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We shall follow the approach of Jackson, which is more or less his-

torical. Thus we start with classical electrostatics, pass on to magneto-

statics, add time dependence, and wind up with Maxwell’s equations.

These are then expressed within the framework of special relativity.

The remainder of the course is devoted to a broad range of interesting

and important applications.

This development may be contrasted with the more formal and el-

egant approach which starts from the Maxwell equations plus special

relativity and then proceeds to work out electrostatics and magneto-

statics - as well as everything else - as special cases. This is the method

of e.g., Landau and Lifshitz, The Classical Theory of Fields.

The first third of the course, i.e., Physics 707, deals with physics

which should be familiar to everyone; what will perhaps not be familiar

are the mathematical techniques and functions that will be introduced

in order to solve certain kinds of problems. These are of considerable

usefulness and therefore will be important to us.

1 Coulomb’s Law

By performing experiments on small charged bodies (ideally, point

charges), Charles Augustin de Coulomb, working around the time of

the American and French revolutions (1785), was able to empirically

infer that the force between two static charged particles is proportional
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to the inverse square of the distance between them. The following has

since become known1 have as Coulomb’s Law: Given two static charges

q1 and q2, there is a force acting on each of them which is:

1. Proportional to the product of the magnitudes of the charges, be-

ing attractive for unlike charges and repulsive for like charges

2. Inversely proportional to the square of the distance between the

charges.

3. Directed along the line between the charges.

In the form of an equation, the law states that

F21 = k
q1q2

|x2 − x1|2
x2 − x1

|x2 − x1|
(1)

where charge qi is located at xi, F21 is the force on charge 2 produced by

charge 1, and k is a positive constant; vectors are denoted by boldface

type.

In addition, the force satisfies a superposition law (or principle) in

that the force F on a charge q in the presence of a number of other

charges qi at xi, i = 1,...,n, is simply the sum of the forces arising from

each of the latter as though it were the only other charge present2.

Thus,

F = kq
n∑

i=1

qi(x− xi)

|x− xi|3
, (2)

1Numerous others, such as Henry Cavendish, also may legitimately have some claim to the law.

2As we shall see, the principle of superposition follows from the linearity of Maxwell’s Equations
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given that q is at x.

The constant k has units and magnitude which depend on the system

of units employed. We shall adopt cgs Gaussian units. The units of

mass length and time are, respectively grams (g), centimeters (cm),

and seconds (sec). The unit of charge is the statcoulomb (statcoul)

which is defined by the statement that the force between two charges,

each of one statcoul, one cm apart is one dyne (dyn). Then k = 1 dyn−
cm2/(statcoul)2. In practice one may treat k as having dimension unity

while charge has dimension of M 1/2L3/2/T .

2 Electric Field

It is customary and useful to introduce the concept of the electric field

at this point. This is a vector field, i.e., a vector function of x. It is

written as E(x) and is defined as the force that would be experienced

by a charge q at x, divided by q3. Thus, for a distribution of charges

qi at xi, i=1,2,...,n,

E(x) =
n∑

i=1

qi(x− xi)

|x− xi|3
(3)

The electric field has the property of being independent of the ‘test’

charge q; it is a function of the charge distribution which gives rise to

the force on the test charge, and, of course, of the test charge’s position.

This object has dimension Q/L2 or M 1/2/L1/2T .
3This definition is not complete. The field has other attributes as well since it carries momentum

and energy: i.e. photons
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At this point let us introduce the charge density ρ(x) which is the

charge per unit volume at, or very close to, x. This object is needed if

we would like to integrate over a source distribution instead of summing

over its constituent charges. Thus a sum is replaced by an equivalent

integral,
n∑

i=1

qi →
∫
d3x ρ(x). (4)

The charge density has dimension Q/L3. In terms of ρ, the expres-

sion for the electric field can be written as

E(x) =
∫
d3x′ ρ(x′)

x− x′

|x− x′|3 (5)

In the particular case of a distribution of discrete point charges, it

is possible to recover the sum in Eq. (3) by writing the charge density

in an appropriate way. To do so we introduce the Dirac delta function

δ(x− a). It is defined by the integral

f(a) =
∫
dxf(x)δ(x− a) (6)

where f(x) is an arbitrary continuous function of x, and the range of

integration includes the point x = a. A special case is f(x) = 1 which

leads to
∫
dxδ(x− a) = 1, (7)

demonstrating the normalization of the delta function. From the arbi-

trariness of f(x), we may conclude that δ(x− a) is zero when x is not

a and sufficiently singular at x = a to give the normalization property.
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In other words, it is in essence the charge density of a point charge (in

one dimension) located at x = a.

Some important relations involving delta functions are as follows:

∫ a2

a1

f(x)
dδ(x− a)

dx
dx = − df(x)

dx

∣∣∣∣∣∣
x=a

(8)

and
∫ a2

a1

δ[f(x)]dx =
N∑

i=1


1/

∣∣∣∣∣∣
df(x)

dx

∣∣∣∣∣∣
xi


 (9)

In the final expression the xi are the 0’s of f(x) between a1 and a2.

A delta function in three dimensions may be built as a product of

three one-dimensional delta functions. In Cartesian coordinates,

δ(x) = δ(x)δ(y)δ(z) (10)

This function has the property that

∫
d3x f(x)δ(x− x0) = f(x0) (11)

Returning to electrostatics, we can see that the charge density of a

collection of point charges can be written as a sum of delta functions:

ρ(x) =
n∑

1=i

qiδ(x− xi) (12)

Thus

E(x) =
∫
d3x′ ρ(x′)(x− x′)/|x− x′|3

=
n∑

i=1

∫
d3x′ qiδ(x

′ − xi)(x− x′)/|x− x′|3

=
n∑

i=1

qi(x− xi)/|x− xi|3. (13)
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3 Gauss’s Law

Although Coulomb’s Law is quite sufficient for finding electric fields and

forces, the integral form in which we have expressed it is not always

the most useful approach to a problem. Another integral form, called

Gauss’s Law, is often more useful.

Let us look first at a two-dimensional version of this law. Consider

a point charge q located within a closed path C. In two dimensions, the

field produced by this charge is 2q(x−x0)/|x−x0|2. Consider now the

integral around C of that component of E which is normal to the path.

This normal component is E ·n = qcosθ/r, where r is the distance from

the charge to the integration point on the loop. However, dl cos θ/r is

just the infinitesimal angle dφ subtended by dl at the charge. Hence

we just need to integrate dφ around the loop.
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q

x - x0

x 0

n

E

θ

dldφ

dφ=
| |x - x0

dl cos( )θ

C

∮

C
dlE · n =

∮

C
dl

q cos θ

|x− x0|
= q

∫
dφ (14)

Since the charge is inside, the integral is 2π; if it were outside, the

integral would be 0 because over one part of the path, cos θ is positive

and over another part it is negative with the two parts cancelling one

another when the integration is completed. Thus one finds that

∫

C
dl[n · E(x)] =





2πq, q inside of C

0, q outside of C
(15)

The three-dimensional case works out much the same way. The

field varies as 1/r2 and so one finds that d2x cos θ/r2 is the solid angle

element dΩ subtended by the infinitesimal area element d2x of S at

the position of the charge. Integration over the surface thus reduces to
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integration over the solid angle subtended by the surface at the charge,

and this is 4π if the charge in inside of the surface and 0 otherwise,

∫

S
d2x [E(x) · n] =





4πq, q inside of S

0, q outside of S
(16)

Next, the superposition principle allows us to add up the fields aris-

ing from an arbitrary collection of charges, with Gauss’s Law holding

for each bit of charge. As a consequence, we may say that

∫

S
d2x [E(x) · n] = 4πQ (17)

where Q is the total charge contained inside of the surface,

Q =
∫

V
d3x ρ(x). (18)

4 Differential Form of Gauss’s Law

A differential form of this law may be found by applying the divergence

theorem which states that, for a general vector field C(x),

∫

S
d2x [C(x) · n] =

∫

V
d3x [∇ · C(x)]. (19)

Let us apply this equation to Gauss’s Law:

4π
∫

V
d3x ρ(x) =

∫

S
d2x [E(x) · n] =

∫

V
d3x [∇ · E(x)] (20)

or
∫

V
d3x [∇ · E(x)− 4πρ(x)] = 0 (21)
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Because V is completely arbitrary, we may equate the integrand to zero

and find

∇ · E(x) = 4πρ(x) (22)

which is the differential form of Gauss’s Law.

In the process of obtaining this equation from Coulomb’s Law, we

have lost some of the information contained in it. Merely specifying

the divergence of a vector field is not sufficient to determine the field.

Hence we need an additional equation to supplement Gauss’s Law.

5 An Equation for ∇× E; the Scalar Potential

Let us start once again from Coulomb’s Law:

E(x) =
∫
d3x′ ρ(x′)

x− x′

|x− x′|3 (23)

But one may write part of the integrand as a gradient,

x− x′

|x− x′|3 = −∇

 1

|x− x′|


 , (24)

where the gradient is taken with respect to the variable x. Hence

E(x) = −∇
∫
d3x′

ρ(x′)

|x− x′| , (25)

which is to say, E can be written as the (negative) gradient of a scalar

function of x. This function we shall call the scalar potential and denote

by Φ(x):

Φ(x) ≡
∫
d3x′

ρ(x′)

|x− x′| ; (26)
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E(x) = −∇Φ(x). (27)

From this statement it follows immediately that ∇×E(x) = 0 because

the curl of the gradient of a scalar function is always zero.

To summarize,

∇ · E(x) = 4πρ(x) (28)

and

∇× E(x) = 0. (29)

5.1 Conservative Potentials

From our derivation of the curl equation, we can see that this simple

result follows from the fact that the force (or electric field) is central

and depends only on the distance between charges. Such a force is also

called conservative, and the potential function is related in a simple

way to the energy of a charge in an electric field.

To find this relation, consider that a set of fixed source charges

produce a field E and that a charge q is placed at point xa. Here

it experiences an electric field force F = qE(xa) and so an equal and

opposite force Fext = −F = −qE(xa) must be applied by some external

agent to keep it in position.
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charges

q

C xb

xa

E EE

If we now move the charge along a path C from xa to xb, the work done

by the external agent is found by integrating the force along the path,

Wa→b = −
∫

C
dl · F(x), (30)

or

Wa→b = q
∫

C
dl · ∇Φ(x) = q

∫

C
dΦ = q[Φ(xb)− Φ(xa)] (31)

This result shows that qΦ(x) can be interpreted as the potential energy

of charge q in the electrostatic field at point x, aside from a constant

defining the zero of potential energy. In going from xa to xb, work

q[Φ(xb)−Φ(xa)] is done on the charge, and so the change in the energy

of the system (composed of the charge q and the sources of the field) is

just this work.

Notice especially that the work does not depend on the path C

except through the endpoints. This statement can always be made
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of conservative systems. In particular, the integral of the work done

around a closed path is 0,

∫

C
dl · E(x) = 0 (32)

It is instructive to apply Stokes’ Theorem to this relation. His theorem

states that, for an arbitrary vector field A, and a closed path C with

a surface S “linking” the path (which means that S is an open surface

with edges coinciding with C),

∫

C
dl ·A =

∫

S
d2x [∇×A(x)] · n (33)

where n is a unit normal to the surface in the right-hand sense relative

to the direction in which the path is traversed. As applied to the electric

field, we have

0 =
∫

C
dl · E(x) =

∫

S
d2x [∇× E(x)] · n. (34)

Because C is arbitrary and can in particular be any infinitesimal closed

loop, this relation implies that the integrand is zero, ∇ × E(x) = 0.

Thus the statement that E is a conservative field and ∇ × E(x) = 0

are equivalent.

6 Poisson’s and Laplace’s Equations

The differential equations we have determined for E are sufficient to

find it uniquely, given appropriate boundary conditions and the charge

14



density, but they do not necessarily provide the simplest approach to

the solution of an electrostatics problem. Often, it is best to solve for

Φ from which E follows easily. Since ∇ · E = 4πρ, and E = −∇Φ, we

have

∇ · ∇Φ(x) ≡ ∇2Φ(x) = −4πρ(x) Poisson′s Equation, (35)

which is Poisson’s Equation; the operator ∇2 is the Laplacian operator.

In those regions of space where the charge density vanishes, we find the

simpler equation,

∇2Φ(x) = 0 Laplace′s Equation, (36)

which is Laplace’s Equation.

Consider the effect of operating with ∇2 on the integral expression

for Φ:

−4πρ(x) = ∇2Φ(x) =
∫
d3x′ ρ(x′)∇2


 1

|x− x′|


 , (37)

or

ρ(x) = −
∫
d3x′ ρ(x′)


 1

4π
∇2 1

|x− x′|


 . (38)

However, we defined δ(x− x′) as

f(x) =
∫
d3x′ f(x′)δ(x− x′) (39)

for general f(x). Since ρ(x) can be quite general, the quantity in large

parentheses above satisfies the condition placed on the delta function;

hence we conclude that

∇2


 1

|x− x′|


 = −4πδ(x− x′) (40)
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which is only appropriate because 1/|x − x′| is the potential of a unit

point charge, and δ(x− x′) is the corresponding charge density. Thus,

Eq. (40) expresses Poisson’s equation for a unit point charge located at

x′.

As an exercise we may derive this result in a different way. Consider

∇2


 1

|x|


 = ∇2

(
1

r

)
=

1

r

d2

dr2

(
r

1

r

)
= 0, (41)

except possibly at r = 0 where r/r is undefined. To determine what

happens here, we integrate ∇2(1/r) over a small sphere centered on the

origin:

∫

V
d3x∇2(1/r) =

∫

V
d3x∇ · ∇(1/r) =

∫

S
d2x [∇(1/r)] · n = −

∫

S
d2x (1/r2) = −

∫
r2dr sin θdθdφ(1/r2) = −4π.(42)

Thus we have shown the following:

(i) ∇2(1/r) = 0, r 6= 0

(ii)
∫
V d

3x∇2(1/r)(−1/4π) = 1, r = 0 ∈ V.
(43)

These results tell us that ∇2(1/r) = −4πδ(x).

7 Energy in the Electric Field; Capacitance; Forces

The energy of the static electric field, or of a static charge distribution,

is of some importance. Let us start our investigation by constructing

the energy of interaction of n point charges qi located at xi. As we have
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seen, the work required to move a charge q from one point to another in

an applied electric field is q times the difference in the electric potentials

at the end points. If we suppose that this potential is produced by our

collection of point charges, then it is given by

Φ(x) =
n∑

i=1

[qi/|x− xi|] (44)

and the work done to bring q from infinitely far away, where Φ(x) = 0,

to point x is

W = q
n∑

i=1

[qi/|x− xi|]. (45)

This is therefore the increase in the total energy of the system of charges

when a charge is added to it at some particular point.

We may use this result to calculate the energy of the collection of

charges by bringing them in one at a time from points at infinity where

they are assumed to be widely separated. The first charge is brought

in to x1, and this costs no energy because Φ = 0 when there are no

other charges present. The second charge costs energy

W2 =
q1q2

|x1 − x2|
. (46)

The third then costs

W3 = q3

2∑

j=1

qj
|x3 − xj|

, (47)

and so on. The amount of work which must be done to bring in the ith

particle is

Wi = qi
i−1∑

j=1

qj
|xi − xj|

. (48)
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If we add up these energies to find the total work done, it is

W =
n∑

i=2

i−1∑

j=1

qiqj
|xi − xj|

(49)

which is the sum over all pairs, each pair taken once; it may also be

written as

W =
1

2

′∑

i,j

qiqj
|xi − xj|

; (50)

the prime on the summation sign means that the terms with i = j

are omitted. In this sum, we include each pair i, j with i 6= j twice

and so have to multiply by a factor of 1/2. Given a continuous charge

distribution, the same argument can be applied using as the elementary

charges infinitesimal charge elements located in infinitesimal volume

elements. The result must be

W =
1

2

∫
d3x d3x′

ρ(x)ρ(x′)

|x− x′| (51)

where the integrations are unrestricted and include the points x = x′

because the interaction energy of an infinitesimal continuously dis-

tributed charge element with itself vanishes in the limit of zero extent.

However, if the charge distribution contains finite point charges, repre-

sented by delta functions in ρ(x), then one has to omit the interaction

of each of these charges with itself, as in the original sum, Eq. (50), in

order to obtain a finite result.

The expression for W can be cast into a number of other useful

forms. Recall that

Φ(x) =
∫
d3x′

ρ(x′)

|x− x′| ; (52)

18



substitution into the expression for W gives

W =
1

2

∫
d3x ρ(x)Φ(x). (53)

Further, ρ(x) = −∇2Φ(x)/4π, so

W = − 1

8π

∫
d3xΦ(x)∇2Φ(x). (54)

Let us now do an integration by parts in three dimensions. This oper-

ation is easy to achieve by making use of the divergence theorem; for a

vector field f(x)A(x) consider the integral

∫

V
d3x∇ · [f(x)A(x)] =

∫

S
d2x f(x)[A(x) · n]

=
∫

V
d3x [∇f(x) ·A(x)] +

∫

V
d3x f(x)[∇ ·A(x)] (55)

or

∫

V
d3x f(x)[∇ ·A(x)] = −

∫

V
d3x [∇f(x)] ·A(x) +

∫

S
d2x f(x)[A(x) ·n],

(56)

where V and S are related in the usual way. As applied to the integral

for W , this useful formula gives, letting V be all space,

W = − 1

8π

∫
d3xΦ(x)∇ · ∇Φ(x) (57)

=
1

8π

∫
d3x∇Φ(x) · ∇Φ(x)−

∫
d2xΦ(x)[∇Φ(x) · n] (58)

or

W =
1

8π

∫
d3x [E(x) · E(x)]. (59)
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The surface integral has vanished because Φ falls off at distances r

which are large compared to the extent of the charge distribution at

least as fast as 1/r. Hence the integrand in the surface integral falls

off at least as fast as 1/r3 while the area of the surface at distance r

varies as r2. This integral therefore falls off at least as fast as 1/r and

so vanishes when the surface is at infinity.

An interesting and plausible interpretation of the final expression is

that the integrand is the energy density u(x) of the electric field,

u(x) =
1

8π
E(x) · E(x). (60)

This is only an interpretation, however. All we really know is that the

total energy is the integral of this quantity over all space. The idea

is plausible because u(x) so defined is everywhere positive or zero (a

negative energy density would be disturbing). Note, too, that our other

expression for the energy as an integral over a single position variable

has an integrand that can be both positive and negative which makes

it unreasonable to interpret that integrand, ρ(x)Φ(x)/2, as the energy

density.

Given Eq. (59) for W , we can see that the energy will be positive

definite. Yet the energy of, e.g., a pair of point charges q and −q at

x and x′ is negative, −q2/|x − x′|. The reason is that the expression

we have for the energy of a set of point charges does not include the

(infinite) energy required to assemble each of the point charges in the

first place, but Eq. (59) would include this (positive) energy. A more
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concrete example involves two oppositely charged masses. The energy

required to bring them together from infinity is negative,

-+
whereas the energy required to assemble the entire charge distribution

-+
∞

at its final location is positive.

7.1 Conductors

Consider now the special case that our electrostatic system consists of

a collection of n electrically isolated conductors; for our present pur-

poses, a conductor may be defined as an object which cannot support

an electric field (because it contains “free” charges which move under

the influence of a field until there is no field). Thus the interior of a

conductor is an equipotential. Using Eq. (53), we see that for such a

system,

W =
1

2

∫
d3x ρ(x)Φ(x) =

1

2

n∑

i=1

QiVi (61)

where Qi and Vi are, respectively, the charge and potential on the ith

conductor. Now, because the potential is a linear function of charge
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(superposition theorem), it is true that

Vi =
n∑

j=1

pijQj. (62)

The coefficients pij are independent of the charges; they depend only

on the distribution and shapes of the conductors and are called the

coefficients of potential. To see that this relation is valid, one need only

think of the potentials produced on each conductor given charge Qj

on the jth conductor and zero charge on all others; then superpose the

solutions to each of the problems of this kind. Inversion of Eq. (62)

yields the charges Qi as linear combinations of the potentials Vj,

Qi =
n∑

i=1

CijVj. (63)

The coefficients Cij are called coefficients of capacitance; the diagonal

elements Cii are more commonly referred to simply as capacitances

while the off-diagonal ones Cij are called coefficients of electrostatic

induction and are not to be confused with the inductances introduced in

connection with Faraday’s Law. The capacitance of a single conductor,

Cii, is thus the total charge on that conductor when it is maintained at

unit potential while all other conductors are held at zero potential.

As an example the capacitance of a pair of conductors with equal and

opposite charge is defined as the ratio of the charge on one conductor

to the potential difference between them when all other conductors are

maintained at zero potential.
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Q

−Q


 =



C11 C12

C21 C22






V1

V2


 (64)



V1

V2


 =




C22 −C21

−C12 C11







Q

−Q




C11C22 − C12C21
(65)

The capacitance C(1, 2) = Q/|V1 − V2| turns out to be

C(1, 2) = (C11C22 − C2
12)/(C11 + C22 + 2C12). (66)

The energy of the system of conductors may be written in terms of

potentials and the coefficients Cij as

W =
1

2

n∑

i=1

QiVi =
1

2

n∑

i,j=1

CijViVj. (67)

7.2 Forces on Charged Conductors

Another useful application of the expressions for the energy is in the

calculation of forces on charged conductors. Consider the surface of a
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conductor. The field at the surface can be inferred from ∇ · E(x) =

4πρ(x) and ∇ × E(x) = 0. Consider an integral of the first of these

equations over a “pillbox” or short right circular cylinder oriented with

the “drumhead” parallel to the surface of a conductor and situated half

inside and half outside of the conductor.

conductor

n
a

V

h

E=0

∫

V
d3x∇ · E =

∫

S
d2xE · n = En(x)π a2 = 4π

∫

V
d3x ρ(x) = πa24πσ(x)

(68)

Using the divergence theorem, we may convert to a surface integral.

Given that the height h of the cylinder is much smaller than its radius,

h << a, the only important contribution to the surface integral must

come from the drumheads. But E(x) = 0 on the one inside of the

conductor, so we pick up only the contribution from the component of

E normal to the surface of the conductor on the outside. Given that a

is much smaller than distances over which the field varies appreciably,

we get simply πa2En(x) where x is a point just outside of the surface
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of the conductor and the subscript n designates the outward (from the

conductor) normal component of the field. The volume integral of ρ(x),

on the other hand, yields the total charge within the pillbox. Because

h << a, we will get a vanishingly small contribution from any finite

volume density of charge. However, we get an important contribution

from a surface charge density; we shall denote such a thing by σ(x). It

can be written as a volume charge density by using a δ function:

ρ(x) = σ(x)δ(ξ(x)) (69)

where ξ is the normal distance of the point x from the surface of the

conductor. When this surface charge density is integrated over the

volume of the pillbox, it reduces to a surface integral of the surface

charge density over a disc on the conductor surface and having the

area of the crosssection of the pillbox, i.e., πa2. Hence one finds

πa2(4πσ(x)). Putting the two sides of the equation together, we find

the following relation between the charge density on the surface of a

conductor and the normal component of the electric field just outside

of the conductor:

En(x) = 4πσ(x) (70)

We may also find an equation for the tangential component of the

electric field at the surface of a conductor. Consider the line integral of

dl · E(x) around a rectangle which straddles the conductor’s surface.
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conductor

h

E=0

C

w

∫

S
d2x (∇× E) · n =

∮

C
dl · E = Eth = 0 =⇒ Et = 0 (71)

The width w of the rectangle, which is its size in the direction normal to

the interface, is much smaller than its height h, which is its size parallel

to the interface. The dominant contribution to the line integral, which

is zero, comes from the two sides parallel to the interface. On the

inside, E(x) is zero, so we have only the integral along the side which is

exterior to the conductor. Since the whole integral is zero, the integral

along this single side must be zero, and hence we can conclude that the

tangential component of E(x), or Et(x), just outside of a conductor

must vanish,

Et(x) = 0 at the surface of a conductor. (72)

26



dA

E=0
E = 4n πσ

dx

n

Now we are in a position to consider the force on the surface of

a conductor. We use the method of virtual work. Imagine moving a

small element dA of the conductor’s surface, along with the charge on

it, a distance dx from its initial position in the direction normal to the

surface. It will sweep out a volume dAdx. In this volume, to a first

approximation 4, there will no longer be any electric field (since the

field is zero within a conductor) while the electric field elsewhere will

be unchanged. Hence there will be a change in the field energy of

dW = −dAdx 1

8π
E2
n = −2πσ2dAdx+O(dAd2x, d2Adx) (73)

where Eq. (70) has been used for the normal component of the electric

field. Energy conservation demands that the amount of work done on

the system in making this displacement is equal to dW . It is also dx

times the negative of the electric force acting on the area element dA.

4This approximation improves as the ratio of dx to
√
A goes to zero
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Thus,

−Fdx = dW or F = 2πσ2 dA. (74)

Hence the force per unit area on the surface of the conductor is 2πσ2; it

is directed normally outward from the conductor (“negative pressure”).

A second way of looking at this problem is to calculate the force

directly. It must be the charge on dA, or σdA, times the electric field

which acts on this charge, i.e., that part of the electric field at the

surface which is produced by charges other than those on dA. This

field is just 2πσ (Why?), so the force comes out at before.

8 Green’s Theorem

In everything we have discussed thus far, we have assumed that ρ(x)

is known, and that there is a simple boundary condition on φ(x) at

infinity (that it must at least as fast as 1/r). This is not generally true!

Usually, we only know ρ(x) within some finite volume V , and the value

of φ(x) on the corresponding surface S.
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V

ρ( )x

is specified
on the surface
of V

φ( )x

For these problems Green’s theorem and functions are useful. The

simplest greens function is that for free space

Gfree(x,x
′) =

1

|x− x′| , (75)

and the corresponding potential is

φ(x) =
∫

V
d3x′Gfree(x,x

′)ρ(x′) . (76)

Note that Gfree(x,x
′) gives the response at x, due to a unit point charge

at x′. For the response due to a collection of charges ρ(x), superposition

yields the integral above.

For the more general problem of a collection of charges and boundary

conditions on a surface, we might expect that this integral relation will

become

φ(x) =
∫

V
d3x′G(x,x′)ρ(x′) + surface term (77)

Before we can proceed further, we must develop some formalism.
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8.1 Green’s Theorem

To this end, let us develop Green’s Theorem, starting from the diver-

gence theorem as applied to a vector field A:

∫

V
d3x [∇ ·A(x)] =

∫

S
d2x [A(x) · n] (78)

where S is the surface bounding the domain V. Consider the special

case A(x) = φ(x)∇ψ(x); then

∇ ·A(x) = ∇φ(x) · ∇ψ(x) + φ(x)∇2ψ(x) (79)

and

n ·A(x) = φ(x)[n · ∇ψ(x)] = φ(x)
∂ψ(x)

∂n
(80)

where ∂ψ
∂n is the outward normal derivative of ψ at the surface. Substi-

tution into the divergence theorem produces

∫

V
d3x [∇φ(x) · ∇ψ(x) + φ(x)∇2ψ(x)] =

∫

S
d2xφ(x)

∂ψ(x)

∂n
, (81)

a result known as Green’s first identity. We may also start from a vector

field A(x) = ψ(x)∇φ(x) and wind up with

∫

V
d3x [∇ψ(x) · ∇φ(x) + ψ(x)∇2φ(x)] =

∫

S
d2xψ(x)

∂φ(x)

∂n
. (82)

Subtract the second expression from the first and obtain

∫

V
d3x [φ(x)∇2ψ(x)−ψ(x)∇2φ(x)] =

∫

S
d2x


φ(x)

∂ψ(x)

∂n
− ψ(x)

∂φ(x)

∂n


 ,

(83)

which is Green’s second identity, also known as Green’s Theorem.
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8.2 Applying Green’s Theorem 1

We next make a particular choice of the scalar functions and also change

the integration variable to x′:

φ(x′) = Φ(x′) and ψ(x′) = 1/|x− x′| ≡ 1/R. (84)

In the latter function, x is to be regarded as a parameter which will

eventually become the point at which we evaluate the potential. Sub-

stitution into Green’s Theorem gives

∫

V
d3x′ [Φ(x′)∇′2(1/R)− (1/R)∇′2Φ(x′)] (85)

=
∫

S
d2x′


Φ(x′)

∂(1/R)

∂n′
− 1

R

∂Φ(x′)

∂n′


 , (86)

or

−4πΦ(x) + 4π
∫

V
d3x′

ρ(x′)

|x− x′| =
∫

S
d2x′


Φ(x′)

∂(1/R)

∂n′
− 1

R

∂Φ(x′)

∂n′




(87)

where we have assumed x is inside of V. With a little rearrangement,

the final equation can be written as

Φ(x) =
∫

V
d3x′

ρ(x′)

|x− x′| +
1

4π

∫

S
d2x′


 1

R

∂Φ(x′)

∂n′
− Φ(x′)

∂(1/R)

∂n′


 (88)

The first term on the right is the familiar volume integral over the

charge density, but notice that it no longer is over all space. The charge

outside of V does, of course, contribute to Φ(x); its contribution is now

taken into account by the integral over the surface surrounding V. Note,

too, that if the point x is outside of V, then the left-hand side (LHS)
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of the equation is zero. Further, if V is all space so that S is at infinity,

then the surface integral will vanish and we recover the volume integral

over all space. Note also that if ρ(x′) = 0 for all x′ in V, then the

potential is found simply from the surface integral of Φ and its normal

derivative.

8.3 Applying Green’s Theorem 2

This equation is not the best one of its kind. It is in fact (as we

shall see) possible to find Φ(x) from the charge density in V and from

either Φ(x′) or ∂Φ(x′)/∂n′ on the surface S; that is, it is not necessary

to know both of these things on the surface. When Φ is specified,

that is called Dirichlet boundary conditions; when the normal derivative

of Φ is given, that is called Neumann boundary conditions. Various

combinations are also possible, such as Dirichlet conditions on part of

S and Neumann conditions on the remainder, a case known as mixed

boundary conditions.

specification Boundary Condition

φ(x′) specified on S Dirichlet

∂Φ(x′)/∂n′ specified on S Neumann

φ(x′) specified on part of S Mixed

∂Φ(x′)/∂n′ specified on remainder
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Let us demonstrate that it is sufficient to know either Φ(x′) or its

normal derivative on S in order to obtain a unique solution to

∇2Φ(x) = −4πρ(x) (89)

with some volume V bounded by S. Start by supposing that either

type of boundary condition is given and that there are two distinct

solutions Φ1 and Φ2. Define U = Φ1 − Φ2. This function is such that

∇2U(x) = 0 inside of V (90)

and

either U(x) = 0, for x on S (Dirichlet)

or ∂U(x)
∂n = 0, for x on S (Neumann).

(91)

In Green’s first identity Eq. (81), let ψ = φ = U :

∫

V
d3x [U(x)∇2U(x) +∇U(x) · ∇U(x)] =

∫

S
d2xU(x)

∂U(x)

∂n
. (92)

Now, since U satisfies the Laplace equation, the first term in brackets on

the left vanishes. From the boundary condition for either the Neumann

or the Dirichlet problem, the surface integral also vanishes. Hence we

have just
∫

V
d3x |∇U(x)|2 = 0 (93)

from which it follows that∇U(x) = 0 in V. Therefore U(x) is a constant

in V and so the two solutions Φ1 and Φ2 are the same up to a constant.

For Dirichlet conditions, this constant is zero since the two functions
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are the same on the boundary. For Neumann conditions it is arbitrary

and amounts only to a choice of the zero of potential.

The preceding proof is also valid for the case of mixed boundary

conditions because the surface integral vanishes in this case also. Fi-

nally, one cannot in general specify both Φ(x) and ∂Φ
∂n everywhere on

S (Cauchy boundary conditions); either one alone is sufficient to de-

termine a unique solution and the two solutions so determined are not

necessarily the same. However, if Cauchy boundary conditions are given

on just an appropriate part of S, that can be sufficient to give a unique

solution for the potential.

In the light of what we have learned, it is evident that our integral

expression for Φ(x), Eq. (88), which involves surface integrals of both

the potential and its normal derivative, is not a very effective way to

solve an electrostatic boundary value problem; it requires more input

information than is actually needed to determine a solution and so is

an integral equation as opposed to a solution in the form of an integral.

If we had made a better choice of ψ(x′) at the outset, we could have

come up with a better result. Let’s try again, choosing for ψ(x′) a

function we shall call G(x,x′); it is given by 1/|x − x′| plus an as yet

undetermined function F (x,x′) which is to be a solution of the Laplace

equation in V,

∇′2F (x,x′) = 0 (94)
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for x and x′ in V. Since

G(x,x′) =
1

|x− x′| + F (x,x′), (95)

it is the case that

∇′2G(x,x′) = −4πδ(x− x′) (96)

for x and x′ in V. Physically, the function G, viewed as a function of

x′, is a solution of Poisson’s equation in V given a unit point charge at

x. The function F (x,x′) is a solution of Laplace’s equation; we shall

presently determine its properties further by requiring that it satisfy

certain conditions on S. Using G(x,x′) for ψ(x′) and Φ(x) for φ(x) in

Green’s Theorem, we can easily show that

Φ(x) =
∫

V
d3x′G(x,x′)ρ(x′)+

1

4π

∫

S
d2x′


G(x,x′)

∂Φ(x′)

∂n′
− Φ(x′)

∂G(x,x′)

∂n′


 .

(97)

8.3.1 Greens Theorem with Dirichlet B.C.

Now consider in turn two different sets of boundary conditions for G.

First, require that G(x,x′) = 0 for x′ on S and denote this function by

GD. Then the preceding equation becomes

Φ(x) =
∫

V
d3x′GD(x,x′)ρ(x′)− 1

4π

∫

S
d2x′

∂GD(x,x′)

∂n′
Φ(x′). (98)

This is a useful equation when we have a Dirichlet problem with Φ(x′)

specified for x′ on S. Then we have in principle the information we need
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to complete the integration and so find Φ(x) in which case Eq. (98) is

an integral solution for Φ(x) as opposed to an integral equation for the

potential.

The question naturally arises, does the function GD exist? That is,

is it possible to find the Dirichlet Green’s function GD which is specified

by the conditions

∇2GD(x,x′) = −4πδ(x− x′); x,x′ in V (99)

and

GD(x,x′)|x′ on S = 0? (100)

The answer is that this function does exist; further, it is unique. The

preceding two conditions are sufficient to determine it completely. We

know this without resorting to a mathematical proof because we can

see that GD(x,x′) is just the scalar potential at x′ given a unit point

charge at x inside of a cavity with conducting walls coincident with S

and held at zero potential.

V
S

q=1

This is the physical interpretation of the Dirichlet Green’s function.

Notice in particular that this is a strongly geometry-dependent func-

tion (it depends on S very much) but it is not dependent on any other
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properties of the system. In other words, we can solve any Dirichlet

problem for a given geometry if we can solve the “point charge with

grounded conducting surfaces” problem for the same geometry in the

sense that we can reduce the solution to a quadrature, i.e., to an inte-

gral.

An important property of the Dirichlet Green’s function is that it

is invariant under interchange of x and x′, G(x,x′) = G(x′,x). To

demonstrate this property, let φ(y) = G(x,y) and ψ(y) = G(x′,y).

Then insert these functions into Green’s Theorem (with y as the inte-

gration variable)

∫

V
d3y [G(x,y)∇2G(x′,y)−G(x′,y)∇2G(x,y)] =

∫

S
d2y


G(x,y)

∂G(x′,y)

∂n
−G(x′,y)

∂G(x,y)

∂n


 , (101)

and make use of the properties of the Dirichlet Green’s function that

∇2
yG(x,y) = −4πδ(x − y) and G(x,y) = 0 for y on S. The result is

that G(x,x′) = G(x′,x).

8.3.2 Greens Theorem with Neumann B.C.

The second case of boundary conditions we consider onG is ∂G(x,x′)/∂n′ =

0 for x′ on S. Then application of Green’s Theorem (Eq. (97)) leads to

Φ(x) =
∫

V
d3x′G(x,x′)ρ(x′) +

1

4π

∫

S
d2x′

∂Φ(x′)

∂n′
G(x,x′). (102)
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Unfortunately, this G does not exist as we may show by applying

Gauss’s Law,

0 =
∫

S
d2x′

∂G(x,x′)

∂n′
=
∫

S
d2x′ [n′·∇′G(x,x′)] =

∫

V
d3x′∇′2G(x,x′) = −4π.

(103)

Clearly, we cannot have a G with zero normal derivative everywhere on

S. The next simplest possibility is that

∂GN(x,x′)

∂n′
|x′ on S = −4π

S
, (104)

where S is the area of the surface. Given such a function, we can use it

in Green’s Theorem and will be led to the following integral expression

for the scalar potential:

Φ(x) =< Φ >S +
∫

V
d3x′GN(x,x′)ρ(x′) +

1

4π

∫

S
d2x′

∂Φ(x′)

∂n′
GN(x,x′)

(105)

where < Φ >S is the average of the potential over the surface S,

< Φ >S≡
1

S

∫

S
d2x′Φ(x′) (106)

One can understand the necessity of the presence of this term from the

fact that the Neumann boundary condition problem can only be solved

up to an arbitrary constant.

The Dirichlet Green’s function is the one that we shall use most

often as one more commonly specifies the potential on the boundary

than the normal component of the electric field.
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In this chapter we shall solve a variety of boundary value problems

using techniques which can be described as commonplace.

1 Method of Images

This method is useful given sufficiently simple geometries. It is closely

related to the Green’s function method and can be used to find Green’s

functions for these same simple geometries. We shall consider here only

conducting (equipotential) bounding surfaces which means the bound-

ary conditions take the form of Φ(x) = constant on each electrically

isolated conducting surface. The idea behind this method is that the

solution for the potential in a finite domain V with specified charge

density and potentials on its surface S can be the same within V as the

solution for the potential given the same charge density inside of V but

a quite different charge density elsewhere. Thus we consider two dis-

tinct electrostatics problems. The first is the “real” problem in which

we are given a charge density ρ(x) in V and some boundary conditions

on the surface S. The second is a “fictitious problem” in which the

charge density inside of V is the same as for the real problem and in
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which there is some undetermined charge distribution elsewhere; this is

to be chosen such that the solution to the second problem satisfies the

boundary conditions specified in the first problem. Then the solution

to the second problem is also the solution to the first problem inside of

V (but not outside of V). If one has found the initially undetermined

exterior charge in the second problem, called image charge, then the

potential is found simply from Coulomb’s Law,

Φ(x) =
∫
d3x′

ρ2(x
′)

|x− x′| ; (1)

ρ2 is the total charge density of the second problem.

1.1 Point Charge Above a Conducting Plane

This may sound confusing, but it is made quite clear by a simple ex-

ample. Suppose that we have a point charge q located at a point

x0 = (0, 0, a) in Cartesian coordinates. Further, a grounded conductor

occupies the half-space z < 0, which means that we have the Dirichlet

boundary condition at z = 0 that Φ(x, y, 0) = 0; also, Φ(x) → 0 as

r → ∞. The first thing that we must do is determine some image

charge located in the half-space z < 0 such that the potential of the

image charge plus the real charge (at x0) produces zero potential on the

z = 0 plane. With just a little thought one realizes that a single image

charge −q located at the point x′0 = (0, 0,−a) is what is required.
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xx0q

-q
image charge

x

y

z

plane
z=0

=(0,0,a)

(0,0,-a)

All points on the z = 0 plane are equidistant from the real charge and

its image, and so the two charges produce cancelling potentials at each

of these points. The solution to the problem is therefore

Φ(x) = q


 1

|x− x0|
− 1

|x− x′0|


 . (2)

This function satisfies the correct Poisson equation in the domain z > 0

and also satisfies the correct boundary conditions at z = 0; therefore it

is the (unique) solution. It is important to realize, however, that it is

not the correct solution in the space z < 0; here, the real potential is

zero because this domain in inside of the grounded conductor.

In the real system, there is some surface charge density σ(x, y) on

the conductor; to determine what this is, we have only to evaluate the

normal component of the electric field at the surface of the conductor,

En(x, y, 0) = − ∂Φ(x)

∂z

∣∣∣∣∣∣
z=0

= − 2qa

(ρ2 + a2)3/2
, (3)
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where ρ =
√
x2 + y2. The surface charge density is just this field,

divided by 4π, En = σ/4π.

From this example we can also see why this technique has the name

‘method of images.’ The image charge is precisely the mirror image in

the z = 0 plane of the real charge.

As a by-product of our solution, we have also got the Dirichlet

Green’s function for the semi-infinite half-space z > 0; it is

G(x,x′) =


 1

|x− x′| −
1

|x− x′i|


 (4)

where x′i is the mirror image of x′ in the z = 0 plane. Hence we can

solve, by doing appropriate integrals, any problem in which we are given

some ρ(x) in the domain z > 0 and an arbitrary potential Φ(x, y, 0).

1.2 Point Charge Between Multiple Conducting Planes

A simple extension of the problem above is one with a point charge

between two intersecting conducting planes. For example, consider two

grounded conducting planes that intersect at an angle of 60o forming a

wedge, with point charge Q placed at (ρ, φ, z) within the wedge.
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60
o

( z)ρ,φ,
Q

Q

Q

-Q

-Q

-Q

image
charge

To solve this problem, we again use image charges to satisfy the

boundary conditions. There are five image charges, as indicated in the

figure above. They all share the same value of ρ and z as the real

charge, and their azimuthal angles are given in the table below.

charge angle

−Q 2π
3 − φ

+Q 2π
3 + φ

−Q −2π
3 − φ

+Q −2π
3 + φ

−Q −φ

1.3 Point Charge in a Spherical Cavity

It is also sometimes possible to use the image method when the bound-

ary S involves curved surfaces. However, just as curved mirrors pro-

duced distorted images, so do curved surfaces make the image of a point
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charge more complicated1. Let’s do the simplest problem of this kind.

Suppose that we have a spherical cavity of radius a inside of a conduc-

tor; within this cavity is a point charge q located a distance r0 from the

center of the sphere which is also chosen as the origin of coordinates.

Thus the charge is at point x0 = r0n0 where n0 is a unit vector pointing

in the direction from the origin to the charge.

We need to find the image(s) of the charge in the spherical surface

which encloses it. The simplest possible set of images would be a single

charge q′; if there is such a solution, symmetry considerations tell us

that the image must be located on the line passing through the origin

and going in the direction of n0. Let us therefore put an image charge

q′ at point x′0 = r′0n0.

ax0

x0’

q

q’

V

conductor

1Consider the example of the right-hand side-view mirror of a car. Here the mirror is concave,

and images appear to be much farther away than they actually are
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The potential produced by this charge and the real one at x0 is

Φ(x) =
q

|x− x0|
+

q′

|x− x′0|
. (5)

Now we must choose, if possible, q′ and r′0 such that Φ(x) = 0 for x

on the cavity’s spherical surface, x = an where the direction of n is

arbitrary. The potential at such a point may be written as

Φ(an) =
q/a

|n− (r0/a)n0|
+

q′/r′0
|n0 − (a/r′0)n|

. (6)

The from the figure below, it is clear that denominators are equal if

r0/a = a/r′0, and the numerators are equal and opposite if q/a =

−q′/r′0. (The “other” solution, r′0 = r0 and q′ = −q is no solution

at all since then the image charge would be within the volume V and

cancel the real charge. We must have r′0 > 1)

n

n

n0

n0

d2

d1

d1d2 if=
0(a/r’) (r /a)0=

n0(r /a)0- 0(a/r’)n-

Hence, we make Φ zero on S by choosing

r′0 = a2/ro and q′ = −q(a/r0). (7)
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Thus we have the solution for a point charge in a spherical cavity with

an equipotential surface:

Φ(x) = q


 1

|x− x0|
− a/r0

|x− (a2/r2
0)x0|


 ; (8)

we have also found the Dirichlet Green’s function for the interior of a

sphere of radius a:

G(x,x′) =
1

|x− x′| −
a/r

|x′ − (a2/r2)x| . (9)

The solution of the “inverse” problem which is a point charge outside

of a conducting sphere is the same, with the roles of the real charge

and the image charge reversed. The preceding equations for Φ(x) and

G(x,x′) are valid except that r, r0, and r′ are all larger than a.

Let’s look at a few more features of the solution for the charge inside

of the spherical cavity. First, what is σ, the charge density on the sur-

face of the cavity. From Gauss’s Law, we know that the charge density

is the normal component of the electric field out of the conductor at its

surface divided by 4π. This is the negative of the radial component in

spherical polar coordinates, so

σ = −Er

4π
=

1

4π

∂Φ

∂r
. (10)

If we define the z-direction to be the direction of n0, then the potential

at an arbitrary point within the sphere is

Φ(x) = q


 1

(r2 + r2
0 − 2rr0 cos θ)1/2

− (a/r0)

(r2 + (a4/r2
0)− 2r(a2/r0) cos θ)1/2




(11)
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where θ is the usual polar angle between the z-axis, or direction of x0,

and the direction of x, the field point. The radial component of the

electric field at r = a is

Er = − ∂Φ(x)

∂r

∣∣∣∣∣∣
r=a

= −q

−1

2

2a− 2r cos θ

(a2 + r2
0 − 2ar0 cos θ)3/2

+
a

r0

1

2

2a− 2(a2/r0) cos θ

(a2 + (a4/r2
0)− 2(a3/r0) cos θ)3/2




= q


 a− r0 cos θ

(a2 + r2
0 − 2ar0 cos θ)3/2

− r2
0

a2

a− (a2/r0) cos θ

(a2 + r2
0 − 2ar0 cos θ)3/2




=
q

a2


 1− r2

0/a
2

(1 + (r2
0/a

2)− 2(r0/a) cos θ)3/2


(12)

If we introduce ε = r0/a, then the surface charge density may be written

concisely as

σ = − q

4πa2

1− ε2
(1 + ε2 − 2ε cos θ)3/2

. (13)

The total charge on the surface may be found by integrating

over σ. But it may be obtained more easily by invoking Gauss’s Law; if

we integrate the normal component of E(x) over a closed surface which

lies entirely in conducting material and which also encloses the cavity,

we know that we will get zero, because the field in the conductor is

zero.

10



a
x0

q

V

conductorGaussian surface

E=0

0 =
∫

S
d2xE · n = 4πQ = 4π

(
q +

∫

S
d2x σ

)

charge within this surface. What is inside is the charge q in the cavity

and the surface charge on the conductor. The implication is that the

total surface charge is equal to −q. It is perhaps useful to actually do

the integral over the surface as a check that we have gotten the charge

density there right:

Qi =
∫

S
d2x σ(x)

= −q
2

(1− ε2)
∫ 1

−1

du

(1 + ε2 − 2εu)3/2

= −q
2

1− ε2
2ε


 2

(1 + ε2 − 2ε)1/2
− 2

(1 + ε2 + 2ε)1/2




= −q
2

1− ε2
ε

(
1

1− ε −
1

1 + ε

)
= −q. (14)

Notice that |σ| is largest in the direction of n0 and is

|σmax| = −
q

4πa2

1 + ε

(1− ε)2
. (15)
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In the opposite direction, the magnitude of the charge density is at its

minimum which is

|σmin| = −
q

4πa2

1− ε
(1 + ε)2

. (16)

The total force on the charge may also be computed. This is

the negative of the total force on the conductor. Now, we know that

the force per unit area on the surface of the conductor is 2πσ2 and is

directed normal to the conductor’s surface into the cavity. Because of

the rotational invariance of the system around the direction of n0, only

the component of the force along this direction need be computed; the

other components will average to zero when integrated over the surface.

q

V

conductor

O

p
This component of
p adds.

This component
cancels.p= F/area = 2π σ2

Hence we find

|Fn| = 2πa2
∫ 2π

0
dφ

∫ π
0

sin θdθσ2(θ) cos θ

=
4π2a2q2

16π2a4
(1− ε2)2

∫ 1

−1

udu

(1 + ε2 − 2εu)3
=

1

4

q2

a2
(1− ε2)2

∫ 1

−1

udu

(1 + ε2 − 2εu)3

=
1

4

q2

a2
(1− ε2)2 1

4ε2


− 1

1 + ε2 − 2εu
+

1 + ε2

2(1 + ε2 − 2εu)2




1

−1

12



=
1

4

q2

a2

(1− ε2)2

4ε2


 −1

(1− ε)2
+

1

(1 + ε)2
+

1 + ε2

2(1− ε)4
− 1 + ε2

2(1 + ε)4




=
q2

4a2

(1− ε2)2

4ε2


 −4ε

(1− ε2)2
+

(1 + ε2)(8ε+ 8ε3)

2(1− ε2)4




=
q2

4a2

−4ε(1− ε2)2 + 4ε(1 + ε2)2

4ε2(1− ε2)2
=
q2

a2

ε

(1− ε2)2
.(17)

The direction of this force is such that the charge is attracted toward

the point on the cavity wall that is closest to it.

We may also ask what is the “force” between the charge and its

image. The distance between them is r′0−r0 = aε(1/ε2−1) = a(1−ε2)/ε,

and the product of the charges is qq′ = −q2/ε, so

|F| = q2

a2

ε

(1− ε2)2
(18)

which is the same as the real force between the charge and the surface.

One is led to ask whether the real force on the charge is always the

same as that between the charge and its images. The answer is yes.

The electric field produced by the real surface charge at the position

of the real charge is the same as that produced by the image charge

at the real charge, and so the same force will arise in both systems. It

is generally much easier to calculate the force between the real charge

and its images than the force between the real charge and the surface

charges.
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1.4 Conducting Sphere in a Uniform Applied Field

Consider next the example of a grounded conducting sphere, which

means that Φ(x) = 0 on the sphere, placed in a region of space where

there was initially a uniform electric field E0 = E0ẑ produced by some

far away fixed charges. Here, ẑ is a unit vector pointing in the z-

direction. We approach this problem by replacing it with another one

which will become equivalent to the first one in some limit. Let the

sphere be centered at the origin and let there be not a uniform applied

field but rather a charge Q placed at the point (0, 0,−d) and another

charge −Q placed at the point (0, 0, d) in Cartesian coordinates.

x

y

z

q

-q

-Q

Q

a b

db=a /d2

The resulting potential configuration is easily solved by the image

method; there are images of the charges±Q in the sphere at (0, 0,−a2/d)

and at (0, 0, a2/d); they have size −Qa/d and Qa/d, respectively. The

potential produced by these four charges is zero on the surface of the
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sphere. Thus we have solved the problem of a grounded sphere in

the presence of two symmetrically located equal and opposite charges.

We could equally well think of the sphere as isolated (not electrically

connected to anything) and neutral, because the total image charge is

zero.

Now we want to think about what happens if we let Q become

increasingly large and at the same time move the real charges farther

and farther away from the sphere in such a way that the field they

produce at the origin is constant. This field is E(x) = (2Q/d2)ẑ, so

if Q is increased at a rate proportional to d2, the field at the origin

is unaffected. As d becomes very large in comparison with the radius

a of the sphere, not only will the applied field at the origin have this

value, but it will have very nearly this value everywhere in the vicinity

of the sphere. The difference becomes negligible in the limit d/a→∞.

Hence we recover the configuration presented in the original problem

of a sphere placed in a uniform applied field. If we pick E0 = 2Q/d2,

or, more appropriately, Q = E0d
2/2, we have the solution in the limit

of d→∞:

Φ(x) = lim
d→∞


 E0d

2/2

(d2 + r2 + 2rd cos θ)1/2
− E0d

2a/2d

(a4/d2 + r2 + 2r(a2/d) cos θ)1/2




+ lim
d→∞


− E0d

2/2

(d2 + r2 − 2rd cos θ)1/2
+

E0d
2a/2d

(a4/d2 + r2 − 2r(a2/d) cos θ)1/2




= lim
d→∞


± E0d/2

(1± 2(r/d) cos θ + r2/d2)1/2
∓ E0da/2r

(1± (a2/rd) cos θ + a4/d2r2)1/2
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= −E0r cos θ +
E0a

3

r2
cos θ.(19)

The first term, −E0r cos θ, is the potential of the applied constant field,

E0. The second is the potential produced by the induced surface charge

density on the sphere. This has the characteristic form of an electric

dipole field, of which we shall hear more presently. The dipole moment

p associated with any charge distribution is defined by the equation

p =
∫
d3xxρ(x); (20)

in the present case the dipole moment of the sphere may be found

either from the surface charge distribution or from the image charge

distribution. Taking the latter tack, we find

p =
∫
d3xx

E0da

2

[
−δ(z + a2/d)δ(y)δ(x) + δ(z − a2/d)δ(y)δ(x)

]

=
E0da

2

[
(a2/d)ẑ + (a2/d)ẑ

]
= E0a

3ẑ. (21)

Comparison with the expression for the potential shows that the dipolar

part of the potential may be written as

Φ(x) = p · x/r3 (22)

The charge density on the surface of the sphere may be found in the

usual way:

4πσ = Er = − ∂Φ

∂r

∣∣∣∣∣
r=a

= E0 cos θ +
2E0

a3
a3 cos θ = 3E0 cos θ. (23)
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Hence,

σ(θ) =
3

4π
E0 cos θ. (24)

2 Green’s Function Method for the Sphere

Next, let us do an example of the use of the Green’s function method by

considering a Dirichlet potential problem inside of a sphere. The task

is to calculate the potential distribution inside of an empty (ρ(x) = 0,

x ∈ V ) spherical cavity of radius a, given some specified potential

distribution V (θ, φ) on the surface of the sphere. We can immediately

invoke the Green’s function expression

Φ(x) = − 1

4π

∫

S
d2x′Φ(x′)

∂G(x,x′)

∂n′
, (25)

and we already know that,

G(x,x′) =
1

|x− x′| −
a/r′

|x− (a2/r′2)x′| (26)

since G(x,x′) is the potential at x due to a unit point charge at x′

(x ,x′ ∈ V ), and we have just solved this problem. If we let γ be the

angle between x and x′,

G(x,x′) =
1

(r2 + r′2 − 2rr′ cos γ)1/2
− a/r′

(r2 + (a4/r′2)− 2r(a2/r′) cos γ)1/2
.

(27)

Then

∂G(x,x′)

∂n′

∣∣∣∣∣∣
S

=
∂G(x,x′)

∂r′

∣∣∣∣∣∣
r′=a
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= −1

2


 2a− 2r cos γ

(r2 + a2 − 2ra cos γ)3/2
− a 2ar2 − 2ra2 cos γ

(r2a2 + a4 − 2ra3 cos γ)3/2




= − a(1− r2/a2)

(r2 + a2 − 2ra cos γ)3/2
= − 1

a2

(1− ε2)
(1 + ε2 − 2ε cos γ)3/2

(28)

where ε = r/a. For simplicity, let us suppose that ρ(x) = 0 inside of

the sphere. Then

Φ(x) =
1

4π

∫ 2π

0
dφ′

∫ π
0

sin θ′dθ′V (θ′, φ′)(1− ε2)
(1 + ε2 − 2ε cos γ)3/2

. (29)

In terms of θ, φ and θ′ and φ′,

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (30)

This integral can rarely be done in closed form in terms of simple func-

tions; however, it is generally a simple matter to carry out the integrals

numerically. As an example, consider

VΦ =

-VΦ =

V (θ, φ) =





V, 0 ≤ θ ≤ π/2

−V, π/2 ≤ θ ≤ π.
(31)

Then the answer will not depend on φ, so we may arbitrarily set φ

equal to zero and proceed. Using ε ≡ r/a, we have

Φ(ε, θ) =
V

4π
(1−ε2)

∫ 2π

0
dφ′



∫ π/2

0

sin θ′dθ′

(1 + ε2 − 2ε cos γ)3/2
−
∫ π
π/2

sin θ′dθ′

(1 + ε2 − 2ε cos γ)3/2




(32)
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The integral is still difficult in the general case. For θ = 0, it is easier:

Φ(ε, 0) =
V

4π
(1− ε2)2π



∫ 1

0

du

(1 + ε2 − 2εu)3/2
−
∫ 0

−1

du

(1 + ε2 − 2εu)3/2




(33)

These integrals are easily completed with the result that

Φ(ε, 0) =
V

ε


1− 1− ε2√

1 + ε2


 . (34)

An alternative approach, valid for r/a << 1, is to expand the integrand

in powers of ε and then to complete the integration term by term. This

is straightforward with a symbolic manipulator but tedious by hand.

Either way, a solution in powers of ε is generated.

Φ(ε, θ) =
3V

2

[
ε cos θ − 7

12
ε3
(

5

2
cos3 θ − 3

2
cos θ

)
+O(ε5)

]
. (35)

The alert student will recognize that the functions of cos θ that are

being generated are Legendre polynomials;

P1(cos θ) = cos θ,

P3(cos θ) =
5

2
cos3 θ − 3

2
cos θ, (36)

etc. Note that only terms which are odd in cos θ enter into the sum,

due to the symmetry of the boundary conditions.
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3 Orthogonal Functions and Expansions; Separa-

tion of Variables

We turn now to a quite different, much more systematic approach to

the solution Laplace’s equation

∇2Φ(x) = 0 (37)

as a boundary value problem. It is implemented by expanding the

solution in some domain V using complete sets of orthogonal functions

Φ(η, ξ, ν) =
∑

nlm

An(η)Bl(ξ)Cm(ν) (38)

and determining the coefficients in the expansion by requiring that

the solution take on the proper values on the boundaries. For simple

geometries for which Laplace’s equation separates (spheres, cylinders,

rectangular parallelepipeds) this method can always be utilized2. Be-

fore launching into a description of how one proceeds in specific cases

(or geometries), let us take a few minutes to review the terminology of

orthogonal function expansions and some basic facts.

Suppose that we have a set of functions Un(η), n = 1, 2,... which are

orthogonal on the interval a ≤ η ≤ b, by which we mean that

∫ b
a
dηU ∗n(η)Um(η) = 0, if m 6= n; (39)

2It can also be very tedious.
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the superscript * denotes complex conjugation. Further, the functions

Un(η) are normalized on the interval,

∫ b
a
dηU ∗n(η)Un(η) =

∫ b
a
dη|Un(η)|2 = 1. (40)

Combining these equations we have

∫ b
a
dηU ∗n(η)Um(η) =





0, n 6= m

1, n = m





= δnm. (41)

The functions Un(η) are said to be orthonormal; δnm is called a Kro-

necker delta function.

Next, we attempt to expand, on the interval a ≤ η ≤ b, an arbitrary

function f(η) as a linear combination of the functions Un(η), which are

referred to as basis functions. Keeping just N terms in the expansion,

one has

f(η) ≈
N∑

n=1

anUn(η). (42)

We need a criterion for choosing the coefficients in the expansion; a

standard criterion is to minimize the mean square error E which may

be defined as follows:

E =
∫ b
a
dη|f(η)−

N∑

n=1

anUn(η)|2

=
∫ b
a
dη


f ∗(η)−

N∑

n=1

a∗nU
∗
n(η)




f(η)−

N∑

m=1

amUm(η)


 . (43)

The conditions for an extremum are
(
∂E

∂ak

)

a∗k

= 0 =


 ∂E

∂a∗k



ak

. (44)
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where ak and a∗k have been treated as independent variables 3 Applica-

tion of these conditions leads to

0 =
∫ b
a
dη


f ∗(η)−

N∑

n=1

a∗nU
∗
n(η)


Uk(η)

=
∫ b
a
dη


f(η)−

N∑

n=1

anUn(η)


U ∗k (η) (45)

or, making use of the orthonormality of the basis functions,

ak =
∫ b
a
dηf(η)U ∗k (η). (46)

with a∗n given by the complex conjugate of this relation. If the basis

functions are orthogonal but not normalized, then one finds

ak =

∫ b
a dηf(η)U ∗k (η)
∫ b
a dη|Uk(η)|2 . (47)

The set of basis functions Un(η) is said to be complete if the mean

square error can be made arbitrarily small by keeping a sufficiently large

number of terms in the sum. Then one says that the sum converges in

the mean to the given function. If we are a bit careless, we can then

write

f(η) =
∑

n
anUn(η) =

∑

n

∫ b
a
dη′f(η′)U ∗n(η′)Un(η)

=
∫ b
a
dη′

(∑

n
Un(η)U ∗n(η′)

)
f(η′), (48)

from which it is evident that

∑

n
Un(η)U ∗n(η′) = δ(η − η′) (49)

3This is always possible, since ak and a∗k are linearly related to Re(ak) and Im(ak).
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for a complete set of functions. This equation is called the completeness

or closure relation.

We may easily generalize to a space of arbitrary dimension. For

example, in two dimensions we may have the space of η and ζ with a ≤
η ≤ b, and c ≤ ζ ≤ d and complete sets of orthonormal functions Un(η)

and Vm(ζ) on the respective intervals. Then the arbitrary function

f(η, ζ) has the expansion

f(η, ζ) =
∑

n,m
AnmUn(η)Vm(ζ), (50)

where

Anm =
∫ b
a
dη

∫ b
a
dζf(η, ζ)U ∗n(η)V ∗m(ζ). (51)

3.1 Fourier Series

Returning to the one-dimensional case, suppose that the interval is

infinite, −∞ < η < ∞. Then the index n of the functions Un(η) may

become a continuous index, Un(η) → U(η; ρ). A familiar example of

this is the Fourier integral which is the limit of a Fourier series when the

interval on which functions are expanded becomes infinite. Consider

that we have the interval −a/2 < η < a/2. Then the Fourier series

may be built from the basis functions

Um(η) =
1√
a
ei2πmη/a, with m = 0,±1,±2, ...; (52)
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these functions form a complete orthonormal set. The expansion of

f(η) is

f(η) =
1√
a

∞∑

m=−∞
Ame

i2πmη/a (53)

with

Am =
1√
a

∫ a/2
−a/2

dηf(η)e−i2πmη/a. (54)

The closure relation is

1

a

∑

m
ei2πm(η−η′)/a = δ(η − η′). (55)

Now define k ≡ 2πm/a or m = ka/2π. Also, define Am =
√

2π/aA(k).

Note that for a → ∞, k takes on a set of values that approach a

continuum. Thus

f(η) =
1√
a

∫ ∞
−∞

a

2π
dkeikη

√√√√2π

a
A(k) =

1√
2π

∫
dkeikηA(k), (56)

while √√√√2π

a
A(k) =

1√
a

∫
dηf(η)e−ikη (57)

or

A(k) =
1√
2π

∫
dηf(η)e−ikη (58)

while the closure relation now reads

1

2π

∫
dkeik(η−η′) = δ(η − η′) , (59)

thus eikη form a complete set (this is also a useful representation of the

Dirac delta function).
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Note that we can also write this equation as

1

2π

∫
dηeiη(k−k′) = δ(k − k′) (60)

which is the orthonormalization expression of the complete set of func-

tions U(η; k) on the infinite η interval. These functions are

U(η; k) =
1√
2π
eiηk. (61)

3.2 Separation of Variables

We are going to attempt to find solutions to boundary value problems

in three dimensions by writing the solution as a sum of products of

three one-dimensional functions,

Φ(η, ζ, ν) =
∑

n,l,m

AnlmEn(η)Zl(ζ)Nm(ν). (62)

We will do this for the particular cases of rectangular, cylindrical, and

spherical polar coordinates. Now, if the functions E, Z, and N are

members of complete sets on appropriate intervals, we can certainly

write any three-dimensional function as a linear combination of such

products. Because we are looking for special three-dimensional func-

tions, however, that is, solutions to the Laplace equation, we do not

actually have to employ complete sets of functions of all three variables.

To determine just what we do have to use, we will try to demand that

each term in the sum is itself a solution to the Laplace equation, which

is more restrictive than just requiring the sum to be a solution. It turns
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out that this is possible in the Cartesian, cylindrical, and spherical co-

ordinate systems and also in eight more (see Landau and Lifshitz for

more information)! The simplification that takes place when one makes

this separation of variables is that each of the functions of a single vari-

ables has to be a solution of a relatively simple second order ordinary

differential equation rather than a partial differential equation.

3.3 Rectangular Coordinates

Let us look for a solution of Laplace’s equation in the form of a product

of functions of x, y, and z,

Φ(x) = X(x)Y (y)Z(z). (63)

Substitution into Laplace’s equation ∇2φ(x) = 0 yields

Y (y)Z(z)
d2X(x)

dx2
+X(x)Z(z)

d2Y (y)

dy2
+X(x)Y (y)

d2Z(z)

dz2
= 0. (64)

Dividing by Φ we find

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
= 0. (65)

Each term on the LHS of this equation depends on a single variable;

consequently, since the equation must remain true when any one vari-

able is varied with the others held fixed, it must be the case that each

term is a constant, independent of the variable. Since the three terms

add to zero, at least one must be a positive constant, and at least one
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must be a negative constant. Let us suppose that two are negative, and

one, positive. Thus we have

1

X

d2X

dx2
= −α2;

1

Y

d2Y

dy2
= −β2;

1

Z

d2Z

dz2
= γ2 = α2 + β2. (66)

For negative constants, the solutions are oscillatory; when they are

positive, solutions are exponential:

Z(z) ∼ e±γz; X(x) ∼ e±iαx; Y (y) ∼ e±iβy, (67)

or, equivalently,

X(x) ∼ sin(αx) or cos(αx)

Y (y) ∼ sin(βy) or cos(βy)

Z(z) ∼ sinh(γz) or cosh(γz). (68)

Now, α and β can be any real constants whatsoever, which means that

by taking linear combinations of solutions of the kind outlined above,

we can construct any function of x and y at some particular value of

z.

