J" = 0. (2.92)
This equation tells us that there are no net sources or sinks of electric charge in
nature; i.e., electric charge is neither created nor destroyed.

2.11 The potential 4-vector

There are many ways of writing the laws of electromagnetism. However, the most
obviously Lorentz invariant way is to write them in terms of the vector and scalar
potentials. When written in this fashion, Maxwell’s equations reduce to

1 02 p

<—V2 + C_Qﬁ) ¢ - g, (2.93&)
1 0?2 .

(v 224 — i 23
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where ¢ is the scalar potential and A is the vector potential. Note that the differ-
ential operator appearing in these equations is the Lorentz invariant d’Alembertian,
defined in Eq. (2.65). The above pair of equations can be rewritten in the form

ng = P (2.94a)
C€g

OcA = L. (2.94b)
C€g

Maxwell’s equations can be written in Lorentz invariant form provided that the
entity
P+ = (cA, ¢) (2.95)

transforms as a contravariant 4-vector. This entity is known as the potential
4-vector. Tt follows from Egs. (2.89), (2.94), and (2.95) that

JH
O¢t = —. (2.96)
C€p
Thus, the field equations which govern classical electromagnetism can all be

summed up in a single 4-vector equation.

2.12 Gauge invariance

The electric and magnetic fields are obtained from the vector and scalar potentials
according to the prescription

A
E = —v¢—%g, (2.97a)

B = VAA. (2.97b)

These fields are important because they determine the electromagnetic forces
exerted on charged particles. Note that the above prescription does not uniquely
determine the two potentials. It is possible to make the following transformation,
known as a gauge transformation, which leaves the fields unaltered:

¢ — ¢+%%, (2.98a)
A — A-V, (2.98Db)
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where ¢(r,t) is a general scalar field. It is necessary to adopt some form of con-
vention, generally known as a gauge condition, to fully specify the two potentials.
In fact, there is only one gauge condition which is consistent with Egs. (2.93).
This is the Lorentz gauge condition,

1 0¢
— -A=0. 2.99
c2 Ot +V ( )
Note that this condition can be written in the Lorentz invariant form

0,9" = 0. (2.100)

This implies that if the Lorentz gauge holds in one particular inertial frame then
it automatically holds in all other inertial frames. A general gauge transformation
can be written

OF — OF + c M. (2.101)

Note that even after the Lorentz gauge has been adopted the potentials are un-
determined to a gauge transformation using a scalar field ¢» which satisfies the
sourceless wave equation

Oy = 0. (2.102)

However, if we adopt “sensible” boundary conditions in both space and time then
the only solution to the above equation is ) = 0.

2.13 Solution of the inhomogeneous wave equation

Equations (2.93) all have the general form

D¢(T7t) = g(’l",t). (2103)
Can we find a wunique solution to the above equation? Let us assume that the
source function g(7,t) can be expressed as a Fourier integral
(o ]

g(r,t) = / go(r) et dw. (2.104)

— 00
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The inverse transform is

9w (7) = /00 g(r,t) et dt. (2.105)

:% o

Similarly, we may write the general potential ¢ (r,t) as a Fourier integral

Y(r,t) = /_00 Yo (r) e ¥ duw, (2.106)

with the corresponding inverse
1 > iwt
Yo (r) = o P(r,t)e'“" dt. (2.107)
™ — 00

Fourier transformation of Eq. (2.103) yields
(V2 + k*)Yw = —gu, (2.108)

where k = w/c.

The above equation, which reduces to Poisson’s equation in the limit £ — 0,
and is called Helmholtz’s equation, is linear, so we may attempt a Green’s function
method of solution. Let us try to find a function G, (r,r’) such that

(V2 + k) Gy (r,7") = =6(r — 7). (2.109)

The general solution is then
o (r) = / Gu (1) Go(r,7') dV". (2.110)

The “sensible” spatial boundary conditions which we impose are that G, (r,r’) —

0 as |r — 7| = co. In other words, the field goes to zero a long way from the

source. Since the system we are solving is spherically symmetric about the point

r’ it is plausible that the Green’s function itself is spherically symmetric. It

follows that | 2(RC,)
w 2

R dR2 + k*G, = —46(R), (2.111)
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where R =r — v’ and R = |R|. The most general solution to the above equation
in the region R > 0 is!

AeikR + Be—ikR

Gu(R) = 47 R

(2.112)

We know that in the limit & — 0 the Green’s function for Helmholtz’s equation
must tend towards that for Poisson’s equation, which is

Gu(R) = (2.113)

1
4T R’
This is only the case if A+ B = 1.

Reconstructing (7, t) from Eqgs. (2.106), (2.110), and (2.112), we obtain

/
b(r,t) = %//&;) AeTIWURIO 4 peiWHRIO] duay’. (2.114)
T

It follows from Eq. (2.104) that

A [g(r',t-R/c) .., B [g',t+R/c) .,
o(r,t) = E/ D vy E/ S gy 2y

Now, the real space Green’s function for the inhomogeneous wave equation
(2.103) satisfies
OG(r,r";t,t")y =6(r — ") 6(t — ). (2.116)

Hence, the most general solution of this equation takes the form

b(r,t) = / / o(r' ) Glr,v's 4, ) dV'dt. (2.117)
Comparing Egs. (2.115) and (2.117) we obtain

G(r,r';t,t") = AGH) (r,r';t, ) + BGT) (r, 7', t), (2.118)

In principle, A = A(w) and B = B(w), with A + B = 1. However, later on we shall
demonstrate that B = 0, otherwise causality is violated. It follows that A = 1. Thus, it is
legitimate to assume, for the moment, that A and B are constants.
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where
St —[tF|r —r'|/c])

GE(p, r' t,¢) =
(v, ) A |r — /|

: (2.119)

and A+ B = 1.

The real space Green’s function specifies the response of the system to a point
source at position r’ which appears momentarily at time ¢’. According to the
retarded Green’s function G(*) the response consists of a spherical wave, centred
on 7', which propagates forward in time. In order for the wave to reach position
r at time ¢ it must have been emitted from the source at v’ at the retarded time
t, =t—|r —7'|/c. According to the advanced Green’s function G(~) the response
consists of a spherical wave, centred on r’, which propagates backward in time.
Clearly, the advanced potential is not consistent with our ideas about causality,
which demand that an effect can never precede its cause in time. Thus, the
Green’s function which is consistent with our experience is

o(t' — [t —[r—7'|/c])

G "tt’ :G(-|—) "tt’ —
(r?r7 bl ) (7-77-’ bl ) 47_(_|,r_r,|

(2.120)

We are able to find solutions of the inhomogeneous wave equation (2.103) which
propagate backward in time because this equation is time symmetric (i.e., it is
invariant under the transformation ¢t — —t).

In conclusion, the most general solution of the inhomogeneous wave equation
(2.103) which satisfies sensible boundary conditions at infinity and is consistent
with causality is

glr'st —|r —r'l/c) ..
= . 2.121
This expression is sometimes written
lg(r")] :
t) = d 2.122

where the rectangular bracket symbol [] denotes that the terms inside the bracket
are to be evaluated at the retarded time ¢t — |r — 7’| /c. Note, in particular, from
Eq. (2.122) that if there is no source (i.e., g(r,t) = 0) then there is no field (i.e.,
Y(r,t) = 0). But, is the above solution really unique? Unfortunately, there is a
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weak link in our derivation, between Egs. (2.110) and (2.111), where we assume
that the Green’s function for the Helmholtz equation subject to the boundary
condition G (r,r’) — 0 as |r — r’'| = oo is spherically symmetric. Let us try to
fix this problem.

With the benefit of hindsight, we can see that the Green’s function

ei kR

:47rR

Gu(R) (2.123)

corresponds to the retarded solution in real space and is, therefore, the correct
physical Green’s function. The Green’s function

e—ikR

47 R

G,(R) = (2.124)
corresponds to the advanced solution in real space and must, therefore, be re-
jected. We can select the retarded Green’s function by imposing the following
boundary condition at infinity

: oG .
This is called the Sommerfeld radiation condition; it basically ensures that sources

radiate waves instead of absorbing them. But, does this boundary condition

uniquely select the spherically symmetric Green’s function (2.123) as the solution
of
(V2 + k%G, (R,0,p) = —6(R)? (2.126)

Here, (R, 0, ) are spherical polar coordinates. If it does then we can be sure that
Eq. (2.122) represents the unique solution of the wave equation (2.103) which is
consistent with causality.

Let us suppose that there are two solutions of Eq. (2.126) which satisfy the
boundary condition (2.125) and revert to the unique Green’s function for Poisson’s
equation (2.113) in the limit R — 0. Let us call these solutions w; and wus, and
let us form the difference w = uq; — us. Consider a surface g which is a sphere
of arbitrarily small radius centred on the origin. Consider a second surface ¥
which is a sphere of arbitrarily large radius centred on the origin. Let V' denote
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the volume enclosed by these surfaces. The difference function w satisfies the
homogeneous Helmholtz equation,

(V2 4+ EHw = 0, (2.127)

throughout V. According to Green’s theorem

/(wV2 — w*V2w) dV = (/ /)( o (89:) s,  (2.128)
1% Yo

where 0/0n denotes a derivative normal to the surface in question. It is clear
from Eq. (2.127) that the volume integral is zero. It is also clear that the first
surface integral is zero, since both u; and us must revert to the Green’s function
for Poisson’s equation in the limit R — 0. Thus,

ow*™ L Ow
= 0. 2.12
/200 <w . an) dS =0 (2.129)

Equation (2.127) can be written

0?’(Rw) D(Rw)

2 —
9R? + 72 + k“ Rw =0, (2.130)
where D is the spherical harmonic operator
1 0 0 1 02
D = 0— —— . 2.131
5in 6 00 (Sm ae) T SinZ0 052 (2.131)

The most general solution of Eq. (2.130) takes the form (see Section 7)

w(R,0,¢) = i |Cim b (kR) + Dign h{*) (kR) | Yim (6, ). (2.132)

I,m=0

Here, the C},, and Dj,, are arbitrary coefficients, the Y}, are spherical harmonics,?

and
1,2 1,2
h () = / S e (2.133)

2J.D. Jackson, Classical Electrodynamics, (Wlley, 1962), p. 99
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where H!? are Hankel functions of the first and second kind.? It can be demon-
strated that?

2 (n,m)
Ly — ]2 ie—(nt1/2)n/2) L) 2.134
Hn(p) - e m:%;%” (—2i ,O)m’ ( 3 a)

2 i (n, m)
H2(0) = ]2 emilo—(n+1/2)m/2) DT (2.134b
n(p) P m:§2,m (_|_21p)m ( )

where
(4n? —1)(4n? — 9) - -- (4n? — {2m — 1}?)

22m m]
and (n,0) = 1. Note that the summations in Eqgs. (2.314) terminate after n+1/2
terms.

(n,m) = (2.135)

The large R behaviour of the hl(z) is clearly inconsistent with the Sommerfeld
radiation condition (2.125). It follows that all of the Dy, in Eq. (2.132) are zero.
The most general solution can now be expressed in the form

1kR o0

w(R,0,¢ (2.136)

where the f,, (0, ) are various weighted sums of the spherical harmonics. Substi-
tution of this solution into the differential equation (2.130) yields

21 kn n(n + 1) D
1kR
Z < R’n—+—1 Rn+2 Rn+2> fn = 0. (2137)

Replacing the index of summation n in the first term of the parentheses by n+ 1
we obtain

cikR i —2ik (n + 1) fny1 + [n(n + 1) + D] fy

o =0, (2.138)

n=0
3J.D. Jackson, Classical Electrodynamics, (Wiley, 1962), p. 104

4A. Sommerfeld, Partial differential equations in physics, (Academic Press, New York, 1964),
p- 117
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which gives us the recursion relation
2ik(n + 1) fpy1 = [n(n+ 1) + D]f,. (2.139)
It follows that if fo = 0 then all of the f,, are equal to zero.

Let us now consider the surface integral (2.129). Since we are interested in
the limit R — oo we can replace w by the first term of its expansion in (2.136),

SO
ow* ow
—w'—— | dS = -2ik 2dQ =0 2.140
/Eoo (w on 871) ' ,/|f0| ’ ( )
where df) is a unit of solid angle. It is clear that fy; = 0. This implies that
fi = fo2 = --- = 0 and, hence, that w = 0. Thus, there is only one solution of

Eq. (2.126) which is consistent with the Sommerfeld radiation condition, and this
is given by Eq. (2.123). We can now be sure that Eq. (2.122) is a unique solution of
Eq. (2.103) subject to the boundary condition (2.125). This boundary condition
basically says that infinity is an absorber of radiation but not an emitter, which
seems entirely reasonable.

2.14 Retarded potentials

Equations (2.94) have the same form as the inhomogeneous wave equation (2.103),
so we can immediately write the solutions to these equations as

s(rt) = 47360 / |£f’(_’"2}| v, (2.141a)
A(r,t) = Z—; |E?(_T2}|dv’. (2.141b)

Moreover, we can be sure that these solutions are unique, subject to the reason-
able proviso that infinity is an absorber of radiation but not an emitter. This
is a crucially important point. Whenever the above solutions are presented in
physics textbooks there is a tacit assumption that they are unique. After all, if
they were not unique why should we choose to study them instead of one of the
other possible solutions? The uniqueness of the above solutions has a physical
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interpretation. It is clear from Eqgs. (2.141) that in the absence of any charges
and currents there are no electromagnetic fields. In other words, if we observe
an electromagnetic field we can be certain that if we were to trace it backward
in time we would eventually discover that it was emitted by a charge or a cur-
rent. In proving that the solutions of Maxwell’s equations are unique, and then
finding a solution in which all waves are emitted by sources, we have effectively
ruled out the possibility that the vacuum can be “unstable” to the production of
electromagnetic waves without the need for any sources.

Equations (2.141) can be combined to form the solution of the 4-vector wave
equation (2.96),

1 JH
oF = / [/*] dV. (2.142)
4megc r
Here, the components of the 4-potential are evaluated at some event P in space-
time, r is the distance of the volume element dV from P, and the square brackets

indicate that the 4-current is to be evaluated at the retarded time; 7.e., at a time
r/c before P.

But, does the right-hand side of Eq. (2.142) really transform as a contravariant
4-vector? This is not a trivial question since volume integrals in 3-space are
not, in general, Lorentz invariant due to the length contraction effect. However,
the integral in Eq. (2.142) is not a straightforward volume integral because the
integrand is evaluated at the retarded time. In fact, the integral is best regarded
as an integral over events in space-time. The events which enter the integral
are those which intersect a spherical light wave launched from the event P and
evolved backwards in time. In other words, the events occur before the event P
and have zero interval with respect to P. It is clear that observers in all inertial
frames will, at least, agree on which events are to be included in the integral,
since both the interval between events and the absolute order in which events
occur are invariant under a general Lorentz transformation.

We shall now demonstrate that all observers obtain the same value of dV/r
for each elementary contribution to the integral. Suppose that S and S’ are
two inertial frames in the standard configuration. Let unprimed and primed
symbols denote corresponding quantities in S and S’, respectively. Let us assign
coordinates (0,0,0,0) to P and (z,y, z,ct) to the retarded event @ for which r
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and dV are evaluated. Using the standard Lorentz transformation (2.19), the
fact that the interval between events P and () is zero, and the fact that both ¢
and t' are negative, we obtain
vE
r'=—ct' = —cy (t — 6_2) : (2.143)
where v is the relative velocity between frames S’ and S, v is the Lorentz factor,
and 7 = /22 + y2 + 22, etc. It follows that

t
r =y (_C_ T %) =ry (1 + Y cosH) , (2.144)
r cr c

where 6 is the angle (in 3-space) subtended between the line PQ and the z-axis.

We now know the transformation for . What about the transformation for
dV? We might be tempted to set dV’ = vdV, according to the usual length
contraction rule. However, this is wrong. The contraction by a factor v only
applies if the whole of the volume is measured at the same time, which is not the
case in the present problem. Now, the dimensions of dV along the y— and z—
axes are the same in both S and §’, according to Egs. (2.19). For the z-dimension
these equations give dz’ = y(dz — vdt). The extremities of dx are measured at
times differing by dt, where®

dt = _dr_ _de cos 6. (2.145)
¢ ¢
Thus,
- v
dz' = (1 + -, cos 0) v dx, (2.146)
giving
) v
v’ = (142 cos6) ydV. (2.147)
c

It follows from Egs. (2.144) and (2.147) that dV'/r’ = dV/r. This result will
clearly remain valid even when S and S’ are not in the standard configuration.

5Note that dr = dz cos @, despite the fact that £ = r cosf. This comes about because the
volume element dV is aligned along a radius vector.
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Thus, dV/r is an invariant and, therefore, [J#]dV/r is a contravariant 4-
vector. For linear transformations, such as a general Lorentz transformation, the
result of adding 4-tensors evaluated at different 4-points is itself a 4-tensor. It
follows that the right-hand side of Eq. (2.142) is a contravariant 4-vector. Thus,
this 4-vector equation can be properly regarded as the solution to the 4-vector
wave equation (2.96).

2.15 Tensors and pseudo-tensors

The totally antisymmetric fourth rank tensor is defined

+1 for o, 3,7,06 any even permutation of 1,2,3,4
B = 1 for a, 8,7,d any odd permutation of 1,2, 3,4
0 otherwise
(2.148)

The components of this tensor are invariant under a general Lorentz transforma-
tion, since
6 ! / ! 6/ ! ! 161 ! -l 16/
€10 ' pf ' pl = B || = BT (2.149)

where | pﬁl | denotes the determinant of the transformation matrix, or the Jacobian
of the transformation, which we have already established is unity for a general
Lorentz transformation. We can also define a totally antisymmetric third rank
tensor €% which stands in the same relation to 3-space as €*87° does to space-
time. It is easily demonstrated that the elements of €% are invariant under a
general translation or rotation of the coordinate axes. The totally antisymmetric
third rank tensor is used to define the cross product of two 3-vectors,

(@ Ab)' = €% a; by, (2.150)
and the curl of a 3-vector field,
94
i __ ijk k
(VAA) =¢ EE R (2.151)
The following two rules are often useful in deriving vector identities
ey = 83 6F — 6] ok, (2.152a)
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ke = 26F. (2.152b)

Up to now we have restricted ourselves to three basic types of coordinate trans-
formation; namely, translations, rotations, and standard Lorentz transformations.
An arbitrary combination of these three transformations constitutes a general
Lorentz transformation. Let us now extend our investigations to include a fourth
type of transformation known as a parity inversion; i.e., x,y,z, > —x, —Yy, —Z.
A reflection is a combination of a parity inversion and a rotation. As is eas-
ily demonstrated, the Jacobian of a parity inversion is —1, unlike a translation,
rotation, or standard Lorentz transformation, which all possess Jacobians of +1.

The prototype of all 3-vectors is the difference in coordinates between two
points in space, r. Likewise, the prototype of all 4-vectors is the difference in
coordinates between two events in space-time, R* = (r,ct). It is not difficult to
appreciate that both of these objects are invariant under a parity transformation
(in the sense that they correspond to the same geometric object before and after
the transformation). It follows that any 3- or 4-tensor which is directly related
to » and RF, respectively, is also invariant under a parity inversion. Such ten-
sors include the distance between two points in 3-space, the interval between two
points in space-time, 3-velocity, 3-acceleration, 4-velocity, 4-acceleration, and the
metric tensor. Tensors which exhibit tensor behaviour under translations, rota-
tions, special Lorentz transformations, and are invariant under parity inversions,
are termed proper tensors, or sometimes polar tensors. Since electric charge is
clearly invariant under such transformations (i.e., it is a proper scalar) it follows
that 3-current and 4-current are proper vectors. It is also clear from Eq. (2.96)
that the scalar potential, the vector potential, and the potential 4-vector, are
proper tensors.

It follows from Eq. (2.149) that €*#7% — —e®*?7% under a parity inversion.
Tensors like this, which exhibit tensor behaviour under translations, rotations,
and special Lorentz transformations, but are mot invariant under parity inver-
sions (in the sense that they correspond to different geometric objects before and
after the transformation), are called pseudo-tensors, or sometimes azial tensors.
Equations (2.150) and (2.151) imply that the cross product of two proper vectors
is a pseudo-vector, and the curl of a proper vector field is a pseudo-vector field.
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One particularly simple way of performing a parity transformation is to ex-
change positive and negative numbers on the three Cartesian axes. A proper
vector is unaffected by such a procedure (i.e., its magnitude and direction are the
same before and after). On the other hand, a pseudo-vector ends up pointing in
the opposite direction after the axes are renumbered.

-~

What is the fundamental difference between proper tensors and pseudo-tensors
The answer is that all pseudo-tensors are defined according to a handedness con-
vention. For instance, the cross product between two vectors is conventionally
defined according to a right-hand rule. The only reason for this is that the major-
ity of human beings are right-handed. Presumably, if the opposite were true then
cross products etc. would be defined according to a left-hand rule and would,
therefore, take minus their conventional values. The totally antisymmetric ten-
sor is the prototype pseudo-tensor and is, of course, conventionally defined with
respect to a right-handed spatial coordinate system. A parity inversion converts
left into right and vice versa and, thereby, effectively swaps left- and right-handed
conventions.

The use of conventions in physics is perfectly acceptable provided that we
recognize that they are conventions and are consistent in their use. It follows that
laws of physics cannot contain mixtures of tensors and pseudo-tensors, otherwise
they would depend our choice of handedness convention.®

Let us now consider electric and magnetic fields. We know that

oA
ot’
B = VAA. (2.153Db)

E = —-V¢- (2.153a)

We have already seen that the scalar and the vector potential are proper scalars
and vectors, respectively. It follows that E is a proper vector but that B is a
pseudo-vector (since it is the curl of a proper vector). In order to fully appreci-
ate the difference between electric and magnetic fields let us consider a thought

6Here, we are assuming that the laws of physics do not possess an intrinsic handedness. This
is certainly the case for mechanics and electromagnetism. However, the weak interaction does
possess an intrinsic handedness; i.e., it is fundamentally different in a parity inverted universe.
So, the equations governing the weak interaction do actually contain mixtures of tensors and
pseudo-tensors.
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experiment first proposed by Richard Feynman. Suppose that we are in radio
contact with a race of aliens and are trying to explain to them our system of
physics. Suppose, further, that the aliens live sufficiently far away from us that
there are no common objects which we both can see. The question is this: could
we unambiguously explain to these aliens our concepts of electric and magnetic
fields? We could certainly explain electric and magnetic lines of force. The former
are the paths of charged particles (assuming that the particles are subject only
to electric fields) and the latter can be mapped out using small test magnets. We
could also explain how we put arrows on electric lines of force to convert them
into electric field lines: the arrows run from positive charges (i.e., charges with
the same sign as atomic nuclei) to negative charges. This explanation is unam-
biguous provided that our aliens live in a matter (rather than an anti-matter)
dominated part of the universe. But, could we explain how we put arrows on
magnetic lines of force in order to convert them into magnetic field lines? The
answer is no. By definition, magnetic field lines emerge from the north poles of
permanent magnets and converge on the corresponding south poles. The defini-
tion of the north pole of a magnet is simply that it possesses the same magnetic
polarity as the north pole of the Earth. This is obviously a convention. In fact,
we could redefine magnetic field lines to run from the south poles to the north
poles of magnets without significantly altering our laws of physics (we would just
have to replace B by —B in all our equations). In a parity inverted universe a
north pole becomes a south pole and vice versa, so it is hardly surprising that

B —-B.

2.16 The electromagnetic field tensor

Let us now investigate whether we can write the components of the electric and
magnetic fields as the components of some proper 4-tensor. There is an obvious
problem here. How can we identify the components of the magnetic field, which
is a pseudo-vector, with any of the components of a proper-4-tensor? The former
components transform differently under parity inversion than the latter compo-

"Note that it would actually be possible to unambiguously communicate to our concepts of
left and right to our hypothetical aliens using the fact that the weak interaction possesses an
intrinsic handedness.
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nents. Consider a proper-3-tensor whose covariant components are written By,

and which is antisymmetric:
B;; = —Bj;. (2.154)

This immediately implies that all of the diagonal components of the tensor are
zero. In fact, there are only three independent non-zero components of such a
tensor. Could we, perhaps, use these components to represent the components of
a pseudo-3-vector? Let us write
Bi — L ikp, 2.155
= 9 € jk- ( . )
It is clear that B® transforms as a contravariant pseudo-3-vector. It is easily seen
that
0 B, —-B,
BY=B;;=| -B, 0 B, [, (2.156)
B, —-B; 0

where B! = B; = B,, etc. In this manner, we can actually write the components
of a pseudo-3-vector as the components of an antisymmetric proper-3-tensor. In
particular, we can write the components of the magnetic field B in terms of an
antisymmetric proper magnetic field 3-tensor which we shall denote B;;.

Let us now examine Eqgs. (2.153) more carefully. Recall that ¢, = (—cA, ¢)
and 9, = (V,c™19/0t). Tt follows that we can write Eq. (2.153a) in the form

E;, = —0,P4 + 049;. (2157)

Equation (2.153b) can be written

cB' = 2 "% cBjy, = —¢'* 0, &y, (2.158)

Let us multiply this expression by €;,5, making use of the identity
€iap €97 = 535 — 516k (2.159)

We obtain .

2 (Bab — Bba) = —0,Pp + 0P, (2.160)
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or
CBij = —aiqu + aqui, (2161)

since B;; = —Bj;.
Let us define a proper-4-tensor whose covariant components are given by
Fo,=0,9,—0,9,. (2.162)
It is clear that this tensor is antisymmetric:
F,,=—-F,,. (2.163)

This implies that the tensor only possesses six independent non-zero components.
Maybe it can be used to specify the components of E and B?

Equations (2.157) and (2.162) yield
Fji = 0,®; — 8,8, = E;. (2.164)

Likewise, Egs. (2.161) and (2.162) imply that

Fij = (9,@] - 83@1 = —CBij. (2165)
Thus,
Fi = _F4i = —Ez', (2166&)

In other words, the completely space-like components of the tensor specify the
components of the magnetic field, whereas the hybrid space and time-like com-
ponents specify the components of the electric field. The covariant components
of the tensor can be written

P, = . 2.167

+E, +E, +E. 0
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Not surprisingly, F},, is usually called the electromagnetic field tensor. The above
expression, which appears in all standard textbooks, is very misleading. Taken
at face value, it is simply wrong! We cannot form a proper-4-tensor from the
components of a proper-3-vector and a pseudo-3-vector. The expression only
makes sense if we interpret B, say, as representing the component B3z of the
proper magnetic field 3-tensor B;;

The contravariant components of the electromagnetic field tensor are given

by

F4 = _F%=4F" (2.168a)
F9 = —FI"= _¢BY, (2.168b)
or
0 —cB, +cB, +E;
B 0 —cB, +E
prv — | TP CBa T hy (2.169)

—cB, +cBy 0 +F,
-FE, -E, -—E, 0

Let us now consider two of Maxwell’s equations:

vV.E = 2 (2.170a)
€0
E
VAB = pg <j+eoaa—t). (2.170D)

Recall that the 4-current is defined J* = (j, pc). The first of these equations can
be written
. . J4
OE" = 0;F'"* + 9, F** = —. (2.171)
CE€p

since F'** = 0. The second of these equations takes the form

€% 9, cBy — 04" = 7% 9;(1/2 €3qp cB®) + 04 F4 = e (2.172)
Making use of Eq. (2.159), the above expression reduces to
1 ij i 4i i 4i J!
5 8j (CB b — B’ ) + Oy F™ = 8jFJ + Oy F™ = e (2.173)
€0
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Equations (2.171) and (2.173) can be combined to give
JV

ry _
B FH =
C€p

(2.174)

This equation is consistent with the equation of charge continuity, 9,J* = 0,
because of the antisymmetry of the electromagnetic field tensor.

2.17 The dual electromagnetic field tensor

We have seen that it is possible to write the components of the electric and
magnetic fields as the components of a proper-4-tensor. Is it also possible to
write the components of these fields as the components of some pseudo-4-tensor?
It is obvious that we cannot identify the components of the proper-3-vector E
with any of the components of a pseudo-tensor. However, we can represent the
components of F in terms of those of an antisymmetric pseudo-3-tensor E;; by
writing
1

E' = 5 R E,),. (2.175)

It is easily demonstrated that
EY=E;=| —-E, 0 E, |, (2.176)

in a right-handed coordinate system.
Consider the dual electromagnetic field tensor G*¥, which is defined

1
G =2 e PF, 5. (2.177)

This tensor is clearly an antisymmetric pseudo-4-tensor. We have

1, 1 .. 1 .. ;
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plus

GY = 5 (621k4Fk;4 + 6”4kF4k) = 61‘7ka47 (2179)
where use has been made of F,, = —F,,. The above expression yields
G = —ek |, = 9 € Fepap B0 = — B, (2.180)
It follows that
G* = —GY = -cB', (2.181a)
GY = -GV =_-FEY, (2.181b)
or
0 -FE, +E, —cB;
—f—Ez 0 _E:c —cB
aw — vl 2.182

+cB; +c¢By +cB, 0

The above expression is, again, slightly misleading, since E, stands for the compo-
nent E?3 of the pseudo-3-tensor E¥ and not for an element of the proper-3-vector
E. Of course, in this case B, really does represent the first element of the pseudo-
3-vector B. Note that the elements of G*¥ are obtained from those of F#¥ by
making the transformation ¢cB% — EY and E' — —cB".

The covariant elements of the dual electromagnetic field tensor are given by

Gia = -Gy = +cB;, (2183&)
Gij = —Gj=—E, (2.183b)
or
0 —E, +E, +cB,
E., 0 -E, B
Go=| T By (2.184)

-E, +E; 0 +cB,
—cB; —cB, —cB, 0

The elements of G, are obtained from those of F},, by making the transformation
CBij — Eij and E;, — —cB;.
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Let us now consider the two Maxwell equations

V-B = 0, (2.185a)

VAE = —88—1:. (2.185b)

The first of these equations can be written
—0;cB" = 0;G™ 4 0,G** = 0, (2.186)
since G** = 0. The second equation takes the form
¢%0; By = €'%0;(1/2 €xap E®°) = 0, E" = —04cB", (2.187)

or

0,G7" 4 9,G* = 0. (2.188)
Equations (2.186) and (2.188) can be combined to give
8,G* = 0. (2.189)

Thus, we conclude that Maxwell’s equations for the electromagnetic fields are
equivalent to the following pair of 4-tensor equations:

Jv
o= .
8, p (2.190a)
8,G* = 0. (2.190b)

It is obvious from the form of these equations that the laws of electromagnetism
are invariant under translations, rotations, special Lorentz transformations, par-
ity inversions, or any combination of these transformations.

2.18 The transformation of electromagnetic fields

The electromagnetic field tensor transforms according to the standard rule

FHY = prephpy, (2.191)
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This easily yields the celebrated rules for transforming electromagnetic fields:

|’| = E”, (2.192&)
1 = By (2.192b)
E| = ~(E_+vAB), (2.192c)
B, = ~(B.—-vAE/&), (2.192d)

where v is the relative velocity between the primed and unprimed frames, and the
perpendicular and parallel directions are, respectively, perpendicular and parallel
to v.

At this stage we may conveniently note two important invariants of the elec-
tromagnetic field. They are

1
5 Fu F" = ¢*B* - E?, (2.193)

and .
1 G,WF‘“’ =cF-B. (2.194)

The first of these quantities is a proper-scalar and the second is a pseudo-scalar.

2.19 The potential due to a moving charge

Suppose that a particle carrying a charge e moves with uniform velocity u through
a frame S. Let us evaluate the vector potential A and the scalar potential ¢ due
to this charge at a given event P in §.

Let us choose coordinates in S so that P = (0,0,0,0) and v = (,0,0). Let
S’ be that frame in the standard configuration with respect to S in which the
charge is (permanently) at rest, say at the point (z’,3’,2’). In S’ the potential
at P is the usual potential due to a stationary charge

A = 0, (2.195a)
(&

9 = — (2.195b)

Amegr!’
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where 7' = /x'2 + y'2 + 2'2. Let us now transform these equations directly into
the frame S. Since A* = (cA,¢) is a contravariant 4-vector, its components
transform according to the standard rules (2.57). Thus,

u Yu e

A, = ( A4+ Y ’) — _Tque 2.196
A T\¢ 1—|_c¢ dmegcer! ( 2)
cAs = cA, =0, (2.196D)
cAs = cA;=0, (2.196¢)

!/ u / fye

_ YA ) =€ 2.196d
¢ K <¢ + c 1 4megr! ( )
since f = —u/c in this case. It remains to express the quantity r’ in terms of

quantities measured in S. The most physically meaningful way of doing this is
to express v’ in terms of retarded values in S. Consider the retarded event at
the charge for which, by definition, »’ = —ct’ and r = —ct. Using the standard
Lorentz transformation (2.19) we find that

r' = —ct' = —cy(t —uz/c?) = ry(1 4+ u, /c), (2.197)

where u, = ux/r = r-u/r denotes the radial velocity of the change in §. We can
now rewrite Egs. (2.196) in the form

_ Hoe€ [u]
A = (2.198a)
6 = - ! (2.198b)

Areg [r +r-u/c]’

where the square brackets, as usual, indicate that the enclosed quantities must
be retarded. For a uniformly moving charge the retardation of u is, of course,
superfluous. However, since

o= ! / " 4y (2.199)
4meg r

it is clear that the potentials depend only on the (retarded) velocity of the charge

and not on its acceleration. Consequently, the expressions (2.198) give the correct

potentials for an arbitrarily moving charge. They are known as the Liénard-

Wiechert potentials.
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2.20 The electromagnetic field due to a uniformly moving
charge

Although the field generated by a uniformly moving charge can be calculated
from the expressions (2.198) for the potentials, it is simpler to calculate it rela-
tivistically from first principles.

Let a charge e, whose position vector at time ¢ = 0 is 7, move with uniform
velocity w in a frame S whose z-axis has been chosen in the direction of u. We
require to find the field strengths E and B at the event P = (0,0,0,0). Let S’ be
that frame in standard configuration with S in which the charge is permanently
at rest. In S’ the field is given by

B = 0, (2.200a)

e 7
B = - (2.200D)

This field must now be transformed into the frame S. The direct method, using
Eqgs. (2.192), is somewhat simpler here, but we shall use a somewhat indirect
method because of its intrinsic interest.

In order to express Eq. (2.200) in tensor form, we need the electromagnetic
field tensor F'* on the left, and the position 4-vector R* = (7, ct) and the scalar
e/(4meg %) on the right. (We regard r’ as an invariant for all observers.) To
get a vanishing magnetic field in S’ we multiply on the right by the 4-velocity
U* = v(u)(u, c), thus tentatively arriving at the equation

=% _UMRY (2.201)
dregcr!
Recall that F* = —FE* and F¥ = —cB%. This equation cannot be correct,

because the antisymmetric tensor F'#¥ can only be equated to another antisym-

metric tensor. Consequently, we try the equation
P = __(UMR” — U"RM). (2.202)

dmegcr! 3

This is found to give the correct field at P in S’ as long as R refers to any event
at the charge, no matter which. It only remains to interpret (2.202) in S. It is
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convenient to choose for R* that event at the charge at which ¢ = 0 (not the
retarded event). Thus,

Pt = —oBTt = s ) (/= o), (2.203)
0
giving
1 .
B; 3 EijkBjk = —4’;():3 v(u) eijku’rk, (2.204)
or e
B —ZO Tunr. (2.205)
mr
Likewise,
F4% — _pi = 4W‘207T,3 r (2.206)
or ey
B=- (2.207)

Lastly, we must find an expression for r’ % in terms of quantities measured in §
at time ¢ = 0. If ¢’ is the corresponding time in S’ at the charge, we have

2,22 2, 2
L R u2a: = 2 (1 + 7 Zr ) : (2.208)
c c
Thus,
€ Y
B - _ 2.209
4req r3(1 + u,2 2 /c?)3/2 T ( a)
Po € gl 1
B = - Ar=—=ulE. 2.209b
4 r3(1 + u,2~2/c?)3/2 unr=24 ( )

Note that E acts in line with the point which the charge occupies at the instant
of measurement despite the fact that, owing to the finite speed of propagation of
all physical effects, the behaviour of the charge during a finite period before that
instant can no longer affect the measurement. Note also that, unlike Egs. (2.198),
the above expressions for the fields are not valid for an arbitrarily moving charge,
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not can they be made valid by merely using retarded values. For whereas accel-
eration does not affect the potentials, it does affect the fields, which involve the
derivatives of the potential.

For low velocities, u/c — 0, Egs. (2.209) reduce to the well known Coulomb
and Biot-Savart fields. However, at high velocities, y(u) > 1, the fields exhibit
some interesting behaviour. The peak electric field, which occurs at the point of
closest approach of the charge to the observation point, becomes equal to v times
its non-relativistic value. However, the duration of appreciable field strength at
the point P is decreased. A measure of the time interval over which the field is
appreciable is

At~ (2.210)

ve
where b is the distance of closest approach (assuming v > 1). As v increases, the
peak field increases in proportion, but its duration goes in the inverse proportion.
The time integral of the field is independent of 4. As v — oo the observer at P
sees electric and magnetic fields which are indistinguishable from the fields of a
pulse of plane polarized radiation propagating in the z-direction. The direction
of polarization is along the radius vector pointing towards the particle’s actual
position at the time of observation.

2.21 Relativistic particle dynamics

Consider a particle which, in its instantaneous rest frame Sy, has mass mg and
constant acceleration in the z-direction ag. Let us transform to a frame .5, in the
standard configuration with respect to Sy, in which the particle’s instantaneous

velocity is u. What is the value of a, the particle’s instantaneous x-acceleration,
in S7

The easiest way in which to answer this question is to consider the acceleration
4-vector (see Eq. (2.85))

d d
AP = (lu+7a,cl>. (2.211)
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Using the standard transformation (2.57) for 4-vectors, we obtain

d
d—Zu—I—fya = ayo, (2.212a)
dy _ ua (2.212b)
d 2 '
It follows that a
a= 7—2 (2.213)

The above equation can be written

du
= 3 2.214

where f = mgag is the constant force (in the z-direction) acting on the particle
in So.

Equation (2.214) is equivalent to

d(mu)
= 2.21
where
m = ymy. (2.216)

Thus, we can account for the ever decreasing acceleration of a particle subject
to a constant force (see Eq. (2.213)) by supposing that the inertial mass of the
particle increases with its velocity according to the rule (2.216). Henceforth, mg
is termed the rest mass, and m the inertial mass.

The rate of increase of the particle’s energy E satisfies

dFE 3 du
= fu= —. 2.21
o fu=moy°u o (2.217)
This equation can be written
dE  d(mc?)
= 2.218
dt dt ’ ( )
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which can be integrated to yield Einstein’s famous formula

E = mc>. (2.219)

The 3-momentum of a particle is defined
p = mu, (2.220)

where u is its 3-velocity. Thus, by analogy with Eq. (2.215), Newton’s law of
motion can be written

dp
= — 2.221
where f is the 3-force acting on the particle.

The 4-momentum of a particle is defined
P¥ = moU* = ymo(u,c) = (p, E/c), (2.222)

where U* is its 4-velocity. The 4-force acting on the particle obeys

FH = Z— = myA¥, (2.223)

_ dm _ (g I
P (18 =1 (1.79), 28
since IE
i f-u. (2.225)

2.22 The force on a moving charge

The electromagnetic 3-force acting on a charge e moving with 3-velocity w is
given by the well known formula

f=e(E+uAB). (2.226)
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When written in component form this expression becomes
fi = e(E; + €, u? BY), (2.227)

or
fi = G(EZ + Bij uj), (2228)

where use has been made of Eq. (2.155).

Recall that the components of the E and B fields can be written in terms of
an antisymmetric electromagnetic field tensor F),, via

Fi = _F4i = _Ei, (2229&)
Fi‘ = —Fji = —CBZ'j. (2229b)

Equation (2.228) can be written
fi = _i(FM U* + F; UY), (2.230)
Y

where U* = 7(u, ¢) is the particle’s 4-velocity. It is easily demonstrated that

fv = CE = E(Fu Ut + Fiu UY). (2.231)
c c c Yy

Thus, the 4-force acting on the particle,

e (1), -

c
can be written in the form

F, = Z F,, U (2.233)

The skew symmetry of the electromagnetic field tensor ensures that

FL U = ZF,W UrUY = 0. (2.234)
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This is an important result since it ensures that electromagnetic fields do not
change the rest mass of charged particles. In order to appreciate this, let us
assume that the rest mass mg is not a constant. Since

d(moUM) dmo
—_ — A i 2.2
7 o =moAu+ — = U, (2.235)
we can use the standard results U,U* = ¢ and A,U* =0 to give
dmo
fHU'u = C2 ?. (2236)

Thus, if rest mass is to remain an invariant it is imperative that all laws of
physics predict 4-forces acting on particles which are orthogonal to the particles’
4-velocities. The laws of electromagnetism pass this test.

2.23 The electromagnetic energy tensor

Consider a continuous volume distribution of charged matter in the presence of
an electromagnetic field. Let there be ng particles per unit proper volume (unit
volume determined in the local rest frame), each carrying a charge e. Consider
an inertial frame in which the 3-velocity field of the particles is w. The number
density of the particles in this frame is n = (u) ng. The charge density and the
3-current due to the particles are p = en and 3 = en u, respectively. Multiplying
Eq. (2.233) by the proper number density of particles ng, we obtain an expression

1
fu=_FuwJ” (2.237)

for the 4-force f, acting on unit proper volume of the distribution due to the
ambient electromagnetic fields. Here, we have made use of the definition J# =
engU*. Tt is easily demonstrated, using some of the results obtained in the
previous section, that

E-j
j= (,;E +jAB, 7“) . (2.238)

The above expression remains valid when there are many charge species (e.g.,
electrons and ions) possessing different number density and 3-velocity fields. The
4-vector f* is usually called the Lorentz force density.
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We know that Maxwell’s equations reduce to

JV
Frr = — 2.2
Oy o (2.239a)
.G = 0, (2.239b)

where F* is the electromagnetic field tensor and G*¥ is its dual. As is easily
verified, Eq. (2.239b) can also be written in the form

OuFye + 0, Fyy + 0, F,, = 0. (2.240)
Equations (2.237) and (2.239a) can be combined to give
fo =€ Fpo 0,F". (2.241)
This expression can also be written
fo =€0(0u(F*° Fyp) — FH° 0, F,;). (2.242)

Now,
1
F*0,F,, = §F“"(8“F,,a + 0o Fuv), (2.243)

where use has been made of the antisymmetry of the electromagnetic field tensor.
It follows from Eq. (2.240) that

1 1
Fre O, Fye = —§F“U 0 Fp, = Z6,,(F“”FW). (2.244)
Thus,
1
fu = €0 ((%(F’“’FW) — ZaV(FMF“U)) i (2.245)

The above expression can also be written
fl/ = _8,uT“u; (2246)

where .
TF, = ¢ (F“"Fa,, + Zd{j(Fp”Fpa)) (2.247)
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is called the electromagnetic energy tensor. Note that T*, is a proper-4-tensor.
It follows from Egs. (2.167), (2.169), and (2.193) that

. : BiB; 1 B*B
sz = GOEZEJ' + - 5; - (60EkEk + k) , (2248&)
o 2 o

, UkE.B

T, = -T%=°""3"F (2.248b)
Mo C
1 B*B
T = = (eOE’“Ek + ’“) : (2.248¢)
2 Ho
Equation (2.246) can also be written
f*=-0,T"", (2.249)
where T is a symmetric tensor whose elements are
g . BiBi .1 B?
TY = —eFE'E’ — + 0% = <60E2 + —) , (2.250a)
JI% 2 o

. . (EAB)

riv = i = (EAB) (2.250D)
Mo €

1 B?

T = - (60E2 + —) : (2.250c)
2 Ho

Consider the time-like component of Eq. (2.249). It follows from Eq. (2.238)
that

= _ e, — 9, (2.251)
c
This equation can be rearranged to give
ow
—+4+V.e=—-E-j 2.252
where W = T%* and €' = ¢T**, so that
€0E2 32
W = 2.253
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and

EAB
=203 (2.254)

Ho
The right-hand side of Eq. (2.252) represents the rate per unit volume at which
energy is transferred from the electromagnetic field to charged particles. It is
clear, therefore, that Eq. (2.252) is an energy conservation equation for the elec-
tromagnetic field. The proper-3-scalar W can be identified as the energy density
of the electromagnetic field, whereas the proper-3-vector € is the energy flux due
to the electromagnetic field. The latter quantity is called the Poynting vector.