This is just what we need to solve boundary value problems with

planar surfaces. For example, suppose that we need to solve the Laplace

equation inside of a rectangular parallelepiped of edge lengths a, b, and

c with the potential given on the surface. We can find a solution by

considering six distinct problems and superposing the six solutions to

them. Each of these six problems has on one face (a different one in

each problem) of the box the same potential as that given in the original
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problem while on the other five faces the potential is zero. Summing

the six solutions gives a potential which has the same values on each

face of the box as given in the original problem. Let’s see how to

solve one of these six problems; the others follow trivially. For this

problem we may suppose that the faces of the box are given by the

planes z = 0, c, x = 0, a, and y = 0, b. Let the potential on the face

z = c be Φ(x, y, c) = V (x, y) while Φ(x) ≡ 0 on the other five faces.

x

y

z

a

b

c

V (x,y)1

Φ(x, y, c) = V (x, y) Φ(x) ≡ 0 on the other faces (69)

In order to satisfy the B.C., we must choose the constants α, β and

γ so that we have a complete set of functions 4 on the face with the

non-trivial boundary condition. Our expansion for the potential now

4As we have seen, the sinusoidal function form a complete set, the hyperbolic functions do not
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takes the form

Φ(x, y, z) =
∑

α,β

Aαβ sinh(γαβz)(sinαx sin βy) (70)

where α and β are such that αa = nπ andβb = mπ which makes the

basis functions of x and y orthogonal and complete on the domain of

the constant-z face of the box. Thus,

Φ(x, y, z) =
∞∑

n,m=1

Anm sinh(γnmz) sin

(
nπ

a
x

)
sin

(
mπ

b
y

)
(71)

where

γnm = π



(
n

a

)2

+

(
m

b

)2



1/2

. (72)

Notice that only the sine functions are used and also only the hyperbolic

sine. The reason for the latter is that the potential must vanish at z = 0;

this condition rules out the use of the hyperbolic cosine which is not

zero at zero argument. The cosine could be used but is not needed as

the sine functions with arguments introduced above are complete on

the appropriate intervals.

The coefficients in the sum for the solution are determined by looking

at the potential on the top face of the box:

V (x, y) =
∑

nm
Anm sinh(γnmc) sin(nπx/a) sin(mπy/b). (73)

Multiply by sin(lπx/a) sin(pπy/b) and integrate5 over the face of the

box:
∫ a

0
dx

∫ b
0
dyV (x, y) sin(lπx/a) sin(pπy/b) = Alp sinh(γlpc)

1

4
ab, (74)

5Here we use the relation
∫ a

0
sin2(nπx/a) = a/2
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or

Alp =
4

ab sinh(γlpc)

∫ a
0
dx

∫ b
0
dyV (x, y) sin(lπx/a) sin(pπy/b) (75)

In this manner one can do any Dirichlet problem on a rectangular

parallelepiped in the form of an infinite series.

3.4 Fields and Potentials on Edges

What we will never find very accurately from the expansion devised in

the preceding section is the behavior of the potential and field close to

an edge of the box where many terms must be kept to have decent con-

vergence of the series. However, in these regions we may devise a quite

different approximation which converges well very close to the edge.

Suppose then that one is very close to such an edge where the bound-

ary may be considered to consist of two infinite intersecting planes. Let

the edge be coincident with the z-axis with the planes lying at constant

values of th azimuthal angle φ.
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x

y

z

V0V0

φ

The solution will then depend only on φ and ρ where ρ =
√
x2 + y2. In

these variables, the Laplace equation is

1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2

∂2Φ

∂φ2
= 0. (76)

Once again we use separation of variables, writing

Φ(ρ, φ) = R(ρ)Ψ(φ). (77)

Substitution into the Laplace equation and division by Φ itself yields

the equation

1

ρR(ρ)

d

dρ


ρ
dR(ρ)

dρ


 +

1

ρ2Ψ(φ)

d2Ψ(φ)

dφ2
= 0. (78)

If we multiply by ρ2, we find that the first term on the LHS depends

only on ρ and the second one depends only on φ; consequently they

must be equal and opposite constants,

ρ

R

d

dρ

(
ρ
dR

dρ

)
= C, C = constant, (79)
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and
1

Ψ

d2Ψ

dφ2
= −C. (80)

What must be the sign of C? If C > 0, the Ψ(φ) is an oscillatory

function while R(ρ) is not. But if C < 0, then the converse is true.

If our boundary value problem has Φ equal to some constant on the

edges of a wedge with the surfaces of the wedge at φ = 0 and φ = β,

then we will need to have an oscillatory Ψ(φ). Hence choose C ≥ 0.

Write C ≡ ν2, where ν is real. There is the special case when ν = 0,

for which Ψ(φ) = a+ bφ and R(ν) = c+ d ln ρ. When C > 0, then

Ψ(φ) = A sin(νφ) +B cos(νφ) = A′ sin(νφ+ φ0), (81)

and R(ρ) is the general solution of Eq. (105). Try R = aρp; substitution

into the differential equation gives

ap2ρp−1 − aν2ρp−1 = 0 (82)

from which we find p = ±ν. The most general solution is

R(ρ) = aρν + bρ−ν, (83)

and so a single term in the expansion for Φ is

Φ(ρ, φ) = (Aρν +Bρ−ν) sin(νφ+ φ0) (84)

where A, B, and φ0 are constants to be determined by some boundary

conditions.
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There is also still the question of allowed values of ν. Let us specify

that on the sides of the wedge, Φ(ρ, 0) = Φ(ρ, β) = V0. To match this,

we use ν = 0 with b = d = 0 and ac = V0. Then the boundary condition

is matched on the edges of the wedge. Further, we must pick ν 6= 0

(and φ0) so that

sin(0 + φ0) = 0 (85)

and

sin(νβ + φ0) = 0; (86)

we can easily see that φ0 = 0 and νβ = nπ, n = 1, 2, ... will work.

Now add up solutions of the kind generated, that is, solutions with

different values of n and undetermined coefficients, to find the most

general solution (of this kind),

Φ(ρ, φ) = V0 +
∞∑

n=1

(
Anρ

nπ/β +Bnρ
−nπ/β) sin

(
nπφ

β

)
. (87)

where the constant term V0 corresponds to ν = 0.

If the physical region includes the origin (ρ → 0), then we cannot

have any negative powers of ρ because they will lead to singularities in

Φ at the origin; physically, we know that that won’t happen. Hence all

Bn are zero (And that is also why we didn’t keep the ln ρ part of the

ν = 0 solution). Thus we have

Φ(ρ, φ) = V0 +
∞∑

n=1

Anρ
nπ/β sin(nπφ/β). (88)

The remaining coefficients are determined by boundary conditions on a
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surface that closes the system; for example a surface specified by ρ = ρ0

for 0 ≤ φ ≤ β.

Without concerning ourselves with the details of fitting the expan-

sion to such a function, we can still see what are the interesting quali-

tative features of the potential and fields for ρ very small, which means

ρ << ρ0. There the potential will be dominated by the term propor-

tional to the smallest power of ρ, which is the n = 1 term,

Φ(ρ, φ) ≈ V0 + A1ρ
π/β sin(πφ/β), at small ρ, (89)

assuming that A1 6= 0. Taking appropriate derivatives of the potential,

we may find the components of the electric field,

Eρ = −∂Φ

∂ρ
= −πA1

β
ρπ/β−1 sin(πφ/β) (90)

and

Eφ = −1

ρ

∂Φ

∂φ
= −πA1

β
ρπ/β−1 cos(πφ/β). (91)

Also, the charge density on the conductor close to the origin is found

from

σ(ρ, 0) =
Eφ(ρ, 0)

4π
= −A1

4β
ρπ/β−1 (92)

and

σ(ρ, β) = −Eφ(ρ, β

4π
= −A1

4β
ρπ/β−1. (93)

Depending on whether β < π or β > π, one gets dramatically different

fields and charge densities as ρ → 0. For β < π, π/β − 1 > 0 and
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fields and σ vanish as ρ goes to 0. But for β > π, π/β − 1 < 0, and

consequently they become very large.

Of course, no real conductor has a perfectly sharp point; there is

some rounding on a scale of length δ, leading to a maximum field of

order

Emax ≈
A1

4β
δπ/β−1 ∼ V0

R

(
R

δ

)1−π/β
∼ E0

(
R

δ

)1−π/β
, (94)

where R is the overall size of the system, that is, the distance from the

point or wedge to ground. For a potential difference of, say 104 statv,

R = 1 km, δ = 1 mm, and β = 2π, we have Emax ∼ 30 statv/cm or

9000 v/cm.

4 Examples

4.1 Two-dimensional box with Neumann boundaries

Consider the following 2–dimensional boundary value problem.

d
dn
Φ = f(x) a

b

d
dn
Φ = 0

d
dn
Φ = 0 d

dn
Φ = 0ρ = 0
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Find Φ(x) inside the rectangle (Note that due to the Neumann B.C.

Φ(x) can only be determined up to an arbitrary additive constant).

Show that we must have
∫ a
0 dxf(x) = 0.

This problem is very similar to that discussed in Sec. III.C. The

difference is that this is in 2–d instead of 3–d, and has Neumann rather

than Dirichlet B.C. Thus, we search for solutions of

∇2Φ(x, y) = 0

in the form

Φ(x) = X(x)Y (y)

subject to the boundary conditions indicated above. Combining these

equations yields
1

X

d2X

dx2
+

1

Y

d2Y

dy2
= 0.

As in class, for arbitrary x and y, the only way to satisfy this equa-

tion is for both parts to be constant. Thus

1

X

d2X

dx2
= −α2;

1

Y

d2Y

dy2
= α2.

We choose this sign convention for the constant α so that we can easily

satisfy the B.C.. Thus the solutions take the form

X(x) = A sin(αx)+B cos(αx); Y (y) = C sinh{α(b−y)}+D cosh{α(b−y)}

Here we choose the form sinh{α(b− y)} rather than sinh{αy} with an

eye toward satisfying the B.C. easily.
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We can eliminate some of these coefficients by imposing the simple

B.C.
dX

dx

∣∣∣∣∣
x=0

=
dX

dx

∣∣∣∣∣
x=a

= 0

Clearly, to satisfy the first of these A = 0, and to satisfy the second

α = nπ/a. Thus

Xn(x) = cos(nπx/a)

Similarly, dY
dy

∣∣∣∣
y=b

= 0 indicates that C = 0. Thus

Φ(x, y) =
∞∑

n=0

an cos(nπx/a) cosh

(
nπ

a
(b− y)

)

The set {an} are determined by the remaining B.C.

∂Φ

∂n
= − ∂Φ

∂y

∣∣∣∣∣
y=0

= f(x)

f(x) =
∑

n
{nπ
a

sinh)nπb/a)an}cos(nπx/a)

or if we identify bn = nπ
a sinh(nπb/a)an

f(x) =
∑

n
bncos(nπx/a)

Now if f(x) is a regular function defined on the interval 0 < x < a,

then it may be represented as a cosine sum over all terms. However, the

sum above is incomplete since it does not include the b0 term. Thus we

can only solve the problem if b0 = 0, or equivalently,
∫
dxf(x) ∝ b0 = 0.

Physically, what does this mean? (Hint, consider Gauss’ law in 2–d,

and the fact that the rectangle encloses no charge since ∇2Φ = 0).
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The remaining bn may be determined in the usual way.

∫ a
0
dxf(x)cos(lπx/a) =

∞∑

n=1

bn
∫ a

0
dx cos(nπx/a) cos(lπx/a)

then as
∫ a

0
cos(nπx/a)cos(lπx/a) = δl,n

and using the relation between al and bl above we get

al =
2

lπ sinh(lπb/a)

∫ a
0
dxf(x) cos(lπx/a)

which define Φ through

Φ(x, y) = Φo +
∞∑

n=1

an cos(nπx/a) cosh

(
nπ

a
(b− y)

)
.

Now suppose that f(x) is defined as f(x) = Eo(1− 2x/a).

al =
2

lπ sinh(lπb/a)

∫ a
0
dxEo(1− 2x/a) cos(lπx/a)

or, after integrating,

al =
2

lπ sinh(lπb/a)

2a

l2π2

(
1− (−1)l

)

4.2 Numerical Solution of Laplace’s Equation

As we discussed earlier, it is possible to solve Laplace’s equation through

separation of variables and special functions only for a restricted set of

problems with separable geometries. When this is not the case, i.e.

when the bounding surfaces, or charge distribution (when solving Pois-

son’s equation) involve complex geometries, we generally solve for the

potential numerically.
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To illustrate how this is done, consider the following (exactly solv-

able) problem of a two-dimensional box with Dirichlet boundary con-

ditions.

ρ = 0

Φ = V1

V4
Φ = 

Φ = V3

Φ = V2

In order to solve Laplace’s equation numerically with these boundary

conditions, we will introduce a regular grid of width δ and dimensions

N ×M in the xy plane.

ρ = 0

Φ = V1

V4
Φ = 

Φ = V3

Φ = V2

It is then a simple matter to approximately solve

∇2Φ(x) =
∂2Φ(x)

∂x2
+
∂2Φ(x)

∂y2
= 0 (95)

≈ Φ(x+ δ, y)− 2Φ(x, y) + Φ(x− δ, y)

δ2
+

Φ(x, y + δ)− 2Φ(x, y) + Φ(x, y − δ)
δ2
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or, equivalently,

Φ(x+ δ, y) + Φ(x− δ, y) + Φ(x, y+ δ) + Φ(x, y− δ)−4Φ(x, y) = 0 (96)

Since Laplace’s equation is now written as a finite difference equation of

the potentials, it is a simple manner to enforce the boundary conditions

by replacing each occurrence of Φ(x) above, when x is the location of a

boundary, by the appropriate boundary value. For example, consider a

point in the upper left-hand quarter of the rectangle. This is illustrated

below, where the potential at each internal grid point is denoted by Φn

where integers n index each grid point.
Φ = V1

V4
Φ = 

Φ  

Φ  Φ  

Φ  
26

1

27

2

At the point n = 1, the finite-difference form of Laplace’s equation is

Φ2 + V4 + V1 + Φ26 − 4Φ1 = 0

or

Φ2 + Φ26 − 4Φ1 = −V4 − V1 .

In fact, we obtain one such linear equation for each grid point. The

equations are coupled of course in that each Φn occurs in at least two

other equations. Thus, we have a set of N×M linear equations to solve
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for the potential. This is done numerically by a variety of methods (see

the homework). This method is easily extended to handle irregular

boundaries, a mixture of Dirichlet and Neumann boundary conditions,

as well as finite (non-singular) charge densities in the solution of Pois-

son’s equation.

4.3 Derivation of Eq. 35: A Mathematica Session

In section II, we explore the problem of the potential between two

hemispheres maintained at opposite potentials. Using the Dirichlet

Greens function method, we had reduced the problem to quadruture.

Φ(ε, θ) =
V

4π
(1−ε2)

∫ 2π

0
dφ′



∫ π/2

0

sin θ′dθ′

(1 + ε2 − 2ε cos γ)3/2
−
∫ π
π/2

sin θ′dθ′

(1 + ε2 − 2ε cos γ)3/2




(97)

The integral is still difficult in the general case; however, alternative

approach, valid for ε = r/a << 1, is to expand the integrand in pow-

ers of ε and then to complete the integration term by term. This is

straightforward but tedious and generates a solution in powers of ε.

This is quite tedious to perform by hand, but is straightforward with a

symbolic manipulator like Mathematica.

In[1]:= integrand= Sin[thetap]/(1+ep^2-2 ep Cos[gamma])^(3/2)

Sin[thetap]
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Out[1]= ------------------------------

2 3/2

(1 + ep - 2 ep Cos[gamma])

In[2]:= integrand=integrand/.Cos[gamma]->Cos[theta] Cos[thetap] +

Sin[theta] Sin[thetap] Cos[phip]

Out[2]= Sin[thetap] /

2

> Power[1 + ep - 2 ep (Cos[theta] Cos[thetap] +

> Cos[phip] Sin[theta] Sin[thetap]), 3/2]

In[3]:= In[3]:= integrand1=Series[integrand,{ep,0,6}];

In[4]:= integrand1=Simplify[integrand1];

In[5]:= integrand1=Expand[integrand1];

In[6]:= answer1=Integrate[integrand1,{thetap,0,Pi/2}]-

Integrate[integrand1,{thetap,Pi/2,Pi}];
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In[7]:= answer1=Simplify[answer1];

In[8]:= answer2=Simplify[Integrate[answer1,{phip,0,2 Pi}]]

3

5 Pi (15 Cos[theta] - 7 Cos[3 theta]) ep

Out[8]= 6 Pi Cos[theta] ep + ----------------------------------------- +

16

5

21 Pi (130 Cos[theta] - 35 Cos[3 theta] + 33 Cos[5 theta]) ep 7

> -------------------------------------------------------------- + O[ep]

512

In[9]:= Legrules={Cos[5x_]-> 16 (Cos[x])^5 - 20 (Cos[x])^3 + 5 Cos[x],

Cos[3x_]-> 4 (Cos[x])^3 - Cos[x] }

3 5

Out[9]= {Cos[5 (x_)] -> 5 Cos[x] - 20 Cos[x] + 16 Cos[x] ,

3

> Cos[3 (x_)] -> -Cos[x] + 4 Cos[x] }
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In[10]:= answer2= Simplify[answer2/.Legrules]

3

5 Pi (Cos[theta] - 7 Cos[3 theta]) ep

Out[10]= 6 Pi Cos[theta] ep + -------------------------------------- +

16

5

21 Pi (60 Cos[theta] - 35 Cos[3 theta] + 33 Cos[5 theta]) ep 7

> ------------------------------------------------------------- + O[ep]

512

In[11]:= answer2= Simplify[answer2 V (1-ep^2)/(4 Pi)]

3

3 V Cos[theta] ep 7 V (13 Cos[theta] + 5 Cos[3 theta]) ep

Out[11]= ----------------- - ---------------------------------------- +

2 64

5

11 V (100 Cos[theta] + 35 Cos[3 theta] + 63 Cos[5 theta]) ep 7

> ------------------------------------------------------------- + O[ep]
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2048

which is the answer we found, Eq. (35).
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Although this is a new chapter, we continue to do things begun in

the previous chapter. In particular, the first topic is the separation of

variable method in spherical polar coordinates.

1 Laplace Equation in Spherical Coordinates

The Laplacian operator in spherical coordinates is

∇2 =
1

r

∂2

∂r2
r +

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
. (1)

This is also a coordinate system in which it is possible to find a solution

in the form of a product of three functions of a single variable each:

Φ(r, θ, φ) = R(r)P (θ)Q(φ) = U(r)P (θ)Q(φ)/r. (2)

Operate on Φ with ∇2, and set the result equal to zero to find

PQ

r

d2U

dr2
+

UQ

r2 sin θ

d

dθ

(
sin θ

dP

dθ

)
+

UP

r3 sin2 θ

d2Q

dφ2
= 0 (3)

Multiply by r3 sin2 θ/UPQ to find

r2 sin2 θ

U

d2U

dr2
+

sin θ

P

d

dθ

(
sin θ

dP

dθ

)
+

1

Q

d2Q

dφ2
= 0. (4)

The first two terms are independent of φ while the third depends only

on this variable. Thus the third must be a constant as must the sum

of the first two; the first of these conditions is

1

Q

d2Q

dφ2
= C or

d2Q

dφ2
= CQ, (5)
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from which it follows that Q ∼ e
√
Cφ.

Now, a change in φ by 2π corresponds to no change whatsoever in

spatial position; therefore, we must have Q(φ + 2π) = Q(φ) because

a function describing a measurable quantity must be a single-valued

function of position. Hence we can conclude that
√
C = im where m

is an integer so that eim2π = 1. Thus C = −m2, and Q(φ)→ Qm(φ) =

eimφ, with m = 0,±1,±2,... . We recognize that the functions Qm can

be used to construct a Fourier series and are a complete orthogonal set

on the interval φ0 ≤ φ ≤ φ+ 2π.

Returning now to Laplace’s equation, Eq. (4), and using −m2 for

1
Q
d2Q
dφ2 , we find

r2 sin2 θ

U

d2U

dr2
+

sin θ

P

d

dθ

(
sin θ

dP

dθ

)
−m2 = 0 (6)

or
r2

U

d2U

dr2
+

1

P sin θ

d

dθ

(
sin θ

dP

dθ

)
− 1

sin2 θ
m2 = 0. (7)

In this expression we recognize that the first term depends only on r

and next two, only on θ, so we as usual conclude that each term must

be separately a constant and that the constants must add to zero. The

first equation extracted by this device is

d2U

dr2
=
A

r2
U (8)

where A is the constant. It is a standard convention to write A as

l(l + 1) which is still quite general if l is allowed to be complex. Thus
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the preceding equation becomes

d2U

dr2
=
l(l + 1)

r2
U. (9)

The solutions of this ordinary, second-order, linear, differential equation

are two in number and are U ∼ rl+1 and U ∼ 1/rl. Before commenting

further on that, let us go on to the equation for P (θ).

1.1 Legendre Equation and Polynomials

Substitution of l(l + 1) for the first term in Eq. (7) produces

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+


l(l + 1)− m2

sin2 θ


P = 0. (10)

This is the generalized Legendre Equation; it is commonly written in

terms of a different variable, namely u ≡ cos θ. Then one has

d

dθ

(
sin θ

dP

dθ

)
=
du

dθ

d

du

(√
1− u2

du

dθ

dP

du

)
= −
√

1− u2
d

du

(
−(1− u2)

dP

du

)

(11)

and

l(l + 1)− m2

sin2 θ
= l(l + 1)− m2

1− u2
; (12)

hence,
d

du

(
(1− u2)

dP

du

)
+


l(l + 1)− m2

1− u2


P = 0 (13)

is the form of the generalized Legendre equation using u as the variable.

The interval of interest to us is 0 ≤ θ ≤ π which is −1 ≤ u ≤ 1.

We shall discuss first the special case of m = 0 which corresponds

to Q(φ) = 1, or a system for which Φ(x) is independent of φ; we shall
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call such a potential azimuthally invariant; there are many interesting

systems which are more or less of this type. The equation for P is

d

du

(
(1− u2)

dP

du

)
+ l(l + 1)P = 0, (14)

which is called the Legendre equation.

A standard procedure for solving this equation (and other similar

second-order differential equations) is to assume that the solution can

be written as a power series. Then there must be a smallest power α

in the series, so we can write

P (u) = uα
∞∑

j=0

aju
j =

∞∑

j=0

aju
j+α (15)

from which we may evaluate the derivatives as

dP

du
=
∞∑

j=0

(j + α)aju
j+α−1, (16)

d2P

du2
=
∞∑

j=0

(j + α)(j + α− 1)aju
j+α−2, (17)

and

− d

du
u2dP

du
= −

∞∑

j=0

(j + α)(j + α + 1)aju
j+α. (18)

Substitution into the Legendre equation gives

∞∑

j=0

[
(α + j)(α + j − 1)uα+j−2aj − (α + j)(α + j + 1)uα+jaj + l(l + 1)uα+jaj

]
= 0,

(19)

or, if we shift the zero of j in each term so as to isolate individual

powers of u,

α(α− 1)uα−2a0 + α(α + 1)a1u
α−1 +
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∞∑

j=0

[(α + j + 2)(α + j + 1)aj+2 + (l(l + 1)− (α + j)(α + j + 1)) aj]u
α+j = 0.(20)

The only way that this power series can vanish for all u on the

interval is to have the coefficient of each power of u vanish separately.

Thus I will list the coefficients:

j Coefficient of uα+j

−2 a0α(α− 1)

−1 a1α(α + 1)

j ≥ 0 [(α + j + 2)(α + j + 1)aj+2 + (l(l + 1)− (α + j)(α + j + 1)) aj]

The coefficient of the leading (smallest) power j = −2 is zero if α = 0

or 1; a0 = 0 is not an option because by definition the first term in the

expansion has a nonvanishing coefficient. Thus we find at this juncture

two possible allowed values of α.

α = 0, 1 (21)

In order that the coefficient of the next power j = −1 of u vanish we

must have either α = 0 or a1 = 0 (we can also have both); we can’t

have α = −1 because of our first condition. Finally, the condition that

the coefficient of uα+j vanish for j ≥ 0 is

aj+2 =
(α + j)(α + j + 1)− l(l + 1)

(α + j + 1)(α + j + 2)
aj. (22)

This is call the recurrence relation.
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Consider this relation when j is very large, much larger than 1. In

this limit it simplifies to the statement that aj+2 = aj(1+O(1/j)) which

will produce a power series (for large powers) in the form of a sum of

terms proportional to u2j, all with the same coefficient. At u→ 1, this

sum will not converge, and so P is singular at u = 1. This is not an

allowed behavior for a solution to the Laplace equation, so we cannot

have such a function representing the potential. What must therefore

happen is that the series terminates which means that there must be

some j such that aj 6= 0 while aj+2 = 0. Examining Eq. (22), we see

that this j is such that

(α + j)(α + j + 1)− l(l + 1) = 0. (23)

This condition requires that α + j = l which is a condition on l; since

α is 0 or 1, and j is a non-negative integer, we see that l must be an

integer equal to or larger than α.

l ∈ Z l ≥ α (24)

Now, our recurrence relation gives us aj+2 from aj; hence, starting

from a0, we can get only the even coefficients aj, j even, and starting

from a1, we get the odd coefficients. Lets consider the odd series and

the even series separately. First consider the even series. Since at

termination of the series α + j = l, we see that l is even when α = 0

and l is odd when α = 1. Thus the even series terminates when

α = 0 and l even (25)
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α = 1 and l odd

By similar arguments applied to the odd series, we can see that it

terminates when

α = 0 and l odd (26)

α = 1 and l even

Since l cannot be both odd and even, we can only have an even or

an odd series (they are actually equivalent). The other must be zero.

Since by convention, we choose a0 6= 0, it must be that the odd series

vanishes, and thus a1 = 0. Remembering that l is odd when α = 1 and

is even when α = 0, we see that the solutions are polynomials of degree

l. They are known as Legendre polynomials. It is easy to generate a few

of them, aside from normalization, starting from l = 0 and using the

recurrence relation. As for normalization, they are traditionally chosen

to be such that P (1) = 1. Let us add a subscript l to P to designate

the particular Legendre polynomial. The first few are

l Pl(u)

0 P0(u) = 1

1 P1(u) = u

2 P2(u) = 3
2u

2 − 1
2

3 P3(u) = 5
2u

3 − 3
2u

4 P4(u) = 35
8 u

4 − 15
4 u

2 + 3
8

8



There are other ways to generate the Legendre polynomials. For

example, one has Rodrigues’ formula which is

Pl(u) =
1

2ll!

dl

dul
(u2 − 1)l; (27)

it is easy to see that this generates a polynomial of degree l; one may

show that it is a solution to the Legendre equation by direct substitution

into that equation. Thus, it must be the Legendre polynomial (one

should also check normalization). If one expands the factor (u2 − 1)l

in Rodrigues’ formula using the binomial expansion and then takes the

derivatives, she/he will find that

Pl(u) =
(−1)l

2l

l∑

n≥l/2

(−1)n(2n)!

n!(l − n)!(2n− l)!u
2n−l (28)

Another way of generating Pl(u) is via the generating function

T (u, x) = (1− 2ux+ x2)−1/2 =
∞∑

l=0

xlPl(u). (29)

If one takes l derivatives of this function with respect to x and then

sets x = 0, the result is l!Pl(u).

The Legendre functions have many properties that we will need to

make use of from time to time. For summaries of these, see e.g., ,

the section on Legendre functions in Abramowitz and Stegun starting

on p. 332 and also the section on orthogonal polynomials starting on

p. 771. Here we summarize some of the most significant properties.

First, orthogonality and normalization. Consider the integral

∫ 1

−1
duPl(u)Pl′(u) =

1

2l+l′l!l′!

∫ 1

−1
du

dl

dul
(u2 − 1)l

dl
′

dul′
(u2 − 1)l

′
. (30)
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Suppose, without loss of generality, that l′ ≥ l and start by integrating

by parts,

∫ 1

−1
duPl(u)Pl′(u) =

1

2l+l′l!l′!



dl

dul
(u2 − 1)l

dl
′−1

dul′−1
(u2 − 1)l

′
∣∣∣∣∣∣

1

−1

−
∫ 1

−1
du

dl+1

dul+1
(u2 − 1)l

dl
′−1

dul′−1
(u2 − 1)l

′


 .(31)

The first term in brackets vanishes because (u2 − 1) is zero at the end

points of the interval. Continuing from the right-hand side, integrate

in like fashion l′ − 1 more times. The result is

∫ 1

−1
duPl(u)Pl′(u) = (−1)l

′ 1

2l+l′l!l′!

∫ 1

−1
du
dl+l

′
(u2 − 1)l

dul+l′
(u2 − 1)l

′
. (32)

Now, dl+l
′
(u2− 1)l/dul+l

′
= 0 if l′ > l, and so the integral is zero in this

case. If l′ = l, we have

∫ 1

−1
duPl(u)Pl(u) = (−1)l

(2l)!

22l(l!)2

∫ 1

−1
du(u2 − 1)l

= (−1)l
(2l)!

22l(l!)2
2(−1)l

(2l)!!

(2l + 1)!!
= 2

(2ll!)2(2l − 1)!!

22l(l!)2(2l + 1)!!
=

2

2l + 1
. (33)

Thus we have derived the relation

∫ 1

−1
duPl(u)Pl′(u) =

2

2l + 1
δll′ (34)

which expresses the orthogonality and normalization of the Legendre

polynomials.

Consider next recurrence relations. These provide, among other

things, a good way to generate values of Legendre polynomials on
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computers. A number of recurrence relations can be derived using

Rodrigues’ formula and the Legendre equation. Consider, for example,

dPl+1

du
=

1

2l+1(l + 1)!

dl+2

dul+2
(u2 − 1)l+1

=
l + 1

2l(l + 1)!

dl+1

dul+1

(
(u2 − 1)lu

)

=
1

2ll!

dl

dul
[
(u2 − 1)l + 2lu2(u2 − 1)l−1

]

=
1

2ll!

dl

dul
[
(u2 − 1)l + 2l(u2 − 1)l + 2l(u2 − 1)l−1

]

= (2l + 1)Pl(u) +
dPl−1(u)

du
, (35)

or
dPl+1(u)

du
− (2l + 1)Pl(u)− dPl−1(u)

du
= 0. (36)

From this relation and the Legendre equation

d

du

(
(1− u2)

dPl
du

)
+ l(l + 1)Pl = 0 (37)

one may derive additional standard recurrence relations for the Legen-

dre polynomials. Several of these are

(l + 1)Pl+1 − u(2l + 1)Pl + lPl−1 = 0

(1− u2)
dPl
du

+ luPl − lPl−1 = 0

dPl+1

du
− udPl

du
− (l + 1)Pl = 0. (38)

These may be used to advantage in numerous applications such as doing

integrals of products of two Legendre polynomials and a power of u.
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1.2 Solution of Boundary Value Problems with Azimuthal

Symmetry

Using what we have learned in the previous two sections, we are now

in a position to construct a general solution to the Laplace equation in

spherical coordinates under conditions of azimuthal invariance, that is,

when Φ(x) is independent of φ. The most general form that a solution

can have is

Φ(r, θ) =
∞∑

l=0

(
Alr

l +Blr
−(l+1)

)
Pl(cos θ). (39)

The Legendre polynomials form a complete set on the interval −1 ≤
u ≤ 1 or 0 ≤ cos θ ≤ π. Thus any specified φ-independent potential

on a spherical surface can be expressed as a sum of Pl’s. If the volume

in which a solution is to be found includes the origin, then none of the

terms ∼ r−(l+1) can be included in the sum as they are singular at the

origin, and the potential will not be singular there. Similarly, if the

volume extends to r → ∞, then no terms ∼ rl are allowed. In the

former case, the conclusion is that Bl = 0 for all l, and in the latter

case, all Al = 0.

We consider now some examples.
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1.2.1 Example: A Sphere With a Specified Potential

An isolated sphere of radius a is centered at the origin. By unspecified

means, the potential on its surface is maintained at

Φ(a, θ, φ) = Vo cos3(θ)

where θ is the polar angle. Find Φ(r, θ, φ) for all r > a.

This problem is azimuthally symmetric. Thus, in general,

Φ(r, θ) =
∞∑

l=0

(
Alr

l +Blr
−(l+1)

)
Pl(cos θ).

Since our volume contains all r > a, physics demands that Al = 0 for

all l. The constants Bl are then determined by matching the terms in

the series the boundary condition on the surface of the sphere. Recall

that

P0(x) 1

P1(x) x

P2(x) 1
2(3x2 − 1)

P3(x) 1
2(5x3 − 3x)

P4(x) 1
8(35x4 − 30x2 + 3)

P5(x) 1
8(63x5 − 70x3 + 15x)

So that,

Φ(a, θ, φ) = Vo cos3(θ) = Vo

(
2

5
P3(cos(θ)) +

3

5
P1(cos(θ))

)

13



Thus

Φ(r, θ, φ) = Vo


2

5

(
a

r

)4

P3(cos(θ)) +
3

5

(
a

r

)2

P1(cos(θ))


 .

1.2.2 Example: Hemispheres of Opposite Potential

For the first, suppose that we need to solve the Laplace equation in-

side of a sphere of radius a given that on the surface, the potential is

specified as follows:

Φ(a, θ) =





V, 0 ≤ θ ≤ π/2

−V, π/2 ≤ θ ≤ π.
(40)

VΦ =

-VΦ =

Then the expansion must take the form

Φ(r, θ) = V
∞∑

l=0

Al

(
r

a

)l
Pl(cos θ). (41)

Notice the introduction of the factor V on the right-hand side, along

with the use of the powers of a in the sum. These are included for

convenience. The scale of the potential and hence the size of a leading

term in the sum is set by V which also gives the correct dimensions

to the terms in the sum; it is thus natural to put this factor in each
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term. The powers of a are included for the same reasons; r is of order

a and has the same dimensions so that leading coefficients Al are of

order unity and have dimension unity.

On the spherical surface, we have

Φ(a, θ) = V
∞∑

l=0

AlPl(cos θ). (42)

In order to find a given coefficient An, we multiply this equation by

Pn(cos θ) and integrate over cos θ, recalling that d cos θ = − sin θdθ.

Making use of the orthogonality and normalization of the Legendre

polynomials, we find

∫ π
0
dθΦ(a, θ)Pn(cos θ) sin θ = V

∞∑

l=0

Al

(
2

2l + 1

)
δln = V

(
2

2n+ 1

)
An,

(43)

or

An =
2n+ 1

2

[∫ π/2
0

dθPn(cos θ) sin θ −
∫ π
π/2

dθPn(cos θ) sin θ

]

=
2n+ 1

2

[∫ 1

0
duPn(u)−

∫ 0

−1
duPn(u)

]
(44)

Now use the inversion property of the Legendre polynomials, Pn(u) =

(−1)nPn(−u) to conclude that

An =
2n+ 1

2

[∫ 1

0
duPn(u)− (−1)n

∫ 1

0
duPn(u)

]
=





0 n even

(2n+ 1)
∫ 1
0 duPn(u) n odd.

(45)

To complete the integral for the case of odd n we use a recurrence
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relation
dPn+1

du
= (2n+ 1)Pn +

dPn−1

du
(46)

so that:

An = (2n+1)
∫ 1

0
duPn(u) =

∫ 1

0
du

[
dPn+1

du
− dPn−1

du

]
= Pn−1(0)−Pn+1(0)

(47)

where we make use of the fact that Pn(1) = 1, independent of n. Fur-

ther, for even l,

Pl(0) = (−1)l/2
(l − 1)!!

l!!
(48)

where the “double factorial” sign means l!! = l(l − 2)(l − 4)...(2 or 1).

Hence

Pn−1(0)− Pn+1(0) = (−1)(n−1)/2


(n− 2)!!

(n− 1)!!
+

n!!

(n+ 1)!!




= (−1)(n−1)/2 (n− 2)!!

(n+ 1)!!
(n+ 1− n) = (−1)(n−1)/2 (n− 2)!!

(n+ 1)!!
(2n+ 1). (49)

Now set n = 2m+ 1, m = 0,1,2,..., and have

Φ(r, θ) = V
∞∑

m=0

Bm

(
r

a

)2m+1

P2m+1(cos θ) (50)

where

Bm = (−1)m
(2m− 1)!!

(2m+ 2)!!
(4m+ 3). (51)

The first few terms in the expansion are

Φ(r, θ) =
3

2
V




r

a
P1(cos θ)− 7

12

(
r

a

)3

P3 +
11

24

(
r

a

)5

P5 −
25

64

(
r

a

)7

P7 + ...





(52)
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1.2.3 Example: Potential of an Isolated Charge

Another method of finding the coefficients in the expansion makes use

of the fact that the expansion is unique. If, for example, we are able to

find the potential at fixed θ = θ0 for all r,

Φ(θ0, r) = g(r) =
∞∑

l=0

(
Alr

l +Blr
−(l+1)

)
Pl(cos θ0) (53)

then we can infer the form of the expansion by expanding g(r) in powers

of r and recognizing that the coefficient of rl must be Pl(cos θ0) times

a coefficient Al while the coefficient of (1/r)−(l+1) must be BlPl(cos θ0).

The most convenient value of θ0 to use is certainly 0 or π since we know

immediately the value of Pl(cos θ) in these instances.

Consider the following specific example: Suppose that there is a

charge q at a position x = aẑ

(0,0,a)

in which case we know that the potential is

Φ(r, θ) =
q√

r2 + a2 − 2ar cos θ
. (54)

For θ = 0, we have simply φ(x) = q/|r − a|. At r < a in particular,

17



this function has a simple power series expansion,

Φ(r, 0) =
q

a− r =
q

a

1

1− r/a =
q

a



1 +

r

a
+
r2

a2
+
r3

a3
+ ...



 . r < a

(55)

Hence, associating Pl with (r/a)l, we have

Φ(r, θ) =
q

a

∞∑

l=0

(
r

a

)l
Pl(cos θ); r < a (56)

the point is, the uniqueness of the expansion in terms of Legendre

polynomials tells us that this must be the solution. A similar expansion

done for r > a yields

Φ(r, θ) =
q

r

∞∑

l=0

(
a

r

)l
Pl(cos θ) r > a . (57)

There are two points that are worth making in connection with

these expansions. First, as stated earlier, there is a generating function

T (u, x) for the Legendre polynomials; see Eq. (29). We have just de-

rived it; that is, it is Φ, Eq. (54), equal to the sum in Eq. (56). Also,

we have obtained a convenient and useful expansion for the potential

of a point charge; in more general notation, we have derived

1

|x− x′| =
∞∑

l=0

rl<
rl+1
>

Pl(cos γ) (58)

where γ is the angle between x and x′ while r< (r>) is the smaller

(larger) of |x| and |x′|.
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1.3 Behavior of Fields in Conical Holes and Near Sharp Points

The field in the vicinity of the apex of a cone-shaped tip or depression

can also be investigated using the separation of variables method in

spherical coordinates. The solution for the potential is of the form, for

r small enough,

Φ(r, θ) ∼ rνPν(cos θ) (59)

where Pν(u) is a solution to the Legendre equation

d

du
(1− u2)

dPν
du

+ ν(ν + 1)Pν = 0 (60)

with ν to be determined.
z

P

r

θ

β

For the geometry shown, the solution must be well-behaved as θ → 0,

or u = cos θ → 1, but not necessarily as θ → π or u = −1. Introduce
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the variable y ≡ 1
2(1− u) or u = 1− 2y; then Eq. (60) becomes

−1

2

d

dy

(
1− (1− 2y)2

) (
−1

2

dPν
dy

)
+ ν(ν + 1)Pν = 0 (61)

or
d

dy

(
y(1− y)

dPν
dy

)
+ ν(ν + 1)Pν = 0. (62)

Let us look once again for a solution in the form of a power series

expansion,

Pν = yα
∞∑

j=0

ajy
j, (63)

with 0 ≤ y ≤ y0 ≤ 1. Then

dPν
dy

=
∞∑

j=0

(α + j)ajy
α+j−1, (64)

y(1− y)
dPν
dy

=
∞∑

j=0

(α + j)aj(y
α+j − yα+j+1), (65)

and

d

dy

(
y(1− y)

dPν
dy

)
=
∞∑

j=0

aj
[
(α + j)yα+j−1 − (α + j + 1)yα+j

]
(α + j).

(66)

Now combine these equations to find

∞∑

j=0

[
aj(α + j)2yα+j−1 + aj ((α + j)(α + j + 1) + ν(ν + 1)) yα+j

]
= 0

(67)

or, isolating individual powers of y,

a0α
2yα−1 = 0 (68)

20



which implies that α = 0, and

aj+1 = aj
j(j + 1)− ν(ν + 1)

(j + 1)2
. (69)

If one lets ν = l, a non-negative integer, the result is just the Legendre

polynomials (no surprise), viewed as functions of y. More generally, for

any real ν > 0, one finds that the solutions are Legendre functions of

the first kind of order ν.

Pν =
∞∑

j=0

aj(ν)yj, (70)

These are well-behaved (that is, they are not singular) functions of y

for y < 1 corresponding to u > −1 and are singular at y = 1.

For 1 > ν > 0, Pν(y) has a single zero; for 2 > ν > 1, Pν(y)

has two zeroes, etc. This is important because if we have a cone of

half-angle β with equipotential surfaces, we need ν to be such that

Pν ((1− cos β)/2) = 0. There will thus be a sequence of allowed values

of ν, which we designate by νk, k = 1, 2, 3,..., which are such that

yβ ≡ 1
2(1− cos β) ≡ kth zero of Pν.

The general solution at finite values of r, and including the point

r = 0 , is

Φ(r, θ) =
∞∑

k=1

Akr
νkPνk(cos θ). (71)

For small r, the leading term is the one with the smallest power of r,

that is the k = 1 term. Hence we may approximate the sum sufficiently

close to the origin by its leading term

Φ(r, θ) ≈ Arν1Pν1
(cos θ). (72)
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The dominant contribution to the electric field in this region comes

from this term; we have, by the usual E(x) = −∇Φ(x),

Er =
dΦ

dr
= −ν1Ar

ν1−1Pν1
(cos θ) (73)

and

Eθ = −1

r

dΦ

dθ
= A sin θ rν1−1 dPν1

(u)

du

∣∣∣∣∣∣
cos θ

(74)

The behavior of ν1 as a function of β is shown below. For β less than

about 0.8π, one has1 ν1 ≈ 2.405
β − 1

2 , while for β larger than about

the same number, ν1 ≈
[
2 ln

(
2

π−β

)]−1
. As β → π, ν1 → 0 and so

Er ∼ Eθ ∼ 1/r in this limit. The enhancement of a field near e.g., a

lightning rod is thus ∼ (R/δ) if R is the size of the system and δ is the

radius of curvature of the tip of the rod. Recall that in two dimensions

1This relation comes from study of the properties of the Legendre functions.
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we found an enhancement of order (R/δ)1/2 The enhancement is much

more pronounced in three dimensions; a three dimensional tip is a much

sharper thing than an edge.

1.4 Associated Legendre Polynomials; Spherical Harmonics

Let us now return to the more general case of a solution to Laplace’s

equation (i.e. a potential) which depends on the azimuthal angle φ.

Then we must have the functions of φ eimφ, or, equivalently, sinmφ

and cosmφ, and the differential equation we have to face on the space

of θ is
d

du
(1− u2)

dP

du
+


l(l + 1)− m2

1− u2


P = 0. (75)

The solutions are not finite polynomials in u in general but can be

expressed as infinite power series. They are only “well-behaved” on the

interval −1 ≤ u ≤ 1 when l ≥ |m|, with l an integer. Then there is just

one well-behaved solution which is known as the associated Legendre

function of degree l and order m. For m ≥ 0, the associated Legendre

function can be written in terms of the Legendre polynomial of the

same degree as

Pm
l (u) = (−1)m(1− u2)m/2

dm

dxm
(Pl(u)) ; (76)

one can read all about this in Abramowitz and Stegun on pages 332 to

353. Making use of Rodrigues’ formula for the Legendre polynomials,
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we see that

Pm
l (u) = (−1)m

(1− u2)m/2

2ll!

dl+m

dul+m
[(u2 − 1)l]. (77)

This last formula is also valid for negative m 2; comparing the two

cases, one may see that

P−ml (u) = (−1)m
(l −m)!

(l +m)!
Pm
l (u). (78)

As for the Legendre polynomials, there is a generating function for

the associated Legendre functions as well as a variety of recurrence

relations. For example, a recurrence relation in degree is given by

(2l + 1)uPm
l (u) = (l −m+ 1)Pm

l+1(u) + (l +m)Pm
l−1(u) (79)

and one in order is

Pm+1
l +

2mu√
1− u2

Pm
l (u) + (l −m+ 1)(l +m)Pm−1

l (u) = 0 (80)

Out of all of this, what is of importance to us is that the product

(Arl +Br−l−1)Pm
l (cos θ)eimφ (81)

is a solution of the Laplace equation and that the set of functions

eimφPm
l (cos θ) with l = 0, 1, 2,..., and m = −l,−l + 1,...l − 1, l form

a complete orthogonal set on the two-dimensional domain 0 ≤ θ ≤ π

and 0 ≤ φ ≤ 2π. As usual, completeness is difficult to demonstrate

2That’s in part a matter of definition.
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but orthogonality is quite straightforward using the formulae we have

already written down. Consider the integral

I =
∫ 2π

0
dφ

∫ π
0
dθ sin θe−imφPm

l (cos θ)eim
′φPm′

l′ (cos θ) = 2πδmm′
∫ 1

−1
duPm

l (u)Pm
l′ (u)

(82)

Assume l′ ≥ l, m ≥ 0, and write Pm
l′ in terms of P−ml′ :

I = 2πδmm′(−1)m
(l′ +m)!

(l′ −m)!

∫ 1

−1
duP−ml′ (u)Pm

l (u)

= 2πδmm′(−1)m
(l′ +m)!

(l −m)!

1

2l+l′l!l′!

∫ 1

−1
du

dl
′−m

dul′−m
(u2 − 1)l

′ dl+m

dul+m
(u2 − 1)l

= 2πδmm′(−1)l
′ (l′ +m)!

(l′ −m)!

1

2l+l′l!l′!

∫ 1

−1
du(u2 − 1)l

′ dl+l
′

dul+l′
(u2 − 1)l

= 2πδll′δmm′
(l +m)!(2l)!(2l)!!

(l −m)!22l(l!)2(2l + 1)!!
2 =

4π

2l + 1
δll′δmm′

(l +m)!

(l −m)!
.(83)

Thus we may construct an orthonormal set of functions on the surface

of the unit sphere; these are called spherical harmonics and are defined

as

Yl,m(θ, φ) ≡
√√√√√

2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (84)

with m = −l,−l+1, ..., l−1,m and l = 0, 1, 2, .... These functions have

the property that

Y ∗l,m(θ, φ) = (−1)mYl,−m(θ, φ). (85)

The condition of orthonormality is

∫ 2π

0
dφ

∫ π
0

sin θdθY ∗l,m(θ, φ)Yl′m′,(θ, φ) = δll′δmm′. (86)
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The completeness relation (not derived as usual) is

∞∑

l=0

m∑

m=−l
Y ∗l,m(θ′, φ′)Yl,m(θ, φ) = δ(φ− φ′)δ(cos θ − cos θ′). (87)

A general function g(θ, φ) is expanded in terms of the spherical har-

monics as

g(θ, φ) =
∑

l,m

AlmYl,m(θ, φ) (88)

with

Alm =
∫ 2π

0
dφ

∫ π
0
dθ sin θg(θ, φ)Y ∗l,m(θ, φ). (89)

1.5 The Addition Theorem

In applications we will occasionally have need to know the function

Pl(cos γ) where γ is the angle between two vectors x and x′; it will

prove to be useful to be able to write this function in terms of the

variables θ, φ, θ′, and φ′.

x

y

z

θ

θ

φ

φ

γ

x

x’

’

’

It must be possible to do so in terms of any complete sets of functions of

these variables such as the spherical harmonics. In fact, the expansion
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is

Pl(cos γ) =
4π

2l + 1

l∑

m=−l
Y ∗l,m(θ′, φ′)Yl,m(θ, φ). (90)

We shall derive this expression as an example of the use of spherical

harmonics and their properties. First, let us set up a second coordinate

system rotated relative to the original one in such a way that its polar

axis lies along the direction of x′. In this system, the vector x has

components (rR, θR, φR).

x

y

z
x

x’
R

R

R

φ
R

γ = θR

Further, θR = γ. Next, we may regard Pl(cos γ) as a function of θ and

φ for fixed θ′ and φ′ and so can certainly expand it as

Pl(cos γ) =
∞∑

l′=0

l∑

m′=−l
Al′m′(θ

′, φ′)Yl′m′,(θ, φ). (91)

Similarly, in terms of spherical harmonics whose arguments are coordi-

nates in the rotated system, it is easy to see that

Pl(cos γ) =

√√√√ 4π

2l + 1
Yl,0(θR, φR). (92)
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Now, the spherical harmonics satisfy the differential equation

∇2Yl,m(θ, φ) +
l(l + 1)

r2
Yl,m(θ, φ) = 0 (93)

and they also satisfy this equation with variables θR, φR. But the

Laplacian operator ∇2 = ∇ · ∇ is a scalar object which is invariant

under coordinate rotations which means we can write it in the unrotated

frame while writing the spherical harmonic in the rotated frame:

∇2Yl,m(θR, φR) +
l(l + 1)

r2
Yl,m(θR, φR) = 0. (94)

Now recall that

Yl,0(θR, φR) =

√√√√2l + 1

4π
Pl(cos γ) =

√√√√2l + 1

4π

∞∑

l′=0

l′∑

m′=−l′
Al′m′(θ

′, φ′)Yl′m′,(θ, φ).

(95)

If we plug this into the differential equation above, we obtain:

∞∑

l′=0

l′∑

m′=−l′
Al′m′(θ

′, φ′)[∇2Yl′m′,(θ, φ) +
l(l + 1)

r2
Yl′m′,(θ, φ)] = 0 (96)

or

∞∑

l′=0

l′∑

m′=−l′
Al′m′(θ

′, φ′)


−l

′(l′ + 1)

r2
+
l(l + 1)

r2


Yl′m′,(θ, φ) = 0. (97)

This equation can be true only if l = l′ or if Al′m′ = 0. Thus we have

demonstrated that Al′m′ = 0 for l′ 6= l, and the expansion of Pl reduces

to

Pl(cos γ) =
l∑

m=−l
Alm(θ′, φ′)Yl,m(θ, φ). (98)
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The coefficients in this expansion are found in the usual way for an

orthogonal function expansion,

Alm =
∫
dΩPl(cos γ)Y ∗l,m(θ, φ) =

∫
dΩRPl(cos θR)Y ∗l,m(θ, φ). (99)

Following the same line of reasoning, we may express
√

4π/(2l + 1)Y ∗l,m(θ, φ)

as a sum of the form
√√√√ 4π

2l + 1
Y ∗l,m(θ, φ) =

l∑

m′=−l
Blm′(m)Ylm′(θR, φR) (100)

where Bl0 in particular is

Bl0(m) =
∫
dΩR

√√√√ 4π

2l + 1
Y ∗l,m(θ, φ)Y ∗l,0(θR, φR)

=
∫
dΩRY

∗
l,m(θ, φ)Pl(cos θR) ≡ Alm. (101)

However, from Eq. (76), it is clear that when u = 1 Pm
l (u) = 0 when

m 6= 0,and Pm
l (u) = Pl(u) when m = 0, thus

√√√√ 4π

2l + 1
Y ∗l,m(θ, φ)

∣∣∣
θR=0

= Bl0(m)

√√√√2l + 1

4π
Pl(1) = Bl0(m)

√√√√2l + 1

4π
,

(102)

so

Alm = Bl0(m) =
4π

2l + 1
Y ∗l,m(θ, φ)

∣∣∣
θR=0

= Y ∗l,m(θ′, φ′)
4π

2l + 1
, (103)

where the last step follow since when θR = 0, x = x′. Thus,

Pl(cos γ) =
4π

2l + 1

l∑

m=−l
Y ∗l,m(θ′, φ′)Yl,m(θ, φ). (104)

Thus ends our demonstration of the spherical harmonic addition theo-

rem.
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An application if this theorem is that we can write 1
|x−x′| as an ex-

pansion in spherical harmonics:

1

|x− x′| =
∞∑

l=0

rl<
rl+1
>

Pl(cos γ) =
∞∑

l=0





4π

2l + 1

rl<
rl+1
>

l∑

m=−l

[
Y ∗l,m(θ′, φ′)Yl,m(θ, φ)

]


 .

(105)

This expansion is often useful when faced with common integrals in

electrostatics such as as
∫
d3x′ρ(x′)/|x− x′|.

1.6 Expansion of the Green’s Function in Spherical Harmon-

ics

More as an example of the use of the addition theorem than anything

else, let us devise an expansion for the Dirichlet Green’s function for

the region V bounded by r = a and r = b, a < b.

a

b

This function can be written as

G(x,x′) =
1

|x− x′| + F (x,x′) (106)

where ∇2F = 0 in V. Thus it must be possible to write

G(x,x′) =
∞∑

l=0

4π

2l + 1

rl<
rl+1
>

l∑

m=−l
Y ∗l,m(θ′, φ′)Yl,m(θ, φ)
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+
∞∑

l=0

l∑

m=−l


Alm

rl

bl+1
+Blm

al

rl+1


Yl,m(θ, φ) (107)

where Alm and Blm can be functions of x′. The first term on the

right-hand side is 1
|x−x′| and the second is a general solution of the

Laplace equation. The coefficients are determined by requiring that

the boundary conditions on G(x,x′) are satisfied (G(x,x′) = 0 for x

on one of the two bounding spherical surfaces). At r = a (r< = r = a

r> = r′), we have

0 =
∑

l,m





4π

2l + 1

al

r′l+1
Y ∗l,m(θ′, φ′) + Alm

al

bl+1
+Blm

1

a



Yl,m(θ, φ) = 0,

(108)

from which it follows, using the orthogonality of the spherical harmon-

ics, that
4π

2l + 1

al

r′l+1
Y ∗l,m(θ′, φ′) + Alm

al

bl+1
+Blm

1

a
= 0. (109)

By similar means applied at r = b (r< = r′ r> = r = b), one may show

that
4π

2l + 1

r′l

bl+1
Y ∗l,m(θ′, φ′) + Alm

1

b
+Blm

al

bl+1
= 0. (110)

These present us with two linear equations that may be solved for Alm

and Blm; the solutions are

Alm =
4π

(2l + 1)
Y ∗l,m(θ′, φ′)


 a

2l+1

blr′l+1
− r′l

bl



/
1−

(
a

b

)2l+1

 (111)

and

Blm =
4π

2l + 1
Y ∗l,m(θ′, φ′)


a

l+1r′l

b2l+1
− al+1

r′l+1



/
1−

(
a

b

)2l+1

 . (112)
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From these and the expansion Eq. (107), we find that the Green’s

function is

G(x,x′) =
∑

l,m

4π

(2l + 1)
[
1−

(
a
b

)2l+1
]Y ∗l,m(θ′, φ′)Yl,m(θ, φ)






1−

(
a

b

)2l+1

 rl<
rl+1
>

+

(
a

b

)2l+1 rl

r′l+1
− r′lrl

b2l+1
+

(
a

b

)2l+1 r′l

rl+1
− a2l+1

rl+1r′l+1



 .(113)

This result, if we can call it that, can be written in a somewhat more

compact form by factoring the quantity {...}. Suppose that r> = r′

and r< = r; then

{...} =


rl − a2l+1

rl+1




 1

r′l+1
− r′l

b2l+1




≡

rl< −

a2l+1

rl+1
<




 1

rl+1
>

− rl>
b2l+1


 . (114)

If, on the other hand, r> = r and r< = r′, then

{...} =


r′l − a2l+1

r′l+1




 1

rl+1
− rl

b2l+1


 ≡


rl< −

a2l+1

rl+1
<




 1

rl+1
>

− rl>
b2l+1


 .

(115)

Comparing these results, we see that we may in general write

G(x,x′) =
∑

l,m

4π/(2l + 1)

1−
(
a
b

)2l+1 Y
∗
l,m(θ′, φ′)Yl,m(θ, φ)


rl< −

a2l+1

rl+1
<




 1

rl+1
>

− rl>
b2l+1


 .

(116)

Notice that the Green’s functions for the interior of a sphere of radius

b and for the exterior of a sphere of radius a are easily obtained by

taking the limits a → 0 and b → ∞, respectively. In the former case,
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for example, one finds

G(x,x′) =
∑

l,m

4π

2l + 1
Y ∗l,m(θ′, φ′)Yl,m(θ, φ)


 rl<
rl+1
>

− rl<r
l
>

b2l+1




=
1

|x− x′| −
∑

l,m

4π

2l + 1
Y ∗l,m(θ′, φ′)Yl,m(θ, φ)

b

r′
rl

(b2/r′)l+1

=
1

|x− x′| −
b/r′

|x− x′R|
(117)

where x′R = (b2/r′, θ′, φ′) in spherical coordinates.

2 Laplace Equation in Cylindrical Coordinates; Bessel

Functions

In cylindrical coordinates the Laplacian is

∇2 =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
. (118)

We once again look for solutions of the Laplace equation in the form

of products of functions of a single variable,

Φ(x) = R(ρ)Q(φ)Z(z); (119)

Following the usual procedure (substitute into the Laplace equation;

divide by appropriate functions to obtain terms which appear to depend

on a single variable; argue that such terms must be constants; etc.), we

wind up with the following three ordinary differential equations:

d2Q

dφ2
+ ν2Q = 0, ν = 0,±1,±2,..., (120)
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d2Z

dz2
− k2Z = 0, (121)

and
d2R

dρ2
+

1

ρ

dR

dρ
+


k2 − ν2

ρ2


R = 0 (122)

where the value of k is yet to be determined, and ν is determined as

indicated by the same argument as in the case of spherical coordinates;

the functions Q(φ) are the same as in spherical coordinates also, Q(φ) ∼
eiνφ.

The choice of k is specified by the sort of boundary conditions one

has. One could imagine having to satisfy quite arbitrary conditions on

an end face z = c where c is constant; alternatively, one may have to

fit some function on a side wall ρ = c. In the former case, one wants

to have functions of ρ which form a complete set on an appropriate

interval of ρ; and in the latter case, one wants functions of z to form a

complete set on some interval of z; in both cases we will need a complete

set of functions of φ, which we have. Now, looking at the equations for

R and Z, we can see that the latter function in particular is going to be

simple exponentials of kz; for k real, these do not form a complete set;

for k imaginary, they are sines and cosines and can form a complete

set. We may not recognize it yet, but a similar thing happens to R; for

k imaginary, it is roughly exponential in character and we cannot get a

complete set of functions in this way. But for k real, the functions R are

oscillatory (although not sines and cosines) and can form a complete
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set.

k Z(z) R(ρ)

real incomplete (e±kz) complete (oscillatory)

imaginary complete (ei±|k|z) incomplete

The functions of z in either case (k real or imaginary) are familiar to

us and do not require further discussion. The functions of R, although

probably known to all of us at least vaguely, are much less familiar

so we will spend some time presenting their most important, to us,

properties. Let’s start by defining a dimension-free variable x = kρ.

Then Eq. (122) becomes

k2d
2R

dx2
+ k2 1

x

dR

dx
+ k2


1− ν2

x2


R = 0 (123)

or
d2R

dx2
+

1

x

dR

dx
+


1− ν2

x2


R = 0 (124)

which is Bessel’s Equation. Its solutions are Bessel functions of order

ν. In our particular case, ν is an integer, although this need not be

true in general. If k is imaginary, then x is imaginary, so we must deal

with Bessel functions of imaginary argument; viewed as functions of a

real variable |x|, these are known as modified Bessel functions.

For a given ν, there are two linearly independent solutions of Bessel’s

equation. Their choice is somewhat arbitrary since any linear combi-

nation of them is also a solution. One possible and common way to
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choose them is as follows:

Jν(x) =

(
x

2

)ν ∞∑

j=0

(−1)j(x/2)2j

j!Γ(j + ν + 1)
(125)

and

J−ν(x) =

(
x

2

)−ν ∞∑

j=0

(−1)j(x/2)2j

j!Γ(j − ν + 1)
(126)

where

Γ(z) ≡
∫ ∞

0
dt tz−1e−t (127)

is the gamma function which, for z a real, positive integer n, is Γ(n) =

(n− 1)!. For z = 0 or a negative integer, it is singular.

The two Bessel functions introduced above are linearly independent

solutions of Bessel’s equation so long as ν is not an integer. It is easy to

verify that they are solutions by direct substitution into the differential

equation. If, however, ν is an integer, they become identical (aside from

a possible sign difference) and so do not provide us with everything we

need in this case, which is the important one for us. Another function,

which is a solution and which is linearly independent of either of the

two solutions introduced above (taken one at a time) is given by

Nν(x) ≡ Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
. (128)

This is the Neumann function; it is also called the Bessel function of

the second kind of order ν. 3

3Why does this work? Consider the limit ν → m by La Hopital’s rule. To formally show that

Nm and Jm are independent, one must calculate the Wronskian and show that W [Nm, Jm] 6= 0.Note

that in Abramowitz and Stegun’s book, this function is written as Yν(x); see p. 358.
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For ν = n, a non-negative integer, the Neumann function has a series

representation which is

Nn(x) ≡ −1

π

(
x

2

)−n n−1∑

j=0

(n− j − 1)!

j!

(
x

2

)2j

+
2

π
ln(x/2)Jn(x)

−1

π

(
x

2

)n ∞∑

j=0



[ψ(j + 1) + ψ(n+ j + 1)]

(x/2)2j(−1)j

j!(n+ j)!



 (129)

where ψ(y) = d(ln Γ(y))/dy is known as the digamma or psi function.

Finally, for some purposes it is more useful to use Bessel functions

of the third kind, also called Hankel functions; these are given by

H(1)
ν = Jν(x) + iNν(x) (130)

and

H(2)
ν = Jν(x)− iNν(x). (131)

It is not easy to see what are the properties of the various kinds of

Bessel functions from the expansions we have written down so far. As it

turns out, their behavior is really quite simple; many of the important

features are laid bare by their behavior at small and large arguments.

For x << 1 and real, non-negative ν, one finds

Jν(x) =
1

Γ(ν + 1)

(
x

2

)ν
[1−O(x2)] (132)

and

Nν(x) =





2
π [ln(x/2) + 0.5772 + ...] ν = 0

−Γ(ν)
π

(
2
x

)ν
ν 6= 0

(133)
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For x >>> 1, ν,

Jν(x) ∼
√√√√ 2

πx
cos

(
x− νπ

2
− π

4

)
(134)

and

Nν(x) ∼
√√√√ 2

πx
sin

(
x− νπ

2
− π

4

)
. (135)
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Notice in particular that as x → 0, the Bessel functions of the first

kind are well-behaved (finite) whereas the Neumann functions are sin-

gular; N0(x) has only a logarithmic singularity while the higher-order

functions are progressively more singular. At large (real) argument, on

the other hand, both Jν(x) and Nν(x) are finite and oscillatory. Hence,

the Bessel functions (by which we mean the Jν(x)) of non-negative or-

der are allowable as solutions of the Laplace equation at all values of

ρ; the Neumann functions, on the other hand, are not allowable on a

domain which includes the point ρ = 0.
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Bessel functions of all kinds satisfy certain recurrence relations. It

is a straightforward if tedious matter to show by direct substitution of

the series expansions that they obey the following:

Ων+1 −
2ν

x
Ων + Ων−1 = 0 (136)

and

Ων+1 + 2
dΩν

dx
− Ων−1 = 0. (137)

By taking the sum and difference of these relations, we find also

Ων±1 =
ν

x
Ων ∓

dΩν

dx
. (138)

These are valid for all three kinds of Bessel functions.

The Bessel function Jν(x) can form a complete orthogonal set on

an interval 0 ≤ x ≤ x0 in much the same way as the sine function

sin(nπx/x0) does (Note that x0 is a zero of the sine function.) Similarly,

let us denote the nth zero of Jν(x) by xνn and then form the functions

Jν(xνny), with n = 1,2,... . Then it turns out that for fixed ν, these

functions provide a complete orthogonal set on the interval 0 ≤ y ≤ 1.