Consider the space-like components of Eq. (2.249). It is easily demonstrated
that these reduce to

0 .
a—'j-i—V-P: —pE -3 N\ B, (2.255)
where P¥ = T% and ¢' = T*%/c, or
y . BiBi 1 B?
P = —¢yB"E7 — + 6" — (€0E2 + —) , (2.256)
1% 2 1o
and c
c

Equation (2.255) is basically a momentum conservation equation for the electro-
magnetic field. The right-hand side represents the rate per unit volume at which
momentum is transferred from the electromagnetic field to charged particles. The
symmetric proper-3-tensor P% is called the Mazwell stress tensor. The element
P gives the flux of electromagnetic momentum parallel to the ith axis crossing a
surface normal to the jth axis. The proper-3-vector g represents the momentum
density of the electromagnetic field. It is clear that the energy conservation law
(2.252) and the momentum conservation law (2.255) can be combined together
to give the relativistically invariant energy-momentum conservation law (2.249).

2.24 The electromagnetic field due to an accelerated charge

Let us calculate the electric and magnetic fields observed at position z* and time
.. . i/ .
t due to a charge e whose retarded position and time are z* and t’, respectively.
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From now on (z',t) is termed the field point and (a;i,,t’ ) is termed the source
point. It is assumed that we are given the retarded position of the charge as a
function of its retarded time; i.e., 2 (/). The retarded velocity and acceleration
of the charge are ,

dx®

u' = T (2.258)
and s
0 = d—;‘,, (2.259)

respectively. The radius vector r is defined to extend from the retarded position
of the charge to the field point, so that ri = 2 — 2%, (Note that this is the
opposite convention to that adopted in Sections 2.19 and 2.20). It follows that

dr
dt’

The field and the source point variables are connected by the retardation condition

= —u. (2.260)

! }1/2 = c(t—t). (2.261)

r(zt,z') = [(:1:’ — ") (z; — z;')

The potentials generated by the charge are given by the Liénard-Wiechert
formulae

i Ho €U
= —— 2.262
. e 1
') = - 2.262b
$(,1) Ameg s ( )

where s = r — r-u/c is a function both of the field point and the source point
variables. Recall that the Liénard-Wiechert potentials are valid for accelerating
as well as uniformly moving charges.

The fields E and B are derived from the potentials in the usual manner

E = —Vqﬁ—%—?, (2.263a)

B = VAA. (2.263b)
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However, the components of the gradient operator V are partial derivatives at
constant time ¢, and not at constant time ¢’. Partial differentiation with respect to
the 2° compares the potentials at neighbouring points at the same time, but these
potential signals originate from the charge at different retarded times. Similarly,
the partial derivative with respect to ¢ implies constant z*, and, hence, refers to
the comparison of the potentials at a given field point over an interval of time
during which the retarded coordinates of the source have changed. Since we
only know the time variation of the particle’s retarded position with respect to
t' we must transform 9/0t|,: and 8/0z|; to expressions involving 0/0t|,: and

(9/(9.’132 |t’ .
Now, since 7' is assumed to be given as a function of ¢/, we have
r(@, 2 (') = r(@',t) = c(t — t), (2.264)

which is a functional relationship between z¢, ¢, and t’. Note that

or U
— = ——. 2.265
(815’ ) i r ( )
It follows that 5 oy B 8¢ oy
r t r Ot r-u Ot
1 =)= =7 2.266
ot C( 8t> ot ot r ot (2:266)
where all differentiation is at constant z*. Thus,
ot 1 r
N 2.2
ot 1—r-u/rc s’ (2:267)
giving
0o r o
= 2.2
ot sot (2.268)
Similarly,
or T ru
VT = —th' = V’r + % Vt' = ; — T Vt’, (2269)

where V' denotes differentiation with respect to z¢ at constant ¢'. It follows that

Vit = ——, (2.270)

SC
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so that

r 0
V=V - ——.
sc Ot
Equation (2.263a) yields
4reg E— E B g u |
e 52 Ot sc2
or
47reOE_ V's r 0s r ru 0s
e g2 s3c Ot  s2¢2 s3¢2 ot
However,
Vs=__4Y
r c’
and
33_87“ U uu _ Tu r-u+2
ot ot c c r c c
Thus,
0 g (r =) (r = T ru_u rw) v
e s2r c s3c c r c c 52

which reduces to

e s3

Similarly,

Am u Vs ANu
—B=VA—=— 5

Lo € s s

or

4 A
WB:_TQ’U,_L E_}_%

Lo € s%r sc s s

4reg 1 ru 1
EZ—(”“—)G‘§)+§§@A

(2.271)



A comparison of Egs. (2.277) and (2.280) yields

E
B="" % (2.281)
rc

Thus, the magnetic field is always perpendicular to E and the retarded radius
vector r. Note that all terms appearing in the above formulae are retarded.

The electric field is composed of two separate parts. The first term in Eq. (2.277)
varies as 1/r? for large distances from the charge. We can think of 7, = r—7ru/c
as the virtual present radius vector; i.e., the radius vector directed from the posi-
tion the charge would occupy at time ¢ if it had continued with uniform velocity
from its retarded position to the field point. In terms of 7, the 1/r? field is simply

e 1—u?/c?

4reg s3

E;nduction = Ty- (2282)
We can rewrite the expression (2.209a) for the electric field generated by a uni-
formly moving charge in the form

e 1—u?/c?

E—
Ameg o3 (1 — u2/c? 4 u,2/c?)3/2 "o

(2.283)

where 7 is the radius vector directed from the present position of the charge at
time ¢ to the field point, and u, = w-rg/rg. For the case of uniform motion the
relationship between the retarded radius vector » and the actual radius vector rg

is simply
r

To=T— —U. (2.284)
c
It is straightforward to demonstrate that
s =ro\/1—u2/c2+u?/c (2.285)

in this case. Thus, the electric field generated by a uniformly moving charge can

be written
e 1—u?/c?

E =
47eg s3

Since 7, = 7¢ for the case of a uniformly moving charge, it is clear that Eq. (2.282)
is equivalent to the electric field generated by a uniformly moving charge located
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at the position the charge would occupy if it had continued with uniform velocity
from its retarded position.

The second term in Eq. (2.277),

e TA(ryAu)
4Amegc? s3 ’

E.adiation = (2287)
is of order 1/r and, therefore, represents a radiation field in the sense of con-
tributing to the energy flux over a large sphere. Similar considerations hold for
the two terms of Eq. (2.280).

2.25 The Lamor formula

Let us transform to the inertial frame in which the charge is instantaneously at
rest at the origin at time ¢ = 0. In this frame u < ¢, so that r, ~ r and s ~ r, for
events which are sufficiently close to the origin at ¢ = 0 that the retarded charge
still appears to travel with a velocity which is small compared to that of light. It
follows from the previous section that

e rA(rAu)

Eoq ~ , 2,288
ad 4megc? r3 ( 2)
e uUAr
B, 2.288b
ad Ameged 12 ( )

Let us define spherical polar coordinates whose axis points along the direction of
instantaneous acceleration of the charge. It is easily demonstrated that

e sind
Fy ~ — 2.289
0 Amegc? 7 “ ( 2)
e sinf
B ~ 1. 2.289b
¢ Ameged 7 “ ( )

These fields are identical to those of a radiating dipole whose axis is aligned along
the direction of instantaneous acceleration. The Poynting flux is given by

Ey¢B 2 sin%4
— 07 ¢ PP U2 (2.290)

€r =
Lo 16m2€pc3 2
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We can integrate this expression to obtain the instantaneous power radiated by
the charge

62 .9

pP= (2.291)

— u”.
6megcd

This is known as Lamor’s formula. Note that zero net momentum is carried off
by the fields (2.289).

In order to proceed further it is necessary to prove two useful theorems. The
first theorem states that if a 4-vector field T# satisfies

8,T" = 0, (2.292)

and if the components of T# are non-zero only in a finite spatial region, then the
integral over 3-space,

I= / T* d’z, (2.293)

is an invariant. In order to prove this theorem we need to use the 4-dimensional
analog of Gauss’s theorem, which states that

/ 0, THd*z = 7{ T dS,,, (2.294)
\% S

where dS), is an element of the 3-dimensional surface .S bounding the 4-dimensional
volume V. The particular volume over which the integration is performed is indi-
cated in Fig. 1. The surfaces A and C are chosen so that the spatial components
of T# vanish on A and C. This is always possible because it is assumed that
the region over which the components of T# are non-zero is of finite extent. The
surface B is chosen normal to the z*-axis whereas the surface D is chosen normal
to the z* -axis. Here, the z* and the 7+ are coordinates in two arbitrarily chosen
inertial frames. It follows from Eq. (2.294) that

/ T4 dS, + / T dSy = 0. (2.295)

Here, we have made use of the fact that T# dS,, is a scalar and, therefore, has the
same value in all inertial frames. Since dS; = —d3z and dSy = d3z’ it follows
that I = [T 4 d3z is an invariant under a Lorentz transformation. Incidentally,
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Figure 1: The region of integration for proving the theorem associated with
Eq. (2.293)

the above argument also demonstrates that I is constant in time (just take the
limit in which the two inertial frames are identical).

The second theorem is an extension of the first. Suppose that a 4-tensor field
Q*" satisfies

0,Q" =0, (2.296)

and has components which are only non-zero in a finite spatial region. Let A, be
a 4-vector whose coeflicients do not vary with position in space-time. It follows
that TH = A, Q" satisfies Eq. (2.292). Therefore,

I= / A, QY d3x (2.297)
is an invariant. However, we can write
I=A,B*, (2.298)
where
Bt = / Q" . (2.299)
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It follows from the quotient rule that if A,B* is an invariant for arbitrary A,
then B* must transform as a constant (in time) 4-vector.

These two theorems enable us to convert differential conservation laws into
integral conservation laws. For instance, in differential form the conservation of
electrical charge is written

0, J" = 0. (2.300)
However, from Eq. (2.293) this immediately implies that

Q = %/J‘ld?’x:/pd?’:c (2.301)

is an invariant. In other words, the total electrical charge contained in space is
both constant in time and the same in all inertial frames.

Suppose that S is the instantaneous rest frame of the charge. Let us consider
the electromagnetic energy tensor T#" associated with all of the radiation emitted
by the charge between times ¢t = 0 and ¢t = dt. According to Eq. (2.249) this tensor
field satisfies

0,T"" =0, (2.302)

apart from a region of space of measure zero in the vicinity of the charge. Fur-
thermore, the region of space over which T"" is non-zero is clearly finite, since we
are only considering the fields emitted by the charge in a small time interval, and
these fields propagate at a finite velocity. Thus, according to the second theorem

1
Pt = / T d3x (2.303)

Cc

is a 4-vector. It follows from Section 2.23 that we can write P* = (dp,dE/c),
where dp and dF are the total momentum and energy carried off by the radiation
emitted between times ¢ = 0 and ¢ = dt, respectively. As we have already men-
tioned, dp = 0 in the instantaneous rest frame S. Transforming to an arbitrary
inertial frame S’ in which the instantaneous velocity of the charge is u, we obtain

dE = y(u) (dE + udp') = vdE. (2.304)
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However, the time interval over which the radiation is emitted in S’ is dt’ = ~dt.
Thus, the instantaneous power radiated by the charge,

dE' dE
= = _— =P 2.
dt! dt ’ (2.305)

is the same in all inertial frames.

Pl

We can make use of the fact that the power radiated by an accelerating charge
is Lorentz invariant to find a relativistic generalization of the Lamor formula
(2.291) which is valid in all inertial frames. We expect the power emitted by the
charge to depend only on its 4-velocity and 4-acceleration. It follows that the
Lamor formula can be written in Lorentz invariant form as

62

P=—-AA" 2.306
6mreged - M ( )
since the 4-acceleration takes the form A* = (u,0) in the instantaneous rest
frame. In a general inertial frame
dy ) 2 dy 2
—A AF =42 (E u+ fyu) — y2c? (E) : (2.307)

where use has been made of Eq. (2.85). Furthermore, it is easily demonstrated

that :
dry 3U-U

a7

It follows, after a little algebra, that the relativistic generalization of Lamor’s
formula takes the form

5 (2.308)
C

2

e 6 |2 (u A 1)?
P = — 0l [u = | (2.309)

2.26 Radiation losses in charged particle accelerators

Radiation losses often limit the maximum practical energy attainable in a charged
particle accelerator. Let us investigate radiation losses in various different types
of accelerator device using the relativistic Lamor formula.
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For a linear accelerator the motion is one dimensional. In this case, it is easily

demonstrated that p
d—f = moy® 1, (2.310)

where use has been made of Eq. (2.308), and p = ymyu is the particle momentum
in the direction of acceleration (the z-direction, say). Here, mg is the particle
rest mass. Thus, Eq. (2.309) yields

e? dp 2
 J . S— . 9.311
(%) (2311)

6megmyic?

The rate of change of momentum is equal to the force exerted on the particle in
the z-direction, which in turn equals the change in the energy, F, of the particle
per unit distance. Consequently,

2 2
p=—"° (ﬁ) . (2.312)

6megm e’

Thus, in a linear accelerator the radiated power depends on the external force
acting on the particle, and not on the actual energy or momentum of the particle.
It is obvious from the above formula that light particles such as electrons are
going to radiate a lot more than heavier particles such as protons. The ratio of
the power radiated to the power supplied by the external sources is

P e? 1 dE e? 1 dFE
dE/dt 6megmy’ed u dz 67reom062 moc? dz’

(2.313)

since u ~ c¢ for a highly relativistic particle. It is clear from the above ex-
pression that the radiation losses in an electron linear accelerator are negligi-
ble unless the gain in energy is of order m.c? = 0.511 MeV in a distance of
e?/(6meg mec?) = 1.28 x 10~ meters. That is 3 x 10! MeV/meter. Typical
energy gains are less that 10 MeV /meter. It is, therefore, obvious that radiation
losses are completely negligible in linear accelerators, whether for electrons or for
other heavier particles.

The situation is quite different in circular accelerator devices such as the
synchrotron and the betatron. In such machines the momentum p changes rapidly
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in direction as the particle rotates, but the change in energy per revolution is
small. Furthermore, the direction of acceleration is always perpendicular to the
direction of motion. It follows from Eq. (2.309) that

o2 i 2 ~tut

P 5

= = 2.314
6megc3 6reged  p ( )

where p is the orbit radius. Here, use has been made of the standard result
@ = u?/p for circular motion. The radiative energy loss per revolution is given

by

2mp e? ytud
0k =—P = 2.315
u 3epcd  p ( )
For highly relativistic (u =~ ¢) electrons this expression yields
E(GeV)]*
SE(MeV) = 8.85 x 1072 LE(GeV)]? (2.316)
p(meters)

In the first electron synchrotrons, p ~ 1 meter, F . ~ 0.3 GeV. Hence, 0 E,ax ~
1 keV per revolution. This was less than, but not negligible compared to, the en-
ergy gain of a few keV per turn. For modern electron synchrotrons the limitation
on the available radio-frequency power needed to overcome radiation losses be-
comes a major consideration, as is clear from the E* dependence of the radiated
power per turn.

2.27 The angular distribution of radiation emitted by an
accelerated charge

In order to calculate the angular distribution of the energy radiated by an ac-
celerated charge we must think carefully about what is meant by the “rate of
radiation” of the charge. This quantity is actually the amount of energy lost by
the charge in a retarded time interval dt’ during the emission of the signal. Thus,

dE

P(t,) - —@,

(2.317)
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where F is the energy of the charge. The Poynting vector

E..q N\ B
e=red N Trad _ g2 T (2.318)
Ho r
where use has been made of Byyq = (7 A Eyaq)/rc (see Eq. (2.281) ), represents
the energy flux per unit actual time, £. Thus, the energy loss rate of the charge
into a given element of solid angle df? is
dP(t') dE(8, ¢) dt 2 S 2
de.Q: —T df? = |€|%'r‘ dQZGOCErad;T dQ, (2319)
where use has been made of Eq. (2.267). Here, 6 and ¢ are angular coordinates
used to locate the element of solid angle. It follows from Eq. (2.287) that
dP(t") e’r [rA(ry A))?

i 1672¢pc3 s . (2.320)

Consider the special case where the direction of acceleration coincides with the
direction of motion. Let us define spherical polar coordinates whose axis points
along this common direction. It is easily demonstrated that the above expression

reduces to ) . )
dP(t’ ' sin” 0
) _ e - (2.321)
ds? 1672¢egc3 [1 — (u/c) cos6]?

in this case. In the non-relativistic limit u/c — 0 the radiation pattern has
the familiar sin? @ dependence of dipole radiation. In particular, the pattern is
symmetric in the forward (8 < 7/2) and backward (8 > 7 /2) directions. However,
as u/c — 1 the radiation pattern becomes more and more concentrated in the

forward direction. The angle 0, for which the intensity is a maximum is
| 1
3u/c
This expression yields Omax — 7/2 as u/c — 0 and Omax — 1/(27) as u/c — 1.
Thus, for a highly relativistic charge the radiation is emitted in a narrow cone

whose axis is aligned along the direction of motion. In this case, the angular
distribution (2.321) reduces to

dP(t') _ 2e°%* ¢ (v6)?
A2~ w2ecd | [+ (1025

(V1+15u2/c2 —1)]. (2.322)

0max = COS

(2.323)
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The total power radiated by the charge is obtained by integrating Eq. (2.321)
over all solid angles. We obtain

2 -9 T -3 2 -2 +1 2
Pt = e u / sin® 6 d6 _eu / (1 —p)du (2.324)
8meocd Jo [1 — (u/c) cosB]5  8meged J_1 [1 — (u/c)ul®

It is easily verified that

T —ph)dy 4 g
_ 2.9, 2.32
[ aceme=a (2.925)
Hence,
/ 62 6 -2
P(t") = 6rec3 & (2.326)

which agrees with Eq. (2.309) provided that w A @ = 0.

2.28 Synchrotron radiation

Synchrotron radiation (i.e., radiation emitted by a charged particle constrained
to follow a circular orbit by a magnetic field) is of particular importance in as-
trophysics, since much of the observed radio frequency emission from supernova
remnants and active galactic nuclei is thought to be of this type.

Consider a charged particle moving in a circle of radius a with constant angular
velocity wg. Suppose that the orbit lies in the xz-y plane. The radius vector
pointing from the centre of the orbit to the retarded position of the charge is
defined

p = a(cos ¢,sin ¢,0), (2.327)

where ¢ = wgt’ is the angle subtended between this vector and the z-axis. The
retarded velocity and acceleration of the charge take the form

d

u = d—z = u (—sin ¢, cos ¢, 0), (2.328a)
d

W = d—;f — 4 (cos ¢, sin ¢, 0), (2.328b)
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where u = awg and % = awy?. The observation point is chosen such that the ra-
dius vector r, pointing from the retarded position of the charge to the observation
point, is parallel to the y-z plane. Thus, we can write

r =r (0, sin o, cos a), (2.329)

where « is the angle subtended between this vector and the z-axis. As usual,
we define 6 as the angle subtended between the retarded radius vector r and the

retarded direction of motion of the charge u. It follows that
cos = 2" — sina cos b. (2.330)
ur

It is easily seen that
U-r = —4r sina sin ¢. (2.331)

A little vector algebra shows that

[P APy Aw)]? = —(r-4)?r? (1 —u?/?) + a?r* (1 — r-u/re)?, (2.332)
giving
[P A (ry Aw))? =02 r? [(1 — % Ccos 9)2 — <1 — z—j> tan? ¢ cos? 9] . (2.333)

Making use of Eq. (2.320), we obtain

dP(t')  e*4® [1—(u/c) cosh)]? — (1 —u?/c?)tan® ¢ cos® 0
d?  16m2epc3 [1— (u/c) cosf]5 . (2.334)

It is convenient to write this result in terms of the angles o and ¢, instead of 6
and ¢. After a little algebra we obtain
dP(t") e?u? [1— (u?/c?)]cos? a+ [(u/c) — sina cos ¢)?

_ . 2.335
ds? 1672¢pc3 [1 — (u/c) sina cos ¢]° ( )

Let us consider the radiation pattern emitted in the plane of the orbit; i.e.,
a = 7/2, with cos¢ = cosf . It is easily seen that
dP(t) e?u?  [(u/c) — cosf)?

— ) 2.
d2 ~ 16m%eoc [1 — (u]c) cos b5 (2:336)
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In the non-relativistic limit the radiation pattern has a cos? # dependence. Thus,
the pattern is like that of dipole radiation where the axis is aligned along the
instantaneous direction of acceleration. As the charge becomes more relativistic
the radiation lobe in the forward direction (i.e., 0 < 6 < m/2) becomes more
more focused and more intense. Likewise, the radiation lobe in the backward
direction (i.e., 7/2 < 8 < m) becomes more diffuse. The radiation pattern has
zero intensity at the angles

o = cos™(u/c). (2.337)

These angles demark the boundaries between the two radiation lobes. In the

non-relativistic limit 6y = +7/2, so the two lobes are of equal angular extents.

In the highly relativistic limit 3 — 41/7, so the forward lobe becomes highly

concentrated about the forward direction (6 = 0). In the latter limit Eq. (2.336)
reduces to

dr(t) | e’u? g [1-—(v6)*

A2~ 2n%ecd | [+ (70)2

Thus, the radiation emitted by a highly relativistic charge is focused into an
intense beam of angular extent 1/ pointing in the instantaneous direction of
motion. The maximum intensity of the beam scales like ~°.

(2.338)

Integration of Eq. (2.335) over all solid angle (using df2 = sin a da d¢) yields

(not very easily!)

62

P(t') = Greccd a2, (2.339)

which agrees with Eq. (2.309) provided that w-% = 0. This expression can also

be written
P 2 w02r0

moc? 3 ¢

824, (2.340)

where 7g = e?/(4meg moc?) = 2.82 x 10715 meters is the classical electron radius,
myg is the rest mass of the charge, and 5 = u/c. If the circular motion takes place
in an orbit of radius a perpendicular to a magnetic field B, then w; satisfies
wo = eB/mg7y. Thus, the radiated power is

P 2(eB\’ro,. .
_c(e2) o 2.341
moc? 3 (mo) c (B7)" (2.341)

81



and the radiated energy AFE per revolution is

= —— . 2.342
moc? 3 a chl ( )

Let us consider the frequency distribution of the emitted radiation in the
highly relativistic limit. Suppose, for the sake of simplicity, that the observation
point lies in the plane of the orbit (i.e., « = 7/2). Since the radiation emitted
by the charge is beamed very strongly in the charge’s instantaneous direction
of motion, a fixed observer is only going to see radiation (at some later time)
when this direction points almost directly towards the point of observation. This
occurs once every rotation period when ¢ ~ 0, assuming that wg > 0. Note
that the point of observation is located many orbit radii away from the centre
of the orbit along the positive y-axis. Thus, our observer sees short periodic
pulses of radiation from the charge. The repetition frequency of the pulses (in
radians per second) is wg. Let us calculate the duration of each pulse. Since the
radiation emitted by the charge is focused into a narrow beam of angular extent
Af ~ 1/, our observer only sees radiation from the charge when ¢ < Af. Thus,
the observed pulse is emitted during a time interval At = Af/wy. However, the
pulse is received in a somewhat shorter time interval

At =20 (1 - 9) , (2.343)

wo C

because the charge is slightly closer to the point of observation at the end of the
pulse than at the beginning. The above equation reduces to

Al 1

At ~ ~
2woy?  wo Y3

(2.344)

since ¥ > 1 and Af ~ 1/+4. The width Aw of the pulse in frequency space obeys
Aw At ~ 1. Hence,
Aw = v° wy. (2.345)

In other words, the emitted frequency spectrum contains harmonics of frequency
up to 73 times that of the fundamental, wy.
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More involved calculations® show that in the ultra-relativistic limit v > 1 the
power radiated in the /th harmonic (whose frequency is w = lwy) is given by

2
P = 0.52( ° ) w2 13 (2.346)

TTeEQC

for 1 < 1 < 3, and

P= ( e )w02 (g)mexpu—z/sxzm:”)] (2.347)

4rege

for I > ~3. Note that the spectrum cuts off approximately at the harmonic order
73, as predicted earlier. It can also be demonstrated® that seven times as much
energy is radiated with a polarization parallel to the orbital plane than with a
perpendicular polarization. A P(w) w!/3 power spectrum at low frequencies
coupled with a high degree of polarization are the hallmarks of synchrotron radi-
ation. In fact, these two features are used in astrophysics to identify synchrotron
radiation from supernova remnants, active galactic nuclei, etc.

8L. Landau, and E. Lifshitz, The classical theory of fields, (Addison-Wesley, 1951), pp. 215
fI.

91.D. Jackson, Classical electrodynamics, (Wiley, 1962), pp. 672 fF.
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3 The effect of dielectric and magnetic media on
electric and magnetic fields

3.1 Polarization

The terrestrial environment is characterized by dielectric media (e.g., air, water)
which are, for the most part, electrically neutral, since they are made up of neutral
atoms and molecules. However, if these atoms and molecules are placed in an
electric field they tend to polarize. Suppose that when a given neutral molecule
is placed in an electric field E the centre of charge of its constituent electrons
(whose total charge is —q) is displaced by a distance —r with respect to the centre
of charge of its constituent atomic nuclei. The dipole moment of the molecule is
defined p = gr. If there are N such molecules per unit volume then the electric
polarization P (i.e., the dipole moment per unit volume) is given by P = Np.
More generally,

P(r) = ZNi<pi>, (3.1)

where (p;) is the average dipole moment of the ith type of molecule in the vicinity
of point 7, and /V; is the average number of such molecules per unit volume at 7.

It is easily demonstrated that any divergence of the polarization field P(r)
gives rise to an effective charge density p; in the medium. In fact,

Pb — —V.-P. (3.2)

This charge density is attributable to bound charges (i.e., charges which arise
from the polarization of neutral atoms), and is usually distinguished from the
charge density p; due to free charges, which represents a net surplus or deficit of
electrons in the medium. Thus, the total charge density p in the medium is

p=ps+ po (3.3)

It must be emphasized that both terms in this equation represent real physical
charge. Nevertheless, it is useful to make the distinction between bound and
free charges, especially when it comes to working out the energy associated with
electric fields in dielectric media.
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Gauss’ law takes the differential form

V.E=P _Prtr (3.4)
€n €0

This expression can be rearranged to give
V-D = py, (35)

where
D=¢E+P (3.6)

is termed the electric displacement, and has the same dimensions as P (dipole
moment per unit volume). The divergence theorem tells us that

}[Sp-dszfvpfdv. (3.7)

In other words, the flux of D out of some closed surface S is equal to the total
free charge enclosed within that surface. Unlike the electric field E (which is the
force acting on unit charge) or the polarization P (the dipole moment per unit
volume), the electric displacement D has no clear physical meaning. The only
reason for introducing it is that it enables us to calculate fields in the presence
of dielectric materials without first having to know the distribution of polarized
charges. However, this is only possible if we have a constitutive relation connecting
E and D. It is conventional to assume that the induced polarization P is directly
proportional to the electric field E, so that

P = oneE, (38)
where . is termed the electric susceptibility of the medium. It follows that
D = ¢ycE, (3.9)

where

e=14 xe (3.10)

is termed the dielectric constant or relative permittivity of the medium. (Likewise,
€o is termed the permittivity of free space.) It follows from Egs. (3.5) and (3.9)
that

V.E=" (3.11)

€p€
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Thus, the electric fields produced by free charges in a dielectric medium are anal-
ogous to those produced by the same charges in a vacuum, except that they are
reduced by a factor €. This reduction can be understood in terms of a polarization
of the atoms or molecules of the dielectric medium that produces electric fields
in opposition to that of given charge. One immediate consequence is that the
capacitance of a capacitor is increased by a factor € if the empty space between
the electrodes is filled with a dielectric medium of dielectric constant ¢ (assuming
that fringing fields can be neglected).

It must be understood that Eqgs. (3.8)—(3.11) are just an approzimation which
is generally found to hold under terrestrial conditions (provided that the fields are
not too large) for isotropic media. For anisotropic media (e.g., crystals) Eq. (3.9)

generalizes to
D =¢ye- E, (3.12)

where € is a second rank tensor known as the dielectric tensor. For strong elec-
tric fields D ceases to vary linearly with E. Indeed, for sufficiently strong elec-
tric fields neutral molecules are disrupted and the whole concept of a dielectric
medium becomes meaningless.

3.2 Boundary conditions for E and D

When the space near a set of charges contains dielectric material of non-uniform
dielectric constant then the electric field no longer has the same form as in vac-
uum. Suppose, for example, that the space is occupied by two dielectric media
whose uniform dielectric constants are ¢; and e3. What are the matching condi-
tions on E and D at the boundary between the two media?

Imagine a Gaussian pill-box enclosing part of the boundary surface between
the two media. The thickness of the pill-box is allowed to tend towards zero, so
that the only contribution to the outward flux of D comes from its flat faces.
These faces are parallel to the bounding surface and lie in each of the two media.
Their outward normals are dS; (in medium 1) and dS53, where dS; = —dSs.
Assuming that there is no free charge inside the disk (which is reasonable in the
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limit where the volume of the disk tends towards zero), then Eq. (3.7) yields
D.-dS1+ Dy-dS, =0, (3.13)

where D) is the electric displacement in medium 1 at the boundary with medium
2, etc. The above equation can be rewritten

(D2 — Dl)-’ngl = O, (314)

where mo; is the normal to the boundary surface, directed from medium 1 to
medium 2. If the fields and charges are non time varying then Maxwell’s equa-
tions yield VAE = 0, which give the familiar boundary condition (obtained by
integrating around a small loop which straddles the boundary surface)

(Eg — El) A Ngp = 0. (315)

In other word, the normal component of the electric displacement and the tan-
gential component of the electric field are both continuous across any boundary
between two dielectric materials.

3.3 Boundary value problems with dielectrics - I

Consider a point charge ¢ embedded in a semi-infinite dielectric €; a distance d
away from a plane interface which separates the first medium from another semi-
infinite dielectric e3. The interface is assumed to coincide with the plane z = 0.
We need to find solutions to the equations

aV-E="2 (3.16)
€0
for z > 0,
eaV-E =0 (3.17)
for z < 0, and
VAE =0 (3.18)
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everywhere, subject to the boundary conditions at z = 0 that

1B, (z=0%) = eE,(2=07), (3.19a)
E,(2=0") = E (2=07), (3.19Db)
E,(z=0%) = E,(2=07). (3.19c¢)

In order to solve this problem we will employ a slightly modified form of the
well known method of images. Since V A E = ( everywhere, the electric field can
be written in terms of a scalar potential. So, E = —V¢. Consider the region
z > 0. Let us assume that the scalar potential in this region is the same as that
obtained when the whole of space is filled with the dielectric €; and, in addition to
the real charge g at position A, there is a second charge ¢’ at the image position
A’ (see diagram). If this is the case then the potential at some point P in the
region z > ( is given by

1 qg  q
- 444 2
4meper (Rl + Rz) ’ (3.20)

where Ry = /p? + (d — 2)? and Ry = \/p? + (d + 2)?, when written in terms of
cylindrical polar coordinates (p, ¢, z). Note that the potential (3.20) clearly is a
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solution of Eq. (3.16) in the region z > 0. It gives V-E = 0, with the appropriate
singularity at the position of the point charge q.

Consider the region z < 0. Let us assume that the scalar potential in this
region is the same as that obtained when the whole of space is filled with the
dielectric €5 and a charge ¢” is located at the point A. If this is the case then the
potential in this region is given by

1 ql/

¢(Z < 0) = 47T€062 R—l

(3.21)
The above potential is clearly a solution of Eq. (3.17) in the region z < 0. It gives
V-E = 0, with no singularities.

It now remains to choose ¢’ and ¢” in such a manner that the boundary
conditions (3.19) are satisfied. The boundary conditions (3.19b) and (3.19c) are
obviously satisfied if the scalar potential is continuous at the interface between
the two dielectric media:

p(z=07)=¢(z=07). (3.22)

The boundary condition (3.19a) implies a jump in the normal derivative of the
scalar potential across the interface:

€ —————— =€y ———. (3.23)

te _ & (3.24)
€1 €9
whereas the second yields
q J— q, o q”_ (3.25)

Here, use has been made of

01 01 d
— - = —— —_— pr— . .2
9z (Rl)zzo oz (Rz)zzo (0% + B2 (3:26)
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Equations (3.24) and (3.25) imply that

J = _(&”_q>q, (3.27a)

€9 + €1
262
A ) 3.27b
q (62+€1)q (3.27b)
The polarization charge density is given by p, = —V - P, However, inside

either dielectric P = ¢gxF, so V-P = ¢yx. V-E = 0, except at the point charge
g. Thus, there is zero polarization charge density in either dielectric medium. At
the interface x. takes a discontinuous jump,

AXe = €1 — €9. (328)

This implies that there is a polarization charge sheet on the interface between
the two dielectric media. In fact,

Opol = —(P2 — P1)-noaa, (3.29)

where mo; is a unit normal to the interface pointing from medium 1 to medium
2 (i.e., along the positive z-axis). Since

Pi = 60(6i — 1)E = —GO(GZ' — 1)V¢ (330)
in either medium, it is easy to demonstrate that

_i €2 — €1 d
27 €1(e2 + €1) (p2 + d2)3/2°

(3.31)

Opol =

In the limit €2 > €, the dielectric e2 behaves like a conducting medium (i.e.,
E — 0 in the region z < 0), and the polarization surface charge density on the
interface approaches that obtained in the case when the plane z = 0 coincides
with a conducting surface.

The above method can clearly be generalized to deal with problems involving
many point charges in the presence of many different dielectric media whose
interfaces form parallel planes.
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3.4 Boundary value problems with dielectrics - 11

Consider a plane slab of dielectric € lying between z = 0 and z = b. Suppose that
this slab is placed in a uniform z-directed electric field of strength Ey. What is
the field strength F; inside the slab?

Since there are no free charges and this is a one-dimensional problem, it is
clear from Eq. (3.5) that the electric displacement D is the same in both the
dielectric slab and the vacuum region which surrounds it. In the vacuum region
D = ey Ey, whereas D = €pe E in the dielectric. It follows that

B =20 (3.32)
€
In other words, the electric field inside the slab is reduced by polarization charges.
As before, there is zero polarization charge density inside the dielectric. However,
there is a uniform polarization charge sheet on both surfaces of the slab. It is
easily demonstrated that

e—1

Opol(z = b) = —0poi(2 = 0) = €y Ep (3.33)

In the limit € > 1, the slab acts like a conductor and E; — 0.

91



Let us now generalize this result. Consider a dielectric medium whose dielec-
tric constant € varies with z. The medium is assumed to be of finite extent and
is surrounded by a vacuum, so that €(z) — 1 as |z| — oco. Suppose that this
dielectric is placed in a uniform z-directed electric field Fy. What is the field
E(z) inside the dielectric?

We know that the electric displacement inside the dielectric is given by D(z) =
co€(2z) E(z). We also know from Eq. (3.5) that, since there are no free charges
and this is a one-dimensional problem,

dD(z) _  dle(2)E(2)]

T — ey ——2 2 — (). .34
7 €0 o 0 (3.34)
Furthermore, E(z) — Ej as |z| — co. It follows that
E
E(z) = =2 (3.35)

€(z)’
Thus, the electric field is inversely proportional to the dielectric constant inside
the dielectric medium. The polarization charge density inside the dielectric is
given by

e (3.36)

= €9 Ep—

dz dz

o — g 1) d[ 1 ]

3.5 Boundary value problems with dielectrics - III

Suppose that a dielectric sphere of radius a and dielectric constant € is placed in
a z-directed electric field of strength Ey (in the absence of the sphere). What is
the electric field inside and around the sphere?

Since this is a static problem we can write E = —V¢. There are no free
charges, so Egs. (3.5) and (3.9) imply that
V24 =0 (3.37)
everywhere. The boundary conditions (3.14) and (3.15) reduce to
09 0¢
— = — 3.38
c or r—a- or ,,,:a+’ ( a)
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¢ ¢

=0 . 20 . (3.38b)
Furthermore,

é(r,0,p) = —Fyr cosb (3.39)

as r — 0. Here, (7,0, ¢) are spherical polar coordinates centred on the sphere.

Let us search for an axisymmetric solution, ¢ = ¢(r,6). Since the solutions
to Poisson’s equation are unique, we know that if we can find such a solution
which satisfies all of the boundary conditions then we can be sure that this is the
correct solution. Equation (3.37) reduces to

10%(r¢) 1 0 0¢
b — [ sinf == ) = 0. A4
r Or? i r2 sin 6 06 (s1n0 80) 0 (3:40)
Straightforward separation of the variables yields
$(r,0) = > (Ayrt + Byr~ D) P(cosb), (3.41)

=0

where [ is a non-negative integer, the A; and B; are arbitrary constants, and P;(x)
is a solution to Legendre’s equation,

a
dzx

[(1 — z?) @] +I(l+1)P =0, (3.42)
dx

which is single-valued, finite, and continuous in the interval —1 < x < +1. It

can be demonstrated that Eq. (3.42) only possesses such solutions when [ takes

an integer value. The P;(z) are known as Legendre polynomials (since they are

polynomials of order [ in z), and are specified by Rodrigues’ formula

Pi(z) = = —(z* = 1)%. (3.43)

Since Eq. (3.42) is a Sturm-Liouville type equation, and the Legendre polynomi-
als satisfy Sturm-Liouville type boundary conditions at z = +1, it immediately
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follows that the Pj(cosf) are orthogonal functions which form a complete set in
f-space. The orthogonality relation can be written

1
2
/ = ,. 44
/_1 Py (z)P(z) dz ST o (3.44)

The Legendre polynomials form a complete set of angular functions, and it
is easily demonstrated that the r* and the r—(+1 form a complete set of radial
functions. It follows that Eq. (3.41), with the A; and B; unspecified, represents a
completely general axisymmetric solution of Eq. (3.37) which is well behaved in
f-space. We now need to find values of the A; and B; which are consistent with
the boundary conditions.

Let us divide space into the regions r < a and r > a. In the former region

¢(r,0) = > A;r! P(cosb), (3.45)
1=0

where we have rejected the r~(+1) radial solutions because they diverge unphys-
ically as r — 0. In the latter region

$(r,0) = > (Byrt + Crr= ) P(cos ). (3.46)

1=0

However, it is clear from the boundary condition (3.39), and Eq. (3.43), that the
only non-vanishing B; is B; = —FEj. This follows since P;(cosf) = cosf. The
boundary condition (3.38b) (which integrates to give ¢(r =a~) = ¢(r = a™) for
a potential which is well behaved in #-space) gives

C
Al =—FEo+ a—?} (3.47)
and o
l
A=~y (3.48)

for | # 1. Note that it is appropriate to match the coefficients of the P;(cos#)
since these functions are orthogonal. The boundary condition (3.38a) yields

C
€A1 = _EO —2 a—3, (349)
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and o
l
poTES) (3.50)

for I # 1. Equations (3.48) and (3.50) give A; = C; = 0 for [ # 1. Equations (3.47)

and (3.49) reduce to
3
Al = — ( ) Eo, (351&)

el Ay :—(l—l—l)

2+¢€
¢ = (92 &2 (3.51b)
1 = e+ 9 a 0- .
The solution is therefore
¢:_(2j—6> Eyrcosf (3.52)
for r < a, and
e—1 a3
¢ =—FEgrcosf + = EOT—ZCOSH (3.53)

for r > a.

Equation (3.52) is the potential of a uniform z-directed electric field of strength

3

 24€
Note that F; < FEy provided that € > 1. Thus, the electric field strength is re-
duced inside the dielectric sphere due to partial shielding by polarization charges.
Outside the sphere the potential is equivalent to that of the applied field Ey plus

the field of a point electric dipole, located at the origin and pointing in the z-
direction, whose dipole moment is

Ey

Eq. (3.54)

e—1
p = 4meg (6 n 2) a®Ey. (3.55)

This dipole moment can be interpreted as the volume integral of the polarization
P over the sphere. The polarization is

. e—1 X
P:EO(E—l)Elz:360 (€+2> E()Z. (356)
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Since the polarization is uniform there is zero polarization charge density inside
the sphere. However, there is a polarization charge sheet on the surface of the
sphere whose density is given by op01 = P-7 (see Eq. (3.29) ). It follows that

—1
Opol = 3€0 (E n 2) Ey cos . (3.57)

The problem of a dielectric cavity of radius a in a dielectric medium with
dielectric constant ¢ and with an applied electric field Ey parallel to the z-axis
can be treated in much the same manner as that of a dielectric sphere. In fact, it
is easily demonstrated that the results for the cavity can be obtained from those
for the sphere by making the transformation ¢ — 1/e. Thus, the field inside the
cavity is uniform, parallel to the z-axis, and of magnitude

_ e
2% +1

FEq Ey. (3.58)
Note that F7 > Ey provided that € > 1. The field outside the cavity is the
original field plus that of a z-directed dipole, located at the origin, whose dipole
moment is

e—1
— 4 3E,. 3.59
D TEQ (26+1>a 0 ( )

Here, the negative sign implies that the dipole points in the opposite direction to
the external field.

3.6 The energy density within a dielectric medium

Consider a system of free charges embedded in a dielectric medium. The increase
in the total energy when a small amount of free charge dps is added to the system
is given by

6U = / ¢ ops d°r, (3.60)
where the integral is taken over all space and ¢(r) is the electrostatic potential.

Here, it is assumed that the original charges and the dielectric are held fixed, so
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that no mechanical work is performed. It follows from Eq. (3.5) that
6U = /¢V-5D d*r, (3.61)

where 0D is the change in the electric displacement associated with the charge
increment. Now the above equation can also be written

oU = /v-(¢5D) d3r —/V¢-5Dd3r, (3.62)
giving
oU = /¢5D-d5—/V¢-5Dd3r, (3.63)

where use has been made of Gauss’s theorem. If the dielectric medium is of finite
spatial extent then we can neglect the surface term to give

6U = —/V¢-5Dd3r = /E-5D dr. (3.64)

This energy increment cannot be integrated unless E is a known function of D.
Let us adopt the conventional approach and assume that D = e¢ye E, where the
dielectric constant € is independent of the electric field. The change in energy
associated with taking the displacement field from zero to D(r) at all points in

space is given by
D D
U= / §U = / /E-5D dr, (3.65)
0 0

E 2
5(E i
U= / / %d% =3 / coe B2 &, (3.66)
0

or

which reduces to

1
U=3 /E-D d>r. (3.67)
Thus, the electrostatic energy density inside a dielectric is given by
E-D
W = — (3.68)

This is a standard result which is often quoted in textbooks. Nevertheless, it is
important to realize that the above formula is only valid in dielectric media in
which the electric displacement D varies linearly with the electric field E.
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3.7 The force density within a dielectric medium

Equation (3.67) was derived by considering a virtual process in which true charges
are added to a system of charges and dielectrics which are held fixed, so that no
mechanical work is done against physical displacements. Let us now consider
a different virtual process in which the physical coordinates of the charges and
dielectric are given a virtual displacement dr at each point in space, but no free
charges are added to the system. Since we are dealing with a conservative system,
the energy expression (3.67) can still be employed, despite the fact that it was
derived in terms of another virtual process. The variation in the total electrostatic
energy 0U when the system undergoes a virtual displacement 7 is related to the
electrostatic force density f acting within the dielectric medium via

6U = —/f-5r dr. (3.69)

If the medium is moving with a velocity field u then the rate at which electrostatic
energy is drained from the E and D fields is given by

dU
— = —/f-ud3’r. (3.70)

Let us now consider the energy increment due to both a change dps in the
free charge distribution and a change de in the dielectric constant, caused by the
displacements. From Eq. (3.67)

1
0V = 5— [D*§(1/€) + 2D-6D /€] d°r, (3.71)
€0
or

6U = —%0 E*Sed’r + /E-cSD d*r. (3.72)

Here, the first term represents the energy increment due to the change in dielec-
tric constant associated with the virtual displacements, whereas the second term
corresponds to the energy increment caused by displacements of the free charges.
The second term can be written

ESDdr =— | Vo-6Dd’r = | ¢V-6Dd’r = | ¢pép; d’r, 3.73
!
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where surface terms have been neglected. Thus, Eq. (3.72) implies that

AU _ [ (p0s _ €0 g20€) 43
dt_/(qs o 2E8t>dr. (3.74)

In order to arrive at an expression for the force density f we need to express
the time derivatives 0p/0t and Oe/0t in terms of the velocity field w. This can be
achieved by adopting a dielectric equation of state; i.e., a relation which gives the
dependence of the dielectric constant ¢ on the mass density p,,. Let us assume
that €(p,,) is a known function. It follows that

De de Dpn,

Dt dp, Dt’ (3.75)
where N 5

is the total time derivative (i.e., the time derivative in a frame of reference which is
locally co-moving with the dielectric.) The hydrodynamic equation of continuity
of the dielectric is

Opm
IPm V- (pmu) = 0, (3.77)
ot
which implies that
Dpm
It follows that 5 q
€ €
The conservation equation for the free charges is written
91 L 5. (pu) = 0 3.80
ot (psu) = 0. (3.80)

Thus, we can express Eq. (3.74) in the form

— = - V- + —E"—ppnV-u+ | = E” Ve T. .81
. /[ dV-(psu) 5 P u (2 e) u] d (3.81)
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Integrating the first term by parts and neglecting any surface contributions, we
obtain

_/¢V-(pr) d'r = /Pf Vé-ud'r. (3.82)
Likewise,
€0 g2 de V-uddr = _/e_ov E2£ ud3r (3.83)
5 dpm Pm ) dpm Pm . .

Thus, Eq. (3.81) becomes

Z = |-pE+ 2F2ve -0 = : . 84
i /[ prE+ 5 E"Ve— V(E o, P wd’r (3.84)

Comparing with Eq. (3.70), we see that the force density inside the dielectric is
given by

— E - E - E - . .
f Pf 9 Ve + 9 V ( pm) (3 85)

The first term in the above equation is the standard electrostatic force density.
The second term represents a force which appears whenever an inhomogeneous
dielectric is placed in an electric field. The last term, known as the electrostriction
term, gives a force acting on a dielectric in an inhomogeneous electric field. Note
that the magnitude of the electrostriction force depends explicitly on the dielectric
equation of state of the material, through de/dp,,. The electrostriction term gives
zero net force acting on any finite region of dielectric if we can integrate over a
large enough portion of the dielectric that its extremities lie in a field free region.
For this reason the term is frequently omitted, since in the calculation of the total
forces acting on dielectric bodies it usually does not contribute. Note, however,
that if the electrostriction term is omitted an incorrect pressure variation within
the dielectric is obtained, even though the total force is given correctly.

3.8 The Clausius-Mossotti relation

Let us now investigate what a dielectric equation of state actually looks like.
Suppose that a dielectric medium is made up of identical molecules which develop
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a dipole moment
p=oaeFE (3.86)

when placed in an electric field E. The constant « is called the molecular polar-
1zability. If N is the number density of such molecules then the polarization of
the medium is
P =Np= NaeE, (3.87)

or
Napma

€
where p,,, is the mass density, N4 is Avogadro’s number, and M is the molecular
weight. But, how does the electric field experienced by an individual molecule
relate to the average electric field in the medium? This is not a trivial question
since we expect the electric field to vary strongly (on atomic length-scales) inside
the dielectric.

P= oE, (3.88)

Suppose that the dielectric is polarized with a mean electric field Eqy which is
uniform (on macroscopic length-scales) and directed along the z-axis. Consider
one of the molecules which constitute the dielectric. Let us draw a sphere of ra-
dius a about this particular molecule. This is intended to represent the boundary
between the microscopic and the macroscopic range of phenomena affecting the
molecule. We shall treat the dielectric outside the sphere as a continuous medium
and the dielectric inside the sphere as a collection of polarized molecules. Ac-
cording to Eq. (3.29) there is a polarization surface charge of magnitude

Opol = —P cosf (3.89)

on the inside of the sphere, where (7,0, ¢) are spherical polar coordinates, and
P = Pz = ¢y(e — 1)Ey 2 is the uniform polarization of the dielectric. The
magnitude of E, at the molecule due to the surface charge is

1 o
E, = / o1 €080 ;g (3.90)

4mreg a?

where dS = 2ma? sin 6 df is a surface element of the sphere. It follows that

P [T P
E,=— cos?f sinfdf = —. (3.91)
260 0 360
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It is easily demonstrated that Fg = E, = 0 at the molecule. Thus, the field at
the molecule due to the surface charges on the sphere is

P
E=_—. 3.92
3eC (3.92)

The field due to the individual molecules within the sphere is obtained by
summing over the dipole fields of these molecules. The electric field at a distance

r from a dipole p is
1 [p 3(rr
E=— = — . .

41eg [7"3 rd (3-93)

It is assumed that the dipole moment of each molecule within the sphere is the
same, and also that the molecules are evenly distributed throughout the sphere.
This being the case, the value of E, at the molecule due to all of the other
molecules within in the sphere,

E, = (3.94)

r3 rd

_ 1 Z &_3(pwxz+pyyz+pzz2)
4reg ’

mols

is zero, since

ZxZZZyQZZZQZ%ZTQ (3.95)

mols mols mols mols
and
Za:y:Zyz:sz:O. (3.96)
mols mols mols

It is easily seen that Fg = E, = 0. Hence, the electric field at the molecule due
to the other molecules within the sphere vanishes.

It is clear that the net electric field seen by an individual molecule is

P
E=F —. 3.97
0+ 3¢ ( )

This is larger than the average electric field Ey in the dielectric. The above
analysis indicates that this effect is ascribable to the long range (rather than the
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short range) interactions of the molecule with the other molecules in the medium.
Making use of Eq. (3.88) and the definition P = ¢y(e — 1) Ey, we obtain

e—1  Nypna
e+2  3M

(3.98)

This is called the Clausius-Mossottirelation. This formula is found to work pretty
well for a wide class of dielectric liquids and gases. The Clausius-Mossotti relation
yields
d -1 2
¢ _(e=Dle+2) (3.99)
dpm 3Pm

3.9 Dielectric liquids in electrostatic fields

Consider the behaviour of an uncharged dielectric liquid placed in an electrostatic
field. If p is the pressure in the liquid when in equilibrium with the electrostatic
force density f, then force balance requires that

Vp=Ff. (3.100)
It follows from Eq. (3.85) that
v D p2yeq Oy g2 €oPm (2 _d€ (3.101)
= — — € —_— m — — . .
P=77 2 dpm ¥ ) dpm

We can integrate this equation to give

D2
[2-3(r]-lrg]). e
p1 Pm 2 dpm 2 d,Om 1

where 1 and 2 refer to two general points in the liquid. Here, it is assumed that
the liquid possesses an equation of state, so that p = p(py,). If the liquid is
essentially incompressible (p,, ~ constant) then

2
€0Pm o de
—p; = Ec——| . 3.103
Pamh 2 [ dprn]l ( )
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Finally, if the liquid obeys the Clausius-Mossotti relation then

B2 (e—1)(e+2)7°
2 3 -

P2 —p1= (3.104)

According to Eqgs. (3.54) and (3.104), if a sphere of dielectric liquid is placed
in a uniform electric field E( then the pressure inside the liquid takes the constant
value

3 g€e—1
P = 5 COEO et 9 .
It is clear that the electrostatic forces acting on the dielectric are all concentrated
at the edge of the sphere and are directed radially inwards; i.e., the dielectric is
compressed by the external electric field. This is a somewhat surprising result
since the electrostatic forces acting on a rigid conducting sphere are concentrated
at the edge of the sphere but are directed radially outwards. We might expect
these two cases to give the same result in the limit ¢ —+ oo. The reason that
this does not occur is because a dielectric liquid is slightly compressible and is,
therefore, subject to an electrostriction force. There is no electrostriction force
for the case of a completely rigid body. In fact, the force density inside a rigid
dielectric (for which V-u = 0) is given by Eq. (3.85) with the third term (the
electrostriction term) missing. It is easily seen that the force exerted by an electric
field on a rigid dielectric is directed outwards and approaches that exerted on a
rigid conductor in the limit ¢ — 0.

(3.105)

As is well known, when a pair of charged (parallel plane) capacitor plates are
dipped into a dielectric liquid the liquid is drawn up between the plates to some
extent. Let us examine this effect. We can, without loss of generality, assume
that the transition from dielectric to vacuum takes place in a continuous manner.
Consider the electrostatic pressure difference between a point A lying just above
the surface of the liquid in between the plates and a point B lying just above the
surface of the liquid well away from the capacitor where £ = 0. The pressure
difference is given by

B
PA —PB = —/ f-dl. (3.106)
A
Note, however, that the Clausius-Mossotti relation yields de/dp,, = 0 at both A
and B, since € = 1 in a vacuum (see Eq. (3.99) ). Thus, it is clear from Eq. (3.85)
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that the electrostriction term makes no contribution to the line integral (3.106).
It follows that 5

pa—pp=2[ E2Ve.dl. (3.107)

2 Ja

The only contribution to this integral comes from the vacuum/dielectric interface
in the vicinity of point A (since € is constant inside the liquid, and F = 0 in the
vicinity of point B). Suppose that the electric field at point A has normal and
tangential (to the surface) components E,, and FE, respectively. Making use of
the boundary conditions that E; and eF,, are constant across a vacuum/dielectric
interface, we obtain

‘d
PA —PB = %0 [Et2(6 - 1)+ 62En2(6)/ 6—;] ) (3.108)
1
giving
€o(e—1 E?
PA—PB = o 5 ) [Et2 + ?”] : (3.109)

This electrostatic pressure difference can be equated to the hydrostatic pressure
difference p,,, g h to determine the height h that the liquid rises between the plates.
At first sight, the above analysis appears to suggest that the dielectric liquid
is drawn upward by a surface force acting on the vacuum/dielectric interface
in the region between the plates. In fact, this is far from being the case. A
brief examination of Eq. (3.104) shows that this surface force is actually directed
downwards. According to Eq. (3.85), the force which causes the liquid to rise
between the plates is a volume force which develops in the region of non-uniform
electric field at the base of the capacitor, where the field splays out between
the plates. Thus, although we can determine the height to which the fluid rises
between the plates without reference to the electrostriction force, it is, somewhat
paradoxically, this force which is actually responsible for supporting the liquid
against gravity.

Let us consider another paradox concerning the electrostatic forces exerted in
a dielectric medium. Suppose that we have two charges embedded in a uniform
dielectric €. The electric field generated by each charge is the same as that in
vacuum, except that it is reduced by a factor €. Therefore, we expect that the
force exerted by one charge on another is the same as that in vacuum, except
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that it is also reduced by a factor €. Let us examine how this reduction in
force comes about. Consider a simple example. Suppose that we take a parallel
plate capacitor and insert a block of solid dielectric between the plates. Suppose,
further, that there is a small vacuum gap between the faces of the block and each
of the capacitor plates. Let o be the surface charge densities on each of the
capacitor plates, and let =0, be the polarization charge densities which develop on
the outer faces of the intervening dielectric block. The two layers of polarization
charge produce equal and opposite electric fields on each plate, and their effects
therefore cancel each other. Thus, from the point of view of electrical interaction
alone there would appear to be no change in the force exerted by one capacitor
plate on the other when a dielectric slab is placed between them (assuming that
o remains constant during this process). That is, the force per unit area (which
is attractive) remains

02

However, in experiments in which a capacitor is submerged in a dielectric liquid
the force per unit area exerted by one plate on another is observed to decrease to

fs (3.110)

0.2

fs (3.111)

2€0€

This apparent paradox can be explained by taking into account the difference
in liquid pressure in the field filled space between the plates and the field free
region outside the capacitor. This pressure difference is balanced by internal
elastic forces in the case of the solid dielectric discussed earlier, but is transmitted
to the plates in the case of the liquid. We can compute the pressure difference
between a point A on the inside surface of one of the capacitor plates and a point
B on the outside surface of the same plate using Eq. (3.107). If we neglect end
effects then the electric field is normal to the plates in the region between the
plates and is zero everywhere else. Thus, the only contribution to the line integral
(3.107) comes from the plate/dielectric interface in the vicinity of point A. Using
Eq. (3.109), we find that

1 : 1
pA_pB:%)<1——)E2:;—(1——), (3.112)



where F is the normal field strength between the plates in the absence of dielectric.
The sum of this pressure force and the purely electrical force (3.110) yields a net

attractive force per unit area

0.2

=7 11
fo=ges (3.113)

acting between the plates. Thus, any decrease in the forces exerted by charges
on one another when they are immersed or embedded in some dielectric medium
can only be understood in terms of mechanical forces transmitted between these
charges by the medium itself.

3.10 Magnetization

All matter is built up out of atoms, and each atom consists of electrons in mo-
tion. The currents associated with this motion are termed atomic currents. Each
atomic current is a tiny closed circuit of atomic dimensions, and may therefore
be appropriately described as a magnetic dipole. If the atomic currents of a given
atom all flow in the same plane then the atomic dipole moment is directed normal
to the plane (in the sense given by the right-hand rule) and its magnitude is the
product of the total circulating current and the area of the current loop. More
generally, if j(7) is the atomic current density at the point r then the magnetic
moment of the atom is

1
m =g /'r A jdir, (3.114)

where the integral is over the volume of the atom. If there are N such atoms or
molecules per unit volume then the magnetization M (i.e., the magnetic dipole
moment per unit volume) is given by M = Nm. More generally,

M(r) = ZNi<mi>, (3.115)

where (m;) is the average magnetic dipole moment of the ith type of molecule in
the vicinity of point r, and NV; is the average number of such molecules per unit
volume at 7.

Consider a general medium which is made up of molecules which are polar-
izable and possess a net magnetic moment. It is easily demonstrated that any
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circulation in the magnetization field M (r) gives rise to an effective current den-
sity 7., in the medium. In fact,

gm =V AM. (3.116)

This current density is called the magnetization current density, and is usually
distinguished from the true current density 3;, which represents the convection
of free charges in the medium. In fact, there is a third type of current called a
polarization current, which is due to the apparent convection of bound charges.
It is easily demonstrated that the polarization current density j, is given by

oP

)y = ——. 3.117
Thus, the total current density 7 in the medium is given by
. oP
J:Jt—l—V/\M-{-W. (3.118)

It must be emphasized that all terms on the right-hand side of this equation
represent real physical currents, although only the first term is due to the motion
of real charges (over more than atomic dimensions).

The Ampere-Maxwell equation takes the form

) OF
VAB = pog+ poco R (3.119)
which can also be written
) oD

where use has been made of the definition D = ¢y + P. The above expression
can be rearranged to give

D
V/\H:jt—i—a—, (3.121)
ot
where B
H=—-M (3.122)
Mo
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is termed the magnetic intensity, and has the same dimensions as M (i.e., mag-
netic dipole moment per unit volume). In a steady-state situation, Stokes’s the-

orem tell us that
]{ H.dl = / 7¢-dS. (3.123)
c S

In other words, the line integral of H around some closed curve is equal to
the flux of true current through any surface attached to that curve. Unlike the
magnetic field B (which specifies the force e v A B acting on a charge e moving
with velocity v) or the magnetization M (the magnetic dipole moment per unit
volume), the magnetic intensity H has no clear physical meaning. The only
reason for introducing it is that it enables us to calculate fields in the presence of
magnetic materials without first having to know the distribution of magnetization
currents. However, this is only possible if we possess a constitutive relation
connecting B and H.

3.11 Magnetic susceptibility and permeability

In a large class of materials there exists an approximately linear relationship
between M and H. If the material is isotropic then

M =y H, (3.124)

where x,, is called the magnetic susceptibility. If x,, is positive the material is
called paramagnetic, and the magnetic field is strengthened by the presence of
the material. If x,, is negative then the material is diamagnetic and the magnetic
field is weakened in the presence of the material. The magnetic susceptibilities
of paramagnetic and diamagnetic materials are generally extremely small. A few
sample values are given in Table 1.1°

A linear relationship between M and H also implies a linear relationship
between B and H. In fact, we can write

10Data obtained from the Handbook of Chemistry and Physics, Chemical Rubber Company
Press, Baca Raton, FL
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Material Xm

Aluminium 2.3 x 10~°
Copper —0.98 x 107°
Diamond —2.2x107°
Tungsten 6.8 x 107°

Hydrogen (1 atm) | —0.21 x 1078
Oxygen (1 atm) 209.0 x 1078
Nitrogen (1 atm) | —0.50 x 1078

Table 1: Magnetic susceptibilities of some paramagnetic and diamagnetic mate-
rials at room temperature

where
p=po(l+ xm) (3.126)

is termed the magnetic permeability of the material in question. (Likewise, pug
is termed the permeability of free space.) It is clear from Table 1 that the per-
meabilities of common diamagnetic and paramagnetic materials do not differ
substantially from that of free space. In fact, to all intents and purposes the
magnetic properties of such materials can be safely neglected (i.e., u = po).

3.12 Ferromagnetism

There is, however, a third class of magnetic materials called ferromagnetic ma-
terials. Such materials are characterized by a possible permanent magnetization,
and generally have a profound effect on magnetic fields (i.e., u/ug > 1). Unfor-
tunately, ferromagnetic materials do not exhibit a linear dependence between M
and H or B and H, so that we cannot employ Eqgs. (3.124) and (3.125) with
constant values of x,, and u. It is still expedient to use Eq. (3.125) as the defi-
nition of u, with u = u(H), however this practice can lead to difficulties under
certain circumstances. The permeability of a ferromagnetic material, as defined
by Eq. (3.125), can vary through the entire range of possible values from zero
to infinity, and may be either positive or negative. The most sensible approach
is to consider each problem involving ferromagnetic materials separately, try to
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Figure 2: Magnetization curve and relative permeability of commercial iron (an-
nealed)

determine which region of the B-H diagram is important for the particular case
in hand, and then make approximations appropriate to this region.

First, let us consider an unmagnetized sample of ferromagnetic material. If
the magnetic intensity, which is initially zero, is increased monotonically, then
the B-H relationship traces out a curve such as that shown in Fig. 2. This is
called a magnetization curve. It is evident that the permeabilities y derived from
the curve (according to the rule y = B/H) are always positive, and show a wide
range of values. The maximum permeability occurs at the “knee” of the curve.
In some materials this maximum permeability is as large as 10° y9. The reason
for the knee in the curve is that the magnetization M reaches a maximum value

in the material, so that
B = uo(H + M) (3.127)
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Figure 3: Typical hysteresis loop of a ferromagnetic material

continues to increase at large H only because of the pugH term. The maximum
value of M is called the saturation magnetization of the material.

Next, consider a ferromagnetic sample magnetized by the above procedure.
If the magnetic intensity H is decreased, the B-H relation does not follow back
down the curve of Fig. 2, but instead moves along a new curve, shown in Fig. 3,
to the point R. The magnetization, once established, does not disappear with
the removal of H. In fact, it takes a reversed magnetic intensity to reduce the
magnetization to zero. If H continues to build up in the reversed direction, then
M (and hence B) becomes increasingly negative. Finally, when H increases
again the operating point follows the lower curve of Fig. 3. Thus, the B-H curve
for increasing H is quite different to that for decreasing H. This phenomenon is
known as hysteresis.

The curve of Fig. 3 is called the hysteresis loop of the material in question. The
value of B at the point R is called the retentivity or remanence. The magnitude
of H at the point C is called the coercivity. It is evident that u is negative in the
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second and fourth quadrants of the diagram and positive in the first and third
quadrants. The shape of the hysteresis loop depends not only on the nature of the
ferromagnetic material but also on the maximum value of H to which the material
is subjected. However, once this maximum value, H,.x, becomes sufficient to
produce saturation in the material the hysteresis loop does not change shape with
any further increase in H .

Ferromagnetic materials are used either to channel magnetic flux (e.g., around
transformer circuits) or as sources of magnetic field (permanent magnets). For
use as a permanent magnet, the material is first magnetized by placing it in a
strong magnetic field. However, once the magnet is removed from the external
field it is subject to a demagnetizing H. Thus, it is vitally important that a
permanent magnet should possess both a large remanence and a large coercivity.
As will become clear later on, it is generally a good idea for the ferromagnetic
materials used to channel magnetic flux around transformer circuits to possess
small remanences and small coercivities.

3.13 Boundary conditions for B and H

What are the matching conditions for B and H at the boundary between two
media? The governing equations for a steady state situation are

V-B =0, (3.128)

and
VANH = y. (3.129)

Integrating Eq. (3.128) over a Gaussian pill-box enclosing part of the boundary
surface between the two media gives

(32 — Bl)-’n21 = 0, (3130)

where n,; is the unit normal to this surface directed from medium 1 to medium
2. Integrating Eq. (3.129) around a small loop which straddles the boundary

surface yields
(Hg — Hl) A ngp = 0, (3131)
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assuming that there is no true current sheet flowing in this surface. In general,
there is a magnetization current sheet flowing in the boundary surface whose
density is given by

Jm = N9 N\ (M2 — Ml), (3132)

where M is the magnetization in medium 1 at the boundary, etc. It is clear that
the normal component of the magnetic field and the tangential component of the
magnetic intensity are both continuous across any boundary between magnetic
materials.

3.14 Permanent ferromagnets

Let us consider the magnetic field generated by a distribution of permanent ferro-
magnets. Let us suppose that the magnets in question are sufficiently “hard” that
their magnetization is essentially independent of the applied field for moderate
field strengths. Such magnets can be treated as if they contain a fixed, specified
magnetization M (r).

Let us assume that there are no true currents in the problem, so that 3; = 0.
Let us also assume that we are dealing with a steady state situation. Under these
circumstances Eq. (3.121) reduces to

VAH =0. (3.133)

It follows that we can write
H = -V, (3.134)

where ¢,, is called the magnetic scalar potential. Now, we know that
V-B = puyV-(H+ M) =0. (3.135)
Equations (3.134) and (3.135) combine to give
V2hm = —Pm, (3.136)

where

pm = —V-M. (3.137)



Thus, the magnetostatic field H is determined by Poisson’s equation. We can
think of p,, as an effective magnetic charge density. Of course, this magnetic
charge has no physical reality. We have only introduced it in order to make
the problem of the steady magnetic field generated by a set of permanent mag-
nets look formally the same as that of the steady electric field generated by a
distribution of charges.

The unique solution of Poisson’s equation, subject to sensible boundary con-
ditions at infinity, is well known:

(3.138)

b 47r |’r—r’|

This yields

1 VI-M(r") 5,

If the magnetization field M (r) is well behaved and localized we can integrate

by parts to obtain
bo(F) = / M)V [ —— ) &3 (3.140)
" 47 lr — /| ' '

V() =¥ (52e) (3141)

so our expression for the magnetic potential can be written

1 M (r")
=-——V- d’r'. 3.142
Om(r) A / r — 7/ " ( )
Far from the region of non-vanishing magnetization the potential reduces to

1 .
by (1) =~ —V(m> ./M(rf)d3r' ~ 'Z:rrg, (3.143)

where m = [ M d3r is the total magnetic moment of the distribution. This
is the scalar potential of a dipole. Thus, an arbitrary localized distribution of
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magnetization asymptotically produces a dipole magnetic field whose strength is
determined by the net magnetic moment of the distribution.

It is often a good approximation to treat the magnetization field M (r) as a
discontinuous quantity. In other words, M (r) is specified throughout the “hard”
ferromagnets in question, and suddenly falls to zero at the boundaries of these
magnets. Integrating Eq. (3.137) over a Gaussian pill-box which straddles one
of these boundaries leads to the conclusion that there is an effective magnetic

surface charge density,
Om =n-M, (3.144)

on the surface of the ferromagnets, where M is the surface magnetization, and

n is a unit outward directed normal to the surface. Under these circumstances
Eq. (3.139) yields

/ / / /
Om(T) = —— w 3y + 1 M, (3.145)
A |y | — 7| At J¢ |r — 7|
where V represents the volume occupied by the magnets and S is the bounding
surface to V. Here, dS is an outward directed volume element to S. It is clear
that Eq. (3.145) consists of a volume integral involving the volume magnetic
charges p,, = —V-M and a surface integral involving the surface magnetic charges
om = n-M. If the magnetization is uniform throughout the volume V then the
first term in the above expression vanishes and only the surface integral makes a

contribution.

We can also write B = V A A in order to satisfy V-B = 0 automatically. It
follows from Egs. (3.121) and (3.122) that

VAH =V A(B/u— M) =0, (3.146)

which gives
V2A = — g jm, (3.147)

since j,, = V A M. The unique solution to Eq. (3.147), subject to sensible
boundary conditions at infinity, is very well known:

/ - r,| ) iy (3.148)
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Thus,

A(r) = Z—;/ VA M(r) d>r'. (3.149)

[ — 7|

If the magnetization field is discontinuous it is necessary to add a surface
integral to the above expression. It is straightforward to show that

' M(r') A dS'
VA d3 g . (3.150)
r — r’l

Ir—?"l

It is clear that the above expression consists of a volume integral involving the
volume magnetization currents 3,, = V A M and a surface integral involving
the surface magnetization currents J,, = M A n (see Eq. (3.132)). If the mag-
netization field is uniform throughout V then only the surface integral makes a
contribution.

3.15 A uniformly magnetized sphere

Consider a sphere of radius a, with a uniform permanent magnetization M =
My z, surrounded by a vacuum region. The simplest way of solving this problem
is in terms of the scalar magnetic potential introduced in Eq. (3.134). From
Egs. (3.136) and (3.137), it is clear that ¢, satisfies Laplace’s equation,

V¢ =0, (3.151)

since there is zero volume magnetic charge density in a vacuum or a uniformly
magnetized magnetic medium. However, according to Eq. (3.144), there is a
magnetic surface charge density,

Om = 17-M = My cos®b, (3.152)

on the surface of the sphere. One of the matching conditions at the surface of
the sphere is that the tangential component of H must be continuous. It follows
from Eq. (3.134) that the scalar magnetic potential must be continuous at r = q,
so that

Pm(r =ay) = ¢m(r =a-). (3.153)
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Integrating Eq. (3.136) over a Gaussian pill-box straddling the surface of the
sphere yields
Eo

r = —0,, = —Mgycosf. (3.154)

r=a—

In other words, the magnetic charge sheet on the surface of the sphere gives rise
to a discontinuity in the radial gradient of the magnetic scalar potential at r = a.

The most general axisymmetric solution to Eq. (3.151) which satisfies physical
boundary conditions at r = @ and r = ¢ is

P (1, 0) = Z Ay r' Py(cos 6) (3.155)
1=0
for r < a, and
Pm (r,0) = Z B, r~ U+ Py(cos ) (3.156)
1=0

for » > a. The boundary condition (3.153) yields
B; = A; gt (3.157)
for all [. The boundary condition (3.154) gives

[+1)B _
_{U+1) B al+)2 LA dtt = — Moo (3.158)

for all [, since Pj(cos ) = cosf. It follows that

Aj=B =0 (3.159)
for | # 1, and
M,
A = 70 (3.160a)
M. 3
Bi = ga’ . (3.160b)
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Thus,

Moya? r
Gm (1, 6) = 5 o2 cos 0 (3.161)
for r < a, and
Mya® a
Gm(r,0) = 5 2 cos 6 (3.162)

for r > a. Since there is a uniqueness theorem associated with Poisson’s equation,
we can be sure that this axisymmetric potential is the only solution to the problem
which satisfies physical boundary conditions at » = 0 and infinity.

In the vacuum region outside the sphere
B = puoH = —gVo,. (3.163)
It is easily demonstrated from Eq. (3.162) that

_ | m  3(mr)r

where 1
m= 2 ra* M. (3.165)

This, of course, is the magnetic field of a magnetic dipole m. Not surprisingly,
the net dipole moment of the sphere is equal to the integral of the magnetization
M (which is the dipole moment per unit volume) over the volume of the sphere.

Inside the sphere we have H = —V¢,,, and B = po(H + M), giving

M
H=——, (3.166)
3
and 5
B = 3 oM. (3.167)

Thus, both the H and B fields are uniform inside the sphere. Note that the
magnetic intensity is oppositely directed to the magnetization. In other words,
the H field acts to demagnetize the sphere. How successful it is at achieving
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Figure 4: Schematic demagnetization curve for a permanent magnet

this depends on the shape of the hysteresis curve in the negative H and posi-
tive B quadrant. This curve is sometimes called the demagnetization curve of
the magnetic material which makes up the sphere. Figure 4 shows a schematic
demagnetization curve. The curve is characterized by two quantities: the reten-
tivity Bg (i.e., the residual magnetic field strength at zero magnetic intensity)
and the coercivity puoH,. (i.e., the negative magnetic intensity required to demag-
netize the material: this quantity is conventionally multiplied by ug to give it the
units of magnetic field strength). The operating point (i.e., the values of B and
poH inside the sphere) is obtained from the intersection of the demagnetization
curve and the curve B = pH. It is clear from Eqgs. (3.166) and (3.167) that

w=—2pug (3.168)

for a uniformly magnetized sphere in the absence of external fields. The magne-
tization inside the sphere is easily calculated once the operating point has been
determined. In fact, My = B — puoH. It is clear from Fig. 4 that for a magnetic
material to be a good permanent magnet it must possess both a large retentivity
and a large coercivity. A material with a large retentivity but a small coercivity
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is unable to retain a significant magnetization in the absence of a strong external
magnetizing field.

3.16 A soft iron sphere in a uniform magnetic field

The opposite extreme to a “hard” ferromagnetic material, which can maintain a
large remnant magnetization in the absence of external fields, is a “soft” ferro-
magnetic material, for which the remnant magnetization is relatively small. Let
us consider a somewhat idealized situation in which the remnant magnetization
is negligible. In this situation there is no hysteresis, so the B-H relation for the

material reduces to
B = u(B) H, (3.169)

where p(B) is a single valued function. The most commonly occurring “soft”
ferromagnetic material is soft iron (i.e., annealed, low impurity iron).

Consider a sphere of soft iron placed in an initially uniform external field
By = Byz. The upoH and B fields inside the sphere are most easily obtained
by taking the solutions (3.166) and (3.167) (which are still valid in this case),
and superimposing on them the uniform field By. We are justified in doing this
because the equations which govern magnetostatic problems are linear. Thus,
inside the sphere we have

woH = Bo— oM, (3.170a)
B = By+ ;uOM. (3.170b)
Combining Egs. (3.169) and (3.170) yields
oM = 3 (:;2’2’0) By, (3.171)
with
B= (u f’;m) B, (3.172)
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where, in general, uy = p(B). Clearly, for a highly permeable material (i.e.,
p/ o > 1, which is certainly the case for soft iron) the magnetic field strength
inside the sphere is approximately three times that of the externally applied field.
In other words, the magnetic field is amplified inside the sphere.

The amplification of the magnetic field by a factor three in the high perme-
ability limit is specific to a sphere. It can be shown that for elongated objects
(e.g., rods), aligned along the direction of the external field, the amplification
factor can be considerably larger than this.

It is important to realize that the magnetization inside a ferromagnetic mate-
rial cannot increase without limit. The maximum possible value of M is called the
saturation magnetization, and is usually denoted M. Most ferromagnetic mate-
rials saturate when they are placed in external magnetic fields whose strengths
are greater than, or of order, one tesla. Suppose that our soft iron sphere first

attains the saturation magnetization when the unperturbed external magnetic
field strength is Bs. It follows from (3.170b) and (3.171) (with u > uo) that

B = By + 2B, (3.173)

inside the sphere, for By > B;. In this case, the field amplification factor is

B B

Bo 142 By’ (3.174)
Thus, for By > B, the amplification factor approaches unity. We conclude that
if a ferromagnetic material is placed in an external field which greatly exceeds
that required to cause saturation then the material effectively loses its magnetic
properties, so that u ~ pg. Clearly, it is very important to avoid saturating the
soft magnets used to channel magnetic flux around transformer circuits. This sets
an upper limit on the magnetic field strengths which can occur in such circuits.

3.17 Magnetic shielding

There are many situations, particularly in experimental physics, where it is de-
sirable to shield a certain region from magnetic fields. This can be achieved by
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surrounding the region in question by a material of high permeability. It is vitally
important that a material used as a magnetic shield does not develop a permanent
magnetization in the presence of external fields, otherwise the material itself may
become a source of magnetic fields. The most effective commercially available
magnetic shielding material is called Mumetal, and is an alloy of 5% Copper, 2%
Chromium, 77% Nickel, and 16% Iron. The maximum permeability of Mumetal
is about 10° yg. This material also possesses a particularly low retentivity and
coercivity. Unfortunately, Mumetal is extremely expensive. Let us investigate
how much of this material is actually required to shield a given region from an
external magnetic field.

Consider a spherical shell of magnetic shielding, made up of material of per-
meability u, placed in a formerly uniform magnetic field By = By z. Suppose
that the inner radius of the shell is a and the outer radius is b. Since there are
no free currents in the problem, we can write H = —V¢,,,. Furthermore, since
B = yH and V-B = 0, it is clear that the magnetic scalar potential satisfies
Laplace’s equation, V2¢,, = 0, throughout all space. The boundary conditions
are that the potential must be well behaved at » = 0 and » — oo, and also that
the tangential and the normal components of H and B, respectively, must be
continuous at r = a and r = b. The boundary conditions on H merely imply that
the scalar potential ¢,, must be continuous at »r = @ and » = b. The boundary
conditions on B yield

O (r =a—) 0pm(r = a+)
= 1
Ho or . or ’ (3:175a)
O (r = b+) O (r = b—)
= . .175b
Ho or H or (3-175b)
Let us try the following test solution for the magnetic potential:
B
bm = ——2 rcosf + %COSH (3.176)
Ho r
for r > b,
b = (m + rlz) cos 6 (3.177)
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for b > r > a, and
Gm = 67 cosb (3.178)

for r < a. This potential is certainly a solution of Laplace’s equation throughout
space. It yields the uniform magnetic field By as r — 0o, and satisfies physical
boundary conditions at » = 0 and infinity. Since there is a uniqueness theorem
associated with Poisson’s equation, we can be certain that this potential is the
correct solution to the problem provided that the arbitrary constants «, 3, etc.
can be adjusted in such a manner that the boundary conditions at r = a and
r = b are also satisfied.

The continuity of ¢,, at »r = a and r = b requires that

Ba+ a12 = §a, (3.179)

and

B
5b+b7—2:—u—3b+ % (3.180)

The boundary conditions (3.175) yield

Hod = 1 ( - Q—Z) , (3.181)
and B ) )
o (—H—;’ - b—§‘> _— ( - b—;’) . (3.182)
It follows that
_ (2u + po) (1 — o) ] 3 3
00 = | G T s )
(3.183a)
| 3(2u + po)po ]
KB = = o) (it 2p0) — 2(a¥ ) (i — po)p) D (B183D)
_ ] 3(k — po) ko | s
MY = it ) (a F 2p0) — 2(a® 50 (a — )7 | @ Bor (3:183¢)
| utio ]
w00 = | G ) — S G| P (31830
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Consider the limit of a thin, high permeability shell for which b = a + d,
d/a < 1, and pu/pg > 1. In this limit, the field inside the shell is given by
~ 3 Mo a

B~ -—"——-DB,. 184
> 450 (3.184)

Thus, if u ~ 10°ug for Mumetal, then we can reduce the magnetic field strength
inside the shell by almost a factor of 1000 using a shell whose thickness is only
1/100th of its radius. Clearly, a little Mumetal goes a long way! Note, however,
that as the external field strength, By, is increased, the Mumetal shell eventually
saturates, and pu/po gradually falls to unity. Thus, extremely strong magnetic
fields (typically, By 2 1 tesla) are hardly shielded at all by Mumetal, or similar
magnetic materials.

3.18 Magnetic energy

Consider an electrical conductor. Suppose that a battery with an electromotive
field E’ is feeding energy into this conductor. The energy is either dissipated as
heat or is used to generate a magnetic field. Ohm’s law inside the conductor gives

ji=o(E+ E'), (3.185)

where 7; is the true current density, o is the conductivity, and E is the inductive
electric field. Taking the scalar product with j;, we obtain

g’
o

E'-j, = — E-j;. (3.186)
The left-hand side of this equation represents the rate at which the battery does
work on the conductor. The first term on the right-hand side is the rate of Joule
heating inside the conductor. We tentatively identify the remaining term with
the rate at which energy is fed into the magnetic field. If all fields are quasi-
stationary (i.e., slowly varying) then the displacement current can be neglected,
and the Ampere-Maxwell equation reduces to V A H = 3;. Substituting this
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expression into Eq. (3.186) and integrating over all space, we get

H 2
/E’-(V/\H)d?’r:/Md?’r—/E-(VAH)d?’r. (3.187)
o
The last term can be integrated by parts using the relation
V(ENH)=H-(VANE)—E-(VANH). (3.188)
The divergence theorem plus the Faraday-Maxwell equation yield
B
/E-(VAH)d3r= —/H-aa—td?’r—/(E/\H)-dS. (3.189)

Since E A H falls off at least as fast as 1/r® in electrostatic and quasi-stationary
magnetic fields (1/r? comes from electric monopole fields, and 1/73 from magnetic
dipole fields), the surface integral in the above expression can be neglected. Of
course, this is not the case for radiation fields, for which E and H fall off like
1/r. Thus, the constraint of “quasi-stationarity” effectively means that the fields
vary sufficiently slowly that any radiation fields can be neglected.

The total power expended by the battery can now be written

2
/E’-(V/\H) d%z/md?’r—l—/ﬂ-%—?d?’r. (3.190)

g

The first term on the right-hand side has already been identified as the energy
loss rate due to Joule heating. The last term is obviously the rate at which energy
is fed into the magnetic field. The variation U in the magnetic field energy can
therefore be written

§U = /H-5Bd3r. (3.191)

This result is analogous to the result (3.64) for the variation in the energy of an
electrostatic field.

In order to make Eq. (3.191) integrable, we must assume a functional relation-
ship between H and B. For a medium which magnetizes linearly the integration
can be carried out in much the same manner as Eq. (3.67), to give

1
U=3 /H-Bd3r. (3.192)
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Thus, the magnetostatic energy density inside a linear magnetic material is given

by
H-B

Unfortunately, most interesting magnetic materials, such as ferromagnets, exhibit
a nonlinear relationship between H and B. For such materials, Eq. (3.191) can
only be integrated between definite states, and the result, in general, depends on
the past history of the sample. For ferromagnets, the integral of Eq. (3.191) has
a finite, non-zero value when B is integrated around a complete magnetization
cycle. This cyclic energy loss is given by

AU = /}[H-dBd?’r. (3.194)

In other words, the energy expended per unit volume when a magnetic material
is carried through a magnetization cycle is equal to the area of its hysteresis loop
as plotted in a graph of B against H. Thus, it is particularly important to ensure
that the magnetic materials used to form transformer cores possess hysteresis
loops with comparatively small areas, otherwise the transformers are likely to be
extremely inefficient.
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4 Electromagnetic wave propagation in dielectrics

4.1 Introduction

It is easily demonstrated that the fields associated with an electromagnetic wave
propagating through a uniform dielectric medium of dielectric constant € satisty

e 02
—+5—-V*)E=0 4.1
(62 ot? ) ’ (4.1)
and 5B
VAE = ——. 4.2
Y (4.2)
The plane wave solutions to these equations are well known:
E = Eye(kr—vt), (4.3a)
B = Byellkr—wt) (4.3b)

where Ey and B, are constant vectors, with

w?  c?
— = — 4.4
and kNE
By = 9. (4.5)
w
The phase velocity of the wave is given by
w
= = 4.6

where
n =+ (4.7)

is called the refractive index of the medium. It is clear that an electromagnetic
wave propagates with a phase velocity which is slower than the velocity of light
in a conventional (i.e., € real and greater than unity) dielectric medium.
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In some dielectric media € is complex. This leads, from Eq. (4.4), to a complex
wave vector k. For a wave propagating in the x-direction we obtain

E = Ej exp[i(Re(k) x — wt)] exp[—Im(k) z]. (4.8)

Thus, a complex dielectric constant leads to the attenuation (or amplification) of
the wave as it propagates through the medium in question.