As usual, we shall not demonstrate completeness. Orthogonality can

be demonstrated by making use of the Bessel equation and recurrence

relations. It is a useful exercise to do so. Start from the Bessel equation

for Jν(xy),

1

y

d

dy


y
dJν(xy)

dy


 +


x2 − ν2

y2


 Jν(xy) = 0 (139)
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Multiply this equation by yJν(x
′y) and integrate from 0 to 1:

∫ 1

0
dy



Jν(x

′y)
d

dy


y
dJν(xy)

dy


 + yJν(x

′y)


x2 − ν2

y2


 Jν(xy)



 = 0

(140)

or if we integrate the first term by parts:

Jν(x
′y)y

dJν(xy)

dy

∣∣∣∣∣∣

1

0

−
∫ 1

0
dy
dJν(x

′y)

dy
y
dJν(xy)

dy
+

∫ 1

0
dyyJν(x

′y)Jν(xy)


x2 − ν2

y2


 = 0 (141)

Similarly, if we start from the differential equation for Jν(x
′y) and per-

form the same manipulations, we find the same equation with x and x′

interchanged. Subtract the second equation from the first to find

Jν(x
′)x

dJν(u)

du

∣∣∣∣∣∣
x

−Jν(x)x′
dJν(u)

du

∣∣∣∣∣∣
x′

+(x2−x′2)
∫ 1

0
ydyJν(xy)Jν(x

′y) = 0

(142)

If we let x = xνn and x′ = xνn′, two distinct zeros of the Bessel function,

then the integrated terms vanish and we may conclude that the Bessel

functions Jν(xνny) and Jν(xνn′y) are orthogonal when integrated over

y from 0 to one, provided a factor of y is included in the integrand.

We still have to determine normalization in the case n = n′. In the

preceding equation, let x′ = xνn and rearrange the terms to have

−Jν(x)xνn
dJν(u)

du

∣∣∣∣∣∣
xνn

= −
∫ 1

0
dy y(x2 − x2

νn)Jν(xνny)Jν(xy), (143)

or
∫ 1

0
dy yJν(xνny)Jν(xy) =

Jν(x)xνn(dJν(u)/du)|xνn
x2 − x2

νn

. (144)
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Use L’Hôpital’s Rule to evaluate the limit of this expression as x→ xνn:

∫ 1

0
dy y[Jν(xνny)]2 =

1

2

dJν(x)

dx

∣∣∣∣∣∣
xνn

dJν(u)

du

∣∣∣∣∣∣
xνn

=
1

2
[J ′ν(xνn)]2, (145)

where the prime ’ denotes a derivative with respect to argument. Now

employ the recurrence relation

xJ ′ν(x) = νJν(x)− xJν+1(x) (146)

to find J ′ν(xνn) = −Jν+1(xνn), from which the normalization integral

becomes
∫ 1

0
dy y[Jν(xνny)]2 =

1

2
[Jν+1(xνn)]2 (147)

The expansion of an arbitrary function of ρ on the interval 0 ≤ ρ ≤ a

may be written as

f(ρ) =
∞∑

n=1

AnJν(ρxνn/a) (148)

with coefficients which may be determined from the orthonormalization

properties of the basis functions as

An =

∫ a
0 ρdρf(ρ)Jν(ρxνn/a)

a2

2 [Jν+1(xνn)]2
. (149)

This type of expansion is termed a Fourier-Bessel series. The com-

pleteness relation for the basis functions is

∞∑

n=1

Jν(ρxνn/a)Jν(ρ
′xνn/a)

(a2/2)[Jν+1(xνn)]2
= δ(ρ2/2− ρ′2/2) ≡ 1

ρ
δ(ρ− ρ′). (150)

It is also of importance to consider the case of imaginary k, k =

iκ with real κ. Then the functions of z are oscillatory, being of the
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form Z(z) ∼ e±iκz, and the functions of ρ will be Bessel functions of

imaginary argument, e.g., Jν(iκρ). For given ν2, there are two linearly

independent solutions which are conventionally chosen to be Jν and

H(1)
ν , the reason being that they have particularly simple behaviors

at large and small arguments. Let us introduce the modified Bessel

functions Iν(x) and Kν(x),

Iν(x) ≡ i−νJν(ix) (151)

Kν(x) ≡ π

2
iν+1H(1)

ν (ix). (152)

These have the forms at small argument, x << 1,

Iν(x) =
1

Γ(ν + 1)

(
x

2

)ν
(153)

and

Kν(x) =





− ln(x/2) + 0.5772 + ... ν = 0

Γ(ν)
2

(
2
x

)ν
ν 6= 0

(154)

while at large argument, x >>> 1, ν

Iν(x) =
1√
2πx

ex
[
1 +O

(
1

x

)]
(155)

and

Kν(x) =

√
π

2x
e−x

[
1 +O

(
1

x

)]
. (156)
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From these equations we see that Iν(x) is well-behaved for x < ∞,

corresponding to ρ < ∞, while Kν(x) is well-behaved for x > 0 or

ρ > 0, from which we can decide which function(s) to use in expanding

any given potential problem.

Let’s look at some examples of expansions in cylindrical coordinates.

2.1 Example I

Consider a charge-free right-circular cylinder bounded by S given by

ρ = a, z = 0, and z = c. Let Φ(x) be zero on S except for the top face

z = c where Φ(ρ, φ, c) = V (ρ, φ) with V given.
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x

y

z

a
c

Φ = 0

Φ = V( )ρ,φ

For this distribution of boundary potential, we need a complete set

of functions of the space 0 ≤ φ ≤ 2π and 0 ≤ ρ ≤ a. Thus we take (k

real) Z(z) to be damped exponentials (sinh and cosh) and R(ρ) to be

ordinary Bessels functions.

Φ ∼ eimφ (AJm(kρ) +BNm(kρ)) (cos(kz)± sin(kz)) (157)

It will be convenient if each of these functions is equal to zero when

ρ = a and also if each one is zero when z = 0. With just a little

thought,

1. No Neumann functions Nm since they diverge at ρ = 0

2. No cosh since it is finite at z = 0, and hence would not satisfy the

B.C.

3. Since Jm and J−m are not independent, use J|m|.

we realize that we want to use the hyperbolic sine function of z and

the Bessel function of the first kind for R. Our expansion is thus of the
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form

Φ(ρ, φ, z) =
∞∑

m=−∞

∞∑

n=1

Amne
imφJ|m|(xmnρ/a) sinh(xmnz/a) (158)

where xmn is the nth zero of J|m|(x). Each term in the sum is itself

a solution of the Laplace equation; each one satisfies the boundary

conditions on z = 0 and ρ = a, and, for given n, we have a complete

set of functions of φ while for given m, we have a complete set of

functions of ρ.

The coefficients in the expansion are determined from the condition

that Φ reduce to the given potential V on the top face of the cylinder.

Making use of the orthogonality of the basis functions of both φ and ρ,

we have
∫ a

0
ρdρ

∫ 2π

0
dφV (ρ, φ)J|m|(xmnρ/a)e−imφ (159)

= Amn2π(a2/2)[J|m|+1(xmn)]
2 sinh(xmnc/a)

or

Amn =

∫ 2π
0 dφ

∫ a
0 ρdρe

−imφJ|m|(xmnρ/a)V (ρ, φ)

πa2 sinh(xmnc/a)[J|m|+1(xmn)]2
. (160)

For any given function V , one may now attempt to complete the inte-

grals.

2.2 Example II

Consider the same geometry as in the first example but now with

boundary condition Φ = 0 on the constant-z faces and some given

value V (φ, z) on the surface at ρ = a.
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x

y

z

a
c

Φ = 0

Φ = 0

= V( ,z)Φ φ

For this system we need a complete set of functions on the domain

0 ≤ z ≤ c and 0 ≤ φ ≤ 2π which means picking k imaginary, k = iκ.

The appropriate functions of z are sin and cos, and the appropriate

functions of ρ are the modified Bessels Functions.

Φ ∼ eimφ (sin(kz)± cos(kz)) (AI(kρ) +BK(kρ)) (161)

1. We may eliminate the K modified Bessels functions since they

diverge when ρ→ 0.

2. Since Im is not independent of I−m, we use I|m|.

3. The cos function of z cannot be zero at both z = 0 and z = c, and

so may be eliminated.

4. Take k = nπ/c so that sin(nπz/c)|z=c = 0
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Thus the expansion is

Φ(ρ, φ, z) =
∞∑

m=−∞

∞∑

n=1

Amne
imφ sin(nπz/c)I|m|(nπρ/c) (162)

with coefficients given by

Amn =

∫ c
0 dz

∫ 2π
0 dφe−imφ sin(nπz/c)V (φ, z)

πcI|m|(nπa/c)
(163)

2.3 B.V.P. on Large Cylinders

By applying the same considerations, one may solve other boundary-

value problems on cylinders. A case of special interest, and requiring

special treatment, is one in which a→∞; then kνn ≡ xνn/a becomes a

continuous variable and instead of a Fourier-Bessel series, we come up

with an integral. The orthogonality condition is

∫ ∞
0
xdxJm(kx)Jm(k′x) =

1

k
δ(k − k′) (164)

and the completeness relation is the same, with different names for the

variables,
∫ ∞

0
kdkJm(kx)Jm(kx′) =

1

x
δ(x− x′). (165)

To see how this comes to be, consider the completeness relation on a

finite interval,

∞∑

n=1

Jm(xmnρ/a)Jm(xmnρ
′/a)

(a2/2)[Jm+1(xmn)]2
=

1

ρ
δ(ρ− ρ′) (166)

and then let a→∞, defining xmn/a as k while noting that the interval

between roots of the Bessel function at large argument is π. Also, the
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asymptotic form of the Bessel function, valid at large argument, is

Jm+1(xmn) ∼
√√√√ 2

πxmn
cos[nπ + (m− 1/2)π/2− (m+ 1)π/2− π/4]

=

√√√√ 2

πxmn
cos[(n− 1)π] = −(−1)n

√√√√ 2

πxmn
.(167)

Using this substitution in the closure relation for the finite interval

and taking the limit of large a, one finds that the sum becomes the

integral, Eq. (165). Of course, this is not a rigorous derivation because

the asymptotic expression is not arbitrarily accurate for all roots.

2.4 Green’s Function Expansion in Cylindrical Coordinates

We can expand the Dirichlet Green’s function in cylindrical coordinates

in much the same manner as we did in spherical coordinates. We shall

go through the derivation to expose a somewhat different approach from

what we employed in the latter case. We consider a domain between

two infinitely long right-circular cylindrical surfaces. Then G must

vanish on these surfaces and it must also satisfy a Poisson equation,

∇2G(x,x′) = −4πδ(ρ2/2− ρ′2/2)δ(φ− φ′)δ(z − z′)

= −4π

ρ
δ(ρ− ρ′)δ(φ− φ′)δ(z − z′). (168)

Let us write the delta functions of φ and z using closure relations,

δ(z − z′) =
1

2π

∫ ∞
−∞

dkeik(z−z′) =
1

π

∫ ∞
0
dk cos[k(z − z′)] (169)
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and

δ(φ− φ′) =
1

2π

∞∑

m=−∞
eim(φ−φ′). (170)

Similarly, expand the φ-dependence and z-dependence of G using the

same basis functions,

G(x,x′) =
∞∑

m=−∞

∫ ∞
0

dk

2π2
gm(k, ρ, ρ′)eim(φ−φ′) cos[k(z − z′)]. (171)

Now operate on this expansion with the Laplacian using cylindrical

coordinates:

∇2G(x,x′) =
∞∑

m=−∞

∫ ∞
0

dk

2π2


 d2

dρ2
+

1

ρ

d

dρ
−

m

2

ρ2
+ k2




 gme

im(φ−φ′) cos[k(z − z′)]

= −4π

ρ
δ(ρ− ρ′)

∞∑

m=−∞

∫ ∞
0

dk

2π2
eim(φ−φ′) cos[k(z − z′)].(172)

Multiply by members of the basis sets, i.e., e−im
′(φ−φ′) and cos[k′(z−z′)]

and integrate over the appropriate intervals of φ− φ′ and z− z′ to find

a differential equation for gm,

d2gm
dρ2

+
1

ρ

dgm
dρ
−

k2 +

m2

ρ2


 gm = −4π

ρ
δ(ρ− ρ′). (173)

For ρ 6= ρ′, this is Bessel’s equation with solutions (viewed as functions

or ρ) which are Bessel functions of imaginary argument, or, as we have

described, modified Bessel functions of argument kρ. Because of the

delta function inhomogeneous term, the solution for ρ < ρ′ is different

from the solution for ρ > ρ′. Hence we may write that, for ρ < ρ′,

gm(k, ρ, ρ′) = A<(ρ′)Km(kρ) +B<(ρ′)Im(kρ), (174)
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and, for ρ > ρ′,

gm(k, ρ, ρ′) = A>(ρ′)Km(kρ) +B>(ρ′)Im(kρ). (175)

The various coefficients are functions of ρ′ and must in fact be linear

combinations of Km(ρ′) and Im(ρ′) because G(x,x′) is also a solution

of ∇′2G(x,x′) = 0 when ρ 6= ρ′; another way to see this same point is

to recall that G(x,x′) = G(x′,x). Finally, the coefficients are further

constrained by the condition that the Green’s function must vanish

when ρ becomes equal to the radius of either the inner or outer cylinder.

Let us at this point restrict our attention to a special (and simple)

limiting case which is the infinite space. The radius of the inner cylinder

is 0 and that of the outer one becomes infinite in this limit. Then we

have to have a function gm which remains finite as ρ → 0 which can

only be Im(kρ); also, we must have gm vanish as ρ → ∞, which can

only be Km(kρ). Thus we have

gm(k, ρ, ρ′) =





A<(ρ′)Im(kρ) ρ < ρ′

A>(ρ′)Km(kρ) ρ > ρ′.
(176)

The symmetry condition on G tells us that A<(ρ′) = AKm(kρ′) while

A>(ρ′) = AIm(kρ′). All of these conditions are included in the state-

ment

gm(k, ρ, ρ′) = AIm(kρ<)Km(kρ>) (177)

where ρ< (ρ>) is the smaller (larger) of ρ and ρ′.
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The remaining constant in the determination of gm can be found

from the required normalization of G. Let us integrate Eq. (173) across

the point ρ = ρ′:

∫ ρ′+ε
ρ′−ε

dρ


 d2

dρ2
+

1

ρ

d

dρ
−

k2 +

m2

ρ2




 gm = −4π

ρ′
(178)

If we take the limit of ε→ 0 and realize that gm is continuous while its

first derivative is not, we find that this equation gives

lim
ε→0

dgm
dρ

∣∣∣∣∣

ρ′+ε

ρ′−ε
= A


Im(kρ′)k

dKm(x)

dx

∣∣∣∣∣∣
kρ′
−Km(kρ′)k

dIm(x)

dx

∣∣∣∣∣∣
kρ′


 = −4π

ρ′
,

(179)

or

A[Im(x)K ′m(x)−Km(x)I ′m(x)] = −4π

x
; (180)

the primes denote derivatives with respect to the argument x. The

quantity in [...] here is the Wronskian of Im and Km. One may learn

by consulting, e.g., the section on Bessel functions in Abramowitz and

Stegun, that Bessel functions have simple Wronskians:

Im(x)K ′m(x)−Km(x)I ′m(x) ≡ W [Im(x), Km(x)] = −1

x
. (181)

Comparison of the two preceding equations leads one to conclude that

A = 4π. Hence our expansion of G(x,x′), which is just 1/|x− x′|, is

G(x,x′) =
1

|x− x′| =
2

π

∞∑

m=−∞

∫ ∞
0
dkeim(φ−φ′) cos[k(z−z′)]Im(kρ<)Km(kρ>)

(182)
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which may also be written entirely in terms of real functions as

1

|x− x′| =
4

π

∫ ∞
0
dk cos[k(z − z′)]

×




1

2
I0(kρ<)K0(kρ>) +

∞∑

m=1

cos[m(φ− φ′)]Im(kρ<)Km(kρ>)



 . (183)

This turns out to be a useful expansion of 1/|x− x′|; it also provides a

starting point for the derivation of some other equally useful expansions.

For example, if we let x′ = 0, then ρ< = 0 and all Im vanish except for

m = 0, while 1/|x − x′| = 1/|x| = 1/
√
ρ2 + z2, so we find, using also

I0(0) = 1,
1√

ρ2 + z2
=

2

π

∫ ∞
0
dk cos(kz)K0(kρ). (184)

Other useful identities may be obtained.
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In this chapter, we shall first develop the multipole expansion for

the electrostatic potential and field. This is useful not only for ex-

pressing the field produced by a localized distribution of charge but

is also a helpful preliminary investigation for the business of describ-

ing the electrostatics of materials containing a large number of charges

and which are not conductors. These are called dielectrics. After de-

veloping a means of describing their electrostatic properties, we shall

turn to boundary value problems in systems comprising dielectrics and

conductors.

1 Multipole Expansion: An Alternate Approach

In this section we will develop the multipole expansion for a charge

distribution by an alternate means to that used in Jackson (the method

used in Jackson is discussed in the appendix to this chapter).

We begin by writing the general expression for the potential due to

a finite charge distribution ρ(x),

Φ(x) =
∫
d3x′ ρ(x′)

1

|x− x′| (1)

Let us consider the case where the origin is within the charge distri-

bution and where |x| = r is large compared to the size of the charge

distribution. Then we may expand the denominator in the integrand.

1

|x− x′| =
1√

r2 − 2x · x′ + r′2
=

1

r
√

1− 2x · x′/r2 + r′2/r2
. (2)
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Using the Taylor series expansion

1√
1− x = 1 +

1

2
x+

3

8
x2 + · · · (3)

We get

1

|x− x′| =
1

r

(
1 +

1

2

(
2x · x′/r2 − r′2/r2

)
+

3

8

(
4(x · x′)2/r4

))
+order

(
(r′/r)3

)

(4)
1

|x− x′| =
1

r
+

x · x′
r3

+
1

2r5

(
3(x · x′)2 − r′2r2

)
+ · · · (5)

With this expansion, we can rewrite Φ(x) as

Φ(x) =
∫
d3x′

ρ(x′)

r
+

∫
d3x′

(x · x′)ρ(x′)

r3
+

∫
d3x′

ρ(x′)

2r5

(
3(x · x′)2 − r′2r2

)
+ · · ·

Φ(x) =
1

r

∫
d3x′ ρ(x′) monopole +

x

r3
·
∫
d3x′ x′ρ(x′) dipole +

1

2r5

∫
d3x′ ρ(x′)

(
3(x · x′)2 − r′2r2

)
quadrupole + · · ·

or

Φ(x) =
1

r

∫
d3x′ ρ(x′) +

x

r3
·
∫
d3x′ x′ρ(x′) +

1

2

∑

i,j

xixj
2r5

∫
d3x′ ρ(x′)

(
3x′ix

′
j − r′2δij

)
+ · · · (6)
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where the sum is over the 3 coordinates of space. If we follow the

conventional designation of these terms, then

Φ(x) = q/r +
x · p
r3

+
1

2

∑

ij

Qij
xixj
r5

+ · · · (7)

where

q =
∫
d3x′ ρ(x′) Monopole Moment (8)

p =
∫
d3x′ ρ(x′)x′ Dipole Moment (9)

Qij =
∫
d3x′ ρ(x′)

(
3x′ix

′
j − r′2δij

)
Quadrupole Moment (10)

Note that the matrix Qij is real an symmetric (Qij = Qji). Thus

only six of its elements are independent. In fact, only 5 are, since there

is an additional constraint that Tr(Q) = 0.

Tr(Q) =
∑

i

Qii =
∫
d3x′ ρ(x′)

∑

i

3x′ix
′
i − r′2δii (11)

then as
∑

i

3x′ix
′
i = 3r′2 (12)

∑

i

r′2δii = 3r′2 (13)

Tr(Q) =
∫
d3x′ ρ(x′)

(
3r′2 − 3r′2

)
= 0 (14)

Thus it must be that Q33 = −Q11 − Q22 and only two of the diagonal

components are independent. This is important, since we will relate Q

to the set of five Y m
2 .
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1.1 Interpretation of the Moments

What is the interpretation of these terms? The monopole moment is

just the total charge of the distribution. Thus the monopole term gives

the potential due to the charge as a whole. Since the monopole term in

the potential falls off like 1/r at large r, it will dominate the far field

potential whenever q is finite. The dipole moment is the first moment

of the charge distribution; and refers to how the charge is distributed

in space. Similarly, the quadrupole moment is a second moment of the

distribution.

Let’s consider the dipole in some detail, with the model shown below.

a/2

a/2-

q

- q

Φ(x) =
q

|x− a/2| +
−q

|x + a/2| (15)

For |x| = r À a we can expand

1

|x∓ a/2| =
1

r

(
1± x · a

2r2

)
+ order(a2/r2) (16)

Φ(x) ≈ q

r

(
1 +

x · a
2r2

)
− q

r

(
1− x · a

2r2

)
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≈ q

r3
x · a

(17)

If a → 0 in the diagram (such that qa = p = constant), then the

higher order terms vanish, and this result becomes exact. In such a

limit (a→ 0, qa = p) we obtain a point dipole.

Now consider the field due to a dipole p = pẑ

Φ(x) =
p cos θ

r2
(18)

Er = −∂Φ

∂r
=

2p cos θ

r3
(19)

Eθ = −1

r

∂Φ

∂θ
=
p sin θ

r3
, (20)

p

or more formally (in Cartesian coordinates).

Ep = −∇
(

p · x
r3

)
= −∑

i

ei
∂

∂xi

∑

j

pjxj
r3

= −∑

i

ei


pi
r3
− 3

∑

j

pjxj
r4

xi
r




(21)
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where we have used the fact that ∂r
∂xi

= xi
r .

Ep =
3x(p · x)

r5
− p

r3
(22)

In a similar fashion the potential term involving the quadrupole

moment may be interpreted as due to an assembly of four charges

(hence the name).

+

+

-

-

Higher-order moments (octapole, hexadecapole, etc.) may be generated

in a like fashion.

It is important to note that the interpretation of the moments de-

pends strongly upon the origin. For example consider a point charge

located at the origin.

x

z

y
q

8



Φ(x) = q/r (23)

It has only a monopole term. Now displace the charge by a vector a.

x

z

y
a

q

Φ(x) =
q

|x− a| = q/r + q
a · x
r3

+
q

2

3(a · x)2 − a2r2

r5
+ · · · (24)

This has moments to all orders! watch your origin!

1.2 Dipole Field

It is interesting to ask what is going on at the origin, where our expan-

sion fails. Let’s look at the particular case of the dipole field, assuming

a point dipole at r = 0. For any r > 0, we know that the potential is

as given in Eq. (17). Once before we found such a potential when we

solved the problem of a conducting sphere of radius a in a uniform ex-

ternal applied field E0. What we found was that the potential outside

of the sphere is

Φ(x) = −E0r cos θ + E0a
3 cos θ

r2
(25)
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while inside of the sphere the potential is a constant and the field is

zero.

- - -

+
+ +

+

- -

E=0 E=0E=E z E=

- - -

+
+ +

+

- -

zE -

If one removes the applied field but retains the field produced by

the charges on the surface of the sphere, then the potential for r > a

is simply E0a
3 cos θ/r2 which may also be written as p · x/r3 with p =

E0a
3ẑ. By the superposition principle, the field at r < a is now −E0 =

−p/a3. What this means is that the surface charge on the sphere has

a dipole moment and, remarkably, no other multipole moments. Now

let us fix p while letting a → 0. The region r < a shrinks, while the

field inside gets bigger. As the region shrinks to zero, the field strength

at the origin (i.e., inside the sphere) diverges. The integral of the field

over the spherical domain r < a is, however, a constant and equal to

−(4π/3)p. Consequently, in the limit of vanishing a, this field may

be represented by a delta function, −(4π/3)pδ(x). The total field of a

point dipole of moment p is thus the dipolar field, Eq. (21), for r > 0

10



plus a delta-function piece at the origin,

E(x) =
3n(p · n)− p

r3
− 4π

3
pδ(x). (26)

Our derivation of this result is not completely general since it is based

on the limiting form of the solution to one particular problem involving

a sphere; the result is, however, quite correct for any point dipole. See

Jackson, Chapter 4, Section 1, for a more complete discussion of this

point.

2 Energy of the Charge Distribution

In this section we consider the energy of a localized charge distribution

ρ(x) in an external applied electric field E(x) which may be described

through its potential Φ(x). This energy is, as we know from Chapter

1,

W =
∫
d3x ρ(x)Φ(x). (27)

ρ (  )x

Source of E
To calculate the energy of a charge
distribution in an external field,
we must ignore the self field

Not source of E
Notice that there is no factor of 1/2; that is because we are finding

the interaction energy of a charge distribution with a field which is not

11



produced by that same charge distribution and so we do not double

count the energy in Eq. (24) by omitting this factor.

Now if we assume that Φ changes slowly over the region where ρ is

appreciable, then we can expand the potential Φ around the origin of

coordinates using a Taylor series:

Φ(x) = Φ(0) + x · ∇Φ(x)|x=0 +
1

2

3∑

i,j=1

xixj
∂2Φ(x)

∂xi∂xj

∣∣∣∣∣∣
x=0

+ ...

= Φ(0)− x · E(0)− 1

2

3∑

i,j=1

xixj
∂Ej(x)

∂xi

∣∣∣∣∣∣
x=0

+ ... (28)

where E(x) is the external applied field. Now, this field is such that its

sources are far away, or at least are zero in the region where the charge

distribution ρ(x) is located. Therefore ∇ · E(x) = 0 in this region and

so we can add a term proportional to ∇ · E(x) to the potential Φ(x)

without changing the result of the integral in Eq. (24). We choose this

term to be

1

6
r2∇ · E(x)|x=0 =

1

6

3∑

i,j=1

r2δij
∂Ej(x)

∂xi

∣∣∣∣∣∣
x=0

. (29)

Hence we have

Φ(x) = Φ(0)− x · E(0)− 1

6

3∑

i,j=1

(3xixj − r2δij)
∂Ej(x)

∂xi

∣∣∣∣∣∣
x=0

, (30)

plus higher-order terms. If we substitute this expansion into the ex-

pression for the energy, we find

W = qΦ(0)− p · E(0)− 1

6

3∑

i,j=1

Qij
∂Ej(x)

∂xi

∣∣∣∣∣∣
x=0

+ .... (31)
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2.1 Example: Dipole Energies

As an example making use of this result, suppose that we have a dipole

of moment p1 at point x1 in the presence of a second dipole of moment

p2 at x2. Then the energy of interaction is

x
1

p
1

x2

p
2

W = −p1 · E2(x1) =
−3(p2 · n)(p1 · n) + p1 · p2

|x1 − x2|3
(32)

where n = (x1−x2)/|x1−x2| is a unit vector pointing from the second

dipole to the first (or vice versa).

2.2 Example: Quadrupole Energies

A second example has to do with the coupling of a nucleus’ electric

quadrupole moment to an external field (such as that from the elec-

trons). By choosing the origin in an appropriate fashion, one can guar-

antee that any nucleus (any object with a non-zero net charge, in fact)

has no dipole moment. Hence the first interesting term in the nucleus’

interaction with an external field is the electric quadrupole interaction.

Further, a nucleus in an angular momentum eigenstate |J,M > will

have a charge density which is invariant under rotation around the

13



z-axis,

ρ ∝ Y M
J Y M∗

J ∝ eiMφe−iMφ

leading to a diagonal electric quadrupole moment tensor (the matrix of

Qlm’s) which is such that Qxx = Qyy. Since the trace of this tensor (or

matrix) is zero, this means that1 Qxx = Qyy = −Qzz/2. The upshot is

that the interaction of the nuclear quadrupole with the applied field is

W = −1

4
Qzz

∂Ez(x)

∂z

∣∣∣∣∣∣
x=0

. (33)

Bear in mind that the moment Qzz is a function of the internal state

of the nucleus and in particular of its angular momentum states. The

quadrupolar coupling thus provides a way to lift the degeneracy asso-

ciated with the different quantum numbers M for the z-component of

angular momentum.

3 Dipoles in Nature: Permanent and Induced

Why are dipoles so interesting?? The reason is that many atoms and

molecules have dipole moments which affects their chemical and elec-

trical properties.

1Or maybe that means this: Q11 = Q22 = −Q33/2.
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3.1 Permanent Dipoles

An example of a molecule with a permanent electric dipole moment is

water H2O.

|p| = 1.86x10−18esu− cm = 1.86Debyes

O

H H104

--

+ +
o

This dipole moment corresponds to approximately one electron charge

separated across the size of the molecule. Other polar molecules have

similar dipole moments (NH3: 1.47 debyes, HCl: 1.03 debyes).

Atoms or Nuclei cannot have permanent dipole moments, since they

are in states of good angular momentum l: the dipole moment of an

electron in such a state vanishes. In contrast the molecules mentioned

above are in sp hybrid orbitals, so that l is not a good quantum number,

and thus a dipole moment is allowed.

3.2 Induced Dipoles

Atoms and molecules that lack permanent dipoles can have induced

dipole moments when placed in an external electric field.

15



3.2.1 Static Models

We have already seen the effect of an external field inducing a dipole

moment in a metallic sphere.

+
+ +

+

- - ---

+

E

Φ(x) = Φexternal(x) + Φinduced(x) (34)

Φinduced(x) =
p · x
r3

p = Eoa
3ẑ (35)

The induced dipole moment is proportional to the external electric field.

If we define α to be the polarizability of the body, then

p = αE (36)

where, in this case, α = a3. We see that in general the polarizability of

the order of magnitude of the volume of the body. Thus for an atom

αatom ≈ atomic volume ≈ 10−24cm3 (37)

This is consistent with experiment.

To see what this means in realistic terms, consider an atom placed

in a relatively large electric field E = 100 statvolts/cm.

16



+

- a
E

Lets assume that the induced dipole moment is

p = αE = ea (38)

where e is an electronic charge and |a| is the distance which separates

the charge. Then

a =
αE

e
≈ (10−24cm3)(100statvolts/cm)

4.8× 10−10esu
≈ 2× 10−13cm (39)

This is of nuclear dimensions ( 2 fermi’s). Thus the atom is quite rigid

to polarization. To have a distortion of the order of and Angstrom,

we need a field of order E = 5 × 106statvolts/cm. This type of field

strength is only available with a laser.

3.2.2 Dynamic Model

We may also calculate α for an atom using a simple dynamical model.

Suppose that the electron is bound to the ion by a spring, so that, if

displaced from equilibrium, it feels a restoring force.

Frestore = −mω2
ox (40)

where m is the electronic mass, and ωo the frequency of oscillation. If

we apply an external electric field E, the displacement x of the electron

17



from equilibrium will grow until Frestore is equal and opposite to the

electronic force on the electron.

−(−eE) = −mω2
ox so x =

−eE
mω2

o

(41)

The induced dipole moment is then

p = −ex =
e2

mω2
o

E = αE (42)

So that the atomic polarizability is

α =
e2

mω2
o

(43)

Now, we expect that ωo ≈ angular frequency of oscillation, which is

approximately the frequency of the light which is emitted by atoms.

For a wavelength of 3000 Angstroms ωo ≈ 6× 1015s−1, giving

α ≈ 6× 10−24cm3.

This is in accord with our previous estimate.

4 Dielectric Materials

The electrostatic properties of some insulating materials may be mod-

eled by a collection of dipole molecules, each with a dipole moment.

Higher order moments are usually neglected. Our main interest here is

not in the dipole moments of individual atoms or molecules, but rather

the dipole moments of atoms or molecules in a solid. In such a medium,

18



we expect that there will be no net permanent dipole moment. This is

for two reasons:

(1) If there is a permanent dipole moment in the atoms or

molecules which make up the system, then the orientation

of them will be random. Thus the average dipole moment

< p > will be zero.

(2) If there is no permanent dipole moment of the component

atoms or molecules, then in the absence of an external

field, each will have no dipole moment, and thus the average

dipole moment < p > will also be zero

4.1 Statistical Mechanics

Now suppose that we do apply an external electric field, what will

< p > be then? What effect will thermal fluctuations have? We must

again consider the ensemble of molecules for two different cases.
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4.1.1 Induced dipoles

If each molecule has an induced dipole moment, then the Hamiltonian

for each molecule is

U = −p · E +
1

2
mω2

0r
2. (44)

We can thus find the thermal average value of x by averaging it over

the distribution exp(−U/kT ), where k is Boltzmann’s constant and T

is the temperature:

< x >=

∫
d3x e−U/kTx
∫
d3x e−U/kT

(45)

Let E define the z-direction and have

< x >=

∫
d3x e(eEr cos θ− 1

2mω
2
0r

2)/kT r cos θẑ
∫
d3x e(eEr cos θ− 1

2mω
2
0r

2)/kT

=

∫
dze(eEz− 1

2mω
2
0z

2)/kTzẑ
∫
dze(eEz− 1

2mω
2
0z

2)/kT

=

∫
due−

1
2mω

2
0u

2/kT (u+ eE/mω2
0)ẑ

∫
due−

1
2mω

2
0u

2/kT
(46)

where u ≡ z − eE/mω2
0. The remaining integrals cancel nicely and we

find that

< x >= (eE/mω2
0)ẑ p = (e2E/mω2

0)ẑ α = (e2/mω2
0) (47)

the same as before we introduced thermal fluctuations in the separation.

Thus thermal effects vanish.
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4.1.2 Permanent Dipoles

For permanent dipoles (remember H2O) we may do something similar

using a Boltzmann distribution exp(−U/kT ), as in the previous exam-

ple but this time U is simply

U = −p · E (48)

with p fixed in magnitude. Thus, letting E define the z-direction again,

we have

< p >=

∫
dΩepE cos θ/kTp cos θẑ
∫
dΩepE cos θ/kT

= kT ẑ
d

dE
ln

[∫ 1

−1
duepEu/kT

]
. (49)

The integral is easy; upon taking the derivative and simplifying the

result insofar as possible, one finds

< p >= pẑ (coth(Ep/kT )− kT/Ep) . (50)

As T → 0, this becomes pẑ, meaning that the dipole is perfectly aligned

with the field. For large T , kT >> pE, we may expand the hyperbolic

cosine and find the leading term

< p >=
1

3

p2E

kT
ẑ. (51)

This is the most frequently encountered situation at e.g., room tem-

perature; it leads to a polarizability which is

α =
1

3

p2

kT
. (52)
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4.1.3 Both

Finally, if a molecule has both a permanent moment and the possibly of

being polarized, then the polarizability consists of both a temperature-

independent term and one which varies inversely as the temperature,

α =
e2

mω2
0

+
p2

3kT
. (53)

In each of the model calculations, where the dipoles are induced or

permanent or both, the mean dipole moment induced in the material

by an external field is proportional to that field. This is the basic

assumption which we will use to explore the electrostatics of dielectric

materials.

4.2 Macroscopic Electrostatics; Dielectrics

Before this section, we have considered only one kind of macroscopic

material, conductors. Within conductors, there is no electric field, we

said, because a conductor is an equipotential. If we had bothered to

think a bit about that statement, we would have realized that it is a

statement which applies only in some average sense. If one looks at the

microscopic structure of a conductor or any other material, one finds

electrons and nuclei with very strong electric fields reflecting the forces

that act between these objects.
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r

V(r)

There is no electric field only in some macroscopic sense, that is, only if

one averages over some region with a size large compared to an atomic

size (which can still be much smaller than the size of a macroscopic

probe whose size is at least of order 1µ).

Now we want to do the same with other materials, i.e., noncon-

ductors or insulators. Such materials are termed dielectrics. We con-

cern ourselves again only with the macroscopic electric field, which is

the true electric field averaged over some small domain, but it will no

longer be zero, so that we must work a little harder to understand how

to describe these materials.

Start by supposing that a piece of material is subjected to an exter-

nally applied electric field. This field will alter the multipole moments

of the constituents of the material, which we shall call molecules (They

could also be atoms or ions), yielding a net polarization of the material.

Now let’s calculate the potential do to this polarization. If we regard

it as a sum over the dipoles of each molecule, then

Φ(x) =
∑

j

pj · (x− xj)

|x− xj|3
(54)

For now assume the the molecules are neutral, so that there is no
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monopole term. In addition, assume that quadrupole and higher terms

in the series are negligible. If we define the polarization vector

P(x) = dipole moment per unit volume, (55)

then this becomes,

Φ(x) =
∫
d3x′


P(x′) · (x− x′)

|x− x′|3



=
∫
d3x′


P(x′) · ∇′


 1

|x− x′|




 . (56)

where we have used the expression

(x− x′)

|x− x′|3 = −∇ 1

|x− x′| = ∇′ 1

|x− x′| (57)

If we integrate by parts, we get the form

Φ(x) =
∫
d3x′∇′ ·


 P(x′)

|x− x′|


−

∫
d3x′

(∇′ ·P(x′))

|x− x′| (58)

There are two ways to regard this expression. Assume we have a

volume V with P(x′) finite inside and zero outside.

First case. Let V be bounded by a surface S just inside the volume.

Then using the divergence theorem, the equation above becomes.

V

S
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Φ(x) =
∫

S
d2x′

n′ ·P(x′)

|x− x′| −
∫

V
d3x′

(∇′ ·P(x′))

|x− x′| (59)

Thus we can define the surface and volume polarization charge densi-

ties:

σp(x) = Pn(x) or σp(x) = P(x) · n (60)

ρp(x) = −∇ ·P(x) (61)

These have simple physical interpretations. For example, in the fig-

ure below on the left, the material has a constant finite P throughout

its volume, so that at the surface, charge congregates since all of the

dipoles are aligned. Also, in the figure on the right a a certain location

within a material the dipoles point radially outward (yielding a positive

divergence). At the center of this region, where the tails of the dipoles

are concentrated, there is an excess of negative charge (hence the −
sign in ρp(x) = −∇ ·P(x).
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Second case. Let V be bounded by a surface S just outside of the

region of finite polarization. Then
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V

S

Φ(x) =
∫

S
d2x′

n′ ·P(x′)

|x− x′| −
∫

V
d3x′

(∇′ ·P(x′))

|x− x′| (62)

=
∫

V
d3x′

ρp(x
′)

|x− x′| (63)

Although the surface charge does not appear explicitly, it still must

be there. It may be obtained from the discontinuity in P(x) at the

surface of the polarization region. To see this consider a small pill box

enclosing a small section of the volume and surface of the polarized

material. From the divergence theorem

n

n

da P

P

= 0

= 0in

out

∫

V
d3x∇ ·P(x) =

∫

S
d2xn ·P(x), (64)

or if the region is small enough

(−n ·Pin + n ·Pout) da = ∇ ·Pd3x (65)
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so that

n ·P da = −∇ ·P d3x, (66)

Thus −∇ · P must have a delta-function at the surface, and we still

have the surface polarization charge.

To understand the surface polarization charge, consider a uniformly

polarized slab of dielectric.

+

+

+
+
+
+
+

-

-
-
-
-
-
-

−ρ ρ

ad

P

=

p =





constant inside

0 outside
(67)

We may actually regard this as two overlapping slabs, one of uniform

positive charge +ρ, and one of uniform negative charge −ρ, separated

by a small distance distance a. The whole is then electrically neutral,

with uniform polarization

P = ρa = dipole moment per unit volume. (68)
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The charge density is then

ρp = −∇ ·P = 0 Inside the slab (69)

σp = P · n =





P > 0 on rhs

−P < 0 on lhs
(70)

The potential due to the slab is just that of two oppositely charged

sheets separated by a distance d. The corresponding electric field is

just obtained by summing that due to each sheet

+σ−σ

E=2πσE=-2πσ

E =0outinE =0

E =





0 outside the slab

−4πP inside the slab
(71)

(We used Ein = 2πσ + 2πσ = 4πσ and σ = P )

4.2.1 Electric Displacement

Thus far we have assumed that the dielectric is neutral. If there are

free charges present as well, then the total charge density is

ρtot = ρfree −∇ ·P (72)

Then as E is generated by all charges, we have

∇ · E = 4πρtot = 4π (ρfree −∇ ·P) (73)
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or,

∇ · (E + 4πP) = 4πρfree (74)

The vector (E + 4πP) is generated by free charges only. We will

define the electric displacement D as this field

D = E + 4πP ∇ ·D = 4πρfree (75)

As an example, consider the uniformly polarized slab

P

, here

ρfree = 0 everywhere (76)

Thus E + 4πP = 0, and

E =





0 where P = 0

−4πP where P 6= 0
(77)

Another simple example using D with the same slab geometry is the

parallel plate capacitor.

-

-
-

-
-

+

+

+

+
+

29



If we have two charged plates in a vacuum, then P = 0 everywhere,

and

D = E =





0 outside

−4πσfree between the plates

If we now slide a dielectric slab between the plates, then we expect it

to obtain a uniform polarization, giving rise to surface charges.

-

-
-

-
-

+

+

+

+
+

Remove the battery
so that the charge
is fixed.

However, D responds to only free charges, thus it is unchanged by the

introduction of the dielectric slab. E responds to all charges, so it is

changed. Since E = D − 4πP, we see that E decreases in magnitude

inside the dielectric, and since D, P, and E are parallel:

Edielectric

Evacuum
=
Edielectric

D
=

Edielectric

Edielectric + 4πP

4.2.2 Summary and Discussion

At this point a summary of the dielectric equations will be useful.

P(x) = dipole moment per unit volume,

Φ(x) =
∫
d3x′

ρtotal(x
′)

|x− x′|
ρtotal = ρfree −∇ ·P
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E(x) = −∇Φ(x) =⇒ ∇× E(x) = 0

D(x) = E(x) + 4πP(x)

∇ ·D = 4πρfree

Several points must be made in relation to these. The first is that they

do not form a sufficient set from which we can solve for E(x) as we have

no way of writing E in terms of D or vice versa. The defining relation

does not help as we don’t know P. What is needed is a constitutive

relation which can be of the form D = D(E) or P = P(E). If there

is no nonalalytic behavior entering this relation, then one can expand

components of P as a power series in components of E. If E is not too

large, then only the linear term in these expansions need be kept,

Pi =
3∑

j=1

χijEj. (78)

where the nine numbers χij are the components of the electric suscep-

tibility tensor. When this is a good approximation, one says that the

dielectric is linear .In disordered materials as well as highly ordered

ones with a high degree of symmetry (cubic crystals, for example), this

tensor reduces to a single non-zero number,

χij = χeδij; (79)

χe is called simply the electric susceptibiliity and such materials are

said to be isotropic. Finally, if a material is uniform in its electrical

properties, χe will be a constant, independent of position; then the
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material is said to be homogeneous. If all of these things are true, the

dielectric material is as simple as it can be.

For a linear, isotropic, homogeneous dielectric, the connection be-

tween E and D is

D(x) = E(x) + 4πχeE(x) ≡ εE(x) (80)

where

ε = 1 + 4πχe (81)

is the dielectric constant of the material.

A second point is that the electric displacement is neither fish nor

fowl, that is, neither field (force on a test charge) nor source. Look again

at the integral expression for Φ(x); from it we see that the negative of

the divergence of P(x) must be a (macroscopic) charge density; it is

called the polarization charge density,

ρp(x) = −∇ ·P(x). (82)

To see how this can be so, imagine a polarization which points in the

z-direction and decreases in this direction so that its divergence is neg-

ative. Because of the variation of P(x), the molecules at smaller z are

more polarized than those at slightly larger z, meaning that less posi-

tive charge “sticks out” on the larger-z side of the former than negative

charge sticks out on the smaller-z side of the latter.
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P dP/dz < 0

+ + + + + + +

- - - - - - - - - - - - - -

Hence there is a net positive charge density in the region between the

two sets of molecules, and this is the polarization charge density. This

argument leads one to believe that the total polarization charge must be

zero. One can easily show by an application of the divergence theorem

that it is indeed zero.

Having understood that the polarization leads to a charge density,

how then may we understand the electric displacement? It is a linear

combination of a macroscopic field (representing the force on a test

charge) and of the polarization, whose divergence is a charge density.

The polarization is itself source, being the dipole moment density of

the constituent molecules of the material. Hence the displacement is

neither field (E) nor source (P). Its usefulness lies in the fact that

problems involving macroscopic electrostatics, and especially boundary

value problems, are conveniently approached by making use of both the

electric field and the electric displacement.

Another point that should be mentioned has to do with the higher

multipole moments. We have seen how it is essential to keep the sources

associated with the electric dipole moments of the molecules. What of
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the higher multipole moments? One may show that they contribute

negligibly at the macroscopic level.

Finally, there is the question of solving for the macroscopic electric

field. Given a medium such that Eq. (40) is valid, we may use D = εE

and have the field equations

∇× E(x) = 0 and ∇ · E(x) = 4π(ρ(x)/ε); (83)

these are the same as we have been working with right along except

that the charge density is rescaled by a factor of 1/ε; hence all of the

lore that we have learned may be applied to solve for the macroscopic

field.

5 Boundary-Value Problems in Dielectrics

In this section we shall solve a few representative boundary-value prob-

lems involving dielectrics. Since ∇ × E = 0, E = −∇Φ(x), D = εE,

and ∇ ·D = 4πρ in a dielectric, we may write

∇2Φ(x) = 4πρ/ε .

Thus, all the methods we have learned (images, greens functions, series

expansion etc.) will all work if properly modified.

There is of course the question of boundary conditions. At an in-

terface between two materials (dielectric-vacuum, dielectric-dielectric,

dielectric-conductor, etc.), we have a choice. We can either learn how
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to solve for the field in a system with non-homogeneous properties, or

we can split the system up into pieces in each of which the material

properties are uniform and then solve a boundary value problem. The

latter course is the simpler if the interfaces may be treated as abrupt.

The appropriate boundary or continuity conditions may be found

from the basic differential equations for D andE. Applying the diver-

gence theorem and Stokes’ theorem as we did once before, one can show

that the appropriate boundary conditions are

t

da

V

n

∇⋅D = 4πρ
⌠                  ⌠

⌡

∇⋅D d x =  D ⋅ n d x
                 ⌡

( D  - D ) ⋅ n = 4 π σ

D   = D   + 4 π σ

free

free

free

23

2 1

2n 1n

C

∇ × E = 0
⌠                          ⌠
d x ( ∇ × E)⋅n = E ⋅ dl = 0
⌡                          ⌡ 

( E  - E ) ⋅ t =0

E   = E
2t 1t

2 1
1

2

V

C

2

[D2(x)−D1(x)] · n = 4πσ and [E2(x)− E1(x)]× n = 0 (84)

which say that the discontinuity in the normal component of D is equal
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to 4π times the surface charge density (not including the surface charge

density arising from the polarization) and that the tangential compo-

nent of E is continuous. The unit normal in the equation for D points

into medium 2 from medium 1.

5.1 Example: Point Charge Near a Boundary

Consider that we have two dielectric materials; the first, with dielectric

constant ε1, occupies the half-space z > 0, and the second, with ε2,

occupies the half-space z < 0. Let there be a point charge q inside of

the first dielectric at point x0 = (0, 0, z0).

Without a boundary, we can solve the problem easily. Since D is

unchanged by the dielectric,

D = −∇
(
q

R

)
= εE thus E = −1

ε
∇
(
q

R

)
and Φ =

q

εR
(85)

where R is the distance between the charge and where the electric

displacement is evaluated

We will try to solve for the electric field using the method of images.

For the region z > 0, following our earlier success with this approach,

let us locate an image charge q′ at the image position xi = (0, 0,−z0).
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2 1

x 0x 0-
q’ q qq’

R
R

1
2

z
0

z
0

The potential produced by these two charges, embedded in a medium

which everywhere has the properties of the first medium, is

Φ1(x) =
1

ε1


 q

R1
+

q′

R2


 , (86)

where R1 and R2 are, respectively, the distances of the field point from

x0 and xi; this becomes our potential in the region z > 0 for the real

system.

For the region z < 0, we imagine in the fictitious system that there

is a charge q′′ at the location of the real charge, embedded in a medium

whose dielectric constant is everywhere ε2. The potential of such a

system is

Φ2(x) =
1

ε2

q′′

R1
. (87)

This becomes our potential in the region z < 0.

Now we try to pick the image charges in such a way that the bound-

ary conditions are satisfied. these conditions involve the following
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derivatives:

∂

∂z

(
1

R1

)∣∣∣∣∣
z=0

= − ∂

∂z

(
1

R2

)∣∣∣∣∣
z=0

=
z0

(ρ2 + z2
0)3/2

(88)

and
∂

∂ρ

(
1

R1

)∣∣∣∣∣
z=0

=
∂

∂ρ

(
1

R2

)∣∣∣∣∣
z=0

= − ρ

(ρ2 + z2
0)3/2

. (89)

Using these one finds that the condition of continuous normal compo-

nent of D or, D1z = D2z leads to (since σfree = 0)

q − q′ = q′′ (90)

and that the condition of continuous tangential component of E or

E1ρ = E2ρ leads to
1

ε1
(q + q′) =

1

ε2
q′′ . (91)

The solution of these two linear equations is

q′ =
(
ε1 − ε2
ε1 + ε2

)
q

q′′ =
(

2ε2
ε1 + ε2

)
q. (92)

Hence the potential on the right side, z > 0, is

Φ1(ρ, z) =
q

√
ρ2 + (z − z0)2

+
q(ε1 − ε2)/(ε1 + ε2)√

ρ2 + (z + z0)2
(93)

while that on the left, z < 0, is

Φ2(x) =
2qε2/(ε1 + ε2)√
ρ2 + (z − z0)2

. (94)
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consequences The constitutive relations yield several interesting

results for this problem. Since ∇D = 4πρ, where ρ is the free charge

density, it must be that

∇ ·D = 0 except at the real charge

Then as D = εE,

∇ · E = 0 except at the real charge

Then since D = E + 4πP, it must be that

∇ ·P = 0 except at the real charge

Thus the polarization charge density is zero except at the real charge!

(this is consistent with the potential for a point charge retaining 1/r

behavior).
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This line of reasoning breaks down at the surface between the two

dielectrics, since there ∇ε 6= 0 corresponding to the polarization surface

charge P · n discussed earlier. Thus

σp = (P2 −P1) · n (95)

where n is the unit normal outward from medium 2 into medium 1. If

we apply this to our present example, we first need to find the polar-

izations. These are given by, for i = 1, 2,

Pi = χiEi =
εi − 1

4π
Ei. (96)

and so

σp =
ε2 − 1

4π
E2z −

ε1 − 1

4π
E1z, (97)

evaluated at z = 0. Here,

E1z = − 1

ε1

(q − q′)z0

(ρ2 + z2
0)3/2

(98)

and

E2z = − 1

ε2

q′′d0

(ρ2 + z2
0)3/2

. (99)

The polarization surface-charge density is then

σp = −P1z + P2z =
z0

(ρ2 + z2
0)3/24π

{
ε1 − 1

ε12
(−q + q′)− ε2 − 1

ε2
q′′
}

=
qz0

4π(ρ2 + z2
0)3/2

{
ε1 − 1

ε1

2ε2
ε1 + ε2

− ε2 − 1

ε1

2ε1
ε1 + ε2

}

=
qz0(ε1 − ε2)

2πε1(ε1 + ε2)(ρ2 + z2
0)3/2

.(100)
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An important limiting case is given by ε1 = 1 and ε2 → ∞, in which

case the material at z < 0 cannot support an electric field and behaves

like a conductor. Then our system reduces to a point charge outside of

a conductor, for which we already know that the answer is

σp = − qz0

2π(ρ2 + z2
0)3/2

. (101)

5.2 Example: Dielectric Sphere in a Uniform Field

Our second example is a dielectric sphere placed in a uniform externally

applied field.

ε = 1

ε = 1

E z0

Rather than use the image charge method, this time we shall make use

of an orthogonal function expansion. Because∇×E(x) = 0 everywhere,

we can write the electric field as the gradient of a scalar potential.

Further, for a uniform medium D(x) = εE(x) with constant ε, so, from

∇ · D(x) = 4πρ(x), we know that ∇ · E(x) = 0 where there is no

macroscopic charge density ρ(x). Given that the radius of the sphere

is a, we have such conditions for r < a and for r > a. Hence the scalar

potential satisfies the Laplace equation in these two regimes, and we can

expand it in the usual way in spherical coordinates. The symmetries
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in the problem imply that the solution is independent of φ, so we need

to use a Legendre polynomial expansion. Thus, for r < a, we have

Φ<(r, θ) = E0a
∞∑

l=0

Al

(
r

a

)l
Pl(cos θ) (102)

and, for r > a,

Φ>(r, θ) = −E0r cos θ + E0a
∞∑

l=0

Bl

(
a

r

)l+1

Pl(cos θ). (103)

The first term in the second of these expansions is the potential asso-

ciated with the applied field; the others come from the sources induced

on the dielectric sphere (polarization charge). The boundary conditions

that must be applied are (i) tangential E and (ii) normal D continuous;

these are
∂Φ<

∂θ

∣∣∣∣∣
r=a

=
∂Φ>

∂θ

∣∣∣∣∣
r=a

(104)

and

ε
∂Φ<

∂r

∣∣∣∣∣
r=a

=
∂φ>
∂r

∣∣∣∣∣
r=a

, (105)

where ε is the dielectric constant of the sphere. By proceeding with the

solution in the by now familiar way for orthogonal function expansions,

one finds that all Al and Bl are zero except for l = 1. For l = 1 the

conditions are

A1 = −1 +B1 and εA1 = −1− 2B1. (106)

These are easily solved to yield

A1 = −3/(2 + ε) and B1 = (ε− 1)/(ε+ 2). (107)
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Hence, the potential is

Φ<(r, θ) = − 3

ε+ 2
E0r cos θ (108)

and

Φ>(r, θ) = −E0r cos θ + E0a

(
ε− 1

ε+ 2

) (
a

r

)2

cos θ. (109)

Notice that if ε→∞, we recover the result for the conducting sphere.

From this result, and since Φ(x)dipole = p ·x/r3, we can see that the

sphere has a dipole moment which is

p = E0a
3
(
ε− 1

ε+ 2

)
ẑ. (110)

The electric field inside of the sphere is a constant, and so is D,

D = εE = ε

(
3

ε+ 2

)
E0ẑ ≡ E + 4πP, (111)

so

4πP = D− E = 3

(
ε− 1

ε+ 2

)
E0ẑ, (112)

or

P =
3

4π

(
ε− 1

ε+ 2

)
E0ẑ. (113)

E0 E0P

+

+++
+
+
+

+-

---
-
--
-

Dielectric sphere in a uniform field, showing the polarization on the left and
the polarization charge with its associated, apposing, electric field on the right.
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Although there is no macroscopic charge density anywhere in the

system, there is polarization charge density. There is no volume polar-

ization charge density because P has zero divergence. However, there

is a surface charge density; it is given by

σp = P · r̂ = Pr =
3

4π
E0

(
ε− 1

ε+ 2

)
cos θ. (114)

As an application of the polariazble sphere problem, consider a water

drop in air. For this system, roughly

εrmair ≈ 1 εrmwater ≈ 81 . (115)

Water is a dielectric composed of permanent dipoles. The polarizability

α (p = αE) of the water drop is then

αH2O =
81− 1

81 + 2
a3 ≈ a3 (116)

Water drops look like metallic spheres to a static E-field.

5.2.1 The Inverse Problem

The inverse problem of a dielectric with a spherical cavity is easy to

solve because one has only to change ε into 1/ε in the results found

here. The reason is that the relative dielectric constant of the cavity to

that of the surrounding medium is 1/ε. In this way we find

Φ<(r, θ) = − 3ε

2ε+ 1
rE0 cos θ (117)
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and

Φ>(r, θ) = −E0r cos θ − E0a
ε− 1

2ε+ 1

(
a

r

)2

cos θ. (118)

a

E 0

ε

5.3 Clausius-Mossotti equation

In writing α above note that the electric field in

p = αE

is the external field not including the field of the induced dipole itself.

However, in

P = χeE

the field E does include the the field due to the dipoles in P. If we can

relate these two, we can calculate the relation between α (a microscopic

quantity), and the macroscopic quantities χe and ε. If we define two

different Es

p = αEloc = α(electric field at the site of the molecule)

P = χeEmed = χe(electric field in the medium)
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If n is the number of molecules per unit volume, then P = np and

P = nαEloc.

With these equations we can find a relation between α and χe if we

can relate Eloc and Emed. We note that Eloc is the field at the site of a

molecule if the molecule is removed. To calculate this, we will consider

a spherical cavity in a dielectric medium. If the cavity were filled with

dielectric, then the field at the center would be Emed, so

= +

Emed = Eloc + Esphere

where Esphere is the field at the center of a uniformly polarized dielectric

sphere due only to the polarization. From Eq. (111) it is clear that the

field inside the sphere (due to both the polarization and the external

field) is

Einside sphere =
3

2 + ε
E0 = E0 +

1− ε
2 + ε

E0

Thus that due only to the polarization is

Esphere =
1− ε
2 + ε

E0
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Comparing this to Eq. (113) we see that

Esphere = −4π

3
P

Thus

Eloc = Emed − Esphere = Emed +
4π

3
P.

Now, if we multiply by nα and solve for P, we get

P =
nα

1− 4π
3 nα

Emed

Then since P = χeEmed and ε = 1 + 4πχe we get

4π

3
nα =

ε− 1

ε+ 2
Clasius−Mossotti Equation (119)

6 Electrostatic Energy in Dielectrics

In free space we derived the energy of a distribution of charge ρ(x) by

assembling the distribution little by little, bringing infinitesimal pieces

of charge in from infinity. Following this reasoning we found that

W =
1

2

∫
d3x ρ(x)Φ(x)

This is in general not true in the presence of dielectrics (however, as we

will see, it may be true in some cases). In the presence of dielectrics

work must also be done to induce polarization in the dielectric, and it

is not clear if this work is included in the equation above.

When dielectrics are present we shall use a somewhat different ar-

gument (which still corresponds to the same procedure). Suppose that
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there is initially some macroscopic charge density ρ(x), potential Φ(x),

and fields E(x) and D(x). The imagine that some infinitesimal change

in the charge density, δρ(x), is made. To first order in δρ, the change

in energy of the system is

δW =
∫

V
d3xΦ(x)δρ(x) (120)

where the integration is done over that region of space where the in-

tegrand is non-zero. The point is that this is the interaction energy of

δρ(x) with the sources already present (and which produce Φ(x)); the

interaction energy of δρ with itself is second-order in small (infinites-

imal) quantities. (this form is consistent with the fact that W is a

natural thermodynamic function of the charges, not the potential).

The change in D which arises as a consequence of the change δρ in

the charge density is related to the latter by the equation∇·(D+δD) =

4π(ρ+ δρ), or

∇ · (δD(x)) = 4πδρ(x), (121)

so we may write the change in the energy as

δW =
∫

V
d3xΦ(x)

1

4π
(∇ · δD(x)). (122)

We next do an integration by parts in the by now familiar way.

δW =
1

4π

∫

V
d3x∇ · (Φ(x)δD(x))− 1

4π

∫

V
d3x∇Φ(x) · δD(x)

=
1

4π

∫

S
d2xΦ(x)δD(x) · n +

1

4π

∫

V
d3xE(x) · δD(x). (123)
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The surface integral is zero for a localized charge distribution if V in-

cludes all space. Thus we have simply

δW =
1

4π

∫
d3xE(x) · δD(x). (124)

Now we must introduce some statement about the properties of the

medium. If it is linear (D = εE), then

E · δD = E · (εδE) =
1

2
εδ(E · E) =

1

2
δ(E ·D)

so that

[E(x) · δD(x)] =
1

2
δ[E(x) ·D(x)]. (125)

and so

δW =
1

8π

∫
d3x δ[E(x) ·D(x)]. (126)

If we now integrate from zero field up to the final fields (a functional

integration),

W =
1

8π

∫
d3x

∫ D

0
δ[E(x) ·D(x)]

we find

W =
1

8π

∫
d3xE(x) ·D(x). (127)

This result is valid only for linear media.

There are several amusing consequences obtainable from this rela-

tion. First, by writing E(x) = −∇Φ(x) and integrating by parts, we

obtain

W =
−1

8π

∫
d3x∇ · (Φ(x)D(x)) +

1

8π

∫
d3xΦ(x)∇ ·D(x)
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Through the divergence theorem, the first term yields a surface term

which vanishes at infinity. The second term becomes

W =
1

2

∫
d3x ρ(x)Φ(x); (128)

Thus for a linear dielectric, the original formula is valid.

6.1 Force on a Dielectric

From the above, it is clear that W , as written, is a function of the free

charges, their positions, and of the positions of the dielectrics through

ε(x) (which may vary from point to point). Thus we may write

W (x, ρ) =
1

8π

∫
d3x
|D(x)|2
ε(x)

linear only (129)

From this, it is clear that if the free charges (which produce D) are

fixed, and we move one of the dielectrics, then the energy is reduced

if the change makes ε increase in the region where D(x) is finite. In

particular, the energy is reduced by having a dielectric move from a

region of low field to one of high field. Thus the force on such a linear

dielectric must always be such as to draw it into a region of greater

fields.
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source

region of strong field

F ε

If the free charges are held fixed, then since W depends on the

positions and magnitude of the charges and dielectrics, it follows that

the force on a dielectric is

Fη = −
(
∂W

∂η

)

Q

(130)

where Fη is the η-component of the force on the dielectric. This is

because the most stable state of the system is that with the minimum

W .

In this calculation, it is important that the energy was a natural

function of the charges and positions of the charges and dielectrics.

Then we could evaluate the total differential

dW =

(
∂W

∂η

)

Q

dη +

(
∂W

∂Q

)

η

dQ

to obtain the force. This is analogous to the situation in elementary

thermodynamics where the energy U is a natural function of the volume

and temperature U(V, T ). If we wanted to obtain a potential which was

a function of the entropy S and V (suppose for example S is change in
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such a way as to keep T fixed, i.e. a system in a heat bath), then we

made a Legendre transformation F = U−TS, and the most stable state

of the system is that with the minimum F (For an elegant discussion

of elementary thermodynamics see Thermodynamics by Enrico Fermi,

about 77pp.)

Thus, since W is a natural function of the positions and charges,

it is not appropriate for the case where the potentials are held fixed.

We need the potential which is a natural function of the positions and

potentials. As in the paragraph above, the way to remedy this is a

Legendre transformation to a new function W ′, defined by

W ′ = W − 1

4π

∫
d3xE(x) ·D(x) (131)

This is a general expression (not just for the linear case) where E =

−∇Φ(x) is a natural function of the potentials, and D is a function of

the charges (since ∇ ·D = 4πρ). A differential change in W ′ is given

by

δW ′ = δW − 1

4π

∫
d3xE(x) · δD(x)− 1

4π

∫
d3xD(x) · δE(x). (132)

Then, since

δW =
1

4π

∫
d3xE(x) · δD(x)

δW ′ = − 1

4π

∫
d3xD(x) · δE(x) (133)

Then since E(x) is a natural function of the potential, W ′ is a natural

function of potentials and positions, as desired.
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Thus the force on a dielectric in the presence of fixed potentials (i.e.

conductors connected to a battery) is

Fη = −

∂W

′

∂η




Φ

(134)

In the linear case, we can evaluate this in terms of W , since

W ′ = W− 1

4π

∫
d3xE(x)·D(x) = − 1

8π

∫
d3xE(x)·D(x) = −W (135)

Thus in the linear case only,

Fη = +

(
∂W

∂η

)

Φ

(136)

6.2 Forces on a Dielectric Revisited

These force formulae may also be derived in a more pedestrian manner.

We can derive one for the change in a system’s energy when a piece

of dielectric is moved from one place to another under conditions of

constant macroscopic charge density. Consider that initially the macro-

scopic fields, charge density, potential, and polarization are E0, W0, D0,

ρ0, Φ0, and P0. Let the final ones have subscript 1 instead of 0. Then

W1 =
1

8π

∫
d3xE1(x) ·D1(x) and W0 =

1

8π

∫
d3xE0(x) ·D0(x), (137)

so

∆W ≡ W1 −W0 =
1

8π

∫
d3x [E1 ·D1 − E0 ·D0]. (138)

By adding and subtracting identical terms, we can turn this expression

into

∆W =
1

8π

∫
d3x [E0+E1]·[D1−D0]+

1

8π

∫
d3x [E1·D0−E0·D1]. (139)
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By doing an integration by parts (in the usual way), one can show that

the first term is zero if ρ1 = ρ0, so we have

∆W =
1

8π

∫
d3x [E1 ·D0 − E0 ·D1]. (140)

As an example of the use of this formula, imagine that a dielec-

tric having ε = ε1 is moved in from infinity to occupy some domain V

where formerly there was empty space. Everywhere else there is vac-

uum. Then D1 = ε1E1 in V, and D1 = E1 elsewhere. Also, E0 = D0

everywhere. Our formula for the change in energy gives

∆W = − 1

8π

∫

V
d3x(ε1 − 1)E1 · E0 = −1

2

∫
d3xP1 · E0. (141)

This is the energy of the dielectric object placed in an external field

E0. The factor of 1/2 distinguishes it from the energy of a permanent

dipole placed in an external field which we derived earlier. It has to

do with the fact that in the present case the field has to do work to

polarize the dielectric in the first place.