Up to now, we have tacitly assumed that € is the same for waves of all frequen-
cies. In practice, this is not the case. In dielectric media € is, in general, complex,
and varies (in some cases, strongly) with the wave frequency, w. Thus, waves of
different frequencies propagate through a dielectric medium with different phase
velocities. This phenomenon is known as dispersion. Moreover, there may exist
frequency bands in which the waves are attenuated (i.e., absorbed). All of this
makes the problem of determining the behaviour of a wave packet as it propagates
through a dielectric medium far from straightforward. Recall, that the solution
to this problem for a wave packet traveling through a vacuum is fairly trivial.
The packet propagates at the velocity ¢ without changing its shape. What is the
equivalent result for the case of a dielectric medium? This is an important ques-
tion, since nearly all of our information regarding the universe is obtained from
the study of electromagnetic waves emitted by distant objects. All of these waves
have to propagate through dispersive media (e.g., the interstellar medium, the
ionosphere, the atmosphere) before reaching us. It is, therefore, vitally important
that we understand which aspects of these wave signals are predominantly de-
termined by the wave sources, and which are strongly modified by the dispersive
media through which they have propagated in order to reach us.

The study of wave propagation through dispersive media was pioneered by
two scientists, Arnold Sommerfeld and Léon Brillouin, during the first half of
this century. In the following discussion, we shall stick as close as possible to
Sommerfeld and Brillouin’s original analysis.

4.2 The form of the dielectric constant

Let us investigate an electromagnetic wave propagating through a transparent,
isotropic, non-conducting, medium. The electric displacement inside the medium
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is given by
D = €0E + P, (49)

where P is the electric polarization. Since electrons are much lighter than ions
(or atomic nuclei), we would expect the former to displace further than the lat-
ter under the influence of an electric field. Thus, to a first approximation the
polarization P is determined by the electron response to the wave. Suppose that
the electrons displace a distance s from their rest positions in the presence of the
wave. It follows that

P = —Nes, (4.10)

where N is the number density of electrons.

Let us assume that the electrons are bound “quasi-elastically” to their rest
positions, so that they seek to return to these positions when displaced from them
by a field E. It follows that s satisfies the differential equation of the form

ms+ fs=—eFE, (4.11)

where m is the electron mass, —fs is the restoring force, and * denotes a partial
derivative with respect to time. The above equation can also be written

4+ guwos+wy’s = _£ E, (4.12)
m
where i
2
= L 4.13
Wo m ( )

is the characteristic oscillation frequency of the electrons. In almost all dielec-
tric media this frequency lies in the far ultraviolet region of the electromagnetic
spectrum. In Eq. (4.12) we have added a phenomenological damping term g wy 8,
in order to take into account the fact that an electron excited by an impulsive
electric field does not oscillate for ever. In general, however, electrons in dielectric
media can be regarded as high-Q oscillators, which is another way of saying that
the dimensionless damping constant g is typically much less than unity. Thus,
an electron “rings” for a long time after being excited by an impulse.
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Let us assume that the electrons oscillate in sympathy with the wave at the
wave frequency w. It follows from Eq. (4.12) that

(¢/m) E

2 2 _ i ‘
Wy’ —w?* —1gwwp

Note that we have neglected the response of the electrons to the magnetic compo-
nent of the the wave. It is easily demonstrated that this is a good approximation
provided that the electrons do not oscillate with relativistic velocities (i.e., pro-
vided that the amplitude of the wave is sufficiently small). Thus, Eq. (4.10)
yields

Ne? E
P= 2( eQ/m_) . (4.15)
Wy —w? —igwwy
Since, by definition,
D =¢cpe E = ¢gFE + P, (4.16)
it follows that N2
e(w) =n?(w) =1+ 2( ¢ /eom) (4.17)

we? —w? —igwwy
Thus, the index of refraction is frequency dependent. Since wg typically lies
in the ultraviolet region of the spectrum (and since g <« 1), it is clear that
the denominator wy? — w? —igwwy =~ wy? — w? is positive in the entire visible
spectrum, and is larger at the red end than at the blue end. This implies that
blue light is refracted more than red light. This is normal dispersion. Incidentally,
an expression, like the above, which specifies the dispersion of waves propagating

through some dielectric medium is usually called a dispersion relation.

Let us now suppose that there are N molecules per unit volume with Z elec-
trons per molecule, and that instead of a single oscillation frequency for all elec-
trons, there are f; electrons per molecule with oscillation frequency w; and damp-
ing constant g;. It is easily demonstrated that

Ne? fi
2 2
w)=1+ E 4.18
" ( ) €Egm - w.2—w2—igiwwi’ ( )

?

where the oscillator strengths f; satisfy the sum rule,

Z fi=2Z. (4.19)
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A more exact quantum mechanical treatment of the response of an atom, or
molecule, to a low amplitude electromagnetic wave also leads to a dispersion
relation of the form (4.18), except that the quantities f;, w;, and g; can, in
principle, be calculated from first principles. In practice, this is too difficult
except for the very simplest cases.

Since the damping constants g; are generally small compared to unity, it
follows from Eq. (4.18) that n(w) is a predominately real quantity at most wave
frequencies. The factor (w,? — w?)~! is positive for w < w; and negative for
w > w;. Thus, at low frequencies, below the smallest w;, all of the terms in the
sum in (4.18) are positive, and n(w) is consequently greater than unity. As w is
raised so that it passes successive w; values, more and more negative terms occur
in the sum, until eventually the whole sum is negative and n(w) is less than unity.
Thus, at very high frequencies electromagnetic waves propagate through dielectric
media with phase velocities which exceed the velocity of light in a vacuum. For
w =~ w;, Eq. (4.18) predicts a rather violent variation of the refractive index with
frequency. Let us examine this phenomenon more closely.

4.3 Anomalous dispersion and resonant absorption

When w is approximately equal to w; the dispersion relation (4.18) reduces to

t 2 2 _ !
w;“ —w? —1g; Ww;j

(4.20)

where n; is the average contribution in the vicinity of w = w; of all other res-
onances (also included in n; is the contribution 1 of the vacuum displacement
current, which was previously written down separately). The refractive index is
clearly complex. For a wave propagating in the z-direction

E = Ey expli(w/c)(Re(n) x — ct)] exp[—(w/c) Im(n) z]. (4.21)

Thus, the phase velocity of the wave is determined by the real part of the refractive
index via

(4.22)



Note that a positive imaginary component of the refractive index leads to the
attenuation of the wave as it propagates.

Let
a* = eivnjz? (4.23a)
r = uﬂw—ifwf’ (4.23b)
y = Re(n)Q@;Im(n)z, (4.23¢)
;= QRQ(Z)QIm(n), (4.23d)

where a, z,y, z are all dimensionless quantities. It follows from Eq. (4.20) that

’I’L-2

¥ i
= — 4.24
Y a?  z?+g*(1+z) (4.24a)

;= gvite (4.24b)

2+ g%2(1+2)

Let us adopt the physical ordering g; < 1. The extrema of the function y occur
at x = +g;. It is easily demonstrated that

n;
in | = =g)) =~ — —, 4.24
2
n, 1
max | = =—g;) =+ 4+ —. 4.24d
Yma y(z=—g:) =5 + 2 ( )

The maximum value of the function z occurs at x = 0. In fact,

1
Zmax = —. (4.25)

gi
Note that

1
z(x = +¢;) = 59, (4.26)
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Figure 5: Sketch of the variation of the functions y and z with =

Figure 5 shows a sketch of the variation of the functions y and z with x.
These curves are also indicative of the variation of Re(n) and Im(n), respectively,
with frequency w in the vicinity of the resonant frequency w;. Recall that nor-
mal dispersion is associated with an increase in Re(n) with increasing w. The
reverse situation is termed anomalous dispersion. It is clear from the figure that
normal dispersion occurs everywhere except in the immediate neighbourhood of
the resonant frequency w;. It is also clear that the imaginary part of the refrac-
tive index is only appreciable in those regions of the electromagnetic spectrum
where anomalous dispersion takes place. A positive imaginary component of the
refractive index implies that the wave is absorbed as it propagates through the
medium, so the regions of the spectrum where Im(n) is appreciable are called
regions of resonant absorption. Anomalous dispersion and resonant absorption
take place in the vicinity of the ith resonance when |w — w;| £ O(g;). Since the
damping constants g; are, in practice, very small compared to unity, the regions
of the spectrum in which resonant absorption takes place are strongly localized
in the vicinity of the various resonant frequencies.
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The dispersion relation (4.18) only takes electron resonances into account.
Of course, there are also resonances associated with displacements of the ions
(or atomic nuclei). The off-resonance contributions to the right-hand side of
Eq. (4.18) from the ions are smaller than those from the electrons by a factor of
order m/M (where M is a typical ion mass). Nevertheless, the ion contributions
are important because they give rise to anomalous dispersion and resonant ab-
sorption close to the ion resonant frequencies. The ion resonances associated with
the stretching and bending of molecular bonds typically lie in the infrared region
of the electromagnetic spectrum. Those associated with molecular rotation (these
resonances only affect the dispersion relation if the molecule is polar) occur in
the microwave region of the spectrum. Thus, both air and water exhibit strong
resonant absorption of electromagnetic waves in both the ultraviolet and infrared
regions of the spectrum. In the first case this is due to electron resonances, and
in the second to ion resonances. The visible region of the spectrum exists as a
narrow window lying between these two regions in which there is comparatively
little attenuation of electromagnetic waves.

4.4 'Wave propagation through a conducting medium

In the limit w — 0, there is a significant difference in the response of a dielectric
medium, depending on whether the lowest resonant frequency is zero or non-zero.
For insulators the lowest resonant frequency is different from zero. In this case,
the low frequency refractive index is predominately real, and is also greater than
unity. Suppose, however, that some fraction fy of the electrons are “free,” in the
sense of having wg = 0. In this situation, the low frequency dielectric constant
takes the form
2 ., . Ne? fo

com w (y0 —iw)’

(4.27)

where ng is the contribution to the refractive index from all of the other reso-
nances, and vy = lim,,,,0 gowo. Note that for a conducting medium the contri-
bution to the refractive index from the free electrons is singular at w = 0. This
singular behaviour can be explained as follows. Consider the Ampere-Maxwell
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equation

oD

Let us assume that the medium in question obeys Ohm’s law, 3; = ¢ FE, and has
a “normal” dielectric constant ny>. Here, o is the conductivity. Assuming an

exp(—iwt) time dependence of all field quantities the above equation yields

VAB
~ —iew <n02 +i i) E. (4.29)
Ko €QWw

Suppose, however, that we do not explicitly use Ohm’s law but, instead, attribute
all of the properties of the medium to the dielectric constant. In this case, the
effective dielectric constant of the medium is equivalent to the term in round
brackets on the right-hand side of the above equation. Thus,

ew) = n2(w) =ng2 +i——. (4.30)
€ W
A comparison of this term with Eq. (4.27) yields the following expression for the

conductivity )

o= JoNe (4.31)

m(yo —iw)

Thus, at low frequencies conductors possess predominately real conductivities
(i.e., the current remains in phase with the electric field). However, at higher
frequencies the conductivity becomes complex. At these sorts of frequencies there
is little meaningful distinction between a conductor and an insulator, since the
“conductivity” contribution to €(w) appears as a resonant amplitude just like the
other contributions. For a good conductor, such as Copper, the conductivity
remains predominately real for all frequencies up to and including those in the
microwave region of the electromagnetic spectrum.

The conventional way in which to represent the complex refractive index of a
conducting medium (in the low frequency limit) is to write it in terms of a real
“normal” dielectric constant, € = ny?, and a real conductivity, o. Thus, from
Eq. (4.30)

2 . 0
= —. 4.32
n‘(w) e—|—1€0w (4.32)
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For a poor conductor (0/eepw < 1) we find

k:ngzﬁg—i—i
c c

(4.33)

In this limit Re(k) > Im(k), and the attenuation of the wave, which is governed by
Im(k) [see Eq. (4.8)], is independent of the frequency. Thus, for a poor conductor
the wave is basically the same as a wave propagating through a conventional
dielectric with dielectric constant €, except that the wave attenuates gradually
over a distance of very many wavelengths. For a good conductor (o/eegw > 1)

ke~ el™* /upow. (4.34)
It follows from Eq. (4.5) that

cBy ke in/a | O
— = —=¢e'" — 4.35
Ey w ¢ €0 W ( )

Thus, the phase of the magnetic field lags that of the electric field by 45°. More-
over, the magnitude of ¢By is much larger than that of Ey (since o/epw > € 2 1).
It follows that the field energy is almost entirely magnetic in nature. It is
clear that an electromagnetic wave propagating through a good conductor has
markedly different properties to a wave propagating through a conventional di-
electric. For a wave propagating in the xz-direction, the amplitudes of the electric
and magnetic fields attenuate like exp(—z/d), where

d=—2_ (4.36)
Mo O W

This quantity is known as the skin depth. It is clear that an electromagnetic wave
incident on a conducting medium will not penetrate more than a few skin depths
into that medium.

4.5 The high frequency limit

Consider the behaviour of the dispersion relation (4.18) in the high frequency
limit w > w; (for all ¢). In this limit, the relation simplifies considerably to give

w2

n*(w) =1- w—pz’ (4.37)
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where the quantity

| N Ze?
= 4.38
Wp P ( )

is called the plasma frequency. The wave-number in the high frequency limit is
given by
w P

k=n—-=Y = (4.39)

C C

This expression is only valid in dielectrics when w > wp,. Thus, the refractive
index is real and slightly less than unity, giving waves which propagate without
attenuation with a phase velocity slightly larger than the velocity of light in vac-
uum. However, in certain ionized media (in particular, in tenuous plasmas such
as occur in the ionosphere) the electrons are free and the damping is negligible.
In this case, Eqgs. (4.37) and (4.39) are valid even when w < w,. It is clear that a
wave can only propagate through a tenuous plasma if its frequency exceeds the
plasma frequency (in which case it has a real wave-number). If wave frequency
is less than the plasma frequency then the wave-number is purely imaginary, ac-
cording to Eq. (4.39), and the wave is therefore attenuated. This accounts for the
fact that long-wave and medium-wave radio signals can be received even when
the transmitter lies over the horizon. The frequency of these waves is less than
the plasma frequency of the ionosphere, which reflects them, so they are trapped
between the ionosphere and the surface of the Earth (which is also a good re-
flector of radio waves), and can, in certain cases, travel many times around the
Earth before being attenuated. Unfortunately, this scheme does not work very
well for medium-wave signals at night. The problem is that the plasma frequency
of the ionosphere is proportional to the square root of the number density of free
ionospheric electrons. These free electrons are generated through the ionization
of neutral molecules by ultraviolet radiation from the Sun. Of course, there is no
radiation from the Sun at night so the density of free electrons starts to drop as
the electrons gradually recombine with ions in the ionosphere. Eventually, the
plasma frequency of the ionosphere falls below the frequency of medium-wave
radio signals allowing them to be transmitted through the ionosphere into outer
space. The ionosphere appears almost completely transparent to high frequency
signals such as TV and FM radio signals. Thus, this type of signal is not reflected
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by the ionosphere. Consequently, to receive such signals it is necessary to be in
the line of sight of the relevant transmitter.

4.6 Faraday rotation

The electromagnetic force acting on an electron is given by
f=—-e(E+vAB). (4.40)

If the E and B fields in question are due to an electromagnetic wave propagating
through a dielectric medium then

n
B = —|E]. (4.41)

It follows that the ratio of the magnetic to the electric forces acting on the elec-
tron is nwv/c. In other words, the magnetic force is completely negligible unless
the wave amplitude is sufficiently high that the electron moves relativistically in
response to the wave. This state of affairs is rare, but can occur when intense
laser beams are made to propagate through plasmas.

Suppose, however, that the dielectric medium contains an externally gener-
ated magnetic field B. This can easily be made much stronger than the optical
magnetic field. In this case, it is possible for a magnetic field to affect the propa-
gation of low amplitude electromagnetic waves. The electron equation of motion
(4.11) generalizes to

ms+ fs=—e(E+sAB), (4.42)

where any damping of the motion has been neglected. Suppose that the direction
of B is in the positive z-direction, and that the wave propagates in the same
direction. With these assumptions the E and s vectors lie in the -y plane. The
above equation reduces to

(wo? —w?) sz —iwfs, = —% E;, (4.43a)
(wo® —w?) sy +iws, = —% E,, (4.43Db)
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provided that all perturbed quantities have an exp(—iwt) time dependence. Here,

0P
m
is the electron cyclotron frequency. Let
E, =E,+iE,,
and
S4 = Sz L 18y.
Note that
1
B, = 5(Bi+E.),
E, = — (B, —FE)
v it T
Equations (4.43) reduce to
(W —w? —w) s, = _°E
0 + m +>
(W —w?+w)s_. = - E_.
m

Defining Py = P, £1i Py, it follows from Eq. (4.10) that

(Ne?/m) Ex

2 2 :
wy” —w? Fw 2

Finally, from Eq. (4.15), we can write

Py

— 2
o

giving

(4.44)

(4.45)

(4.46)

(4.47a)

(4.47b)

(4.48a)

(4.48b)

(4.49)

(4.50)

(4.51)



According to the dispersion relation (4.51), the refractive index of a magne-
tized dielectric medium can take one of two possible values, which presumably
correspond to two different types of wave propagating along the z-axis. The first
wave has the refractive index n4 and an associated electric field [see Egs. (4.45)]

E, = Eycos[(w/c)(nsz — ct)], (4.52a)
E, = Epsin[(w/c)(nyz — ct)]. (4.52D)

This corresponds to a left-handed circularly polarized wave propagating in the z-
direction with the phase velocity ¢/ny. The second wave has the refractive index
n_ and an associated electric field

E, = FEycos[(w/c)(n_z — ct)], (4.53a)
E, = —Epsin[(w/c)(n_z— ct)]. (4.53b)

This corresponds to a right-handed circularly polarized wave propagating in the z-
direction with the phase velocity ¢/n_. It is clear from Eq. (4.51) that ny > n_.
Thus, we conclude that in the presence of a z-directed magnetic field, a z-directed
left-handed circularly polarized wave propagates with a phase velocity which is
slightly less than that of the corresponding right-handed wave. It should be
remarked that the refractive index is always real (in the absence of damping), so
the magnetic field gives rise to no net absorption of electromagnetic radiation.
This is not surprising since the magnetic field does no work on charged particles,
and can therefore transfer no energy to the particles from any waves propagating
through the medium.

We have seen that right-handed and left-handed circularly polarized waves
propagate with different phase velocities through a magnetized dielectric medium.
But, what does this imply for the propagation of a plane polarized wave? Let us
superimpose the left-handed wave whose electric field is given by Egs. (4.52) on
the right-handed wave whose electric field is given by Egs. (4.53). In the absence

of a magnetic field ny = n_ = n, and we obtain
E, = 2Ejcos|(w/c)(nz — ct)], (4.54a)
E, = 0. (4.54b)
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This, of course, is the field of a plane polarized wave (polarized along the z-
direction) propagating along the z-axis with the phase velocity ¢/n. In the pres-
ence of a magnetic field we obtain

E, = 2Ejcos|(w/c)(nz — ct)]cos[(w/2¢)(ny —n_)z], (4.55a)
E, = 2Ejcos[(w/c)(nz — ct)]sin[(w/2¢c)(ny —n_)z], (4.55Db)

where .
n=g (ny +n_) (4.56)

is the mean index of refraction. Equations (4.55) can be recognized as the field
of a plane polarized wave whose angle of polarization with respect to the z-axis,

X = tan_l(Ey/Ew)a (457)

rotates as the wave propagates along the z-axis with the phase velocity ¢/n. In

fact, the angle of polarization is given by
w

X= 5 (ny —n_)z, (4.58)

which clearly increases linearly with the distance traveled by the wave along the
direction of the magnetic field. This rotation of the plane of polarization of a
linearly polarized wave propagating through a magnetized dielectric medium is
known as Faraday rotation (since it was discovered by Michael Faraday in 1845).

Assuming that the cyclotron frequency 2 is relatively small compared to the
wave frequency w, and also that w does not lie close to the resonant frequency
wy, it is easily demonstrated that

(4.59)

and
Ne? w{?

comn (wy? — w?)?’

(4.60)

It follows that the rate at which the plane of polarization of an electromagnetic

wave rotates with the distance traveled by the wave is given by
dX /ﬁ:(w) NB”
== 4.61
dl n(w) ’ (4.61)
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where B)| is the component of the magnetic field along the direction of propagation

of the wave, and

e? w?

K(w) (4.62)

~ 2egm2c (wd — w?)?’
If the medium in question is a tenuous plasma then n ~ 1 and wg = 0. Thus,

dx e3 N B
- Y 2

(4.63)

dl — 2egm?c w

Clearly, the rate at which the plane of polarization rotates is proportional to the
product of the electron number density and the parallel magnetic field strength.
Moreover, the plane of rotation rotates faster for low frequency waves than for
high frequency waves. The total angle by which the plane of polarization is
twisted after passing through a magnetized plasma is given by

63
Ay~ ———— | N()B 4.64
=G [ NOB 0, (4.64

provided that N and B vary on length-scales which are large compared to the
wavelength of the radiation. This formula is regularly employed in radio astron-
omy to infer the magnetic field-strength in interstellar space.

4.7 Wave propagation through a magnetized plasma

For a plasma (wg = 0) the dispersion relation (4.51) reduces to

2

nfw)=1- w(w—z:;:ﬁ)' (4.65)
The upper sign corresponds to a left-handed circularly polarized wave and the
lower sign to a right-handed polarized wave. Of course, Eq. (4.65) is only valid
for wave propagation along the direction of the magnetic field. Wave propagation
through the Earth’s ionosphere is well described by the above dispersion relation.
There are wide frequency intervals where one of n_? or n_? is positive and the other
negative. At such frequencies one state of circular polarization cannot propagate

143



through the plasma. Consequently, a wave of that polarization incident on the
plasma is totally reflected. The other state of polarization is partially transmitted.

The behaviour of n_?(w) at low frequencies is responsible for a strange phe-
nomenon known to radio hams as “whistlers.” As the frequency tends to zero,

Eq. (4.65) yields
w,?
n?~ P

—. 4.66

- (4.66)
At this sort of frequency n +2 is negative, so only right-hand polarized waves can
propagate. The wave-number of such waves is given by

w o ow w
k. =n_—~"P |, 4.67
n c c P ( )
Energy transport is governed by the group velocity (see later)
d Vw2
vg(w) = 0~ e Y22 (4.68)

T dk_ Wp

Thus, low frequency waves transmit energy slower than high frequency waves.
A lightning strike in one hemisphere of the Earth generates a wide spectrum of
radiation, some of which propagates along the dipolar field lines of the Earth’s
magnetic field in a manner described approximately by the dispersion relation
(4.68). The high frequency components of the signal return to the surface of the
Earth before the low frequency components (since they travel faster along the
magnetic field). This gives rise to a radio signal which begins at a high frequency
and then “whistles” down to lower frequencies.

4.8 The propagation of electromagnetic radiation through
a dispersive medium

Let us now investigate the propagation of electromagnetic radiation through a
dispersive medium by studying a simple one-dimensional problem. Suppose that
our dispersive medium extends from x = 0, where it interfaces with a vacuum,
to x = oo. Suppose further that a wave is incident normally on the medium,
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so that the field quantities only depend on = and t. The wave is specified as a
given function of £ at * = 0. Since we are not interested in the reflected wave,
let this function, f(¢), say, give the wave amplitude just inside the surface of the
dispersive medium. Suppose that the wave arrives at this surface at ¢ = 0, and

that
0 fort <0,

ft) = { sin(%t) for t > 0.

T

(4.69)

How does the wave subsequently develop in the region z > 07 In order to answer
this question we must first of all decompose f(t) into harmonic components of
the form exp(—iwt) (i.e., Fourier harmonics). Unfortunately, if we attempt this
using only real frequencies, w, we encounter convergence difficulties, since f(t)
does not vanish at ¢t = co. For the moment, we can circumvent these difficulties
by only considering finite (in time) wave forms. In other words, we now imagine
that f(t) = 0for ¢ < 0 andt > T. Such a wave form can be thought of as the
superposition of two infinite (in time) wave forms, the first beginning at ¢ = 0
and the second at ¢t = T with the opposite phase, so that the two cancel for all
time t > T.

According to standard Fourier transform theory

£(t) = % /_ " dw /_ Ty emiett=t) gy (4.70)

Since f(t) is a real function of ¢ which is zero for ¢ < 0 and ¢ > T, we can write

() = % /_ " dw /0 F(t) coslew(t — )] dt'. (4.71)

Finally, it follows from symmetry (in w) that
1 o0 T
f(t) = —/ dw/ f(t") cos[w(t —t")]dt. (4.72)
T Jo 0

Equation (4.69) yields

() = % /0 " dw /O : sin(m') cosle(t — )] dt’, (4.73)

T
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or

1) 1 [ p cos2mt' /T + w(t —t')]  cos2nt' [T —w(t —t')] v=T
= — w — :
21 Jo w—2m/T w+2m/T =0
(4.74)
Let us assume, for the sake of simplicity, that
T = Nr, (4.75)

where N is a positive integer. This ensures that f(¢) is continuous at t = T.
Equation (4.74) reduces to

f(t) = % /Ooo - _‘(Z;"W/T)Q (cosfw(t — T)] — coswt ). (4.76)

This expression can be written

() = % /_O:o — ‘(Z;"W/T)Q (cosw(t — T)] — coswt), (4.77)
f(t) = % Re/_oO w—d—;r/T (e_i“(t_T) — e_iwt> . (4.78)

It is not entirely obvious that Eq. (4.78) is equivalent to Eq. (4.77). However, we
can easily prove that this is the case by taking Eq. (4.78) and using the standard
definition of a real part (i.e., half the sum of the quantity in question and its
complex conjugate) to give

flt) = 1 /oo _dw (e—iw(t—T) B e_iwt)

dr | w—2m/T

1 [ dw

dr | w—2m/T

+ (e+i°J<t—T> . e+i‘*’t) . (4.79)

Replacing the dummy integration variable w by —w in the second integral and

then making use of symmetry, it is easily seen that the above expression reduces
to Eq. (4.77).
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Figure 6: Sketch of the integration contours used to evaluate Eqs. (4.78) and
(4.81)

Equation (4.77) can be written

f) =2 / " dw sinfw(t — T/2)] SR@T/2) (4.80)

T ) w? — (2n/7)?’

Note that the integrand is finite at w = 27 /7, since at this point the vanishing of
the denominator is compensated for by the simultaneous vanishing of the numer-
ator. It follows that the integrand in Eq. (4.78) is also not infinite at w = 27/,
as long as we do not separate the two exponentials. Thus, we can replace the
integration along the real axis through this point by a small semi-circle in the
upper half of the complex plane. Once this has been done, we can deform the
path still further and can integrate the two exponentials in Eq. (4.78) separately:

1 . 1 :
f(t) = — Re/Ce_“"tdiw - — Ret/ce_lw(t_T)diw (4.81)

27 w—2m/T 2w w—2m/T

The contour C' is sketched in Fig. 6. Note that it runs from +oo0 to —oo, which
accounts for the change of sign between Egs. (4.78) and (4.81).

We have already noted that a finite wave form which is zero for ¢ < 0 and
t > T can be through of as the superposition of two out of phase infinite wave
forms, one starting at ¢ = 0 and the other at ¢ = T'. It is plausible, therefore,
that the first term in the above expression corresponds to the infinite wave form
starting at ¢ = 0, and the second to the infinite wave form starting at ¢t = 7. If
this is the case then the signal (4.69), which starts at ¢ = 0 and ends at ¢t = oo,
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can be written in the form

1 ; dw
)= —Re [ e'¥' —— . 4.82

f®) 27 /C w—2m/T (4.82)
Let us test this proposition. In order to do this we must replace the original path
of integration C' by two equivalent paths.

First, consider ¢ < 0. In this case, —iwt has a negative real part in the upper
half plane which increases indefinitely with increasing distance from the axis.
Thus, we can replace the original path of integration by the path A (see Fig. 7).
The integral clearly vanishes along this path if we let A approach infinity in the
upper half plane. Consequently,

f(t)=0 (4.83)
for t < 0.

Next, consider ¢ > 0. Now, —iwt has a negative real part in the lower half
plane, so that the exponential vanishes at infinity in this half plane. If we attempt
to deform C' to infinity in the lower half plane, the path of integration “catches” on
the singularity of the integrand at w = 27/7 (see Fig. 7). The path of integration
B therefore consists of three parts: the part at infinity, By, where the integral
vanishes due to the exponential factor e '“*; By, the two parts leading to infinity
which cancel each other and thus contribute nothing to the integral; the path Bs
around the singularity. This latter contribution can easily be evaluated using the
Cauchy residue theorem:

1 ; 2
B = Dy Re (271 e~ 2™14/7) = sin (ﬂ) : (4.84)

s T

Thus, it is proven that the expression (4.82) actually describes a wave form be-
ginning at ¢t = 0 whose subsequent motion is specified by Eq. (4.69).

Equation (4.82) can immediately be generalized to give the wave motion in
the region = > 0:

1 .
f(z,t) = Dy Re/ e (ko—wt) 40 (4.85)
c

s w—2m/T
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Figure 7: Sketch of the integration contours used to evaluate Eq. (4.82)

This follows from standard wave theory, because we know that an unterminated
wave motion at z = 0 of the form e~ takes the form e! (2=t after moving a
distance x in the dispersive medium, provided that k£ and w are related by the
appropriate dispersion relation. For a medium consisting of a single resonant
species this dispersion relation is written (see Eq. (4.17))

kQ::Ef-(14-ah2(Ah¥/ﬂ””) ). (4.86)

c? —w?2 —igwuwy

4.9 Propagation of the wave front in a dispersive medium

It is helpful to define
s=t— . (4.87)
c

Let us consider the two cases s < 0 and s > 0 separately.

Suppose that s < 0. In this case we distort the path C', used to evaluate the
integral (4.85), into the path A shown in Fig. 8. This is only a sensible thing to
do if the real part of i (kx — wt) is negative at infinity in the upper half plane. It
is clear from the dispersion relation (4.86) that k¥ = w/c in the limit |w| — oc.
Thus,

i(kr —wt) = —iw(t — z/c) = —iws. (4.88)
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It follows that i (kz—wt) possesses a large negative real part along path A provided
that s < 0. Thus, Eq. (4.85) yields

f(z,t) =0 (4.89)

for s < 0. In other words, it is tmpossible for the wave front to propagate through
the dispersive medium with a velocity greater than the velocity of light in a vacuum.

Suppose that s > 0. In this case we distort the path C' into the lower half
plane, since i (kz—wt) = —iws has a negative real part at infinity in this region. In
doing this, the path becomes stuck not only at the singularity of the denominator
when w = 27 /7, but also at the branch points of the expression for k. After a
little algebra, the dispersion relation (4.86) yields

k:ﬂ\/“’“_‘"\/“’l—_“’, (4.90)
(& Wo+ — W Wwo—- — W
where
wot = —ip £ y/wy? — p?, (4.91)
and
wir = —ip=* \/w02 + wy? — p2. (4.92)
Here,

wp = v/ Ne2/egm (4.93)

is the plasma frequency, and

w

p=T0 < wo (4.94)
parameterizes the damping. In order to prevent multiple roots of Eq. (4.90) it is
necessary to place branch cuts between wpy and w;y and also between wgp_ and

wi— (see Fig. 8).

The path of integration B is conveniently split into the parts B; through
Bs. The contribution from Bj is negligible since the exponential in Eq. (4.85) is
vanishingly small on this part of the integration path. Likewise, the contribution
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Figure 8: Sketch of the integration contours used to evaluate Eq. (4.85)

from B, is zero since its two sections always cancel. The contribution from Bj
follows from the residue theorem:

1 )
Bs = —Re (2rie’ [kro=2mt/7]) (4.95)

™

Here, k. denotes the value of k obtained from the dispersion relation (4.86) in
the limit w — 27 /7. Thus,
-

Bs = e~ k)@ gip (271' t_ Re(k,) :1:) : (4.96)

In general, the contributions from B, and Bs cannot be simplified further. For
the moment we denote them as

1 ; dw
B — — i(kz—wt) 4.
YT o Re ]€34e w—2m/T’ (4.97)
and . p
B — — i(kzx—wt) w 4.
T on Re ]256 w—2m/T’ (4.98)
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where the paths of integration circle the appropriate branch cuts. In all, we have

f(z,t) = e7mkr) 2 gip (27r t_ Re(k;) x) + By + Bs (4.99)

T

for s > 0.

Let us now look at the special case s = 0. For this value of s we can change the
original path of integration to one at infinity in either the upper or the lower half
plane, since the integrand vanishes in each case, through no longer exponentially,
but rather as 1/w?. We can see this from Eq. (4.82), which can be written in the

form . p p
. w . w
) = — —lwt 7 +iwt ) 4.1
f®) 4 (/Ce w—27r/7'+/ce w—27r/7'> (4.100)

Substitution of w for —w in the second integral yields

f(t) = E /e—iwt — _‘(i;‘;/T)Q. (4.101)

T

Now, applying dispersion theory, we get from the above equation, just as we got
Eq. (4.85) from Eq. (4.82),

1 i(kr—w d
f(z,t) = ;/e (ke —wt) — (;UW/T)T (4.102)

—iws

Clearly, the integrand vanishes as e /w? as w becomes very large. Thus, it
vanishes as 1/w? for s = 0. Since we can calculate f(z,t) by using either path A
or path B, we can see that

t
f(x, t) = e_Im(kT) T sin (271' - — Re(kT) .CC) + B4+ B5=0 (4103)
T

for s = 0. Thus, there is continuity in the transition from the region s < 0 to the
region s > 0.

We are now in a position to make some meaningful statements about the
behaviour of the signal at depth z inside the dispersive medium. Prior to the
time ¢t = z/c there is no motion. Even if the phase velocity is superluminal, no
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electromagnetic signal can arrive earlier than one propagating with the velocity of
light in vacuum ¢. The wave motion for ¢ > z/c is conveniently divided into two
parts: free oscillations and forced oscillations. The former are given by B4 + Bs,
and the latter by

2
e~ Imkr) 2 gin (27r L Re(k.) :U> = ¢ Im(kr)@ Sin(—ﬁ [t — ﬁ]) 3 (4.104)
T

where 5
s

Vp = Re(k) (4.105)
is termed the phase velocity. The forced oscillations have the same sine wave
characteristics and oscillation frequency as the incident wave. However, the wave
amplitude is diminished by the damping coefficient, although, as we have seen,
this is generally a negligible effect unless the frequency of the incident wave closely
matches one of the resonant frequencies of the dispersive medium. The phase ve-
locity v, determines the velocity with which a point of constant phase (e.g., a peak
or trough) of the forced oscillation signal propagates into the medium. However,
the phase velocity has no effect on the velocity with which the forced oscillation
wave front propagates into the medium. This latter velocity is equivalent to the
velocity of light in vacuum ¢ . The phase velocity v, can be either greater or
less than ¢, in which case peaks and troughs either catch up with or fall further
behind the wave front. Of course, peaks can never overtake the wave front.

It is clear from Egs. (4.91), (4.92), (4.97), and (4.98) that the free oscilla-
tions oscillate with real frequencies which are somewhere between the resonant
frequency wy and the plasma frequency w,. Furthermore, the free oscillations are
damped in time like exp(—pt). The free oscillations, like the forced oscillations,
begin at time t = x/c. At t = z/c the free and forced oscillations just cancel (see
Eq. (4.103)). As t increases both the free and forced oscillations set in, but the
former rapidly damp away, leaving only the forced oscillations. Thus, the free
oscillations can be regarded as some sort of transient response of the medium to
the incident wave, whereas the forced oscillations determine the time asymptotic
response. The real frequency of the forced oscillations is that imposed exter-
nally by the incident wave, whereas the real frequency of the free oscillations is
determined by the nature of the dispersive medium, quite independently of the
frequency of the incident wave.
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One slightly surprising result of the above analysis is the prediction that the
wave front of the signal propagates into the dispersive medium with the veloc-
ity of light in vacuum, irrespective of the dispersive properties of the medium.
Actually, this is a fairly obvious result. As is well described by Feynman in his
famous Lectures on Physics, when an electromagnetic wave propagates through a
dispersive medium, the electrons and ions which make up that medium oscillate
in sympathy with the incident wave and in doing so emit radiation. Both the
radiation from the electrons and ions and the incident radiation travel at the
velocity c. However, when these two radiation signals are superposed the net
effect is as if the incident signal propagates through the dispersive medium with
a phase velocity which is different from c. Consider the wave front of the incident
signal, which clearly propagates into the medium with the velocity c. Prior to the
arrival of this wave front the electrons and ions are at rest, since no information
regarding the arrival of the incident wave at the surface of medium can propagate
faster than c. After the arrival of the wave front the electrons and ions are set
into motion and emit radiation which can affect the apparent phase velocity of
radiation which arrives somewhat later. But this radiation certainly cannot affect
the propagation velocity of the wave front itself, which has already passed by the
time the electrons and ions are set into motion (because of the finite inertia of
the electrons and ions).

4.10 The Sommerfeld precursor

Let us consider the situation immediately after the arrival of the signal; i.e., when
s is small and positive. Let us start from Eq. (4.102), which can be written in
the form

_ 1 i([k—w/clr—ws) dw
flz,t) = . /Ce w? = (/)2 (4.106)
We can deform the original path of integration C' into a large semi-circle of radius
R in the upper half-plane, plus the segments of the real axis, as shown in Fig. 9.
Because of the denominator w? — (27/7)2, the integrand tends to zero as 1/w?
on the real axis. We may add the path in the lower half plane which is shown
as a dotted line in the figure, for if the radius of the semi-circular portion of this
lower path is increased to infinity, the integrand vanishes exponentially because
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Figure 9: Sketch of the integration contour used to evaluate Eq. (4.107)

s > 0. Therefore, we may replace our original path of integration by the entire

circle S. Thus,
dw

1 .
— i([k—w/clz—ws) 4.107
f(z) T ;Se w? — (27 /71)? ( )

in the limit that the radius of the circle R tends to infinity.

The dispersion relation (4.86) yields

w w w2 w2
k— — ~ — \/1—i—1 ~__P 4.108
c c< w? > 2cw ( )

in the limit |w| — oco. Using the abbreviation

¢= 2 g, (4.109)



This expression can also be written

f1(§,t) = %fsexp [—i\/?s <i\/§+w\/§)] i—ﬁ. (4.111)
w\/gz et (4.112)

= —idu, (4.113)

dv . [s _;,
e 1\/ge du. (4.114)

Substituting the angular variable u for w as the integration variable in Eq. (4.111)
yields

Let

It follows that

giving

: 2w
fi(&,t) = %\/gfo exp(—2i\/&s cosu) e du. (4.115)

Here, we have taken \/¢/s as the radius of the circular integration path in the
w-plane. This is indeed a large radius, since s < 1. From symmetry, Eq. (4.115)
simplifies to

: 27
fi(&,t) = %\/5/0 exp(—2iy/&s cosu) cosu du. (4.116)

The following mathematical identity is very well-known'!

i—’n

27
Jn(2) = /0 e'? ©59 co5(nf) db, (4.117)

2

where J,,(z) is Bessel function of order n. It follows from Eq. (4.115) that

fi(€t) = 2§\/§Jl(2\/§’s). (4.118)
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Figure 10: The Bessel function J;(2)

Here, we have made use of the fact that J;(—z) = —J1(2)-

The properties of Bessel functions are well-known and are listed in many
standard references on mathematical functions (see, for instance, Abramowitz
and Stegun). In the small argument limit z < 1 we find that

Ji(z) = g +O(23). (4.119)

On the other hand, in the large argument limit z > 1 we obtain

2
Ji(z) =1/ — cos(z — 3m/4) + O(2~3/?). (4.120)
m
The behaviour of J;(z) is further illustrated in Fig. 10.

We are now in a position to make some quantitative statements regarding
the signal which first arrives at depth x in the dispersive medium. This sig-
nal propagates at the velocity of light in vacuum and is called the Sommerfeld

1IM. Abramowitz, and I.A. Stegun, Handbook of mathematical functions, (Dover, New York,
1965), Eq. 9.1.21.
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Figure 11: The Sommerfeld precursor

precursor. The first important point to note is that the amplitude of the Som-
merfeld precursor is very small compared to that of the incident wave (whose
amplitude is normalized to unity). We can easily see this because in deriving
Eq. (4.118) we assumed that |w| = 1/&/s > 27/T on the circular integration
path S. Since the magnitude of J; is always less than, or of order, unity, it is
clear that |fi| < 1. This is a comforting result, since in a naive treatment of
wave propagation through a dielectric medium the wave front propagates at the
group velocity v, (which is usually less than ¢) and, therefore, no signal should
reach depth z in the medium before time z/v,. We are finding that there is, in
fact, a precursor which arrives at ¢ = x/c, but that this signal is fairly small.
Note from Eq. (4.109) that & is proportional to . Clearly, the amplitude of the
Sommerfeld precursor decreases like one over the distance traveled by the wave
front through the dispersive medium (since J; attains its maximum value when
s ~ 1/€). Thus, the Sommerfeld precursor is likely to become undetectable after
the wave has traveled a long distance through the medium.
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Equation (4.118) can be written

f1(&,1) (s/s0), (4.121)

T
where sg = 1/4€, and
9(z) = Vz 1 (V7). (4.122)

The normalized Sommerfeld precursor g(z) is shown in Fig. 11. It can be seen that
both the amplitude and the oscillation period of the precursor gradually increase.
The roots of Jy(z) [i.e., the solutions of J;(z) = 0] are spaced at distances of
approximately 7w apart. Thus, the time interval for the mth half period of the
precursor is approximately given by

2

mm
Aty ~ . 4.123
o (4.123)
Note that the initial period of oscillation,
2
7
At — 4.124

is extremely small compared to the incident period 7. Moreover, the initial period
of oscillation is completely independent of the frequency of the incident wave. In
fact, Aty depends only on the depth z and on the dispersive power of the medium.
The period decreases with increasing distance x traveled by the wave front though
the medium. So, when visible radiation is incident on some dispersive medium it
is quite possible for the first signal detected well inside the medium to lie in the
X-ray region of the electromagnetic spectrum.

4.11 The method of stationary phase

Equation (4.102) can be written in the form

1) = /C 1) P(00) doo (4.125)
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where
1 1

Tw? — (27 /7)%’

F(w) = (4.126)
and

d(w) = k(w) z — wt. (4.127)

It is clear that F(w) is a relatively slowly varying function of w (except in the
immediate vicinity of the singular points w = +27/7), whereas the phase ¢(w) is
generally large and rapidly varying. The rapid oscillations of exp(i¢) over most
of the range of integration means that the integrand averages to almost zero.
Exceptions to this cancellation rule occur only when ¢(w) is stationary; i.e., when
¢(w) has an extremum. The integral can therefore be estimated by finding places
where ¢(w) has a vanishing derivative, evaluating (approximately) the integral in
the neighbourhood of each of these points, and summing the contributions. This
procedure is called the method of stationary phase.

Suppose that ¢(w) has a vanishing first derivative at w = w,. In the neigh-
bourhood of this point, ¢(w) can be expanded as a Taylor series,

B() = bo 5w — w2t (4.128)

Here, the subscript s is used to indicate ¢ or its second derivative evaluated at
w = ws. Since F(w) is slowly varying, the contribution to the integral from this
stationary phase point is approximately

fo~ Flw,)et / o i/2)00 (w=w2)? g, (4.129)

It is tacitly assumed that the stationary point lies on the real axis in w-space, so
that locally the integral along the contour C' is an integral along the real axis in
the direction of decreasing w. The above expression can be written in the form

fs ~ —F(ws) ei‘bs\/g/ooo [cos(mt?/2) + i sin(mt?/2)] dt, (4.130)

where |
th = S O (w—w)” (4.131)
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The integrals in the above expression are, Fresnel integrals'? and can be shown
to take the values

/O h cos(nt?/2) dt = /0 h sin(nt?/2) dt = % (4.132)

fo~ —y /% F(ws)el®s. (4.133)

It is easily seen that the arc length (in w-space) of the integration contour which
makes a significant contribution to f is of order Aw/ws ~ 1/4/k(ws) z. Thus,
the arc length is relatively short provided that the wavelength of the signal is
much less than the distance propagated through the dispersive medium. If there
is more than one point of stationary phase in the range of integration then the
integral is approximated as a sum of terms like the above.

It follows that

Integrals of the form (4.125) can be calculated exactly using the method of
steepest decent.®> The stationary phase approximation (4.133) agrees with the
leading term of the method of steepest decent (which is far more difficult to
implement than the method of stationary phase) provided that ¢(w) is real (i.e.,
provided that the stationary point lies on the real axis). If ¢ is complex, however,
the stationary phase method can yield erroneous results. This suggests that the
stationary phase method is likely to break down when the extremum point w = w;
approaches any poles or branch cuts in the w-plane (see Fig. 8).

4.12 The group velocity

The point of stationary phase, defined by 0¢/0w = 0, satisfies the condition

t
a—— (4.134)
’Ug X

12M. Abramowitz, and 1.A. Stegun, Handbook of mathematical functions, (Dover, New York,
1965), Sec. 7.3.
13Léon Brillouin, Wave propagation and group velocity, (Academic press, New York, 1960).
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where
B dw

dk
is conventionally termed the group velocity. Thus, the signal seen at position x
and time ¢ is dominated by the frequency range whose group velocity v, is equal
to x/t. In this respect, the signal incident at the surface of the medium (z = 0)
at time £ = 0 can be said to propagate through the medium at the group velocity

vg(w).

The simple one-resonance dispersion relation (4.86) yields

Vg (4.135)

c w2 w2
~ 1 4.136
Ug n(w) [ + (.(.)02 _ (_,d2 + w2 _ (.,(.)02 _ (.dp2 ( )
in the limit ¢ — 0, where
ck wo® + w,? — w?
i . 4.137
n(w) w \/ w02 2 ( )

The variation of c¢/v, and the refractive index n with frequency is sketched in
Fig. 12. With g = 0 the group velocity is less than ¢ for all w, except for

wo < w < wy =4 /wy? + wp2, where it is purely imaginary. Note that the refractive

index is also complex in this frequency range. The phase velocity v, = ¢/n is
subluminal for w < wy, imaginary for wy < w < wy, and superluminal for w > w;.

The frequency range which contributes to the amplitude at time ¢ is deter-
mined graphically by finding the intersection of a horizontal line with ordinate
ct/x with the solid curve in Fig. 12. There is no crossing of the two curves for
t < top = x/c, thus no signal arrives before this time. For times immediately
following ty the point of stationary phase is seen to be at w — oco. In this large
w limit the point of stationary phase is given by

to
s —. 4.138
Note that w = —wy is also a point of stationary phase. It is easily demonstrated
that
bs ~ —2/E(— to), (4.139)

162



n(0)

Figure 12: The typical variation of the functions ¢/v,(w) and n(w). Here, w; =
(w02 +Wp2)1/2-
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and

_ 10)3/2
¢~ —2 t gf;)?) : (4.140)
with
t — g
F(ws) ~ = (4.141)
T

Here, £ is given by Eq. (4.109). The stationary phase approximation (4.133) gives

1/2 — : :
fs ~ (tﬂ'i )3/2 t ;0 e—21\/£(t—to)+3ﬂ'1/4 + c.c., (4142)

where c.c. denotes the complex conjugate of the preceding term (this contribution
comes from the second point of stationary phase located at w = —w;). The above
expression reduces to

27 (t )t/

fs - 53/4

cos [2 £(t — to) — 37r/4} . (4.143)

It is easily demonstrated that the above formula is the same as the expression
(4.118) for the Sommerfeld precursor in the large argument limit ¢ — ¢to > 1/€.
Thus, the method of stationary phase yields an expression for the Sommerfeld
precursor which is accurate at all times except those immediately following the
first arrival of the signal.

4.13 The Brillouin precursor

As time progresses the horizontal line ct/z in Fig. 12 gradually rises and the
point of stationary phase moves to ever lower frequencies. In general, however,
the amplitude remains relatively small. Only when the elapsed time reaches

t, = > to (4.144)
is there a qualitative change. This time marks the arrival of a second precursor

known as the Brillouin precursor. The reason for the qualitative change is ev-
ident from Fig. 12. At ¢ = t; the lower region of the c¢/v, curve is intersected
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for the first time, and w = 0 becomes a point of stationary phase. It is clear
that the oscillation frequency of the Brillouin precursor is far less than that of
the Sommerfeld precursor. Moreover, it is easily demonstrated that the second
derivative of k(w) vanishes at w = 0. This means that ¢? = 0. The stationary
phase result (4.133) gives an infinite answer in such circumstances. Of course, the
amplitude of the Brillouin precursor is not infinite, but it is significantly larger
than that of the Sommerfeld precursor.

In order to generalize the result (4.133) to deal with a stationary phase point

at w = 0 it is necessary to expand ¢(w) about this point, keeping terms up to w>.

Thus,

d(w) ~ w(t; —t) + %k‘g' w3, (4.145)
where ; )
d’k 3w
KV = — =P 4.14
0 (dw3 ) w0 cn(0) w04 ( 6)

for the simple dispersion relation (4.86). The amplitude (4.125) is therefore given
approximately by

f(z,t) ~ F(0) / el @t =0+ (#/6)kg"w® g, (4.147)

o0

This expression reduces to

T |t —t1] [ 3 [v?
f(x’t):ﬁﬂﬂl :ka)”,/o cos[§z<§iv)] dv, (4.148)

where
z k'
= —0 4.149
v= g e (4.149)
and

2v/2 |t — t1]3/?
zZ = .
3z kp’

The positive (negative) sign in the integrand is taken for ¢t < ¢1 (¢t > ¢1).

(4.150)
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Figure 13: A sketch of the behaviour of the Brillouin precursor as a function of
time

The integral in Eq. (4.150) is known as an Airy integral. It can be expressed
in terms of Bessel functions of order 1/3, as follows:

/0°° COSBZ (2_3 - “)] dv = % Ki/3(2); (4.151)

/0°° COSBZ (? - “)] dv = % [J1/3(2) + J_1/3(2)] . (4.152)

From the well-known properties of Bessel functions the precursor can be seen
to have a growing exponential character for times earlier than ¢ = ¢;, and an
oscillating character for ¢ > ¢;. The amplitude in the neighbourhood of ¢t = ¢; is
plotted in Fig. 13.

and

The initial oscillation period of the Brillouin precursor is crudely estimated
(from z ~ 1) as

Aty ~ (z k)3, (4.153)
The amplitude of the Brillouin precursor is approximately
T
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Let us adopt the ordering
/T ~wy ~wp L &, (4.155)

which corresponds to most physical situations involving the propagation of elec-
tromagnetic radiation through dielectric media. It follows from the above results,
plus the results of Section 4.10, that

1/3
(Ato wp)brillouin ~ <w£> > 1, (4.156)
p
and
(AtO wp)sommerfeld ~ <%> < 1. (4157)
Furthermore,
o\ /3
| flbritlouin ~ (f) < 1, (4.158)
and
w
|f‘sommerfeld ~ (?p) < |f|brillouin- (4159)

It is clear that the Sommerfeld precursor is a low amplitude, high frequency signal,
whereas the Brillouin precursor is a higher amplitude, low frequency signal. Note
that the amplitude of the Brillouin precursor, whilst it is significantly higher than
that of the Sommerfeld precursor, is still much less than that of the incident wave.

4.14 Signal arrival

Let us try to establish at what time ¢ a signal first arrives at position x inside the
dielectric medium whose amplitude is comparable with that of the wave incident
at time ¢ = 0 on the surface of the medium (z = 0). Let us term this event
the “arrival” of the signal. It is plausible from the discussion in Section 4.11
regarding the stationary phase approximation that signal arrival corresponds to
the situation where the point of stationary phase in w-space corresponds to a
pole of the function F(w). In other words, when ws approaches the frequency
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Figure 14: A sketch of the signal amplitude as a function of time as seen inside
some dielectric medium subject to an incident wave which starts at some specific
time

27 /T of the incident signal. It is certainly the case that the stationary phase
approximation yields a particularly large amplitude signal when w, — 27/7.
Unfortunately, as has already been discussed, the method of stationary phase
becomes inaccurate under these circumstances. However, calculations involving
the more robust method of steepest decent'* confirm that in most cases the signal
amplitude first becomes significant when ws; = 27 /7. Thus, the signal arrival time

1S
T

vg(2m/7)’

where vy (27/7) is the group velocity calculated using the frequency of the incident
signal. It is clear from Fig. 12 that

ty = (4.160)

to < t1 < to. (4.161)
Thus, the main signal arrives later than the Sommerfeld and Brillouin precursors.

The final picture which emerges from our investigations is summarized in
Fig. 14. The main signal arrives at the group velocity corresponding to the fre-
quency of the incident wave. However, it is possible to detect the arrival of the sig-
nal before this, given sufficiently accurate detection equipment. In fact, the first
information regarding the arrival of the incident wave at the vacuum/dielectric
interface propagates at the velocity of light in a vacuum.

14Léon Brillouin, Wave propagation and group velocity, (Academic press, New York, 1960).
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4.15 The propagation of radio waves through the iono-
sphere

We have studied the transient behaviour of an electromagnetic wave incident
on a spatially uniform dielectric medium in great detail. Let us now consider
a quite different, but equally important, problem. What is the time asymptotic
steady-state behaviour of an electromagnetic wave propagating though a spatially
non-uniform dielectric medium?

As a specific example, let us consider the propagation of radio waves through

the Earth’s ionosphere. The refractive index of the ionosphere can be written [see

Eq. (4.27)]

2 P
=1-—F— 4.162
" w(w+iv)’ ( )

where v is a real positive constant which parameterizes the damping of electron
motion (in fact, v is the collision frequency of free electrons with other particles
in the ionosphere), and

Ne?

eEgm

wp = (4.163)
is the plasma, frequency. In the above formula, NN is the density of free electrons in
the ionosphere and m is the electron mass. We shall assume that the ionosphere
is horizontally stratified, so that N = N(z), where the coordinate z measures
height above the Earth’s surface (n.b., the curvature of the Earth is neglected in
the following analysis). The ionosphere actually consists of two main layers; the E-
layer, and the F-layer. We shall concentrate on the lower E-layer, which lies about
100 km above the surface of the Earth, and is about 50 km thick. The typical
day-time number density of free electrons in the E-layer is N ~ 3 x 10! m~3.
At night-time, the density of free electrons falls to about half this number. The
typical day-time plasma frequency of the E-layer is, therefore, about 5 MHz. The
typical collision frequency of free electrons in the E-layer is about 0.05 MHz.
According to simplistic theory, any radio wave whose frequency lies below the
day-time plasma frequency, 5 MHz, (i.e., any wave whose wavelength exceeds
about 60 m) is reflected by the ionosphere during the day. Let us investigate
in more detail exactly how this process takes place. Note, incidentally, that for
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mega-Hertz frequency radio waves v < w, so it follows from Eq. (4.162) that n?
is predominately real (i.e., under most circumstances, the electron collisions can
be neglected).

The problem of radio wave propagation through the ionosphere was of great
practical importance during the first half of the 20th Century, since at that
time long-wave radio waves were the principle means of military communication.
Nowadays, the military have far more reliable ways of communicating. Neverthe-
less, this subject area is still worth studying because the principle tool used to
deal with the problem of wave propagation through a non-uniform medium, the
so-called W.K.B. approximation, is of great theoretical importance. In particular,
the W.K.B. approximation is very widely used in quantum mechanics (in fact,
there is a great similarity between the problem of wave propagation through a
non-uniform medium and the problem of solving Schrodinger’s equation in the
presence of a non-uniform potential).

Maxwell’s equations for a wave propagating through a non-uniform, unmag-
netized, dielectric medium are:

V-E = 0, (4.164a)
V-eB = 0, (4.164b)
VAE = ikeB, (4.164c)
VAcB = —ikn’E, (4.164d)

where n is the non-uniform refractive index of the medium. It is assumed that all
field quantities vary in time like e~'*¢, where w = kc. Note that, in the following,
k is the wavenumber in free space, rather than the wavenumber in the dielectric
medium.

4.16 The W.K.B. approximation

Consider a radio wave which is vertically incident, from below, on the horizontally
stratified ionosphere. Since the wave normal is initially aligned along the z-axis,
and since n = n(z), we expect all field components to be functions of z only, so
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that

0 0
—=—=0. 4.165
Oor Oy ( )
In this situation, Egs. (4.164) reduce to E, = ¢B, = 0, with
E
—% = ikcBy, (4.166a)
0cB, _
5 —ikn? E,, (4.166Db)
and
Ey :
882 = ikcBy, (4.167a)
B
—822 Y= _ikn?E,. (4.167D)

Note that Eqgs. (4.166) and (4.167) are isomorphic and completely independent
of one another. It follows that, without loss of generality, we can assume that the
wave is linearly polarized with its electric vector parallel to the y-axis. This means
that we are only going to consider the solution of Egs. (4.166). The solution of
Egs. (4.167) is of exactly the same form, except that it describes a linear polarized
wave with its electric vector parallel to the z-axis.

Equations (4.166) can be combined to give

d*E
5 Tk’ By =0. (4.168)

Since E, is a function of z only, we now use the total derivative sign d/dz instead
of the partial derivative sign 0/0z. The solution of the above equation for the
case of a uniform medium, where n is constant, is straightforward:

E, = Ae'?) (4.169)

where A is a constant, and
¢ =tknz. (4.170)
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Note that the e”*! time dependence of all wave quantities is taken as read
during this investigation. The solution (4.169) represents a wave of constant
amplitude A and phase ¢(z). According to Eq. (4.170), there are, in fact, two
independent waves which can propagate through the medium in question. The
upper sign corresponds to a wave which propagates vertically upwards, and the
lower sign corresponds to a wave which propagates vertically downwards. Both
waves propagate with the constant phase velocity c¢/n.

In general, if n = n(z) the solution of Eq. (4.168) does not remotely resemble
the wave-like solution (4.169). However, in the limit in which n(z) is a “slowly
varying” function of z (exactly how slowly varying is something which we shall
establish later), we expect to recover wave-like solutions. Let us suppose that
n(z) is indeed a “slowly varying” function, and let us try substituting the wave
solution (4.169) into Eq. (4.168). We obtain

dp\* 5 5, . d%
(E) 29 (4.171)

This is a non-linear differential equation which, in general, is very difficult to
solve. However, we note that if n is a constant then d?¢/dz? = 0. It is, therefore,
reasonable to suppose that if n(z) is a “slowly varying” function then the last
term on the right-hand side of the above equation can be regarded as being small.
Thus, to a first approximation Eq. (4.171) yields

d¢
X ~ 4k 4.172
and d2¢ p
n
— ~ 4k —. 4.1
dz? dz (4.173)

It is clear from a comparison of Egs. (4.171) and (4.173) that n(z) can be regarded
as a “slowly varying” function of z as long as its variation length-scale is far longer
than the wavelength of the wave. In other words, provided that (dn/dz)/(kn?) <
1.

The second approximation to the solution is obtained by substituting Eq. (4.173)
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into the right-hand side of Eq. (4.171):

d¢ 2 2 ., dn 12
— ~ =+ |k +ik— ) 4.174
dz ( e dz) ( )
This gives
dé i dn\'? i dn
— ~ +k 1+ —— ~ —— 4.1
dz n( k n? dz) ikn+2ndz’ (4.175)

where use has been made of the binomial expansion. The above expression can
be integrated to give

¢ ~ ik/ ndz + 1 log(n'/?). (4.176)

Substitution of Eq. (4.176) into Eq. (4.169) yields the final result

E, ~ An~Y2 exp (iik/ ndz) : (4.177)

It follows from Eq. (4.166a) that

N 1/9 N iA dn Y
¢By ~ FAn'Y? exp (:I:lk/ ndz)—mg exp (:l:lk’/’ﬂdZ). (4.178)

Note that the second term is small compared to the first, and can usually be
neglected.

Let us test to what extent the expression (4.177) is a good solution of Eq. (4.168)
by substituting this expression into the left-hand side of the equation. The result

is

A [3(1dn\® 1 d%n (7
This must be small compared with either term on the left-hand side of Eq. (4.168).
Hence, the condition for Eq. (4.177) to be a good solution of Eq. (4.168) becomes

3/1dn\> 1 dn <
4 \ n?dz 2n3 dz?2
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The solutions
E, ~ An"'2exp (iik/ ndz), (4.181a)

¢B, ~ TFAn'?exp <:i:ik/ ndz), (4.181b)

to the non-uniform wave equations (4.166) are most commonly called the W.K.B.
solutions, in honor of G. Wentzel, H.A. Kramers, and L. Brillouin, who are cred-
ited with independently discovering these solutions (in a quantum mechanical
context) in 1926. Actually, H. Jeffries wrote a paper on these solutions (in a
wave propagation context) in 1923. Hence, some people call these the W.K.B.J.
solutions (or even the J.W.K.B. solutions). In fact, these solutions were first dis-
cussed by Liouville and Green in 1837, and again by Rayleigh in 1912. We shall
refer to Egs. (4.181) as the W.K.B. solutions, since this is what they are most
commonly called. However, it should be understand that, in doing so, we are
not making any statement as to the credit due to various scientists in discovering
these solutions. After all, this is not a history of science course!

Recall, that when a propagating wave is normally incident on an interface,
where the refractive index suddenly changes (for instance, when a light wave
propagating in the air is normally incident on a glass slab), there is generally
significant reflection of the wave. However, according to the W.K.B. solutions
(4.181), when a propagating wave is normally incident on a medium in which the
refractive index changes slowly along the direction of propagation of the wave,
then the wave is not reflected at all. This is true even if the refractive index varies
very substantially along the path of propagation of the wave, as long as it varies
slowly. The W.K.B. solutions imply that as the wave propagates through the
medium its wavelength gradually changes. In fact, the wavelength at position
z is approximately A(z) = 27/kn(z). Equations (4.181) also imply that the
amplitude of the wave gradually changes as it propagates. In fact, the amplitude
of the electric field component is inversely proportional to n!/2, whereas the
amplitude of the magnetic field component is directly proportional to n'/2. Note,
however, that the energy flux in the z-direction, given by the the Poynting vector
—(EyB," + E,*Bg)/(4p0), remains constant (assuming that n is predominately
real).
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Of course, the W.K.B. solutions (4.181) are only approzimations. In reality, a
wave propagating into a medium in which the refractive index is a slowly varying
function of position is subject to a small amount of reflection. However, it is easily
demonstrated that the ratio of the reflected amplitude to the incident amplitude
is of order (dn/dz)/(kn?). Thus, as long as the refractive index varies on a much
longer length-scale than the wavelength of the radiation, the reflected wave is
negligibly small. This conclusion remains valid as long as the inequality (4.180)
is satisfied. There are two main reasons why this inequality might fail to be
satisfied. First of all, if there is a localized region in the dielectric medium in
which the refractive index suddenly changes (i.e., if there is an interface), then
(4.180) is likely to break down in this region, allowing strong reflection of the
incident wave. Secondly, the inequality obviously breaks down in the vicinity of a
point where n = 0. We would, therefore, expect strong reflection of the incident
wave from such a point.

4.17 The reflection coefficient

Consider an ionosphere in which the refractive index is a slowly varying function
of height z above the surface of the Earth. Let n? be positive for z < zp, and
negative for z > zp. Suppose that an upgoing radio wave of amplitude Ej is
generated at ground level (z = 0). The complex amplitude of the wave in the
region 0 < z < zg is given by the upgoing W.K.B. solution

E, = Eon_l/Qexp(ik/ ndz), (4.182a)
0

cB, = —Eonl/zexp(ik/ ndz). (4.182b)
0

The upgoing energy flux is given by —(E, B,*+E,* B;)/(4uo) = (€0/ o)/ ? | Eo|?/2.
In the region z > zy the W.K.B. solutions take the form

E, = Ae'™*|n|7Y2exp (ik/ |n|dz>, (4.183a)

¢B, = LAe ™4 |n|Y2exp <:|:k/ |n|dz>, (4.183b)
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where A is a constant. These solutions correspond to exponentially growing and
decaying waves. Note that the magnetic components of the waves are in phase
quadrature with the electric components. This implies that the Poynting fluxes
of the waves are zero; i.e., the waves do not transmit energy. Thus, there is a
non-zero incident energy flux in the region z < 2p, and zero energy flux in the
region z > zg. Clearly, the incident wave is either absorbed or reflected in the
vicinity of the plane z = zy (where n = 0). In fact, as we shall prove later on,
the wave is reflected. The complex amplitude of the reflected wave in the region
0 < z < zg is given by the downgoing W.K.B. solution

E, = EyRn '?exp (—ik/ ndz), (4.184a)
0

¢B, = EyRn'%exp (—ik/ ndz), (4.184b)
0

where R is the coefficient of reflection. Suppose, for the sake of argument, that
the plane z = zp acts like a perfect conductor, so that E,(zp) = 0. It follows

that 2
R = —exp (2ik/ ndz) . (4.185)
0

In fact, as we shall prove later on, the correct answer is

20
R = —iexp (Qik/ 'n,dz) : (4.186)
0

Thus, there is only a —m/2 phase shift at the reflection point, instead of the
—m phase shift which would be obtained if the plane z = 2z acted like a perfect
conductor.

4.18 Extension to oblique incidence

We have discussed the W.K.B. solutions for radio waves propagating vertically
through an ionosphere whose refractive index varies slowly. Let us now generalize
these solutions to allow for radio waves which propagate at an angle to the vertical
axis.
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The refractive index of the ionosphere varies continuously with height z. How-
ever, let us, for the sake of clarity, imagine that the ionosphere is replaced by a
number of thin discrete strata in which the medium is homogeneous. By mak-
ing these strata sufficiently thin and numerous we can approximate as closely as
is desired to the real ionosphere. Suppose that a plane wave is incident on the
ionosphere, from below, and suppose that the wave normal lies in the z-z plane
and makes an angle #; with the vertical axis. At the lower boundary of the first
stratum the wave is partially reflected and partially transmitted. The transmit-
ted wave is partially reflected and partially transmitted at the second boundary
between the strata, and so on. However, in the limit of many strata, where
the difference in refractive indices between neighbouring strata is very small, the
amount of reflection at the boundaries becomes negligible. In the nth stratum,
let n,, be the refractive index, and let 6,, be the angle between the wave normal
and the vertical axis. According to Snell’s law,

Np—1 Sin6,_1 =n, sinb,. (4.187)
Below the ionosphere n = 1, and so
Ny, sin 6, = sin6;. (4.188)

For a wave in the nth stratum, any field quantity depends on z and x through
factors
Aexplikn,(£zcosb, + zsinb,)], (4.189)

where A is a constant. The + signs denote upgoing and downgoing waves, re-
spectively. When the operator 0/0x acts on the above expression, it is equivalent
to multiplication by ik n, sinf, =ik sinf;, which is independent of x and z. It
is convenient to use the notation S = sin §;. Hence, we may write symbolically

o

—am = 1 k S, (4’]‘90&)
0

— = ; 4.1

5 0 (4.190b)

This result is true no matter how thin the strata are, so it must also hold for the
real ionosphere. Note that, according to Snell’s law, if the wave normal starts off
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in the z-z plane then it will remain in this plane as it propagates through the
ionosphere.

Equations (4.164) and (4.190) can be combined to give

E
_% = ikecB,, (4.191a)
ikSE, = ikcB,, (4.191b)

By . :
dc —ikScB, = -—ikn’E,, (4.191c¢)
0z
and
Ey . :

a@z —ikSE, = ikcBy, (4.192a)

B
—ang‘f = —ikn?E,, (4.192D)
ikScB, = -ikn’E.,. (4.192¢)

As before, Maxwell’s equations can be split into two independent groups, corre-
sponding to two independent polarizations of radio waves propagating through
the ionosphere. For the first set of equations, the electric field is always parallel
to the y-axis. The corresponding waves are, therefore, said to be horizontally
polarized. For the second set of equations, the electric field always lies in the
x-z plane. The corresponding waves are, therefore, said to be vertically polarized
(n.b., the term “vertically polarized” does not necessarily imply that the electric
field is parallel to the vertical axis). Note that the equations governing horizon-
tally polarized waves are not isomorphic to those governing vertically polarized
waves, so both types of waves must be dealt with separately.

For the case of horizontally polarized waves, Egs. (4.191b) and (4.191c¢) yield

0cB, .
5, = ~ikq® By, (4.193)
where
¢* =n*—S° (4.194)



The above equation can be combined with Eq. (4.191a) to give

0’E

Sz Tk By =0. (4.195)
Equations (4.193) and (4.195) have exactly the same form as Eqgs. (4.166b) and
(4.168), except that n? is replaced by g2, so the results of Section 4.16 can be

immediately employed to find the W.K.B. solutions, which take the form
E, = Aq'?exp (iik / qdz) , (4.196a)

cB, = FAq/%exp (iik / qdz), (4.196D)

where A is a constant. Of course, both expressions should also contain a multi-
plicative factor e!(¥S2=wt) hut this is usually omitted for the sake of clarity. By
analogy with Eq. (4.180), the W.K.B. solutions are valid as long as

3/ 1dgq 2 1 d?q
4 \ q? dz 2q3 dz?
This inequality clearly fails in the vicinity of ¢ = 0, no matter how slowly ¢
varies with z. Hence, ¢ = 0, or n? = S?, specifies the height at which reflection

takes place. By analogy with Eq. (4.186), the reflection coefficient at ground level
(z =0) is given by

1
< 1. (4.197)

20
R = —iexp (21 k/ qdz) , (4.198)
0
where z( is the height at which ¢ = 0.
For the case of vertical polarization, Egs. (4.192a) and (4.192c) yield

E, 2
a(?z =ik % cB,. (4.199)

This equation can be combined with Eq. (4.192b) to give

0’B, 1 d(n?) 0B, 5 o
—= B, =0. 4.2
0z2 n? dz 0Oz k¢ By =0 (4.200)
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Clearly, the differential equation which governs the propagation of vertically po-
larized waves is considerably more complicated than the corresponding equation
for horizontally polarized waves.

The W.K.B. solution for vertically polarized waves is obtained by substituting
the wave-like solution '
cB, = Ae'?®) (4.201)

where A is a constant and ¢(z) is the generalized phase, into Eq. (4.200). The
differential equation thus obtained for the phase is

% (@)2 i d(n?) d¢

- — 4+ k2?9 =0. 4.202
1d22 dz n? dz dz+ ¢¢=0 (4.202)

Since the medium is slowly varying, the first and third term in the above equation
are small, and so to a first approximation

d¢
— = +k 4.203
dz % ( a)
d’¢ dgq
— = —. 4.2
o i< (4.203)

These expressions can be inserted into the first and third terms of Eq. (4.202) to
give the second approximation

9 1/2
W@ _ 4 [k%%ik(ﬁ——qd—")] . (4.204)

The final two terms on the right-hand side of the above equation are small, so
expanding the right-hand side using the binomial theorem yields

p . .
— = 4kgd —— — —— (4.205)
z

This expression can be integrated, and the result inserted into Eq. (4.201), to
give the W.K.B. solution

cBy, = Ang /% exp (iik / qdz) : (4.206)
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The corresponding W.K.B. solution for F, is obtained from Eq. (4.199):

E,=+4An"1¢"% exp (iik / qdz> : (4.207)

Here, any terms involving derivatives of n and ¢ have been neglected.

Substituting Eq. (4.206) into the differential equation (4.200), and demanding
that the result be small compared to the original terms in the differential equation,
yields the following condition for the validity of the above W.K.B. solutions:

3/1dg\> 1 d>¢ 1 |1dn 5 (Ldn 2
4 (q2 dz> 2¢3 dz? i q? | n dz? (n dz)

This criterion fails close to ¢ = 0, no matter how slowly n and q vary with z.
Hence, ¢ = 0 gives the height at which reflection takes place. The condition also
fails close to n = 0, which does not correspond to the reflection level. If, as is
usually the case, the electron density in the ionosphere increases monotonically
with height, then the level where n = 0 lies above the reflection level, where g = 0.
If the two levels are well separated then the reflection process is unaffected by the
failure of the above inequality at the level n = 0, and the reflection coefficient is
given by Eq. (4.198), just as for the case of horizontal polarization. If, however,
the level n = 0 lies close to the level ¢ = 0 then the reflection coefficient may

be affected, and a more accurate treatment of the differential equation (4.200) is
required in order to obtain the true value of the reflection coefficient.

1

o) < 1. (4.208)

4.19 Pulse propagation in the ionosphere

Suppose that we possess a generator of radio waves which sends radio pulses
vertically upwards into the ionosphere. For the sake of argument, we shall assume
that these pulses are linearly polarized such that the electric field vector lies
parallel to the y-axis. The pulse structure can be represented as

E,(t) = / h F(w)e™'“! dw, (4.209)

— o0
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where E, () is the electric field produced by the generator (i.e., the field at z = 0).
Suppose that the pulse is a signal of roughly constant (angular) frequency wy,
which lasts a time T, where T is long compared to 1/wg. It follows that F(w)
possesses narrow maxima around w = £wq. In other words, only those frequencies
which lie very close to the central frequency wy play a significant role in the
propagation of the pulse.

Each component frequency of the pulse yields a wave which travels indepen-
dently up into the ionosphere, in a manner specified by the appropriate W.K.B.
solution [see Eqgs. (4.181)]. Thus, if Eq. (4.209) specifies the signal at ground level
(2 = 0), then the signal at height z is given by

_ > F(W) id(w,z,t)
where s
bd(w, z,t) = c_u/ n(w, z)dz — wt. (4.211)
¢ Jo

Here, we have used k = w/c.

Equation (4.210) can be regarded as a contour integral in w-space. The quan-
tity F//n'/? is a relatively slowly varying function of w, whereas the phase ¢ is a
large and rapidly varying function of w. As described in Section 4.11, the rapid
oscillations of exp(i¢) over most of the path of integration ensure that the in-
tegrand averages almost to zero. However, this cancellation argument does not
apply to those points on the path of integration where the phase is stationary; i.e.,
those points where 0¢/0w = 0. It follows that the left-hand side of Eq. (4.210)
averages to a very small value, expect for those special values of z and ¢ at which
one of the points of stationary phase in w-space coincides with one of the peaks
of F(w). The locus of these special values of z and t can obviously be regarded
as the equation of motion of the pulse as it propagates through the ionosphere.
Thus, the equation of motion is specified by

0¢ B
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which yields

t = %/O [a%":)] ds (4.213)

Suppose that the z-velocity of a pulse of central frequency wy at height z
is given by w,(wp, z). The differential equation of motion of the pulse is then
dt = dz/u,. This can be integrated, using the boundary condition z =0 at ¢t = 0,
to give the full equation of motion:

*dz
0 Uz

A comparison of Egs. (4.213) and (4.214) yields

us(wo, 2) = c / {W}w:wo . (4.215)

The velocity u, is usually called the group velocity. It is easily demonstrated that
the above expression for the group velocity is entirely consistent with that given
previously [see Eq. (4.135)].

t= (4.214)

The dispersion relation (4.164) yields

0 1/2
n(w, z) = (1 _ Y gz)> : (4.216)

in the limit where electron collisions are negligible. The phase velocity of radio
waves of frequency w propagating vertically through the ionosphere is given by

) ~1/2
v (w, 2) = R (1 _ Y gz)> . (4.217)

n(w, z) w

According to Egs. (4.215) and (4.216), the corresponding group velocity is

0 1/2
uy(w,z) =c¢ (1 _ gz)> : (4.218)

w
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It follows that
v, u, = 2. (4.219)

Note that as the reflection point z = z; [defined as the solution of w = w,(2¢)] is
approached from below, the phase velocity tends to infinity, whereas the group
velocity tends to zero.

Let 7 be the time taken for the pulse to travel from the ground to the re-
flection level, and back to the ground again. The product ¢7/2 is termed the
equivalent height of reflection, and is denoted h(w), since it is a function of the
pulse frequency, w. The equivalent height is the height to which the pulse would
have to go if it always traveled with the velocity c. Since we know that a pulse of
dominant frequency w propagates at height z with the z-velocity u,(w, z) (this is
true for both upgoing and downgoing pulses), and also that the pulse is reflected
at the height zo(w), where w = wy,(2p), it follows that

20 (w)
=2 / _dz (4.220)
0 Uz

(w,2)

Hence,

zo(w) c
h(w) = /0 @) dz. (4.221)

w, 2)

Note that the equivalent height of reflection, h(w), is always greater than the
actual height of reflection, zg(w), since the group velocity u, is always less than
the velocity of light. The above equation can be combined with Eq. (4.218) to

give
zo(w W 2 p —1/2
h(w) :/O ( )(1— p ( )> dz. (4.222)

w2

Note that the integrand diverges as the reflection point is approached, but the
integral remains finite.

4.20 Determining the ionospheric electron density profile

We can measure the equivalent height of the ionosphere in a fairly straightfor-
ward manner, by timing how long it takes a radio pulse fired vertically upwards
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to return to ground level again. We can, therefore, determine the function h(w)
experimentally by performing this procedure many times over, using pulses of dif-
ferent central frequencies. But, is it possible to use this information to determine
the number density of free electrons in the ionosphere as a function of height? In
mathematical terms, the problem is as follows. Does a knowledge of the function

w

zo(w)
h(w) = /O e (4.223)

where wp2(zo) = w?, necessarily imply a knowledge of the function wp2(z)? Note,

of course, that w,?(z) o< N(2).

Let w? = v and w,?(z) = u(z). Equation (4.223) then becomes

Z()(’Ul/2) d
—1/2 p(p1/2) = i 4.924
v (v'/?) /0 o (2 ( )

where u(z9) = v, and u(z) < v for 0 < z < zg. Let us multiply both sides of the
above equation by (w — v)~'/2 /7 and integrate from v = 0 to w. We obtain

1/2
1 [ -1/2 -1/2 1/2 1/w /zo(v ) dz
— - h dv = — dv.
e R e L A R e cemr e L

(4.225)
Consider the double integral on the right-hand side. The region of v-z space over
which this integral is performed is sketched in Fig. 15. It can be seen that, as long
as zo(vl/ %) is a monotonically increasing function of z, we can swap the order of
integration to give

1 zo(w1/2) w dv
L [ [ o] &= (1.226)

Here, we have used the fact that the curve z = zo(v'/?) is identical with the curve
v = u(z). Note that if z(v'/?) is not a monotonically increasing function of v
then we can still swap the order of integration, but the limits of integration are,
in general, far more complicated than those indicated above. The integral over v
in the above expression can be evaluated using standard methods (by making the
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substitution v = w cos® 6§ +u sin? 6): the result is simply m. Thus, the expression
(4.226) reduces to zo(w'/2). It follows from Eq. (4.225) that

1 / v~ Y2 (w — v) Y2 h(w'/?) do. (4.227)
0

zo('wl/Q) =
T

Making the substitutions v = w sin? @ and w'/? = w, we obtain

/2
zo(w) = z/0 h(w sin a) da. (4.228)

T

By definition, w = w, at the reflection level z = z3. Hence, the above equation

reduces to
2

w/2
z(wp) = ;/ h(w, sin o) da. (4.229)
0

Thus, we can obtain z as a function of w, (and, hence, w, as a function of
z) simply by taking the appropriate integral of the experimentally determined
function h(w). Since wp(z) x 4/N(z), this means that we can determine the
electron number density profile in the ionosphere provided we know the variation
of the equivalent height of the ionosphere with pulse frequency. The constraint
that zo(w) must be a monotonically increasing function of w translates to the
constraint that N (z) must be a monotonically increasing function of z. Note that
we can still determine N(z) from h(w) for the case where the former function is
non-monotonic, it is just a far more complicated procedure than that outlined
above. Incidentally, the technique by which we have inverted Eq. (4.222), which
specifies h(w) as some integral over wy(2), to give wp(z) as some integral over
h(w) is known as Abel inversion.

4.21 Ray tracing in the ionosphere

Suppose that we possess a radio antenna which is capable of launching radio
waves of constant frequency w into the ionosphere at an angle to the vertical. Let
us consider the paths traced out by these waves in the z-z plane. For the sake of
simplicity, we shall assume that the waves are horizontally polarized, so that the
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Figure 15: A sketch of the region of v-z space over which the integral on the
right-hand side of Eq. (4.223) is evaluated

electric field vector always lies parallel to the y-axis. The signal emitted by the
antenna (located at z = 0) can be represented as

E,(z) = /01 F(S)e'*57 g, (4.230)

where k = w/c. Here, the e7'*! time dependence of the signal is neglected for
the sake of clarity. Suppose that the signal emitted by the antenna is mostly
concentrated in a direction making an angle ; with the vertical. It follows that
F(S) possesses a narrow maximum around S = Sy, where Sy = sin 6;.

If Eq. (4.230) represents the signal at ground level, then the signal at height
z in the ionosphere is easily obtained by making use of the W.K.B. solutions for
horizontally polarized waves described in Section 4.18. We obtain

VRS
E = | i@ gg 4.231
y(z,2) /0 q1/2(z,S) € 3 ( )
where N
o(z,2,8) = k/ q(z,5)dz+ kS =x. (4.232)
0
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Equation (4.231) is basically a line integral in S-space. The quantity F/q'/? is a,
relatively slowly varying function of S, whereas the phase ¢ is a large and rapidly
varying function of S. As described in Section 4.11, the rapid oscillations of
exp(i¢) over most of the path of integration ensure that the integrand averages
almost to zero. In fact, only those points on the path of integration where the
phase is stationary (i.e., where 0¢/0S = 0) make a significant contribution to
the integral. It follows that the left-hand side of Eq. (4.231) averages to a very
small value, except for those special values of z and z at which one of the points
of stationary phase in S-space coincides with the peak of F(S). The locus of
these special values of x and z can clearly be regarded as the trajectory of the
radio signal emitted by the antenna as it passes through the ionosphere. Thus,
the signal trajectory is specified by

Y B
<5§>SESO__0, (4.233)

z 8q )
r=— — dz. (4.234)
/0 (65 S=So

We can think of this equation as tracing the path of a ray of radio frequency
radiation, emitted by the antenna at an angle 7 to the vertical (where Sy =
sinfr), as it propagates through the ionosphere.

which yields

Now
¢ =n®- 5% (4.235)

so the ray tracing equation becomes

z
x:S/ z (4.236)
0 /n2(z) —S?
where S is the sine of the initial (i.e., at the antenna) angle of incidence of the ray
with respect to the vertical axis. Of course, Eq. (4.236) only holds for upgoing
rays. For downgoing rays, a simple variant of the previous analysis using the
downgoing W.K.B. solutions yields

(4.237)

Z()(S) Zo(S)
x—S/ dz +S/
\/n2(z) — 52 \/n? — 52’
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where n(z9) = S. Thus, the ray ascends into the ionosphere after being launched
from the antenna, reaches a maximum height zy above the surface of the Earth,
and then starts to descend. The ray eventually intersects the Earth’s surface
again a horizontal distance

Zo(S)
mO::ZS}[ dz (4.238)
0

away from the antenna.

The angle £ which the ray makes with the vertical is given by tan ¢ = dz/dz.
It follows from Egs. (4.236) and (4.237) that

S
tané = + )5 (4.239)

where the upper and lower signs correspond to the upgoing and downgoing parts
of the ray trajectory, respectively. Note that £ = 7/2 at the reflection point,
where n = S. Thus, the ray is horizontal at the reflection point.

Let us investigate the reflection process in more detail. In particular, we wish
to prove that radio waves are reflected at the ¢ = 0 surface, rather than being
absorbed. We would also like to understand the origin of the —m/2 phase shift
of radio waves at reflection which is evident in Eq. (4.198). In order to achieve
these goals, we shall need to review the mathematics of asymptotic series.

4.22 Asymptotic series: A mathematical aside

It is often convenient to expand a function of the complex variable f(z) in inverse
powers of z:

.WFM@%+%+%+m, (4.240)

where ¢(z) is a function whose behaviour for large values of z is known. If

f(2)/#(2) is singular as |z| — oo then the above series diverges. Nevertheless,
under certain circumstances, the series may still be useful.

189



The circumstance needed to make this possible is that the difference between
f(2)/¢(2) and the first n + 1 terms of the series be of order 1/2"*! so that for
sufficiently large z this difference becomes vanishingly small. More precisely, the
series is said to represent f(z)/¢(z) asymptotically, that is

f(2) ~ ¢(2) —, (4.241)

provided that

: W [ F(2) - Ap
lim {z [gb(z) Zzp

Z|—00
B s

} — 0. (4.242)

In other words, for a given value of n, the first n 4+ 1 terms of the series may be
made as close as desired to the ratio f(z)/#(z) by making z sufficiently large. For
each value of z and n there is an error of order 1/z"*1. Since the series actually
diverges, there is an optimum number of terms in the series used to represent
f(2)/¢(z) for a given value of z. Associated with this is an unavoidable error. As
z increases, the optimal number of terms increases and the error decreases.