We may also devise a formula for the force on a piece of dielectric. In

the case that the (macroscopic) charge is fixed, no work is done moving

any charge and so we have a conservative system in the sense that the

change in the field energy must be equal to the work that an external

agent does on the dielectric when the latter is moved. This force (recall

our earlier arguments of this kind) is equal and opposite to the electric

field force on the dielectric so we wind up concluding that

Fη = −
(
∂W

∂η

)

Q

(142)
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where the “Q” means that the derivative with respect to displacement

in the η direction is taken at constant sources (constant ρ(x)). The

result is the force in the direction of η, and this is the usual expression

for a conservative system.

A more difficult case is one in which there is an external source of

energy. A very common case of this kind which frequently arises in

electrostatics involves a set of conducting objects or surfaces on which

the macroscopic charge ρ resides, and keeping these surfaces at fixed

potentials when the dielectric is moved. The latter is easily achieved by

connecting the conductors to fixed voltage sources (batteries). To see

what happens, imagine making a small displacement of the dielectric

in two steps. First, move it by dη while maintaining ρ(x) fixed. Then

restore Φ(x) to its original value at those points where there is non-

zero macroscopic charge density by adjusting this charge density as

necessary. We can calculate the change in field energy during either of

these steps by applying the general formula for a linear system

W =
1

2

∫
d3x ρ(x)Φ(x), (143)

which gives, for small changes in ρ and Φ,

δW =
1

2

∫
d3x [δρ(x)Φ(x) + ρ(x)δΦ(x)]. (144)

In the first step described above, there is no change in ρ, so

δW1 =
1

2

∫
d3x ρ(x)δΦ1(x). (145)
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This is the same as δWQ since charges are fixed in this step:

δW1 = δWQ. (146)

In step 2, ρ(x) is adjusted so that Φ(x) returns to its initial value

everywhere where the charge density does not vanish. In this step

δW2 =
1

2

∫
d3x ρ(x)δΦ2(x) +

1

2

∫
d3x δρ(x)Φ(x). (147)

However, at points where ρ(x) in non-zero, δΦ2(x) = −δΦ1(x) because

in the second step we restore the potential to its original value at these

points. Hence we can rewrite δW2 as

δW2 = −1

2

∫
d3x ρ(x)δΦ1(x) +

1

2

∫
d3x δρ(x)Φ(x). (148)

There is a second way to see what δW2 is; in this step we make an

infinitesimal change in the charge density, δρ(x), and the change in

energy accompanying this adjustment is, to first order in infinitesimals,

δW2 =
∫
d3xΦ(x)δρ(x). (149)

By comparing the two equations we have for δW2, we learn that

1

2

∫
d3xΦ(x)δρ(x) = −1

2

∫
d3x ρ(x)δΦ1(x). (150)

Using this relation in Eq. (113), we find that

δW2 = −
∫
d3x ρ(x)δΦ1(x) (151)
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and this is the same as −2δW1. Consequently we can say that the total

change in energy, which we shall call δWV (the “V ” signifies constant

potentials at points where δρ(x) is non-zero), is

δWV = δW1 + δW2 = −δW1 = −δWQ. (152)

Consequently,

Fη = −
(
∂W

∂η

)

Q

= +

(
∂W

∂η

)

V

. (153)

In other words, if we can calculate the energy as a function of η, the

position of the dielectric, at constant potentials where ρ(x) 6= 0, we can

find the force on the dielectric by taking the positive derivative of this

energy with respect to the dielectric’s position.

7 Example: Dielectrophoresis

A spherical dielectric particle of radius a and ε = ε1 is placed in a

dielectric fluid (ε2 6= ε1) contained within an annulus with conducting

walls.
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Fig.1. Dielectric fluid and particle between two conducting cylinders

The annulus is maintained at a relative potential V0. Assuming that

a¿ any other dimension in the problem, and that the densities of the

particle and fluid are the same:

• Show that the net force on the particle is

Fnet = −1

3
a3AV 2

0 r
−3 [ln (Rout/Rin)]−2 r̂ ,

where

A =
ε2(4ε2 + 5)− ε1(ε2 − 1)

(2ε2 + ε1)2
(ε1 − ε2) .

• Discuss how Fnet depends upon (1) ε2 relative to ε1 and (2) ε1 for

fixed ε2.

• The drift velocity v of the particle is given by

Fnet = 6πηav ,
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(1) Discuss the dependence of v on a and ε1 for fixed ε2, and (2)

Suggest possible uses for this setup (dielectrophoresis).

Solution. To solve this we must first find the field between the

cylinders in the absence of the particle. To accomplish this, we use

Gauss’ law, the constitutive relations, and the fact that D and E are

purely radial.

∇ ·D = 4πρ ; D = ε2E

λr
λ = charge / length

Fig. 2. The gaussian surface is a cylinder within the annulus

l2πrε2Er = 4πλl ; Er =
2λ

ε2r

V0 =
∫ Rout
Rin

dr
∂Φ

∂r
= −2λ

ε2
ln (Rout/Rin)

When we solve for λ(V0), we find that

Ecyl = − V0

r ln (Rout/Rin)
r̂

Now we must solve for the field within the volume of the particle.

Since a ¿ R, we will assume that Ecyl is essentially uniform over the
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diameter of the particle. This problem then becomes very similar to

one we solved in class, that of a dielectric sphere in a uniform external

field E0.

εE0

Fig. 3. A dielectric sphere in a uniform external field.

Recall that for this problem,

Esphere =
3

ε+ 2
E0

where Esphere is the electric field within the sphere. However, since

the dielectric constant only enters through the boundary condition in

a relative way

D1n = D2n ⇒ ε1E1n = ε2E2n ⇒
ε1
ε2
E1n = E2n,

it must be that

Esphere =
3ε2

2ε2 + ε1
Ecyl.

The polarization of the sphere is then

P =
ε1 − 1

4π
Esphere =

1

4π

3ε2(ε1 − 1)

2ε2 + ε1
Ecyl,

which corresponds to a dipole moment of the sphere

p =
4π

3
a3P = a3 ε2(ε1 − 1)

2ε2 + ε1
Ecyl
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Thus the electrostatic force on the sphere is given by

Felec = (p · ∇) Esphere = a3 3ε22(ε1 − 1)

(2ε2 + ε1)2
(Ecyl · ∇) Ecyl

Felec = (p · ∇) Esphere =
a3

2

3ε22(ε1 − 1)

(2ε2 + ε1)2
∇ |Ecyl|2

In addition to this force, there is an electric Archimedes force. This

force is due to the fact that the particle displaces some of the dielectric

fluid. We can calculate it by applying Archimedes principle just like

we do for gravitational forces. The electric Archimedes force is minus

the force that the sphere of displaced fluid experiences.

Felec−Arch = −Felec(ε1 → ε2)

As indicated, we can get this force by replacing ε1 by ε2 in the force

equation above.

Felec−Arch = −a
3

6
(ε2 − 1)∇ |Ecyl|2

Thus the net electric force on the sphere is

Fnet =
a3

2


3ε22(ε1 − 1)

(2ε2 + ε1)2
− ε2 − 1

3


∇ |Ecyl|2 .

Now evaluating the gradient, we get

Fnet = − a3V 3
0

r3 (ln(Rout/Rin))2


3ε22(ε1 − 1)

(2ε2 + ε1)2
− ε2 − 1

3


 ,

or, after a bit of algebra,

Fnet = − a3AV 3
0

3r3 (ln(Rout/Rin))2
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where

A =
ε2(4ε2 + 5)− ε1(ε2 − 1)

(2ε2 + ε1)2
(ε1 − ε2)

Interpretation. This setup has practical applications for sorting

bits of dielectric particles with different ε1. Thus we should consider A

for fixed ε2 and different ε1 of the different particles. If A > 0, then the

force is inward, toward stronger fields, and if A < 0, then the force is

outward, toward weaker fields. The zeroes of A occur when

ε2 = ε1 ; ε1 =
ε2(4ε2 + 5)

ε2 − 1
,

and the maximum for fixed ε2

∂A

∂ε1
= 0⇒ ε1 = 2(ε2 + 1).

Now lets consider a numerical example. Let ε2 = 2.0 and vary ε1.

Fig. 4. Sketch of A
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As shown in the figure, A is not a monotonic function of ε1 In fact there

are three regions

ε1 < ε2 force is outward

ε2 < ε1 < ε2(4ε2 + 5)/(ε2 − 1) force is inward

ε1 > ε2(4ε2 + 5)/(ε2 − 1) force is outward

Thus, mildly and highly polar particles move out, while particles of

intermediate polarizability more in. At first it seems that this makes

no sense; however, consider the following explanation:

Since the potential within the annulus is held fixed by an external

source, the appropriate thermodynamic potential for this system is

W ′(r,Φ) = − 1

8π

∫

V
d3x ε(x) |E(x)|2

The most stable state of the system is the one which minimizes this

potential. Thus the most stable state of the system is obtained by

having the largest field where ε(x) is largest. Reconsider the three

regions.

(1) ε1 < ε2 The particle has a lower ε than that of

the fluid, thus it is expelled to regions of

low filed. Thus, ε(x) is maximized where

E is large.

(2) ε2 < ε1 < ε2(4ε2 + 5)/(ε2 − 1) Now the particle has a higher ε than the fluid
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thus it moves to regions of large field

(3) ε1 > ε2(4ε2 + 5)/(ε2 − 1) The field inside the particle goes to zero as ε→∞
(the sphere approaches a metal), and the potential

is minimized by having the sphere go to regions of

low field.

Now consider the motion of the particle. The drift velocity of the

particle is given by

Fnet = 6πηv.

If we use the following reasonable parameters

parameter value cgs value

a 0.1 mm 0.01 cm

ε1 4.6 4.6

ε2 2.3 2.3

η 6.5× 10−4 (MKSA) 6.5× 10−3 cgs

Rin 0.5 mm 0.05 cm

Rout 1 cm 1 cm

V0 4.0× 103 volts 13.34 statvolts

r 0.5 cm 0.5 cm

The value of ε2 corresponds to that of organic solvents, in this case Ben-

zene. Solving with these parameters, we find that v = 0.031 cm./sec.
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Slow.

We could use this setup to separate living cells from dead ones due

to the very different water content (since εwater ≈ 81).

A Multipole Expansion: with Spherical Harmon-

ics

In this appendix, we will discuss the multipole expansion as it is done

in Jackson.

Consider the potential Φ(x) produced by some localized charged

distribution ρ(x),

Φ(x) =
∫
d3x′ ρ(x′)

1

|x− x′| . (154)

Substitute the spherical harmonic expansion for 1
|x−x′| to have

Φ(x) =
∑

l,m

4π

2l + 1



∫
d3x′ ρ(x′)Y ∗l,m(θ′, φ′)

rl<
rl+1
>


Yl,m(θ, φ). (155)

Ο

x’

x

r = r’
r = r>

<

Now, if the origin of coordinates is chosen to be around the center of

the charge distribution, and if the field point x is such that r is larger
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than the distance of any source point (where ρ(x′) 6= 0) x′ from the

origin, then it is true that for all x′ of importance in the integral, r > r′

and so r< = r′ and r> = r. Thus,

Φ(x) =
∑

l,m

4π

2l + 1

[∫
d3x′ r′lY ∗l,m(θ′, φ′)ρ(x′)

] Yl,m(θ, φ)

rl+1
. (156)

This result may be written in the form

Φ(x) =
∞∑

l=0

l∑

m=−l

4π

2l + 1
qlm

Yl,m(θ, φ)

rl+1
≡∑

l,m

Φlm(x), (157)

where

qlm ≡
∫
d3x rlY ∗l,m(θ, φ)ρ(x) (158)

is known as a multipole moment of the charge distribution. These

moments, which satisfy the identity

ql,m = (−1)mq∗l,−m (159)

by virtue of the same property of the spherical harmonics, completely

determine the field outside of the domain where the charge is located.

Note, however, that they do not contain enough information to tell

us what the actual charge distribution is. The moments of greatest

interest are the ones with small values of l. We can understand this

statement from the fact that the moment qlm is proportional to, as seen

from Eq. (5), al, where a is the size of the charge distribution. Hence

the potential produced by this moment is proportional to (q ′/r)(a/r)l

where q′ is a characteristic charge in the distribution (The actual total
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charge may vanish). This contribution to the potential becomes very

small for large l given that r is significantly larger than a.

The components of the electric field associated with the l,m multi-

pole are

Er = −∂Φlm

∂r
=

4π(l + 1)

2l + 1
qlm

Yl,m(θ, φ)

rl+2

Eθ = −1

r

∂Φlm

∂θ
= − 4π

2l + 1
qlm

1

rl+2

∂Yl,m(θ, φ)

∂θ

Eφ = − 1

r sin θ

∂Φlm

∂φ
= − 4π

2l + 1
qlm

im

rl+2 sin θ
Yl,m(θ, φ). (160)

The leading moments are

q00 =
∫
d3x ρ(x)

1√
4π

=
q√
4π

(161)

where q is precisely the total charge of the system. This term is the

monopole moment of the charge distribution; it is fundamentally just

the total charge. Similarly,

q10 =

√√√√ 3

4π

∫
d3x ρ(x)r cos θ =

√√√√ 3

4π

∫
d3x ρ(x)z (162)

and

q11 = −q∗1,−1 = −
√√√√ 3

8π

∫
d3x ρ(x)r sin θe−iφ = −

√√√√ 3

8π

∫
d3x ρ(x)(x− iy).

(163)

From these equations we can see that the information contained in the

coefficients q1m is the same as what is contained in the components of

the electric dipole moment p of the charge distribution,

p ≡
∫
d3x ρ(x)x. (164)

67



The explicit connection is

p =





1

2

√√√√8π

3
(q11 − q1,−1)x̂−

1

2

√√√√8π

3
i(q11 + q1,−1)ŷ +

√√√√4π

3
q10ẑ





(165)

The l = 2 moments, called electric quadrupole moments, are easily

shown to be

q22 =
1

4

√√√√15

2π

∫
d3x ρ(x′)(x− iy)2

q21 = −
√√√√15

8π

∫
d3x ρ(x)(x− iy)z

q20 =
1

2

√√√√ 5

4π

∫
d3x ρ(x)(3z2 − r2). (166)

These multipole moments are traditionally written in terms of the com-

ponents of the traceless quadrupole moment tensor, defined by

Qij ≡
∫
d3x ρ(x)(3xixj − r2δij); (167)

the subscripts i and j stand for Cartesian components x, y, and z, or

1,2,3. With a little algebra, one can show that

q22 =
1

12

√√√√15

2π
(Q11 − 2iQ12 −Q22)

q21 = −1

3

√√√√15

8π
(Q13 − iQ23)

q20 =
1

2

√√√√ 5

4π
Q33 (168)

It seems a little strange to be replacing at most five independent num-

bers (contained in the moments q2m) by nine numbers Qij; however,
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the quadrupole moment tensor is symmetric, Qij = Qji, reducing the

number of possible independent components to six, and it also has,

as its name suggests and as may be shown easily from the definition,

zero trace so that Q33 = −Q11 − Q22 and only two of the diagonal

components are independent. Thus the tensor can have at most five

independent components also.
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1 Introduction and Definitions

As far as anyone knows, there is no such thing as a free magnetic charge

or magnetic monopole, although there are people who look for them

(and occasionally claim to have found one); certainly they may exist.

Because no known phenomena require their existence, we shall develop

magnetostatics and eventually electrodynamics assuming that they do

not exist. In this case there is a fundamental difference between elec-

trostatics and magnetostatics, explaining in part why the two subjects

developed independently and were regarded as distinct rather than dif-

ferent limits or aspects of one type of phenomenon (electromagnetic

phenomena).

1.1 Magnetic Induction

In the absence of monopole moments, the most fundamental source

of magnetic effects is the magnetic dipole. In the presence of other

magnetic materials, a point dipole will experience some force. One

defines the magnetic flux density or magnetic induction B in terms of

the torque N exerted on the dipole. Given that the dipole moment is

µ, the defining relation is

N ≡ µ×B. (1)
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Thus, as for electrostatics, the basic field of magnetostatics is defined

by the effect produced on an elementary source.

1.2 Current Density and Conservation

Among the first known manifestations of magnetic phenomena were

the forces observed to act on some materials (magnets) as a conse-

quence of the earth’s magnetic field. In 1819, Hans Christian Oersted

(1777-1851) found that very similar effects could be produced by plac-

ing a magnet close to a current-carrying wire, indicating a connection

between electrical current and magnetism. Much of what we have to

say about magnetostatics will involve the use of currents as sources of

B, so let us say a few words about the properties of stationary, i.e.,

time-independent, currents. We shall write the current density as J(x);

it has dimensions of charge/area-time and is by definition such that a

component Ji is the amount of charge that crosses unit area in unit

time given that the normal to the surface is in the i-direction. Given a

charge density ρ(x) moving at a velocity v, there is a current density

J(x) = ρ(x)v. (2)

It is an experimental fact that charge is conserved. We may deter-

mine a continuity or conservation equation which expresses this fact.
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Consider
∫

V
d3x ∇ · J(x) =

∫

S
d2x J · n. (3)

The surface integral gives the rate at which charge flows out of the

domain V through the surface S. Because charge is conserved, this

must be equal to the negative of the rate at which the total charge

inside of V changes:

∫

S
d2x J(x) · n = − ∂

∂t

(∫

V
d3x ρ(x)

)
. (4)

Assuming that V is independent of time, we may move the derivative

with respect to time inside of the integral and so have

∫

V
d3x ∇ · J(x) =

∫

S
d2x J(x) · n = −

∫

V
d3x

∂ρ(x)

∂t
. (5)

Now argue in the usual fashion: Because V is an arbitrary domain, this

equation can only be true if the integrands on the two sides are the

same everywhere. Hence we have

∇ · J(x) +
∂ρ(x)

∂t
= 0. (6)

This equation is true so long as charge is locally conserved, meaning

that the only way for charge to appear in V (or to disappear from V) is

by flowing across the boundary. The equation has the typical form of a

continuity equation which is that the divergence of the current density

of some quantity plus the time derivative of the density of that quantity

5



equals zero. If there are sources (or sinks) of the quantity in question,

there is an additional term in the equation expressing the contribution

of these sources.

2 Ampère’s Law

Even as currents in wires produce forces on magnetic materials, so do

they produce forces on other current loops. Félix Savart (1791-1841)

and Jean-Baptiste Biot (1774-1862) began experiments on these forces

soon after Oersted’s discovery, as did André-Marie Ampère. Ampère

continued his experiments for some years and published his collected

results in 1825. The basic law emerging from Ampère’s work deals with

the forces acting between closed current loops. Suppose that we have

a current I in one loop and a current I ′ in a second. Let F be the force

acting on the loop carrying current I.

dl’

dl

x’x I’

I

Then Ampère’s Law may be expressed as follows:

F = kII ′
∫ ∫ dl× [dl′ × (x− x′)]

|x− x′|3 (7)
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where the integrals over l and l′ are, respectively, around the loops

carrying currents I and I ′; x and x′ are the position vectors of the

integration points. The constant k depends on the units employed. For

our units, with current expressed as statcoul/sec, or statamp, k has di-

mensions of (inverse speed)2 (remember that charge has has dimensions

of M 1/2L3/2/T in our units). Hence one writes k ≡ 1/c2 where c is a

speed. From appropriate experiments one may find that its numerical

value in cgs units is c = 2.998× 1010 cm/sec. We recognize this as the

speed of light, but that is, for the moment, not important.

At this juncture we may introduce the magnetic induction by writing

the force as

F ≡ I

c

∫
dl×B(x) (8)

where B(x) is the magnetic induction produced by the other loop’s

current. It is not yet clear apparent this B is the same as the one

introduced in Eq. (1); nevertheless, it is, as we shall see presently.

Comparison of Eq. (7) with Eq. (8) shows that the magnetic induc-

tion produced by the loop carrying current I ′ may be written as an

integral over that loop,

B(x) =
I ′

c

∫ dl′ × (x− x′)

|x− x′|3 ; (9)

this equation is often called the Biot-Savart Law.

One also writes these equations in differential form, although that
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may introduce some inaccuracies and even misunderstanding. First, the

force acting on just an infinitesimal piece of the loop carrying current

I is

dF(x) =
I

c
dl×B(x). (10)

I dl

dF

+B

The correct interpretation of this equation is that it expresses the force

on the element dl of the loop carrying current I which is produced

by the current I ′ in the other loop; B(x) is the magnetic induction

produced by this other loop. There will be additional forces on the

element dl produced by the current in other parts of its own loop.

Another equation one frequently sees is an expression for the in-

finitesimal magnetic induction produced at a point x by an infinitesi-

mal element of a source loop. Given that the source loop is, as above,

the one carrying current I ′, this expression is

dB(x) =
I ′

c

dl′ × (x− x′)

|x− x′|3 . (11)

This is, however, not a correct statement in that the element dl′ of this

circuit acting alone does not produce such a magnetic induction. First,

it is impossible to have such a source acting alone if there is no time

dependence in the sources and fields; the flowing charge which gives the
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current I ′ in dl′ has to come from somewhere and go somewhere and

so if this element is the entire source current distribution, then there

must be some time dependence associated with the accumulation and

depletion of charge at the two ends of the element. When this time

dependence is included, Eq. (11) will not give the magnetic induction

correctly.

2.1 Induction of an Arbitrary Current Density

The preceding results are capable of generalization to arbitrary current

distributions (not just filaments). One has to replace Idl by J(x)dadl

where J(x) is the current density, da is the cross-sectional area of the

filament, and dl is the magnitude of dl. Then note that dadl = d3x, a

volume element.

=>
dlda

J da dlIdl

Hence one finds that the flux produced by an extended current distri-

bution is

B(x) =
1

c

∫
d3x′

J(x′)× (x− x′)

|x− x′|3 (12)

while the force on an extended current distribution J(x) produced by
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some externally applied B(x) is

F =
1

c

∫
d3x J(x)×B(x). (13)

The corresponding force density at point x is

dF =
1

c
d3xJ(x)×B(x), (14)

and the expression for dB (not to be trusted) becomes

dB(x) =
1

c
d3x

J(x′)× (x− x′)

|x− x′|3 . (15)

Finally, let’s add to our arsenal of equations one for the torque N

felt by a current distribution J(x) acted upon by an externally applied

magnetic induction B(x). Given an object experiencing a force F, the

torque relative to a point O is just x×F where x is the location of the

object relative to O. Hence the torque on the current distribution is

N =
1

c

∫
d3x [x× (J(x)×B(x))]. (16)

2.2 An Alternate Form of Ampère’s law

Before going on to additional formalism, let us express Ampère’s law,

Eq. (7), in a more symmetric form by applying some vector manipula-

tions. First, we will make use of the general identity A × (B × C) =

(A ·C)B− (A ·B)C to have

F =
II ′

c2

∫ ∫ [dl · (x− x′)]dl′ − [dl · dl′](x− x′)

|x− x′|3 . (17)
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According to Newton, the force of the loop carrying current I should

be equal and opposite to the force on the other loop, implying certain

symmetries in the integrand above. The second term in the numerator

changes sign under interchange of x and x′, but the first does not. Let

us study the latter more closely. Consider

∫
dl′

∫
dl ·


−∇


 1

|x− x′|




 = −

∫
dl′

∫
d


 1

|x− x′|


 ≡ 0 (18)

where the last step follows from the fact we integrate over a closed

path1. Thus we find that the force F may be written simply as

F = −II
′

c2

∫ ∫ dl · dl′
|x− x′|3 (x− x′). (19)

2.3 Example: Force Between Parallel Wires

Let us look at an example. Suppose we have two parallel wires a dis-

tance d apart carrying currents I and I ′ and wish to find the force per

unit length acting on one of them. At a point x on the one carrying

current I, there is an induction B from the other one which is directed

perpendicular to the plane containing the wires. This field is given by

the integral over the sources in the other wire,

I

I’

O

dl’

x’= d + z’y ẑ^

z

y

1For example,
∮
dφ = φ(x)− φ(x), where x is an arbitrary point along the contour

11



|B| = B =
I ′

c

∫ dl′ × (x− x′)

|x− x′|3 =
I ′d

c

∫ ∞
−∞

dz′

(d2 + z′2)3/2
=
I ′

cd

∫ ∞
−∞

du

(1 + u2)3/2
=

2I ′

cd
.

(20)

The consequent force on the current I in length dz is

|dF| = I

c
dz B =

2II ′

c2d
. (21)

The direction of F is such that the wires are attracted toward each

other if the currents are in the same direction and they are repelled

if the currents are in opposite directions. In doing this calculations

we have conveniently ignored the fact that we didn’t deal with closed

current loops; in principal the wires have to be bent into closed loops

somewhere far away from where we have calculated the force. With a

little work one can convince himself that for sufficiently large loops, the

contributions from the part that we ignored will be as small as desired.

3 Differential Equations of Magnetostatics

Even as we found equations for the divergence and curl of the electric

field, so can we find such equations for the magnetic induction. Our

starting point is the integral expression for the induction produced by

a source distribution J(x),

B(x) =
1

c

∫
d3x′ J(x′)× (x− x′)

|x− x′|3 , (22)

12



or, proceeding in the same manner as we have done before,

B(x) = −1

c

∫
d3x′ J(x′)×∇


 1

|x− x′|


 . (23)

Now apply the identity ∇× (fA) = (∇×A)f +∇f ×A:

∇×

 J(x′)

|x− x′|


 = (∇× J(x′))

1

|x− x′| +∇

 1

|x− x′|


× J(x′). (24)

The curl (taken with respect to components of x) of J(x′) is zero, so,

upon substituting into Eq. (24), we find

B(x) =
1

c

∫
d3x′∇×


 J(x′)

|x− x′|


 =

1

c
∇×



∫
d3x′

J(x′)

|x− x′|


 . (25)

Because B(x) is the curl of a vector field, its divergence must be zero,

∇ ·B(x) = 0. (26)

This is our equation for the divergence of the magnetic induction. It

tells us that there are no magnetic charges.

To find a curl equation for B(x), we take the curl of Eq. (25),

∇×B(x) =
1

c
∇×


∇×



∫
d3x′

J(x′)

|x− x′|




 . (27)

Now employ the identity

∇× (∇×A) = ∇(∇ ·A)−∇2A, (28)

valid for any vector field A(x); the last term on the right-hand side of

this identity is to be interpreted as

∇2A ≡ (∇2Ax)x̂ + (∇2Ay)ŷ + (∇2Az)ẑ; (29)
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it is important that this relation is written in Cartesian coordinates.

Using the identity, we find

∇×

∇×


 J(x′)

|x− x′|




 = ∇


J(x′) · ∇


 1

|x− x′|




−J(x′)∇2


 1

|x− x′|


 .

(30)

The second term is just 4πJ(x′)δ(x− x′), so we have

∇×B(x) =
4π

c
J(x) +

1

c
∇


∫
d3x′ J(x′) · ∇


 1

|x− x′|




 . (31)

The remaining integral may be completed as follows:

∇
∫
d3x′ J(x′) · ∇


 1

|x− x′|


 = −∇

∫
d3x′ J(x′) · ∇′


 1

|x− x′|




= −∇
∫
d3x′∇′ ·


 J(x′)

|x− x′|


 +∇

∫
d3x′
∇′ · J(x′)

|x− x′| . (32)

The first term in the final expression can be converted to a surface

integral which then vanishes for a localized current distribution which

lies totally within the domain enclosed by the surface. The integrand of

the second term involves ∇′ ·J(x′) = −∂ρ(x′)/∂t ≡ 0 for a steady-state

current distribution. Consequently we have the curl equation

∇×B(x) =
4π

c
J(x) Sometimes called Ampere’s Law (33)

The curl and divergence equations, ∇ · B(x) = 0 and ∇ × B(x) =

(4π/c)J(x) plus an appropriate statement about the behavior of B(x)

on a boundary tell us all we need to know to find the magnetic induction

for a given set of sources J(x). There are, of course, also integral
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versions of these differential equations. One finds the most common

forms of them from the Stokes theorem and the divergence theorem.

∫

V
d3x∇ ·B(x) =

∫

S
d2xB(x) · n = 0 (34)

and

∫

S
d2x (∇×B(x)) · n =

∫

C
dl ·B(x) =

4π

c

∫

S
d2xJ(x) · n. (35)

The last of these is also commonly written as

∫

C
dl ·B(x) =

4π

c
Is (36)

where Is is the total current passing through the surface S in the direc-

tion of a right-hand normal relative to the direction in which the line

integral around C is done.

S

dl

n
I = total currect
flowing through
the contour

s

J

This relation is frequently called Ampère’s law. One interesting feature

of this equation is that the result is independent of the actual surface

S employed so long as it is an open surface that ends on the path C.

The amount of charge passing through all such surfaces per unit time

i.e., Is, is independent of S because ∇ · J(x) = 0.
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4 Vector and Scalar Potentials

In all electromagnetic systems it is possible to devise a potential which

is a vector field for B(x); it is called a vector potential. Sometimes, it

is also possible to devise a scalar potential for B(x). We shall consider

the latter first.

4.1 Scalar Potential

As we have seen in the study of electrostatics, one can write a vector

field as the gradient of a scalar if the vector field has zero divergence.

This is the case for B(x) in those regions of space where J(x) = 0.

Thus, in a source-free domain, we can write

B(x) = −∇ΦM(x). (37)

The magnetic scalar potential satisfies a differential equation which fol-

lows from the requirement that ∇ ·B(x) = 0; it is

∇2ΦM(x) = 0. (38)

Thus, wherever there is a magnetic scalar potential, it satisfies the

Laplace equation. In order to solve for it, we may apply any of the

techniques we learned for finding the electrostatic potential in charge-

free regions of space. Hence no more will be said about the magnetic

scalar potential in general in this chapter.
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4.2 Vector Potential and Gauge Invariance

Consider now the vector potential for a magnetostatic field. Because

∇ ·B(x) = 0, it is possible to write the magnetic induction as the curl

of another vector field (since ∇ · (∇×A)). We have in fact already

constructed such a vector field because in Eq. (25) we have written

B(x) = ∇×

1

c

∫
d3x′

J(x′)

|x− x′|


 . (39)

The field within the parentheses is a vector potential for B(x). We shall

write it as A(x). It is, in contrast to the electrostatic scalar potential,

not unique because one can always add to it the gradient of any scalar

field χ(x) and have a vector field whose curl is still B(x). That is, given

A(x) =
1

c

∫
d3x′

J(x′)

|x− x′| , (40)

which is such that B(x) = ∇×A(x), we can write

A′(x) = A(x) +∇χ(x), (41)

where χ(x) is arbitrary. Then it is true that B(x) = ∇×A′(x) because

the curl of the gradient of a scalar field is zero.

By writing B(x) = ∇ × A(x), we have automatically satisfied the

requirement that ∇ · B(x) = 0; Hence we may find a single (vector)

equation for the vector potential by substituting B = ∇ × A into

Ampère’s law:

∇×B(x) = ∇× (∇×A(x)) =
4π

c
J(x), (42)
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or, using ∇× (∇×A) = ∇(∇ ·A)−∇2A,

∇2A(x)−∇(∇ ·A(x)) = −4π

c
J(x). (43)

This equation would be considerably simpler if we could make the di-

vergence of A(x) vanish. It is possible to do this by using a vector

potential constructed with an appropriate choice of χ(x). The under-

lying mathematical point is the following: so far, the only condition

we have placed on the vector potential is that its curl should be the

magnetic induction. We are free to choose it so that its divergence con-

forms to our wishes because a vector field is sufficiently flexible that its

curl and divergence can both be specified arbitrarily. Consider then the

divergence of the most general vector potential. We write this potential

as

A(x) =
1

c

∫
d3x′

J(x′)

|x− x′| +∇χ(x). (44)

Then

∇ ·A(x) =
1

c

∫
d3x′ J(x′) · ∇


 1

|x− x′|


 +∇2χ(x). (45)

Now change the ∇ operator to −∇′ and then do an integration by

parts. The surface integral may be discarded if the volume integral is

over all space and J(x′) is localized (so that it vanishes on the surface

of the volume of integration). What one then has left is

∇ ·A(x) =
1

c

∫
d3x′
∇′ · J(x′)

|x− x′| +∇2χ(x) = ∇2χ(x), (46)
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where the last step follows from the fact that a time-independent set

of sources give a current distribution having zero divergence.

From this result we can see two things: first, the vector potential has

zero divergence if we forget about χ(x), i.e., if we set it equal to zero.

Second, we can make the divergence be any scalar function f(x) we

want by setting ∇2χ(x) = f(x). We would then have to solve for χ(x)

which is in principle straightforward because the differential equation

for χ is just the Poisson equation and we know how to solve that. The

solution is

χ(x) = − 1

4π

∫
d3x′

f(x′)

|x− x′| . (47)

Specifying the divergence of A(x) is called choosing the gauge of

the vector potential, and changing the function χ(x) is called making

a gauge transformation. Notice that one can make a transformation

without changing the gauge (i.e., without changing ∇ ·A); to do this

one must change χ by a function which satisfies the Laplace equation.

The particular gauge specified by ∇ ·A(x) = 0 is called the Coulomb

gauge.

Returning to our original point, we have found that we can pick a

vector potential with zero divergence. In particular,

A(x) =
1

c

∫
d3x′

J(x′)

|x− x′| (48)

has this property. In this, the Coulomb gauge, the vector potential
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satisfies the equations

∇2A(x) = −4π

c
J(x), (49)

which must be interpreted as

∇2Ai(x) = −4π

c
Ji(x) (50)

where the subscript i denotes any Cartesian component of A.

4.3 Example: A Circular Current Loop

Consider a circular loop of radius a carrying a current I. Let the loop

lie in the z = 0 plane and be centered at the origin of coordinates.

φ’ φ’ y
φ’̂

^

Then we may write J(x) = Jφ(x)φ̂ with

Jφ(x) =
I

a
δ(cos θ)δ(r − a). (51)

It is a natural temptation to do the following INCORRECT thing:

write A(x) = Aφ(x)φ̂ (correct so far) with

Aφ(x) =
1

c

∫
d3x′

Jφ(x
′)

|x− x′| . (52)
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This integral is not correct because the unit vector φ̂ at the field point

x is not the same as the unit vector φ̂′ at the field point x′.

What we can do instead is to make use of the azimuthal symmetry of

the system and trivially generalize to all values of φ after having first

evaluated the vector potential at some particular value of φ. Let us

look at the potential at φ = 0, i.e., in the x-z plane. Here, the vector

potential will be in the y direction, so we can say that

Aφ(r, θ) = Ay(r, θ, φ = 0) =
1

c

∫
d3x′

Jy(x
′)

|x− x′| (53)

at φ = 0. Now, Jy(x
′) = Jφ′ cosφ′, so

Aφ(r, φ) =
I

ac

∫
d3x′

δ(r′ − a)δ(cos θ′) cosφ′

(r2 + a2 − 2ar cos γ)1/2
(54)

where γ is the angle between the directions of x and x′, cos γ =

sin θ cosφ′.

The integral is an elliptic integral; rather than deal with its arcane

properties, we will expand it in the usual way:

Aφ(r, θ) =
I

ca

∫
d3x′

δ(r′ − a)δ(cos θ′) cosφ′

|x− x′|

= Re




I

ca

∫
d3x′

δ(r′ − a)δ(cos θ′)

|x− x′| eiφ
′




= Re




I

ca

∫
d3x′ δ(r′ − a)δ(cos θ′)eiφ

′∑

l,m

4π

2l + 1

rl<
rl+1
>

Y ∗l,m(θ′, φ′)Yl,m(θ, φ)|φ=0





= Re




Ia

c

∑

l,m

(l −m)!

(l +m)!
Pm
l (cos θ)Pm

l (0)
rl<
rl+1
>

∫ 2π

0
dφ′eiφ

′
e−imφ

′
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=
2πIa

c

∞∑

l=1

P 1
l (0)P 1

l (cos θ)

l(l + 1)

rl<
rl+1
>

(55)

where r< and r> refer to the smaller and larger of r and a. Next one

notes that P 1
l (0) = 0 for l even and

P 1
l (0) = (−1)(l+1)/2l!/[(l − 1)!!]2 (56)

for l odd; set l = 2n+ 1 and have

Aφ(r, θ) =
2πIa

c

∞∑

n=0

(−1)n+1(2n+ 1)!

(2n+ 1)(2n+ 2)[(2n)!!]2
r2n+1
<

r2n+2
>

P 1
2n+1(cos θ)

=
πIa

c

∞∑

n=0

(−1)n+1(2n− 1)!!

2n(n+ 1)!

r2n+1
<

r2n+2
>

P 1
2n+1(cos θ). (57)

At large r, i.e., r >> a, we can keep just the leading term (n=0) and

find

Aφ(r, θ) =
πIa

c

a

r2
sin θ. (58)

The corresponding components of the magnetic induction are

Br(r, θ) =
1

r sin θ

∂

∂θ
(sin θAφ) =

2πIa2

cr3
cos θ, (59)

and

Bθ(r, θ) = −1

r

∂

∂r
(rAφ) =

πIa2

cr3
sin θ. (60)

22



m
B

We recognize these as having the same form as the field of an elec-

tric powers of a/r, the current loop is treated as a magnetic dipole with

magnetic dipole moment m ≡ (πIa2/c)ẑ; the corresponding vector po-

tential, Eq. (58), is

A(x) = Aφ(r, θ)φ̂ =
|m| sin θ

r2
φ̂ =

m× x

|x|3 . (61)

We may compare this potential to that of an electric dipole which is

Φ(x) =
p · x
|x|3 . (62)

5 The Field of a Localized Current Distribution

The example of the preceding section is a special case of the field of a

localized current distribution. Let us now suppose that we have some

such distribution J(x′) around the origin of coordinates. We shall find

the potential of this distribution in the dipole approximation. To this
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end we must expand the function

1

|x− x′| ≈
1

|x|


1 +

x · x′
|x|2 + ...


 (63)

in powers of r′/r.

J x( )

x

A x( )
B x( )

r >> r’

Of particular interest to us is the first-order term in the brackets.

Using this expansion, we find that the vector potential is

A(x) =
1

c

∫
d3x′ J(x′)


 1

|x| +
x · x′
|x|3 + ...


 . (64)

The first term ∼ ∫
d3x′ J(x′) is zero for a localized steady current dis-

24



tribution (Why?)2 ; the second one is

Ad(x) =
1

c|x|3
∫
d3x′ (x · x′)J(x′). (65)

However, (x · x′)J = −x× (x′ × J) + (x · J)x′, so

Ad(x) =
1

c|x|3
{∫

d3x′ (x · J(x′))x′ − x×
∫
d3x′ (x′ × J(x′))

}
. (66)

Consider the jth component of the first integral:

∫
d3x′ x′j(x · J(x′)) =

3∑

i=1

∫
d3x′ x′jxiJi(x

′). (67)

Now, it is the case that

∇′ · (x′iJ(x′)) = (∇′x′i) · J(x′) + x′i(∇′ · J(x′)) = Ji(x
′), (68)

since the divergence of J is zero. This allows us to write

∫
d3x′ (x · J(x′))x′j =

3∑

i=1

xi
∫
d3x′ [∇′ · (x′iJ(x′))]x′j

2The short answer is just that in lieu of sources or sinks of charge the total current density in a

current distribution must be zero. More formally, consider the 3-vector with components Ui

Ui = 0 =

∫

V

d3xxi∇ · J =

∫

V

d3x [∇ · (xiJ)− J · ∇xi]

Using the divergence theorem, this becomes

∫

S

d2xxiJ · n−
∫

V

d3xJ · x̂i

which follows since ∇xi = x̂i. Then if we take the surface to infinity, where there is no current

density, we obtain the desired result

0 = −
∫

V

d3xJi
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Parts integration:

= −
3∑

i=1

xi
∫
d3x′ (x′iJ(x′)) · (∇′x′j) = −

∫
d3x′ (x · x′)Jj(x′). (69)

Generalizing now to all three components of this integral, we find

∫
d3x′ (x · J(x′))x′ = −

∫
d3x′ (x · x′)J(x′). (70)

Comparison with the expressions for Ad shows that

Ad(x) = − 1

2c

1

|x|3x×
[∫
d3x′ (x′ × J(x′))

]
≡ m× x

|x|3 = ∇×

m

|x|


 (71)

where the magnetic dipole moment of the current distribution is defined

as

m ≡ 1

2c

∫
d3x′ (x′ × J(x′)). (72)

The magnetic moment density of the distribution is defined by

M(x) ≡ 1

2c
x× J(x) (73)

so that the magnetic moment is the integral of this density over all

space.

The field produced by the source in the magnetic dipole approxima-

tion is

Bd(x) = ∇×Ad(x) = ∇×

m× x

|x|3

 . (74)

Using the identity

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B, (75)
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we can write this equation as

Bd(x) =
3n(n ·m)−m

|x|3 (76)

where n = x/|x|.
This is, as was the case for the electric dipole, only the field outside

of the current distribution. For a point magnetic dipole, it would be

the field away from the location of the dipole (the origin), and at the

origin there is a delta-function field as for the point electric dipole. We

may find the magnitude and direction of this singular field by a more

careful analysis of what happens as r → 0. To this end it is useful to

write the vector potential of the dipole as

Ad(x) = ∇×

m

|x|


 . (77)

Then we can write

B(x) = ∇×A(x) = ∇×
[
∇×

(
m

r

)]
= ∇

[
∇ ·

(
m

r

)]
−∇2

(
m

r

)
. (78)

The last term on the right-hand side is just 4πmδ(x). The first one

we have seen before, as it is the same as the electric field of an electric

dipole; we already know what singularity is contained therein but will

figure it out again as an exercise. Start by integrating this term over a

small sphere of radius ε centered at the origin and then take the limit
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as ε→ 0:

∫

r<ε
d3x∇

[
∇ ·

(
m

r

)]
=
∫

r=ε
d2xn

[
∇ ·

(
m

r

)]
, (79)

where we have used the identity, valid for any scalar function f(x):

∫
d3x∇f(x) =

∫
d2xnf(x); (80)

S is the surface enclosing the domain V and n is the usual outward unit

normal. Continuing, we have

∫

r=ε
d2xn

[
∇ ·

(
m

r

)]
= −

∫

r=ε
d2x r̂

(
m · x
r3

)
= −4π

3
m. (81)

Hence we find that∇[∇·(m/r)] contains the singular piece (4π/3)mδ(x).

Putting it into Eq. (78), we conclude that the delta-function piece of the

magnetic field is (8π/3)mδ(x), and hence the total field of the magnetic

dipole is

B(x) =
3(n ·m)n−m

r3
+

8π

3
mδ(x). (82)

The consequences of the presence of the delta-function piece are ob-

served in atomic hydrogen where the magnetic moment of the electron

interacts with that of the nucleus, or proton. Without this interaction,

all total-spin states of the atom would be degenerate. As a consequence

of the interaction, the “triplet” or “spin-one” states are raised slightly

in energy relative to the “singlet” or “spin-zero” state. The splitting

is small even on the scale of atomic energies, being about 10−17erg or
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10−5 ev. A photon which has the same energy as this splitting, and

which is thus produced or absorbed by a transition between the two

atomic energy levels, has a wavelength of 21 cm. The delta-function

part of the field also plays an important role in the scattering of neu-

trons from magnetic materials.

6 Forces on a Localized Current Distribution

We shall look next at the interaction of a localized current distribution

with an externally applied field, again using procedures reminiscent of

the multipole expansion for a localized charge distribution. First, we

expand the applied field around some suitably chosen origin (at the

center of the current distribution),

B x( )

J x( )

Source of

We will assume that B varies slowly over the region
where J is finite.

B(x) = B(0) + (x · ∇′)B(x′)|x′=0 + ...; (83)
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The force that the field exerts on a localized current distribution located

around the origin is then expanded as follows:

F =
1

c

∫
d3x (J(x)×B(x))

= −1

c
B(0)×

∫
d3xJ(x) +

1

c

∫
d3xJ(x)× [(x · ∇′)B(x′)|x′=0] + ....(84)

Now, the first integral in the last line vanishes for a localized steady-

state current distribution (there can’t be any net flow of charge in any

direction), and we can manipulate the integrand in the final integral as

follows:

(x · ∇′)B(x′) = ∇′(x ·B(x′))− x× (∇′ ×B(x′)), (85)

and we may suppose that B is due entirely to external sources so that

∇′×B(x′) = 0 for x′ around the origin. Thus we find that the force is

F =
1

c

∫
d3xJ(x)× [∇′(x ·B(x′))|x′=0]

= −1

c

∫
d3x∇′ × [(x ·B(x′))|x′=0J(x)]

= −1

c
∇′ ×

∫
d3x [x ·B(x′))|x′=0J(x)]. (86)

Now, we can write the last integral as

∫
d3x (x ·B(x′))J(x) = −

∫
d3x [B(x′)× (x× J(x))− x(B(x′) · J(x))].

(87)

Further, it is true that

∫
d3xx(B(x′) · J(x)) = −

∫
d3x (x ·B(x′))J(x); (88)
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we can demonstrate this fact by considering the ith component of the

integral.

−
∫
d3x (x ·B(x′))Ji(x) = −

∫
d3x (x ·B(x′))∇ · (xiJ(x))

=
∫
d3x [∇(x ·B(x′))] · (xiJ(x)) =

∫
d3xB(x′) · (xiJ(x))

=
∫
d3x xi(B(x′) · J(x)). (89)

Hence, from Eqs. (84), (85), and (86) we find that

F =
1

2c
∇′ ×

{∫
d3x [B(x′)× (x× J(x))]

}
|x′=0

=
1

2c
∇′ ×

{
B(x′)×

∫
d3x (x× J(x))

}
|x′=0

= ∇′ × (B(x′)×m)|x′=0 = (m · ∇′)B(x′)|x′=0 −m(∇′ ·B(x′))|x′=0

= ∇′(m ·B(x′))|x′=0 −m× (∇′ ×B(x′))|x′=0.(90)

Along the way in this derivation we have made use of the facts that

the divergence and curl of B are zero in the region near the origin. The

final result has the form of the gradient of a scalar function,

F = −∇(−m ·B(x)) (91)

where the gradient is to be evaluated at the center of the current dis-

tribution. Notice in particular that there is no force if the applied mag-

netic induction is uniform. More generally, the force is in the direction

of the gradient of the component of B in the direction of m.
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The torque N on the current distribution may be found using similar

manipulations.

N =
1

c

∫
d3x x× (J(x)×B(x)) ≈ 1

c

∫
d3x x× (J(x)×B(0))

=
1

c

∫
d3x [(x ·B)J(x)− (x · J(x))B] = − 1

2c

∫
d3xB× (x× J(x))

−1

c
B
∫
d3x (x · J(x)) = m×B− 1

c
B
∫
d3x (x · J(x))(92)

However,

∇ · (r2J(x)) = 2x · J(x) + r2(∇ · J(x)); (93)

the final term here is zero, so it is the case that

∫
d3x (x · J(x)) =

1

2

∫
d3x∇ · (r2J(x)) = 0, (94)

the final step following from the fact that the current distribution is

localized. Thus the torque on the localized source reduces to

N = m×B, (95)

in the dipole approximation. Compare this result with Eq. (1).

7 Macroscopic Magnetostatics

If one has a macroscopic object with lots of microscopic currents flow-

ing around in it (electrons on molecules give many small current loops),

then it is best to carry out suitable averages over volumes small com-

pared to anything macroscopic but large compared to molecules and
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to calculate only the average quantities. The elementary procedure, in

which many complications are blissfully ignored, is to break the sources

up into free and bound:

1. the macroscopic current density, written as J(x)

2. the magnetization M(x) which is defined as the magnetic dipole

moment per unit volume.

The latter comes from the molecules, atoms, ions, etc., in a material

medium. The macroscopic current density comes from moving charges

which are not bound on molecules, i.e., not localized. Notice that

within this approach we can accommodate sources which cannot ac-

tually be described as the motion of charges, or currents; that is, the

spin magnetic moments of “elementary” particles such as the electron.

These may be treated as point dipoles and so simply contribute to the

magnetization.

Given these sources, use of Eqs. (48) and (71) tell us that the (macro-

scopic) vector potential is

A(x) =
1

c

∫
d3x′


 J(x′)

|x− x′| +
cM(x′)× (x− x′)

|x− x′|3

 . (96)

We can manipulate the term involving the magnetization in a manner

which should be familiar:

A(x) =
1

c

∫
d3x′





J(x′)

|x− x′| +
cM(x′)× (x− x′)

|x− x′|3
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=
1

c

∫
d3x′





J(x′)

|x− x′| + cM(x′)×∇′

 1

|x− x′|







=
1

c

∫
d3x′





J(x′) + c(∇′ ×M(x′))

|x− x′|



−

∫
d3x′∇′ ×


 M(x′)

|x− x′|


 (97)

However, there is an identity which allows us to convert the integral of

a curl to a surface integral:

∫

V
d3x∇×V =

∮

S
d2xn×V. (98)

In the present instance, when the last integral in Eq. (97) is converted

to a surface integral, it will vanish because if the surface encloses all

of the magnetic materials, M will be zero on the boundary. Hence we

have the result

A(x) =
1

c

∫
d3x′

J(x′) + c[∇′ ×M(x′)]

|x− x′| (99)

for the macroscopic vector potential.

7.1 Magnetization Current Density

The form of this equation implies that c∇×M(x) is a current density

associated with spatial variations of the magnetization. It is possible

to imagine how the curl of the magnetization yields a current source,

if we consider each magnetic dipole as originating from a vanishingly

small current loop.
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Each microscopic current
loop represents a dipole.
The net circulation of
the loops (the current
density) is given by the
curl of the loop density

This may or may not really be the case. If the magnetization is the

consequence of the motions of bound charges on molecules, then it is

indeed a current. But if the magnetization is the consequence of the

intrinsic dipole moments of elementary particles such as the electron,

then it is not reasonable to think of the curl of the magnetization as a

current density. Nevertheless, we shall define the magnetization current

density JM(x) as3

JM(x) = c∇×M(x). (100)

In terms of the magnetization current density, we have

A(x) =
1

c

∫
d3x′

J(x′) + JM(x′)

|x− x′| . (101)

The differential field equations obeyed by the macroscopic magnetic

induction, which is the curl of the macroscopic vector potential,

B(x) = ∇×A(x), (102)

3Notice that this object has zero divergence, as a steady-state current density should.
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are easy to write down by referring to our earlier derivation; they are

∇×B(x) =
4π

c
(J(x) + JM(x)) (103)

and, of course,

∇ ·B(x) = 0. (104)

7.2 Magnetic Field

The difficulty one faces in solving these equations is much the same

as faced in macroscopic electrostatics. One generally does not know

magnetization until after solving for the induction. Further, the relation

between B(x) and M(x) depends on the material. It is customary to

define an additional macroscopic field H(x), called the magnetic field,

H(x) ≡ B(x)− 4πM(x). (105)

Then Eq. (103) can be rewritten as

∇×B(x) =
4π

c
(J(x) + c∇×M(x)) (106)

or

∇× (B(x)− 4πM(x)) =
4π

c
J(x) (107)

or

∇×H(x) =
4π

c
J(x). (108)
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We haven’t resolved anything by making this definition, of course; we

have simply phrased the problem in a somewhat different form. The

advantage in introducing the magnetic field is that it obeys a relatively

simple differential equation and that, in many materials, there is a

simple approximate relation between B and H. The simplest materials

are, like dielectrics, linear, isotropic, and uniform, in which case the

relation between B and H is

H(x) =
1

µ
B(x) (109)

where µ is a constant known as the magnetic permeability. This positive

constant can be smaller or larger than unity, leading to two classifica-

tions of magnetic materials: If µ < 1, the material is said to be a

diamagnet; if µ > 1, it is called a paramagnet.

µ< 1 µ> 1

Diamagnetism

BB

Paramagnetism

µ= 1µ= 1

For linear, isotropic materials, it is also common to introduce the mag-
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netic susceptibility χm,

χm ≡
µ− 1

4π
(110)

so that M = χmH.

Many materials have dramatically different relations among B, M,

and H. Ferromagnets are a prime example; they can have a finite mag-

netic induction with zero magnetic field as well as the converse. In

addition, as shown in the figure below the relation between these two

fields in ferromagnets is usually not single-valued; the particular mag-

netic field one finds for a given value of B depends on the “history” of

the sample, meaning it depends on what external fields it was subjected

to prior to determining B and H. We will not concern ourselves with

the origins of this behavior.

H

B

38



7.3 Boundary Conditions

We have the general differential equations of magnetostatics

∇×H(x) =
4π

c
J(x) (111)

and

∇ ·B(x) = 0. (112)

These are valid for any system, independent of the particular relation

between the magnetic induction and the magnetic field. From them we

can derive general boundary or continuity conditions. From the diver-

gence equation, we infer that the normal component of the magnetic

induction is continuous at an interface between two materials,

n

21

∫ d x ∇ ⋅ B = ∫ B ⋅ n d x

    ( B  - B  ) ⋅ n = 0
   
          B   = B

23

12

1n2n

(B2 −B1) · n = 0 (113)

where the subscripts 1 and 2 refer to the induction in each of two
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materials meeting at an interface, and n is a unit vector normal to the

interface and pointing into medium 2.

From the curl equation, one finds that the tangential components

of H can be discontinuous. The discontinuity is related to the current

flowing along (parallel to) the interface. Consider Stokes’ theorem as

applied to the curl equation.

n

21

a
h

⋅n’
n

C

∫ d x ∇ × H ⋅ n’ =
∫ dl ⋅ H = 
h ( H  - H  ) ⋅ n’ × n =
4π/c ∫ d x J ⋅ n’

4π/c ∫ d x J ⋅ n’ = 




      0            ;  if K is zero                    

h 4π/2 K ⋅ n’;  if K is finite

Thus,
∫

S
d2x [∇×H(x)] · n′ =

∮

C
dl ·H(x) =

4π

c

∫

S
d2xJ(x) · n′ (114)

where the unit vector n′ is directed normal to the surface S over which

the integration is done. Using a rectangle of dimensions a by h, where

a << h and a is directed perpendicular to the interface while h is

parallel to it, we find that the line integral comes down to
∮

C
dl ·H(x) = h(H2 −H1) · (n′ × n) (115)
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which is to say, we find the discontinuity in a particular tangential

component of H across the interface. The integral over the current, on

the other hand, gives, for a finite, slowly varying current,

4π

c

∫

S
d2xJ(x) · n′ ∼ ahJ · n′; (116)

this is proportional to a and so is insignificant for a << h assuming a fi-

nite well-behaved current density. In this case, there is no discontinuity

in the tangential components of H,

(H2 −H1)× n = 0. (117)

There is also the possibility of a singular term in J(x) which would

be of the form

Js(x) = K(x)δ(ξ) (118)

where ξ is the distance from the interface and the vector K points in

a direction parallel to the interface. This vector is a surface-current

density and has dimensions of charge per unit length per unit time.

This expression is, of course, an idealization. When currents run along

the surface of a material, they typically are not localized precisely at the

surface (i.e., , within an atomic size) but are spread over a surface layer

of thickness ranging from a few hundred Angstroms to some microns. If

the length a is significantly larger than this layer’s thickness, then it is

reasonable to talk about a surface-current density and quite acceptable
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to regard it as being localized at the interface. Proceeding on this basis,

we find that the continuity condition becomes

h(H2 −H1) · (n′ × n) = h
4π

c
K · n′. (119)

This relation can be written in the more general form

n× (H2 −H1) =
4π

c
K (120)

as may be shown by (1) realizing that K · n = 0 and (2) taking the

inner product of Eq. (120) with any vector (such as n′) lying in the

plane of the interface.

8 Examples of Boundary-Value Problems in Mag-

netostatics

8.1 Uniformly Magnetized Sphere

The principal example is a uniformly magnetized sphere meaning a

material that maintains a constant magnetization M0 in the absence

of any applied field.

M
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We shall let the direction of M be the z-direction and so have

M(x) =





M0ẑ r < a

0 r > a.
(121)

In the region r > a, B = H. For r < a, B = H + 4πM. However, M

is constant here and so has no curl or divergence. This means that the

curls of both B and H are zero everywhere except at the boundary of

the sphere.

Consider the magnetization current density, JM = c∇×M; it is non-

zero only at r = a where it is singular. By applying Stokes’ theorem

to this equation in the same manner as was done to find the continuity

condition on the tangential components of H at an interface, one finds

that there is a magnetization surface-current density KM given by

KM = cn× (M2 −M1) (122)

where n is the unit normal at the surface pointing into material 2. In

the present application, M1 = M0 and M2 = 0. Since r̂× ẑ = − sin θφ̂,

we have KM = KM φ̂ where KM = cM0 sin θ.

8.1.1 Scalar Potential for the Induction

Now that we have identified the sources, let’s look at some methods of

solution. First, consider a scalar potential approach. Because the curl

of B is zero for r < a and r > a, we can devise scalar potentials for
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the magnetic induction in these two regions. Because ∇ · B(x) = 0,

the potentials satisfy the Laplace equation. Further, the system is

invariant under rotation around the z-axis, implying that the potential

is independent of φ. Hence it must be possible to write

Φ<(x) = M0a
∑

l

Al

(
r

a

)l
Pl(cos θ) for r < a (123)

and

Φ>(x) = M0a
∑

l

Cl

(
a

r

)l+1

Pl(cos θ) for r > a. (124)

Given that B = −∇Φ(x), the condition that the normal component of

B is continuous at r = a becomes (making use of the orthogonality of

the Legendre polynomials in the usual way)

lAl = −(l + 1)Cl (125)

for all l. The other boundary condition is that the tangential compo-

nent of H, or Hθ is continuous. Since B = H + 4πM, and since the θ-

component of the magnetization is−M0 sin θ (and sin θ = −dP1(cos θ)/dθ,

this second condition leads to

Al = Cl for l not equal to 1 (126)

and

C1 = A1 + 4π. (127)

¿From these equations it is easy to see that Al = Cl = 0, l 6= 1, while

C1 = 4π/3 and A1 = −8π/3.
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Having found the potential, we may compute the fields. The mag-

netic induction at r > a has the familiar dipolar form; the field within

the sphere is a constant:

B< =
8π

3
M0 and H< = −4π

3
M0. (128)

8.1.2 Scalar Potential for the Field

A second approach to this problem is to devise a scalar potential for

the magnetic field. Since J(x) = 0 everywhere, the curl of H is zero

everywhere and so there is a potential ΦH for H everywhere such that

H(x) = −∇ΦH(x). The divergence of H obeys

∇·H(x) = −∇2ΦH(x) = ∇·B(x)−4π∇·M(x) = −4π∇·M(x). (129)

Looking upon this as a Poisson equation, we can immediately see that

the solution for the potential is

ΦH(x) = −
∫
d3x′
∇′ ·M(x′)

|x− x′| = −
∫
d3x′


∇′ ·


 M(x′)

|x− x′|


−M(x′) · ∇′


 1

|x− x′|






(130)

The first term in the final expression may be converted to a surface

integral which is seen to be zero from the fact that the magnetization

is non-zero only within the sphere. Hence

ΦH(x) = M0ẑ ·
∫

r′<a
d3x′∇′


 1

|x− x′|


 = −∇ ·


M0ẑ

∫

r′<a

d3x′

|x− x′|




= −∇ ·
[
M0ẑ

∫ a
0
r′2dr′4π

1

r>

]
(131)
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where r> is the larger of a and r. For r > a, we find

ΦH(x) = −∇ ·

M0ẑ4π

a3

3r


 =

4π

3
a3M0

cos θ

r2
, (132)

and for r < a,

ΦH(x) = −∇ ·

M0ẑ4π


a

2

2
− r2

6




 =

4π

3
M0z. (133)

Notice how the preceding calculation avoids having to think about

what happens at the surface of the sphere; the integration by parts

leaves us with a simpler integration over the magnetization. It is, of

course, possible to evaluate the divergence of the magnetization and

complete the integral directly without using the integration by parts.

To this end, write the magnetization as

M(x) = M0ẑθ(a− r) (134)

where the θ-function is a step function,

θ(x) =





1, x > 0

0, x < 0.
(135)

Then

∇ ·M(x) = M0
∂

∂z
θ(a− r) = −M0δ(a− r)

∂r

∂z
(136)

since
dθ(x)

dx
= δ(x). (137)
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Hence

ΦH(x) =
∫
d3x′
∇′ ·M(x′)

|x− x′| = M0a
2
∫
dΩ′

cos θ′

|x− x′| (138)

= M0a
2 4π

3

3

4π

4π

3

r<
r2
>

cos θ =
4π

3
M0a

2r<
r2
>

cos θ. (139)

Here, x′, after integrating over r′, has the magnitude a.

8.1.3 Direct Calculation of B

Another approach to this problem is to calculate the vector potential

for B(x) directly. Since J(x) = 0 everywhere, only the curl of the

magnetization acts as a source of this potential. Thus we have

A(x) =
1

c

∫
d3x′

c∇′ ×M(x′)

|x− x′| =
∫
d3x′


∇′ ×


 M(x′)

|x− x′|


−∇′


 1

|x− x′|


×M(x′)




=
∮

S
d2x′ n′ ×


 M(x′)

|x− x′|


 +∇×



∫
d3x′

M(x′)

|x− x′|




= ∇×M0ẑ4π





a3/3r, r > a

a2/2− r2/6, r < a.
(140)

One may easily work out the curl to find

A(x) =
4π

3
M0a

3 sin θ

r2
φ̂ for r > a (141)

and

A(x) =
4π

3
M0r sin θφ̂ for r < a. (142)
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These expressions may be summarized as

A(x) =
4πM0

3
a2


r<
r2
>


 sin θφ̂. (143)

The preceding example is a typical one involving a permanently

magnetized material. Then one knows M(x) and so can proceed with

a solution of the equations for B or H via the route of one’s choice. A

quite different sort of problem is one involving linear, isotropic magnetic

materials with J(x) = 0. These are entirely equivalent to problems in

macroscopic electrostatics (Laplace equation problems) with which we

have extensive experience. The point is that one has

∇×H(x) = 0 (144)

which means there is a potential ΦH(x) such that

H(x) = −∇ΦH(x). (145)

Further, since ∇ ·B(x) = 0, and B(x) = µH(x), we have

0 = ∇·B(x) = ∇·(µH(x)) = (∇µ)H(x)+µ∇·H(x) = −(∇µ)∇ΦH(x)−µ∇2ΦH(x),

(146)

or

∇2ΦH(x) = −∇µ
µ
∇ΦH(x). (147)

In any region of space where µ is a constant, this is just the Laplace

equation,

∇2ΦH(x) = 0. (148)
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Hence we may write down an appropriate solution of the Laplace equa-

tion for ΦH(x) in each region of space where the magnetic properties

are uniform and then make sure the continuity conditions on the tan-

gential components of H(x) and on the normal components of B(x)

are satisfied on the boundaries between such regions. The techniques

used are the same as for boundary value problems in electrostatics.

Notice that in problems of this kind, we can equally well make a

scalar potential for B(x) in each of the regions where µ is constant.

8.2 Shielding by a Paramagnetic Cylinder

A standard example is magnetic shielding in which a shell of magnetic

material with a very large value of µ (a strongly paramagnetic material)

is placed around some region of space. Suppose, for example, that a

long cylindrical shell of inner radius a and outer radius b is placed

around the z-axis and that this system is subjected to a transverse

applied field H0 = H0x̂. Then we have three regions, ρ < a, a < ρ < b,

and b < ρ, in which we may make potentials ΦH which satisfy the

Laplace equation. These potentials will have the forms

(i) ρ < a:

ΦH(x) = H0Aρ cosφ (149)
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(ii) a < ρ < b:

ΦH(x) = H0

[
Cρ cosφ+Da2 cosφ/ρ

]
(150)

(iii) b < ρ:

ΦH(x) = H0

[
−ρ cosφ+ Eb2 cosφ/ρ

]
. (151)

Here, we have guessed (on the basis of long experience) that the only

terms in the potential will be the ones with the same dependence on φ

as the potential of the applied field. The latter is −H0x = −H0ρ cosφ.

Continuing, one has the boundary conditions at ρ = a and ρ = b

which are that Hφ and Bρ must be continuous. These lead to the four

equations

A = C +D

C +D
a2

b2
= −1 + E

A = µC − µD

and

µC − µDa
2

b2
= −1− E. (152)

The solution for A in particular is

A = −

 4µ

(µ+ 1)2 − (a2/b2)(µ− 1)2


 , (153)

from which one finds that the field inside of the shield is

H(x) = B(x) =
4µ

(µ+ 1)2 − (a2/b2)(µ− 1)2
H0. (154)
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The field inside is decreased relative to the applied field by a factor of

A. If one employs a “high-µ” material with a permeability of order 104

or 105, then a ∼ 4/{µ[1 − (a2/b2)]} which will be much smaller than

unity if a is significantly smaller than b. This is the limit in which the

sleeve acts as a good shield against the applied magnetic field.
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Maxwell’s Equations

James Clerk Maxwell

(1831 - 1879)

November 9, 2001

∇ ·B(x, t) = 0, ∇×H(x, t) =
4π

c
J(x, t) +

1

c

∂D(x, t)

∂t

∇× E(x, t) = −1

c

∂B(x, t)

∂t
, ∇ ·D(x, t) = 4πρ(x, t)
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Our first task in this chapter is to put time into the equations of electromagnetism.

There are traditionally two steps in this process. The first of them is to develop Fara-

day’s Law of Induction which is the culmination of a series of experiments performed

by Michael Faraday (1791 - 1867) around 1830. Faraday studied the current “in-

duced” in one closed circuit when a second nearby current-carrying circuit either was

moved or had its current varied as a function of time. He also did experiments in

which the second circuit was replaced by a permanent magnet in motion. The general

conclusion of these experiments is that if the “magnetic flux” through a closed loop

or circuit changes with time, an induced voltage or electromotive force (abbreviated

by Emf) appears in the circuit.

1 Faraday’s Law of Induction

Define the magnetic flux through, or “linking” a closed loop C as

F =
∫

S
d2xB · n (1)

where S is an open surface that ends on the curve C and n is the usual unit right-hand

normal (see below) to the surface. So long as ∇ ·B = 0, this integral is the same for

all such surfaces.

B

B

n
C

Figure 1: Orientation of n and C.

Define next the Emf in the loop as

E =
∮

C
dl · E′ (2)
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where E′ is the electric field in that “frame of reference” in which the loop is at rest.1

The path C is traversed in such a direction that the unit normal n is the right-hand

normal relative to this direction. We may now write Faraday’s Law of Induction as

E = −kdF
dt

(3)

where t is the time and k is a positive constant.

Let us make two points in relation to this equation.

First, the minus sign has the consequence, when taken along with our definitions

of the direction of n, etc., that the induced electromotive force will try to drive a

current through the loop in such a direction as to produce a flux through the loop

that will be opposite in sign to the change in F that gave rise to the Emf in the first

place. Thus if one tries to increase the flux F through the loop by manipulating some

external currents or magnets, the resulting induced current will produce a B(x) which

acts to counter the externally applied magnetic induction. This particular aspect of

Faraday’s Law is also known as Lenz’s Law.

ξ

I

BB
.

> 0

Figure 2: Induced current, and the resulting induced magnetic induction.

Second, in Gaussian units, the constant k has dimensions of T/L or inverse speed.

It is in fact 1/c where c is the constant that appears in Ampère’s Law and in the

Lorentz force law. This is not a separate experimental fact but may be deduced

from classical notions of relativity and the laws of electromagnetism as we currently

understand them. We may demonstrate this claim; consider the time rate of change

of flux through a loop C that is moving with some constant velocity v relative to the

1Notice that this definition cannot cover the case of a rotating loop since such a loop is not at

rest in any one inertial (unaccelerated) frame.
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(lab) frame in which we are measuring x and t. We have

dF

dt
=

d

dt

(∫

S
d2xB(x, t) · n

)
=
∫

S
d2x

∂B(x, t)

∂t
· n +

(
dF

dt

)

2

(4)

v

lab

x x + vdt

SS

Figure 3: Loop moving relative to the lab frame

v is constant

where the final term on the right accounts for the fact that the surface S over which

we must integrate changes with time (it moves). To evaluate this term, we note that

the distance the loop moves in time dt is vdt and that S is displaced by the same

amount. A point on S initially at x goes to x + vdt in time dt, so if B(x) is sampled

before dt elapses, then B(x + vdt) is sampled afterwards. We can expand the latter

as

B(x + vdt) = B(x) + dt(v · ∇)B(x) + ... (5)

For an infinitesimal time element, we can ignore the higher-order terms. Hence, dF2,

which is the integral of the change [B(x + vdt)−B(x)] ·n over the surface S (at time

t) is easy to formulate:

(
dF

dt

)

2

=
∫

S
d2x (v · ∇)[B(x) · n]. (6)

Now recall the vector identity ∇× (v×B) = v(∇ ·B)− (v · ∇)B. If we use the law

∇ ·B(x) = 0, we can use this identity to find that

(
dF

dt

)

2

= −
∫

S
d2xn · [∇× (v ×B)] = −

∮

C
dl · (v ×B), (7)
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the last step following from Stokes theorem. Using Eqs. (4) and (7) in Faraday’s Law

of Induction2, we find

∮

C
dl · [E′ − k(v ×B)] = −k

∫

S
d2x

(
∂B

∂t
· n
)

(8)

where E′ is the electric field in the frame where the loop is at rest; this frame moves

at velocity v relative to the one where B is measured (along with x and t).

Now consider a second circuit which is at rest in the frame where B, x, and t are

measured and which coincides with the first loop at the particular time t.

v

lab

x

S

Figure 3b: Consider a second loop stationary in the lab frame

v is constant S

Second loop. The
loops coincide at
time t.

First loop,
moving at
velocity v
in the lab
frame.

For this loop Faraday’s Law says that

∮

C
dl · E = −k

∫

S
d2x

(
∂B

∂t
· n
)

(9)

where E is the electric field in the lab frame. Comparing Eqs. (8) and (9), we see

that ∮

C
dl · [E′ − k(v ×B)] =

∮

C
dl · E. (10)

This relation tells us that the integrands are equal, give or take a vector field V

which has the property that the line integral of its component along the line is zero

when taken around the loop C. This condition plus the arbitrariness of C tells us the

∇×V = 0. This field can depend on v, so we shall write it as V(v). Taking these

statements together, we have the relation

E′ = E + k(v ×B) + V(v). (11)

2 dF
dt = −1/k

∮
C
dl ·E′
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This relation gives us the transformation of the electric field from the lab frame to

the rest frame of the moving circuit.

There is a second way to get this transformation. Consider a charge q following

some trajectory x(t) under the influence of E and B, as seen from the “lab” frame

(the one where the unprimed quantities are measured).

q

v

=q{ + x }F E v B

F’ = E’q

F’ = F (Galilean Invariance)

Figure 4: By Galilean invariance (see footnote) the forces F=F’

If at time t the particle is at some point x and has velocity v, the same as the velocity

of the moving circuit, then if feels a force F given by

F = q[E +
1

c
(v ×B)]. (12)

But in its rest frame, where the electric field is E′, it feels a force

F′ = qE′. (13)

Now, according to classical, or Galilean, relativity, F′ is the same as F, so, upon

comparing the expressions for the force, we see that

E′ = E +
1

c
(v ×B). (14)

Comparison with Eq. (11) gives k = 1/c and V(v) = 0. Using this result for k in

Faraday’s Law, we find that it is fully specified by

E = −1

c

dF

dt
or

∮

C
dl · E(x) = −1

c

∫

S
d2x

(
∂B

∂t
· n
)

(15)

7



for a stationary path.3 If we take the integral relation and apply Stokes theorem, we

find ∫

S
d2x

(
∇× E +

1

c

∂B

∂t

)
· n = 0. (16)

Because S is an arbitrary open surface, this relation must be true for all such surfaces.

That can only be if the integrand is everywhere zero, leading us to the differential

equation

∇× E(x, t) = −1

c

∂B(x, t)

∂t
(17)

which is the differential equation statement of Faraday’s Law.

2 Energy in the Magnetic Field

Given Faraday’s Law, we are in a position to calculate the energy required to produce

a certain current distribution J starting from a state with J = 0 even though we

do not as yet know all of the time-dependent terms in the field equations. In this

section, we shall determine what is this energy. The mechanism that requires work

to be done is as follows: If we attempt to make a change in any existing current

distribution, there will be time-dependent sources (the current) with an accompanying

time-dependent magnetic induction. The latter must in turn produce electromagnetic

forces, or electric fields, against which work must be done not only in order to change

the currents but also simply in order to maintain them. By examining this work, we

can determine the change in the “magnetic energy” of the system.

To get started, consider a single loop or circuit carrying current I1. Given a

changing flux dF1/dt through this loop, there is an E1 = −c−1dF1/dt. If we wish

to maintain the current in the face of this electromotive force, we must counter the

latter by introducing an

3It should be remarked that all of this makes sense only to order v/c since in the next order,

v2/c2, Galilean relativity fails. However, the conclusion that k = 1/c must remain valid since k is a

constant (according to experiments), independent of the relative size of any velocities.
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The total current can be constructed from
many current loops. We will start with one,
and bring in another from infinity. To do this,
we must change the flux through the first
one, inducing an EMF in it.

I1

I2I1

B
.

Maintaining the current in the first loop requires work to overcome
the induced EMF.

Figure 5: Energy required to construc a current distribution

external agent which maintains a voltage V1 = −E1 = 1
c
dF1

dt
around the loop. This

agent thus does work at a rate V1I1 = −E1I1. The total work that it does is

δW1 = −
∫
dtI1E1 =

I1

c

∫
dt
dF1

dt
=
I1δF1

c
(18)

where δF1 is the total change of the flux through the loop. We may also express our

result as

δW1 =
I1

c

∫

S
d2x (δB · n) (19)

where S and n are related to the loop in the usual way, and δB is the change in the

magnetic induction. If we write δB = ∇×δA, which is possible so long as ∇·δB = 0,

we have

δW1 =
I1

c

∫

S
d2x (∇× δA) · n =

I1

c

∮

C
dl · δA (20)

where Stokes theorem has been invoked.

Now let us generalize. A current distribution J can be thought of as the sum of

many infinitesimal loops. Given many such loops, the total work done by the external

agent(s) will be the sum of the works done on each of the loops. The relation between

the current in a loop, I, and J is |J|(dσ) where dσ is the (infinitesimal) cross-sectional

9



area of the loop. Thus Idl → Jdσdl or Jd3x. Integrating over individual loops and

summing over all loops is equivalent to integrating over all space, so we find that the

change in energy accompanying a change δA(x) in the vector potential (reflecting an

infinitesimal change δB(x) in the magnetic induction) is

δW =
1

c

∫
d3x [J(x) · δA(x)]. (21)

The change in the magnetic induction has to be infinitesimal for this expression to be

valid because we did not ask how the current density must be changed to produce it.

Note that this form indicates that W is a natural thermodynamic function function

of the potential or magnetic flux, rather than the sources

Now let us write the current density in terms of the fields. If we think we are

doing macroscopic electromagnetism, then4 J = c(∇×H)/4π and we can proceed as

follows:

δW =
1

4π

∫

V
d3x [(∇×H) · δA] =

1

4π

∫

V
d3x [∇ · (H× δA) + H · (∇× δA)]

=
1

4π

∮

S
d2x (H× δA) · n +

1

4π

∫

V
d3x (H · δB)

=
1

4π

∫
d3x (H · δB). (22)

The final step in this argument is achieved by letting the domain of integration be

all space and assuming that the fields H and δA fall off fast enough far away that

the surface integral vanishes. This is in fact true for a set of localized sources in the

limit that changes are made very slowly.

In the final step of our derivation we want to integrate δB up to some final B

starting from zero magnetic induction or zero current density. We can only do this

functional integral if we know how H depends on B. For a linear medium or set of

4This relation is only true for static phenomena; since we are changing the fields with time, it is

not valid. However, if the change is accomplished sufficiently slowly that ∂D
∂t may be neglected, then

the corrections to Ampère’s Law are so small as to have negligible influence on our argument. Notice

too that use of this equation demands that changes in J(x) be done in such a way that ∇ · J = 0.
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media, we know that

H · δB =
1

2
δ(H ·B) (23)

and so

δW =
1

8π

∫
d3x δ(B ·H) (24)

which integrates to

W =
1

8π

∫
d3xB(x) ·H(x) (25)

provided we define W ≡ 0 in the state with B ≡ 0.

Our result, Eq. (25), can be written in other forms; a particularly useful one is

obtained by writing B = ∇ × A and doing a parts integration in the familiar way.

Assuming that one can discard the resulting surface term (valid for localized sources),

we find

W =
1

2c

∫
d3xJ(x) ·A(x). (26)

In analogy with the electrostatic case, one conventionally defines the magnetic energy

density to be

w ≡ 1

8π
(H(x) ·B(x)). (27)

2.1 Example: Motion of a permeable Bit in a Fixed J

Let us look at a specific example of the use of the expression(s) for the energy. Suppose

that there is some initial current distribution J0 which produces fields H0 and B0

and energy W0. Then we have

W0 =
1

8π

∫
d3xB0 ·H0 =

1

2c

∫
d3xJ0 ·Ao. (28)

Now move some permeable materials around without changing the macroscopic cur-

rent density J0.
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J(x)

µ
µ

Figure 6: Motion of a permeable bit in a fixed current distribution

After doing so we have a new energy which is

W1 =
1

8π

∫
d3xB1 ·H1 =

1

2c

∫
d3xJ0 ·A1 (29)

where the new fields, energy, etc., are designated by the subscript ‘1’. The change in

energy may be written as

W1 −W0 =
1

2c

∫
d3xJ0 · (A1 −A0) =

1

8π

∫
d3x [(∇×H0) ·A1 − (∇×H1) ·A0]

=
(

1

8π

∫
d3x∇ · [H0 × (A1 −A0)] +

∫
d3x [H0 · (∇×A1)−H1 · (∇×A0)]

)

=
1

8π

(∮

S
d2xn · [H0 × (A1 −A0)] +

∫
d3x [H0 ·B1 −H1 ·B0]

)
(30)

The surface term may be discarded for localized sources. Assuming further that all

materials are isotropic so that B = µH, we find

W1 −W0 =
1

8π

∫
d3x (µ1 − µ0)(H0 ·H1) (31)

where µ1 is the final value of the permeability (a function of position) and µ0 is the

initial value. If in addition µ0 = 1, a value appropriate for non-permeable materials

or empty space, and µ1 6= 1 only in some particular domain V , then

W1 −W0 =
1

2

∫

V
d3x (M1 ·B0) (32)

where we have made use of the facts that M1 = (µ1 − 1)H1/4π and B0 = H0.

It is instructive (maybe it’s just confusing) to compare the answer with other

things that we have seen. First, we calculated previously the change in the electro-

static energy when a piece of dielectric is introduced into a previously empty space
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in the presence of some fixed charges. We found

W1 −W0 = −1

2

∫

V
d3xP1 · E0. (33)

The difference in sign between the electrostatic and magnetostatic energies is a reflec-

tion of the fact that in the magnetic system we maintained fixed currents and in the

electrostatic system, fixed charges. In the former case external agents must do work

to maintain the currents, and in the latter one, no work need be done to maintain the

fixed charges. Hence in the latter case, the force on the dielectric may be found by

using the argument that in a conservative system, the force is the negative gradient of

the energy (which is given above) with respect to the displacement of the dielectric.

If, in the magnetic system, the work done on the system by the current-maintaining

external agents turns out to be precisely twice as large as the change in the system’s

energy, then the force on the permeable material will be the (positive) gradient of the

energy with respect to the displacement of the material. This is, in fact, the case, as

we shall see below.

2.2 Energy of a Current distribution in an External Field

As a second example, consider the energy of a current distribution in an external

field.

W =
1

c

∫
d3xJ(x) ·A(x). (34)

where A(x) is due to sources other than J(x), which do not overlap the region where

J(x) is finite. (note the lack of a factor of 1
2
, why?)

J(x)

Source of
the vector
potential

Figure 7: The source of the vector potential is far removed
from the current distribution.
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Now assume that A(x) changes little over the region where J(x) is finite, and thus

expand A(x) about the origin of the current distribution.

A(x) = A(0) + x · ∇A(x)]x=0 + · · ·

through the now familiar manipulations, we end up with

W = m ·B(0) + · · ·

where m is the dipole moment of the current distribution

This appears to make no sense at all!! Recall last quarter, we found that the force

on a permanent dipole is

F = ∇(M ·B0)

which acts to minimize the potential −m ·B, rather than +m ·B!

I

m

B

F

F

Figure 8: Forces on a current loop.

Consider a current loop Clearly the force tries to make m and B parallel. Have

we misplaced a “-”-sign? Our expression for W is correct; however, we do not have a

conservative situation, since in calculating the force on the loop, we assumed that the

current I is constant. However, rotating the loop changes the flux through it which

induces an Emf which opposes the changing flux. Thus I will not be constant unless

external work is done to make it so. In such a non-conservative situation, the force is

not the negative gradient of the energy. For this particular situation, it must be that

the the force is given by the positive gradient of the energy.

To demonstrate that the last statement above is correct, we consider a set of

circuits Ci, i = 1, 2, ..., n, with currents Ii. The energy of this system is

W =
1

2c

∫
d3xJ ·A =

1

2c

∑

i

Ii

∮

Ci
dl ·A =

1

2c

∑

i

∫

Si
d2xn · (∇×A)
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=
1

2c

∑

i

Ii

∫

Si
d2x (n ·B) =

1

2c

∑

i

IiFi (35)

where Fi is the flux linking the ith circuit.

Now suppose that a piece of permeable material moves through the system at

velocity v.

µ > 0

v

I

I

I
I

1

2

3

4

It will experience a force which we may calculate by demanding total energy conser-

vation. The various energies that must be considered are as follows:

1. The energy transferred to the moving object from the magnetic field. In time

dt, this energy is

dWm = F · vdt = Fηvdt (36)

given that v is in the η-direction.

2. The field energy; for fixed currents in the circuits, this energy changes by

dW =
1

2c

∑

i

IidFi (37)

in time dt.

3. The energy transferred to the magnetic field (or circuits) by some external

agents whose business it is to maintain the currents. The Emf ’s in the circuits

are Ei = −c−1dFi/dt and so the external agents do work on the ith circuit at a

rate −EiIi in order to maintain the currents. The work done on these external
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agents in time dt is therefore

dWe =
∑

i

EiIidt = −1

c

∑

i

IidFi = −2dW (38)

Now invoke conservation of energy which demands that the sum of all of the

preceding infinitesimal energy changes must be zero

dWm + dW + dWe = 0 (39)

or, using Eqs. (36) and (38),

Fηvdt = dW. (40)

Further, vdt = dη, so we find that

Fη = +

(
∂W

∂η

)

J

(41)

as suggested earlier.

What would the force be if the flux F was held constant?

3 Maxwell’s Displacement Current; Maxwell’s Equa-

tions

Let us summarize the equations of electromagnetism as we now have them:

∇ ·B = 0

∇ ·D = 4πρ

∇×H =
4π

c
J

∇× E = −1

c

∂B

∂t
. (42)

These are not internally consistent. Consider the divergence of Ampère’s Law:

∇ · (∇×H) = 0 =
4π

c
(∇ · J) (43)
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which implies that ∇ · J = 0. We know, however, that for general time-dependent

phenomena the divergence of the current density is not necessarily zero; indeed, we

have seen that charge conservation requires

∇ · J +
∂ρ

∂t
= 0. (44)

In consequence of this requirement, we must, at the very least, add a (time-dependent)

term to Ampère’s Law which will give, in distinction to Eq. (43),

∇ · (∇×H) =
4π

c

[
∇ · J +

∂ρ

∂t

]
. (45)

This new term which must be a vector field X, has to be such that

∇ ·X =
4π

c

∂ρ

∂t
. (46)

We need not look beyond the things we have already learned to find a plausible

candidate for this term. We have a (static) equation which reads

ρ =
1

4π
∇ ·D; (47)

if we accept this as correct, we have

4π

c

∂ρ

∂t
=

1

c

∂

∂t
∇ ·D = ∇ ·

(
1

c

∂D

∂t

)
. (48)

The simplest possible resolution of the inconsistency in the field equations is thus

to choose X to be c−1∂D/∂t, which would turn Ampère’s Law into the relation

∇×H =
4π

c
J +

1

c

∂D

∂t
. (49)

This adjustment was made5 by J. C. Maxwell in 1864, and the resulting set of differ-

ential field equations has since become known as Maxwell’s Equations:

∇ ·B(x, t) = 0, (50)

5He delivered a paper containing this statement in 1864, but he’d had the idea at least as early

as 1861.
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∇ ·D(x, t) = 4πρ(x, t), (51)

∇× E(x, t) = −1

c

∂B(x, t)

∂t
, (52)

and

∇×H(x, t) =
4π

c
J(x, t) +

1

c

∂D(x, t)

∂t
. (53)

The term that Maxwell added was called by him the displacement current JD:

JD ≡
1

4π

∂D

∂t
. (54)

This term has the appearance of an additional current entering Ampère’s Law so that

the latter reads

∇×H =
4π

c
(J + JD). (55)

Notice that ∇ · (J + JD) = 0. We shall not emphasize the “current” interpretation

of JD because it is misleading; the displacement current does not describe a flow of

charge and is not a true current density.

We close this section with two comments. First, the Maxwell equations must

be regarded as empirically justified. In the years since Maxwell’s final adjustment

of the field equations of electromagnetism, they have been subjected to extensive

experimental tests and have been found to be correct for classical phenomena (no

quantum effects or general relativistic effects); with proper interpretation, they even

have considerable validity within the realm of quantum phenomena. Second, the

equations as we have written them are for macroscopic electromagnetism. The more

fundamental version of these equations has B in place of H and E in place of D; then

the sources ρ and J are the total charge and current densities.

4 Vector and Scalar Potentials

For time-dependent phenomena, which are fully described by the Maxwell equations,

one can still write the fields E and B in terms of a scalar potential and a vector
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potential. Because the divergence of the magnetic induction is still zero, one continues

to be able to find a vector potential A(x, t) which has the property that

B(x, t) = ∇×A(x, t); (56)

this potential is not unique. Further, since the curl of the electric field is not zero in

general, we cannot write E(x, t) as the gradient of a scalar; however, from Faraday’s

Law, Eq. (52), and from Eq. (56), we have

∇×
(

E(x, t) +
1

c

∂A(x, t)

∂t

)
= 0 (57)

and so we can write the combination of fields in parentheses as the gradient of a scalar

function Φ(x, t):

E(x, t) +
1

c

∂A(x, t)

∂t
= −∇Φ(x, t) (58)

or

E(x, t) = −∇Φ(x, t)− 1

c

∂A(x, t)

∂t
. (59)

Equations (56) and (59) tell us how to find B and E from potentials; these potentials

must themselves satisfy certain field equations that can be derived from the Maxwell

equations involving the sources ρ and J; the “homogeneous” or source-free equations

∇·B = 0 and∇×E = c−1∂B/∂t are then automatically satisfied. Letting H = B and

D = E for simplicity, we have, upon substituting Eqs. (56) and (59) into Eqs. (51)

and (53),

∇2Φ +
1

c

∂

∂t
(∇ ·A) = −4πρ (60)

and

∇× (∇×A) +
1

c2

∂2A

∂t2
+∇

(
1

c

∂Φ

∂t

)
=

4π

c
J. (61)

These equations clearly do not have particularly simple pleasing or symmetric forms.

However, we have some flexibility left in the choice of the potentials because we can

choose the vector potential’s divergence in an arbitrary fashion.
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5 Gauge Transformations

Suppose that we have some A and Φ which give E and B correctly. Let us add to A

the gradient of a scalar function χ(x, t), thereby obtaining A′:

A′ ≡ A +∇χ. (62)

The field A′ has the same curl as A, and hence B = ∇×A′. However, the electric

field is not given by −∇Φ− c−1∂A′/∂t; we must therefore change Φ to Φ′ where Φ′

is chosen to that

E = −∇Φ′ − 1

c

∂A′

∂t
. (63)

To this end we consider Φ′ = Φ + ψ where ψ is some scalar function of x and t. Our

requirement, Eq. (63), is that

E = −∇Φ−∇ψ − 1

c

∂A

∂t
− 1

c

∂(∇χ)

∂t
. (64)

However, we know that E is given according to Eq. (59), so, combining this relation

and Eq. (64), we find that ψ must satisfy the equation

∇ψ = −1

c

∂(∇χ)

∂t
. (65)

A clear possible choice of ψ is ψ = −c−1∂χ/∂t.

What we have learned is that, given potentials A and Φ, we may make a gauge

transformation to equally acceptable potentials A′ and Φ′ given by

A′ = A +∇χ

Φ′ = Φ− 1

c

∂χ

∂t
(66)

where χ(x, t) is an arbitrary scalar function of position and time.

5.1 Lorentz Gauge

Now let’s look again at the differential equations, Eqs. (60) and (61), for the poten-

tials; these may be written as

∇2Φ +
1

c

∂

∂t
(∇ ·A) = −4πρ
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∇2A− 1

c2

∂2A

∂t2
−∇

(
∇ ·A +

1

c

∂Φ

∂t

)
= −4π

c
J (67)

where we have used the identity ∇× (∇×A) = ∇(∇·A)−∇2A. These have a much

more pleasing form if A and Φ satisfy the Lorentz condition

∇ ·A +
1

c

∂Φ

∂t
= 0. (68)

Supposing for the moment that such a choice is possible, we make use of Eq. (68) in

Eq. (67) and find

∇2Φ− 1

c2

∂2Φ

∂t2
= −4πρ

∇2A− 1

c2

∂2A

∂t2
= −4π

c
J. (69)

These are very pleasing in that there are distinct equations for Φ and A, driven by

ρ and J, respectively; furthermore, all equations have the form of the classical wave

equation,

22ψ(x, t) = −4πf(x, t) (70)

where

22 ≡ ∇2 − 1

c2

∂2

∂t2
(71)

is known as the D’Alembertian operator.

Consider next whether it is generally possible to find potentials that satisfy the

Lorentz condition. Suppose we have some potentials A0 and Φ0 for a given set of

sources J and ρ. We make a gauge transformation to new potentials A and Φ,

A = A0 +∇χ

Φ = Φ0 −
1

c

∂χ

∂t
, (72)

where the gauge function χ is to be chosen so that the Lorentz condition is satisfied

by the new potentials. The condition on χ is thus

0 = ∇ ·A +
1

c

∂Φ

∂t
= ∇ ·A0 +∇2χ+

1

c

∂Φ0

∂t
− 1

c2

∂2χ

∂t2
, (73)
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or (
∇2 − 1

c2

∂2

∂t2

)
χ = −∇ ·A0 −

1

c

∂Φ0

∂t
. (74)

The function that we seek is thus itself a solution of the classical wave equation with

a “source” which is, aside from some constant factor, just ∇ · A0 + c−1(∂Φ0/∂t).

Such a function always exists. In fact, there are many solutions to this wave equation

which means that there are many sets of potentials Φ and A which satisfy the Lorentz

condition. Potentials satisfying the Lorentz condition are said to be in the Lorentz

gauge.

5.2 Coulomb Transverse Gauge

Another gauge which can be useful is the Coulomb or transverse gauge. It is defined

by the condition that ∇ · A = 0. The beauty of this gauge is that in it the scalar

potential satisfies the Poisson equation,

∇2Φ(x, t) = −4πρ(x, t). (75)

We know the solution of this equation:

Φ(x, t) =
∫
d3x′

ρ(x′, t)

|x− x′| . (76)

Notice that the time is the same at both the source point x′ and the field point

x. There is nothing unacceptable about this because the scalar potential is not a

measurable quantity.

The vector potential in the Coulomb gauge is less satisfying; it obeys the wave

equation

22A = −4π

c
J +

1

c

∂

∂t
(∇Φ). (77)

In practice one may solve for the potentials in the transverse gauge, given the

sources ρ and J, by first finding the scalar potential from the integral Eq. (76) and

then using the result in Eq. (77) and solving the wave equation (see the following
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section). One should not be surprised to learn that the “source” term in Eq. (77)

involving the scalar potential can be made to look like a current; consider

1

c

∂

∂t
(∇Φ) =

1

c

∂

∂t

[
∇
(∫

d3x′
ρ(x′, t)

|x− x′|

)]
= −∇

∫
d3x′
∇′ · J(x′, t)

|x− x′|

= −4π

c

(
1

4π
∇
∫
d3x′
∇′ · J(x′, t)

|x− x′|

)
(78)

The negative of the quantity within the parentheses (...) is called the longitudinal

current density. More generally, the longitudinal and transverse components Jl and

Jt of a vector field such as J are defined by the conditions6

Jl + Jt = J, ∇× Jl = 0, and ∇ · Jt = 0. (79)

In other words, Jl and Jt satisfy the equations

∇ · Jl = ∇ · J ∇ · Jt = 0

∇× Jl = 0 ∇× Jt = ∇× J,
(80)

which means that Jl carries all of the divergence of the current density and Jt has all

of the curl.

From these equations and our knowledge of electrostatics we can see immediately

that

Jl(x, t) = − 1

4π
∇
(∫

d3x′
∇′ · J(x′, t)

|x− x′|

)
(81)

which may also be written as

Jl(x, t) = − 1

4π
∇
(
∇ ·

∫
d3x

J(x′, t)

|x− x′|

)
, (82)

and from that of magnetostatics we see that

Jt(x, t) = ∇×
(

1

4π

∫
d3x′
∇′ × J(x′, t)

|x− x′|

)
(83)

6In the appendix it is shown that such a decomposition, into longitudinal and transverse parts,

of a vector function of position is always possible
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which may also be written as

Jt(x, t) = ∇×
[

1

4π
∇×

(∫
d3x′

J(x′, t)

|x− x′|

)]
. (84)

Comparison of Eq. (81) with Eqs. (77) and (76) shows that the wave equation for A

in the Coulomb or transverse gauge is

22A = −4π

c
(J− Jl) = −4π

c
Jt. (85)

This equation lends justification to the term “transverse gauge.” In this gauge, the

vector potential is driven by the transverse part of the current in the same sense that

the vector potential is driven by the entire current in the Lorentz gauge.

6 Green’s Functions for the Wave Equation

We’re going to spend quite a lot of time looking for solutions of the classical wave

equation

22ψ(x, t) = −4πf(x, t); (86)

Therefore, it could be useful to have Green’s functions for the D’Alembertian operator,

meaning functions G(x, t; x′, t′) which satisfy the equation

22G(x, t; x′, t′) = −4πδ(x− x′)δ(t− t′) (87)

subject to some boundary conditions.

Compare this equation with that for the Green’s function for the Laplacian op-

erator, ∇2G(x,x′) = −4πδ(x − x′). The solution for the latter is, as we know,

G(x,x′) = 1/|x − x′| in an infinite space; physically, it is the scalar potential at x

produced by a unit point charge located at x′. The function G(x, t; x′, t′), by contrast

has dimensions 1/LT and may be thought of as the “response” at the space-time

point (x, t) to a unit “source” at the space-time point (x′, t′), that is, to a source

which exists only for a moment at a single space point. If this source is a pulse of
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current or an evanescent point charge, then the Green’s function would be the vector

or scalar potential in the Lorentz gauge produced by that pulse.

As for the question of boundary conditions, we shall keep things as simple as

possible by considering an infinite system and applying the boundary condition that

G(x, t; x′, t′) → 0 for |x| → ∞. There is also a boundary condition on the behavior

of G(x, t; x′, t′) as a function of t; this is usually called an initial condition. We shall

not make any specific statement now of the initial conditions but will keep them in

mind as our derivation progresses.

We shall solve the wave equation for G(x, t; x′, t′) by appealing to Fourier analysis.

Assuming that the Fourier transform q(k, ω) of a function f(x, t) exists, then one can

write that function in terms of the transform as

f(x, t) =
∫
d3k dωei(k·x−ωt)q(k, ω). (88)

This expression may be thought of as an expansion of f(x, t) using basis functions

ei(k·x−ωt). These form a complete orthonormal set; the orthonormality condition is
∫
d3x dt e−i(k

′·x−ω′t)ei(k·x−ωt) = (2π)4δ(k− k′)δ(ω − ω′) (89)

and the completeness relation is much the same,
∫
d3k dωe−i(k·x

′−ωt′)ei(k·x−ωt) = (2π)4δ(x− x′)δ(t− t′). (90)

If we substitute this last relation into the right-hand side of Eq. (87) and also expand

G(x, t; x′, t′) on the left-hand side as7

G(x, t; x′, t′) =
∫
d3k dωg(k, ω)ei[k·(x−x′)−ω(t−t′)], (91)

then one finds that

22G(x, t; x′, t′) =
∫
d3k dω

(
−k2 +

ω2

c2

)
g(k, ω)ei[k·(x−x′)−ω(t−t′)]

= −4πδ(x− x′)δ(t− t′) = − 4π

(2π)4

∫
d3k dωei[k·(x−x′)−ω(t−t′)]. (92)

7From Eq. (85) one may i infer that G(x, t; x′, t′) can be written as a function of x − x′ and of

t− t′ in an infinite space.
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The orthonormality of the basis functions may now be used to argue that the inte-

grands on the two sides of this equation must be equal; hence,

g(k, ω) =
4π

(2π)4

1

k2 − ω2/c2
. (93)

Now we have only to do the Fourier transform to find G(x, t; x′, t′). Consider first the

frequency integral,

I(k, t− t′) =
∫ ∞

−∞
dω

(
e−iω(t−t′)

k2 − ω2/c2

)
. (94)

This integral can have different values depending on how we handle the poles in the

integrand at ω = ±ck. Let’s see what are the possibilities: If t < t′, we can extend

the path of integration at |ω| → ∞ around a semi-circle in the upper half-plane where

< ω > 0 without getting an additional non-zero contribution to the integral.

Figure 10: Appropriate Contour when t < t’

ck-ck

Hence, in this case the integral in Eq. (94) is just 2πi times the sum of the residues

of the poles of the integrand in the upper half-plane. The only poles in the integrand

as it stands are the ones at ω = ±ck. The path specified in the integral in fact runs

right across both of them. However, if we make infinitesimal deformations of the path

so that the poles are either inside of or outside of the contour, we will still obtain a

function G(x, t; x′, t′) which is a solution of Eq. (87). Thus the solution that we are

obtaining is not unique.

Why not? The answer lies in the fact that we are dealing with a differential

equation which is second-order in time, and there are two independent solutions which

we can discriminate by specifying some initial condition. Consider what happens if
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we deform the contour so as to go just above the poles on the real-ω axis. Then,

for t < t′, we close the contour in the upper half-plane and find that the integral

around the closed contour is zero (there are no poles inside of it). This means that

G(x, t; x′, t′) = 0 for t < t′. But if t > t′, then we must close the contour in the

lower half-plane and will find that G(x, t; x′, t′) 6= 0. This Green’s function is called

the retarded Green’s function and its essential character is that it is non-zero only

for times t which are later than the time t′ of the source pulse which “produces” it.

Instead of deforming the contour, we may change the integrand in such a way as to

put the poles an infinitesimal distance below the real-ω axis and so have

I(k, t− t′) =
∫ ∞

−∞
dω

(
e−iω(t−t′)

k2 − (ω + iε)2/c2

)
(95)

where the integral is to be evaluated in the limit that ε is a positive infinitesimal

constant. In this way we obtain a Green’s function that vanishes at all times t earlier

than the time t′.

t < t’

ck-ck

t > t’

ck-ck

Figure 11: Contours for the retarded Green’s function.

The second possibility is that we displace the poles so that they lie slightly above

the real-ω axis. Then we will get a Green’s function that will vanish for all t > t′ but

not for times t earlier than t′; this one is called the advanced Green’s function and to

have an expression for it, we need only change +ε to −ε in Eq. (95).

Now that we have determined how to handle the poles in the integrand, let us

proceed with the evaluation of the retarded Green’s function in particular. For t < t′,

it is identically zero, and for t > t′, we close the contour in the lower half-plane and
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find

I(k, t− t′) = −c2
∮

C
dω

e−iω(t−t′)

[ω − (ck − iε)][ω − (−ck − iε)]

= −c2(−2πi)

[
e−ick(t−t′)

2ck
+
eick(t−t′)

−2ck

]
=

2πc

k
sin[ck(t− t′)]. (96)

Now we may complete the determination of G(x, t; x′, t′) by doing the integration

over the wavevector:

G(R, τ) =
1

4π3

∫
d3k

2πc

k
sin(ckτ)eik·R (97)

where τ ≡ t− t′ and R ≡ (x− x′). Thus,

G(R, τ) =
c

2π2

∫ ∞

0
kdk

∫ 1

−1
du
∫ 2π

0
dφ sin(ckτ)eikRu

=
c

π

∫ ∞

0
kdk

(
eikR − e−ikR

ikR

)
sin(ckτ)

= − c

4πR

∫ ∞

−∞
dk
(
eikR − e−ikR

) (
eickτ − e−ickτ

)

= − c

2R
[δ(R + cτ) + δ(−R− cτ)− δ(R− cτ)− δ(−R + cτ)] =

δ(τ −R/c)
R

; (98)

the final step here follows from the fact that this expression is only correct for τ > 0;

for τ < 0 G ≡ 0. In more detail, our result for the retarded Green’s function is

G(+)(x, t; x′, t′) =
δ(t− t′ − |x− x′|/c)

|x− x′| . (99)

By similar manipulations one may show that the advanced Green’s function is

G(−)(x, t; x′, t′) =
δ(t′ − t− |x− x′|/c)

|x− x′| . (100)

Given the appropriate Green’s function, we can write down a solution to the

classical wave equation with matching initial conditions and the appropriate boundary

conditions as |x| → ∞. Suppose that the wave equation is

22ψ(x, t) = −4πf(x, t); (101)
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the solution is

ψ(x, t) =
∫
d3x′dt′G(x, t; x′, t′)f(x′, t′) (102)

as may be seen by operating on this equation with 22:

22ψ(x, t) =
∫
d3x′dt′22G(x, t; x′, t′)f(x′, t′)

=
∫
d3x′dt′[−4πδ(x− x′)δ(t− t′)]f(x′, t′) = −4πf(x, t). (103)

The fact that G(x, t; x′, t′) is proportional to a delta function means that one can

always complete the integration over time trivially. For the retarded Green’s function

in particular, one finds that

ψ(x, t) =
∫
d3x′

f(x′, t− |x− x′|/c)
|x− x′| (104)

which has a fairly obvious interpretation.

Finally, it is worth pointing out that one may always add to ψ(x, t) a solution of

the homogeneous wave equation.

7 Derivation of Macroscopic Electromagnetism

Regretfully omitted because of time constraints.

8 Poynting’s Theorem; Energy and Momentum Con-

servation

A conservation law is a statement to the effect that some quantity q (such as charge)

is a constant for an isolated system. Often, it is possible to express the law mathe-

matically in the form

∇ · Jq +
∂ρq
∂t

=

(
dρq
dt

)

e

. (105)
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Here, the density of the conserved quantity is ρq, its current density is Jq, and the

term on the right-hand side of the equation represents the contribution to the density

at a particular space-time point arising from external sources or sinks. As we have

already seen for the particular case of electrical charge, the divergence term represents

the flow of the conserved quantity away from a point in space while the partial time

derivative represents the rate at which its density is changing at that point. For

electrical charge, there are no (known) sources or sinks and so the term on the right-

hand side is zero.

8.1 Energy Conservation

It is possible to derive several such conservation laws from the Maxwell equations.

These include the charge conservation law8 and also ones that are interpreted as

energy, momentum, and angular momentum conservation. To get started, consider

the rate per unit volume at which the fields transfer energy to the charged particles,

or sources. The magnetic induction does no work since it is directed normal to the

velocity of a particle, and so we have only the electric field which does work a the

rate J · E per unit volume. This is, in the context of Eq. (105), the term −(dρ/dt)

representing the transfer of energy to external (to the fields) sources or sinks.

The total power Pm transferred to the sources within some domain V is found by

integrating over that domain,

Pm =
∫

V
d3x (J · E). (106)

Now what we would like to do is perform some manipulations on J · E designed

to remove all reference to the current density, leaving only electromagnetic fields;

further, we want to make the expression look like the left-hand side of Eq. (105).

8Not surprising since the equations were explicitly constructed so as to be consistent with charge

conservation.
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That is not so hard to do, starting with the generalization of Ampère’s law:

J · E =
1

4π

[
cE · (∇×H)− E · ∂D

∂t

]

=
1

4π

[
−c∇ · (E×H) + cH · (∇× E)− E · ∂D

∂t

]

= − c

4π
∇ · (E×H)− 1

4π

(
H · ∂B

∂t
+ E · ∂D

∂t

)
. (107)

In the last step, Faraday’s law has been employed. The result is promising; there

is a divergence and the remainder is almost a time derivative. It becomes a time

derivative if the materials in the system have linear properties so that

H · ∂B

∂t
=

1

2

∂

∂t
(B ·H) and E · ∂D

∂t
=

1

2

∂

∂t
(E ·D). (108)

Then Eq. (107) becomes

−J · E =
c

4π
∇ · (E×H) +

1

8π

∂

∂t
(E ·D + B ·H) (109)

which is of the very form we seek. The interpretation of this equation is that the

Poynting vector S, defined by

S ≡ c

4π
(E×H) (110)

is the energy current density of the electromagnetic field and that the energy density

u, defined by

u ≡ 1

8π
(E ·D + B ·H) (111)

is, indeed, the energy density of the electromagnetic field. In terms of these quantities

the conservation law is

−J · E = ∇ · S +
∂u

∂t
. (112)

Notice, however, that the energy current density is not unique. Because only its

divergence enters into the conservation law, we may add to S the curl of any vector

field and would still have Eq. (112). The distinction is not important for measurable
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quantities because one always measures the rate of energy flow through a closed

surface (the surface of the detector),

∮

S
d2x (n · S) ≡

∫

V
d3x (∇ · S), (113)

so that only the divergence of S is important. Finally, note that if the conservation

law is integrated over some volume V, it can be expressed as

∫

V
d3x

∂u

∂t
= −

∮

S
d2x (n · S)−

∫

V
d3x (J · E) (114)

with the interpretation that rate of change of field energy within the domain V is

equal to the rate at which field energy flows in through the surface of the domain

plus the rate at which the sources within V transfer energy to the field.

8.2 Momentum Conservation

We can find a similar-looking momentum conservation law. We start from an ex-

pression for the rate per unit volume at which the fields transfer momentum to the

sources; this is just the force density f ,

f = ρE +
1

c
(J×B). (115)

v
F = q( )E + v x B

q

Figure 12: A swarm of charged particles.

Now use the Maxwell equations to remove all appearance of the sources ρ and J:

f =

(
∇ ·D

4π

)
E +

1

c

(
c

4π
∇×H− 1

4π

∂D

∂t

)
×B
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=
1

4π

[
E(∇ ·D) + (∇×H)×B− 1

c

(
∂D

∂t
×B

)]

=
1

4π

[
E(∇ ·D)−B× (∇×H)− 1

c

∂

∂t
(D×B) +

1

c

(
D× ∂B

∂t

)]
(116)

= − 1

4π

{
1

c

∂(D×B)

∂t
+ [B× (∇×H)−H(∇ ·B) + D× (∇× E)− E(∇ ·D)]

}

where we’ve used Faraday’s law and the field equation ∇ · B = 0. Now we have to

get all of the terms in the square brackets [...] in the final expression to look like a

divergence. There is one complication which is that the equation is a vector equation,

so we need a divergence which yields a vector, not a scalar.

Alternatively, we can look at Eq. (116) as three scalar equations, one for each

Cartesian component of the force density. Then the term in brackets contains three

components Ui and we want to write each component as the divergence of some vector

field Vi, Ui = ∇ ·Vi. If we expand the vector fields as

Vi =
3∑

j=1

Vjiεj , (117)

with

Ui = ∇ ·Vi =
∑

j

∂Vji
∂xj

, (118)

then we have nine scalar functions Vji which can be put into a 3× 3 matrix. Let us

go a step further and define a dyadic V̄ by its inner products with the complete set

of basis vectors εi:

εj · V̄ · εi ≡ Vji. (119)

A convenient way to write V̄ in terms of its components is

V̄ =
3∑

i,j=1

εjVjiεi, (120)

with the understanding that when an inner product is taken of V̄ with a vector, the

dot product is taken with the left or right εi depending on whether the other vector
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lies to the left or right of V̄. In particular,

∇ · V̄ =
∑

k

εk
∂

∂xk

∑

i,j

εjVjiεi =
∑

i,j

∂Vji
∂xj

εi =
∑

i

Uiεi. (121)

Now what we need, referring back to Eq. (116), is some V̄ such that

∇ · V̄ = B× (∇×H)−H(∇ ·B) + D× (∇× E)− E(∇ ·D) (122)

where we shall restrict ourselves to the case of vacuum, or at least constant µ and ε.

First, we have an identity,

B× (∇×B) =
1

2
∇(B ·B)− (B · ∇)B (123)

which allows us to write

B× (∇×H)−H(∇ ·B) =
1

µ

[
1

2
∇(B ·B)− (B · ∇)B−B(∇ ·B)

]

=
1

µ

∑

i,j

[
1

2
δijεj

∂B2

∂xi
−Bi

∂Bj

∂xi
εj −Bjεj

∂Bi

∂xi

]

=
1

µ

∑

k

[
εk

∂

∂xk

]
·

∑

i,j

εi

(
1

2
δijB

2 −BiBj

)
εj




= ∇ ·

∑

i,j

1

µ
εi

(
1

2
δijB

2 −BiBj

)
εj


 (124)

which is indeed the divergence of a dyadic. By similar means one may demonstrate

that

D× (∇× E)− E(∇ ·D) = ∇ ·

∑

i,j

εεi

(
1

2
δijE

2 − EiEj
)
εj


 . (125)

Putting these back into Eq. (124), we may write

−f =
ε

4πc

∂

∂t
[(E×B)]−∇ · T̄ (126)

where the components Tij of the Maxwell stress tensor are

Tij ≡
1

4π

[
εEiEj +

1

µ
BiBj −

1

2
δij

(
εE2 +

1

µ
B2

)]
. (127)
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The Maxwell stress tensor is a symmetric tensor (in a uniform, isotropic, linear

medium) and has the physical interpretation that −Tij is the j-component of the

current density of the i-component of momentum. Note, however, that T̄ is not

unique in that if we redefine it to include the curl of another dyadic, Eq. (116) would

still hold.

Let us define also a vector field g,

g ≡ 1

4πc
(D×B) (128)

which is interpreted as the momentum density of the electromagnetic field, or the

momentum per unit volume. Notice that for D = εE and B = µH,

g =
εµ

4πc
(E×H) =

µε

c2
S; (129)

there is thus a simple connection between the energy current density and the momen-

tum density of the field. Our conservation law is now simply written as

−f =
∂g

∂t
−∇ · T̄; (130)

if integrated over some domain V, it may also be expressed as

−
∫

V
d3x f =

∫

V
d3x

∂g

∂t
−
∫

S
d2x (n · T̄). (131)

Finally, let us define

dPm

dt
≡
∫

V
d3x f and

dPf

dt
≡
∫

V
d3x

∂g

∂t
; (132)

these are rather obviously meant to be the time rate of change of the mechanical

momentum9 and of the field momentum in V. Now we can write the conservation law

as
dPm

dt
+
dPf

dt
=
∫

S
d2xn · T̄. (133)

9Note, however, that it includes only the rate of change of mechanical momentum as a consequence

of the forces applied to the particles by the electromagnetic field and does not include the change

in mechanical momentum which comes about because particles are entering and leaving the domain

V.
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8.3 Need for Field Momentum

We defined our fields, the electric field and the magnetic induction, in terms of the

force and torque, respectively, that they inflict upon an elementary source. However,

as we have seen above, this definition is incomplete since the fields also carry energy

and momentum. From a quantum point of view, this is obvious since we can think

of the fields as resulting from the exchange of real and virtual photons each with

momentum h̄k and energy h̄ω. However, from a 19’th century perspective the need

of the field to carry energy and momentum (especially momentum) is less obvious.

However, Newton’s law of action and reaction requires that the field carry mo-

mentum. First consider two completely isolated particles in free space. If the only

force exerted on either particle is from its counterpart, then the net momentum P is

conserved when the forces are equal and opposite.

dP

dt
=

d

dt
(P1 + P2) = m1

dv1

dt
+m2

dv2

dt
= F1 + F2

I.e. the momentum is conserved when F1 = −F2

Now consider the situation where the particles are charged, and have trajectories

as shown in the figure below.

q q
1 2

vv
1

2

Clearly the forces due to the electric field are equal and opposite, but those due to

the magnetic fields are not. In fact, charge 1 exerts a magnetic force on charge 2, but

charge 2 does not exert a magnetic force on charge 1. Momentum is not conserved

by the particles (and the forces on the particles) alone. The excess momentum must
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be carried by the field! Thus, the field is required to have a momentum density by

Newtonian law.

8.4 Example: Force on a Conductor

As an example, consider a conductor in the presence of an external electric field

(B = 0).

conductor
E = 0 B = 0

z

E ẑ= E

B = 0

S

Since B = 0 everywhere, E × B = 0, and there is no electromagnetic momentum

density. By conservation of momentum, the force on the conducting surface is then

given (
dP

dt

)

i

= Fi =
∑

j

∫

S
d2xniTij (134)

If we take the surface of integration as shown in the figure, then we need only consider

the surface in the xy plane for which n is in the −ẑ direction. Thus we only need Tij

when i = z. Since E = ẑE, and since

Tij =
1

4π

(
EiEj −

1

2
δijE

2
)

(135)

when B = 0, we have

Tzx = Tzy = 0 Tzz =
1

8π
E2 . (136)

Thus,

Fz = −
∫

S
d2x

1

8π
E2 = − A

8π
E2 (137)

where A is the area of the conductor presented to the E-field. Thus the force on the

conductor is downward
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9 Conservation Laws for Macroscopic Systems

Regretfully omitted.

10 Poynting’s Theorem for Harmonic Fields; Impedance,

Admittance, etc.

Poynting’s theorem has many important applications at the practical (electrical en-

gineering) level. In this section we briefly make a foray into such an application. We

shall restrict attention to harmonic fields which means ones that are harmonic (sine)

functions of time. To this end we write the time-dependent part of the fields, as well

as the sources, as e−iωt where ω is the angular frequency, and the physical field or

source so represented is the real part of the complex mathematical function that we

are using. For example,

E(x, t) = <
[
E(x)e−iωt

]
≡ 1

2

[
E(x)e−iωt + E∗(x)eiωt

]
. (138)

Similarly,

J(x, t) · E(x, t) =
1

4

[
J(x)e−iωt + J∗(x)eiωt

]
·
[
E(x)e−iωt + E∗(x)eiωt

]
(139)

=
1

2
<
[
J∗(x) · E(x) + J(x) · E(x)e−2iωt

]
.

The time-average of the product is particularly simple; the term which varies as e−2iωt

has a zero time-average and so we are left with

< J(x, t) · E(x, t) >=
1

2
< [J∗(x) · E(x)] . (140)

One can easily see that there is a general rule for the time-average of the product

of two harmonic functions. Given Q(x, t) and R(x, t),

Q(x, t) = <
[
Q(x)e−iωt

]
R(x, t) = <

[
R(x)e−iωt

]
, (141)
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the time average of the product may be expressed as

< Q(x, t)R(x, t) >=
1

2
< [R∗(x)Q(x)] =

1

2
< [R(x)Q∗(x).] (142)

We start by supposing that all fields are harmonic. Then they all have the complex

form F(x)e−iωt and they all have time derivatives give by

∂(F(x)e−iωt)

∂t
= −iωF(x)e−iωt (143)

so that the Maxwell equations for the complex amplitudes (just the position-dependent

parts of the fields) are

∇ ·B(x) = 0 ∇× E(x)− iω
c

B(x)

∇ ·D(x) = 4πρ(x) ∇×H(x) + i
ω

c
D(x) =

4π

c
J(x). (144)

Notice that there is no problem in generalizing the Maxwell equations to complex

fields because the equations involve linear combinations, with real coefficients, of

complex objects. One thus has two sets of equations, one for the real parts of these

objects and one for the imaginary parts. The set for the real parts comprises the

“true” Maxwell equations.

For the remainder of this section, the symbols E, B, etc, stand for the complex

amplitudes E(x), B(x), ... . We can rederive the Poynting theorem for these by

starting from the inner product J∗ · E and proceeding as in the original derivation.

The result is

J∗ · E =
c

4π

[
−∇ · (E×H∗)− iω

c
(E ·D∗ −B ·H∗)

]
. (145)

Define now the (complex) Poynting vector and energy densities

S ≡ c

8π
(E×H∗), (146)

and

we ≡
1

16π
(E ·D∗) wm ≡

1

16π
(B ·H∗). (147)
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Notice that the real part of S is just the time-averaged real Poynting vector while

the real parts of the energy densities are the time-averaged energy densities. More

generally, the energy densities can be complex functions, depending on the relations

between D and E and between B and H. If the two members of each pair of fields are

in phase with one another, then the corresponding energy density is real. Similarly,

if E and H are in phase, then S is also real.

In terms of our densities, Poynting’s theorem for harmonic fields becomes

1

2
J∗ · E = −∇ · S− 2iω(we − wm). (148)

If we integrate this expression over some domain V and apply the divergence theorem

to the term involving the Poynting vector, we find the relation

1

2

∫

V
d3xJ∗ · E + 2iω

∫

V
d3x (we − wm) +

∮

S
d2xS · n = 0. (149)

The interpretation of this equation is that the real part expresses the time-averaged

conservation of energy. The imaginary part also has a meaning in connection with

energy and its flow.

Consider first the simplest case of real we and wm. Then the energy densities drop

out of the real part of this equation and what it (the real part) tells us is that the

time-average rate of doing work on the sources in V is equal to the time-averaged

flow of energy (expressed by the Poynting vector) into V through the surface S. If

the energy densities are not real, then there is an additional real piece in Eq. (149)

so that the work done on the sources in V is not equal to the energy that comes in

through S; this case corresponds to having “lossy” materials within V which dissipate

additional energy.

Now let’s suppose that there is some electromagnetic device within V, i.e., sur-

rounded by S. Let it have two input terminals which are its only material communi-

cation with the rest of the world. At these terminals there are some input current Ii

and voltage Vi which we suppose are harmonic and which may also be written in the

form Eq. (138).
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V

Ii

i

iS

n

Z V

Then the (complex) input power is I∗i Vi/2, meaning that the time-averaged input

power is the real part of this quantity. Using our interpretation of the Poynting

vector, we can express the input power in terms of a surface integral of the normal

component of S,
1

2
I∗i Vi = −

∫

Si
d2xS · n (150)

where the surface integral is done just over the cross-section of the (presumed) coaxial

cable feeding power into the device; it is assumed that for such a cable, the input

fields are confined to the region within the shield on the cable and so the integral

over the remainder of the surface S surrounding the device has no contribution from

the incident fields.

If we now combine this equation with Eq. (149), we find that we can write

1

2
I∗i Vi =

1

2

∫

V
d3xJ∗ · E + 2iω

∫

V
d3x (we − wm) +

∫

S−Si
d2xS · n. (151)

The surface integral in this expression gives the power passing through the surface

S, excluding the part through which the input power comes. The real part of this

integral is the power radiated by the device.

Now let us define the input impedance Z of the device,

Vi ≡ ZIi; (152)

the impedance is complex and so can be written as

Z ≡ R− iX (153)
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where the resistance R and the reactance X are real. From Eq. (151) we find expres-

sions for these:

R =
1

|Ii|2
{
Re

[∫

V
d3xJ∗ · E + 2

∫

S−Si
d2xS · n

]
+ 4ωIm

[∫

V
d3x (wm − we)

]}
(154)

and

X =
1

|Ii|2
{

4ωRe
[∫

V
d3x (wm − we)

]
− Im

[∫

V
d3xJ∗ · E + 2

∫

S−Si
d2xS · n

]}
.

(155)

By deforming the surface so that it lies far away from the device, one may make the

integral over S · n purely real so that it does not contribute to the reactance; then it

is only a part of the resistance and is the so-called “radiation resistance” which will

be present if the device radiates a significant amount of power.

Our result has a simple and pleasing form at low frequencies. Then radiation

is negligible and so the contributions of the surface integral may be ignored. Also,

we may drop the term in the resistance proportional to ω. Then, assuming the

current density and electric field are related by J = σE where σ is the (real) electrical

conductivity, and assuming real energy densities, we find

R =
1

|Ii|2
∫

V
d3xσ|E|2 (156)

and

X =
4ω

|Ii|2
∫

V
d3x (wm − we) (157)

The last equation may be used to established contact between our expressions, based

on the electromagnetic field equations, and some standard and fundamental relations

in elementary circuit theory. If there is an inductance (magnetic energy-storing de-

vice) in the “black-box,” then the integral of the magnetic energy may be expressed

(see the first two or three problems at the end of Chap. 6 of Jackson) as ÃL|Ii|2/4, and

so we find the familiar (if one knows anything about circuits) result that X = Lω. But

if there is a capacitor, the energy becomes |Qi|2/4C where the charge Qi is obtained

by integrating the current over time; that gives |Qi|2 = |Ii|2/ω2 and so X = −1/ωC,

another familiar tenet of elementary circuit theory.
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11 Transformations: Reflection, Rotation, and Time

Reversal

Before entering into discussion of the specific transformations of interest, we give a

brief review of orthogonal transformations. Introduce a 3× 3 matrix a with compo-

nents aij and use it to transform a position vector x = (x1, x2, x3) = (x, y, z) into a

new vector x′:

x′i =
∑

j

aijxj. (158)

An orthogonal transformation is one that leaves the length of the vector unchanged,

∑

i

(x′i)
2 =

∑

i

x2
i . (159)

Using this condition, one may show that a must satisfy the conditions

∑

i

aijaik = δjk (160)

and

det(a) = ±1. (161)

Orthogonal transformations with det(a) = +1 are simple rotations. The other ones

are combinations of a rotation and an inversion10; these are called improper rotations.

It is common to refer to a collection of three objects ψi, i = 1, 2, 3, which

transform, under orthogonal transformations, in the same way as the components

of x, as a vector, a polar vector, or a rank-one tensor. A collection of nine objects

qij, i, j = 1, 2, 3, which transform in the same way as the nine objects xixj is called a

rank-two tensor. And so on. An object which is invariant, that is, which is unchanged

under an orthogonal transformation, is called a scalar or rank-zero tensor; the length

of a vector is such an object.

One also defines pseudotensors of each rank. A rank-p pseudotensor comprises a

set of 3p objects which transform in the same way as a rank-p tensor under ordinary

10An inversion is a transformation x′ = −x.
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rotations but which transform with an extra change of sign relative to a rank-p

tensor under improper rotations. One also uses the terms pseudoscalar for a rank-0

pseudotensor and pseudovector or axial vector for a rank-1 pseudotensor. Notice that

under inversion, for which a is just the negative of the unit 3 × 3 matrix, a vector

changes sign, x′ = −x, while a pseudovector is invariant. This statement can be

generalized: Under inversion, a tensor T of rank n transforms to T ′ with

T ′ = (−1)nT. (162)

A pseudotensor P of the same rank, on the other hand, transforms according to

P ′ = (−1)(n+1)P (163)

under inversion.

11.1 Transformation Properties of Physical Quantities

It is important to realize that objects which we are accustomed to referring to as

“vectors,” such as B, are not necessarily vectors in the sense introduced here; indeed,

it is one of our tasks in this section to find out just what sorts of tensor are the

various physical quantities we have been studying. Consider for example the charge

density. Suppose that we have a system with a certain ρ(x) and that we rotate it;

then ρ becomes ρ′ and x becomes x′.

ρ( )x

x

x’

ρ ( )x’’

O
Figure 14: Under a rotation ρ( )x ρ ( )x’’=

The question is, how is ρ′(x′) related to ρ(x)? It is easy to see, since x′ is what x

becomes as a consequence of the rotation, that ρ′(x′) = ρ(x). Under an inversion
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also, this relation is true. Hence we conclude that the charge density is a scalar or

rank-0 tensor.

An example of a vector or rank-1 tensor is, of course, x. Similarly, from this fact

one may show that the operator ∇ is a rank-1 tensor (Differential operators can also

be tensors or components of tensors);

∂

∂x′i
=
∑

j

aij
∂

∂xj
. (164)

What then is ∇ρ? From the (known) transformation properties of ρ and of ∇, it

is easy to show that it is a rank-1 tensor. The gradient of any scalar function is a

rank-1 tensor. Similarly, one may show that the inner product of two rank-1 tensors,

or vectors, is a scalar as is the inner product of two rank-1 pseudotensors; the inner

product of a rank-1 tensor and a rank-1 pseudotensor is a pseudoscalar; and the

gradient of a pseudoscalar is a rank-1 pseudotensor.

All of the foregoing are quite easy to demonstrate. A little harder is the crossprod-

uct of two vectors (rank-1 tensors). Consider that b and c are rank-1 tensors. Their

cross product may be written as

u = b× c (165)

with a Cartesian component given by

ui =
∑

j,k

εijkbjck (166)

where

εijk ≡





+1 if (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)

−1 if (i, j, k) = (2, 1, 3), (1, 3, 2), (3, 2, 1)

0 otherwise.

(167)

If we define εijk to be given by this equation in all frames, then we can show that it

is a rank-3 pseudotensor. Alternatively, we can use Eq. (164) to specify it in a single

frame, define it to be a rank-3 pseudotensor, and then show that it is given by

Eq. (164) in any frame. However one chooses to do it, one can use this object, called
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Table 1: Rotation, inversion, and time-reversal properties of some common mechan-

ical quantities.

Function Rank Inversion Symmetry Time-reversal Symmetry

x 1 − (vector) +

v = dx/dt 1 − (vector) −
p = mv 1 − (vector) −
L = x×mv 1 + (pseudovector) −
F = dp/dt 1 − (vector) +

N = x× F 1 + (pseudovector) +

T = p2/2m 0 + (scalar) +

V 0 + (scalar) +

the completely antisymmetric unit rank-3 pseudotensor, and the assumed transforma-

tion properties of b and c (rank-1 tensors) to determine the transformation properties

of the crossproduct. What one finds is that

u′i = det(a)
∑

j

aijuj (168)

which means that u is a pseudovector or a rank-1 pseudotensor.

The transformations considered so far have all dealt with space; to them we wish

to add the time-reversal transformation. The question to ask of a given entity is how

it changes if time is reversed. Imagine making a videotape of the entity’s behavior

and then running the tape backwards. If, in this viewing, the quantity is the same

at a given point on the tape as when the tape is running forward, then the quantity

is even or invariant under time reversal. If its sign has been reversed, then it is odd

under time reversal. For example, the position x(t) of an object is even under time

reversal; the velocity of the object, however, is odd.

In Table 1, we catalog some familiar mechanical functions according to their ro-

tation, inversion, and time-reversal symmetries.
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Table 2: Rotation, inversion and time-reversal properties of some common electro-

magnetic quantities.

function rank inversion symmetry time-reversal symmetry

ρ 0 + (scalar) +

J 1 − (vector) −
E,D,P 1 − (vector) +

B,H,M 1 + (pseudovector) −
S,g 1 − (vector) −
T̄ 2 + (tensor) +

We may make the same sort of table for various electromagnetic quantities, basing

our analysis on the Maxwell equations, which we assume to be the correct equations

of electromagnetism. Given that ρ is a scalar and that ∇ is a vector, the equation

∇ · E = 4πρ tells us that the electric field is a vector; further, it is even under time

reversal (since ρ and ∇ are both even). Similarly, D and P must be vectors and even

under time reversal. Moving on to Faraday’s Law, ∇ × E = −c−1∂B/∂t, from our

knowledge of the properties of the gradient, the cross product, and the electric field,

we see that B is a pseudovector and that it is odd under time reversal; H and M

have the same properties. Finally, Ampère’s Law, ∇ × B = (4π/c)J + c−1∂E/∂t is

consistent with these determinations and with the statement that J is a vector, odd

under time reversal, which follows from the fact that J = ρv. Finally, S and g are

vectors with odd time-reversal symmetry while the Maxwell stress tensor is a rank-2

tensor, even under time reversal. These properties are summarized in Table 2.

The usefulness of these expressions lies in the belief that acceptable equations

of physics should be invariant under various symmetry operations. The Maxwell

equations and the classical equations of mechanics (Newton’s Laws), for example, are

invariant under time reversal and under orthogonal transformations, meaning that

each term in any given equation transforms in the same way as all of the other terms
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in that equation11. If we believe that this should be true of all elementary equations

of classical physics, then there are certain implied constraints on the form of the

equations. Consider as an example the relation between P and E. Supposing that

one can make an expansion of a component of P in terms of the components of E,

we have

Pi =
∑

j

αijEj +
∑

jk

βijkEjEk +
∑

jkl

γijklEjEkEl + ... (169)

where, since P and E are both rank-1 tensors, invariant under time reversal, it follows,

using the invariance argument, that the coefficients αij are the components of a rank-

2 tensor, invariant under time reversal; the βijk are components of a rank-3 tensor,

invariant under time reversal; and the γijkl are components of a rank-4 tensor, also

invariant under time reversal.