Consider a simple example. The exponential integral is defined

Fa(z) = / h eT_t dt. (4.243)

The asymptotic series for this function can be generated via a series of partial
integrations. For example,

—T oo —t
Ei(z)= > — / ° . (4.244)

dt (4.245)



The infinite series obtained by taking the limit n — oo diverges, since the Cauchy
convergence test yields

Un+1
Unp

lim
n— o0

— lim m — 0. (4.246)

n—oo LI

Note that two successive terms in the series become equal in magnitude for n = z,
indicating that the optimum number of terms for a given z is roughly the integer
nearest x. To prove that the series is asymptotic, we need to show that

0 ,—t
: n+l_ z/_1\n+1 | € —
:}1_% " e (=) (n + 1)/.1: s dt = 0. (4.247)

This immediately follows, since

0 gt 1 * e~ %
/x s dt < e /m e " dt = sy (4.248)

Thus, the error involved in using the first n terms is less than (n + 1)!e™% /2" 12
which is exactly the next term in the series. We can see that as n increases, this
estimate of the error first decreases and then increases without limit. In order to
visualize this phenomenon more exactly, let f(z) = zexp(z) E(x), and let

n

fa(z) = i (4.249)

p=0 xp
be the asymptotic series representation of this function which contains n+1 terms.
Figure 16 shows the relative error in the asymptotic series |f,(z) — f(z)|/f(z)
plotted as a function of the approximate number of terms in the series n for
x = 10. It can be seen that as n increases the error initially falls, reaches a
minimum value at about n = 10, and then increases rapidly. Clearly, the optimum
number of terms in the asymptotic series used to represent f(10) is about 10.

Asymptotic series are fundamentally different to conventional power law ex-

pansions, such as

23 25 T
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Figure 16: The relative error in a typical asymptotic series plotted as a function
of the number of terms in the series

This series representation of sin z converges absolutely for all finite values of z.
Thus, at any z the error associated with the series can be made as small as is
desired by including a sufficiently large number of terms. In other words, unlike
an asymptotic series, there is no intrinsic, or unavoidable, error associated with
a convergent series. It follows that a convergent power law series representation
of a function is unique inside the domain of convergence of the series. On the
other hand, an asymptotic series representation of a function is not unique. It is
perfectly possible to have two different asymptotic series representations of the
same function, as long as the difference between the two series is less than the
intrinsic error associated with each series. Furthermore, it is often the case that
different asymptotic series are used to represent the same single-valued analytic
function in different regions of the complex plane.

For example, consider the asymptotic expansion of the confluent hypergeomet-
ric function F(a,c, z). This function is the solution of the differential equation

zF"+(c—2)F' —aF =0 (4.251)

which is analytic at z = 0 [in fact, F(a,c,0) = 1]. Here, ' denotes d/dz. The
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asymptotic expansion of F'(a,c, z) takes the form:

I'(a)T(c —a)
I'(c)

F(a,c,z) =~ T(c—a)z?"°e*[14+0(1/2)]
+T(a) 277" [1+0(1/2)] (4.252a)
for —m < arg(z) < 0, and

['(a)'(c— a)
I'(c)

F(a,c,z) =~ T(c—a)z® e’ [14+0(1/2)]
+T(a)z7%e'™ [1 4+ 0(1/2)]  (4.252b)

for 0 < arg(z) <, and

Fla,c,z) ~ T(c—a)z2 e 12779 e?[1 4+ 0(1/2)]

+T(a) z7%e' ™ [1 4+ O(1/2)] (4.252c¢)

for m < arg(z) < 2m, etc. It can be seen that the expansion consists of a linear
combination of two asymptotic series (only the first term in each series is shown).
For |z| > 1, the first series is exponentially larger than the second whenever
Re(z) > 0. We say that the first series is dominant in this region, whereas the
second series is subdominant. Likewise, the first series is exponentially smaller
than the second whenever Re(z) < 0. We say that the first series is subdominant
and the second series is dominant in this region.

Consider a region in which one or other of the series is dominant. Strictly
speaking, it is not mathematically consistent to include the subdominant series
in the asymptotic expansion because its contribution is actually less than the
intrinsic error associated with the dominant series [this error is O(1/z) times the
dominant series, since we are only including the first term in this series]. Thus,
at a general point in the complex plane the asymptotic expansion simply consists
of the dominant series. However, this is not the case in the immediate vicinity
of the lines Re(z) = 0: these are called the anti-Stokes lines. When an anti-
Stokes line is crossed, a dominant series becomes subdominant and vice versa. In
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the immediate vicinity of an anti-Stokes line neither series is dominant, so it is
mathematically consistent to include both series in the asymptotic expansion.

The hypergeometric function F(a,c,z) is a perfectly well behaved, single-
valued, analytic function in the complex plane. However, our two asymptotic se-
ries are, in general, multi-valued functions in the complex plane [see Eq. (4.252a)].
Can a single-valued function be represented asymptotically by a multi-valued
function? The short answer is no. We have to employ different combinations of
the two series in different regions of the complex plane in order to ensure that
F(a, c, z) remains single-valued. Equations (4.252) show how this is achieved. Ba-
sically, the coefficient in front of the subdominant series changes discontinuously
at certain values of arg(z). This is perfectly consistent with F(a,c, z) being an
analytic function because the subdominant series is “invisible”; i.e., the contribu-
tion of the subdominant series to the asymptotic solution falls below the intrinsic
error associated with the dominant series, so it does not really matter if the co-
efficient in front of the former series changes discontinuously. Imagine tracing a
large circle, centred on the origin, in the complex plane. Close to an anti-Stokes
line, neither series is dominant, so we must include both series in the asymptotic
expansion. As we move away from the anti-Stokes line, one series becomes dom-
inant, which means that the other series becomes subdominant and, therefore,
drops out of our asymptotic expansion. Eventually, we approach a second anti-
Stokes line, and the subdominant series reappears in our asymptotic expansion.
However, the coefficient in front of the subdominant series when it reappears is
different to that which it had when it disappeared. This new coefficient is carried
across the second anti-Stokes line into the region where the subdominant series
becomes dominant. In this new region, the dominant series becomes subdominant
and disappears from our asymptotic expansion. Eventually, a third anti-Stokes
line is approached and the series reappears, but, again, with a different coefficient
in front. The jumps in the coefficients of the subdominant series are chosen in
such a manner that if we perform a complete circuit in the complex plane then
the value of the asymptotic expansion is the same at the beginning and the end
points. In other words, the asymptotic expansion is single-valued, despite the
fact that it is built up out of two asymptotic series which are not single-valued.
The jumps in the coefficient of the subdominant series, which are needed to keep
the asymptotic expansion single-valued, are called Stokes phenomena, after the
celebrated nineteenth century British mathematician Sir George Gabriel Stokes,
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who first drew attention to this effect.

Where exactly does the jump in the coefficient of the subdominant series
occur? All we can really say is “somewhere in the region between two anti-Stokes
lines where the series in question is subdominant.” The problem is that we only
retain the first term in each asymptotic series. Consequently, the intrinsic error
in the dominant series is relatively large and we lose track of the subdominant
series very quickly after moving away from an anti-Stokes line. However, we
could include more terms in each asymptotic series. This would enable us to
reduce the intrinsic error in the dominant series and, thereby, expand the region
of the complex plane in the vicinity of the anti-Stokes lines where we can see
both the dominant and subdominant series. If we were to keep adding terms
to our asymptotic series, so as to minimize the error in the dominant solution,
we would eventually be forced to conclude that a jump in the coefficient of the
subdominant series can only take place on those lines in the complex plane on
which Im(z) = 0: these are called Stokes lines. This result was first proved by
Stokes in 1857.15 On a Stokes line the magnitude of the dominant series achieves
its maximum value with respect to that of the subdominant series. Once we know
that a jump in the coefficient of the subdominant series can only take place at a
Stokes line, we can retain the subdominant series in our asymptotic expansion in
all regions of the complex plane. What we are basically saying is that, although,
in practice, we cannot actually see the subdominant series very far away from an
anti-Stokes line because we are only retaining the first term in each asymptotic
series, we could, in principle, see the subdominant series at all values of arg(z)
provided that we retained a sufficient number of terms in our asymptotic series.

Figure 17 shows the location in the complex plane of the Stokes and anti-
Stokes lines for the asymptotic expansion of the hypergeometric function. Also
shown is a branch cut, which is needed to make z single-valued. The branch cut
is chosen such that arg(z) = 0 on the positive real axis. Every time we cross an
anti-Stokes line the dominant series becomes subdominant and vice versa. Every
time we cross a Stokes line the coefficient in front of the dominant series stays
the same, but that in front of the subdominant series jumps discontinuously [see
Egs. (4.252)]. Finally, the jumps in the coefficient of the subdominant series are
such as to ensure that the asymptotic expansion is single-valued.

15G.G. Stokes, Trans. Camb. Phil. Soc. 10, 106-128 (1857)
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Figure 17: The location of the Stokes lines (dashed), the anti-Stokes lines (solid),
and the branch cut (wavy) in the complex plane for the asymptotic expansion of
the hypergeometric function
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4.23 The W.K.B. solutions as asymptotic series

We have seen that the W.K.B. solution

E, =n""? exp (iik / ndz) (4.253)
is an approximate solution of the differential equation
d’E
dZ;J + k*n®(2) E, =0 (4.254)

in the limit where the typical wavelength, 27 /nk, is much smaller than the typical
variation length-scale of the refractive index. But, what sort of approximation is
involved in writing this solution?

It is convenient to define the scaled variable
z
2 = — 4.255
z L ) ( )
where L is the typical variation length-scale of the refractive index, n(z). Equa-
tion (4.254) can then be written

w” + h?quw =0, (4.256)

where w(2,h) = E,(LZ2), q(2) = n*(L2),’ = d/d%, and h = kL. Note that, in
general, q(2), ¢'(2), ¢ (2), etc. are O(1) quantities. The non-dimensional constant
h is of order the ratio of the variation length-scale of the refractive index to the
wavelength. Let us seek the solutions to Eq. (4.256) in the limit A > 1.

We can write

w(z,h) =exp[ih (2, h)]. (4.257)
Equation (4.256) transforms to
@ o (4258
Expanding in powers of 1/h, we obtain
¢ =+q'% + ﬁ% +0 <%> , (4.259)
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which yields

w(2,h) = ¢ /* exp (iih/éqc&) [1 +0 (%)] . (4.260)

Of course, we immediately recognize this expression as a W.K.B. solution.

Suppose that we keep expanding in powers of 1/h in Eq. (4.259). The appro-
priate generalization of Eq. (4.260) is a series solution of the form

_ o [F =L Ay(3)

s 1y —1/4 5 P

w(2z,h) =¢q /* exp (:l:lh/ qdz) 1+ E e
p=1

This is, in fact, an asymptotic series in h. We can now appreciate that a W.K.B.
solution is just a highly truncated asymptotic series in h, in which only the first
term in the series is retained.

(4.261)

But, why is it so important that we recognize that W.K.B. solutions are
highly truncated asymptotic series? The point is that the W.K.B. method was
initially rather controversial after it was popularized in the 1920s. A lot of people
thought that the method was completely wrong. Let us try to understand what
the problem was. Suppose that we have never heard of an asymptotic series.
Looking at Eq. (4.261), we would imagine that the expression in square brackets
is a power law expansion in 1/h. The W.K.B. approximation involves neglecting
all terms in this expansion except the first. This sounds fine, as long as h is
much greater than unity. But, surely, to be mathematically rigorous, we have to
check that the sum of all of the terms in the expansion which we are neglecting
is small compared to the first term? However, if we attempt this we discover,
much to our consternation, that the expansion is divergent. In other words, the
sum of all of the neglected terms is infinite! Thus, if we interpret Eq. (4.261)
as a conventional power law expansion in 1/h, the W.K.B. method is clearly
nonsense: the W.K.B. solution is the first approximation to infinity. However,
once we appreciate that Eq. (4.261) is actually an asymptotic series in h, the
fact that the series diverges becomes irrelevant. If we retain the first n terms
in the series, the series approximates the exact solution of Eq. (4.261) with an
intrinsic (fractional) error which is of order 1/h™ (i.e., the first neglected term in
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the series). The error is minimized at a particular value of h. As the number of
terms in the series is increased, the intrinsic error decreases, and the value of A
at which the error is minimized increases. In particular, we can see that there is
an intrinsic error associated with a W.K.B. solution which is of order 1/h times
the solution.

It is amusing to note that if Eq. (4.261) were not a divergent series then it
would be impossible to obtain total reflection of the W.K.B. solutions at the point
g = 0. As we shall discover, the reflection is directly associated with the fact that
the expansion (4.261) exhibits a Stokes phenomenon. It is, of course, impossible
for a convergent power series expansion to exhibit a Stokes phenomenon.

4.24 Stokes constants

We have seen that the differential equation
w” + h?q(2)w =0, (4.262)

where ' = d/dZ, possesses approximate W.K.B. solutions of the form

(a,2) = g4 exp (ih/ q'/? dﬁ) [1—}—0 <%)], (4.263a)
(2,a) = ¢ *exp (—ih/ q1/2d2> [1+0 (%)] (4.263b)

Here, we have adopted an arbitrary phase reference level Z = a. The convenient
notation (a, 2) is fairly self explanatory: a and % refer to the lower and upper
bounds of integration, respectively, inside the exponential. It follows that the
other W.K.B. solution can be written (2,a) (we can reverse the limits of inte-
gration inside the exponential to obtain minus the integral in Z from 2z = a to
zZ=2).

Up to now we have thought of Z as a real variable representing scaled height
in the ionosphere. Let us now generalize our analysis somewhat and think of 2
as a complex variable. There is nothing in our derivation of the W.K.B. solutions
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which depends crucially on 2z being a real variable, so we expect these solutions to
remain valid when Z is reinterpreted as a complex variable. Incidentally, we must
now interpret g(z) as some well behaved function of the complex variable. An
approximate general solution of the differential equation (4.262) in the complex

Z plane can be written as as a linear superposition of the two W.K.B. solutions
(4.263).

The parameter h is assumed to be much larger than unity. It is clear from
Egs. (4.263) that in some regions of the complex plane one of the W.K.B. solutions
is going to be exponentially larger than the other. In such regions, it is not
mathematically consistent to retain the smaller W.K.B. solution in the expression
for the general solution, since the contribution of the smaller W.K.B. solution is
less than the intrinsic error associated with the larger solution. Adopting the
terminology introduced in Section 4.22, the larger W.K.B. solution is said to be
dominant, and the smaller solution is said to be subdominant. Let us denote
the W.K.B. solution (4.263a) as (a, )4 in regions of the complex plane where it
is dominant, and as (a, £)s in regions where it is subdominant. An analogous
notation is adopted for the second W.K.B. solution (4.263b).

Suppose that g(Z) possesses a simple zero at the point 2 = Zy (chosen to
be the origin for the sake of convenience). It follows that in the immediate
neighbourhood of the origin we can write

g=a12+a 2 +---, (4.264)

where a1 # 0. It is convenient to adopt the origin as the phase reference point
(i.e., a = 0), so the two W.K.B. solutions become (0, 2) and (2,0). We can define
anti-Stokes lines in the complex Z plane (see Section 4.22). These are lines which
satisfy

Re

i / q'/? dﬁ] = 0. (4.265)
0

As we cross an anti-Stokes line, a dominant W.K.B. solution becomes subdom-
inant, and wvice versa. Thus, (0,2)q < (0,2)s and (2,0)q <> (2,0)s. In the
immediate vicinity of an anti-Stokes line the two W.K.B. solutions have about
the same magnitude, so it is mathematically consistent to include the contribu-
tions from both solutions in the expression for the general solution. In such a
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region, we can drop the subscripts d and s, since the W.K.B. solutions are neither
dominant nor subdominant, and write the W.K.B. solutions simply as (0, 2) and
(£,0).

It is clear from Eqgs. (4.263) that the W.K.B. solutions are not single-valued
functions of 2, since they depend on ¢/ 2(2), which is a double-valued function.
Thus, if we wish to write an approximate analytic solution to the differential
equation (4.262) we cannot express this solution as the same linear combination
of W.K.B. solutions in all regions of the complex z-plane. This implies that there
must exist certain lines in the complex Z-plane across which the mix of W.K.B.
solutions in our expression for the general solution changes discontinuously. These
lines are called Stokes lines (see Section 4.22), and satisfy

Im [i / q1/2d2] = 0. (4.266)
0

As we cross a Stokes line, the coefficient of the dominant W.K.B. solution in our
expression for the general solution must remain unchanged, but the coefficient of
the subdominant solution is allowed to change discontinuously. Incidentally, this
is perfectly consistent with the fact that the general solution is analytic: the jump
in our expression for the general solution due to the jump in the coefficient of the
subdominant W.K.B. solution is less than the intrinsic error in this expression
due to the intrinsic error in the dominant W.K.B. solution. Once we appreciate
that the coefficient of the subdominant solution can only change at a Stokes line,
we can retain both W.K.B. solutions in our expression for the general solution
throughout the complex Z plane. In practice, we can only see a subdominant
solution in the immediate vicinity of an anti-Stokes line, but if we were to evaluate
the W.K.B. solutions to higher accuracy [i.e. retain more terms in the asymptotic
series in Eqgs. (4.263)]we could, in principle, follow a subdominant solution all the
way to a neighbouring Stokes line.

In the immediate vicinity of the origin
: 2,/a;
/ ¢ ds ~ % 33/2, (4.267)
0

It follows from Eqs. (4.265) and (4.266) that three Stokes lines and three anti-
Stokes lines radiate from a zero of g(2). The general arrangement of Stokes and
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Figure 18: The arrangement of Stokes lines (dashed) and anti-Stokes lines (solid)
around a simple zero of ¢(2). Also shown is the branch cut (wavy line). All of
the lines radiate from the point ¢ = 0.

anti-Stokes lines in the vicinity of a ¢ = 0 point is sketched in Fig. 18. Note that
a branch cut must also radiate from the ¢ = 0 point in order to uniquely specify
the function ¢'/2(%). Thus, in general, seven lines radiate from a zero of ¢(%),
dividing the complex Z plane into seven domains (numbered 1 through 7).

Let us write our general solution as
w(2,h) = A(0,2) + B(%,0) (4.268)

on the anti-Stokes line between domains 1 and 7, where A and B are arbitrary
constants. Suppose that the W.K.B. solution (0, %) is dominant in domain 7.
Thus, in domain 7 the general solution takes the form

w(7)=A(0,2)q + B(2,0)s. (4.269)
Let us move into domain 1. In doing so, we cross an anti-Stokes line, so the

dominant solution becomes subdominant, and wice versa. Thus, in domain 1 the
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general solution takes the form
w(l) = A(0,2)s + B(2,0)q. (4.270)

Let us now move into domain 2. In doing so, we cross a Stokes line, so the
coefficient of the dominant solution, B, must remain constant, but the coefficient
of the subdominant solution, A, is allowed to change. Suppose that the coefficient
of the subdominant solution jumps by ¢ times the coefficient of the dominant
solution, where ¢ is an undetermined constant. It follows that in domain 2 the
general solution takes the form

w(2) = (A+tB)(0,%)s + B (2,0)a. (4.271)

Let us now move into domain 3. In doing so, we cross an anti-Stokes line, so the
the dominant solution becomes subdominant, and vice versa. Thus, in domain 3
the general solution takes the form

w(3) = (A+tB)(0,2)q+ B (2,0)s. (4.272)

Let us now move into domain 4. In doing so, we cross a Stokes line, so the
coefficient of the dominant solution must remain constant, but the coefficient of
the subdominant solution is allowed to change. Suppose that the coefficient of the
subdominant solution jumps by u times the coefficient of the dominant solution,
where v is an undetermined constant. It follows that in domain 4 the general
solution takes the form

w(4) = (A+1B)(0,2)q + (B +u[A+tB)) (3,0).. (4.273)

Let us now move into domain 5. In doing so, we cross an anti-Stokes line, so the
the dominant solution becomes subdominant, and vice versa. Thus, in domain 5
the general solution takes the form

w(5) = (A+tB)(0,%)s + (B +u[A+tB])(20). (4.274)

Let us now move into domain 6. In doing so, we cross the branch cut in an anti-
clockwise direction. Thus, the argument of Z decreases by 27. It follows from
Eq. (4.264) that ¢'/2 — —¢'/? and ¢'/* — —iq'/%. The following rules for tracing
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the W.K.B. solutions across the branch cut (in an anti-clockwise direction) ensure
that the general solution is continuous across the cut [see Eqgs. (4.261)]:

0,2) — —i(3,0), (4.275a)
(3,0) — —i(0,2). (4.275b)

Note that the properties of dominancy and subdominancy are preserved when
the branch cut is crossed. It follows that in domain 6 the general solution takes
the form

w(6) = —i(A+tB)(2,0)s —i(B+ul[A+tB])(0,2)q (4.276)

Let us, finally, move into domain 7. In doing so, we cross a Stokes line, so the
coefficient of the dominant solution must remain constant, but the coefficient of
the subdominant solution is allowed to change. Suppose that the coefficient of the
subdominant solution jumps by v times the coefficient of the dominant solution,
where v is an undetermined constant. It follows that in domain 7 the general
solution takes the form

w(7) = —i(A+t B+v{B+u[A+t B]}) (2,0)s—i(B+u[A+t B]) (0, 2)4. (4.277)

Now, we expect our general solution to be an analytic function, so it follows
that the solutions (4.269) and (4.277) must be identical. Thus, we can compare
the coefficients of the two W.K.B. solutions, (2,0)s and (0, 2)4. Since A and B
are arbitrary, we can also compare the coefficients of A and B. Thus, comparing
the coefficients of A (0, 2)4, we find

1=—iu. (4.278)
Comparing the coefficients of B (0, 2)4 yields

0=1+ut. (4.279)
Comparing the coefficients of A (2,0), gives

0=1+vu. (4.280)
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Finally, comparing the coefficients of B (Z,0), yields
1= —i(t+v+out). (4.281)
Equations (4.278)—(4.281) imply that
t=u=v=1i (4.282)

In other words, if we adopt the simple rule that every time we cross a Stokes line
in an anti-clockwise direction the coefficient of the subdominant solution jumps
by i times the coefficient of the dominant solution, then this ensures that our
expression for the general solution (4.268) behaves as an analytic function. Here,
the constant i is usually called a Stokes constant. Note that if we cross a Stokes
line in a clockwise direction then the coefficient of the subdominant solution has
to jump by —i times the coefficient of the dominant solution in order to ensure
that our general solution behaves as an analytic function.

4.25 The reflection coefficient

Let us write Z = x 4+ iy, where z and y are real variables. Consider the solution
of the differential equation

w” 4+ h? q(z) w = 0, (4.283)

where ¢(x) is a real function, A is a large number, ¢ > 0 for z < 0, and ¢ < 0 for
z > 0. It is clear that 2 = 0 represents a simple zero of ¢(2). Here, we assume,
as seems eminently reasonable, that we can find a well behaved function of the
complex variable g(Z) such that ¢(2) = ¢(z) along the real axis. The arrangement
of Stokes and anti-Stokes lines in the immediate vicinity of the point Z = 0 is
sketched in Fig. 19. The argument of ¢(2) on the positive z-axis is chosen to be
—m. Thus, the argument of ¢(2) on the negative z-axis is 0.

On OB, the two W.K.B. solutions (4.261) can be written

0,2) = q Y42 exp(ih /0 qu/Q(x)dx>, (4.284a)
(2,0) = ¢ '*=z) exp <—ih /0 wa/Z(w)da:). (4.284b)
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Figure 19: The arrangement of Stokes lines (dashed) and anti-Stokes lines (solid)
in the complex z plane. Also shown is the branch cut (wavy line).
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Here, we can interpret (0,z) as a wave propagating to the right along the z-axis,
and (z,0) as a wave propagating to the left. On OA, the W.K.B. solutions take
the form

(0,2)g = e'™*|g(z)|"}/* exp<+h/ \Q(w)\1/2d:v), (4.2852)
0

(2,0)s = e'™*g(z)|"Y* exp (-h/ox\q(x)\lﬂdx). (4.285b)

Clearly, (z,0)s represents an evanescent wave which decays to the right along the
z-axis, whereas (0, )4 represents an evanescent wave which decays to the left. If
we adopt the boundary condition that there is no incident wave from the region
r — 400, the most general asymptotic solution to Eq. (4.283) on OA is written

w(z,h) = A(z,0)s, (4.286)
where A is an arbitrary constant.

Let us assume that we can find an analytic solution w(2, h) to the differential
equation
w” 4+ h? q(2)w = 0, (4.287)

which satisfies w(2, h) = w(z, h) along the real axis, where w(z, h) is the physical
solution. From a mathematical point of view, this seems eminently reasonable.
In the domains 1 and 2 the solution (4.286) becomes

w(1) = A(2,0),, (4.288)

and
w(2) = A(2,0)s. (4.289)

Note that the solution is continuous across the Stokes line O A, since the coefficient
of the dominant solution (0, 2) is zero: thus, the jump in the coefficient of the
subdominant solution is zero times the Stokes constant, i; i.e., it is zero. Let us
move into domain 3. In doing so, we cross an anti-Stokes line, so the solution
becomes

w(3) = A(2,0)q. (4.290)
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Let us now move into domain 4. In doing so, we cross a Stokes line. Applying
the general rule derived in the preceding section, the solution becomes

w(4) =A(2,0)g +1A(0, 2)s. (4.291)
Finally, on OB the solution becomes

w(z,h) = A(z,0) +1A(0,x). (4.292)

Suppose that there is a point a on the negative z-axis where g(z) = 1. It
follows from Eqgs. (4.286) and (4.292) that we can write the asymptotic solution
to Eq. (4.283) as

w(z,h) = g /4 exp(ih/ q1/2d$> (4.293)

0 T
—1i exp (Qih/ ql/2 dx) q_l/4 exp <—ih/ ql/2 da:) ,

in the region x < 0, and

0 x
w(z, h) = exp (ih/ q*/? dm) e im/4 g7/ exp (—h/ Iq|/? dm) (4.294)
a 0

in the region x > 0. Here, we have chosen

0
A= —iexp (ih/ q*/? dx) : (4.295)

If we interpret x as a normalized altitude in the ionosphere, g(x) as the square
of the refractive index in the ionosphere, the point a as ground level, and w as
the electric field strength of a radio wave propagating vertically upwards into the
ionosphere, then Eq. (4.293) tells us that a unit amplitude wave fired vertically
upwards from ground level into the ionosphere is reflected at the level where the
refractive index is zero. The first term in Eq. (4.293) is the incident wave and
the second term is the reflected wave. The reflection coefficient (i.e., the ratio of
the reflected to the incident wave at ground level) is given by

0
R=—iexp <2ih / q'’? d:z;> : (4.296)
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Note that |R| = 1, so the amplitude of the reflected wave equals that of the
incident wave. In other words, there is no absorption of the wave at the level
of reflection. The phase shift of the reflected wave at ground level, with respect
to that of the incident wave, is that associated with the wave propagating from
ground level to the reflection level and back to ground level again, plus a —m/2
phase shift at reflection. According to Eq. (4.294), the wave attenuates fairly
rapidly (in the space of a few wavelengths) above the reflection level. Of course,
Eq. (4.296) is completely equivalent to Eq. (4.186).

Note that the reflection of the incident wave at the point where the refractive
index is zero is directly associated with the Stokes phenomenon. Without the
jump in the coefficient of the subdominant solution, as we go from domain 3 to
domain 4, there is no reflected wave on the OB axis. Note, also, that the W.K.B.
solutions (4.293) and (4.294) break down in the immediate vicinity of ¢ = 0 (i.e.,
the reflection point). Thus, it is possible to demonstrate that the incident wave
is totally reflected at the point ¢ = 0, with a —m/2 phase shift, without having
to solve for the wave structure in the immediate vicinity of the reflection point.
This demonstrates that the reflection of the incident wave at ¢ = 0 is an intrinsic
property of the W.K.B. solutions, and does not depend on the detailed behaviour
of the wave in the region where the W.K.B. solutions break down.

4.26 The Jeffries connection formula

In the preceding section there is a tacit assumption that the square of the refrac-
tive index, q(z) = n?(x), is a real function. As is apparent from Eq. (4.162), this
is only the case in the ionosphere as long as electron collisions are negligible. Let
us generalize our analysis to take electron collisions into account. In fact, the
main effect of electron collisions is to move the zero of ¢(2) a short distance off
the real axis (the distance is relatively short provided that we adopt the physical
ordering ¥ < w). The arrangement of Stokes and anti-Stokes lines around the
new zero point, located at z = Zg, is sketched in Fig. 20. Note that electron
collisions only significantly modify the form of ¢(2) in the immediate vicinity of
the zero point. Thus, sufficiently far away from Z = 2y in the complex Z-plane,
the W.K.B. solutions and the locations of the Stokes and anti-Stokes lines are
exactly the same as in the preceding section.
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Figure 20: The arrangement of Stokes lines (dashed) and anti-Stokes lines (solid)
in the complex z plane. Also shown is the branch cut (wavy line).
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The W.K.B. solutions (4.284) and (4.285) are valid all the way along the
real axis, except for a small region close to the origin where electron collisions
significantly modify the form of ¢(2). Thus, we can still adopt the physically
reasonable decaying solution (4.286) on the positive real axis. Let us trace this
solution in the complex z-plane until we reach the negative real axis. We can
achieve this by moving in a semi-circle in the upper half-plane. Since we never
move out of the region in which the W.K.B. solutions (4.284) and (4.285) are
valid, we conclude, by analogy with the preceding section, that the solution on
the negative real axis is given by Eq. (4.292). Of course, in all of the W.K.B.
solutions the point Z = 0 must be replaced by the new zero point z = Z3. The new
formula for the reflection coefficient, which is just a straightforward generalization

of Eq. (4.296), is
2o
R = —iexp (2ih/ q'/? dé> . (4.297)

This is called the Jeffries connection formula, after H. Jeffries, who discovered it
in 1923. The general expression for the reflection coefficient is incredibly simple.
We just integrate the W.K.B. solution in the complex Z-plane from the phase
reference level Z = a to the zero point, square the result, and multiply by —i.
Note that the path of integration between Z = a and 2 = Z; does not matter,
because of Cauchy’s theorem. Note, also, that since ¢!/2 is, in general, complez
along the path of integration, we no longer have |[R| = 1. In fact, it is easily
demonstrated that |R| < 1. Thus, when electron collisions are included in the
analysis we no longer obtain perfect reflection of radio waves from the ionosphere.
Instead, some (small) fraction of the radio energy is absorbed at each reflection
event. This energy is ultimately transfered to the particles in the ionosphere with
which the electrons collide.
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5 Radiation and scattering

5.1 Basic antenna theory

It possible to solve exactly for the radiation pattern emitted by a linear antenna
fed with a sinusoidal current pattern. Assuming that all fields and currents vary
in time like e~1“?, and adopting the Lorentz gauge, it is easily demonstrated that
the vector potential obeys the inhomogeneous Helmholtz equation

(V2 4+ kDA = —po 7, (5.1)

where k = w/c. The Green’s function for this equation, subject to the Sommerfeld
radiation condition (which ensures that sources radiate waves instead of absorbing
them), is given by Eq. (2.123). Thus, we can invert Eq. (5.1) to obtain

A(r) = Ho / g(r) et d*r'. (5.2)

4 lr — /|

The electric field in the source free region follows from the Ampere-Maxwell
equation and B =V A A,

E-= %V/\CB. (5.3)

Now

P =] =\l =2 fr 417712, (5.4)

where n = r/r. Assuming that ' < r, this expression can be expanded binomi-

ally to give
nr ' 1/2n-r"\?
—pr|l=rl1- R .
r— 7’| r[ —+353 8( . )+ ], (5.5)

where we have retained all terms up to order (r’/r)2. This expansion occurs in the
complex exponential of Eq. (5.2); i.e., it determines the oscillation phase of each
element of the antenna. The quadratic terms in the expansion can be neglected
provided they can be shown to contribute a phase shift which is significantly less
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than 27r. Since the maximum possible value of r’ is d/2, for a linear antenna which
extends along the z-axis from z = —d/2 to z = d/2, the phase shift associated
with the quadratic terms is insignificant as long as
S kd*  d?
r> —— = -

16m 8\’
where A = 27 /k is the wavelength of the radiation. This constraint is known as
the Fraunhofer limat.

(5.6)

In the Fraunhofer limit we can approximate the phase variation of the complex
exponential in Eq. (5.2) by a linear function of r':

r—7'| > r—n-r. (5.7)

The denominator | — 7’| in the integrand of Eq. (5.2) can be approximated as r
provided that the distance from the antenna is much greater than its length; i.e.,
provided that
r > d. (5.8)
Thus, Eq. (5.2) reduces to
ikr

Mo €
A('r) ~ E ”

[ty (5.9)
when the constraints (5.6) and (5.8) are satisfied. If the additional constraint

kr > 1 (5.10)

is also satisfied, then the electromagnetic fields associated with Eq. (5.9) take the
form

elkr

B(r) ~ iknnA=ikl

i /n/\j(r’)e_ik"'r' d>r’,  (5.11a)

E(r) ~ cBAn=ick(nAA)An. (5.11b)

These are clearly radiation fields, since they are mutually orthogonal, transverse
to the radius vector, and satisfy E = ¢B o r~!. The three constraints (5.6),
(5.8), and (5.10), can be summed up in a single inequality:

d < Var <. (5.12)
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The current density associated with a linear, sinusoidal, centre-fed antenna is
Jj(r) = Isin(kd/2 — k|z|) §(z) d(y) 2 (5.13)
for |z| < d/2, with j(r) = 0 for |z| > d/2. In this case, Eq. (5.9) yields
ikr

a/2 _
Afr) = zHole / sin(kd/2 — k|2]) e=1h=e0%0 (5.14)
47'(' T _d/2

where cos @ = n-2. The result of this straightforward integration is

5, Ho I2elkr [cos(kd cos0/2) — cos(kd/2)

Alr) = 47 kr

: 5.15
sin” @ ( )
Note from Egs. (5.11) that the electric field lies in the plane containing the an-
tenna and the radius vector to the observation point. The time-averaged power
radiated by the antenna per unit solid angle is

dP Re(n-EAB*)r?  ck?sin”g|A|*r?

df? 2410 2410

(5.16)

Thus,

dP  pocI? |cos(kd cos/2) — cos(kd/2) |

— 1
df? 82 sin 6 (5.17)

The angular distribution of power depends on the value of kd. In the long
wavelength limit kd < 1 the distribution reduces to

aP poc Iy
df2  128x2

where Iy = [ kd/2 is the peak current in the antenna. It is easily shown from
Eq. (5.13) that the current distribution in the antenna is linear:

1(2) = Ip(1 — 2|2|/d) (5.19)

(kd)? sin” 0, (5.18)

for |z| < d/2. This type of antenna corresponds to a short (compared to the wave-
length) oscillating electric dipole, and is generally known as a Hertzian oscillating
dipole. The total power radiated is

_ pocIy? (kd)?
B 487

P

(5.20)

214



In order to maintain the radiation, power must be supplied continuously to the

oscillating dipole from some generator. By analogy with the heating power pro-

duced in a resistor,

IR
2 Y

we can define the factor which multiplies I,%/2 in Eq. (5.20) as the radiation

resistance of the dipole antenna:

(P)heat = (I*)R = (5.21)

o (kd)? A%
Rraa = o 2r = 197 3 ohms. (5.22)

Since we have assumed that A > d, this radiation resistance is necessarily very
small. Typically, in devices of this sort the radiated power is swamped by the
ohmic losses appearing as heat. Thus, a “short” dipole is a very inefficient radi-
ator. Practical antennas have dimensions which are comparable with the wave-
length of the emitted radiation.

Probably the most common practical antennas are the half-wave antenna
(kd = 7) and the full-wave antenna (kd = 2m). In the former case, Eq. (5.17)

reduces to
dP  pocI? cos®(mcosf/2)

2
df? 82 sin” § (5.23)
In the latter case, Eq. (5.17) yields

dP  pocI? cos*(mcosf/2) (5.24)

df? 272 sin’ @

The half-wave antenna radiation pattern is very similar to the characteristic sin? 8
pattern of a Hertzian dipole. However, the full-wave antenna radiation pattern
is considerably sharper (i.e., it is more concentrated in the transverse directions
0 =+7/2).

The total power radiated by a half-wave antenna is

12 T 2 9
p = K€ / cos”(mcosf/2) 4y (5.25)
0

4 sin 6
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The integral can be evaluated numerically to give 1.2188. Thus,

I2
P =1.2188 “‘;‘; . (5.26)

Note from Eq. (5.13) that [ is equivalent to the peak current flowing in the an-
tenna. Thus, the radiation resistance of a half-wave antenna is given by P/(I?/2),

or
.6094
Rrad = 0609 \ [E2 = 73 ohms. (5.27)
€0

™

This resistance is substantially larger than that for a Hertzian dipole (see Eq. (5.22) ).
In other words, a half~-wave antenna is a far more efficient radiator of electromag-
netic radiation than a Hertzian dipole. According to standard transmission line
theory, if a transmission line is terminated by a resistor whose resistance matches
the characteristic impedance of the line, then all of the power transmitted down
the line is dissipated in the resistor. On the other hand, if the resistance does
not match the impedance of the line then some of the power is reflected and
returned to the generator. We can think of a half-wave antenna, centre-fed by a
transmission line, as a 73 ohm resistor terminating the line. The only difference
is that the power absorbed from the line is radiated rather than dissipated as
heat. Thus, in order to avoid problems with reflected power the impedance of a
transmission line feeding a half-wave antenna must be 73 ohms. Not surprisingly,
73 ohm impedance is one of the standard ratings for the co-axial cables used in
amateur radio.

5.2 Antenna directivity and effective area

We have seen that standard antennas emit more radiation in some directions than
in others. Indeed, it is topologically impossible for an antenna to emit transverse
waves uniformly in all directions (for the same reason that it is impossible to
comb the hair on a sphere in such a manner that there is no parting). One of the
aims of antenna engineering is to design antennas which transmit most of their
radiation in a particular direction. By a reciprocity argument, such an antenna,
when used as a receiver, is preferentially sensitive to radiation incident from the
same direction.
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The directivity or gain of an antenna is defined as the ratio of the mazimum
value of the power radiated per unit solid angle, to the average power radiated
per unit solid angle:
dP/df2)max

P/Am
Thus, the directivity measures how much more intensely the antenna radiates in
its preferred direction than a mythical “isotropic radiator” would when fed with
the same total power. For a Hertzian dipole the gain is 3/2. For a half-wave
antenna the gain is 1.64. To achieve a directivity which is significantly greater
than unity, the antenna size needs to be much larger than the wavelength. This
is usually achieved using a phased array of half-wave or full-wave antennas.

ol

(5.28)

Antennas can be used to receive, as well as emit, electromagnetic radiation.
The incoming wave induces a voltage in the antenna which can be detected in
an electrical circuit connected to the antenna. In fact, this process is equivalent
to the emission of electromagnetic waves by the antenna viewed in reverse. In
the theory of electrical circuits, a receiving antenna is represented as an e.m.f
connected in series with a resistor. The e.m.f., Vjcoswt, represents the voltage
induced in the antenna by the incoming wave. The resistor, R,.q, represents
the power re-radiated by the antenna (here, the real resistance of the antenna is
neglected). Let us represent the detector circuit as a single load resistor Rjoaq
connected in series with the antenna. The question is: how can we choose Rjy.q
so that the maximum power is extracted from the wave and transmitted to the
load resistor? According to Ohm’s law:

Vo coswt = Iy coswt (Ryad + Rioad), (5.29)
where I = Iy coswt is the current induced in the circuit.

The power input to the circuit is

V- 2
P = (VI) = ° : 5.30
< > 2(]%ra,d + Rload) ( )
The power transferred to the load is
Rioaa V2
Pload = <I2Rload> = load 70 (531)

2(}zrad + 1%load)2 .
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The power re-radiated by the antenna is

Rrad V() 2
2(Rrad + Rload)2 .

Note that P, = Pigaq + Praqa- The maximum power transfer to the load occurs

Prad = <I2Rrad> = (532)

when 0P Vo2 [ R R
load 0 load — {lrad
= = 0. 5.33
aRload 2 [(Rrad + Rload)3] ( )
Thus, the maximum transfer rate corresponds to
Ripad = Ryes. (5.34)

In other words, the resistance of the load circuit must match the radiation resis-
tance of the antenna. For this optimum case,

V02 . Pin
8}zrad B 2 .

So, even in the optimum case one half of the power absorbed by the antenna is
immediately re-radiated. If Rjoaq # Ries then more than one half of the absorbed
power is re-radiated. Clearly, an antenna which is receiving electromagnetic radi-
ation is also emitting it. This is how the BBC catch people who do not pay their
television license fee in England. They have vans which can detect the radiation
emitted by a TV aerial whilst it is in use (they can even tell which channel you
are watching!).

Pload - Prad — (535)

For a Hertzian dipole antenna interacting with an incoming wave whose elec-
tric field has an amplitude Ey we expect

Vo = Eod)2. (5.36)

Here, we have used the fact that the wavelength of the radiation is much longer
than the length of the antenna, and that the relevant e.m.f. develops between the
two ends and the centre of the antenna. We have also assumed that the antenna
is properly aligned (i.e., the radiation is incident perpendicular to the axis of the
antenna). The Poynting flux of the incoming wave is

E 2
(in) = 570, (5.37)

218



whereas the power transferred to a properly matched detector circuit is

EOQ d2
32Rraud .

Pioag = (5.38)
Consider an idealized antenna in which all incoming radiation incident on some
area Aeg is absorbed and then magically transferred to the detector circuit with
no re-radiation. Suppose that the power absorbed from the idealized antenna
matches that absorbed from the real antenna. This implies that

Pload = <uin>Aeﬁ‘. (539)

The quantity A.g is called the effective area of the antenna; it is the area of
the idealized antenna which absorbs as much net power from the incoming wave
as the actual antenna. Alternatively, A.g is the area of the incoming wavefront
which is captured by the receiving antenna and fed to its load circuit. Thus,

E02d2 . €0C E02 A
32Riaa 2

Pload = effy (540)
giving
d? 3
A = ——— = = )\2, 5.41
ft 16 €gc R;aq 8 ( )

It is clear that the effective area of a Hertzian dipole antenna is of order the
wavelength squared of the incoming radiation.

We can generalize from this analysis of a special case. The directivity of a
Hertzian dipole is 3/2. Thus, the effective area of the isotropic radiator (the
mythical reference antenna against which directivities are measured) is

Ao=24 _ X (5.42)
0 — 3 Hertzian dipole — Arn’ .

or

Ay = TX%, (5.43)

where X = A\/2m. Here, we have used the formal definition of the effective area
of an antenna: Aeg is that area which, when multiplied by the time-averaged
Poynting flux of the incoming wave, equals the maximum power received by
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the antenna (when its orientation is optimal). Clearly, the effective area of an
isotropic radiator is the same as the area of a circle whose radius is the reduced
wavelength X.