If we now add some statement about the properties of the medium, we can get

further conditions. In the simplest case of an isotropic material, it must be the

case that each of these tensors is invariant under orthogonal transformations. This

condition severely limits their forms; in particular, it means that αij = αδij . We can

see this by appealing to the transformation properties of second rank tensors. Thus,

αij must transform like xixj, or

α′nm = aniamjαij (170)

Since the medium is isotropic, we require that α′ij = αij. The only way to satisfy

both of these conditions of transformation is if

α′nm = αaniami = αδnm (171)

The same type of thing cannot be done with β, so that βijk = 0, bu we can perform

similar manipulations on γ so the coefficients γijkl are such as to produce

∑

jkl

γijklEiEjEl = γ(E · E)E (172)

11Of course there are some equations, like Ohm’s Law, which describe truly irreversible processes

for which time reversal invariance does not hold.
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where γ is a constant. Thus, through third-order terms, the expansion of P in terms

of E must have the form

P = αE + γE2E. (173)

The general forms of many other less obvious relations may be determined by similar

considerations.

12 Do Maxwell’s Equations Allow Magnetic Monopoles?

The answer is yes, but only in a restricted, and trivial, sense. If there were mag-

netic charges of density ρm and an associated magnetic current density Jm, with a

corresponding conservation law

∂ρm
∂t

+∇ · Jm = 0, (174)

then the field equations would read

∇ ·B = 4πρm ∇×H =
4π

c
J +

1

c

∂D

∂t

∇ ·D = 4πρ ∇× E = −4π

c
Jm −

1

c

∂B

∂t
. (175)

In fact, the Maxwell equations as we understand them can be put into this form by

making a particular kind of transformation, called a duality transformation of the

fields and sources. Introduce

E = E′ cos η + H′ sin η D = D′ cos η + B′ sin η

H = −E′ sin η + H′ cos η B = −D′ sin η + B′ cos η

ρ = ρ′ cos η + ρ′m sin η J = J′ cos η + J′m sin η

ρm = −ρ′ sin η + ρ′m cos η Jm = −J′ sin η + J′m cos η. (176)

where η is an arbitrary real constant.

If one now substitutes these into the generalized field equations, one finds, upon

separating the coefficients of sin η from those of cos η (These must be independent
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because η is arbitrary), that the primed fields and sources obey an identical set of

field equations. What this means is that the Maxwell equations (with no magnetic

sources) may be thought of as a special case of the generalized field equations, one

in which η is chosen so that ρm and Jm are equal to zero. From the form of the

transformations for the sources, we see that this is possible if the ratio of ρ to ρm for

each source (particle)is the same as that for all of the other sources (particles). Hence

it is meaningless to say that there are no magnetic monopoles; the real question is

whether all elementary particles have the same ratio of electric to magnetic charge.

If they do, then Maxwell’s equations are correct and correspond, as stated above, to

a particular choice of η in the more general field equations.

If one subjects the electron and proton to scrutiny regarding the question of

whether they have the same ratio of electric to magnetic charge, one finds that if

one defines (by choice of η) the magnetic charge of the electron to be zero, then

experimentally the magnetic charge of the proton is known to be smaller than 10−24

of its electric charge. That’s pretty good evidence for its being zero.

But there remains the question whether there are other kinds of particles, not

yet discovered, which have a different ratio ρ/ρm than do electrons and protons.

Dirac, for example, has given a simple and clever argument which shows that the

quantization of the electric charge follows from the mere existence of an electrically

uncharged magnetic monopole. Moreover, the argument gives the magnetic charge g

of the monopole as g = nhc/4πe where n is any integer and h is Planck’s constant.

This is, in comparison with the electric charge, very large so that it ought to be in

principle easy to detect a “Dirac monopole” should there by any of them around. So

far, none has been reliably detected.
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A Helmholtz’ Theorem

Any vector function of position C(x) can be written as the sum of two vector functions

such that the divergence vanishes for one and the curl vanishes for the other. In other

words, the decomposition

C(x) = D(x) + F(x) (177)

is always possible, where

∇ ·D = 0 ∇× F = 0 (178)

Proof. We may satisfy the two conditions for F and D, by writing

D = ∇×A F = −∇Φ . (179)

Then taking the curl and divergence of these equations respectively, we can write

∇2Φ = −∇ ·C ∇× (∇×A) = ∇×C . (180)

We already know how to solve these solutions (at least in Cartesian coordinates).

Φ(x′) =
1

4π

∫

V
d3x
∇ ·C(x)

|x− x′| A(x′) =
1

4π

∫

V
d3x
∇×C(x)

|x− x′| (181)

Since D and F can now be found from these potentials, we have demonstrated the

decomposition claimed by Helmholtz’ Theorem, and thus proved it.

An interesting corollary of this theorem is that a vector function is completely

determined if its curl and divergence are known everywhere. The field F = −∇Φ,

where produced by a point source, is longitudinal to the vector from the source to the

point where the field is evaluated. The field D = ∇×A is transverse to the vector

from the source to the field point. Thus F is typically called the longitudinal, and D

the transverse, part of C.
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In this chapter we start by considering plane waves in infinite or semi-infinite me-

dia. We shall look at their properties in both insulating and conducting materials and

shall give some thought to the possible properties of materials of different kinds. We

will also look at the reflection and refraction of waves at planar boundaries between

different materials, a topic which forms the basis for much of physical optics. If time

allows, we shall also look at some of the more abstract aspects of wave propagation

having to do with causality and signal propagation.

1 Plane Waves in Uniform Linear Isotropic Non-

conducting Media

1.1 The Wave Equation

One of the most important predictions of the Maxwell equations is the existence of

electromagnetic waves which can transport energy. The simplest solutions are plane

waves in infinite media, and we shall explore these now.

Consider a material in which

B = µH D = εE J = ρ = 0. (1)

Then the Maxwell equations read

∇ · E = 0 ∇ ·B = 0 ∇× E = −1

c

∂B

∂t
∇×B =

µε

c

∂E

∂t
. (2)

Now we do several simple manipulations that will become second nature. First take

the curl of one of the curl equations, e.g., Faraday’s law, to find

∇× (∇× E) = ∇(∇ · E)−∇2E = −1

c

∂

∂t
(∇×B) = −µε

c2

∂2E

∂t2
, (3)

where the generalized Ampère’s law was employed in the last step. Because the

divergence of E is zero, this equation may be written as
(
∇2 − µε

c2

∂2

∂t2

)
E = 0. (4)
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Identical manipulations starting from Ampère’s law rather than Faraday’s law also

lead to (
∇2 − µε

c2

∂2

∂t2

)
B = 0. (5)

Thus any Cartesian component of E or B obeys a classical wave equation of the form
(
∇2 − 1

v2

∂2

∂t2

)
ψ(x, t) = 0, (6)

where v = c/
√
µε.

There is a simple set of complex traveling wave solutions to this equation. They

are of the form

uk(x, t) = ei(k·x−ωt) (7)

where ω = vk and k is any real vector.1 Notice that the derivatives of this function

are

∇uk = ikuk

∇2uk = −k2uk

∂uk

∂t
= −iωuk

∂2uk

∂t2
= −ω2uk. (8)

Hence (
∇2 − 1

v2

∂2

∂t2

)
uk =

(
−k2 +

ω2

v2

)
uk = 0, (9)

demonstrating that we do indeed have a solution of the wave equation.

This solution is a wave “traveling” in the direction of k in the sense that a point

of constant phase, meaning k · x− ωt = constant, moves along this direction with a

speed v which is ω/k. Furthermore, we have a plane wave, by which we mean that a

surface of constant phase is a plane; in particular, the surfaces of constant phase are

just planes perpendicular to k.

1This vector is real if ε and µ are real; they can be complex, in which case there are still solutions

of this form with complex k.
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v= /kω

Plane of stationary phase

Fig.1: A point of stationary phase moves with velocity |v| = ω/k

1.2 Conditions Imposed by Maxwell’s Equations

Next, let us see how the electromagnetic fields can be described in terms of these

scalar plane waves. Let us look for an electric field and a magnetic induction with

the forms

E(x, t) = E0e
i(k·x−ωt) B(x, t) = B0e

i(k·x−ωt) (10)

with the understanding that the true fields are the real parts of these complex ex-

pressions.

In addition to satisfying the wave equation, the complex fields must be solutions of

the Maxwell equations. Let us see what additional constraints are thereby imposed.

Consider first the divergence equations; these require that

0 = ∇ ·B(x, t) = ∇ ·
[
B0e

i(k·x−ωt)
]

= ik ·B0e
i(k·x−ωt) (11)

and

0 = ∇ · E(x, t) = ∇ ·
[
E0e

i(k·x−ωt)
]

= ik · E0e
i(k·x−ωt). (12)

Or

k ·B0 = 0 and k · E0 = 0. (13)

These conditions mean that B0 and E0 must be perpendicular to k, which is to say,

parallel to the surfaces of constant phase and perpendicular to the direction in which
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the surface of constant phase is moving. Such an electromagnetic wave is called a

transverse wave. Notice that this nomenclature is consistent with our definition in

the last chapter of a transverse vector field as one having zero divergence.

There are further conditions on the amplitudes E0 and B0 from the other Maxwell

equations. From the Ampère law one has

∇×B(x, t) =
µε

c

∂E(x, t)

∂t
(14)

which leads to

ik×B0 = − iωεµ
c

E0 (15)

or

E0 = −k×B0

k
√
µε

= −n×B0√
εµ

(16)

where n = k/k is a unit vector in the direction of propagation of the wave. From

Faraday’s Law and similar manipulations one finds the further, and final condition

that

B0 =
√
µε(n× E0); (17)

however, one may also find this relation from Eq. (16) and the condition that n·B0 = 0

and so it is not an additional constraint. Alternatively, one may derive Eq. (16) from

Eq. (17) and the condition n ·E0 = 0. As a consequence, one may, for example, write

E(x, t) = E0e
i(k·x−ωt) (18)

where the only condition on E0 is n ·E0 = 0. Then B(x, t) follows from Eq. (17) and

is

B(x, t) =
√
µε(n× E0)ei(k·x−ωt). (19)

Alternatively, we may start by writing

B(x, t) = B0e
i(k·x−ωt) (20)

where B0 is orthogonal to k, n ·B0 = 0. Then E(x, t) is given from Eq. (16) as

E(x, t) = −n×B0√
εµ

ei(k·x−ωt). (21)
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From these conditions, and those obtained in the previous paragraph, we may con-

clude that E, B and k form a mutually orthogonal set.

Before leaving this section, let’s look at the time-averaged energy density and

Poynting vector in such electromagnetic waves. We shall write them in terms of the

amplitude E0. First,

< S >=
c

8π
< [E(x, t)×H∗(x, t)] =

c

8π

√
ε

µ
< [E0 × (n× E∗0)] =

c

8π

√
ε

µ
|E0|2n. (22)

Similarly,

< u >=
1

16π
< (E(x, t) ·D∗(x, t) + B(x, t) ·H∗(x, t)] =

ε

8π
|E0|2. (23)

The time-averaged momentum density is:

< g >=
1

8πc
< [E(x, t)×H∗(x, t)] =

√
ε/µ

8πc
|E0|2n. (24)

The evaluation of the time-averaged Maxwell stress tensor is left as an exercise.

2 Polarization

In this section we address the question of the most general possible monochromatic

plane wave, which amounts to asking what are the possible choices of E0. Let us

specify that k = kε3 and suppose that we have an orthogonal right-handed set of

real unit basis vectors εi, i = 1, 2, 3. Then it must be the case that E0 · ε3 = 0 which

means that the most general amplitude E0 can be expanded as

E0 = E01ε1 + E02ε2. (25)

The scalar amplitudes in this expansion can be complex so we have in all four real

amplitudes which we may choose with complete abandon. Let us write the complex

scalar amplitudes in polar form,

E01 = E1e
iφ1 E02 = E2e

iφ2 (26)
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where Ei and φi, i = 1, 2, are real. Further, introduce

E0 = (E2
1 + E2

2)1/2 and φ = φ2 − φ1. (27)

Then the complex field becomes

E(x, t) = E0α1

(
ε1 + (α2/α1)eiφε2

)
ei(kε3·x−ωt)eiφ1 (28)

where αi = Ei/E0 and α2
1 + α2

2 = 1. In this form, the wave is seen to have just

two interesting parameters, α2/α1 and φ2 − φ1; these specify the relative phase and

amplitude of the two components of the vector amplitude. The other two parameters

simply to set the overall magnitude of the field and its absolute phase2.

Look at the real part of the complex wave as a function of time at a point in space

which is conveniently taken to be the origin. Aside from the overall magnitude and

phase, the wave looks like

E ∼ ε1 cos(ωt) + (α2/α1)ε2 cos(ωt− φ). (29)

If we map out the path traced by the tip of this vector in the space of ε1 and ε2, we

find in general an ellipse. The ellipse is characterized by two parameters, equivalent

to α2/α1 and φ, these being its eccentricity (the ratio of the semi-minor to the semi-

major axis) and the amount by which the major axis is rotated relative to some fixed

direction such as that of ε1. Such a wave is said to be elliptically polarized, the term

“polarization” referring to the behavior of the electric field at a point as a function

of time. There are two limiting special cases. One is when the eccentricity is unity in

which case the ellipse becomes a circle and the wave is said to be circularly polarized;

the second is when the eccentricity becomes zero so that the ellipse reduces to a line

and the wave is linearly polarized.

2These will, of course, be interesting if the wave meets another wave; but they are not interesting

if there is no other wave.
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α = 0 α /α =1

φ = π/2
2

1 2

Fig.2: linearly (α2 = 0) and circularly (α2/α1 = 1 φ = π/2) polarized

Often one uses a set of complex basis vectors in which ε1 and ε2 are replaced by

vectors ε± defined by

ε± ≡
1√
2

(ε1 ± iε2). (30)

These have the properties

ε± · ε3 = 0 ε± · ε∓∗ = 0 ε± · ε±∗ = 1, (31)

and it is possible to write the electric field of a general plane wave as

E(x, t) = (E+ε+ + E−ε−)ei(k·x−ωt), (32)

where E+ and E− are arbitrary complex constants. If just one of these is non-zero

and is written in polar form, then, aside from phase, the complex electric field at a

point is

E = |E±|
1√
2

(ε1 ± iε2)e−iωt. (33)

The real part then varies as ε1 cos(ωt)±ε2 sin(ωt) which is a circularly polarized wave.

In the case of the upper sign, one says that the wave is left-circularly polarized or that

it has positive helicity; in the case of the lower sign, it is right-circularly polarized

or has negative helicity. In writing the general wave in terms of these basis vectors,

we have expressed it as a superposition of positive and negative helicity waves with

amplitudes E+ and E−, respectively.
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3 Boundary Conditions; Waves at an Interface

In this section, we shall find out what plane waves must look like in semi-infinite

media or when there is a planar boundary between two nonconducting materials such

as air (or vacuum) and glass. We will need appropriate continuity conditions on the

fields at the interface. There may be derived from general kinematic considerations,

and from Maxwell equations.

The basic example from which all cases may be inferred is that of a planar interface

located at z = 0 dividing space into two regions, z < 0 and z > 0. In the former, we

assume an insulating material with dielectric constant ε and permeability µ; in the

latter there is another insulating material with ε′ and µ′.

z=0reflected wave

refracted or transmitted wave

incident wave ε µε µ ’’

Now suppose that from the left, or z < 0, there is an incident wave which has

electromagnetic fields

E(x, t) = E0e
i(k·x−ωt), B(x, t) =

√
µε

k× E(x, t)

k
. (34)

Also, k = ω
√
µε/c, and k·ẑ > 0 so that the wave is approaching the interface. Finally,

E0 is such that k · E0 = 0.

The incident wave is a solution of the Maxwell equations in the region z < 0. At

the interface, however, it is not a solution; there must be other waves present in order

to satisfy the Maxwell equations (or boundary conditions) here. To phrase it another

way, when the incident wave hits the interface, additional waves, called transmitted

(or refracted) and reflected waves must be generated. The refracted waves are the
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ones that propagate into the medium at z > 0; the reflected waves are the ones that

propagate back into the other medium.

3.1 Kinematic Conditions

We can, from quite general considerations, learn a lot about the properties of the

reflected and refracted waves.

First, in order that the continuity conditions remain satisfied at all times, given

that they are satisfied at one instant of time, these waves must have the same time

dependence as the incident wave. This statement follows from the linear nature of

the field equations (each term in the equations is proportional to some component of

one of the fields). Hence, all fields vary in time as e−iωt.

In order to satisfy the B.C. at any
instant of time, the reflected and
transmitted waves must have the
same time dependence as the
incident wave (i.e. same frequency).

Second, the continuity conditions must be satisfied at all points on the interface

or z = 0 plane. Suppose that they are satisfied at one particular point, such as x = 0.

Then, in order that they remain so for other points on the interface, each wave must

vary in the same fashion as each of the other waves as one moves in the plane of the

interface. This statement follows, as does the first one, from the linearity of the field

equations. Now, since the dependence of a plane wave on position is exp(ik · x), this

condition means that all waves (incident, reflected, and refracted) must have wave

vectors whose components lying in the plane of the interface are identical.
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In order to satisfy the B.C. at any
point along the interface, the
components of k which lie in the
plane must be identical for the
incident, reflected and refracted waves.

incid
ent wave

refracted wave

reflected wave

We can express this condition as

n× k = n× k′ = n× k′′ (35)

where k′ and k′′ are, respectively, the wave vectors of any refracted and reflected

waves. This relation may also be written as

k sin i = k′′ sin r′′ = k′ sin r (36)

where i, r′′, and r are the angles between the wavevectors of the incident, reflected,

and transmitted waves and the normal to the interface. They are called the angle of

incidence, the angle of reflection, and the angle of refraction.

k’

k’’k

r

i r’’

µ ε
µ ε

’’

n

x

z

Figure 6: Definition of the angles i, r′′, and r

Finally, any reflected wave is a solution of the same wave equation as the incident

wave; consequently, it has a wave number k′′ = k. Any transmitted wave, however,

has wave number k′ = ω
√
µ′ε′/c, so k′ 6= k. If we combine these statements with

Eq. (36), we can see that r′′ = i, the angle of incidence equals the angle of reflection.
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For a transmitted wave, however, the wave equation is such that k ′ = ω
√
µ′ε′/c which

is not k; in fact, k′/n′ = k/n where

n ≡ √µε and n′ ≡
√
µ′ε′ (37)

are the indices of refraction in the two materials. Using these definitions in Eq. (36)

we find

n sin i = n′ sin r (38)

which is known in optics as Snell’s Law.

3.2 Conditions from Maxwell’s Equations

Notice that we derived Snell’s law and the statement i = r′′ without using explicitly

the continuity conditions; we had only to use the fact that there are linear continuity

conditions. Hence these properties are called kinematic properties (they don’t depend

on the particular dynamics of the fields which are given by the Maxwell equations)

and they are applicable to much more than just electromagnetic phenomena.

To fully develop the rules of reflection and refraction for electromagnetic waves,

we must use the Maxwell equations to tell us the specific relations among the fields

and then must apply the continuity conditions at a specific point on the interface,

such as x = 0, and at a specific time, such as t = 03.

∇ ·D = 4πρ, ∇ ·B = 0, ∇×H =
4π

c
J +

1

c

∂D

∂t
, ∇× E = −1

c

∂B

∂t
. (39)

3For other points and times we know that the conditions will be satisfied by making sure the

kinematic conditions derived above are satisfied.
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1
2

n

da

n’
Figure 3: Integration surfaces used for the B.C.

Application of the divergence theorem to the two divergence equations using the

familiar pillbox construction leads, as for the static case, to the continuity conditions

(D1 −D2) · n = 4πσ (40)

(B2 −B1) · n = 0 (41)

where n is a unit outward normal from material 1 and σ is the macroscopic surface-

charge density. Application of Stokes’ theorem to the curl equations in the “usual”

way leads to

n× (E2 − E1) = 0 (42)

n× (H2 −H1) =
4π

c
K (43)

where K is the macroscopic surface-current density lying inside of the loop C to

which Stokes’ theorem is applied. Notice that the time derivatives in Faraday’s law

and Ampère’s law do not contribute to the continuity conditions.4

For uncharged insulators, the surface sources σ and K are always zero; then the

continuity conditions are especially simple and state that the normal components of

D and B are continuous as are the tangential components of H and E.

At x = 0, t = 0, the fields of an incident wave, a single transmitted wave, and a

single reflected wave5 may be written as follows:

4We have assumed that there are no singular parts of the time derivatives localized at the inter-

face; were there any such contributions, they would show up in the continuity conditions.
5We don’t know at this point that we need only one reflected and one transmitted wave to obtain

a solution to the boundary value problem. By construction, we will see that such is the case.
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Incident wave:

E = E0 B =
n

k
(k× E0) (44)

Reflected wave:

E = E′′0 B =
n

k
(k′′ × E′′0) (45)

Transmitted wave:

E = E′0 B =
n′

k′
(k′ × E′0) =

n

k
(k′ × E′0). (46)

We suppose that we are given n, n′, k, and E0; we need to find k′, k′′, E′0, and E′′0. The

wave vectors follow from the kinematic relations; they all lie in the plane containing

the normal to the interface and the incident wave vector, called the plane of incidence

and make angles with the normal as discussed above. As for the amplitudes, they are

found from the continuity conditions:

1. Dn continuous:

ε(E0 + E′′0) · n = ε′E′0 · n (47)

2. Bn continuous:

(k× E0 + k′′ × E′′0) · n = (k′ × E′0) · n (48)

3. Et continuous:

(E0 + E′′0)× n = E′0 × n (49)

4. Ht continuous:

1

µ
(k× E0 + k′′ × E′′0)× n =

1

µ′
(k′ × E′0)× n. (50)

It is a messy bit of algebra to solve these equations in the general case. The task can

be made simpler by writing the incident wave’s electric field as a linear combination

of two linearly polarized waves, which is always possible. One solves each of these

cases separately. The appropriate sum of the two solutions is then the solution of the

original problem. Once again, the linearity of the field equations leads to enormous

simplification of the algebra. The two cases that we are going to treat are
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1. polarization of E0 perpendicular to the plane of incidence and

2. polarization parallel to the plane of incidence.

3.2.1 Polarization of E0 Perpendicular to the Plane

k’

k’’k

r

i

µ ε
µ ε

’’

n

i

B’

B’’B

E’

E’’E

Figure 7: Polarization of E0 perpendicular to the plane of incidence

The figure sets the conventions for the first case. They are such that E0 =

E0ŷ, E′0 = E ′0ŷ, and E′′0 = E ′′0 ŷ. Remember also that k′′ = k, k/n = k′/n′, and

n sin i = n′ sin r. Now apply the four continuity conditions. The first gives nothing

because there is no normal component of the electric displacement or electric field;

the second gives E0 + E ′′0 = E ′0; the third gives the same constraint as the second;

and the fourth results in (k/µ) cos i (E0 − E ′′0 ) = (k′/µ′) cos r E ′0. Since k′ = kn′/n

and n =
√
µε, we can write the latter as

√
ε/µ cos i (E0 − E ′′0 ) =

√
ε′/µ′ cos r E ′0. In

addition, cos r =
√

1− sin2 r =
√

1− (n/n′)2 sin2 i. Combining these relations we

find the two conditions

E ′0 − E ′′0 = E0

√
ε′

µ′

√

1−
(
n

n′

)2

sin2 i E ′0 +

√
ε

µ
cos i E ′′0 =

√
ε

µ
cos i E0. (51)

Notice that these are written entirely in terms of the angle of incidence; the angle of

refraction does not appear. Their solution is easily shown to be

E ′0 =
2n cos i

n cos i+ (µ/µ′)
√
n′2 − n2 sin2 i

E0
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and

E ′′0 =
n cos i− (µ/µ′)

√
n′2 − n2 sin2 i

n cos i+ (µ/µ′)
√
n′2 − n2 sin2 i

E0 (52)

3.2.2 Polarization of E0 Parallel to the Plane

k’

k’’k

r

i

µ ε
µ ε

’’

n

i

B’

B’’B

E’

E’’E

Figure 8: Polarization of E0 parallel to the plane of incidence

The second case, polarization in the plane of incidence may be similarly analyzed.

The figure shows the conventions for this case. They are such that E0 = E0(sin i ẑ−
cos i x̂), E′0 = E ′0(sin r ẑ− cos r x̂), and E′′0 = E ′′0 (sin i ẑ + cos i x̂). The first boundary

condition implies that ε sin i (E0 + E ′′0 ) = ε′ sin r E ′0; the second gives nothing; the

third gives cos i (−E0 + E ′′0 ) = − cos r E ′0; and the fourth gives a condition that is

redundant with the first when Snell’s law is invoked. Thus we may write the two

conditions, after removing all occurrences of r as in the first case, as

√
ε

µ
(E0 + E ′′0 ) =

√
ε′

µ′
E ′0 cos i (E0 + E ′′0 ) =

√
1− (n/n′)2 sin2 i E ′0. (53)

Their solution is

E ′0 =
2nn′ cos i

(µ/µ′)n′2 cos i+ n
√
n′2 − n2 sin2 i

E0

and

E ′′0 =
(µ/µ′)n′2 cos i− n

√
n′2 − n2 sin2 i

(µ/µ′)n′2 cos i+ n
√
n′2 − n2 sin2 i

E0 (54)

Our solutions to the reflection-refraction problem have the following characteris-

tics by design. First, as mentioned above, they involve only the angle of incidence,
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the angle of refraction having been removed wherever it appeared by using Snell’s

law; second, the material properties enter through the permeabilities and indices of

refraction as opposed to the permeabilities and dielectric constants. The reason is

that for most of the materials one encounters, µ = µ′ = 1 and so the permeabilities

drop out of the relations. Second, one is generally more likely to be given an index

of refraction than a dielectric constant and so expressing the amplitudes in terms of

n makes them more readily applicable.6

Equations (52) and (54) are known as Fresnel’s equations; with them we can

calculate the reflection and transmission of a plane wave at a planar interface for

arbitrary initial polarization. Such an incident wave gives rise to a single reflected

plane wave and a single transmitted plane wave, meaning that there is just one

reflected wave vector k′′ and one transmitted wave vector k′.

3.3 Parallel Interfaces

With a little thought we may see how to generalize to the case of two (or more)

parallel interfaces. Consider the figure showing two parallel interfaces separating

three materials. If we follow the consequences of an incident plane wave from the

first material on one side we can see that the reflection processes within the middle

material of the “sandwich” generate many plane waves in here, but that these waves

have just two distinct wave vectors.

E’
E’’

E

E E

0 0
0

rr

6Of course, the relation between n and ε is sufficiently simple that there is really no great

difference.
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Figure 9: Plane wave incident on a sandwich.

Also, all waves transmitted into the third material have the same wave vector, and

the “reflected” waves in the first medium all have a single wave vector. Hence one

finds that in the first medium, there are just two waves with electric fields

E = E0e
i(k·x−ωt) Er = Er0e

i(kr·x−ωt); (55)

in the middle medium there are again just two distinct waves with fields

E′ = E′0e
i(k′·x−ωt) E′r = E′r0e

i(k′r·x−ωt) (56)

and in the third medium there is just one plane wave with field

E′′ = E′′0e
i(k′′·x−ωt). (57)

To find the four amplitudes Er0, E′0, E′r0, and E′′0, one must apply the boundary

conditions at the two interfaces, leading to four distinct linear relations involving

these amplitudes and that of the incident wave, E0. Solving these equations, one

finds the amplitudes of all waves in terms of that of the incident wave.

Returning briefly to Fresnel’s equations for reflection and refraction at a single

interface, let us look at the special case of normal incidence, i = 0. then r = 0 also,

and the first set (polarization normal to the plane of incidence) of Fresnel equations

tells us that 7

E ′0 =
2n

n+ (µ/µ′)n′
E0 E ′′0 =

n− (µ/µ′)n′

n+ (µ/µ′)n′
E0. (58)

These are simple results, especially when µ = µ′. They clearly tell us that when the

two materials have comparable indices of refraction and permeabilities, the wave is

mostly transmitted and when they have very different properties (an engineer would

7Actually, both sets of Fresnel equations are applicable for normal incidence. The second set,

however, will produce a result with some signs switched as a consequence of the different conventions

used for the directions of the electric fields in the two cases.
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call that impedance mismatch), reflection is the rule. Notice also that if n′µ/µ′ > n,

the reflected amplitude is opposite in sign to the incident one, meaning that the

electric field of the reflected wave is phase shifted by π radians relative to that of the

incident one under these circumstances.

4 Reflection and Transmission Coefficients

In this section we look at the power or energy transmitted and reflected at an interface

between two insulators. To do so, we must evaluate the time-averaged power in the

incident, reflected, and transmitted waves which is done by calculating the Poynting

vector. The energy current density toward or away from the interface is then given by

the component of the Poynting vector in the direction normal to the interface. In the

second medium, where there is just a single (refracted) wave, the normal component

of S is unambiguously the transmitted power per unit area. But in the first medium,

the total electromagnetic field is the sum of the fields of the incident and reflected

waves. In evaluating E × H, one finds three kinds of terms. There is one which

is the cross-product of the fields in the incident wave, and its normal component

gives the incident power per unit area. A second is the cross-product of the fields

in the reflected wave, giving the reflected power. But there are also two cross-terms

involving the electric field of one of the plane waves and the magnetic field of the

other one. It turns out that the time-average of the normal component of these terms

is zero, so that they may be ignored in the present context. Bearing this in mind, we

have the following quantities of interest:

The time-averaged incident power per unit area:

P =< S > ·n =
c

8π

√
ε

µ
|E0|2

k · n
k

(59)

The time-averaged reflected power per unit area:

P ′′ = − < S′′ > ·n =
c

8π

√
ε

µ
|E′′0|2

k′′ · n
k

(60)
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The time-averaged transmitted power per unit area:

P ′ =< S′ > ·n =
c

8π

√
ε′

µ′
|E′0|2

k′ · n
k′

d (61)

The reflection coefficient R and the transmission coefficient T are defined as the ratios

of the reflected and transmitted power to the incident power.

We may calculate the reflection and transmission coefficients for the cases of po-

larization perpendicular and parallel to the plane of incidence by using the Fresnel

equations. If an incident wave has general polarization so that its fields are linear

combinations of these two special cases, then there is once again the possibility of

cross terms in the power involving an electric field with one type of polarization and

a magnetic field with the other type. Fortunately, these turn out to vanish, so that

one may treat the two polarizations individually.

For the case of polarization perpendicular to the plane of incidence, we

use the Fresnel equations (52) and (54) for the reflected and transmitted amplitudes

and have

T =

√
ε′
µ′

4n2 cos2 i cos r

(n cos i+(µ/µ′)
√
n′2−n2 sin2 i)2

√
ε
µ

cos i
(62)

Making use of the relations n =
√
εµ, n′ =

√
ε′µ′, sin r = (n/n′) sin i, and cos i =

√
1− sin2 i, one finds that

T =
4n(µ/µ′) cos i

√
n′2 − n2 sin2 i

[n cos i+ (µ/µ′)
√
n′2 − n2 sin2 i ]2

. (63)

By similar means one can write the reflection coefficient as

R =
[n cos i− (µ/µ′)

√
n′2 − n2 sin2 i ]2

[n cos i+ (µ/µ′)
√
n′2 − n2 sin2 i ]2

(64)

By inspection one can see that R+T = 1 which expresses the conservation of energy;

what is not transmitted is reflected.

The case of polarization in the plane of incidence is treated similarly. One

finds

T =
4nn′2(µ/µ′) cos i

√
n′2 − n2 sin2 i

[(µ/µ′)n′2 cos i+ n
√
n′2 − n2 sin2 i ]2

(65)
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and

R =
[(µ/µ′)n′2 cos i− n

√
n′2 − n2 sin2 i ]2

[(µ/µ′)n′2 cos i+ n
√
n′2 − n2 sin2 i ]2

. (66)

Once again, R + T = 1.

5 Examples

5.1 Polarization by Reflection

From inspection of Fresnel’s equations, we can see that the relative amounts of trans-

mitted and reflected amplitude depend on the state of polarization and are distinctly

not the same for both polarizations.

n’- n
n’+n( )2

R

i
i B π/2

1

µ=µ =1
n’>n

’
tan ( )i - r

tan ( )i +r2

2

R ==

sin ( )i - r

sin ( )i +r2

2

R =⊥

Figure 10: Reflection Coefficient when n′ > n, and µ′ = µ = 1

That means that in the general case, the polarizations of the transmitted and reflected

waves will not be the same as that of the incident one. A very special case has to do

with the reflected wave given incident polarization in the plane of incidence. We see

that the reflected amplitude will vanish if8

n′2 cos i = n
√
n′2 − n2 sin2 i. (67)

Squaring this relation we find

n′4 cos2 i = n2n′2 − n4 sin2 i = n′4(1− sin2 i) or sin2 i =
n′2

n′2 + n2
or tan i =

n′

n
. (68)

8We let µ = µ′ in this section unless explicitly stated otherwise; keeping the permeability around

usually contributes nothing but extra work and obfuscation.
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This special angle of incidence is called the Brewster angle,

iB = arctan(n′/n); (69)

i

r

B

E

E’

Figure 11: No reflected wave when i = iB and the field is polarized in the plane.

a wave polarized in the plane of incidence and incident on the interface at the Brew-

ster angel is completely transmitted with no reflected wave. If a wave of general

polarization is incident at the Brewster angle, then the reflected wave is completely

(linearly) polarized perpendicular to the plane of incidence. Hence this phenomenon

provides a method for obtaining a linearly polarized wave from an unpolarized one.

More generally, if the angle of incidence is reasonably close to the Brewster angle, the

reflected light is to a large degree polarized perpendicular to the plane of incidence.

This fact is utilized by polarizing sun glasses which screen out most of the light po-

larized parallel to the surface of the earth, which is to say, most of the light reflected

by the earth.

sun

beach

ocean

E⊥

E⊥

=E

Figure 12: Light reflected from the ocean (glare) is largely polarized along the

horizon, and may be removed with polarized sunglasses.
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5.2 Total Internal Reflection

As a second example we look at the phenomenon of total internal reflection which

is the opposite of the one just considered in that no energy is transmitted across an

interface under appropriate conditions. Suppose that n > n′. As shown in the figure,

this means that r > i.

n

n’

ic

Figure 13: A series of angles when n > n′.

Now consider an incident wave with i large enough that n sin i > n′. How can we

have a refracted wave with r such that Snell’s law, n sin i = n′ sin r is satisfied? Recall

our argument for Snell’s law; it was based on the fact that the wave vector k′ of the

refracted wave had to have a component k′t parallel to the interface equal to the same

component of the incident wave. Given that n sin i > n′, this condition means that k′t

is larger than ωn′/c which is supposed to be the magnitude of k′, according to the

wave equation. But there is a way around this. The condition that comes from the

wave equation is that, if k′t and k′n are respectively the components of k′ tangential

and normal to the interface, then k′2t + k′2n = ω2n′2/c2. If k′t > ωn′/c, we can satisfy

this condition by having k′n be imaginary. In particular,

k′n = ±inω
c

√
sin2 i− (n′/n)2. (70)

The choice of sign has to be such as to produce a wave that damps away to nothing

in the second medium; otherwise it becomes exceedingly large (which is unphysical

behavior) as one moves far away from the interface. Now that we have figured out

what is k′; that is, k′t = (nω/c) sin i and k′n is given by Eq. (70), we can see the
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character of the transmitted electric field. It is

E′ ∼ eik
′
txe−|k

′
n|ze−iωt (71)

where x̂ is the direction of the tangential component of k.

The Poynting vector for a wave of this sort has no component directed normal to

the interface although there is one parallel to the interface. To see this, take E to be

in the y-direction.

x

z

ic

E

Figure 14: Polarization ⊥ to the plane of incidence.

Then

E′ = E′0e
i(k′tx−ωt)e−|k

′
n|z

so that

S ′z =
c

8π
< (E′ ×B′∗)z =

c

8π
<
(
E ′y ×B′∗x

)
.

We may use Faraday’s law to relate E to B

∇× E = −1

c

∂B

∂t
→ iω

c
B′x = |k′n|E ′y .

Thus,

S ′z =
c

8π
<
{
−E ′y

c|k′n|
−iω E

′∗
y

}
= 0

Thus, as shown in the figure below, when i > ic, the power is totally reflected.
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n’- n
n’+n( )2

R

i
i B

π/2

1

µ=µ =1
n’<n

’

tan ( )i - r

tan ( )i +r2

2

R ==

sin ( )i - r

sin ( )i +r2

2

R =⊥

Figure 15: Reflection Coefficient when n > n′, and µ′ = µ = 1

What we have is therefore a surface wave confined to the region close to the interface

and transporting energy parallel to it. Moreover, by evaluating the Poynting vector

of the reflected and incident waves, one finds that as much energy is reflected from

the interface as is incident upon it. Hence we have the phenomenon of perfect or

total reflection of the incident wave. This phenomenon is utilized in fiber optics; an

electromagnetic wave is propagated inside of a thin tube of some material having a

large index of refraction and surrounded by another material having a much smaller

index. Wherever the wave is incident upon the wall of the tube, it is completely

reflected.

air n=1

glass n>1
i

i is large

Figure 16: Total internal reflection occurs within a fiber optic tube.

There is some natural attenuation of the wave because of imperfect dielectric prop-

erties of the material itself or its coating; nevertheless, a beam of light, for example,

can be transmitted long distances and around many curves (as long as they aren’t

too sharp) in such a “pipe.”

26



6 Models of Dielectric Functions

The dielectric “constant” of almost any material is in fact a function of frequency,

meaning that it has different values for waves of different frequencies.

v1

v2

v1 v2=

Figure 17: In a dispersive medium waves of different frequencies have different

phase velocities v = c/
√
ε(ω)µ.

We can make a simple model of the dielectric “function” of an insulating material

as follows: Suppose that the charges which primarily respond to an electric field are

electrons bound on atoms or molecules. Let one such electron be harmonically bound,

meaning that the binding forces are treated as linear in the displacement of the charge

from its equilibrium position. Also, let there be a damping force proportional to the

velocity v of the electron. Then, if the mass and charge of the electron are m and −e,
the equation of motion of the electron under the influence of an electric field E(x, t)

is

m

(
d2x

dt2
+ γ

dx

dt
+ ω2

0x

)
= −eE(x, t). (72)

The harmonic restoring force is expressed through a “natural” frequency of oscillation

ω0 of the electron. We have ignored the possible influence of a magnetic induction

B(x, t) on the electron’s motion. Typically this force is much smaller than the electric

field force because the electron’s speed is much smaller than c; there can be exceptions,

however, and one of them is explored below.

Next, the typical magnitude of the electron’s displacement |x| is on the order of

an atomic size.
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λ

e -x

If x << , then E(x,t) ~ E(0,t)λ

Figure 18: If the wavelength of the incident wave is much larger than the electronic

displacement, then we may neglect the spacial dependence of E(x, t).

If the electric field E(x, t) is that of visible or even ultraviolet light, then the displace-

ment is much smaller than distances over which E(x, t) varies significantly, meaning

that we can approximate E(x, t) ≈ E(0, t) = E0 exp(−iωt). In this limit, the solution

we seek is of the form x(t) = x0 exp(−iωt). Substituting into the equation of motion,

we find that the equation for the amplitude of the motion is

m(−ω2 − iωγ + ω2
0)x0 = −eE0 (73)

or

x0 =
−eE0

m(ω2
0 − iωγ − ω2)

. (74)

The amplitude of the dipole moment associated with the motion of this electron

is p0 = −ex0. To find the polarization, we need to compute the dipole moments of

all electrons in some finite volume of material. These electrons will not all have the

same damping or natural frequencies, so let us say that there are n molecules per unit

volume with z electrons each. If fi of the electrons on each molecule have resonant

frequency ωi and damping constant γi, then we get a polarization or dipole moment

per unit volume which varies harmonically with an amplitude

P0 = e2E0n
∑

j

(
fj

m(ω2
j − iωγj − ω2)

)
; (75)

this is also the relation between E(x, t) and P(x, t). If we further say that E(x, t)
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is the macroscopic field9, then we can write D = E + 4πP = εE with the preceding

expression for the polarization. The result is an expression for ε(ω):

ε(ω) = 1 +
4πne2

m

∑

j

(
fj

ω2
j − iωγj − ω2

)
(76)

or

ε(ω) = 1 +
4πnze2

m

∑

j

(
fj
z

)(
ω2
j − ω2 + iωγj

(ω2
j − ω2)2 + ω2γ2

j

)
≡ ε1 + iε2 (77)

where ε1 and ε2 are real.

In a typical term of the sum, different regimes of the relative sizes of ω, ωj, and

γj give rise to very different behaviors. The resonant frequencies are, when Planck’s

constant is thrown in, comparable to binding energies of electrons which are on the

order of a few electron-volts, so that ωj is of order 1015 sec−1, much the same as

optical frequencies. The damping constants tend to be somewhat smaller, perhaps

of order 1012 sec−1 (see below). Starting from low frequencies, ω << ω2
j and also

ωγj << ω2
j , then we can approximate the dielectric function as

ε(ω) ≈ 1 +
4πne2

m

∑ fj
ω2
j

(78)

which is a constant. Now, as ω increases from a low value, the real part of ε will also

increase (slowly at first); when it gets to within about γj of the smallest ωj, there is a

resonance (the electron is being “pushed” by the electric field at a frequency close to

its natural frequency) which will show up in ε1 as a sudden rise, fall, and rise. After

this, ε1 is again roughly constant. There are as many such resonances as there are

distinct resonant frequencies or terms in the sum over j.

The rapid variation of the dielectric function in the vicinity of a resonance also

produces a rapidly varying index of refraction, meaning that waves with relatively

9In this we follow Jackson, but remember the Clausius-Mossotti relation from last quarter; we

argued that the electric field which produces the polarization should be the local field and not the

macroscopic field. It is not difficult to make the necessary corrections to what is given here.
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Figure 1: Real and imaginary parts of ε near resonances

close frequencies propagate with quite different speeds. The frequency regime where

ε1 decreases with increasing ω is known as a region of anomalous dispersion.

The imaginary part of ε also behaves in an interesting fashion near a resonance.

Because the denominator of the resonant term in ε(ω) gets quite small at ω = ωj

while the numerator for the imaginary part does not get small, there is a pronounced

peak in ε2 here. The smaller the value of γj, the bigger the peak. A large imaginary

part of the dielectric function produces strong damping or absorption of the wave, so a

region of anomalous dispersion is also a region of strong absorption, termed resonant

absorption.

Finally, for ω very large in comparison with any other frequency in the system

ω À ωj, the dielectric function once again becomes simple and has the form

ε(ω) = 1− 4πnze2

mω2
≡ 1− ω2

p

ω2
(79)

where we have introduced the plasma frequency of the electron system,

ωp ≡
√

4πnze2

m
. (80)
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For typical values of n in solids, this frequency is of order 1016 sec−1 which is as large

as or larger than the frequency of visible light. Our result is interesting in that the

dielectric function is smaller than unity in this regime of frequency, meaning that a

point of constant phase in a harmonic wave actually travels faster than the speed

of light c. Even more remarkable is the possibility that ε(ω) < 0 in some range of

frequency. For this to occur it is necessary to have ω < ωp but at the same time

ω must be considerably larger than any resonant frequency ωj and also larger than

the damping parameters γj. Such conditions can be attained in some materials; a

simple example is a tenuous plasma, or gas of charged particles. Then the resonant

frequencies are all zero, the plasma frequency is rather low because the density of

charges is not large, and the damping is small. See the following section.

6.1 Dielectric Response of Free Electrons

Some special cases are also worthy of mention. One is the case of free electrons.

For these electrons there is no restoring force and so we may set the corresponding

ωj, called ω0, to zero. This has a profound effect on the dielectric function at low

frequencies. If we extract the free-electron term from the remainder of the dielectric

function and regard the latter as some constant ε0 at low frequencies (see Eq. (78)),

then we have

ε = ε0 −
4πnf0e

2

mω(ω + iγ0)
= ε0 + i

4πnf0e
2

mω(γ0 − iω)
. (81)

This thing is singular as ω → 0, reflecting the fact that in the zero-frequency limit,

the free electrons will be displaced arbitrarily far from their initial positions by any

small electric field, producing a very large polarization. The singular term in ε in fact

represents the conductivity of the free-electron material. To see how it is related to

the conductivity, let us examine Ampère’s law using this dielectric function and no

macroscopic current J, as this current will be included in the dielectric response (the
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polarization produced by the free electrons). From ∇×H = c−1∂D/t, we find

∇×H = −iω
c

(
ε0 + i

4πnf0e
2

mω(γ0 − iω)

)
E =

4π

c

nf0e
2

m(γ0 − iω)
E− iω

c
ε0E. (82)

By contrast, we may choose not to include the free electrons’ contribution to the

polarization in which case ε = ε0. Then, however, we have to include them as macro-

scopic current J; assuming linear response and isotropy, we may write J = σE

where σ is the electrical conductivity. Using these relations, and Ampère’s law,

∇×H = (4π/c)J + c−1∂D/∂t, we find

∇×H =
4π

c
σE− iω

c
ε0E. (83)

Comparison of the two preceding equations shows that by including the contribution

of the free electrons in the polarization we have actually derived a simple expression

for the conductivity,

σ =
nf0e

2

m(γ0 − iω)
→ nf0e

2

mγ0

, (84)

the last expression holding in the zero-frequency or static limit.

Comparison of measured conductivities with this result gives one an estimate of

the damping constant. In very good metallic conductors such as Cu or Ag, σ ∼
1017 sec−1. The free-electron density is of order 1022 cm−3 and so one is led to γ0 ∼
1013 sec−1 which is considerably smaller than typical resonant frequencies (for bound

electrons, of course).

7 A Model for the Ionosphere

The ionosphere is a region of the upper atmosphere which is ionized by solar radiation

(ultraviolet, x-ray, etc.). It may be simply described as a dilute gas of charged

particles, composed of electrons and protons or other heavy charged objects. The

dielectric properties of this medium are mainly produced by the lighter electrons, so

we shall include only them in our description. We then have just one kind of charge
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and it has zero resonant frequency. Because the medium is dilute, the damping is

small; we shall ignore it. This is the approximation of a collisionless plasma and it

leaves us with a very simple dielectric function,

ε(ω) = 1− ω2
p

ω2
. (85)

For frequencies smaller than the plasma frequency, ε(ω) < 0, meaning that the wave

number is pure imaginary since k = ω
√
ε/c; the corresponding wave will not propagate

because its dependence on position is proportional to exp(ik · x) or exp(−|k|z) given

that k ‖ ẑ10.

In the case of the ionosphere there is an additional complicating factor (which also

makes the problem more interesting); the earth has a magnetic field which influences

the motions of the electrons and hence the dielectric function. The equation of motion

of the charges, including this field B0 is

m
d2x

dt2
= −e

[
E +

1

c

(
dx

dt
×B0

)]
. (86)

We ignore the effect of the wave’s magnetic induction. We shall also restrict (for

simplicity) attention to the case of k ‖ B0 and shall ignore the spatial variations

of E. In addition, and without loss of generality, we can let the wave have circular

polarization. Hence we write the electric field as E = E0ε±e−iωt.

Under these conditions, x will be of the form x = x0e
−iωt; using this relation in

the equation of motion, we find

−mω2x0 = −e
[
E0ε± −

iω

c
B0(x0 × ẑ)

]
. (87)

The solution of this equation is x0 = x0ε±; one can see this easily if one realizes that

ε± × ẑ = ±iε±:

ε± × ẑ =
1√
2

(x̂± iŷ)× ẑ =
1√
2

(−ŷ ± ix̂) = ± i√
2

(x̂± iŷ) = ±iε±. (88)

10For most laboratory plasmas, this occurs at microwave frequencies
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Hence the equation of motion, using x0 = x0ε±, is

−mω2x0ε± = −e[E0 ±
ωB0x0

c
]ε±. (89)

or

x0 =
eE0/m

ω(ω ∓ ωB)
(90)

where ωB ≡ eB0/mc is the cyclotron frequency. From this point we may determine

the dielectric function by repeating the arguments used in the preceding section and

find

ε(ω) = 1− ω2
p

ω(ω ∓ ωB)
. (91)

Our result tells us that waves with different polarization elicit different dielectric

responses from the medium; such a phenomenon is known as birefringence. If a wave

of general polarization is incident upon the plasma, it is in effect broken into its two

circularly polarized components and these propagate independently. It is possible to

have a wave with a frequency such that for one component ε(ω) < 0 and for the

other, ε(ω) > 0. Hence, one will propagate and the other will not, providing a (not

particularly practical) way of producing a circularly polarized wave.

In the specific case of the ionosphere, ωp, ωB, and ω can all be quite compa-

rable. The density of electrons, which varies with the time of day and solar ac-

tivity, is typically ∼ 105 − 106 cm−3, leading to ωp ∼ 107 sec−1. The earth’s field

B0 ∼ 0.1 − 1.0 gauss, leading to ωB ∼ 107 sec−1. A wave with ω ∼ 107 sec−1 is in

the AM band; short-wave radio frequencies are somewhat higher, and FM radio or

television have considerably higher frequencies. This means that FM and television

signals are at frequencies so large that ε ≈ 1 and they propagate right through the

ionosphere without significant reflection or attenuation. For this reason, the signals

can be received only at locations where there is a direct path through the atmosphere

from transmitter to receiver. For the lower frequency signals (short-wave and AM),

however, there can be strong reflection from the ionosphere, making it possible to

receive them relatively far from the transmitter. The higher the point in the iono-

sphere where the reflection takes place, the greater the effective range of the signal.
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Figure 2: Dielectric constants vs. ω for the ionosphere
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Figure 3: Electron density vs. height in the ionosphere

Because the electron density increases with height (and then decreases again), the

higher frequencies tend to be reflected at greater heights (if they are reflected at all)

than the lower ones, thereby giving greater range. That is why short-wave signals

have longer range than AM signals, at least some of the time.

What happens if k is not parallel to B0? The medium is still birefringent so that

a wave of arbitrary polarization is broken into two components that propagate inde-

pendently; however, the two components are not simple circularly polarized waves.

In addition, the dielectric functions and hence the indices of refraction for these two

waves depend on the angle between B0 and k, so the medium is not only birefringent

but also anisotropic.

8 Waves in a Dissipative Medium

We have seen in the preceding sections that the dielectric function will is general be

complex, reflecting the fact that a wave will be dissipated or damped under many

conditions. It therefore behooves us to learn more about the properties of waves

when dissipation is present. As we have seen, we can do this by employing a complex

dielectric function, and we can also do it, with the same basic results, by letting ε

be real while introducing a real conductivity and thus a macroscopic current density.
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We shall do the latter, for no particular reason.

Suppose that once again we have some linear medium with D = εE, B = µH,

and J = σE; ε, µ, and σ are taken as real. Then the Maxwell equations become

∇ ·B = 0, ∇ · E = 0, ∇× E = −1

c

∂B

∂t
, (92)

and

∇×B =
4πµ

c
σE +

εµ

c

∂E

∂t
. (93)

We have set ρ equal to zero in these equations. It may be that there is initially some

macroscopic charge density within a conductor. If this is the case, that density will

decay to zero with a characteristic time on the order of γ−1 where γ is the damping

constant introduced in the section on dielectric functions; see Jackson, Problem 7.7.

Let us look for plane wave solutions to the field equations. Set E(x, t) = E0e
i(k·x−ωt)

and B(x, t) = B0e
i(k·x−ωt). The divergence equations then tell us that B0 · k = 0 and

E0 · k = 0 as in a nondissipative medium. From Faraday’s law we find the familiar

result

B0 =
c

ω
(k× E0), (94)

and from the Ampère’s law we find

i(k×B0) =
4πµσ

c
E0 − i

ωµε

c
E0. (95)

If we take the cross product of k with Eq. (94) and substitute Eq. (95) into the result

where k×B0 appears, we find, after using k× (k× E0) = −k2E0, that

−i4πµσ
c

E0 −
ωµε

c
E0 = −ck

2

ω
E0 (96)

or

k2 =
ω2µε

c2
+ i

4πµσω

c2
. (97)

Taking the point of view that ω is some given real frequency, we can solve this relation

for the corresponding wavenumber k, which is complex. If we write k = k0 + iα, then
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the real and imaginary parts of Eq. (97) give us two equations which may be solved

for k0 and α:

k2
0 − α2 =

ω2εµ

c2
2k0α =

ω2εµ

c2

(
4πσ

εω

)
. (98)

The solution is



k0

α





=
√
µε
(
ω

c

)




√
1 +

(
4πσ
ωε

)2 ± 1

2





1/2

. (99)

where the + sign refers to k0 and the - sign to α.

This expression appears somewhat impenetrable although it doesn’t say anything

unexpected or remarkable. It takes on simple forms in the limits of high and low

conductivity. The relevant dimensionless parameter is 4πσ/εω. It if is much larger

than unity, corresponding to a good conductor, then

k0 ≈ α ≈
√

2πωµσ

c
≡ 1

δ

4πσ

εω
À 1 . (100)

where we have introduced the penetration depth δ. This is the distance that an

electromagnetic wave will penetrate into a good conductor before being attenuated to

a fraction 1/e of its initial amplitude. Since the wavelength of the wave is λ = 2π/k0,

δ is also a measure of the wavelength in the conductor.

For a poor conductor, by which we mean 4πσ/ωε << 1, one has

k0 + iα ≈ √µεω
c

+ i
2π

c

√
µ

ε
σ. (101)

Notice that in the latter case, the real part of the wavenumber is the same as in

a nonconducting medium and the imaginary part is independent of frequency so

that waves of all frequencies are attenuated by equal amounts over a given distance.

Also, α << k0 which tells us that the wave travels many wavelengths before being

attenuated significantly.

For a given σ, α is an increasing function of ω and saturates at high frequencies.

Therefore, if one wants a wave to travel as far as possible, one wants to use as low

freqency a wave as possible. Then one should be in the good-conductor limit where
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the attenuation varies as
√
ω and vanishes as ω → 0. A well-known application of this

rule has to do with radio communication with submarines; sea water is a reasonably

good conductor σ ∼ 1011 sec−1 and so to communicate with a submerged boat, one

should send out low frequency signals which will penetrate to greater depths in the

ocean than more standard signals.

ocean

Figure 22: Low frequency waves can propagate through sea water.

Given that we have found the complex wave number, and letting k point in the

z-direction, we have

E(x, t) = E0e
i(k0z−ωt)e−αz; (102)

the corresponding magnetic induction is found in the usual way (take k× E):

B(x, t) =
c

ω
(k0 + iα)(ẑ× E0)ei(k0z−ωt)e−αz. (103)

Define the complex index of refraction

n ≡ c

ω
k =

c

ω
(k0 + iα), (104)

so that

B = n(ẑ× E). (105)

Notice that because n is complex, B is not in phase with E; to make the phase

difference explicit, let us write n in polar form:

n = |n|eiφ where φ = arctan
(
α

k0

)
. (106)
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We can find |n| and φ in terms of other parameters; let γ ≡ (4πσ/ωε)2. Then

φ = arctan

[√
1 + γ − 1√
1 + γ + 1

]1/2

. (107)

Consider tan(2φ):

tan(2φ) =
2 tanφ

1− tan2 φ
= 2

[(
√

1 + γ − 1)/(
√

1 + γ + 1)]1/2

1−
√

1+γ−1√
1+γ+1

= [(
√

1 + γ − 1)(
√

1 + γ + 1)]1/2 =
√
γ (108)

Thus,

φ =
1

2
arctan

√
γ =

1

2
arctan

(
4πσ

ωε

)
. (109)

Also,

|n| = c

ω

√
k2

0 + α2 =
√
µε

[
1 +

(
4πσ

ωε

)2
]1/4

. (110)

Using these results in Eq. (105), we have

B(x, t) =
√
µε

[
1 +

(
4πσ

ωε

)2
]1/4

e
i
2

arctan( 4πσ
ωε )(ẑ× E0). (111)

The amount by which B(x, t) is phase-shifted from E(x, t) is easily seen from this

expression to lie between 0 and π/4; it is zero in the small σ/ω limit and π/4 in the

large σ/ω limit. Another significant feature of the expression for B(x, t) is that in the

small σ/ω limit, the amplitude of B relative to that of E is just
√
µε as for insulators.

But in the opposite limit, one finds that the relative amplitude is
√

4πσµ/ω which

is much larger than unity. Here the wave has, relatively speaking, a much larger

magnetic induction than electric field.

8.1 Reflection of a Wave Normally Incident on a Conductor

As an example, let us calculate the reflection of a wave normally incident on a con-

ductor from vacuum.
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Figure 23: Wave normally incident on a conductor.

Then

k =
ω

c
ẑ k′ =

ω

c
nẑ, n =

√
µε(1 + γ)1/4eiφ. (112)

The relevant boundary conditions are Ht and Et continuous. Let E0 = E0x̂, E′′0 =

E ′′0 x̂, and E′0 = E ′0x̂. The corresponding magnetic field amplitudes are H0 = E0ŷ,

H′′0 = −E′′0ŷ, and, for the transmitted wave in the conductor,

H′0 =

√
ε

µ
(1 + γ)1/4eiφE ′0ŷ. (113)

Our boundary conditions give immediately

E0 + E ′′0 = E ′0 E0 − E ′′0 =

√
ε

µ
(1 + γ)1/4eiφE ′0. (114)

These may be combined to yield

E ′0 =
2

1 +
√
εµ(1 + γ)1/4eiφ

E0 (115)

and

E ′′0 =
1−

√
ε/µ(1 + γ)1/4eiφ

1 +
√
ε/µ(1 + γ)1/4eiφ

E0. (116)

Let us calculate the Poynting vector in the conductor. Its time average is

< S′ >=
c

8π
<(E′ ×H′∗) =

c

8π
<




4|E0|2
√
ε/µ(1 + γ)1/4e−iφ

|1 +
√
ε/µ(1 + γ)1/4eiφ|2



 e
−2αzẑ. (117)
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Using the interpretation of this vector as the energy current density, we may find the

power per unit area transmitted into the conductor by evaluating < S′ > ·ẑ at z = 0,

P ′ = c

2π
|E0|2

√
ε

µ

(1 + γ)1/4 cosφ

1 + 2
√
ε/µ cosφ (1 + γ)1/4 + (ε/µ)(1 + γ)1/2

. (118)

The incident power per unit area is P = c|E0|2/8π, so the fraction of the incident

power which enters the conductor, where it is dissipated as Joule heat, is

T =
P ′
P = 4

√
ε

µ

(1 + γ)1/4 cosφ

1 + 2
√
ε/µ cosφ (1 + γ)1/4 + (ε/µ)(1 + γ)1/2

. (119)

This expression is much simplified in the limit of a good conductor where φ = π/4,

cosφ = 1/
√

2, and γ >> 1. Then

T ≈ 4

√
ε

µ

γ1/4(1/
√

2)

εγ1/2/µ
= 2
√

2

√
µ

ε

√
ωε

4πσ
=

2µω

c

c√
2πσωµ

=
2µω

c
δ. (120)

For a good conductor such as Cu, σ ∼ 1017 sec−1 and so a wave with frequency around

1010 sec−1 will have δ ∼ 10−4 cm or 1µm. Also, the better the conductor, the smaller

the fraction of the incident power lost in the reflection process. For the example just

given, T ≈ 10−4, meaning that the wave can be reflected some ten thousand times

before becoming strongly attenuated.

9 Superposition of Waves; Pulses and Packets

No wave is truly monochromatic, although some waves, such as those produced by

lasers, are exceedingly close to being so. Fortunately, in the case of linear media,

the equations of motion for electromagnetic waves are completely linear and so any

sum of harmonic solutions is also a solution. By making use of this superposition

“principle” we can construct quite general solutions by superposing solutions of the

kind we have already studied.
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Figure 24: Any pulse in a linear media may be decomposed into a superposition

of plane waves.

This procedure amounts to making a Fourier transform of the pulse. For simplicity

we shall work in one spatial dimension which simply means that we will superpose

waves whose wave vectors are all in the same direction (the z-direction). For the

same reason, we shall also employ scalar waves; these could, for example, be the x

components of the electric fields of the waves. One such wave has the form ei(kz−ω(k)t)

where we shall not initially restrict ω(k) to any particular form. Given a set of such

waves, we can build a general solution of this kind (wave vector parallel to the z-axis)

by integrating over some distribution A(k) of them:

u(z, t) =
1√
2π

∫ ∞

−∞
dk A(k)ei(kz−ω(k)t). (121)

At time t = 0, this function is simply

u(z, 0) =
1√
2π

∫ ∞

−∞
dk A(k)eikz (122)

and the inverse transform gives A in terms of the zero-time wave:

A(k) =
1√
2π

∫ ∞

−∞
dz u(z, 0)e−ikz. (123)

All of the standard rules of Fourier transforms are applicable to the functions A(k)

and u(z, 0). For example, if A(k) is a sharply peaked function with width ∆k, then

the width of u(z, 0) must be of order 1/∆k or larger, and conversely. One may make

this statement more precise by defining

(∆z)2 ≡< z2 > − < z >2 (∆k)2 ≡< k2 > − < k >2, (124)
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where

< f(k) >≡
∫∞
−∞ dk f(k)|A(k)|2
∫∞
−∞ dk |A(k)|2 (125)

and

< f(z) >≡
∫∞
−∞ dz f(z)|u(z, 0)|2
∫∞
−∞ dz |u(z, 0)|2 . (126)

The relation between these widths which must be obeyed is

∆z∆k ≥ 1/2. (127)

Now, given a “reasonable” initial wave form u(z, 0)11 with some ∆z and a Fourier

transform A(k) with some ∆k, the question we seek to answer is what will be the

nature of u(z, t)? The answer is simple in principle because all we have to do is

Fourier transform to find A(k) and then do the integral specified by Eq. (121) to find

u(z, t). One can always do these integrals numerically if all else fails. Here we shall

do some approximate calculations designed to demonstrate a few general points.

Suppose that we have found A(k) and that it is some peaked function centered at

k0 with a width ∆k. If ω(k) is reasonably well approximated by a truncated Taylor’s

series expansion for k within ∆k of k0, then we may write

ω(k) ≈ ω0 +
dω

dk

∣∣∣∣∣
k0

(k − k0) ≡ ω0 + vg(k − k0) (128)

where

ω0 ≡ ω(k0) and vg = dω/dk|k0 ; (129)

vg is called the group velocity of the packet; notice that it can depend on the wave

number k0 which characterizes the typical wave numbers in the wave. In this approx-

imation, one finds

u(z, t) =
1√
2π

∫ ∞

−∞
dk A(k)eik(z−vgt)e−iω0teivgk0t = ei(vgk0−ω0)tu(z − vgt, 0). (130)

11Its time derivative ∂u(z, t)/∂t|t=0 must also be given to allow a unique solution of the initial

value problem; our discussion is therefore incomplete but can be corrected easily.
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This result tells us that the wave packet retains its initial form and translates in space

at a speed vg. It does not spread (disperse) or distort in any way. In particular, the

energy carried by the wave will move with a speed vg.

The group velocity is evidently an important quantity. We may write it in terms

of the index of refraction by using the defining relation k = ωn(ω)/c. Take the

derivative of this with respect to k:

1 =

(
n

c
+
ω

c

dn

dω

)
dω

dk
(131)

or

vg =
c

n+ ω dn
dω

. (132)

As an example consider the collisionless plasma relation n =
√

1− ω2
p/ω

2. One easily

finds that

vg = c
√

1− ω2
p/ω

2. (133)

For ω < ωp, the group velocity is imaginary which corresponds to a damped wave;

for ω > ωp, it is positive and increases from zero to c as ω increases.

Our calculations thus far have not resulted in any spreading or distortion of the

wave packet because we did not include higher-order terms in the relation (called a

dispersion relation) between ω and k. Let’s treat a simple example in which A(k) is

a gaussian function of k − k0,

A(k) =
(
A0

δ

)
e−(k−k0)2/2δ2

. (134)

Further, let ω(k) be approximated by

ω(k) = ω0 + vg(k − k0) + α(k − k0)2. (135)

The corresponding u(z, t) is

u(z, t) =
1√
2π

∫ ∞

−∞
dk

A0

δ
e−(k−k0)2/2δ2

eikz−i[ω0+vg(k−k0)+α(k−k0)2]t
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=
A0

δ
√

2π
ei(k0z−ω0t)

∫ ∞

−∞
dk ei(k−k0)(z−vgt)e−(1/2δ2+iαt)(k−k0)2

=
A0√

1 + 2iαδ2t
e−(z−vgt)2δ2/[2(1+2iαδ2t)]ei(k0z−ω0t). (136)

If α = 0, this is a Gaussian-shaped packet which travels at speed vg with a constant

width equal to δ−1. If α 6= 0, it is still a Gaussian-shaped packet traveling at speed

vg; however, it does not have a constant width any longer. To make the development

of the width completely clear, consider |u(z, t)|2 which more nearly represents the

energy density in the wave:

|u(z, t)|2 =
A2

0√
1 + 4α2δ4t2

e−(z−vgt)2δ2/(1+4α2δ4t2). (137)

The width of this traveling Gaussian is easily seen to be

w(t) =
√

1 + 4α2δ4t2/δ. (138)

At short times the width increases as the square of the time, while at long times it

becomes linear with t.

When the packet spreads, or disperses, in this fashion, to what extent does it make

sense to think about the wave as a localized object? One measure is the width of

the packet as compared with the distance it has moved. After a long time the width

is approximately 2αδt while the distance the packet has moved is vgt. The ratio of

these distances is 2αδ/vg, so our condition for having a localized object is

2αδ/vg << 1. (139)

v tg
v tg

xx

2αδ
vg

2αδ
vg

<< 1 > 1∼
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Figure 25: When δ is small, the wave is composed of few wavenumbers.

In addition, of course, the initial width of the packet must be small compared to vgt

which is always possible if one waits long enough. Our inequality clearly puts a limit

on the allowable size of α, for a given δ, necessary to have a well-defined pulse. For

smaller δ, one can get away with larger α, a simple consequence of the fact that small

δ means the width of the packet in k-space is small, leading to less dispersion.

9.1 A Pulse in the Ionosphere

Let’s look also at the fate of a wave packet propagating in the ionosphere; we found in

an earlier section, treating the ionosphere as a collisionless plasma and with k parallel

to B0, that ε(ω) = 1 + ω2
p/ω(ωB − ω) for one particular polarization of the wave. If

ω is small enough compared to other frequencies, we may approximate in such a way

that n(ω) = ωp/
√
ωωB, which gives rise to anomalous dispersion indeed. Defining

ω0 ≡ ω2
p/ωB, one finds that the group velocity of a signal is vg = 2c

√
ω/ω0.

Let us see how a pulse with the same A(k) as in the previous example propagates.

We have

u(z, t) =
1√
2π

∫ ∞

−∞
dk

A0

δ
e−(k−k0)2/2δ2+ikz−ic2k2t/ω0

=
1√
2π

∫ ∞

−∞
dk

A0

δ
e−(k−k0)2/2δ2+i(k−k0)z+ik0z−ic2t(k−k0)2/ω0−i2c2k0t(k−k0)/ω0−ic2k2

0t/ω0

=
A0

1 + 2iδ2c2t/ω0)1/2
ei(k0z−c2k2

0t/ω0)e
− (z−2c2k0t/ω0)2δ2

2(1+2iδ2c2t/ω0) (140)

This is a traveling, dispersing Gaussian. Its speed is the group velocity vg(k0). The

width of the Gaussian is

w(t) =
√

1 + 4δ4c4t2/ω2
0/δ → 2δc2t/ω0 (141)

at long times. The packet spreads at a rate given by vw = 2δc2/ω0. The ratio of

this spreading rate to the group velocity is δ/k0 and so we retain a well-defined pulse

provided the spread in wavenumber is small compared to the central wavenumber.
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Pulses of this general type are generated in the ionosphere by thunderstorms.

They have a very broad range of frequencies ranging from very low ones up into at

least the AM radio range. The electromagnetic waves tend to be guided along lines

of the earth’s magnetic induction, and so, if for example the storm is in the southern

hemisphere, the waves travel north in the ionosphere along lines of B and then come

back to earth in the northern hemisphere.

Earth B

Figure 26: Lightning in the southern hemisphere yields wistlers in the north.

By this time they are much dispersed, with the higher frequency components arriving

well before the lower frequency ones since vg = 2c
√
ω/ω0 for ω << ω0. Frequencies

in the audible range, ω ∼ 102 or 103 sec−1 take one or more seconds (a long time for

electromagnetic waves) to arrive. If one receives the signal and converts it directly

to an audio signal at the same frequency, it sounds like a whistle, starting at high

frequencies and continuing down to low ones over a time period of several seconds.

This characteristic feature has caused such waves to be known as whistlers.

10 Causality and the Dielectric Function

A linear dispersive medium is characterized by a dielectric function ε(ω) having phys-

ical origins that we have just finished exploring. One consequence of having such a

relation between D(x, ω) and E(x, ω), that is,

D(x, ω) = ε(ω)E(x, ω), (142)
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is that the relation between D(x, t) and E(x, t) is nonlocal in time. To see this we

have only to look at the Fourier transforms of D and E. One has

D(x, t) =
1√
2π

∫ ∞

−∞
dωD(x, ω)e−iωt (143)

and its inverse

D(x, ω) =
1√
2π

∫ ∞

−∞
dtD(x, t)e−iωt; (144)

similar relations hold for E(x, t) and E(x, ω). Using the relation D(x, ω) = ε(ω)E(x, ω),

we have

D(x, t) =
1√
2π

∫ ∞

−∞
dω ε(ω)E(x, ω)e−iωt. (145)

We can write E(x, ω) here as a Fourier integral and so have

D(x, t) =
1

2π

∫ ∞

−∞
dω ε(ω)e−iωt

∫ ∞

−∞
dt′ eiωt

′
E(x, t′)

=
1

2π

∫ ∞

−∞
dt dω [ε(ω)− 1 + 1]E(x, t′)e−iω(t−t′) =

E(x, t) +
1

2π

∫ ∞

−∞
dt dω [ε(ω)− 1]E(x, t′)e−iω(t−t′) ≡ E(x, t) + 4πP(x, t). (146)

The final term, 4πP(x, t), can be written in terms the Fourier transform12 of ε(ω)−1;

introduce the function

G(t) ≡ 1

2π

∫ ∞

−∞
dω [ε(ω)− 1]e−iωt. (147)

Then we have

D(x, t) = E(x, t) +
∫ ∞

−∞
dt′G(t− t′)E(x, t′) (148)

which may also be written as

D(x, t) = E(x, t) +
∫ ∞

−∞
dτ G(τ)E(x, t− τ). (149)

This equation makes it clear that when the medium has a frequency-dependent dielec-

tric function, as all materials do, then the electric displacement at time t depends on

12Provided the order of integration can be reversed and the transform exists.
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the electric field not only at time t but also at times other than t. This is somewhat

disturbing because one can see that, depending on the character of G, we could get

a polarization P(x, t) that depends on values of E(x, t′) for t′ > t, which means we

get an effect arising from a cause that occurs at a time later than the effect. This

behavior can be avoided if the function G(τ) vanishes when τ < 0, and that is what

in fact happens.

Let’s look at a simple example with

ε(ω) = 1 +
ω2
p

ω2
0 − ω2 − iωγ . (150)

Then

G(τ) =
ω2
p

2π

∫ ∞

−∞
dω

e−iωτ

ω2
0 − ω2 − iωγ (151)

This integral was made for contour integration techniques. The poles of the integrand

are in the lower half-plane in complex frequency space at

ω± =
1

2
[±
√

4ω2
0 − γ2 − iγ]; (152)

without producing a contribution to the integral, we can close the contour in the

upper (lower) half-plane when τ is smaller (larger) than zero. Because there are poles

only in the lower half-plane, we can see immediately that G(τ) will be zero for τ < 0.

That is pleasing since we don’t want the displacement (that is, the polarization) to

respond at time t to the electric field at times later than t.

τ>0G( ) = 0τ

G( ) = 0τ τ<0

Figure 27: Because there are poles only in the lower half-plane, we can see imme-

diately that G(τ) will be zero for τ < 0.
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Applying Cauchy’s theorem to the case of τ > 0, one finds that, for all τ ,

G(τ) = ω2
pe
−γτ/2 sin(ν0τ)

ν0

θ(τ) (153)

where θ(x) is the step function, equal to unity for x > 0 and to zero otherwise,

and ν0 =
√
ω2

0 − γ2/4. The characteristic range in time of this function is γ−1 and

hence the nonlocal (in time) character of the response is not important for frequencies

smaller than about γ; it becomes important for larger ones.

One may naturally wonder whether there should also be nonlocal character of the

response in space as well as in time. In fact there should and will be under some con-

ditions. If we look back at our derivation of the model dielectric function, we see that

the equation of motion of the particle was solved using E(0, t) instead of E(x, t); the

latter is of course the more correct choice. The difference is not important so long as

the excursions of the charge from the point on which it is bound are much smaller than

the wavelength of the radiation, which is the case for any kind of wave with frequencies

up to those of soft X-rays. Hence the response can be expected to be local in space in

insulating materials. However, if an electron is free, it can move quite far during a cy-

cle of the field and if it does so, the response will be nonlocal in space as well as time.

λ

e -x

If x << , then G(x,t) ~ G(0,t)λ

Figure 28: G(τ,x) will not be x dependent if the excursions of the charge from the

point on which it is bound are much smaller than the wavelength of the radiation.

Returning to the question of causality, we have seen that the simple model di-

electric function produces a function G(t) which is zero for t < 0, as is necessary if

“causality” is to be preserved, by which we mean there is no response in advance of

the “cause” of that response. It is easy to see what are the features of the dielectric
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function that give rise to the result G(t) = 0 for t < 0. One is that there are no

simple poles of the dielectric function in the upper half of the complex frequency

plane. Another is that the dielectric function goes to zero for large ω fast enough

that we can do the contour integral as we did it.

More generally, if one wants to have a function G(t) which is consistent with

the requirements of causality, this implies certain conditions on any ε(ω). Additional

conditions can be extracted from such simple things as the fact that G(t) must be real

so that D is real if E is. Without going into the details of the matter (see Jackson)

let us make some general statements. The reality of G requires that

ε(−ω) = ε∗(ω∗). (154)

That G is zero for negative times requires that ε(ω) be analytic in the upper half

of the frequency plane. Assuming that G(t) → 0 as t → ∞, one finds that ε(ω) is

analytic on the real axis. This last statement is actually not true for conductors which

give a contribution to ε ∼ iσ/ω so that there is a pole at the origin. Finally, from the

small-time behavior of G(t), one can infer that at large frequencies the real part of

ε(ω) − 1 varies as ω−2 while the imaginary part varies as ω−3. This is accomplished

by repeatedly integrating by parts

ε(ω)− 1 =
∫ ∞

0
dτG(τ)eiωτ ≈ iG(0+)

ω
− G′(0+)

ω2
+
iG′(0+)

ω3
+ · · · (155)

This series is convergent for large ω. The first term vanishes if G(τ) is continuous

accross τ = 0. Thus

< (ε(ω)− 1) ∼ 1

ω2
= (ε(ω)− 1) ∼ 1

ω3
(156)

From inspection, one may see that the various dielectric functions we have contrived

satisfy these conditions.

Given that the dielectric function has the analyticity properties described above,

it turns out that by rather standard manipulations making use of Cauchy’s integral
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theorem, one can write the imaginary part of ε(ω) in terms of an integral of the real

part over real frequencies and conversely. That one can do so is important because it

means, for example, that if one succeeds in measuring just the real (imaginary) part,

the imaginary (real) part is then known. The downside of this apparent miracle is

that one has to know the real or imaginary part for all real frequencies in order to

obtain the other part.

To see how this works, notice that as a consequence of the analytic properties of

the dielectric function, it obeys the relation

ε(z) = 1 +
1

2πi

∮

C
dω′

ε(ω′)− 1

ω′ − z (157)

where the contour does not enter the lower half-plane (where ε may have poles)

anywhere and where z is inside of the contour. Let C consist of the real axis and a

large semicircle which closes the path in the upper half-plane.

C

Figure 29: Contour C: ε(ω) is analytic inside an on C..

Then, given that ε falls off fast enough, as described above, at large ω, the semicircular

part of the path does not contribute to the integral. Hence we find that

ε(z) = 1 +
1

2πi

∫ ∞

−∞
dω′

ε(ω′)− 1

ω′ − z . (158)

At this juncture, z can be any point in the upper half-plane. Let’s use z = ω + iη

and take the limit of η → 0, finding

ε(ω + iη) = 1 +
1

2πi

∫ ∞

−∞
dω′

ε(ω′)− 1

ω′ − ω − iη . (159)

The presence of the η in the denominator means that at the integration point ω ′ = ω,

we must be careful to keep the singularity inside of, or above, the contour. Here we
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pick up 2πi times the residue, and the residue is just ε(ω) − 1. This relation shows

identity but is not useful otherwise. However, one can also pull the following trick:

If we integrate right across the singularity, taking the principal part (denoted P ) of

the integral plus an infinitesmal semicircle right below the singularity that amounts

to taking iπ times the residue. Hence we can make the replacement

1

ω′ − ω − iη → P
(

1

ω′ − ω
)

+ iπδ(ω′ − ω) (160)

where P stands for the principal part; this substitution leads to

ε(ω) = 1 +
1

πi
P
∫ ∞

−∞
dω′

ε(ω′)− 1

ω′ − ω (161)

Let us write separately the real and imaginary parts of this expression:

<[ε(ω)] = 1 +
1

π
P
∫ ∞

−∞
dω′
=[ε(ω′)]

ω′ − ω
=[ε(ω)] =

1

π
P
∫ ∞

−∞
dω′
<[ε(ω′)− 1]

ω′ − ω (162)

These equations are known as the Kramers-Kronig relations for the dielectric function.

They may be written as integrals over only positive frequencies because of the fact

that the real part of ε(ω) is an even function of ω while the imaginary part is odd.

It should also be pointed out that we have assumed there is no pole in ε(ω) at

ω = 0; if there is one (conductors have dielectric functions with this property) some

modification of these expressions will be necessary.

11 Arrival of a Signal in a Dispersive Medium

Most of the wave trains one receives, such as radio signals, messages from within or

without the galaxy (sent by stars, pulsars, neutron stars, etc), and so on, have to

traverse dispersive media to get wherever they go. Consequently it is of consider-

able importance to know how the signals are distorted by the intervening material.

The basic idea is this: we have seen how a pulse centered at some particular wave
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number or frequency tends to travel with the group velocity of the central frequency

and also spreads some as a consequence of the frequency-dependence of the index

of refraction or dielectric function. If the dispersion is very large, as in regions of

anomalous dispersion, the pulse will not simply spread some but will be distorted

beyond recognition. In addition, frequency components in this region will be strongly

attenuated and so will disappear from the wave train after awhile. If a signal is ini-

tially very broad in frequency, having components ranging from very low ones, where

the group velocity is roughly constant and equal to c/
√
ε(0), to very high ones where

ε(ω) ≈ 1 and the group velocity is about c, then the signal that arrives after traveling

through a significant length of medium will be very different indeed from the initial

one. All of the frequency components around the regions of anomalous dispersion

will be gone. There will be some high-frequency component which travels at a speed

around c and so arrives first; it is generally called the “first precursor.” Then after

awhile the remainder of the signal will arrive. The leading edge of this part is called

the “second precursor” and it consists of those lower frequency components which

have the largest group velocity and which are not appreciably attenuated. These are

usually13 the very low frequency components.

It is a straightforward matter to determine what the signal will be, using the

superposition principle. Consider a pulse in one dimension with an amplitude u(z, t).

Given that one knows the form of this pulse and its first space derivatives as functions

of time at some initial position in space14, called z0, then one may determine by

Fourier analysis the amplitude A(ω) of the various frequency components in it. Since

a frequency component ω propagates according to exp[i(ωn(ω)z/c − ωt)], it is then

easy in principle to find u(z, t):

u(z, t) =
1√
2π

∫ ∞

−∞
dω A(ω)ei(ωn(ω)z/c−ωt). (163)

13But not always; the whistler provides a a counter example.
14Notice that instead of solving an initial value problem in time, we here rephrase it as an initial

value problem in space.
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If we can do this integral for the index of refraction of our choice, we can find the

form of the wave train at all space points at any later time. Among other things, one

can show by making use of the analyticity properties of the dielectric function that

it is impossible for an electromagnetic signal to travel faster than the speed of light.

See Jackson.

As a very simple example, consider a single-resonance dielectric function with no

absorption,

ε(ω) = 1 +
ω2
p

ω2
0 − ω2

= n2(ω) (164)

or

n(ω) =

(
ω2

0 − ω2 + ω2
p

ω2
0 − ω2

)1/2

. (165)

Then

2n
dn

dω
= 2ω

ω2
p

(ω2
0 − ω2)2

(166)

so

nω
dn

dω
+ n2 =

ω2ω2
p

(ω2
0 − ω2)2

+ 1 +
ω2
p

ω2
0 − ω2

=
ω4

0 − 2ω2
0ω

2 + ω4 + ω2
pω

2
0

(ω2
o − ω2)2

. (167)

Hence

vg =
c

ω dn
dω

+ n
= c

(
ω2

0 − ω2 + ω2
p

ω2
0 − ω2

)1/2
(ω2

0 − ω2)2

(ω2
0 − 2ω2

0ω
2 + ω4 + ω2

pω
2
0)

(168)

The first plot shows the character of vg and of n(ω). The group velocity is largest

for the largest frequencies; these will combine to provide the first precursor which
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may well be weak to the extent that the initial pulse does not contain many high-

frequency components. The first precursor continues as lower frequency components

(but still larger than
√
ω2

0 + ω2
p) come through. While this is going on, all of the

very low frequency components arrive. This is the second precursor. Finally, if the

pulse is actually a long wave train which has one predominant frequency in it, then

after some time the received pulse settles down to something more or less harmonic,

showing just this frequency.
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A Waves in a Conductor

When we discussed the propagation of waves in an ideal dielectric, we showed that

the fields were transverse to the direction of propagation. This corresponds to an

isulating material, with a vanishing electrical conductivity. When we extend our

discussion to include media of finite conductivity σ, there is no a priori reason that

the fields will still be transverse to the direction of propagation.

Let’s show that we need not worry about any longitudinal fields. Suppose that

once again we have some linear medium with D = εE, B = µH, and J = σE; ε, µ,

and σ are taken as real. Then the Maxwell equations become

∇ ·B = 0, ∇ · E = 0, ∇× E = −1

c

∂B

∂t
, (169)

and

∇×B =
4πµ

c
σE +

εµ

c

∂E

∂t
. (170)

Let’s look for solutions to Maxwell’s equations in the form of logitudinial waves,

E = ẑE(z, t) ; B = ẑB(z, t) (171)

Since ∇ · B = ∇ · E = 0, E and B can be functions of time only. Thus ∇ × E =

∇×B = 0, and the other two Maxwell’s equations become

∂B

∂t
= 0 ;

4πσ

c
E +

ε

c

∂E

∂t
= 0 (172)

The first says that B must be constant. The second says that E while uniform in

space has a time dependence

E(t) = E(0)e−4πσt/ε (173)

In a conductor, σ ≈ 1016 sec−1. Thus E(t) falls off very rapidly and may be neglected.

Thus as worst there is a constant logitudinal B-field as part of our wave in a conduc-

tor. Since Maxwell’s equations are linear, we may drop this trivial solution and just

consider the transverse fields.
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In this chapter we continue with the topic of solutions of the Maxwell equations in

the form of waves. This time we seek solutions in the presence of bounding surfaces

which may take a variety of forms. The basic possibilities are to have boundaries in

1. one dimension only, such as a pair of parallel planes;

2. two dimensions, such as several intersecting planes forming a pipe or channel;

and

3. three dimensions, such as a collection of intersecting planes that completely

bound some region of space.

The materials employed to form the boundaries are usually1 conductors. The mathe-

matical problem is a boundary-value problem for solutions of the Maxwell equations.

We shall look at harmonic solutions within the cavity or channel and must match

these solutions onto appropriate ones within the walls or bounding materials. If the

walls are constructed from a “good” conductor, the boundary conditions become sim-

ple and the boundary-value problem itself is not too difficult. This point is explored

in the following sections.

1 Reflection and Transmission at a Conducting

Wall

We consider the reflection and transmission of a harmonic plane wave incident on a

conducting material at a planar surface. We let the incident wave have an arbitrary

angle of incidence - which gives a hard problem to solve in the general case - and then

imagine that the conductivity is very large - which simplifies the solution by allowing

an expansion in a small parameter. Physically, the central point is that if σ >> ω,

1Dielectric materials are also used, with conditions such that total internal reflection takes place

at the surfaces in order to keep the wave within the channel or cavity.
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then the skin depth δ = c/
√

2πσωµ of the wave in the conductor is much smaller

than the wavelength λ of the incident wave. The distance over which the fields vary

in the conductor depends on the direction. In the direction normal to the surface,

this distance is δ; in directions parallel to the surface, it is λ. Thus by having δ << λ,

we can often ignore variations of the fields parallel to the surface in comparison with

variations normal to the surface; in effect, the wave in the conductor travels normal

to the surface no matter what the angle of incidence.

1.1 Boundary Conditions

First, let us consider the boundary or continuity conditions at the interface. We

can find appropriate conditions by using the Maxwell equations and either Stokes’

theorem or Gauss’s Law in the usual way. Let us first do this by employing a rectangle

or pillbox which has a size t normal to the interface which is much larger than δ. At

the same time, the size l of these constructs parallel to the interface must be large

compared to t but small compared to λ, so we have the condition

λ >> l >> t >> δ (1)

λ

Metal

λ >> d

l
t

t

l

E=B=0

Fig.1: Integration surfaces adjacent to a good conductor.

which can be satisfied by a metal with a large enough conductivity (and an incident
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radiation with a small enough frequency). Then, because the side of the rectangle, or

face of the pillbox, within the conductor is placed in a region where the transmitted

fields have been attenuated to very small values, compared to the incident amplitudes,

we can say that these fields are zero. The result is that the continuity conditions

become

n ·D = 4πσq n×H =
4π

c
K n ·B = 0 and n× E = 0 (2)

where the fields are those just outside of the conductor, and σq and K are the charge

and current density on the conductor’s surface2; n is the unit outward normal at

the surface of the conductor. These relations are only approximate because we have

neglected in particular the term ∂B/∂t in Faraday’s Law; it gives a correction of order

ωδ/c times the incident field’s amplitude to the statement that the tangential electric

field vanishes at the interface. To put it another way, the tangential component of the

reflected wave’s electric field actually differs from that of the incident wave’s electric

field by an amount of order ωδ/c times the amplitude of the incident wave. In lowest

order we ignore this difference. Outside of the conductor, ∂B/∂t does not contribute

to the integral since we assure the contour has negligible area here.

So far we don’t know the surface charge and current densities, but the conditions

that the tangential component of E and the normal component of B are zero at the

interface are already enough to allow us to determine the reflected fields, given the

incident ones. Hence we have at this point all of the information we need to obtain,

to lowest order in the small parameter, the solution for the waves in the channel or

cavity, i.e., the solution to the boundary-value problem posed above.

1.2 Power and Energy Loss

Before going on to look at that problem, however, let’s look at the properties of the

transmitted wave in the conductor. The reason for doing this is that we want to

2it is only appropriate to talk about surface currents or charges in the limit of a perfect conductor;

otherwise, these densities will extend into the conductor to a finite extent
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know how much energy is lost in the reflection process. To zero order in ωδ/c, none

is lost, as is evident from the boundary condition which says that the amplitude of

the reflected wave is the same as that of the incident wave. We must therefore look

at the first-order corrections to this result, and that is most easily done by examining

the transmitted wave.

From Faraday’s Law and Ampère’s Law, assuming a harmonic wave, we find that

the fields in the conductor, which are identified by a subscript c, obey the relations

Bc = −i c
ω

(∇× Ec) and Ec =
c

4πσµ
(∇×Bc), (3)

where we have ignored the displacement current term because it is of order ω/σ

relative to the real current term; µ is the permeability of the conductor. Because

the fields vary rapidly in the direction normal to the interface (length scale δ) and

slowly in directions parallel to the interface (length scale λ), we may ignore spatial

derivatives in all directions except the normal one. The conditions3 ∇ · Bc = 0 and

∇ · Dc = 0 tell us, to lowest order, that the fields within the conductor have no

components normal to the interface. Taking the curl of the second of Eqs. (3), and

using the first of these equations for the curl of Ec, we find that

(
i+

c2

4πσµω
∇2

)
Bc = 0, (4)

or (
∇2 + i

2

δ2

)
Bc = 0, (5)

which has the solution

Bc(z, t) = Bc0e
κze−iωt (6)

where

κ = ±(1− i)/δ. (7)

3Of course, the electric displacement has a non-zero divergence if ρ 6= 0; as we saw in Jackson

7.7, any initial non-zero ρ dies out with some characteristic lifetime and so when the steady-state is

established, ρ = 0.
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Because the fields must vanish for z → ∞, we have to choose the negative root and

so find

Bc = Bc0e
−z/δeiz/δe−iωt. (8)

Also, as is easily shown from this result and one of Eqs. (3),

Ec = − c

4πσµδ
(1− i)(ẑ×Bc). (9)

These fields are the same in form as the ones that arise in the case of normal incidence.

The amplitudes are somewhat different from that case, however.

The power per unit area entering the conductor is

< S · ẑ > |z=0 =
c

8π
<(Ec ×H∗c) · ẑ|z=0

= − c

8π
<
{

c

4πσµδ
(1− i)[(ẑ×Bc)× (B∗c/µ)] · ẑ|z=0

}

=
c2

32π2σµ2δ
<[(1− i)|Bc|2]|z=0. (10)

However, c2/2πσωµ = δ2, so, writing the power per unit area as P , we have

P =
µωδ

16π
|Hc|2z=0. (11)

We can relate Hc at z = 0 to the field at the interface on the outside of the

conductor by employing an appropriate continuity condition. It is not the one derived

above. This time, we use a value of t which is much smaller than δ so that there is only

a negligible amount of current passing through the rectangle employed in applying

Stokes’ Theorem. Then we find that Hc at z = 0 is the same as the tangential

component of the magnetic field on the outside. For definiteness, let the incident

field be polarized perpendicular to the plane of incidence. Then the reflected field

has an equal and opposite amplitude (to lowest order) and the sum of the incident

and reflected waves’ magnetic field amplitudes parallel to the interface is4 twice the

4We suppose that the exterior medium is vacuum, or at least has µ = ε = 1.
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amplitude of the incident electric field times the cosine of the angle of incidence, or

2E0 cos θ.

4πσ
ε ω >> 1

θ θ
H

H’’

0

0

E’’
0

E
0

E’’
0

E
0

≅

Fig.2: Wave polarized ⊥ to the plane, between vacuum and a good conductor.

Hence the power loss per unit area in the reflection process, meaning the power per

unit area entering the conductor and so not reflected, is

P =
µωδ

4π
|E0|2 cos2 θ. (12)

The ratio of the lost to incident power, which is also the transmission coefficient, is

T =
µωδ|E0|2 cos2 θ/4π

c|E0|2 cos θ/8π
=

2µωδ

c
cos θ. (13)

This agrees with the result we found earlier in the case of a good conductor and for

normal incidence, θ = 0.

We will want to use the result for power loss later in connection with the attenua-

tion of waves travelling along a wave guide. First we shall obtain the solution for the

electromagnetic field within the waveguide in the limit of perfectly conducting walls.

2 Wave Guides

A waveguide is a hollow conducting pipe, perhaps filled with dielectric. It has a

characteristic transverse size on the order of centimeters and is used to transmit

electromagnetic energy (waves) from one place to another.
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µ ε metal

z

Fig.3: Wave guide of arbitrary cross-section.

The waves typically have frequencies such that the wavelength in vacuum would be

comparable to the size of the waveguide. Thus ω = 2πc/λ is of order 1011 sec−1.

If the walls of the guide are constructed of a good conducting material, i.e., one

with σ ∼ 1017 sec−1, then we are in the good conducting limit so that the treatment

of the previous section is valid. In particular, T ∼ 10−3 which means that some 103

reflections can take place before the wave is seriously attenuated. Also, we may adopt

the boundary conditions that Etan = 0 = Bn at the conducting surfaces.

2.1 Fundamental Equations

Let the wave guide have its long axis parallel to the z-direction and let its cross-section

be invariant under translation along this direction. It is useful to divide operators,

such as ∇ and ∇2, and also fields into components parallel and perpendicular to the

long axis. Thus we write

∇ = ∇t + ε3
∂

∂z
, ∇2 = ∇2

t +
∂2

∂z2
,

E = Et + ε3Ez, and B = Bt + ε3Bz. (14)

Further we shall assume that the fields’ dependence on both z and t is harmonic,

B(x, t) = B(x, y)ei(kz−ωt) and E(x, t) = E(x, y)ei(kz−ωt). (15)

Given ω, we need to find k and the amplitudes B(x, y), E(x, y). Letting the

material within the guide have dielectric constant ε and permeability µ, and assuming
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no macroscopic sources in this region, we can derive wave equations using familiar

methods. Because of the harmonic time dependences, the Maxwell equations read

∇× E = i
ω

c
B ∇ ·B = 0 ∇ · E = 0 ∇×B = −iω

c
µεE. (16)

Taking the curl of each curl equation and using the forms of the fields as well as the

fact that both fields have zero divergence, we find that the wave equations for all

Cartesian components of E(x, y) and B(x, y) have the same form; it is
(
∇2
t − k2 + µε

ω2

c2

)
ψ(x, y) = 0. (17)

We can greatly simplify things by noting that if we find Ez and Bz first, then Et

and Bt follow. To demonstrate this statement, we shall derive explicit expressions

for the latter in terms of the former. Consider the transverse components of the curl

of the magnetic induction,

[∇× (Bzε3 + Bt)]t = (∇tBz)× ε3 + ε3 ×
(
∂Bt

∂z

)
= −iµεω

c
Et. (18)

Cross ε3 into this equation to find

∇tBz −
∂Bt

∂z
= −iµεω

c
(ε3 × Et). (19)

By similar means, one finds that the transverse part of Faraday’s Law can be written

as

(∇tEz)× ε3 + ε3 ×
(
∂Et

∂z

)
= i

ω

c
Bt. (20)

Take the derivative with respect to z of the first of these equations and substituted

the result into the second equation; the result is
(
µε
ω2

c2
+

∂2

∂z2

)
Bt = ∇t

(
∂Bz

∂z

)
+ iεµ

ω

c
ε3 × (∇tEz). (21)

Because the fields’ z-dependence is eikz, we may take the derivatives with respect to

z and express the result as an equation for Bt:

Bt =
1

µεω2/c2 − k2

[
∇t

(
∂Bz

∂z

)
+ iµε

ω

c
ε3 × (∇tEz)

]
. (22)
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In the same fashion, we can take the derivative with respect to z of Eq. (20) and

substitute into Eq. (19) to find a relation for Et,

Et =
1

µεω2/c2 − k2

[
∇t

(
∂Ez
∂z

)
− iω

c
ε3 × (∇tBz)

]
. (23)

Now we need only solve for the z components of the fields; from them and the pre-

ceding relations, all components are determined.

2.1.1 Boundary Conditions

The boundary condition on Ez(x, y) is that it should vanish at the walls because the

tangential component of the electric field is zero there. The other boundary condition,

Bn = 0, does not put any constraint on Bz; however, there is a constraint on Bz

which can be extracted from the equation for Et; one of the two components of Et is

tangential to the wall and this one must vanish next to the wall. From Eq. (23) we see

that there is a contribution to that component which is proportional to ∂Bz/∂n, so we

conclude that the boundary condition on Bz is ∂Bz/∂n = 0. The other contribution

to Et is proportional to the transverse gradient of Ez at the boundary; since Ez is zero

at all points on the boundary, it is clear that this term will not give any tangential

component of Et at the boundary. Hence the tangential components of E are zero

on the boundary provided Ez vanishes there along with the normal component of the

gradient of Bz.

And what of the normal component of B itself? From Eq. (22) for Bt, we see

that the the normal component of B at the wall vanishes if, first, the gradient of Bz

has zero normal component there, and, second, the component of ∇tEz parallel to

the wall vanishes; these conditions are met if Ez = 0 and ∂Bz/∂n = 0 everywhere on

the boundary. Hence we are left with the following boundary-value, or eigenvalue,

problem:
(
∇2
t − k2 + µε

ω2

c2

)

Ez(x, y)

Bz(x, y)





= 0, (24)
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with

Ez(x.y) = 0 and ∂Bz(x, y)/∂n = 0 (25)

on the boundary.

2.2 Transverse Modes

Depending on the geometry, it may or may not be possible to find an eigenvalue k2

such that the conditions on Bz and Ez are both satisfied. If it is not possible, then

either Bz ≡ 0 or Ez ≡ 0. In the former case, B is purely transverse and one speaks of

a transverse magnetic mode, often abbreviated as a TM mode; in the latter case, E

is purely transverse and the mode is called a transverse electric mode, or a TE mode.

For some geometries it is possible to have both Ez and Bz identically zero although

the transverse fields are finite; then we have a transverse electromagnetic mode or a

TEM mode.

MODE CHARACTER

TM (Transverse Magnetic) Bz = 0

TE (Transverse Electric) Ez = 0

TEM Ez = Bz = 0

2.2.1 TEM Mode

Let’s briefly discuss the TEM modes first. In order to see what are the appropriate

equations of motion of the fields, we have to go back to the Maxwell equations. If we

look just at the z-component of Faraday’s Law and of the generalized Ampère’s Law,

we find that

ε3 · (∇t × Et) = 0 and ε3 · (∇t ×Bt) = 0. (26)

Since∇t and Et have only x and y components, the curls lie entirely in the z direction,

so we can write

∇t × Et = 0 and ∇t ×Bt = 0. (27)
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From the other two Maxwell equations we find that

∇t · Et = 0 and ∇t ·Bt = 0. (28)

The two transverse fields are solutions of problems identical to statics problems in

two dimensions. In particular, the transverse electric field, which must have zero tan-

gential component at the walls of the waveguide, is found by solving an electrostatics

problem. If the wave guide is composed of a single conductor, which is an equipoten-

tial in the equivalent electrostatics problem, then there is no nontrivial solution. The

conclusion is that a simple single-conductor waveguide cannot have a TEM mode to

lowest order in the parameter δω/c. Where are there TEM modes? These exist in

guides which consist of a pair of parallel but electrically unconnected conductors that

can be at different potentials. Such things are called transmission lines.

2.2.2 TE and TM Modes

Now let’s turn to TE and TM modes. We will discuss here only TE modes; TM

modes can be treated by making a simple modification of the boundary conditions

when solving the eigenvalue problem. For TE modes, Ez = 0 and so the transverse

fields are given in terms of Bz by

Bt =
1

γ2
∇t

(
∂Bz

∂z

)
=
ik

γ2
(∇tBz) (29)

and

Et = − i

γ2

ω

c
ε3 × (∇tBz) = − ω

ck
(ε3 ×Bt), (30)

where γ2 ≡ µεω2/c2 − k2. This parameter must be determined by solving the eigen-

value equation

(∇2
t + γ2)Bz(x, y) = 0, with ∂Bz/∂n = 0 on C; (31)

C is the boundary of the (cross-section of the) waveguide. This problem will have

solutions Bz(x, y) → Bi(x, y) with eigenvalues γ2
i , i=1,2,... . In terms of these

13



eigenvalues, the wavenumber ki is given by

k2
i (ω) = µεω2/c2 − γ2

i , (32)

which means that for given ω and i, k is determined.

The eigenvalues γ2
i are always positive (otherwise the boundary conditions cannot

be satisfied), so we can see from the preceding equation that for a given mode i, ω2

must be larger than ω2
i ≡ γ2

i c
2/µε in order for the squared wavenumber to be positive

corresponding to a real wavenumber k. If ω2 is smaller than this cutoff value, then the

wavenumber is imaginary and the wave is attenuated as it moves in the z-direction.

As a particular consequence, one can choose ω such that only some fixed number of

modes (one, for example) can propagate.

There are two velocities of interest in connection with any mode; these are the

phase velocity and the group velocity. The dispersion relation is

ω2 =
c2

µε
(k2 + γ2

i ), (33)

which can be expressed also as

ω2

k2
=

c2/µε

1− ω2
i /ω

2
. (34)

From this form, one can see clearly that the phase velocity, ω/k, is always larger than

the phase velocity in the absence of walls, c/
√
εµ. Further, the phase velocity diverges

as ω approaches the cutoff frequency. As for the group velocity, we have vg = dω/dk,

and

ω
dω

dk
=
c2

µε
k or

ω

k

dω

dk
=
c2

µε
= vpvg. (35)

This equation tells us that the product of the group and phase velocities is a constant,

c2/µε; the group velocity itself is

vg =
c2

µε

k

ω
=

c√
εµ

√

1− ω2
i

ω2
(36)

which is always smaller than c/
√
εµ.
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2.3 Energy Flow

The significance of the group velocity of the mode becomes clear from a study of the

energy flow in the guide. The time-average of the Poynting vector’s z component is

< S · ε3 >=
c

8π
<(Et ×H∗t ) · ε3 =

c

8π

ωk

µcγ4
|∇tBz|2. (37)

This must be integrated over the cross-section of the guide to find the power trans-

mitted,

P =
∫

S
d2x < S · ε3 >=

c

8π

ωk

µcγ4

∫

S
d2x |∇tBz|2

=
ωk

8πµγ4

∫

S
d2x [∇t · (B∗z∇tBz)−B∗z∇2

tBz]. (38)

The first term in the final expression converts to a surface integral which is shown,

from the boundary conditions on Bz, to be zero; the second term is made simpler in

appearance by using the fact that ∇2
tBz = −γ2Bz. Thus,

P =
ωk

8πµγ2

∫

S
d2x |Bz|2. (39)

Compare this with the time-averaged energy per unit length in the guide

U =
1

16π

∫

S
d2x

(
εEt · E∗t +

1

µ
[Bt ·B∗t +BzB

∗
z ]

)

=
1

16π

∫

S
d2x

[
ε
ω2

c2k2
|Bt|2 +

1

µ
|Bt|2 +

1

µ
|Bz|2

]

=
1

16πµ

∫

S
d2x

[(
εµ

ω2

c2γ4
+
k2

γ4

)
|∇tBz|2 + |Bz|2

]

=
1

16πµ

∫

S
d2x

[(
εµ
ω2

c2
+ k2

)
1

γ2
+ 1

]
|Bz|2 =

1

8π

(
ε
ω2

c2

)
1

γ2

∫

S
d2x |Bz|2. (40)

In arriving at the final result, we’ve used a whole collection of identities related to

the eigenvalue problem.

Comparison of U and P shows that

P
U

=
k

ω

c2

µε
≡ vg. (41)

The obvious interpretation need not be stated.
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2.3.1 TE Modes in Rectangular and Circular Guides

Before going on to other matters, let us look at the solutions of the eigenvalue problem

for some standard waveguide shapes, i.e., rectangles and circles, assuming TE modes.

µ ε metal
a

a

b
µ ε

z

Fig.4: Geometry of Rectangular and Circular Wave Guides.

For the rectangle shown, the solution5 for Bz is

Bmn(x, y) = B0 cos
(
mπx

a

)
cos

(
nπy

b

)
(42)

with

γ2
mn = π2

(
m2

a2
+
n2

b2

)
. (43)

For the circular guide of radius a, on the other hand, Bz becomes

Bmn(ρ, φ) = B0e
imφJm(ymnρ/a) (44)

with

γ2
mn = y2

mn/a
2. (45)

Here, ymn is the nth zero of the derivative of the Bessel function Jm, J ′m(y)|ymn = 0.

The question of which modes will actually be excited in a waveguide for a given

source can be worked out (see below); one has to address the question of how the

source couples to the eigenfunctions for the different modes. Different configurations

5The eigenvalue problem for TE modes is formally equivalent to that of a quantum mechanical

particle in a box with somewhat unusual boundary conditions; the case of the TM mode has the

usual boundary conditions.
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of the source will produce different superpositions of modes. A simple way to guar-

antee that just one propagating mode will be present is to pick ω smaller than the

cutoff frequencies of all modes but one.

3 Attenuation of Modes in Waveguides

Even modes for which the wave number is real will be somewhat damped because of

the finite conductivity of the walls. We have seen that the power travelling down the

pipe is given by Eq. (39); also, the power lost per unit length is, from Eq. (11),

dP
dz

= −µωδ
16π

∮

C
dl|H‖|2 (46)

where H‖ is the component of B/µ which is parallel to the boundary, and the integral

is evaluated on the contour formed by the cross-section of the guide. We can evaluate

|H‖|2 up to a point. First, for TE modes

|H‖|2 = |n×H|2 =
1

µ2
(|Bz|2 + |n×Bt|2) =

1

µ2

[
|Bz|2 +

k2

γ4
|n× (∇tBz)|2

]
. (47)

Further, at the surface |n× (∇tBz)|2 = |∇tBz|2 (since ∂Bz/∂n = 0 there). The latter

can be expected to be comparable to |B∗z∇2
tBz| = γ2|Bz|2, so we write

|∇tBz|2 = ξγ2|Bz|2, (48)

where ξ is a mode-dependent dimension-free constant of order unity that is indepen-

dent of the frequency6. Hence,

|n×H|2 =
1

µ2

(
1 + ξ

k2

γ2

)
|Bz|2 (49)

and
dP
dz

= −µωδ
16π

1

µ2

(
1 + ξ

k2

γ2

)∮

C
dl|Bz|2 (50)

6For a given geometry of the guide, and a particular mode therein, one may easily calculate ξ.
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This is to be compared with the power itself which is obtained by integrating |Bz|2

over a cross-section of the guide. We convert the integral in the preceding equation

into one over the cross-section by noticing that |Bz| behaves on the boundary in much

the same way as in the interior of the guide, so that

∮

C
dl|Hz|2 =

C

A
η
∫

S
d2x |Hz|2 (51)

where A and C are the cross-sectional area and circumference of the guide and η is

another dimension-free constant of order unity; it depends on the shape of the guide

and on the mode but not on the frequency.

Substituting this expression into Eq. (50) and dividing by the power, given by

Eq. (29), we find an attenuation coefficient β,

β ≡ − dP
dz

/
P =

δ

2k
η
C

A
(γ2 + ξk2). (52)

Substitute for k using k2 = εµω2/c2− γ2, and replace γ using γ2 = εµω2
i /c

2; ωi is the

cutoff frequency of the mode. Then we find

β =

√
εµ

2

√
ωi
ω

ωi√
ω2 − ω2

i

ηC

A

δiωi
c

[
1 + ξ

(
ω2 − ω2

i

ω2
i

)]
; (53)

δi is the penetration depth at cutoff. All of the frequency dependence of β is explicit

in this result. The damping becomes very large as ω → ωi; for ω not too close to

the cutoff for mode i, and for σ ∼ 1017 sec−1, we can see that the wave can travel

some hundreds of meters without disastrous attenuation. At very high frequencies,

ω >> ωi, the attenuation increases once again.

The usefulness of our result is limited; in particular, it breaks down when the

frequency approaches the cutoff frequency for the mode. One can do a better cal-

culation by improving the treatment of the boundary conditions. The solution (for

the fields) that we have found satisfies boundary conditions only slightly different

from the correct ones; it turns out, not surprisingly, that an improved solution can

be obtained by looking for small corrections to the fields we already have, with the
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corrections determined by demanding that the exact boundary conditions be satis-

fied to one higher order in ω/σ. This is a straightforward but somewhat technical

calculation and we shall not spend time on it.

4 Resonating cavities

The step from a waveguide to a resonating cavity is not a large one. We need only

think about what new constraints are placed on the electromagnetic fields if end walls

are placed on a waveguide. Suppose that such walls are introduced at z = 0 and z = d.

Then we cannot have traveling waves in the guide but must have instead standing

waves; that is, in addition to the fields varying as ei(kz−ωt), we must have ones that

vary as e−i(kz+ωt) which means that the z and t-dependent parts of the fields can be

expressed as some linear combination of sin(kz)eiωt and cos(kz)eiωt. Using such a

combination, one may proceed as in the previous sections and will find in particular

that Ez(x, y) and Bz(x, y) satisfy the same eigenequations as before.

metal

µ ε metal

z0 d

Fig.5: Geometry of a Resonant Cavity.

What is different in a cavity is that there are new boundary conditions or constraints

on the fields because of the presence of end walls. If Bz 6= 0, then one must add

the condition that Bz = 0 at z = 0 and z = d. Also, in order to guarantee that the

tangential component of E, (or Et) vanish on the end walls, it must be the case that

∂Ez/∂z = 0 on the end walls; see Eq. (23). These are the additional conditions that

must be satisfied for a cavity.

Following tradition established in earlier sections, we examine only TE modes.
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Then Bz must vanish at the ends of the cavity, meaning that the solution we want

is the one having z-dependence sin(kz); this is zero at z = 0, and we make it zero at

z = d by choosing k = pπ/d with p an integer. It is also true, as for the waveguide,

that k must satisfy the equation k2 = µεω2/c2 − γ2
mn. Both of these conditions on k2

can be satisfied simultaneously only for certain discrete frequencies ωmnp which are

given by

ω2
mnp =

c2

µε

(
p2π2

d2
+ γ2

mn

)
. (54)

Hence a resonating cavity has a set of discrete natural “resonant” frequencies at which

it can support a standing wave electromagnetic field. These frequencies can be tuned

by adjusting the size of the cavity, e.g., by changing d.

A resonant cavity is useful in that if excited in a single mode, it will contain

monochromatic radiation in the microwave frequency range (ie.e a maser), or would

do so if it were perfect. However, the resonance is never perfectly sharp in frequency,

meaning that if one Fourier transforms the fields into frequency space (instead of

time) the result will not be a delta function at the resonant frequency. There are

several contributing factors to the width of the resonance. One important factor is

the power loss in the walls. This loss is generally characterized by the “Q” of the

cavity defined by

Q ≡ ω0

(
stored energy

power loss

)
(55)

where ω0 is the frequency of the mode in the cavity. In words, Q is 2π times the

energy stored in the cavity divided by the energy loss per cycle. From this definition

it follows that the connection between Q and the rate at which the energy stored in

the cavity decays is dU/dt = −Uω0/Q when no new energy is being pumped into the

cavity. If Q is independent of the amount of energy in the cavity, then this differential

equation has a simple exponential solution,

U = U0e
−ω0t/Q, (56)
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and, under these circumstances, any field7 ψ behaves in time as

ψ(t) = ψ0e
−iω0te−ω0t/2Q. (57)

Because of the decay, the frequency spectrum of the field contains components in

addition to ω0. Specifically,

ψ(ω) ∼
∫ ∞

0
dtei(ω−ω0)te−ω0t/2Q =

1

i(ω0 − ω) + ω0/2Q
, (58)

or

|ψ(ω)|2 ∼ 1

(ω0 − ω)2 + ω2
0/4Q

2
(59)

which means that the resonance has a width in frequency space which is of order

ω0/2Q.

And what is the value of Q? The energy (or fields) in the cavity decay in time

because of losses in the walls. We learned in section 1 how to compute these losses.

For any given mode in a particular cavity it is a straightforward matter to do the

calculations, provided one can solve for the fields in that mode. One proceeds in much

the same way as in the previous section where we learned how to calculate the power

loss in a waveguide. Skipping over the details of the argument, which are much like

the calculation of β for a mode of a waveguide, we simply state the conclusion which

is that the energy lost per period is of the order of the energy in the cavity times the

ratio of the volume of the walls into which the field penetrates to the volume of the

cavity. If the area of the walls is A and the volume of the cavity is V , then

Q ∼ V

Aδ
. (60)

Thus the relevant parameter for determining the Q of the cavity is the ratio of the

penetration depth to the linear size of the cavity. For δ on the order of microns, or

10−4 cm, and a cavity having a size on the order of a centimeter, the Q will be on the

order of 103 to 104.

7That is, any component of E or B.
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1 Introduction

An electromagnetic wave, or electromagnetic radiation, has as its sources electric

accelerated charges in motion. We have learned a great deal about waves but have

not given much thought to the connection between the waves and the sources that

produce them. That oversight will be rectified in this chapter.

The scattering of electromagnetic waves is produced by bombarding some object

(the scatterer) with an electromagnetic wave. Under the influence of the fields in that

2



wave, charges in the scatterer will be set into some sort of coherent motion1 and these

moving charges will produce radiation, called the scattered wave. Hence scattering

phenomena are closely related to radiation phenomena.

Diffraction of electromagnetic waves is similar. One starts with a wave incident

on an opaque screen with holes, or aperture, in it. Charges in the screen, especially

around the apertures, are set in motion and produce radiation which in this case is

called the diffracted wave.

Thus radiation, scattering, and diffraction are closely related. We shall start

our investigation by considering the radiation produced by some specified localized

distribution of charges and currents in harmonic motion. We delay until Chap. 14,

the discussion of non-harmonic sources.

1The response to a harmonic excitation is of the same frequency, and thus coherent
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Diffraction Scattering

2 Radiation by a localized source

Suppose that we are given some charge and current densities ρ(x, t) and J(x, t)2.

These produce potentials which, in the Lorentz gauge (Chap. 6), can be found im-

mediately using the retarded Green’s function G(+)(x, t; x′, t′) which we shall write

simply as G(x, t; x′, t′):

A(x, t) =
1

c

∫
d3x′dt′G(x, t; x′, t′)J(x′, t′) (1)

2In this chapter, we assume ε = µ = 1
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Φ(x, t) =
∫
d3x′dt′G(x, t; x′, t′)ρ(x′, t′). (2)

The Green’s function itself is given by

G(x, t; x′, t′) =
δ(t− t′ − |x− x′|/c)

|x− x′| . (3)

Because all of the equations we shall use to compute fields are linear in the fields

themselves, we may conveniently treat just one Fourier component (frequency) of the

field at a time. To this end we write

J(x, t) =
1

2

∫ ∞

−∞
dωJ(x, ω)e−iωt (4)

where

J(x,−ω) = J∗(x, ω) (5)

is required in order that J(x, t) be real; Eq. (5) is known as a “reality condition.” We

may equally well, and more conveniently, replace Eqs. (4) and (5) by

J(x, t) = <
∫ ∞

0
dωJ(x, ω)e−iωt. (6)

We will do this and will in general not bother to write < in front of every complex

expression whose real part must be taken. We will just have to remember that the

real part is the physically meaningful quantity. Similarly, we introduce the Fourier

transform of the charge density,

ρ(x, t) =
∫ ∞

0
dωρ(x, ω)e−iωt. (7)

In the following we shall suppose that the sources have just a single frequency

component,

J(x, ω′) = J(x)δ(ω − ω′), ω′ > 0 (8)

ρ(x, ω′) = ρ(x)δ(ω − ω′), ω′ > 0. (9)

Thus, assuming ω > 0,

J(x, t) = J(x)e−iωt and (10)

ρ(x, t) = ρ(x)e−iωt. (11)
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From the continuity condition on the sources,

∂ρ(x, t)

∂t
+∇ · J(x, t) = 0, (12)

we find that ρ(x) and J(x) are related by

ρ(x) = −i∇ · J(x)

ω
. (13)

Using Eq. (10) in Eq. (1) and employing Eq. (3) for the Green’s function, we find,

upon completing the integration over the time, that

A(x, t) =
1

c

∫
d3x′

J(x′)

|x− x′|e
ik|x−x′|e−iωt (14)

where, as usual, k ≡ ω/c. Define A(x) by

A(x, t) = A(x)e−iωt; (15)

comparison with Eq. (14) gives

A(x) =
1

c

∫
d3x′ J(x′)

eik|x−x′|

|x− x′| . (16)

From here the recipe is to find B(x, t) from the curl of A(x, t); then the electric field

is found3 from ∇×B(x, t) = c−1∂E(x, t)/∂t, which holds in regions where the current

density vanishes. These fields have the forms

B(x, t) = B(x)e−iωt E(x, t) = E(x)e−iωt (17)

where

B(x) = ∇×A(x) E(x) =
i

k
∇×B(x). (18)

We have reduced everything to a set of straightforward calculations - integrals

and derivatives. Doing them exactly can be tedious, so we should spend some time

3Notice that we never have to evaluate the scalar potential.
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thinking about whether there are any simplifying approximations that may have

general validity or at least validity in some cases of interest. There are approximations

based on expansions in powers of some small parameter. We can see what may be

possible by realizing that there are three relevant lengths in any radiating system.

Provided the origin of coordinates is taken to be somewhere within the source in

the integrals above, these are the size of the source, r′ = |x′|; the distance of the

observer from the source, represented by r = |x|; and the wavelength of the radiation,

λ = 2π/k. The magnitude r′ is never larger than d, the size of the source. Focusing

on just the relative size of λ and r, we identify the three traditional regimes below.

source

λ

r

d

d << r << λ

d << r ~ λ
d << λ << r

Near or static zone

Intermediate or induction zone

Far or radiation zone

Here we have specified also that d be much smaller than the other two lengths.

That simplifies the discussion of the three regimes and so is a convenience but it is

not always met in practice nor is it always necessary. In particular, the fields far away

from the source (in the radiation zone) have characteristic forms independent of the

relative size of λ and d provided r is large enough. Also, man-made sources such as

antennas (and antenna arrays) are often intentionally constructed to have λ ∼ d and

even λ << d in which case the inequalities above are not always satisfied. On the

other hand, natural radiating systems, such as atoms and nuclei, typically do satisfy

7



the condition d << λ and d << r for any r at which it is practical to detect the

radiation.

2.1 The Near Zone

Consider first the near zone. Here d << λ and r << λ, so there is a simple expansion

of the exponential factor,

eik|x−x′| = 1 + ik|x− x′|+ ... (19)

which leads to

A(x, t) =
1

c

∫
d3x′

J(x′)

|x− x′| [1 + ik|x− x′|+ ...]e−iωt. (20)

The leading term in this expansion is

A(x, t) =
1

c

∫
d3x′

J(x′)

|x− x′|e
−iωt. (21)

Aside from the harmonic time dependence, this is just the vector potential of a static

current distribution J(x), and that is the origin of the name “static” zone; the mag-

netic induction here has a spatial dependence which is the same as what one would

find for a static current distribution with the spatial dependence of the actual oscil-

lating current distribution. We find this result for the simple reason that in the near

zone the exponential factor can be approximated as unity.

2.2 The Radiation or Far Zone

In the radiation or far zone (r À λÀ d), the story is completely different because

in this regime the behavior of the exponential dominates the integral. We can most

easily see what will happen if we first expand the displacement |x− x′| in powers of

r′/r (d/r):

|x− x′| = [(x− x′) · (x− x′)]1/2 = (r2 − 2x · x′ + r′2)1/2

= r


1− 2x · x′

r2
+

(
r′

r

)2



1/2

= r


1− 2

n · x′
r

+

(
r′

r

)2



1/2

(22)
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where n = x/r is a unit vector in the direction of x. Carrying the expansion to second

order in r′/r, we have

|x− x′| = r


1− n · x′

r
+

1

2

(
r′

r

)2

− 1

2

(
n · x′
r

)2

 . (23)

Similarly,

1

|x− x′| =
1

r



1 +

n · x′
r

+
1

2

(
r′

r

)2

3

(
n · x′
r′

)2

− 1





 . (24)

Using the first of these expansions we can write

eik|x−x′| = eikre−ik(n·x′)e
i kr

2

[(
r′
r

)2

−
(

n·x′
r

)2
]

= eikre−ik(n·x′)e
i kr
′2

2r

[
1− (n·x′)2

r′2

]
. (25)

Given r >> r′ and kr′2/r << 1, it is clear that this exponential function can be

approximated by just the first two factors; the third represents a change of phase by

an amount small compared to a radian. Further, in the far zone it is sufficient to

approximate
1

|x− x′| =
1

r
. (26)

Putting these pieces together we have

A(x, t) =
ei(kr−ωt)

cr

∫
d3x′ J(x′)e−ik(n·x′) (r À d and r À d2/λ) . (27)

This expression is always valid for r “large enough” which means r >> r′ and r >>

kr′2. The relative size of λ and d is unimportant.

The behavior of A(x, t) on r and t is explicitly given by the factor in front of the

integral; the integral depends on the direction of x but not on its magnitude. Hence

in the far zone the vector potential always takes the form

A(x, t) =
ei(kr−ωt)

r
f(θ, φ) (28)

where

f(θ, φ) ≡ 1

c

∫
d3x′ J(x′)e−ik(n·x′); (29)
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θ and φ specify, in polar coordinates, the direction of x (or n).

Knowing the form of the potential so precisely makes it easy to see what must be

the form of the fields E and B in the far zone. First,

B(x, t) = ∇×A(x, t) = ∇×
(
ei(kr−ωt)

r
f(θ, φ)

)
≈ ik

ei(kr−ωt)

r
[n× f(θ, φ)] (30)

where we have discarded terms of relative order λ/r or d/r. Further, from Eqs. (18)

and (30), we can find E(x,t); to the same order as B, it is

E(x, t) = −ik e
i(kr−ωt)

r
[n× (n× f(θ, φ))] = B(x, t)× n. (31)

There are two essential features of these equations.

• First, both E and B in the radiation zone is that the field strengths are pro-

portional to r−1; this is very different from the case for static fields which fall

off at least as fast as r−2 (consider the static zone).

• Second, the radiation fields are transverse, meaning they are perpendicular to

x or n; they are also perpendicular to each other.

The Poynting vector in the far zone also has a simple basic form:

< S >=
c

8π
(E×B∗) =

c

8π

(
−ik
r

)2

[n× (n× f(θ, φ))]× [n× f ∗(θ, φ)]

= − ck2

8πr2
{[n(n · f(θ, φ))− f(θ, φ)]× [n× f ∗(θ, φ)]}

= − ck2

8πr2

{
(n · f(θ, φ))[n(n · f ∗(θ, φ))− f ∗(θ, φ)]− n|f(θ, φ)|2 + f∗(θ, φ)(n · f(θ, φ))

}

=
ck2

8πr2
n[|f(θ, φ)|2 − |n · f(θ, φ)|2].(32)

This is presumably the time-averaged energy current density. Because it points radi-

ally outward4, it also gives directly the angular distribution of radiated power:

dP
dΩ

=
ck2

8π
[|f(θ, φ)|2 − |n · f(θ, φ)|2]. (33)

4In the near or intermediate zones, there are non-zero components in other directions as well.
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If we integrate over the solid angle, we find the total power radiated:

P =
∮

S
d2x < S > ·n =

ck2

8π

∫
dΩ [|f(θ, φ)|2 − |n · f(θ, φ)|2]. (34)

Notice that the radiated power is, appropriately, independent of r.

3 Multipole Expansion of the Radiation Field

Thus far, we have only assumed that r À λ, d. Now we will consider the d/λ.

Consider two limits:

• If d/λ ¿ 1, then all elements of the source will essentially be in phase, and

thus an observer at r cannot learn about the structure of the source from the

emitted radiation. In this limit, we need only consider the first finite moment

in d/λ (if the series is convergent).

• If d/λ >∼ 1, then the elements of the source will not radiate in phase, and an

observer at r may learn about the details of the structure of the source by

analyzing the interference of the radiation pattern (i.e. Bragg diffraction). In

this case, to be discussed in sec. V, we need to retain more terms in the series.

Let us now go back and attempt to evaluate f(θ, φ). If kd << 1, or 2πd/λ << 1,

then it is not unreasonable to proceed with the evaluation by expanding the expo-

nential function e−ik(n·x′),

f(θ, φ) =
1

c

∫
d3x′ J(x′)

[
1− ik(n · x′)− 1

2
k2(n · x′)2 + ...

]
. (35)

3.1 Electric Dipole

The first term in the expansion is just the volume integral of J(x′); one can write it

as
1

c

∫
d3x′ J(x′) = −1

c

∫
d3x′ [∇′ · J(x′)]x′ (36)
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which one can show by doing integration by parts starting from the right-hand side

of this equation. Now employ Eq. (13) to have

1

c

∫
d3x′ J(x′) = −ik

∫
d3x′ x′ρ(x′). (37)

The right-hand side can be recognized as the electric dipole moment of the amplitude

ρ(x) of the harmonically varying charge distribution. Let us define the electric dipole

moment p in the usual way,

p ≡
∫
d3x′ x′ρ(x′). (38)

The electric dipole contribution fed(θ, φ) to f(θ, φ) is thus

fed(θ, φ) = −ikp; (39)

it is in fact independent of θ and φ. The corresponding contribution to the vector

potential, Aed(x, t), is

Aed(x, t) = −ikpe
i(kr−ωt)

r
. (40)

We have used only d << λ and d << r; no assumption about the relative size

of λ and r has been made. It is somewhat tedious, but nevertheless instructive, to

evaluate the fields without making any assumptions so that we can see their form in

the near, intermediate, and far zones. First, the magnetic induction is

Bed(x) = ∇×Aed(x) = −ik∇
(
eikr

r

)
× p

= −ik
(
ik − 1

r

)
eikr

r
(n× p) = k2

(
1− 1

ikr

)
eikr

r
(n× p). (41)

Further, the electric field is

Eed(x) =
i

k
(∇×Bed(x))

= ik∇
[
eikr

r

(
1− 1

ikr

)]
× (n× p) + ik

eikr

r

(
1− 1

ikr

)
∇× (n× p)

= ik

{(
ik

r
− 1

r2

)(
1− 1

ikr

)
+

1

ikr3

}
eikrn× (n× p)
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+ik
eikr

r

(
1− 1

ikr

) [
(p · ∇)

(
x

r

)
− p∇ ·

(
x

r

)]

=
k2

r

[
−1 +

2

ikr
+

2

k2r2

]
eikrn× (n× p)

+
ik

r
eikr

(
1− 1

ikr

)(
p

r
− (p · n)n

r
− 3p

r
+

p

r

)

=

{
−k

2

r
n× (n× p) +

1

r3
(1− ikr)[3n(p · n)− p]

}
eikr. (42)

The electric field is divided up in this fashion to bring out, first, the form in the

radiation zone which is the first term and, second, the form in the near zone r << λ

which is the second term. The spatial dependence of the latter is the same as the field

of a static dipole, [3n(p · n)− p]/r3, but do not forget that it oscillates with angular

frequency ω. In the intermediate zone where all contributions are comparable, the

field is complex indeed.5

In the radiation zone, where the fields become quite simple, they are

Bed(x) =
k2

r
eikr(n× p) and Eed = −k

2

r
eikrn× (n× p). (43)

The same conclusion may be reached much more simply from Eqs. (30), (31), and (39).

As remarked earlier, the fields in the far zone are transverse to n. If we let p define

the polar axis, then Bed is azimuthal, i.e., in the direction of φ. This is a special

feature of electric dipole radiation. Further, Eed(x) is in the direction of θ.

p r

SE

B

5And this is only the electric dipole part of the field which is, along with the magnetic dipole

part of the field, by far the simplest.
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FromEqs. (32) and (39) we find that the time-averaged Poynting vector in the

radiation zone is

< S >=
ck4

8πr2
[|p|2 − |n · p|2]n =

ck4

8πr2
|p|2 sin2 θ n, (44)

where θ is the usual polar angle, i.e., the angle between the dipole moment and the

direction at which the radiation is observed. The radiated power per unit solid angle

is
dP
dΩ

= r2 < S > ·n =
ck4

8π
|p|2 sin2 θ, (45)

and the total power radiated is

P =
∫
dΩ

dP
dΩ

=
ck4|p|2

8π

∫
dφdθ sin θ sin2 θ =

ck4|p|2
3

. (46)
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3.1.1 Example: Linear Center-Fed Antenna

Consider the short, linear, “center-fed” antenna shown below.

d/2

-d/2

x

y

z

n

Fig. 1 Short, center-fed, linear antenna.

θ

For such an antenna, the current density can be crudely approximated by

J(x, t) = ε3I0δ(x)δ(y)

(
1− 2

|z|
d

)
e−iωt (47)

for |z| < d/2; for |z| > d/2, it is zero. Given this current density, we can evaluate the

divergence and so find the charge density,

∇ · J(x) = −2I0

d
δ(x)δ(y)

z

|z| = −iωρ(x) (48)

or

ρ(x) =
2iI0

ωd
δ(x)δ(y)

z

|z| , |z| < d/2. (49)

Hence,

p =
∫
d3xxρ(x) =

iI0d

2ck
ε3. (50)
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Now we have only to plug Eq. (50) into Eqs. (45) and (46) to find

dP
dΩ

=
I2

0

32πc
(kd)2 sin2 θ and P =

I2
0k

2d2

12c
. (51)

The calculation in this example may be expected to provide a good approximation to

the total radiated power provided kd << 1 so that the electric dipole term dominates,

unless it vanishes. There are many instances where this happens.

3.2 Magnetic Dipole

When this happens it is necessary to look at higher-order terms in the expansion

of the phase factor eik|x−x′|. Let’s look now at the next one. Start from the exact

expression for A(x),

A(x) =
1

c

∫
d3x′ J(x′)

eik|x−x′|

|x− x′|

= Aed(x) +
eikr

cr

∫
d3x′ J(x′)

(
n · x′
r
− ik(n · x′)

)
[1 +O(d/r, d/λ)]. (52)

where the second term in the () comes from the exponential, and the first comes from

the corresponding denominator. The integral we wish to examine is

1

c

∫
d3x′ J(x′)(n · x′)

=
1

2c

∫
d3x′ {[J(x′)(n · x′) + x′(n · J(x′))] + [J(x′)(n · x′)− x′(n · J(x′))]}

=
1

2c

∫
d3x′ [J(x′)(n · x′) + x′(n · J(x′))] +

1

2c

∫
d3x′ n× (J(x′)× x′) (53)

What is the point of breaking the integral into two pieces, symmetric and antisym-

metric under interchange of x′ and J(x′)? There are several related points. One is

that in the near zone the second term on the right-hand side produces a magnetic

induction which has the form of the induction of a static magnetic dipole while the

first term produces an electric field which has the form of the field of a static electric

quadrupole. Hence the radiation from the former is called magnetic dipole radia-

tion while that from the latter is known as electric quadrupole radiation. Also, the
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magnetic dipole part produces a purely transverse electric field in all zones while the

electric quadrupole part gives a purely transverse magnetic induction. Recall that for

electric dipole radiation, B(x, t) is purely transverse in all zones as well.