We can take yet one more step and conclude that the effective area of any
antenna of directivity G is

Aer = GTX%. (5.44)

Of course, to realize this full capture area the antenna must be orientated prop-
erly.

Let us calculated the coupling or insertion loss of an antenna-to-antenna com-
munications link. Suppose that a generator delivers the power P, to a transmit-
ting antenna, which is aimed at a receiving antenna a distance r away. The
receiving antenna (properly aimed) then captures and delivers the power Pgy
to its load circuit. From the definition of directivity, the transmitting antenna
produces the time-averaged Poynting flux

P
=Gy — 5.45
() = Ge " (5.45)

at the receiving antenna. The received power is
Pout = <U> Gr AO- (5.46)

Here, G; is the gain of the transmitting antenna, and G, is the gain of the
receiving antenna. Thus,

Pout
P;

2
A A,
A ) = (5.47)

A2r2”’

= GtGr <

47y

where A; and A, are the effective areas of the transmitting and receiving antennas,
respectively. This result is known as the Friis transmission formula. Note that it
depends on the product of the gains of the two antennas. Thus, a properly aligned
communications link has the same insertion loss operating in either direction.

A thin wire linear antenna might appear to be essentially one dimensional.
However, the concept of an effective area shows that it possesses a second dimen-
sion determined by the wavelength. For instance, for a half~-wave antenna, the
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gain of which is 1.64, the effective area is

A
Aeﬂ‘ — 164A0 — § (
Thus, we can visualize the capture area as a rectangle which is the physical length
of the antenna in one direction, and approximately one quarter of the wavelength
in the other.

0.26 A). (5.48)

5.3 Antenna arrays

Consider a linear array of N half-wave antennas arranged along the z-axis with
a uniform spacing A. Suppose that each antenna is aligned along the z-axis, and
also that all antennas are driven in phase. Let one end of the array coincide with
the origin. The field produced in the radiation zone by the end-most antenna is
given by (see Eq. (5.15))

po ! 2 cos(mcosf/2) oi (kr—wt)

A = 2
(r) =2 4 kr sin’ @

(5.49)

where I is the peak current flowing in each antenna. The fields produced at a
given point in the radiation zone by successive elements of the array differ in
phase by an amount a = kA sin# cos . Here, r, 8, ¢ are conventional spherical
polar coordinates. Thus, the total field is given by

. ol 2 cos(mcosf/2)
z R
A kr sin” @

% 1_{_eia+62ia+“.+e(N—1)ia:| ei (br=wt) (550

A(r)

The series in square brackets is a geometric progression in § = exp(ia), the sum
of which is

2 N1 BV -1
Thus, the term in square brackets becomes
iNa __ . :
e -1 iv-1)ay2 Sin(Ne/2) (5.52)
el —1 sin(a/2)
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It follows from Eq. (5.16) that the radiation pattern due to the array takes the

form
ar (,uocI2 COS2(7TCOSH/2)) (sin2(Na/2)) (5.53)
d? \ 8r? sin” 6 sin®(a/2) ) '

We can think of this formula as the product of the two factors in large parentheses.
The first is just the standard radiation pattern of a half-wave antenna. The
second arises from the linear array of N elements. If we retained the same array,
but replaced the elements by something other than half-wave antennas, then
the first factor would change, but not the second. If we changed the array,
but not the elements, then the second factor would change but the first would
remain the same. Thus, we can think of the radiation pattern as the product
of two independent factors, the element function and the array function. This
independence follows from the Fraunhofer approximation (5.6), which justifies
the linear phase shifts of Eq. (5.7).

The array function in this case is

_ sin®(Na/2)
fla) = int(a/2) (5.54)
where
a = kA sinf cos p. (5.55)

The function f(«) has nulls whenever the numerator vanishes; that is, whenever

_ 2m 4w (N—1)27T.(N+1)27T
N’ N’ N ’ N

+a (5.56)
However, when +£a = 0, 27, - - -, the denominator also vanishes, and the I’Hopital
limit is easily seen to be f(0,2m,---) — N2. These limits are known as the
principle mazima of the function. Secondary maxima occur approximately at the
maxima, of the numerator; that is, at

3m b7 (2N —3) 27 (2N + 3) 27

ENYNT N N

(5.57)

There are (N — 2) secondary maxima between successive principal maxima.
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Now, the maximum possible value of « is kA = 27 A/AX. Thus, when the
element spacing A is less than the wavelength there is only one principle maximum
(at @ = 0), directed perpendicular to the array (i.e., at ¢ = +m/2). Such
a system is called a broadside array. The secondary maxima of the radiation
pattern are called side lobes. In the direction perpendicular to the array, all
elements contribute in phase, and the intensity is proportional to the square of
the sum of the individual amplitudes. Thus, the peak intensity for an N element
array is N2 times the intensity of a single antenna. The angular half-width of the
principle maximum (in ¢) is approximately Ap ~ A/NA. Although the principle
lobe clearly gets narrower in the azimuthal angle ¢ as NV increases, the lobe width
in the polar angle # is mainly controlled by the element function, and is thus little
affected by the number of elements. A radiation pattern which is narrow in one
angular dimension, but broad in the other, is called a fan beam.

Arranging a set of antennas in a regular array has the effect of taking the
azimuthally symmetric radiation pattern of an individual antenna and concen-
trating it into some narrow region of azimuthal angle of extent Ap ~ A\/NA.
The net result is that the gain of the array is larger than that of an individual

antenna by a factor of order
2n NA

A

It is clear that the boost factor is of order the linear extent of the array divided by
the wavelength of the emitted radiation. Thus, it is possible to construct a very
high gain antenna by arranging a large number of low gain antennas in a regular
pattern and driving them in phase. The optimum spacing between successive
elements of the array is of order the wavelength of the radiation.

. (5.58)

A linear array of antenna elements which are spaced A = A/2 apart and driven
with alternating phases has its principle radiation maximum along ¢ = 0 and ,
since the field amplitudes now add in phase in the plane of the array. Such a
system is called an end-fire array. The direction of the principle maximum can
be changed at will by introducing the appropriate phase shift between successive
elements of the array. In fact, it is possible to produce a radar beam which sweeps
around the horizon, without any mechanical motion of the array, by varying the
phase difference between successive elements of the array electronically.
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5.4 Thomson scattering

When an electromagnetic wave is incident on a charged particle, the electric
and magnetic components of the wave exert a Lorentz force on the particle,
setting it into motion. Since the wave is periodic in time, so is the motion of
the particle. Thus, the particle is accelerated and, consequently, emits radiation.
More exactly, energy is absorbed from the incident wave by the particle and re-
emitted as electromagnetic radiation. Such a process is clearly equivalent to the
scattering of the electromagnetic wave by the particle.

Consider a linearly polarized, monochromatic, plane wave incident on a par-
ticle carrying a charge gq. The electric component of the wave can be written

E = eEge'(kr—uwt) (5.59)

where Fj is the peak amplitude of the electric field, e is the polarization vector,
and k is the wave vector (of course, e-k = 0). The particle is assumed to un-
dergo small amplitude oscillations about an equilibrium position which coincides
with the origin of the coordinate system. Furthermore, the particle’s velocity
is assumed to remain sub-relativistic, which enables us to neglect the magnetic
component of the Lorentz force. The equation of motion of the charged particle

is approximately
f =qE = ms, (5.60)

where m is the mass of the particle, s is its displacement from the origin, and
" denotes 0/0t. According to Eq. (2.321), the time-averaged power radiated per
unit solid angle by an accelerating, non-relativistic, charged particle is given by

dP  ¢*(5?)

. 2
= 0 5.61
df?  16m2¢yc3 S ( )
where (---) denotes a time average. However,
2 27 2
. q L
(8%) = W(E% = ng : (5.62)
Hence, the scattered power per unit solid angle is given by
dP ¢\ ecE? .,
0= (47T€0 ch) 5 sin” 6. (5.63)
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The time-averaged Poynting flux of the incident wave is

(u) = @ (5.64)

It is convenient to define the scattering cross section as the equivalent area of
the incident wavefront which delivers the same power as that re-radiated by the

particle:

y total re—ragli?ted power. (5.65)
u

By analogy, the differential scattering cross section is defined

do  dP/df?
0" W (5.66)
It follows from Egs. (5.63), (5.64), and (5.66) that
do q? ? .
75 = (W) sin” 4. (5.67)
The total scattering cross section is then
do 8T q? 2
o /0 70 21 sin @ df = 3 <47r€0 m62> (5.68)

The quantity 6 appearing in Eq. (5.67) is the angle subtended between the di-
rection of acceleration of the particle and the direction of the outgoing radiation
(which is parallel to the unit vector m). In the present case, the acceleration
is due to the electric field, so it is parallel to the polarization vector e. Thus,
cosf = en.

Up to now, we have only considered the scattering of linearly polarized ra-
diation by a charged particle. Let us now calculate the angular distribution of
scattered radiation for the commonly occurring case of randomly polarized inci-
dent radiation. It is helpful to set up a right-handed coordinate system based on
the three mutually orthogonal unit vectors e, e A k: and k. In terms of these unit
vectors, we can write

n =sinpcosty e +sinypsiny e Ak + cos pk, (5.69)
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where ¢ is the angle subtended between the direction of the incident radiation and
that of the scattered radiation, and v is an angle which specifies the orientation
of the polarization vector in the plane perpendicular to k (assuming that n is
known). It is easily seen that

cosf = e-n = cosp siny, (5.70)

S0
sin? @ = 1 — cos? 1 sin® . (5.71)

Averaging this result over all possible polarizations of the incident wave (i.e., over
all possible values of the polarization angle 1)), we obtain

1+ cosZ

sin@ = 1 — cos2 1) sin®p = 1 — (sin? ) /2 = 5

(5.72)

Thus, the differential scattering cross section for unpolarized incident radiation
(obtained by substituting sin? § for sin®# in Eq. (5.67)) is given by

d 2 24 2
(_") _ ( g 2) T CosTe (5.73)
df? unpolarized dmeg me 2

It is clear that the differential scattering cross section is independent of the fre-
quency of the incident wave, and is also symmetric with respect to forward and
backward scattering. The frequency of the scattered radiation is the same as that
of the incident radiation. The total scattering cross section is obtained by inte-
grating over the entire solid angle of the polar angle ¢ and the azimuthal angle
Y. Not surprisingly, the result is exactly the same as Eq. (5.68).

The classical scattering cross section (5.73) is modified by quantum effects
when the energy of the incident photons, Aiw, becomes comparable with the rest
mass of the scattering particle, mc?. The scattering of a photon by a charged
particle is called Compton scattering, and the quantum mechanical version of the
Compton scattering cross section is known as the Klein-Nishina formula. As the
photon energy increases, and eventually becomes comparable with the rest mass
energy of the particle, the Klein-Nishina formula predicts that forward scattering
of photons becomes increasingly favored with respect to backward scattering.
The Klein-Nishina cross section does, in general, depend on the frequency of the
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incident photons. Furthermore, energy and momentum conservation demand a
shift in the frequency of scattered photons with respect to that of the incident
photons.

If the charged particle in question is an electron then Eq. (5.68) reduces to
the well known Thomson scattering cross section

9 2
OThomson = 8?” (MJW) = 6.65 x 1072 m?. (5.74)
The quantity e?/(4meg mec?) = 2.8 x 107 1° m is called the classical electron radius
(it is the radius of spherical shell of total charge e whose electrostatic energy
equals the rest mass energy of the electron). Thus, as a scatterer the electron
acts rather like a solid sphere whose radius is of order the classical electron radius.
Since this radius is extremely small, it is clear that scattering of radiation by a
single electron (or any other charged particle) is a very weak process.

5.5 Rayleigh scattering

Let us now consider the scattering of electromagnetic radiation by a harmonically
bound electron; e.g., an electron orbiting an atomic nucleus. We have seen in
Section 4.2 that such an electron satisfies an equation of motion of the form

N . e
5+78+w’s=——E, (5.75)
Me
where wyg is the characteristic oscillation frequency of the electron, and vy < wy

is the damping rate of such oscillations. Assuming an e~'“* time dependence of
both s and E, we find that

w2 €

§ = E. 5.76
wo? — w? —iypw me (5.76)
It follows, by analogy with the analysis in the previous section, that the total

scattering cross section is given by

w4

wo' —w?)? + (o w)?*

(5.77)

0 = OThomson (
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The angular distribution of the radiation is the same as that in the case of a free
electron.

The maximum value of the cross section (5.77) is obtained when w ~ wy; i.e.,
for resonant scattering. In this case, the scattering cross section can become very
large. In fact,

2
0 = OThomson (ﬂ) ) (578)
Y0

which is generally far greater than the Thomson scattering cross section.

For strong binding, w < wp, Eq. (5.77) reduces to

4
w
0 == 0OThomson <—> 3 (579)
wo

giving a scattering cross section which depends on the inverse fourth power of the
wavelength of the incident radiation. Equation (5.79) is known as the Rayleigh
scattering cross section, and is appropriate to the scattering of visible radiation
by gas molecules. This is Rayleigh’s famous explanation of the blue sky: the air
molecules of the atmosphere preferentially scatter the shorter wavelength compo-
nents out of “white” sunlight which grazes the atmosphere. Conversely, sunlight
viewed directly through the long atmospheric path at sunset appears reddened.
The Rayleigh scattering cross section is much less than the Thompson scattering
cross section (for w < wy). However, this effect is offset to some extent by the
fact that the density of neutral molecules in a gas (e.g., the atmosphere) is much
larger than the density of free electrons typically encountered in a plasma.
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6 Resonant cavities and wave guides

6.1 Introduction

Let us investigate the solution of the homogeneous wave equation in regions con-
taining various geometric boundaries, particularly in regions bounded by conduc-
tors. The boundary value problem is of great theoretical significance and also
has many practical electromagnetic applications, particularly in the microwave
region of the spectrum.

6.2 Boundary conditions

Let us review the general boundary conditions on the field vectors at a surface
between medium 1 and medium 2:

n-(Dy—Dy) = T, (6.1a)
nA(E;—E;) = 0, (6.1b)
n-(B1—By) = 0, (6.1c)
nA(H, — H,) = K, (6.1d)

where 7 is used for the surface change density (to avoid confusion with the con-
ductivity), and K is the surface current density. Here, n is a unit vector normal
to the surface, directed from medium 2 to medium 1. We have seen in Section 4.4
that for normal incidence an electromagnetic wave falls off very rapidly inside the
surface of a good conductor. Equation (4.35) implies that in the limit of perfect
conductivity (0 — o0) the tangential component of E vanishes, whereas that of
H may remain finite. Let us examine the behaviour of the normal components.

Let medium 1 be a good conductor for which o/eeqw > 1, whilst medium 2 is
a perfect insulator. The surface change density is related to the currents flowing
inside the conductor. In fact, the conservation of charge requires that

_or
Ot

n-j = —iwT. (6.2)
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However, n-j = n-oEj, so it follows from Eq. (6.1)(a) that

(1 + lc"EOGI)n-El — 10 B, (6.3)

o g

It is clear that the normal component of E within the conductor also becomes
vanishingly small as the conductivity approaches infinity.

If E vanishes inside a perfect conductor then the curl of E also vanishes, and
the time rate of change of B is correspondingly zero. This implies that there
are no oscillatory fields whatever inside such a conductor, and that the boundary
values of the fields outside are given by

n-D = -, (6.4a)
nAE = 0, (6.4b)
n-B = 0, (6.4c)
nANH = -K. (6.4d)

Here, n is a unit normal at the surface of the conductor pointing into the con-
ductor. Thus, the electric field is normal and the magnetic field tangential at the
surface of a perfect conductor. For good conductors these boundary conditions
yield excellent representations of the geometrical configurations of external fields,
but they lead to the neglect of some important features of real fields, such as
losses in cavities and signal attenuation in wave guides.

In order to estimate such losses it is useful to see how the tangential and
normal fields compare when o is large but finite. Equations (4.5) and (4.34) yield
e
1% anE (6.5)
V2 '\ pow

at the surface of a conductor (provided that the wave propagates into the conduc-
tor). Let us assume, without obtaining a complete solution, that a wave with H
very nearly tangential and E very nearly normal is propagated along the surface

of the metal. According to the Faraday-Maxwell equation

H —

k
Hj| ~ 0w |EL| (6.6)

230



just outside the surface, where k is the component of the propagation vector
along the surface. However, Eq. (6.5) implies that a tangential component of H
is accompanied by a small tangential component of E. By comparing these two

expressions, we obtain
E
Mgk/ 2 :i (6.7)
|E, | Howo A

where d is the skin depth (see Eq. (4.36) ) and X = 1/k. It is clear that the ratio
of the tangential component of E to its normal component is of order the skin
depth divided by the wavelength. It is readily demonstrated that the ratio of the
normal component of H to its tangential component is of this same magnitude.
Thus, we can see that in the limit of high conductivity, which means vanishing
skin depth, no fields penetrate the conductor, and the boundary conditions are
those given by Eqgs. (6.4). Let us investigate the solution of the homogeneous
wave equation subject to such boundary conditions.

6.3 Cavities with rectangular boundaries

Consider a vacuum region totally enclosed by rectangular conducting walls. In
this case, all of the field components satisfy the wave equation

1 9

20p — —Q—f =0, (6.8)

c? Ot
where 1 represents any component of E or H. The boundary conditions (6.4)
require that the electric field is normal to the walls at the boundary whereas the
magnetic field is tangential. If a, b, and ¢ are the dimensions of the cavity, then
it is readily verified that the electric field components are

E, = FEjcos(kiz)sin(kyy)sin(kszz)e ', (6.9a)
E, = Eysin(kiz)cos(kay)sin(ksz)e ™, (6.9b)
E, = Essin(kiz)sin(kyy) cos(ksz)e ™, (6.9¢)
where
[
kL, = — 1
1 p (6.10a)
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ks = "T” (6.10¢)

with [, m, n integers. The allowed frequencies are given by

2 l2 2 2
2 g (_2+7Z_2+"—>. (6.11)

c a c?

It is clear from Eq. (6.9) that at least two of the integers [, m, n must be different
from zero in order to have non-vanishing fields. The magnetic fields obtained
by the use of V A E = iwB automatically satisfy the appropriate boundary
conditions, and are in phase quadrature with the electric fields. Thus, the sum
of the total electric and magnetic energies within the cavity is constant, although
the two terms oscillate separately.

The amplitudes of the electric field components are not independent, but are
related by the divergence condition V- E = 0, which yields

ki1 E1+ ko B9 + k3 E5 = 0. (6.12)

There are, in general, two linearly independent vectors E that satisfy this condi-
tion, corresponding to two polarizations. (The exception is the case that one of
the integers [, m, n is zero, in which case F is fixed in direction.) Each vector is
accompanied by a magnetic field at right angles. The fields corresponding to a
given set of integers I, m, and n constitute a particular mode of vibration of the
cavity. It is evident from standard Fourier theory that the different modes are
orthogonal (i.e., they are normal modes) and that they form a complete set. In
other words, any general electric and magnetic fields which satisfy the boundary
conditions (6.4) can be unambiguously decomposed into some linear combination
of all of the various possible normal modes of the cavity. Since each normal mode
oscillates at a specific frequency it is clear that if we are given the electric and
magnetic fields inside the cavity at time ¢ = 0 then the subsequent behaviour of
the fields is uniquely determined for all time.

The conducting walls gradually absorb energy from the cavity, due to their
finite resistivity, at a rate which can easily be calculated. For finite o the small
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tangential component of E at the walls can be estimated using Eq. (6.5):

1—1 [pow
V2V o
Now, the tangential component of H at the walls is slightly different from that

given by the ideal solution. However, this is a small effect and can be neglected
to leading order in o~!. The time averaged energy flux into the walls is given by

2
20d

where H\|g is the peak value of the tangential magnetic field at the walls predicted
by the ideal solution. According to the boundary condition (6.4)(d), H)o is equal
to the peak value of the surface current density Ky. It is helpful to define a
surface resistance,

E” = H” An. (6.13)

~_ 1 1 Jpow - o

N = K2R, n, (6.15)
where .
= 1
R —J (6.16)

This approach makes it clear that the dissipation of energy is due to ohmic heating
in a thin layer, whose thickness is of order the skin depth, on the surface of the
conducting walls.

6.4 The quality factor of a resonant cavity

The quality factor @) of a resonant cavity is defined

energy stored in cavity

Q =2

. 6.17
energy lost per cycle to walls ( )

For a specific normal mode of the cavity this quantity is independent of the mode
amplitude. By conservation of energy the power dissipated in ohmic losses is
minus the rate of change of the stored energy U. We can write a differential
equation for the behaviour of U as a function of time:

dU . wo

il (6.18)
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where wy is the oscillation frequency of the normal mode in question. The solution

to the above equation is
U(t) = U(0) e"wot/@, (6.19)

This time dependence of the stored energy suggests that the oscillations of the
fields in the cavity are damped as follows:

E(t) = Egew0t/2Q g=ilwotAw)t (6.20)

where we have allowed for a shift Aw of the resonant frequency as well as the
damping. A damped oscillation such as this does not consist of a pure frequency.
Instead, it is made up of a superposition of frequencies around w = wy + Aw.
Standard Fourier analysis yields

E(t) = \/% /_00 E(w)e %" duw, (6.21)

where | ~
Fw) = — Ey e~ wot/2Q gl (w—wo—Aw)t gy 6.22
@=—=] B (6:22)
It follows that 1
|E(w)|? o (6.23)

(w— wo — Aw)? + (wo/2Q)?’

The resonance shape has a full width ' at half-maximum equal to wy/Q. For
a constant input voltage, the energy of oscillation in the cavity as a function
of frequency follows the resonance curve in the neighbourhood of a particular
resonant frequency. It can be seen that the ohmic losses, which determine ) for a
particular mode, also determine the maximum amplitude of the oscillation when
the resonance condition is exactly satisfied, as well as the width of the resonance
(i.e., how far off the resonant frequency the system can be driven and still yield
a significant oscillation amplitude).

6.5 Axially symmetric cavities

The rectangular cavity which we have just considered has many features in com-
mon with axially symmetric cavities of arbitrary cross section. In every cavity
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the allowed values of the wave vector k, and thus the allowed frequencies, are
determined by the geometry of the cavity. We have seen that for each set of
ki, ko, k3 in a rectangular cavity there are, in general, two linearly independent
modes; ¢.e., the polarization remains arbitrary. We can take advantage of this
fact to classify modes into two kinds according to the orientation of the field vec-
tors. Let us choose one type of mode such that the electric field vector lies in the
cross-sectional plane, and the other so that the magnetic field vector lies in this
plane. This classification into transverse electric (TE) and transverse magnetic
(TM) modes turns out to be possible for all axially symmetric cavities, although
the rectangular cavity is unique in having one mode of each kind corresponding
to each allowed frequency.

Suppose that the direction of symmetry is along the z-axis, and that the
length of the cavity in this direction is L. The boundary conditions at z = 0
and z = L demand that the z dependence of wave quantities be either sin k3z or
cos ksz, where k3 = nm/L. In other words, every field component satisfies

82
(@ - k32>¢ =0, (6.24)
as well as
(V2 + k%)Y =0, (6.25)

where 1 stands for any component of E or H. The field equations

VAE = iwugH, (6.26a)
VAH = —iwekFE (6.26Db)
must also be satisfied.

Let us write each vector and each operator in the above equations as the sum
of a transverse part, designated by the subscript s, and a component along z. We
find that for the transverse fields

iwuoHs = VsANE,+V, A E;, (6.27a)
—iwegEs = Vo AH,+V,AH,. (6.27h)
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When one side of Egs. (6.27) is substituted for the transverse field on the right-
hand side of the other, and use is made of Eq. (6.24), we obtain

Vs(0E,/0z) iwpg
k2 _ k32 k2 _ k32
Vs(0H,/0z) iweg

H, = — SANE,. 6.28b
k2 — ky? k2 — kJ? v ( )

E, Vs ANH,, (6.28a)

Thus, all transverse fields can be expressed in terms of the z components of the
fields, each of which satisfies the differential equation

[VZ+ (k* — k5?)] A, =0, (6.29)

where A, stands for either E, or H,, and Vg is the two-dimensional Laplacian
operator.

The conditions on E, and H, at the boundary (in the transverse plane) are
quite different: F, must vanish on the boundary, whereas the normal derivative
of H, must vanish so that H; in Eq. (6.28)(b) satisfies the appropriate boundary
condition. When the cross section is a rectangle, these two conditions lead to the
same eigenvalues of (k? — k3?) = k.2 = k;? + k2, as we have seen. Otherwise,
they correspond to two different frequencies, one for which E, is permitted but
H, = 0, and the other where the opposite is true. In every case, it is possible to
classify the modes as transverse magnetic or transverse electric. Thus, the field
components F, and H, play the role of independent potentials, from which the
other field components of the TE and TM modes, respectively, can be derived
using Egs. (6.28).

The mode frequencies are determined by the eigenvalues of Egs. (6.24) and
(6.29). If we denote the functional dependence of E, or H, on the plane cross
section coordinates by f(z,y), then we can write Eq. (6.29) as

V2f = -k f. (6.30)
Let us first show that k,2 > 0, and hence that k > k3. Now,

fV2f =V, (fVsf) = (Vsf)2 (6.31)
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It follows that
—ks2/f2dv+/(vsf)2dV:/fo-dS, (6.32)

where the integration is over the transverse cross section. If either f or its normal
derivative is to vanish on S, the conducting surface, then

k 2 _ f(vSf)2dV
S [ f2av

> 0. (6.33)

We have already seen that k3 = nm/L. The allowed values of k; depend both on
the geometry of the cross section and the nature of the mode.

For TM modes H, = 0, and the z dependence of E, is given by cos(nm z/L).
Equation (6.30) must be solved subject to the condition that f vanish on the
boundaries of the plane cross section, thus completing the determination of E,
and k. The transverse fields are special cases of Egs. (6.28):

1 oL,

ES = ]{:—82 ng, (634&)
iweo ~

H = —32AV.E.. (6.34b)

S

For TE modes, in which £, = 0, the condition that H, vanish at the ends of
the cylinder demands the use of sin(nm z/L), and ks must be such that the normal
derivative of H, is zero at the walls. Equations (6.28), giving the transverse fields,
then become

1 O0H,
H, = —5V,—, :
AL (6.35a)
1wpo

S

and the mode determination is completed.
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6.6 Cylindrical cavities

Let us apply the methods of the previous section to the TM modes of a right
circular cylinder of radius a. We can write

— Af(r, ) cos(kzz) e *t, (6.36)
where f(r, ) satisfies the equation

10/ of\ 18%F .
rar( ar)+r—2ﬁ+ksf_o, (6.37)

and (7, ¢, z) are cylindrical polar coordinates. Let

fr,p) = g(r)e'™?. (6.38)
It follows that p p )
1 g o m
— k. — — = 6.39
rdr( dr)+<s 'r'2>g 0, ( )
or P J
52 g g m?2
¢9 hatd — 40
2040 (2 m) g =0, (6.40)

where z = kgr. The above equation is known as Bessel’s equation. The two
linearly independent solutions of Bessel’s equation are denoted J,,(z) and Y, (2).
In the limit |z| < 1 these solutions behave as z™ and z~™, respectively, to lowest
order . More exactly!®

Z\™ = (—22/4)k
Im(z) = (5) kzzom, (6.41a)

P —m M~ 1 m . 2 k
Vole) = —CEEE N e R 4 e g
k=0
m 0 _22 4 k
];) —I—v,b(m—i—k—i—l)]ﬁ

(6.41D)

16M. Abramowitz, and I.A. Stegun, Handbook of mathematical functions, (Dover, New York,
1965), Cha. 9
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for |z| < 1, where

v(1) = -, (6.42a)

n—1
d(n) = —y+ Y k7 (6.42b)
k=1

and v = > 7o k7! = 0.57722 is Euler’s constant. Clearly, the J,, are well
behaved in the limit |2| — 0, whereas the Y, are badly behaved.

The asymptotic behaviour of both solutions at large |z| is

2

Im(2) = — —cos(z —mm/2 —7w/4) 4+ O(1/=z), (6.43a)
Vo(z) = :z sin(z — mm/2 — 7/4) + O(1/2). (6.43b)

Thus, for |z| > 1 the solutions take the form of gradually decaying oscillations
which are in phase quadrature. The behaviour of Jy(z) and Yj(z) is shown in
Fig. 21.

Since the axis » = 0 is included in the cavity the radial eigenfunction must be
regular at the origin. This immediately rules out the Y,,(ksr) solutions. Thus,
the most general solution for a TM mode is

E, = AJp(kir)e ™ cos(ksz) e @0, (6.44)
The k; are the eigenvalues of ks, and are determined by the solutions of
JIm(kia) = 0. (6.45)

The above constraint ensures that the tangential electric field is zero on the
conducting walls surrounding the cavity (r = a).

The most general solution for a TE mode is

H, = AJy(kir)e' ™ sin(ksz) et (6.46)

239



1-0"'I|Ill|

05\

0.0

_0-5||||||||||||||||||||

Figure 21: The Bessel functions Jy(z) (solid line) and Yy(z) (dotted line)

In this case, the k; are determined by the solution of

J (ka) =0, (6.47)

where ' denotes differentiation with respect to the argument. The above con-
straint ensures that the normal magnetic field is zero on the conducting walls

surrounding the cavity. The oscillation frequency of both the TM and TE modes
is given by

w? n2m?
5 = k= k,? T (6.48)
If [ is the ordinal number of a zero of a particular Bessel function of order m (I
increases with increasing values of the argument), then each mode is characterized
by three integers, [, m, n, as in the rectangular case. The [th zero of J,, is
conventionally denoted ji 1 [s0, Jim(jm,) = 0]. Likewise, the lth zero of J}, is
denoted j; ,. Table 2 shows the first few zeros of Jy, Jy, Ji, and Ji. It is clear
that for fixed n and m the lowest frequency mode (i.e., the mode with the lowest
value of k;) is a TE mode. The mode with the next highest frequency is also a
TE mode. The next highest frequency mode is a TM mode, and so on.
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Jo,1 J1,1 Jo.1 1

2.4048 3.8317 0.0000 1.8412
5.5201 7.0156 3.8317 5.3314
8.6537 10.173 7.0156 8.5363
11.792 13.324 10.173 11.706

B~ W N | S

Table 2: The first few values of joi, ji,i, jo, and jj

6.7 Wave guides

Let us consider the transmission of electromagnetic waves along the axis of a
wave guide, which is simply a long, axially symmetric, hollow conductor with
open ends. In order to represent a wave propagating along the z-direction, we
can write the dependence of the fields on the coordinate variables and the time
as

f(z,y)elkaz=wt), (6.49)

The guide propagation constant, kg, is just the k3 of previous sections, except
that it is no longer restricted by the boundary conditions to take discrete values.
The general considerations of Section 6.5 still apply, so that we can treat TM
and TE modes separately. The solutions for f are identical to those for axially
symmetric cavities already discussed. Although kg is not restricted in magnitude,
we note that for every eigenvalue of the two-dimensional equation, kg, there is a
lowest value of k, namely k = k; (often designated k. for wave guides), for which
kg is real. This corresponds to the cutoff frequency below which waves are not
transmitted by that mode, and the fields fall off exponentially with increasing z.
In fact, the wave guide dispersion relation for a particular mode can easily be

shown to take the form
w? — w,?

kg =Y —“c (6.50)

C

where
we=kec=ksc (6.51)

is the cutoff frequency. There is an absolute cutoff frequency associated with the
mode of lowest frequency; i.e., the mode with the lowest value of k..
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For real k4 (i.e., w > w,) it is clear from Eq. (6.50) that the wave is propagated
along the guide with a phase velocity

Up = — = < (6.52)

kg /1—-wz2/w?

It is evident that the phase velocity is greater than that of electromagnetic waves
in free space. This velocity is not constant, however, but depends on the fre-
quency. The wave guide thus behaves as a dispersive medium. The group velocity
of a wave pulse propagated along the guide is given by

d
Ug = % =cy/1—w2?/w?, (6.53)
9

It can be seen that u, is always smaller than ¢, and also that

Up Uy = C. (6.54)

For a TM mode (H, = 0) Egs. (6.34) yield
ik,

B, = 33V (6.55)
H, = “9:aE, (6.55b)
kg

where use has been made of 0/0z = ik,. For TE modes (E, = 0) Egs. (6.35)
give

H, = k—;Vst, (6.56a)
E, = —%2/\1{3. (6.56b)
g9

The time-average z component of the Poynting vector IN is given by

F: |E3/\HS*|

p 5 (6.57)
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It follows that
Evan Mo 1 Hs(z)

N, =, /20
: € /1 —w2/w? 2

(6.58)

for TE modes, and
_ H 2
N, = @\/1—w62/w2—30 (6.59)
€0 2

for TM modes. The subscript 0 denotes the peak value of a wave quantity.

Wave guide losses can be estimated by integrating Eq. (6.14) over the wall of
the guide for any given mode. The energy flow of a propagating wave attenuates
as e K2, where

o power loss per unit length of guide (6.60)
~ power transmitted through guide '

Thus,
1 _
K=— [ (H?+H? /Nz 61
2(,d/(s+ z)dS/ ds , (6.61)

where the numerator is integrated over unit length of the wall and the denomi-
nator is integrated over the transverse cross section of the guide. It is customary
to define a guide impedance Z, by writing

— Z
/ N,dS = 79 / H,dS. (6.62)

It follows from Egs. (6.58) and (6.59) that

(6.63)

1
Zy= |22
€0 /1 —w,?/w?
for TE modes, and

Zy= /‘:—2\/1 — w2 )W (6.64)

for TM modes. For both types of mode Hs; = (1/Z,) 2 A\ E;.
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6.8 Dielectric wave guides

We have seen that it is possible to propagate electromagnetic waves down a
hollow conductor. However, other types of guiding structures are also possible.
The general requirement for a guide of electromagnetic waves is that there be a
flow of energy along the axis of the guiding structure but not perpendicular to it.
This implies that the electromagnetic fields are appreciable only in the immediate
neighbourhood of the guiding structure.

Consider an axisymmetric tube of arbitrary cross section made of some di-
electric material and surrounded by a vacuum. This structure can serve as a
wave guide provided that the dielectric constant of the material is sufficiently
large. Note, however, that the boundary conditions satisfied by the electromag-
netic fields are significantly different to those of a conventional wave guide. The
transverse fields are governed by two equations; one for the region inside the
dielectric, and the other for the vacuum region. Inside the dielectric we have

2 w? 2
[VS =+ (61 =z k:g )] = 0. (6.65)

In the vacuum region we have
2 w? 2

Here, v (z,y) e'*s% stands for either E, or H,, € is the relative permittivity of
the dielectric material, and k, is the guide propagation constant. The guide
propagation constant must be the same both inside and outside the dielectric
in order to satisfy the electromagnetic boundary conditions at all points on the
surface of the tube.

Inside the dielectric the transverse Laplacian must be negative, so that the

constant

w2

k=€ — —k,° (6.67)

S C2

is positive. Qutside the cylinder the requirement of no transverse flow of energy
can only be satisfied if the fields fall off exponentially (instead of oscillating).
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Thus,
2 2 w?

must be positive.

The oscillatory solutions (inside) must be matched to the exponentiating so-
lutions (outside). The boundary conditions are the continuity of normal B and
D and tangential E and H on the surface of the tube. These boundary condi-
tions are far more complicated than those in a conventional wave guide. For this
reason, the normal modes cannot usually be classified as either pure TE or pure
TM modes. In general, the normal modes possess both electric and magnetic field
components in the transverse plane. However, for the special case of a cylindrical
tube of dielectric material the normal modes can have either pure TE or pure
TM characteristics. Let us examine this case in detail.

Consider a dielectric cylinder of radius a and dielectric constant €;. For the
sake of simplicity, let us only search for normal modes whose electromagnetic
fields have no azimuthal variation. Equations (6.65) and (6.67) yield

2d—2+ri+r2k2 Y =0 (6.69)
"o dr y B '

for r < a. The general solution to this equation is some linear combination of the
Bessel functions Jy(ksr) and Yp(ksr). However, since Yy(ksr) is badly behaved
at the origin (r = 0) the physical solution is ¢ o< Jo(ksr).

Equations (6.66) and (6.68) yield

fr2—d2 —i—ri—'erQ =0 (6.70)
dr? dr ¢ e '
This can be rewritten
d? d
2 2 _
(Z E—FZE—Z)?ﬁ—O, (671)

where z = k;r. This is type of modified Bessel’s equation, whose most general
form is

[% < 22 (2 + m2)] ¥ = 0. (6.72)



The two linearly independent solutions of the above equation are denoted I,,,(2)
and K,,(z). The asymptotic behaviour of these solutions at small |z| is as fol-
lows:

W) = (2)" Z Al (6.734)
Kn@) = 5(5)77 2 P+ () e 2) )
k=0
ml [z > 22 /4)™
g (3) z:: ) Fm k1) k!((m/—i—)k)!'

(6.73b)

Hence, I, is well behaved in the limit |z| — 0, whereas K,, is badly behaved.
The asymptotic behaviour at large |z| is

(S

Im(z) =~ \/R [1+0(§)], (6.74a)

\/ge_z [1 +0 G) ] : (6.74b)

Hence, I,, is badly behaved in the limit |z| — oo, whereas K, is well behaved.
The behaviour of Iy(z) and K(z) is shown in Fig. 22. It is clear that the physical
solution to Eq. (6.70) (i.e., the one which decays as |r| = 00) is ¢ o< Ko(kir).

=
3
X
.

The physical solution is
Y = Jo(ksr) (6.75)

for » < a, and

Y = A Ko(kir) (6.76)

for 7 > a. Here, A is an arbitrary constant, and (r) e!*s* stands for either E,
or H,. It follows from Egs. (6.28) (using /00 = 0) that

. kg OH,

H,
k2 or '’

(6.77a)
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Figure 22: The Bessel functions Iy(z) (solid line) and Ky(z) (dotted line)

By, = —“Hopg. (6.77b)
kg
. Weper 8Ez
Hg = ITS2 87’* y (677C)
kg
E, = Hy (6.77d)
WeEp€r

for r < a. There are an analogous set of relationships for r > a. The fact that
the field components form two groups; (H,., Ep), which depend on H,, and (Hy,
E.), which depend on E,; means that the normal modes take the form of either
pure TE modes or pure TM modes.

For a TE mode (E, = 0) we find that

H, = Jo(ksr), (6.78a)
H, = —i];—ng(ksr), (6.78b)
Ey = i%h(ksm (6.78¢)
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for r < a, and

H, = AKo(kr), (6.79a)
k
Hy = 1A Ki(kr), (6.79b)
t
Ey = —iA%Kl(ktr) (6.79¢)
t

for » > a. Here we have used
Jo(z) = —Ji(2), (6.80a)
K(')(z) = —Ki(2), (6.80Db)

where ’ denotes differentiation with respect to z. The boundary conditions require
H,, H,., and Ey to be continuous across » = a. Thus, it follows that

AKy(kia) = Jo(ksa), (6.81a)
Ki(ker)  Ji(ksa)
R (6.81b)

Eliminating the arbitrary constant A between the above two equations yields the
dispersion relation

J1(ksa) N K;(kta)

= .82
ba Jo(ea) T e Ko(la) (6:82)

where )

b+ k= (0 —1) = (6.82)

Figure 23 shows a graphical solution of the above dispersion relation. The
roots correspond to the crossing points of the two curves; —Ji(ksa)/ksJo(ksa)
and K (kta)/kiKo(kia). The vertical asymptotes of the first curve are given by
the roots of Jy(ksa) = 0. The vertical asymptote of the second curve occurs when
ki = 0; i.e., when k2a® = (e1—1) w?a?/c?. Note from Eq. (6.82) that k; decreases
as ks increases. In Fig. 23 there are two crossing points, corresponding to two
distinct propagating modes of the system. It is evident that if the point k; = 0
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:kfa2->

Figure 23: Graphical solution of the dispersion relation (6.82). The curve A
represents —Ji(ks/a)/ksJo(ksa). The curve B represents K;(kia)/kiKo(kia).
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corresponds to a value of ks;a which is less than the first root of Jo(ksa) = 0,
then there is no crossing of the two curves, and, hence, there are no propagating
modes. Since the first root of Jy(z) = 0 occurs at z = 2.4048 (see Table 2) the
condition for the existence of propagating modes can be written

2.4048 ¢
ver—Tla
In other words, the mode frequency must lie above the cutoff frequency wgy, for
the TEp; mode (here, the 0 corresponds to the number of nodes in the azimuthal
direction, and the 1 refers to the 1st root of Jy(z) = 0). It is also evident that
as the mode frequency is gradually increased the point k£, = 0 eventually crosses
the second vertical asymptote of —Jy(ks/a)/ksJo(ksa), at which point the TEqo

mode can propagate. As w is further increased more and more TE modes can
propagate. The cutoff frequency for the TEq mode is given by

(6.83)

w > wol =

Joi €
= — 6.84
e Ta (050
where jo; is Ith root of Jy(z) = 0 (in order of increasing z).
At the cutoff frequency for a particular mode k; = 0, which implies from

Eq. (6.68) that k; = w/c. In other words, the mode propagates along the guide
at the velocity of light in vacuum. Immediately below this cutoff frequency the
system no longer acts as a guide but as an antenna, with energy being radiated
radially. For frequencies well above the cutoff, k; and &k, are of the same order
of magnitude, and are large compared to ks. This implies that the fields do not
extend appreciably outside the dielectric cylinder.

For a TM mode (H, = 0) we find that

E, = Jo(ksr), (6.85a)

Hy = —i “’2061 1 (ksr), (6.85b)

E, = -i % J1(ksr) (6.85¢)
for r < a, and

E, = AKy(kr), (6.86a)
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Hy = iA?Kl(ktr), (6.86b)
t

k
B = 1AL Ki(kr) (6.86¢)
t

for r > a. The boundary conditions require E,, Hy, and D, to be continuous
across r = a. Thus, it follows that

AKy(kia) = Jy(ksa), (6.87a)
g Btk ilksa) (6.87b)
ki ks

Eliminating the arbitrary constant A between the above two equations yields the
dispersion relation

J1(ksa) K (kia)
€1
ks J()(ksa) kt K()(kta)

= 0. (6.88)

It is clear from this dispersion relation that the cutoff frequency for the TMyy;
mode is exactly the same as that for the TEqy mode. It is also clear that in the
limit €; > 1 the propagation constants are determined by the roots of Jy (ksa) ~
0. However, this is exactly the same as the determining equation for TE modes
in a metallic wave guide of circular cross section (filled with dielectric of relative
permittivity €;).

Modes with azimuthal dependence (i.e., m > 0) have longitudinal components
of both E and H. This makes the mathematics somewhat more complicated.
However, the basic results are the same as for m = 0 modes: for frequencies well
above the cutoff frequency the modes are localized in the immediate vicinity of
the cylinder.

251



7 The multipole expansion

7.1 Multipole expansion of the scalar wave equation

Consider the emission and scattering of electromagnetic radiation. This type of
problem involves solving the vector wave equation. The solutions of this equation
in free space are conveniently written as an expansion in orthogonal spherical
waves. This expansion is known as the multipole expansion. Let us examine this
expansion in more detail.

Before considering the vector wave equation, let us consider the somewhat
simpler scalar wave equation. A scalar field ¢(r,t) satisfying the homogeneous
wave equation

1 0%
2
can be Fourier analyzed in time
W(r,t) = / b(r,w) o= 9 de (7.2)

with each Fourier harmonic satisfying the Helmholtz wave equation
(VQ + kz) '(,D(’l’, w) =0, (73)

where k? = w?/c?. We can write the Helmholtz equation in terms of spherical
polar coordinates (r, 6, ¢):

2
10,0, 1 0 .0, 1 38

- =z — k* |y =0. 4
r2or 8r+r28in989 00 'rQSin298cp2+ v=0 (74)

As is well known, it is possible to solve this equation via the separation of vari-
ables:

U(r,w) = 3 fim(r) Yim (0, 0). (75)
l,m

Here, we restrict our attention to physical solutions which are well behaved in the
angular variables 8 and . The spherical harmonics Y;,, (6, @) satisfy the following
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equations:

0%Yim
- 92 = m’ Yim, (7.6a)
1 0 0 1 82
- op SN0 o2+ —— o | Vi = 1)Y] _
Line 56 "% 56 T sin293¢2] im [(I+1) Yim, (7.6b)

where [ is a non-negative integer, and m is an integer which satisfies the inequality
|m| <. The radial functions f,,(r) satisfy

> 2d I(1+1)
S 4 k2 = .
[er rdr + r2 ]fl(r) 0 (7.7)
where there is no dependence on m. With the substitution
i (r)
filr) =35 (7.8)
Eq. (7.7) is transformed into
d> 1d (1+1/2)2
Ry ' S S e = 0. .
72 + - + - w(r) =0 (7.9)

It can be seen, by comparison with Eq. (5.39), that this is a type of Bessel’s
equation of half-integer order [ + 1/2. Thus, we can write the solution for f,,(r)
as
Alm Blm

flm(’l“) = —7“1/2 Jl+1/2(k7°) + —7“1/2 Y}+1/2(k'l“), (710)
where Aj,, and By, are arbitrary constants. The half-integer order Bessel func-
tions Ji11/2(2) and Y;41/2(2) have analogous properties to the integer order Bessel
functions J,,(z) and Y;,(z). In particular, the J;;/2(2) are well behaved in the
limit |z| — 0, whereas the Yj;1/2(z) are badly behaved. The asymptotic expan-
sions (5.43) remain valid when m — [ + 1/2.

It is convenient to define the spherical Bessel functions j;(r) and y;(r), where

Ji(z) = (%)I/QJIH/Q(Z), (7.11a)
yi(z) = (%)I/QYEH/Q(Z)- (7.11b)

253



It is also convenient to define the spherical Hankel functions
h2(2) = ji(z) iy(2). (7.12)

For real z, hl(2)(z) is the complex conjugate of hl(l)(z). It turns out that the
spherical Bessel functions can be expressed in the closed form

az) = (=2) (%%)l (Sizz) : (7.13a)

u(z) = —(=2) (%%)l (Cosz)- (7.13b)

z

In the limit of small argument

Zl

5i(2) @ on [1+0(z%)], (7.14a)
y(z) — —% [1+0(z%)], (7.14Db)

where (2[+1)!! = (21+1)(21—1)(21—3) - -- 5-3-1. In the limit of large argument
sin(z — In/2)

qiz) — . , (7.15a)
—In/2
w(z) — —COS(ZZW ), (7.15b)
and .
hY = (i) 67 (7.16)

The inhomogeneous Helmholtz equation is conveniently solved using the Green’s
function G, (r,r’), which satisfies (see Eq. (2.109))

(V2 + kD) Gy(r,v') = =6(r — 7). (7.17)

The solution of this equation, subject to the Sommerfeld radiation condition,
which ensures that sources radiate waves instead of absorbing them, is written
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(see Section 2.13)
eliklr—r'|

Gy(r,r') = (7.18)

A |lr — |’

The spherical harmonics satisfy the completeness relation

Z Z ;0 ) Yim (6, 0) = 6(p — ') d(cos B — cos§’). (7.19)

=0 m=-1

Now the three dimensional delta function can be written

d(r—1r') = W(?(go—go')(s(cosﬁ—cosﬁ’). (7.20)

It follows that
d(r—r")
5(r—r') = Z Z Yim (6, ¢). (7.21)
=0 m=-1

Let us expand the Green’s function in the form

Zgl (r,7") 0, 0") Yim (0, ¢). (7.22)

Substitution of this expression into Eq. (7.17) yields

> 2d o LIl +1) d(r—r')
[W—{_rdr—{_k R ]gl_ rz (7.23)

The appropriate boundary conditions are that g; is finite at the origin and corre-
sponds to an outgoing wave at infinity (i.e., g oc e!*" in the limit » — o). The
solution of the above equation which satisfies these boundary conditions is

gi(r,r") = Aji(kr ) B (krs), (7.24)

where r. and r- are the greater and the lesser of r and r’, respectively. The
correct discontinuity in slope at r = r’ is assured if A = ik, since

dh{"(2)
dz

i) — D) B - L (7.25)

dz z
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Thus, the expansion of the Green’s function is

1k:|r 7|

m—lkZﬂ kre) b (krs) Z ' &) Yim(0,0).  (7.26)

=0 m=—I

This is a particularly useful result, as we shall discover, since it easily allows us to
express the general solution of the inhomogeneous wave equation as a multipole
expansion.

It is well known in quantum mechanics that Eq. (7.6b) can be written in the
form

L? Y = (1 + 1) Y. (7.27)
The differential operator L? is given by
’=L; +L7+L}7, (7.28)
where
L=—-irAV (7.29)

is 1/h times the orbital angular momentum operator of wave mechanics.

The components of L can be conveniently written in the combinations

: o[ 0 0
L, = Lx+1Ly:e‘p(69—|—1cot9%> (7.30a)
: i 0 0
L_ = Lx — lLy —e ¥ (—% +1 cot 6 %) (730b)
L, = —i % (7.30¢)

We note that L operates only on angular variables and is independent of r. From
the definition (7.29) it is evident that

r-L=0 (7.31)
holds as an operator equation. It is easily demonstrated from Egs. (7.30) that
1 0 0 1 0?
L* = — sinf — (7.32)

sin 6 06 00  sinZ 0p?’
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The following results are well known in quantum mechanics:

LiYim = VI—m)(I+m+1)Y ma1, (7.33a)
L. Yy = VI+m)(l-m+1)Ym1, (7.33b)
LY = mY,. (7.33c¢)
In addition,

I*L = LI? (7.34a)
LAL = ilL, (7.34D)
L;V? = V’L,, (7.34c)

where w 5 I
v2=r—2§r2§—r—2. (7.35)

7.2 Multipole expansion of the vector wave equation

Maxwell’s equations in free space reduce to

V-E = 0, (7.36a)
V.¢eB = 0, (7.36b)
VAE = ikcB, (7.36¢)
VAcB = -ikE, (7.36d)

assuming an e~'“? time dependence of all field quantities. Here, k = w/c. Elimi-
nating E between Egs. (7.36¢) and (7.36d), we obtain the following equations for
B:

(V2+ kB = 0, (7.37a)
V-B = 0, (7.37Db)

with E given by .
E= %v A cB. (7.38)
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Alternatively, B can be eliminated to give

(V24+EHE = 0, (7.39a)
V-E = 0, (7.39b)

with B given by '
¢B = —%v NE. (7.40)

It is clear that each Cartesian component of B and FE satisfies the Helmholtz
wave equation (7.3). Hence, these components can be written in a general expan-
sion of the form

w(r) =D [Al) D k) + AR B (k)] Yim (6, 9), (7.41)
lm

where 9 stands for any Cartesian component of E or ¢B. Note, however, that
the three Cartesian components of E or B are not entirely independent, since
they must also satisfy the constraints V- E = 0 and V-B = (0. Let us examine
how these constraints can be satisfied with the minimum labour.

Consider the scalar r- A, where A is a well behaved vector field. It is easily
verified that
Vi(r-A) =r-(V*A) +2V-A. (7.42)

It follows from Eqgs. (7.37) and (7.39) that the scalars - E and r- B both satisfy
the Helmholtz wave equation:

(V2+E*)(r-E) = 0, (7.43a)
(VZ+EH(r-B) = 0. (7.43b)
Thus, the general solutions for r- E and r-cB can be written in the form (7.41).

Let us define a magnetic multipole field of order (I, m) by the conditions

(1+1
r-cBM = (Z )gl(kr)Ylm(ﬁ,go), (7.44a)

r-EXM = (7.44b)
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where

gi(kr) = AY B (kr) + AP B (er). (7.45)

The presence of the factor [(I + 1)/k is for later convenience. Equation (7.40)
yields
kr-cB=—-ir-(VAE)=—-i(r AV)-E=L-E, (7.46)

where L is given by Eq. (7.29). With r-B given by Eq. (7.44a), the electric field
associated with a magnetic multipole must satisfy

L-E{0 (r,0,0) = 1(1+ 1) gi(kr) Yim (6, ) (7.47)

and r-El(,r]r\:[ ) — 0. Note that the operator L acts only on the angular variables

(0, ). This means that the radial dependence of El(:f ) must be given by gi(kr).
Note also, from Egs. (7.33), that the operator L acting on Y}, transforms the
m value but does not change the [ value. It is easily seen from Eqgs. (7.27) and
(7.31) that the solution to Egs. (7.44b) and (7.47) can be written in the form

EXM = gi(kr) LYy (6, ). (7.48)

Thus, the angular dependence of El(f ) consists of some linear combination of
Yi m-1, Yim, and Y] p,41. Equation (7.48), together with

Bl = - VAERD, (7.49)

specifies the electromagnetic fields of a magnetic multipole of order (I,m). Note
from Eq. (7.31) that the electric field given by Eq. (7.48) is transverse to the
radius vector. Thus, magnetic multipole fields are sometimes termed transverse
electric (TE) multipole fields.

The fields of an electric or transverse magnetic (TM) multipole of order (I, m)
are specified by the conditions

RIES
k
r-BE) = (7.50b)

r-El(g)

fi(kr) Yim (0, ¢), (7.50a)
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It follows that the fields of an electric multipole are given by

cB(E) = fi(kr) LY} (0,9), 7.51a
Im
i

SV A ¢B"?). (7.51b)

E
El(m)
The radial function f;(kr) is given by an expression like (7.45).

The two sets of multipole fields (7.48), (7.49), and (7.51), form a complete set
of vector solutions to Maxwell’s equations in free space. Since the vector spherical
harmonic LY}, plays an important role in multipole fields, it is convenient to
introduce the normalized form

Xim(8,) = ﬁ L Yim(6,9). (7.52)

It can be demonstrated that the vector spherical harmonics possess the orthogo-
nality properties

/Xl*’m"le dQ) = 5”/ 5mm’; (753&)

for all [, I’, m, and m/.

By combining the two types of fields we can write the general solution to
Maxwell’s equations in free space in the form

¢cB = Y [aE(l,m) Fi(kr) Xy — %aM(l,m) VA gz(kr)sz] :
" (7.54a)

FE =Y [% an(l,m) VA filkr) Xim + ant(l, m) g (kr) le] ,
l’m (7.54b)
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where the coefficients ag(l,m) and anr (I, m) specify the amounts of electric (I, m)
and magnetic (I, m) multipole fields. The radial functions f;(kr) and g;(kr) are
of the form (7.45). The coefficients ag(l, m) and aps (I, m), as well as the relative
proportions in (7.45), are determined by the sources and the boundary condi-
tions.

Equations (7.54) yield

1
r-cB = Z ZaM(l,m) gi(kr) L X,

Im

_ % S ane (L, m) g1 (kr) /U + 1) Vi, (7.55)
Im

and
1
r-E = —E aE(l,m)fl(k"r)Lle
l,m
1
=~ > an(lm) filkr)y/10+1) Yim, (7.56)
l,m

where use has been made of Eqs. (7.27), (7.29), and (7.31). It follows from the
well known orthogonality property of the spherical harmonics that

ant(lm) q(kr) = / Y rcBdQ, (7.57a)

k
VIl +1)
k *
—\/ﬁ/ i T dS.

Thus, knowledge of - B and r-FE at two different radii in a source free region
permits a complete specification of the fields, including the relative proportions
of K" and A{*) in f, and g,.

ag(l,m) fi(kr) = (7.57Db)
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7.3 Properties of multipole fields

Let us examine some of the properties of the multipole fields (7.48), (7.49), and
(7.51). Consider, first of all, the so-called near zone, for which kr < 1. In this
region f;(kr) is proportional to y;(kr), given by the asymptotic expansion (7.14b),
unless its coefficient vanishes identically. Excluding this possibility, the limiting
behaviour of the magnetic field for an electric (/,m) multipole is

(7.58)

where the proportionality coefficient is chosen for later convenience. To find the
electric field we must take the curl of the right-hand side. The following operator
identity is useful

iV/\L:rVQ—V(l—i—r%) (7.59)

The electric field (7.51b) is
E Yim
E” )—>—V/\L<Tl+1> (7.60)

Since Yj,, /'t is a solution of Laplace’s equation, the first term in (7.59) vanishes.
Consequently, the electric field at close distances for an electric (I, m) multipole

is
Ym
EP _ _v (rll+1> (7.61)

This, of course, is an electrostatic multipole field. Such a field is obtained in a
more straightforward manner by observing that E — —V ¢, where V?¢ = 0, in
the near zone. Solving Laplace’s equation by separation of variables in spherical
polar coordinates, and demanding that ¢ be well behaved as |r| — oo, yields

6(r,0,0) =) W- (7.62)

Im

Note that the magnetic field (7.58) (normalized with respect to ¢™1) is smaller
than the electric field (7.61) by a factor of order kr. Thus, in the near zone
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the magnetic field associated with an electric multipole is always much smaller
than the corresponding electric field. For magnetic multipole fields it is evident
from Egs. (7.48), (7.49), and (7.51) that the roles of E and B are interchanged
according to the transformation

E® o _e¢BWM) (7.63a)
¢cBE) — EM) (7.63b)

In the so-called far zone or radiation zone, for which kr > 1, the multipole
fields depend on the boundary conditions imposed at infinity. For definiteness, let
us consider the case of outgoing waves at infinity, which is appropriate to radiation
by a localized source. For this case, the radial function f;(kr) is proportional to

the spherical Hankel function hl(l)(kr). From the asymptotic form (7.16), it is
clear that in the radiation zone the magnetic field of an electric (I, m) multipole

goes as )
Im ( 1) k Im- ( : )

Using Eq. (7.51b), the electric field can be written

Y/ ikr ikr
Elﬁ)zﬂlv(e )/\LYlm—I—e V/\LY}m]. (7.65)

k2 r r
Neglecting terms which fall off faster than 1/r, the above expression reduces to

(E) TR
Elm :_(_1)+ kr [n/\L}/lm_

1

- (rV? — V)Ylm] : (7.66)

where use has been made of the identity (7.59), and n = r/r is a unit vector
pointing in the radial direction. The second term in square brackets is smaller
than the first term by a factor of order 1/kr, and can therefore be neglected in
the limit £r > 1. Thus, we find that the electric field in the radiation zone is
given by

EP) — B nn, (7.67)
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where B( ) is given by Eq. (7.64). These fields are typical radiation fields; i.e.,
they are transverse to the radius vector, mutually orthogonal, and fall off like
1/r. For magnetic multipoles we merely make the transformation (7.63).

Consider a linear superposition of electric (I, m) multipoles with different m
values, but all possessing a common [ value. It follows from Eqs. (7.54) that

cB; = Y ag(l,m) Xim h{" (kr)e ie, (7.68a)

E = %v A cB. (7.68b)
For harmonically varying fields the time averaged energy density is given by

u= %’ (E-E* + cB-cB*). (7.69)
In the radiation zone the two terms are equal. It follows that the energy density
contained in a spherical shell between radii » and r + dr is

€0 dr
2k2

m,m/’

dU = afE(l,m’)aE(l,m)/X;fm,-le dQ, (7.70)

where the asymptotic form (7.16) of the spherical Hankel function has been used.
Making use of the orthogonality relation (7.53a), we obtain

dr 2k2 Z lag(l,m) (7.71)

which is clearly independent of the radius. For a general superposition of electric
and magnetic multipoles the sum over m becomes a sum over / and m, and |ag|?
becomes |az|? +|ayr|?. Thus, the total energy in a spherical shell in the radiation
zone is an incoherent sum over all multipoles.

The time averaged angular momentum density of harmonically varying elec-
tromagnetic fields is given by

m = %ORe r A (E A B)]. (7.72)
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For a superposition of electric multipoles the triple product can be expanded and
the electric field (7.68b) substituted, to give
GOC %
m = o% Re[B*(L-B)]. (7.73)
Thus, the angular momentum in a spherical shell lying between radii » and r +dr
in the radiation zone is

eocdr

dM = =13

Re )  ap(l,m')ap(l,m) /(L-le/)*le dqQ. (7.74)

m,m/’

It follows from Egs. (7.27) and (7.52) that

dM €pC i}
o~ o e 2 ab(b ) an( m)/ylm’ L Yign a. (7.75)

m,m/’

According to Egs. (7.33), the Cartesian components of dM /dr can be written:

dM,  €oc
el 4]€3RZ[ m)(l+m+1)ayx(l,m+1)

+V/T+mI—m+1)aplm—1)]ag(l,m),  (7.76)

dM,  €oc
o = 4k3I Z[\/ m)(l+m+1)ag(l,m+1)

—VT+m=m+1)ap(lm—1)|ag(l,m),  (7.76b)

dM, €0C
- = Q(J?me];(l,m)ﬁ (7.76¢)

Thus, for a general [th order electric multipole that consists of a superposition
of different m values, only the z component of the angular momentum takes a
relatively simple form.
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7.4 Sources of multipole radiation

Let us now examine the connection between multipole fields and their sources.
Suppose that there exist localized distributions of electric change p(r,t), true
current j(r,t), and magnetization M (r,t). We assume that the time dependence
can be analyzed into its Fourier components, and we therefore only consider
harmonically varying sources, p(r)e™'“t, j(r)e~*t and M(r)e~'“!, where it is
understood that we take the real parts of complex quantities.

Maxwell’s equations can be written

V.E = 2 (7.77a)
€0
V-B = 0, (7.77Db)
VAE —ikeB = 0, (7.77c)
VAcB+ikE = puoc(j+VAM), (7.77d)
with the continuity equation
iwp=V-j. (7.78)

It is convenient to deal with divergenceless fields. Thus, we use as the field
variables, B and

E=E+—3j (7.79)
€W
In the region outside the sources E’ reduces to E. When expressed in terms of
these fields, Maxwell’s equations become

V.E = 0 (7.80a)

V.B = 0, (7.80b)

VAE —ikcB = —VAj, (7.80c)
€W

VAeB+ikE = pgeVAM. (7.80d)

The curl equations can be combined to give two inhomogeneous Helmholtz wave

equations:
(V2 4+ k*)eB = —pocV A (j+V AM), (7.81)
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and

: VA
(V2 + K2 E = —ik eV A (M + ) . (7.82)
These equations, together with V-B = 0, and V-E’ = 0, and the curl equations
giving E’ in terms of B and vice versa, are the analogues to Egs. (7.37)—(7.40)
when sources are present.

Since the multipole coefficients in Eqs. (7.54) are determined according to
Egs. (7.57) from the scalars - B and r-E’, it is sufficient to consider wave
equations for these quantities, rather than the vector fields B and E’. From
Egs. (7.42), (7.81), (7.82), and the identity

r(VANA)=(rAV)- A=iL-A (7.83)

for any vector field A, we obtain the inhomogeneous wave equations

(V2+k®)r-cB = —ipgcL-(j+V AM), (7.84a)
VAj
(Vi+EHr E = lwocL.<M+ k27>. (7.84b)

Now the Green’s function for the inhomogeneous Helmholtz equation (defined
by Eq. (7.17) ), subject to the boundary condition of outgoing waves at infinity,
is given by Eq. (7.18). It follows that Eqgs. (7.84) can be inverted to give

By = 200 [ e £ 9 AME)] B, (1850)
reB(r) = - p— J(r , .85a,
k poc eiklr—r'| \V& /\j('f")

r-E'(r) = — . pr——r L' M(r’)—I—T d>r'.
(7.85b)

In order to evaluate the multipole coefficients by means of Eqgs. (7.57), we first
observe that the requirement of outgoing waves at infinity makes Al(2) = 0 in
Eq. (7.45). Thus, we choose fi(kr) = gi/(kr) = hl(l)(kr) in Egs. (7.54) as the
radial eigenfunctions of E and B in the source free region. Next, let us consider
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the expansion (7.26) of the Green’s function for the Helmholtz equation in terms
of spherical harmonics. We assume that the point 7 lies outside some spherical
shell which completely encloses the sources. It follows that - =7’ and r~ = r in
all of the integrations. Making use of the orthogonality property of the spherical
harmonics, it follows from Eq. (7.26) that

1k |r—7’|
/ a0 = ik O (kr) i (k') Y (6, ). (7.86)

47r|r — 7/

Finally, Egs. (7.57), (7.85), and (7.86) yield

pocik® VAJY 3

ag(l,m) \/ﬁ Ji(kr) Y, L-< > > d°r, (7.87a)
_HoCr k? . 3

ap (1, m) Ji(kr) Y, L-(3 + VAM)d’r. (7.87b)

\/ (I+1)

The expressions (7.87) give the strengths of the various multipole fields outside
the source in terms of integrals over the source densities 3 and M. They can be
transformed into more useful forms by means of the following arguments. The
results

L-A = iV (rANA), (7.88a)
19(r*V-A)

L-(VANA) = iVQ(r-A)—i;T (7.88b)

follow from the definition (7.29) of L, and simple vector identities. Substituting
into Eq. (7.87a), we obtain

poc k3

TV
2 (. 2

L YVirg) e 0(r7p)

k2 kr Or

ag(l,m) i [V (7 A M)

d*r, (7.89)

where use has been made of Eq. (7.78). Use of Green’s theorem on the second

term replaces V2 by —k? (since we can neglect the surface terms, and 7, (kr) Y}*,
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is a solution of the Helmholtz equation). A radial integration by part on the
third term (again neglecting surface terms) casts the radial derivative over onto
the spherical Bessel function. The result for the electric multipole coefficient is

poc k2 v !Cp d[r ji(kr)]
NI dr

—ikV-(r A M) ji(kr)] d°r. (7.90)

ag(l,m) = +ik(r-g) ji(kr)

The analogous set of manipulations using Eq. (7.87b) leads to an expression for
the magnetic multipole coefficient:

poc k2 . o dlr ji(kr)]
apm(l,m) W Yim [V'(T AJ)J!(kT)+V'MT
— k* (r-M) ji(kr)] d°r. (7.91)

Both the above results are exact, and are valid for arbitrary wavelength and
source size.

In the limit in which the source dimensions are very small compared to a
wavelength (i.e., kr < 1) the expressions for the multipole coefficients can be
considerably simplified. Using the asymptotic form (7.14a), and keeping only
lowest powers in kr for terms involving p, 7, and M, we obtain the approximate
electric multipole coefficient

ck!*? [1+1
ag(l,m) ~ i/lo (

1/2
(204 1! l ) (Qum + Qi) (7.92)

where the multipole moments are

Qim = / r' Y, cpd’r, (7.93a)
Qi = =1 | " Yim V-(r A M)d’r. (7.93b)

The moment (), has the same form as a conventional electrostatic multipole
moment. The moment )}, is an induced electric multipole moment due to the
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magnetization. It is generally a factor kr smaller than the normal moment Q..
For the magnetic multipole coefficient aps(l,m) the corresponding long wave-
length approximation is

pocik!*? (141 1/2
an(l,m) = (;’l BT l (M + M., ), (7.94)

where the magnetic multipole moments are

- 1 I v % . 3
Mim = 1] i Ve(r Ag)dor, (7.95a)
M, = -— / rl Y V-M dr (7.95b)

Note that for a system with intrinsic magnetization the magnetic moments My,
and M, are generally of the same order of magnitude.

Thus, in the long wavelength limit the electric multipole fields are determined
by the charge density p, whereas the magnetic multipole fields are determined by
the magnetic moment densities » A /2 and M.

7.5 Radiation from a linear centre-fed antenna

As an illustration of the use of a multipole expansion for a source whose di-
mensions are comparable to a wavelength, consider the radiation from a linear
centre-fed antenna. We assume that the antenna lies along the z-axis, and ex-
tends from z = —d/2 to z = d/2. The current flowing along the antenna vanishes
at the end points, and is an even function of z. Thus, we can write

I(z,t) = I(|z]) e "*?, (7.96)

where I(d/2) = 0. Since the current flows radially, » A 5 = 0. Furthermore, there
is no intrinsic magnetization. Thus, according to Eq. (7.91), all of the magnetic
multipole coefficients aps (I, m) vanish. In order to calculate the electric multipole
coeflicients ag (I, m), we need expressions for the charge and current densities. In
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spherical polar coordinates the current density 73 can be written in the form

: . I(r)
jr)=r 2mr?
for r < d/2, where the delta functions cause the current to flow only upwards

and downwards along the z-axis. From the continuity equation (7.78), the charge
density is given by

[0(cos@ — 1) — §(cos b + 1)], (7.97)

(7.98)

o(r) = 1 dI(r) [5(0059 — 1) — §(cos b + 1)] |

iw dr 27?2

for r < d/2.

These expressions for j and p can be substituted into Eq. (7.90) to give

B poc k2 d/2 , 1dI(r) d[r ji(kr)]
/ OV [5(cos 6 — 1) — 6(cosf+1)] . (7.99)

The angular integral has the value
/dQ i [0(cos@ — 1) — 6(cos @ + 1)] = 27 50 [Yi0(0) — Yio(7)], (7.100)

showing that only m = 0 multipoles occur. This is hardly surprising given the
cylindrical symmetry of the antenna. The m = 0 spherical harmonics are even
(odd) about 8 = 7 /2 for [ even (odd). Hence, the only nonvanishing multipoles
have [ odd. So, the angular integral takes the value

/dQ i [0(cos@ — 1) — §(cos 8 + 1)] = /4w (21 + 1), (7.101)

for [ odd and m = 0. After some slight rearrangement, Eq. (7.99) can be written

CR = : [l

| 21,
+rji(kr) W—Fk Iy dr (7.102)
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kd ap(1,0) az(3,0)/ag(1,0) ax(5,0)/ag(l,0)

m | 467 (pocl/4md) 4.95 x 1072 1.02 x 1073
2m | 4m/67 (pocI/4md) 0.325 3.09 x 102

Table 3: The first few electric multipole coefficients for a half-wave and a full-wave
antenna

In order to evaluate the integral (7.102) we need to specify the current I(z)
along the antenna. In the absence of radiation, the sinusoidal time variation
at frequency w implies a sinusoidal space variation with wavenumber k£ = w/c.
However, the emission of radiation generally modifies the current distribution.
The correct current I(z) can only be found be solving a complicated boundary
value problem. For the sake of simplicity, we assume that (z) is a known function;
specifically,

I(z) = I sin(kd/2 — k|z|), (7.103)

for z < d/2, where I is the peak current. With a sinusoidal current the sec-
ond term in curly brackets in Eq. (7.102) vanishes. The first term is a perfect
differential. Consequently, Eqgs. (7.102) and (7.103) yield

. - 1/2 2
an(1,0) = 12 d[ [41((z2l++1)1)] (%) ji(kd)2), (7.104)

for [ odd.

Let us consider the special cases of a half-wave antenna (kd = m; i.e., the
length of the antenna is half a wavelength) and a full-wave antenna (kd = 2).
For these two values of kd the [ = 1 coefficient is tabulated in Table 3, along with
the relative values for [ = 3, 5. It is clear from the table that the coefficients
decrease rapidly in magnitude as [ increases, and that higher [ coefficients are
more important the larger the source dimensions. However, even for a full-wave
antenna it is generally adequate to retain only the [ = 1 and [ = 3 coefficients
in order to calculate the angular distribution of the radiation. It is certainly
adequate to keep only these two harmonics in order to calculate the total power
radiated (which depends on the sum of the squares of the coefficients).
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In the radiation zone the multipole fields (7.54) reduce to

ei(kr—wt) N
CB ~ T IZ(_I) [aE(l7 m) le
—}—aM(l, m) n A le] , (7.105&)
E ~ cBAn, (7.105b)

where use has been made of the asymptotic form (7.16). The time-averaged power
radiated per unit solid angle is given by
dP  Re(n-EAB*)r?
df? N 2,U/0

: (7.106)

or

P 1 ,
0= T S (D) ap(lm) Xim + anr(l,m)n A Xi]| . (7.107)
l

7

Retaining only the [ = 1 and [ = 3 electric multipole coefficients, the angular
distribution of the radiation from the antenna is given by

dP  |ag(l,0)[? _ ap(3,0)
A2~ dpgck? B0 VB as(1,0)

where use has been made of Eq. (7.52). The various factors in the absolute square
are

LYso| , (7.108)

3 .
|ILY1,0)*> = y sin® 6, (7.109a)
2 63 . o 2 2
|ILY30/° = —— sin“6(5cos”0 —1)%, (7.109b)
’ 167
V21
(LY10)*-(LY30) = 5 sin®@ (5cos? 4 — 1). (7.109c)
T
With these angular factors, Eq. (7.108) becomes
2
dP 3pgeI? 3 sin? 6 \/7 agp(3,0) )
— = 1—4/= f—1 11
a0 3 8n 8 an(1,0) (5 cos )| (7.110)
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where )\ equals 1 for a half-wave antenna and 72/4 for a full-wave antenna. The
coefficient in front of (5cos?6 — 1) is 0.0463 and 0.304 for the half-wave and
full-wave antenna, respectively. It turns out that the radiation pattern from the
two-term multipole expansion given above is almost indistinguishable from the
exact result for the case of a half-wave antenna. For the case of a full-wave
antenna the two-term expansion yields a radiation pattern which differs from the
exact result by less than 5%.

The total power radiated by the antenna is
k2 Z lag(,0)] (7.111)

where use has been made of Eq. (7.71). It is evident from Table 3 that a two-term
multipole expansion gives an accurate expression for the radiated power for both
a half-wave and a full-wave antenna. In fact, a one-term multipole expansion
gives a fairly accurate result for the case of a half-wave antenna.

It is clear from the above analysis that the multipole expansion converges
rapidly when the source dimensions are of order the wavelength of the radiation.
It is also clear that if the source dimensions are much less than the wavelength
then the multipole expansion is likely to be completely dominated by the term
corresponding to the lowest value of [.

7.6 Spherical wave expansion of a vector plane wave

In discussing the scattering or absorption of electromagnetic radiation by localized
systems, it is useful to be able to express a plane electromagnetic wave as a
superposition of spherical waves.

Consider, first of all, the expansion of a scalar plane wave as a set of scalar
spherical waves. This expansion is conveniently obtained from the expansion
(7.26) for the Green’s function of the scalar Helmholtz equation. Let us take the
limit 7" — oo of this equation. We can make the substitution |r —r/| ~ 7' —n-r
on the left-hand-side, where n is a unit vector pointing in the direction of »’. On
the right-hand side, r. = r and r~ = r’. Furthermore, we can use the asymptotic
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form (7.16) for hl(l)(kr). Thus, we obtain

ikr' e ikr!

—ikn-r : l / /
e = ik = S ()i (k) Y (0, ¢) Yim (8, 9). (7112)

lm

Canceling the factor elkr’ /7’ on either side, and taking the complex conjugate,
we get the following expansion for a scalar plane wave,

—47r21 Ji(kr) Z Yii (0,0) Yim (€', ¢), (7.113)

m=—I1

where k is the wave vector with the spherical coordinates k, 6, ¢'. The well
known addition theorem for the spherical harmonics states that

+1

4r .
Pl (COS 7) = 2l + 1 Z Ylm (97 ()0) Yim (0,7 (10,)7 (7']‘]‘4)
m=—1

where 7 is the angle subtended between the vectors » and r’. Consequently,
cosy = cos @ cosb’ + sinf sin 6’ cos(p — ¢'). (7.115)
It follows from Eqgs. (7.113) and (7.114) that

o0

e'*™ =3 i (20 + 1) ji (kr) Py(cos ), (7.116)
=0
or
Z 4 (21 + 1) ji(kr) Yio(7), (7.117)
since

20+1
Yio(6) = \/% Py(cos 8). (7.118)

Let us now make an equivalent expansion for a circularly polarized plane wave
incident along the z-axis:

E(r) = (z+ig)e'*, (7.119a)
cB(r) = 2ANE=7FiE. (7.119b)
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Since the plane wave is finite everywhere (including the origin), its multipole

expansion (7.54) can only involve the well behaved radial eigenfunctions j;(kr).
Thus,

B = 3 [awlm) k) X+ 5 bs(0,m) ¥ () Xim
I,m
(7.120a)
B = Y [% 0 (1,m) ¥ A i (k) Xim + b (1, m) j (r) xlm] .
lm
(7.120b)

To determine the coefficients a4 (I,m) and by (I, m) we make use of a slight gen-
eralization of the standard orthogonality properties (7.53) of the vector spherical
harmonics:

/[fl(T)Xl’m’]* Na(r) Xim]d2 = f g1 6w Smme, (7.121a)
/[fz(?“)Xz'm'}* [[VAg(r)Xim]d2 = 0. (7.121b)

The first of these follows directly from Eq. (7.53a). The second follows from
Egs. (7.31), (7.53b), (7.59), and the identity

V=-——-—7rAL. (7.122)

The coefficients a4 (I, m) and by (I, m) are obtained by taking the scalar prod-
uct of Eqgs. (7.120) with X and integrating over all solid angle, making use of
the orthogonality relations (7.121). This yields

ar(l,m)ji(kr) = /X[fm-EdQ, (7.123a)

bi(l,m) ju(kr) — / X7 .cBdf. (7.123b)
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Substitution of Egs. (7.52) and (7.120a) into Eq. (7.123a) gives
: (Lg Yim)™ ik
a+(l,m) ji(kr) = e'"?

(m)(hr) = [ TR

where the operators Ly are defined in Egs. (7.30). Making use of Egs. (7.33), the
above expression reduces to

\/(Z:I:m [Fm+1)
VIIE+T)

02, (7.124)

as(l,m) i (kr) = / ARSLEp ) (7.125)

If the expansion (7.117) is substituted for e!*?  and use is made of the orthogo-
nality properties of the spherical harmonics, then we obtain the result

ax(l,m) =i /47 (20 + 1) 61y 1. (7.126)

It is clear from Egs. (7.119b) and (7.123b) that
bi(l,m) = ;iai(l,m). (7.127)

Thus, the general expansion of a circularly polarized plane wave takes the form
: 1 :
E(r) = Z (20 +1) |gi(kr) X0 £ -V A ji(kr) Xz |

(7.128a)

=
3

[
WK

: —1 : ..
d Am (20 + 1) [? VAgi(kr)X; 41 F 1jl(kr)Xl,i1] .

=1

(7.128b)

The expansion for a linearly polarized plane wave is easily obtained by taking the
appropriate linear combination of the above two expansions.

7.7 Mie scattering

Consider a plane electromagnetic wave incident on a spherical obstacle. In gen-
eral, the wave is scattered, to some extent, by the obstacle. Thus, far away from
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the sphere the electromagnetic fields can be expressed as the sum of a plane wave
and a set of outgoing spherical waves. There may be absorption by the obstacle,
as well as scattering. In this case, the energy flow away from the obstacle is
less than the total energy flow towards it: the difference represents the absorbed
energy.

The fields outside the sphere can be written as the sum of incident and scat-
tered waves:

E(r) = Ep+ Eq, (7.129a)
B(r) = Bin+ B, (7.129b)

where Ej,. and By, are given by (7.128). Since the scattered fields are outgoing
waves at infinity, their expansions must be of the form

DN

E, = Z Var (20 +1) (7.130a)

k

| — |

l
ax (1) b (kr) X 11 fell) ¢ h{ (kr) X,,ﬂ] ,

o
oy

I
DN | =
NE

A (20 + 1) (7.130b)

~
Il
[y

[%ﬂl) VAR (kr) Xp 21 T i B2(1) Y (kr) Xl,ﬂ] .
The coefficients a4 (I) and S4(I) are determined by the boundary conditions on
the surface of the sphere. In general, it is necessary to sum over all m har-
monics in the above expressions. However, for the restricted class of spherically
symmetric scatterers only m = £1 harmonics need be retained (since only these
harmonics occur in the spherical wave expansion of the incident plane wave (see
Eqgs. (7.128) ), and a spherically symmetric scatterer does not couple different m
harmonics).

The angular distribution of the scattered power can be written in terms of the
coefficients «a(l) and B(I) using the scattered electromagnetic fields evaluated on

278



the surface of a sphere of radius a surrounding the scatterer. In fact, it is easily
demonstrated that

dPsc a’
- E,. N B;
0 o Re[n-Egs. A B, ] —
a2
= ———Re[Es-(n A B)]p—a, (7.131)
210

where n is a radially directed outward normal. The differential scattering cross
section is defined as the ratio of dPs./df? to the incident flux 1/ugc. Hence,

2
— _% Re [Esc-(n A ¢BY,)]r=a.- (7.132)

dose

df?

We need to evaluate this expression using the electromagnetic fields specified in
Egs. (7.128), (7.129), and (7.130). The following identity, which can be estab-
lished with the aid of Eqgs. (7.29), (7.52), and (7.59), is helpful in this regard:

F(r) Yim + %w n A Xim. (7.133)

V A f(’l‘)le =n M

For instance, using this result we can write n A cB,. in the form

1 oo
nAcBy = EZIA/@T (21 + 1 (7.134)

=1

[iaim Ldfrhy" (kr)
k. r dr

X 41 FiBe() RV (kr)n A X,,ﬂ] .

It can be demonstrated, after considerable algebra, that

2

dos.
70 = 2]{72 Z\/Ql—l— [aj:()lezl lﬂi()’n/\le:l] (7135)
In obtaining this formula, use has been made of the standard result
d df; (z 21
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where f;(z) = i! hl(l)(z). The total scattering cross section is obtained by inte-
grating Eq. (7.135) over all solid angle, making use of the following orthogonality
relations for the vector spherical harmonics (see Egs. (7.53) ):

/ X Ximd2 = S St (7.137a)
/ X5 (A X)) d2 = 0, (7.137b)
/ (A XS ) (A Xim)d2 = S . (7.137c)
Thus,
Ose = oy Z 20+ 1) [lax O + 18] (7.138)

According to Egs. (7.135) and (7.138), the total scattering cross section is inde-
pendent of the polarization of the incident radiation (i.e., it is the same for both
the 4 signs). However, the differential scattering cross section in any particular
direction is, in general, different for different circular polarizations of the incident
radiation. This implies that if the incident radiation is linearly polarized then the
scattered radiation is elliptically polarized. Furthermore, if the incident radiation
is unpolarized then the scattered radiation exhibits partial polarization, with the
degree of polarization depending on the angle of observation.

The total power absorbed by the sphere is given by
2

Pirs = ——Re/[n-E/\B*]r:a ds?
2p0

_ —Re/[E (A B*)]ye d02. (7.139)
2110

A similar calculation to that outlined above yields the following expression for
the absorption cross section,

Tabs = 2% S @+ 1)[2— Jax () + 12 - 82(0) + 17 (7.140)
l

280



The total or extinction cross section is the sum of os. and o.ps:

(20 + 1) Re [as (1) + B (D). (7.141)
l

7r
O = k2
Not surprisingly, the above expressions for the cross sections closely resemble
those obtained in quantum mechanics from partial wave expansions.

Let us now consider the boundary conditions at the surface of the sphere
(whose radius is a, say). For the sake of simplicity, let us suppose that the sphere
is a perfect conductor. In this case, the appropriate boundary condition is that
the tangential electric field is zero at » = a. According to Eqgs. (7.128), (7.129),
and (7.133), the tangential electric field is given by

Fian Z LAr(2l+ 1 {[ azx(l) h(”] X, 41

d
+ %d— [:c (jl + BiT(l) h,“))] n A Xl,ﬂ} , (7.142)

where = ka, and all of the spherical Bessel functions have the argument z.
Thus, the boundary condition yields

)

ar(l)+1 = —W, (7.143a)
T (2) z) )

Bi()+1 = _[—szj(”ic;;] R (7.143D)

where ' denotes d/dz. Note that ay(l) + 1 and S+(I) + 1 are both numbers of
modulus unity. This implies, from Eq. (7.140), that there is no absorption for the
case of a perfectly conducting sphere (in general, there is some absorption if the
sphere has a finite conductivity). We can write a4 () and S (1) in the form

ar(l) = &% 1, (7.144a)
Be(l) = &1 —1, (7.144D)
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where the phase angles 0; and J; are called scattering phase shifts. It follows from
Egs. (7.143) that

_ Ju(ka)
tand, = si(ka)’ (7.145a)
o [@i@)
tand [(wyl(x)),]m:ka. (7-1450)

Let us specialize to the limit ka < 1, in which the wavelength of the radiation
is much greater than the radius of the sphere. The asymptotic expansions (7.14)
yield

N 2i (ka)2+1
) = ~GrDE—nE
Be(l) =~ —(Hl_l) ot (1), (7.146a)

for I > 1. It is clear that the scattering coefficients a4 (1) and 54 (1) become small
very rapidly as [ increases. In the very long wavelength limit only the [ = 1
coefficients need be retained. It is easily seen that

CBe(1) o 2i

ax(l) = ——5— = 3(ka,)3. (7.147)

In this limit, the differential scattering cross section (7.135) reduces to

‘;0;; ~ 2?” a?(ka)* | X111 F2in A Xy 11]°. (7.148)
It can be demonstrated that
nA Xy 1)? =|X141)° = % (1 4+ cos? ), (7.149)
and
[Fi(n A X7 1) X141] = _?%r cos 6. (7.150)
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Thus, in long wavelength limit the differential scattering cross section limits to

dose

df?

~ a®(ka)? g (14 cos? ) — cosd| . (7.151)

The scattering is predominately backwards, and is independent of the state of
polarization of the incident radiation. The total scattering cross section is given
by

107 o
Osc — 70,

This well known result was first obtained by Mie and Debye. Note that the
cross section scales as the inverse fourth power of the wavelength of the incident
radiation. This scaling is generic to all scatterers whose dimensions are much

smaller than the wavelength. In fact, it was first derived by Rayleigh using
dimensional analysis.

(ka)*. (7.152)
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