Let us look at the magnetic dipole fields first. From Eqs. (52) and (53) we have

Amd(x) =
eikr

r

(
1

r
− ik

)
n×

∫
d3x′

1

2c
(J(x′)× x′)

≡ −ik e
ikr

r

(
1− 1

ikr

)
(n×m) (54)

where

m ≡ 1

2c

∫
d3x′ [x′ × J(x′)] (55)

is the magnetic dipole moment, familiar from our study of magnetostatics.

Rather than plow ahead with with the evaluation of the curl to find B, etc., let

us recall the electric dipole results

Aed(x) = −ik e
ikr

r
p (56)

Bed(x) = k2 e
ikr

r

(
1− 1

ikr

)
(n× p). (57)

We see that Bed is the same in functional form as Amd; consequently, Eed, which is

the curl of Bed, must be the same in form as the curl of Amd, or Bmd. Hence we can

immediately write, using Eq. (43),

Bmd(x) = k2 e
ikr

r
n× (n×m) +

eikr

r3
(1− ikr)[3n(n ·m)−m]. (58)

Notice that in the near zone Bmd(x) is the same as that of a static dipole.

As for the corresponding electric field, we could work through the tedious deriva-

tives of the magnetic induction, but it happens that this is one time when it is much

easier to evaluate the the field from the potentials. We know that

E(x, t) = −∇Φ(x, t)− 1

c

∂A(x, t)

∂t
. (59)
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Also, in the Lorentz gauge

∇ ·A(x, t) +
1

c

∂Φ(x, t)

∂t
= 0 or ∇ ·A(x)− ikΦ(x) = 0. (60)

Using this relation for Φ(x), we find that

E(x) = − i
k
∇(∇ ·A(x)) + ikA(x) (61)

for any electric field which is harmonic in time. From our expression for Amd(x), one

can easily see that ∇ · Amd = 06 and so Emd is simply proportional to the vector

potential,

Emd(x) = −k2 e
ikr

r

(
1− 1

ikr

)
(n×m). (62)

3.3 Comparison of Dipoles

To summarize:

• The electric dipole and magnetic dipole fields are the same with E and B

interchanged, Emd ⇔ −Bed and Bmd ⇔ Eed when p⇔m.

• In the near zone Eed and Bmd have the form of static dipole fields, while in all

zones, Bed and Emd are purely azimuthal in direction.

• The Poynting vector in the far zone has the same form for both electric dipole

and magnetic dipole fields; in the latter case it is

< S >= r2n
ck4

8π
|m|2 sin2 θ, (63)

leading to results for the power distribution and total power which are the same

as for electric dipole radiation, Eqs. (45) and (46), with m in place of p. Notice

particularly that if one measures dP/dΩ, and finds the sin2 θ pattern, then one

6An equivalent statement is that a magnetic dipole is always charge neutral, so that Φ = 0.
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knows that the radiation is indeed7 dipole radiation; however, it is impossible

to distinguish electric dipole radiation from magnetic dipole radiation without

examining its polarization.

Magnetic DipoleElectric Dipole

m
x = r n

p

x = r n E

BE

B

)(
i kr

/ rn x m=k e
2

EB
E = -n x B B = n x E

p m

B - E
E B

= -k e (
2 i kr

) / rn x mp

These formulas suggest that for a given set of moving charges, one should get as

much power out of an oscillating magnetic dipole as an oscillating electric dipole.

This is not so, since the magnetic dipole moment is

m ≡ 1

2c

∫
d3x′ [x′ × J(x′)] (64)

thus

|m| ∼ v

c
Qd (65)

where v is the speed of the moving charge, Q is the magnitude of this charge, and d

is the size of the current loop. The size of the corresponding electric dipole moment

7Higher-order multipoles produce radiation with distinctive angular distributions which are never

proportional to sin2 θ.
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is roughly Qd. Thus,

|m| ∼ v

c
|p| (66)

We see that

Pmd ≈
(
v

c

)2

Ped . (67)

Thus, in a system with both an electric and magnetic dipole moment, the latter is

usually a relativistic correction to the former.

3.4 Electric Quadrupole

Let’s go now to the other contribution to the vector potential in Eq. (53). This is

called the electric quadrupole term; knowing that, we naturally expect to find that

it produces an electric field in the near zone which has the characteristic form of a

static electric quadrupole field. The vector potential is

Aeq(x) =
eikr

r

(
1

r
− ik

)
1

2c

∫
d3x′ [J(x′)(n · x′) + x′(n · J(x′))]

= −e
ikr

r

(
1

r
− ik

)
1

2c

∫
d3x′ (n · x′)(∇′ · J(x′))x′. (68)

To demonstrate this algebraic step, consider the ith component of the final expression:

1

2c

∫
d3x′ (n · x′)


∑

j

∂Jj
∂x′j


x′i = − 1

2c

∑

j

∫
d3x′

∂

∂x′j
[x′i(n · x′)]Jj

= − 1

2c

∫
d3x′

∑

j

[δij(n · x′) + x′inj]Jj

= − 1

2c

∫
d3x′ [Ji(n · x′) + x′i(n · J)] (69)

which matches the ith component of the original expression in Eq. (68). Making use

of Eq. (13) for ∇ · J(x) and also using ω = ck, we find, from Eq. (68), that

Aeq(x) = −k
2

2

eikr

r

(
1− 1

ikr

) ∫
d3x′ x′(n · x′)ρ(x′). (70)
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There are nine components to the integral since the factor of n in the integrand can

be used to project out three numbers by, for example, letting n be each of the Carte-

sian basis vectors. That is, the basic integral over the source, ρ(x), which appears

here is a dyadic,
∫
d3xxxρ(x). It is symmetric and so has at most six independent

components. Notice also that Aeq depends on the direction of n, which was not the

case for either Aed or Amd; the evaluation of the fields is further complicated as a

consequence.

The electric quadrupole vector potential can be written in terms of the components

Qij of the electric quadrupole moment tensor which we defined long ago. Recall that

Qij ≡
∫
d3x (3xixj − r2δij)ρ(x). (71)

Take combinations of these to construct the components Qi of a vector Q:

Qi(n) ≡
3∑

j=1

Qijnj. (72)

From these definitions one can show quite easily that

1

3
n×Q(n) ≡ n×

(∫
d3x′ x′(n · x′)ρ(x′)

)
. (73)

To see this, note that the ith component of Q/3 is

1

3
Qi =

∫
d3x′ [x′i(

∑

j

njx
′
j)ρ(x′)− r′2niρ(x′)/3]. (74)

The first term on the right-hand side of this relation produces the ith component of

the integral in Eq. (73); the second term is some i-independent quantity multiplied

by ni; the three terms in Q of this form give something which is directly proportional

to n and so they do not contribute to n×Q.

Thus have we established the validity of Eq. (73). But what good is it? It tells

us that we can write n×Aeq in terms of n×Q, but does not allow us to write Aeq

itself in terms of Q. However, if we restrict our attention to the radiation zone, then
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n × A is all we will need, because in this zone, B = ik(n × A) and E = −n × B.

Thus, in the far zone,

Beq(x) = − ik
3

6

eikr

r
[n×Q(n)] (75)

and

Eeq(x) =
ik3

6

eikr

r
n× [n×Q(n)]. (76)

The time-averaged power radiated is

dP
dΩ

= r2 < S · n > =
c

8π
r2[E(x)×B∗(x)] · n =

c

8π
r2[B∗(x)× n] · E(x)

=
c

8π

k6

36
|n× [n×Q(n)]|2 =

ck6

288π
|n×Q(n)|2. (77)

The right-hand side does not have any single form as a function of θ and φ that we

can extract because Q(n) depends in an unknown way (in general) on these angles.

We can proceed to a general result only up to a point:

|n×Q|2 = (n×Q) · (n×Q∗) = [(n×Q)× n] ·Q∗

= −Q∗ · [n(Q · n)−Q] = |Q|2 − |n ·Q|2; (78)

this is a brilliant derivation of the statement that sin2 θ = 1− cos2 θ. Further,

Q ·Q∗ − (n ·Q)(n ·Q∗) =
∑

ijk

QijnjQ
∗
iknk −

∑

ijkl

niQijnjnkQ
∗
klnl. (79)

The ni’s are direction cosines and so obey the identities
∫
dΩninj =

4π

3
δij (80)

and ∫
dΩninjnknl =

4π

15
(δijδkl + δikδjl + δilδjk). (81)

These enable us at least to get a simple result for the total radiated power:

P =
∫
dΩ

dP
dΩ

=
ck6

288π





4π

3

∑

ij

|Qij|2 −
4π

15

∑

ik

[QiiQ
∗
kk + |Qik|2 +QijQ

∗
ji]





=
ck6

360

∑

ij

|Qij|2 (82)
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where we have used the facts that Qij = Qji and
∑
iQii = 0.

By choosing appropriate axes (the principal axes of the quadrupole moment matrix

or tensor) one can always put the matrix of quadrupole moments into diagonal form.

Further, only two of the diagonal elements can be chosen independently because the

trace of the matrix must vanish. Hence any quadrupole moment matrix is a linear

combination of two basic ones.

3.4.1 Example: Oscillating Charged Spheroid

A commonly occurring example is an oscillating spheroidal charge distribution leading

to

Q33 = Q0 and Q22 = Q11 = −Q0/2. (83)

Then

Qi =
∑

j

Qijnj = Qiini (84)

or

Q = Q0

[
cos θε3 −

1

2
sin θ(cosφ ε1 + sinφ ε2)

]
. (85)

From this we have

|Q|2 = Q2
0

(
cos2 θ +

1

4
sin2 θ

)
,

n ·Q = Q0

(
cos2 θ − 1

2
sin2 θ

)
,

|n ·Q|2 = Q2
0

(
cos4 θ − cos2 θ sin2 θ +

1

4
sin4 θ

)
, (86)

and so

|Q|2 − |n ·Q|2 = Q2
0

[
cos2 θ +

1

4
sin2 θ − cos4 θ + sin2 θ cos2 θ − 1

4
sin4 θ

]

= Q2
0

[
cos2 θ sin2 θ +

1

4
cos2 θ sin2 θ + cos2 θ sin2 θ

]

=
9

4
Q2

0 cos2 θ sin2 θ. (87)
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Hence,
dP
dΩ

=
ck6

128π
Q2

0 sin2 θ cos2 θ. (88)

This is a typical, but not uniquely so, electric quadrupole radiation distribution.

dP
dW

q

Radiation Pattern of an oscillating charged spheriod
Higher-order multipole radiation (including magnetic quadrupole radiation) is

found by expanding the factor e−ik(n·x′) in Eq. (27) to higher order in powers of

d/λ. One can do this in a complete and systematic fashion after first developing

some appropriate mathematical machinery by generalizing the spherical harmonics

to vector fields,8 the purpose being to construct an orthonormal set of basis functions

for the electromagnetic fields.

8Thereby producing the so-called vector spherical harmonics. This is the subject matter of

Chapter 16.
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3.5 Large Radiating Systems

Before abandoning the topic of simple radiating systems, let us look at one example

of an antenna which is not small compared the wavelength of the emitted radiation.

Our example is an array of antennas, each of which is itself small compared to λ and

each of which will be treated as a point dipole. We take the current density of this

array to be

J(x) = I0a
∑

j

δ(x− xj)e
iφjε3. (89)

One can easily see that this is an array of point antennas located at positions xj;

they all have the same current but are not necessarily in phase, the phase of the j th

antenna being given by φj (the additional phase factor e−iωt, common to all antennas,

has been omitted, as usual).

Antenna farm
p

d << λD r >> D

No matter how large the array, we can specify that x is large enough that the

observation point is in the far zone in which case the vector potential can be taken

as

A(x) =
eikr

r
f(θ, φ) (90)

where

f(θ, φ) = ε3
I0a

c

∫
d3x′

∑

j

δ(x′ − xj)e
−ik(n·x′)eiφj

= ε3
I0a

c

∑

j

ei[φj−k(n·xj)]. (91)

Referring back to Eq. (33) we find that the distribution of radiated power is

dP
dΩ

=
k2I2

0a
2

8πc
sin2 θ|w|2 (92)
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where

w ≡
∑

j

ei(φj−kn·xj). (93)

The factor of sin2 θ arises because each element of this array is treated in the dipole

approximation. The factor |w|2 contains all of the information about the relative

phases of the amplitudes from the different elements, i.e., about the interference of

the waves from the different elements.

3.5.1 Example: Linear Array of Dipoles

As a special and explicit example, suppose that

φj = jφ0 and xj = ajε3, (94)

meaning that the elements are equally spaced in a line along the z-axis and that they

have relative phases that increase linearly along the array.

z

dipoles

a
q

x
n̂

Then

w =
∑

j

ei(φ0−ka cos θ)j ≡
∑

j

xj (95)

where

x = ei(φ0−ka cos θ). (96)

The sum is easy to evaluate if we know where j begins and ends:

j2∑

j=j1

xj = xj1
1− xj2−j1+1

1− x , (97)

so

|w|2 =

∣∣∣∣∣
1− eiα(θ)(j2−j1+1)

1− eiα(θ)

∣∣∣∣∣

2

(98)
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where α(θ) ≡ φ0 − ka cos θ. Let j1 = −n and j2 = n, corresponding to an array of

2n+ 1 elements centered at the origin. Then

|w|2 =

∣∣∣∣∣
1− eiα(2n+1)

1− eiα
∣∣∣∣∣

2

=
1− cos[(2n+ 1)α]

1− cosα
. (99)

This is a function which is in general of order unity and which oscillates as a function

of θ. It has, however, a large peak of size (2n+ 1)2 when α(θ) is an integral multiple

of 2π. The peak occurs at that angle θ0 where9 α(θ0) = 0 or cos θ0 = φ0/ka. If we

choose φ0 = 0, the peak is at θ0 = π/2; further, if ka < 2π or a < λ, there is no other

such peak. The width of the peak can be determined from the fact that the factor

w goes to zero when (2n + 1)α(θ) = 2π. Assuming that n >> 1, one finds that the

corresponding angle θ differs from θ0 by η where

η =
2π

(2n+ 1)ka[1− (φ0/ka)2]
∼ (2n+ 1)−1. (100)

Hence the antenna becomes increasingly directional with increasing n. The accompa-

nying figure shows the power distribution in units of k2I2
0a

2/8πc for 5 elements with

ka = π and φ0 = 0.

0 50 100 150
-30

-10

10

30

dP/dΩ

9More generally, α(θ0) = 2mπ where m is an integer; because we control φ0, we can make it

small enough that the peak corresponds to the particular case m = 0.
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4 Multipole expansion of sources in waveguides

We saw in Chapter 8 that a field in a waveguide could be expanded in the normal

modes of the waveguide with an integral over the sources, consisting of a current dis-

tribution and apertures, determining the coefficients in the expansion. If the sources

are small in size compared to distances over which fields in the normal modes vary,

then one can do the integrals in an approximate fashion by making a multipole ex-

pansion of the sources.

4.1 Electric Dipole

Consider first the part of the amplitude which is produced by some explicit current

distribution. It is

A
(±)
λ = −2πZλ

c

∫
d3x′ J(x′) · E(∓)

λ . (101)

The field in the mode is given by

E
(±)
λ (x′) = [Eλ(x′, y′)± ε3Ezλ(x′, y′)]e±ikλz

′
. (102)

The origin of the coordinate x′ is at some appropriately chosen point which is probably

not near the center of the source distribution. Let us use a different coordinate x

having as origin a point near the center of the source. Also, let’s let the electric

field in the mode be called E(x) as a matter of convenience. Then we have to do an

integral of the form

∫
d3xJ(x) · E(x) =

∫
d3xJ(x) ·


E(0) +

∑

i.j

∂Ei
∂xj

∣∣∣∣∣
0

εixj + ...


 (103)

where we are assuming that the field varies little over the size of the source. In this

integral the first term can be converted to an integral over the charge density,

∫
d3xJ(x) = −iω

∫
d3xxρ(x) (104)
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provided the integration by parts can be done without picking up a contribution

from the surface of the integration volume. That is not automatic here because the

surface includes some points on the wall of the waveguide including those points where

the current is fed into the guide, so one has to exercise some care in applying this

formula. Assuming that it is okay, we see that the leading term in the expansion

of the integrand produces to a term in the coefficient A
(±)
λ which is proportional to

p · E(0).

The next term in the expansion can, as we have seen, be divided into symmetric

and antisymmetric parts:

∑

i,j

∂Ei
∂xj

∣∣∣∣∣
0

∫
d3x Ji(x)xj =

1

4

∑

i,j

(
∂Ei
∂xj
− ∂Ej
∂xi

)∣∣∣∣∣
0

∫
d3x [Jixj − Jjxi]

+
1

2

∂Ei
∂xj

∣∣∣∣∣
0

∫
d3x [Jixj + Jjxi]. (105)

The first term on the right-had side is set up in such a way as to display explicitly

a component of ∇× E, which is i(ω/c)B, and the same component of the magnetic

dipole moment. Hence this term is proportional to m · B(0). The remaining term

can be handled in the way that we treated the electric quadrupole part of the vector

potential earlier; it becomes

− iω
2

∑

i,j

∂Ei
∂xj

∣∣∣∣∣
0

∫
d3xxixjρ(x) = − iω

6

∑

i,j

Qij
∂Ei
∂xj

∣∣∣∣∣
0

(106)

provided one can throw away the contributions that come from the surface when

the integration by parts is done. The final step is achieved by making use of the fact

that ∇ · E = 0.

In the next order, not shown in Eq. (103), the antisymmetric part provides the

magnetic quadrupole contribution. Without delving into the algebra of the derivation,

we state that the result is of the same form as Eq. (106) but with the magnetic

quadrupole moment tensor QM
ij in place of the electric quadrupole moment tensor, B

in place of E, and an overall relative (−). The components of the magnetic quadrupole
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moment tensor are defined in the same way as those of the electric quadrupole moment

tensor except that in place of ρ(x) there is

ρM(x) = − 1

2c
∇ · [x× J(x)]. (107)

The final result for the amplitude A
(±)
λ with all indices in place is

A
(±)
λ = i

2πω

c

{
p · E(∓)

λ (0)−m ·B(∓)
λ +

1

6

∑

i,j


Qij

∂E
(∓)
iλ

∂xj

∣∣∣∣∣∣
0

−QM
ij

∂B
(∓)
iλ

∂xj

∣∣∣∣∣∣
0


+ ...



 .

(108)

We can see immediately some interesting features of this result. For example, if

one wants to produce TM modes, which have z components of E but not of B, then

this is most efficiently done by designing the source to have a large pz. At the same

time, hardly any TE mode will be generated if there is only a z component of p

because the TE mode has no Ez to couple to p. Hence this expression gives one a

good idea how to design a source to produce, or not produce, modes of a given kind.

Now let’s look at the same expansion if the source of radiation is an aperture

rather than an explicit current distribution. We derived in chapter 8 that in this case

A
(±)
λ = −Zλ

2

∫

Sa
d2x′ n ·

[
E(x′)×H

(∓)
λ (x′)

]

= −Zλ
2

∫

Sa
d2x′ [n× E(x′)] ·H(∓)

λ (x′) (109)

where the integral is over the aperture Sa, E(x′) is the electric field actually present

at point x′, and n is the inward directed normal at the aperture. Notice that only

the tangential component of the electric field contributes to this integral. Assuming

that the aperture is small compared to distances over which the fields in the normal

modes vary, we can expand the latter and find, after changing the origin to a point

in the aperture,

A
(±)
λ = −Zλ

2

∫

Sa
d2x (n× Etan) ·


H

(∓)
λ (0) +

∑

i,j

εi
∂H

(±)
iλ

∂xj

∣∣∣∣∣∣
0

xj + ...




= −Zλ
2





B
(∓)
λ (0)

µ

∫

Sa
d2x (n× Etan) +

∑

i.j

∫

Sa
d2x (n× Etan)i

∂H
(∓)
iλ

∂xj

∣∣∣∣∣∣
0

xj + ...



 .(110)
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The first term here has already an appropriate form. As for the second one, note that

we can break up the integrand into even and odd pieces,

(n× Etan)i
∂Hiλ

∂xj
xj =

1

2
[(n× Etan)ixj − (n× Etan)jxi]

∂H
(∓)
iλ

∂xj

∣∣∣∣∣∣
0

+
1

2
[(n× Etan)ixj + (n× Etan)jxi]

∂H
(∓)
iλ

∂xj

∣∣∣∣∣∣
0

. (111)

Take just the antisymmetric part of this expression and complete the integral over x.

The contribution to the amplitude, aside from a factor of −Zλ/2, is

1

4

∑

i,j

∫

Sa
d2x[(n× Etan)ixj − (n× Etan)jxi]


∂H

(∓)
iλ

∂xj
− ∂H

(∓)
jλ

∂xi



∣∣∣∣∣∣
0

=
1

4

∑

i,j,k

∫

Sa
d2x [(n× Etan)ixj − (n× Etan)jxi]εkij

(
− iωε

c
E

(∓)
kλ (0)

)

= − iωε
4c

∫

Sa
d2xE

(∓)
λ (0) · [2x× (n× Etan)]

= − iωε
2c

∫

Sa
d2xE

(∓)
λ (0) · [x× (n× Etan)] = − iωε

2c

∫

Sa
d2xE

(∓)
λ (0) · n(x · Etan). (112)

In this string of algebra we have made use of the fact that ∇×H = −i(ω/c)εE and

that Etan is orthogonal to E
(∓)
λ in the aperture because of the boundary conditions

on the latter field.

Putting this piece into the expression for A
(±)
λ along with the leading one, we find

A
(±)
λ = −Zλ

2

{
1

µ
B

(∓)
λ (0) ·

∫

Sa
d2xn× Etan(x)− iωε

2c
E

(∓)
λ (0) · n

∫

Sa
d2xx · Etan(x)

}

(113)

Defining

peff ≡
ε

4π
n
∫

Sa
d2xx · Etan(x) (114)

and

meff ≡
c

2πiµω

∫

Sa
d2xn× Etan(x (115)

we can write

A
(±)
λ =

iπωZλ
c

[peff · E(∓)
λ (0)−meff ·B(∓)

λ (0) + ...] (116)
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Thus we find that in the small wavelength limit, apertures are equivalent to dipole

sources. The effective dipole moments are found by solving for, or using some simple

approximation for, the fields in the aperture. See Jackson for a description of the

particular case of circular apertures.
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5 Scattering of Radiation

So far, we have discussed the radiation produced by a harmonically moving source

without discussing the origin of the source’s motion. In this section we will address

the fields which set the source in motion.

Consider the case where the motion is excited by some incident radiation. The

incident radiation is absorbed by the source, which then begins to oscillate coherently,

and thus generates new radiation. This process is generally called scattering.

Incident Radiation

Source

Scattered Radiation

5.1 Scattering of Polarized Light from an Electron

For simplicity, let’s consider a plane electromagnetic wave incident upon a single

electron of charge −e. We will assume that the incident field has the form

Ein(x, t) = ε1E0e
i(k·x−ωt) (117)

Since the equations which govern the motion of the electron are linear, we expect

the electron to respond by oscillating along ε1 at the same frequency (assuming

that the magnetic force on the electron is small as long as the electron’s motion is

nonrelativistic). This will produce a time varying electric dipole moment.

We write the electron position as

x(t) = x0 + δx(t) (118)
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λ ≈ |    | or |    |

incident waves 
      or particles

d

d sin(θ)
a2

a1

a1 a2
k0 k

k0K = k - 

k0

k

K

θ

θ

Figure 1: Scattering of waves or particles with wavelength of roughly the same size

as the lattice repeat distance allows us to learn about the lattice structure. We will

assume that each electron acts as a dipole scatterer.

If E0 is small enough, then δx will be small compared to the wavelength λ of the

incident radiation.

λ

e-δx

This approximation is also consistent with the non-relativistic assumption. When

this is case, we can write

ei(k·x−ωt) ≈ ei(k·x0−ωt) (119)

so that the field of the incident radiation does not change over the distance traveled

by the oscillating electron. If we assume a harmonic form for the electronic motion
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δx(t) = δxe−iωt, insert this into Newton’s law10 and solve, we get

δx = ε1

(
eE0e

ik·x0

mω2

)
(120)

The dipole moment of the oscillating electron will then be p(t) = pe−iωt, with

p = −eδx = ε1

(
−e2E0e

ik·x0

mω2

)
(121)

Now we will solve for the scattered radiation. Let the geometry of the scattering

be as shown below.

ε
incident wave

k
e -

scattered wave

k’ =k n’

k = k n

From our electric dipole formulas, the angular distribution of the scattered power

Eq. (45) is

dPscat
dΩ

= r2 < S > ·n′ = ck4

8π
[|p|2 − |n′ · p|2] (122)

or
dPscat
dΩ

=
e4E2

0

8πm2c3
[1− (n′ · ε1)2] (123)

Note that gives zero radiated power for n′ along ε1. I.e. there is no power radiated

in the direction along which the dipole oscillates.

10F = ma→ −eE = −eε1E0e
ik·x0 = mδẍ(t) = −mω2δx
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We may determine the differential cross section for scattering by dividing the

radiated power per solid angle obtained above by the incident power per unit area

(the incident Poynting vector).

Sin =
c

8π
(E×B∗) =

c

8π
E2

0 (124)

thus
dσ

dΩ
=

1

|Sin|
dPscat
dΩ

=
e4

m2c4

(
1− (n′ · ε1)2

)
(125)

or
dσ

dΩ
= r2

0

(
1− (n′ · ε1)2

)
(126)

where r0 = e2/mc2 = 2.8 × 1013 cm is the classical scattering radius of an electron.

This is the formula for Thomson scattering of incident light polarized along ε1.

5.2 Scattering of Unpolarized Light from an Electron

Now suppose that the incident light is unpolarized. Then the cross section is the

average of the cross sections for the two possible polarizations ε1 and ε2 of the incident

wave (why?).

(
dσ

dΩ

)

unpol

=
1

2

2∑

i=1

r2
0

(
1− (n′ · εi)2

)
(127)

= r2
0 −

1

2

2∑

i=1

r2
0

(
(n′ · εi)2

)
. (128)

From the fact that (ε1, ε2, and n) form an orthonormal triad of unit vectors, one

may show that (
dσ

dΩ

)

unpol

=
1

2
r2

0

(
1 + (n′ · n)2

)
(129)

This may be rewritten as

(
dσ

dΩ

)

unpol

=
1

2
r2

0

(
1 + cos2(θ)

)
(130)
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where θ is the scattering angle of the unpolarized radiation. From this we can see

that the scattering in predominantly forward (θ = 0), and backscattering (θ = π).

The total cross sections may be obtained by integrating the differential cross

sections. Thus

σpol =
8π

3
r2

0 (131)

and

σunpol =
1

2
(σpol(ε1) + σpol(ε2)) = σpol (132)

5.3 Elastic Scattering From a Molecule

Let us now consider the elastic scattering from a molecule11 in which many electrons

are generally present. In calculating the field produced by the molecular electrons

when light is incident on them, we will again assume that we are making our obser-

vation very far away from the molecule, so that

source

λ
d

x

x >> d
x >> λ

We will not assume however, that λ À d, since we want to use the scattering

to learn something about the structure of the molecule. This is only possible if our

resolution (limited by λ) is smaller than d. Thus we expect our results to include

interference effects from different charges in the molecule

11Here we shall use molecule to identify any small collection of charges
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Cu

O

O

R

Figure 2: Rays scattered from different elements of the basis, and from different places

on the atom, interfere giving the scattered intensity additional structure described by

the form factor S and the atomic form factor f , respectively.

From page 9, the vector potential produced by the i’th electron in the molecule is

Ai(x) =
eikr

cr

∫
d3x′ Ji(x

′)e−ik(n·x′). (133)

This expression includes just the current of the i’th electron, and assumes xÀ λ and

xÀ d, as well as a harmonic time dependence. To find the current Ji(x
′) for the i’th

electron, we note that the classical current density of an electron is

Ji(x
′, t) = −evi(t)δ(x′ − xi) (134)

where (xi,vi) are the location and velocity of the i’th electron. If the electron is

exposed to an incident electromagnetic plane wave, we find that

xi(t) = xi,0 + δxi(t) (135)

δxi(t) = ε1

(
eE0

mω2
eik·xie−iωt

)
(136)

From this we can find the electron velocity, and hence the current

Ji(x
′) = ε1

(
ie2E0

mω
eik·xiδ(x′ − xi)

)
. (137)
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In this we have taken out the harmonic time term. Thus the vector potential of the

scattered field generated by the i’th electron in the molecule is

Ai(x) = ε1
ie2E0

mω

eikr

cr
ei(k−k′)·xi (138)

where k′ = kn′ is the scattered wave vector and k = kn is the incident wave vector.

We define the vector q = k − k′ which is (1/h̄ times) the momentum transfer from

the photon to the electron, then the total vector potential of the scattered field is

A(x) =
∑

i

Ai(x) = ε1
ie2E0

mω

eikr

cr

∑

i

eiq·xi (139)

This differs from the vector potential due to a single scattering electron only

through the factor
∑
i e
iq·xi . Since this factor is independent of the observation point

x, the resulting B and E fields are likewise those of a single scattering multiplied

by a factor of
∑
i e
iq·xi . Thus we may immediately write down the differential cross

sections. For polarized light

(
dσ

dΩ

)

pol

=
[
r2

0

(
1− (n′ · ε1)2

)]


∣∣∣∣∣
∑

i

eiq·xi
∣∣∣∣∣

2

 (140)

where the first term in brackets is the single-electron result, and the second term is

the structure factor. For unpolarized light

(
dσ

dΩ

)

unpol

=
[
1

2
r2

0

(
1 + (n′ · n)2

)]


∣∣∣∣∣
∑

i

eiq·xi
∣∣∣∣∣

2

 (141)

We see that from a measurement of the differential cross section, we may learn

about the structure of the object from which we are scattering light. Let’s examine

the structure factor in more detail.

∑

i

eiq·xi =
∫

V
d3x

∑

i

eiq·xiδ(x− xi) (142)

=
∫

V
d3x eiq·x

∑

i

δ(x− xi) (143)
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However,
∑

i

δ(x− xi) = nel(x) (144)

which is the electron number density at position x, thus

∑

i

eiq·xi =
∫

V
d3x eiq·xnel(x) = nel(−q) (145)

where nel(−q) is the Fourier transform of the electron density. Thus, our differential

cross sections are, for polarized light:
(
dσ

dΩ

)

pol

=
[
r2

0

(
1− (n′ · ε1)2

)] [
|nel(−q)|2

]
, (146)

and for unpolarized light
(
dσ

dΩ

)

unpol

=
[
1

2
r2

0

(
1 + (n′ · n)2

)] [
|nel(−q)|2

]
(147)

Since q = k − k′ depends upon the scattering angle and the wave number of the

incident photon, a scan over θ and/or k gives you information about the electron

density on the target.

5.3.1 Example: Scattering Off a Hard Sphere

Single spherical
molecule with
a sharp cutoff
in its electron
distribution

R

z electrons
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Consider scattering from a single molecule with a sharp cutoff in its electron distri-

bution.

nel(x) =
3z

4πR3
θ(R− |x|) (148)

where R is the radius of the sphere and z is the number of electrons, then

nel(−q) =
∫

V
d3x eiq·xnel(x) =

3z

q3R3
[sin(qR)− qR cos(qR)] , (149)

where j1(x) = (sin x/x− cos x) is a spherical Bessel function. Note that this has

zeroes at

qR = tan(qR) (150)

so that we expect zeroes in the scattering cross section. These are clearly related to

the size of the molecule. For forward scattering (q = 2k sin(0) = 0), we have

nel(−q = 0) = z (151)

This is the maximum value, i.e. all the scattering electrons give constructive inter-

ference for forward scattering.

A sketch of the unpolarized cross section
(
dσ

dΩ

)

unpol

=
1

2
r2

0

(
1 + cos2(θ)

)
|nel(−q)|2

looks like

-1.0 -0.5 0.0 0.5 1.0
cos(θ)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

dσ
/dΩ

un
po

l

If we measured this, we could learn the spatial distribution of electrons by inverting

the transform. It is important to note that we could not learn the details of the
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electron wavefunctions since all the phase information is lost. I.e., the cross section

just measures the modulus squared of nel, and so phase information is lost.

5.3.2 Example: A Collection of Molecules

A collection of molecules,
each with an electronic
distribution n ( )

0
x

O

R j

In a macroscopic sample, the total electron density is made up of two parts: the elec-

tron distribution within the molecules, and the distribution of the molecules within

the sample. For simplicity, let’s assume that the sample contains just one type of

molecule, each of which has an electron density n0(x). The total electron number

density is then

nel(x) =
∑

j

n0(x−Rj) (152)

where Rj is the position of the j’th molecule. The Fourier transform of this is

nel(−q) =
∫

V
d3x eiq·xnel(x) =

∑

j

eiq·Rjn0(−q) (153)
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which is a weighted sum of the Fourier transforms for each molecule. We see that

then the cross section will include the factor

|n0(−q)|2
∣∣∣∣∣∣
∑

j

eiq·Rj

∣∣∣∣∣∣

2

(154)

From above, we know that n0(−q = 0) = z, the number of electrons in a molecule,

so we may write

n0(−q) = zF (q) (155)

where F (q) is called the form factor of the molecule which is normalized to unity for

q = 0. Thus the unpolarized differential cross section becomes

(
dσ

dΩ

)

unpol

=
1

2
z2r2

0(1 + cos2(θ)) |F (q)|2
∣∣∣∣∣∣
∑

j

eiq·Rj

∣∣∣∣∣∣

2

(156)

In general, we will not know where all the molecules are, nor do we necessarily care.

Thus we will look at an average of the term which describes the distribution of the

molecules.
〈∣∣∣∣∣∣
∑

j

eiq·Rj

∣∣∣∣∣∣

2〉
=
∑

jj′

〈
eiq·(Rj−Rj′)

〉
≈ N

∑

j

〈
eiq·(Rj−R0)

〉
≡ NS(q) (157)

where N is the number of molecules in the sample, R0 is the position of the origin,

and S(q) is the structure factor of the sample. The approximation is justified by the

fact that (neglecting finite-size effects) each link between sites occurs about N times.

This link occurrs
about N times.
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S(q) =
∑

j

〈
eiq·(Rj−R0)

〉
= 1 +

∑

j 6=0

〈
eiq·(Rj−R0)

〉
(158)

Note that this goes to 1 as |q| → ∞. Then, using the same procedure detailed before,

this becomes

NS(q) = V
∫

V
d3x eiq·x 〈n(x)n(0)〉 (159)

where V is the sample volume, and n(x) is the number density of molecules in the

sample.

Here, 〈n(x)n(0)〉 tell us about correlations between molecular positions.

〈n(x)n(0)〉 = (n(0))2 g(x) (160)

where g(x) is just the probability of finding a molecule at x if there is one at the origin.

This is the normalized two-body correlation function. We see that if the molecular

form factor is known, then a measurement of the differential cross section tells us

about the Fourier transform of g(x). This is the key to using x-ray (or neutron, etc)

scattering to determine the internal structure of materials.

(
dσ

dΩ

)

unpol

=
1

2
z2r2

0(1 + cos2(θ)) |F (q)|2 V (n(0))2 g(q)

Liquid Crystal

g( )x g( )x

r r

1st peak at mean
intermolecular
spacing

Averages to 1
at large r

lattice
spacing
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6 Diffraction

In this section we will discuss diffraction which is related to scattering. The proto-

typical setup is shown below in which radiation from a source is diffracted through

an opaque screen with one or more holes in it.

screen

observersource

Clearly, diffraction is the study of the propagation of light or radiation, or rather

the deviation of light from rectilinear propagation. As undergraduates we all learned

that the propagation of light was governed by Huygen’s Principle that every point

on a primary wavefront serves a the source of spherical secondary wavelets such that

the primary wavefront at some later time is the envelope of these wavelets. Moreover,

the wavelets advance with a speed and frequency equal to that of the primary wave at

each point in space.12. This serves as the paradigm for our study of geometric optics.

Diffraction is the first crisis in this paradigm.

To see this consider wave propagation in a ripple tank through an aperture.

12Hecht-Zajac, page 60
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d

a) b)

λwave
flow

In the figure, wavefronts are propagating toward the aperture from the bottom of

each box. In case a) the wavelength λ is much smaller than the size of the aperture d.

In this case, the diffracted waves interfere destructively except immediately in front

of the aperture. In case b), λÀ d, and no such interference is is observed.

Huygen’s principle cannot explain the difference between cases a) and b), since

it is independent of any wavelength considerations, and thus would predict the same

wavefront in each case. The difficulty was resolved by Fresnel. The corresponding

Huygens-Fresnel principle states that every unobstructed point of a wavefront,at

a given instant of in time, serves as a source of spherical secondary wavelets of the

same frequency as the source. The amplitude of the diffracted wave is the sum of

the wavelets considering their amplitudes and relative phases13. Applying these ideas

clarifies case a). Here what is happening is that the wavelets from the right and

left sides of the aperture interfere constructively in front of the aperture (since they

travel the same distance and hence remain in phase), whereas these wavelets interfere

destructively to the sides of the aperture (since they travel two paths with length

differences of order λ/2). In case b), we approach the limit of a single point source

13Hecht-Zajac, page 330
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of spherical waves. Beside being rather hypothetical, the Huygens-Fresnel principle

involves some approximations which we will discuss later; however, Kirchoff showed

that the Huygen’s-Fresnel principle is a direct consequence of the wave equation.

6.1 Scalar Diffraction Theory: Kirchoff Approximation

This problem could be solved using the techniques we just developed to treat scatter-

ing. I.e. by considering the dynamics of the charged particles in the screen, and then

calculating the scattered radiation generated by these particles. However, diffraction

is conventionally treated as a boundary value problem in which the presence of the

screen is taken into account with boundary conditions on the wave.

Several excellent references for this problem are worth noting:

1. B.B. Baker and E.T. Copson, The Mathematical Theory of Huygens Prin-

ciple, (Clarendon Press, Oxford, 1950).

2. Landau and Lifshitz, The Classical Theory of Fields.

3. L. Eyges, The Classical Electromagnetic Field, (Addison-Wesley, Reading,

1972).

4. Hecht-Zajac, Optics, (Addison-Wesley, Reading, 1979).

The Baker reference, especially, has a good discussion of the limits of the Kirchoff

approximation, of course, Landau and Lifshitz have an excellent discussion of the

physics, but Hecht-Zajac’s discussion is perhaps the most elementary, and will often

be quoted here.

The typical question we ask is, given a strictly monochromatic point source S,

what resulting radiation is observed at the point O on the opposite side of the screen.

At first this approach may seem to limit us just to point sources. The case of a real

extended source which emits non-monochromatic light does not, however, require

special treatment. This is because of the linearity of our equations and the complete
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independence (incoherence) of the light emitted by different points of the source. The

interference terms average to zero. Thus the total diffraction pattern is simply the

sum of the intensity distributions obtained from the diffraction of the independent

components of the light.

screen

observermonochromatic
point source

ei tω

To treat the theory of diffraction, a number of approximations will be necessary.

• First, we assume that we can neglect the vector nature of the electromagnetic

fields, and work instead with a scalar complex function ψ (a component of E

or B, or the single polarization observed in the ripple tank discussed above).

In principle, ψ is any of the three components of either E or B. In practice,

however, the polarization of the radiation is usually ignored and the intensity

of the radiation at a point is usually taken as |ψ(x, t)|2. This first assumption

limits the number of geometries we can treat.

• Second, we will generally assume that λ/d¿ 1, where d is the linear dimension

of the aperture or obstacle.

• The third assumption is that we will only look for the first correction to geo-

metric optics due to diffraction. This is often called the Kirchoff approximation,

which will be discussed a bit later. (This set of approximations are sometimes

also called the Kirchoff approximation scheme.)
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We then impose the boundary condition14

ψ(x, t) = 0 everywhere on the screen (161)

We will assume that ψ obeys the wave equation, and the source is harmonic so that

it emits radiation of frequency ω, hence

ψ(x, t) = ψ(x)e−iωt . (162)

Thus the spatial wave function obeys the Helmholtz equation

22ψ = (∇2 + k2)ψ(x) = 0 ,with k = ω/c (163)

if we assume that the waves propagate in a homogeneous medium and restrict our

observations to points away from the source S. As always, the physical quantities

will be the real amplitude < (ψ(x)e−iωt), and the modulus squared which denotes the

time-averaged intensity.

Let’s consider just the observation points in the volume V below which is bounded

by the screen (z = 0 plane), and a hemisphere at infinity.

S

z=0

surface S which includes
the plane at z=0.

Volume
V

(z > 0)(z < 0)

14Note that we only impose one boundary condition on the screen. This is to avoid the difficulties

when both boundary conditions (Neumann and Dirichlet) are imposed, as discussed in Jackson on

page 429
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Then, everywhere within V , the Helmholtz equation 22ψ = 0 is obeyed since the

source lies outside of V . To find ψ within V , we use Green’s theorem

∫

V
d3x′

(
ψ(x′)∇′2φ(x′)− φ(x′)∇′2ψ(x′)

)
=
∫

S
d2x′ n′·(ψ(x′)∇′φ(x′)− φ(x′)∇′ψ(x′)) ,

(164)

or, adding and subtracting k2ψ(x′)φ(x′) from the first integrand, we get

∫

V
d3x′

(
ψ(x′)(∇′2 + k2)φ(x′)− φ(x′)(∇′2 + k2)ψ(x′)

)
=
∫

S
d2x′ n′·(ψ(x′)∇′φ(x′)− φ(x′)∇′ψ(x′))

(165)

This works for any two functions ψ and φ. We will take ψ(x′) to be the wave ampli-

tude, and take φ(x′) = G(x,x′), where the Dirichlet Green’s function satisfies

(∇2 + k2)G(x,x′) = −4πδ(x− x′) in V (166)

i.e., it is the response to a unit point source so that in free space G(x,x′) = eik|x−x′|
|x−x′| .

However, need to solve for G with boundary conditions

G(x,x′) = 0 for x′ on S . (167)

since we will be using Dirichlet boundary conditions on ψ: We will specify the value

of ψ(x) (as opposed to its derivative) on the boundary S. Now using the facts that

(∇2 + k2)G(x,x′) = −4πδ(x− x′) in V (168)

(∇2 + k2)ψ(x) = 0 in V (169)

and that

G(x,x′) = 0 for x′ on S (170)

this Green’s theorem becomes (the Kirchoff Integral)

ψ(x) = − 1

4π

∫

S
d2x′ n′ · (ψ(x′)∇′G(x,x′)) (171)

To proceed further we must determine the form of G(x,x′) and we must now

specify ψ(x′) on the surface S. For an infinite planar screen the Green’s function is
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given by the method of images (analogously to the electrostatic case)

G(x,x′) =
eik|x−x′|

|x− x′| −
eik|x−y′|

|x− y′| (172)

x’
y’

image

where x′ = (x′, y′, z′) is in V , but y′ = (x′, y′,−z′) (the image point) is not. This

satisfies (∇2 +k2)G(x,x′) = −4πδ(x−x′) in V , and vanishes both on the plane z ′ = 0

and on the hemisphere at infinity. Note that it vanishes as 1/r′2 as r′ → ∞. From

this it is clear that the integral

ψ(x) = − 1

4π

∫

S
d2x′ n′ · (ψ(x′)∇′G(x,x′)) (173)

has a vanishing contribution from the hemisphere at infinity, since ψ(x′) vanishes at

least as fast as 1/r′ as r′ →∞ (since it is a solution of the wave equation for a finite

source). Furthermore, from the boundary condition

ψ(x′) = 0 on the screen (174)

we can see that the integral only gets a nonzero contribution from the opening

ψ(x) = − 1

4π

∫

opening
d2x′ n′ · (ψ(x′)∇′G(x,x′)) . (175)

So far we have made an exact evaluation of our scalar theory. However, to proceed

we must make an approximation. We will assume that the value of ψ(x′) in the

opening will be the same as if the screen was not there at all. This means that the

wavelength we are considering must be small compared to to characteristic size of

the problem (i.e. the size of the opening). As a result, our formalism will yield just

the the lowest-order correction due to diffraction to the results of geometrical or ray

optics. This approximation is called the Kirchoff approximation.
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Now to implement this approximation we need two things. First, we need the

field strength at the opening. For a source of unit strength at position x0, the field

at position x′ in the opening is taken to be

S

z=0
(z > 0)(z < 0)

O
r

r’
r0

Ψ ( )r’ =
r’ - r0| |

e
ik| |r’ - r0

x
0

x
x’

x

x
x’

x0

x0 |

which is just a spherical wave. Second, we need the component of ∇′G(x,x′) in the

direction of n′ in the opening. Since n′ is the outward normal direction from the

volume V , this means we need

− d

dz′
G(x,x′) = − d

dz′

(
eik|x−x′|

|x− x′| −
eik|x−y′|

|x− y′|

)
. (176)

Since we are using a short wavelength approximation, it follows that k|x − x′| À 1

and k|x− y′| À 1. Consequently, in taking the derivative of G(x,x′), the derivatives

coming from the denominators are negligible compared to those from the exponentials.

Thus

− d

dz′
G(x,x′) ≈ ik(z − z′)

|x− x′|
eik|x−x′|

|x− x′| +
ik(z + z′)

|x− y′|
eik|x−y′|

|x− y′| . (177)

We only need to evaluate this in the opening (z ′ = 0)

− d

dz′
G(x,x′)

∣∣∣∣∣
z′=0

≈ 2ikz

|x− x′|
eik|x−x′|

|x− x′| (178)

since x′ = y′ here.

Thus, our Kirchoff approximation yields the following expression for the field
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observed at x

ψ(x) = − 1

4π

∫

opening
d2x′ n′ · (ψ(x′)∇G(x,x′)) (179)

= − 1

4π

∫

opening
d2x′

2ikz

|x− x′|
eik|x−x′|

|x− x′|
eik|x0−x′|

|x0 − x′| . (180)

We may also write
z

|x− x′| = cos(θ′) , (181)

where θ′ is the angle from the normal to the opening at integration point x′ to the

observation point x.

S z
0

x’-x

O

θ’
x-x’

Note that θ′ is different for each integration point x′. Thus our expression becomes

ψ(x) = − ik
2π

∫

opening
d2x′

eik|x0−x′|

|x0 − x′|
eik|x−x′|

|x− x′| cos(θ′) (182)

The first term is the field from the source located at x0 and received at point x′ in the

opening. The second term is the field from the “source” at x′ in the opening received

at observation point x. The third term is the inclination factor. Thus, this integral

is just an expression of the Huygens-Fresnel principle.

6.2 Babinet’s Principle

Let’s explore the consequences of this formula. First, consider two different screens

which are complimentary.
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σ
σ

One has an opening, labeled σ, while the other is just a disk. For the second screen

the ”opening” is the entire plane z = 0 except for the disk. This opening is the

compliment of σ, so we will call it σ̄.

We notice something interesting about the amplitudes received at the point O in

the two complimentary cases, we have

ψ(x) = − 1

4π

∫

σ
d2x′ n′ · (ψ(x′)∇G(x,x′)) (183)

ψ(x) = − 1

4π

∫

σ̄
d2x′ n′ · (ψ(x′)∇G(x,x′)) (184)

The sum of these two amplitudes is then

ψ(x) + ψ(x) = − 1

4π

∫

σ̄+σ
d2x′ n′ · (ψ(x′)∇G(x,x′)) (185)

However, σ̄ + σ represents the entire plane z = 0. Thus ψ(x) + ψ(x) represents the

amplitude detected at x if there was no screen at all. In other words ψ(x) + ψ(x)

includes no diffraction.

To interpret this, note that ψ(x) may be written as

ψ(x) = f
eik|x−x0|

|x− x0|
+ ψdiff (x) (186)

where f is a ray optic amplitude. If f = 0, then there is no line-of-sight from the

observer to the source, while if f = 1, then there is. The second term is the amplitude

due to diffraction of the wave. Returning to our amplitudes ψ(x) and ψ(x), we see

54



that one will have f = 0 and the other f = 1, so that the sum will include a term

eik|x−x0|/|x− x0|. In fact, this is all it will include, since ψ+ψ includes no diffraction.

Thus, we see that the diffraction amplitudes for complimentary screens cancel. This is

Babinet’s Principle. It says that solving one diffraction problem is tantamount to

solving its compliment. However, Babinet’s principle does not say that the intensities

will cancel in the two cases! We will see some consequences of Babinet’s principle in

what follows

6.3 Fresnel and Fraunhofer Limits

Lets return to our expression for ψ(x) in the Kirchoff approximation. Since we assume

that the wavelength is small, it follows that

kaÀ 1 kr0 À 1 kr À 1 (187)

where a is the typical aperture size, r0 is the distance from the screen to the source,

and r is the distance to the observer.

In general these approximations should be applied to the expression for ψ(x) only

after the integral over the opening has been carried out. This can be done for some

simple geometries (as in the homework). What we will do here is to insert the above

limits into the Kirchoff approximate expressions for ψ(x). In what follows, we will

restrict our attention to apertures, not discs. By doing this it follows that r ′ will

have an upper limit a, so kr′ À 1. In practice, the restriction to apertures is not

a real limitation since Babinet’s principle allows us to calculate the the diffraction

amplitude for a disk from the diffraction amplitude for the complimentary screen.

Once again, our expression for ψ(x) is

ψ(x) = − ik
2π

∫

opening
d2x′

eik|x0−x′|

|x0 − x′|
eik|x−x′|

|x− x′| cos(θ′) . (188)

Now if a/r0 and/or a/r are not small, then we are limited in what further approx-

imations are possible since r′ is not necessarily small compared to either r or r0.
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This limit is called Fresnel Diffraction, in which the source and/or the observation

points are close enough to the aperture that we must worry about the diffraction of

spherical waves. This presents a difficult problem, which we will not treat (but please

see the homework and Landau and Lifshitz, Classical Theory of Fields, Sec. 60).

In the opposite limit, which we will treat, is called Fraunhofer Diffraction. In

this limit

ka > 1 kr0 À 1 kr À 1 a¿ r0 and a¿ r (189)

Note that we specify ka > 1 rather than ka À 1 since we want to solve for the first

finite corrections to the latter inequality, so that

ka2

r0

= ka
(
a

r0

)
¿ 1 and

ka2

r′
¿ 1 (190)

Thus we are looking at plane waves instead of spherical waves in this limit.

It is possible to simplify our expression for ψ(x) even further in this limit. Then

|x′ − x0| ≈ r0 −
x0 · x′
r0

= r0 + n0 · x′ (191)

where n0 is a unit vector from the source to the origin (taken to be the center of the

aperture), so that x0 = −n0r0. Similarly,

|x− x′| ≈ r − n · x′ (192)

where n is a unit vector from the origin to the observer so that x = nr.

S
On

n
0

56



Thus,
eik|x

′−x0|

|x′ − x0|
eik|x−x′|

|x− x′| ≈
eik(r+r0)

rr0

eik(n0−n)·x′ (193)

where we have dropped second-order terms coming from the denominators. Further-

more, since r is large compared to the aperture size, it is appropriate to take

cos(θ′) =
z

|x− x′| ≈ 1 (194)

inside the integral. Thus in the Fraunhofer limit

ψ(x) = − ik
2π

eik(r+r0)

rr0

∫

opening
d2x′ eik(n0−n)·x′ (195)

But the incident wave vector was kn, so

k(n0 − n) = kin − kdiff ≡ q (196)

so we finally have

ψ(x) = − ik
2π

eik(r+r0)

rr0

∫

opening
d2x′ eiq·x

′
(197)

7 Example Problems

Let’s consider some examples.

7.1 Example: Diffraction from a Rectangular Aperture

Here the opening is given by |x′| < a and |y′| < b, so the integral above is

∫

opening
d2x′ eiq·x

′
=
∫ a

−a
dx′ eiqxx

′
∫ b

−b
dy′ eiqyy

′
= 2

sin(qxa)

qx
2

sin(qyb)

qy
(198)

The amplitude at x is

ψ(x) = −2ikab

π

eik(r+r0)

rr0

(
sin(qxa)

aqx

)(
sin(qyb)

bqy

)
(199)
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thus, the intensity of the diffracted wave is

I(x) = |ψ(x)|2 = I0

(
sin(qxa)

aqx

)2 (
sin(qyb)

bqy

)2

(200)

with

I0 =
4k2a2b2

π2r2
0r

2
(201)

We see that all of the angular dependence of in this is embodied in the dependence

on q, the momentum transfer. Since we a looking at small-angle scattering, we are

taking q to lie essentially in the x-y plane.

k in
k diff q

We see that the nodes of I(x) occur for

qx =
mπ

a
, m 6= 0, and/or qy =

nπ

b
, n 6= 0 (202)

The global maximum (I(x) = I0) occurs for qx = qy = 0, i.e. for forward scattering.

Thus the intensity of the diffracted light looks something like

central
maximum

lines of nodes
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We can recover the formula for single-slit diffraction by taking bÀ a, so that our

rectangular aperture becomes a slit of width 2a. Then

θdiff
θθ in

θθ in
2a sin( ) θdiff2a sin( )

y

x

qx = (kx)in − (kx)diff = k sin(θin)− k sin(θdiff ) (203)

and the condition that there is a node is

qx = k (sin(θin)− sin(θdiff )) =
mπ

a
m 6= 0 . (204)

Since k = 2π/λ, this may be written

2a (sin(θin)− sin(θdiff )) = mλ m 6= 0 (205)

which is the usual expression for a node in single-slit diffraction.

7.2 Example: Diffraction from a Circular Aperture

Here the opening is given by r′ < a. Our Fraunhofer expression for the amplitude at

x is then

ψ(x) = − ik
2π

eik(r+r0)

rr0

∫ a

0
dr′ r′

∫ 2π

0
dφ′eiqr

′ cos(φ′) (206)
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where we have taken q to lie entirely in the plane of the aperture, as is appropriate

in small-angle diffraction. Now

∫ 2π

0
dφ′eiqr

′ cos(φ′) = 2πJ0(qr′) (207)

where J0 is the zeroth-order Bessel function. Our expression for the diffraction am-

plitude is then

ψ(x) = − ik
2π

eik(r+r0)

rr0

∫ a

0
dr′ r′ 2πJ0(qr′) = −ika2 e

ik(r+r0)

rr0

(
J1(qa)

qa

)
(208)

where we have used J1(0) = 0. The diffracted intensity is then

I(x) = I0

(
J1(qa)

qa

)2

, I0 =
k2 a4

r2 r2
0

(209)

this reaches a maximum at q = 0, it then has a minima of zero and maxima which

decrease as q increases. For incident light with k normal to the opening,

q = kdiff sin(θdiff ) = k sin(θdiff ) (210)

since the magnitude of the wavevector does not change. Thus,

I(θdiff ) = I0

(
J1 (ka sin(θdiff ))

ka sin(θdiff )

)2

(211)

The first minima of J1(x) is at x = 3.83, hence the first minima of diffraction will

occur when

ka sin(θdiff ) = 3.83 , or sin(θdiff ) = 1.22

(
λ

2a

)
. (212)

Since, by assumption, λ is small compared to a, sin(θdiff ) ≈ θdiff , and so the angle

of the first node is roughly

θdiff = 1.22

(
λ

2a

)
. (213)
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2a

θ
diff

I ( )

We notice from these examples of Fraunhofer diffraction that all of the light falling

on the aperture is deflected. Granted, the intensity for forward scattering (q = 0) is

nonzero, but the total amount of light with q = 0 is

|ψ(q)|2 q2 dq dΩ
∣∣∣
q=0
→ 0 (214)

Thus, it is legitimate to say that all of the light is deflected. Let us apply this

observation to a disc which is totally absorbing (i.e. a perfect black-body). If plane

waves are incident on this disc, then all the light that falls directly upon it is absorbed.

If there was no diffraction, then there would be a geometrically perfect shadow cast by

the object, and the total cross section of the disk would be its area A. But of course

there is diffraction, so in addition to absorbing light, some will also be deflected by

the disk. By Babinet’s principle, as much light will be diffracted by the disc as by

an aperture of the same shape as the disc but in a screen. But we have said that in

Fraunhofer diffraction all of the light falling on an aperture is deflected. Thus for our

disc, the cross section for deflection of light will be the disc area A as well. Thus the

total cross section, including both absorption (inelastic cross section) and diffraction

(elastic cross section) is

σtotal = σinelastic + σelastic = A+ A = 2A (215)
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This is twice the area of the disc. Recall that in this argument we assume that kaÀ 1,

where a is the characteristic size of the disc. In this limit in quantum mechanics one

finds that the cross section for scattering from a sphere of radius a is 2πa2. The factor

of two has the same origins here as it does in quantum mechanics.

7.3 Diffraction from a Cross

1. Given a normally incident wave of frequency ω calculate the diffraction pattern

produced by an opaque screen with an aperture in the shape symmetric cross

of inner dimension a and outer dimension b in the Fraunhofer limit of the scalar

Kirchoff approximation. Very roughly tell what the diffraction pattern will look

like.

2. The correct answer to the first part of this problem also yields the solution to

the diffraction pattern involving a quite different set of apertures. What is this

other set of apertures?

a
b

Solution. In the Fraunhoffer limit, we can use Eq. (197) of the notes.

ψ(x) = − ik
2π

eik(r+r0)

rr0

∫

opening
d2x′ eiq·x

′

where r0 is the distance from the aperture to the source, r is the distance from the

aperture to the observer, and q is the difference between the incident and scattered
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wavevector. We will take q to lie entirely in the plane of the aperture, as is appropriate

in the small angle limit.

For the geometry in the figure, the integrals may be performed trivially

ψ(x) = − ik
2π

eik(r+r0)

rr0

(∫ a

−a
dx′

∫ a

−a
dy′ +

∫ a

−a
dx′

(∫ −a

−b
dy′ +

∫ b

a
dy′
)

+
∫ a

−a
dy′

(∫ −a

−b
dx′ +

∫ b

a
dx′
))

eiqxx
′
eiqyy

′

so that

ψ(x) =
2ik

πqxqy

eik(r+r0)

rr0

[sin(aqx) sin(bqy) + sin(aqy) sin(bqx)− sin(aqx) sin(aqy)]

The corresponding intensity |ψ(x)|2 will have a central maximum with I ∝ (2ab−a2)2,

and the whole pattern will be symmetric to rotations modulo π/2. By Babinet’s

principle we know that the diffraction from a cross-shaped screen has an amplitude,

that when added to ψ(x), is the same as if there was no diffraction at all.

7.4 Radiation from a Reciprocating Disk

A disc of radius a lies in the z = 0 plane and is centered at the origin. It is uniformly

charged with surface charge density σ, and it rotates around the z-axis with an

angular velocity Ω cos(ωt) where Ω and ω are constants. Assuming that the motion

is nonrelativistic, find the fields in the radiation zone, the angular distribution of

radiated power, and the total radiated power.

Solution. Here we will employ the methods developed to treat the radiation of

harmonic current sources. The current of the rotation disc is (in cylindrical coordi-

nates)

J(x, t) = δ(z)σΩ cos(ωt)ρφ̂

or, in complex notation

J(x, t) = δ(z)σΩe−iωtρφ̂ = J(x)e−iωt

Then,

f(θ, φ) =
1

c

∫

V
d3x′ J(x′)e−ikn·x

′
=
σΩ

c

∫ a

0
ρ′dρ′

∫ 2π

0
dφ′ρ′φ̂′e−ikn·x

′
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We can use the azimuthal symmetry of the problem, and assume that n is in the xz

plane. Then n = cos θẑ + sin θx̂, x′ = ρ′ (cos(φ′)x̂ + sin(φ′)ŷ), and φ̂′ = cos(φ′)ŷ −
sin(φ′)x̂. For non-relativistic motion Ωa/c ¿ 1, this allows us to keep only the first

nonvanishing term in the exponential, then

f(θ, φ) = −iπka
4σΩ

4c
sin θφ̂

Hence, in the radiation zone,

B = ik
eikr

r
(n× f) = −πk

2a4σΩ

4c
sin θ

eikr

r
θ̂

and

E = B× n =
πk2a4σΩ

4c
sin θ

eikr

r
φ̂

The power distribution is given by

dP

dΩ
=
ck2

8π

[
|f |2 − |n · f |2

]
=
ck2

8π

π2k2a8σ2Ω2

16c2
sin2(θ)

The total power is obtained by integrating over all solid angles

P =
π2k4σ2Ω2a8

48c
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In this chapter we depart temporarily from the study of electromagnetism to ex-

plore Einstein’s special theory of relativity. One reason for doing so is that Maxwell’s

field equations are inconsistent with the tenets of “classical” or “Galilean” relativity.

After developing the special theory, we will apply it to both particle kinematics and

electromagnetism and will find that Maxwell’s equations are completely consistent

with the requirements of the special theory.
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1 Einstein’s Two Postulates

Physical phenomena may be observed and/or described relative to any of an infinite

number of “reference frames;” we regard the reference frame as being that one relative

to which the measuring apparatus is at rest. The basic claim (or postulate) of rela-

tivity, which predates Einstein’s work by many centuries, is that physical phenomena

should be unaffected by the choice of the frame from which they are observed. This

statement is quite vague. A simple explicit example is a collision of two objects. If

they are seen to collide when observed from one frame, then the postulate of relativity

says that they will be seen to collide no matter what reference frame is used to make

the observation.

1.1 Galilean Invariance

Given that one believes some version of the postulate of relativity, then that person

should, when constructing an explanation of the phenomena in question, make a

theory which will predict the same phenomena in all reference frames. The original

great achievements of this kind were Newton’s theories of mechanics and gravitation.

Consider, for example, F = ma. If the motion of some massive object is observed

relative to two different reference frames, the motion will obey this equation in both

frames provided the frames themselves are not being accelerated. This qualification

leads one to restrict the statement of the relativity principle to unaccelerated or

inertial reference frames.

In order to test the postulate of relativity, one needs a transformation that makes

it possible to translate the values of physical observables from one frame to another.

Consider two frames K and K ′ with K ′ moving at velocity v relative to K.
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K K’
v

vt

x x’

Figure 1: Inerital frames K and K ′

Then the (almost obvious) way to relate a space-time point (t,x) in K to the same

point (t′,x′) in K ′ is via the Galilean transformation

x′ = x− vt and t′ = t, (1)

or so it was believed up to the time of Einstein. Notice that the transformation is

written so that the (space) origins coincide at t = t′ = 0; we shall say simply that the

origins (in space and time) coincide.

In what sense is Newton’s law of motion consistent with the Galilean transforma-

tion? If his equation satisfies the postulate of relativity, then the motion of a massive

object must obey it in both frames; thus

F = ma and F′ = m′a′ (2)

where primed quantities are measured in K ′ and unprimed ones in K. Now, ex-

periments demonstrate (not quite correctly) that the force and mass are invariants,

meaning that they are the same in all inertial frames, so if Newton’s law is to hold in

all inertial frames, then it must be the case that a = a′. The Galilean transformation

provides a way of comparing these two quantities. In Eqs. (1), let x and x′ be the

positions of the mass at, respectively, times t and t′ in frames K and K ′. Then we
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have
dx′

dt′
=
dx

dt
− v (3)

and

a′ =
d2x′

dt′2
=
d2x

dt2
= a, (4)

assuming v is a constant. Thus we find that Newton’s law, Galileo’s transformation,

and the observed motions of massive objects are consistent. 1.

1.2 The difficulty with Galilean Invariance

Now we come to the dilemma posed by Maxwell’s equations. They are not consistent

with the postulate of relativity if one uses the Galilean transformation to relate quan-

tities in two different inertial frames. Imagine the quandary of the late-nineteenth-

century physicist. He had the Galilean transformation and Newton’s equations of mo-

tion, backed by enormous experimental evidence, to support the almost self-evident

principle of relativity. But he also had the new - and enormously successful - Maxwell

theory of light which was not consistent with Galilean relativity. What to do? One

possible way out of the morass was easy to find. It was well-known that wavelike

phenomena, such as sound, obey wave equations which are not properly “invariant”

under Galilean transformations. The reason is simple: These waves are vibrational

motions of some medium such as air or water, and this medium will be in motion

with different velocities relative to the coordinate axes of different inertial frames. If

one understood this, then one could see that although the wave equation takes on

different forms relative to different frames, it did correctly describe what goes on in

every frame and was not inconsistent with the postulate of relativity.

The appreciation of this fact set off a great search to find the medium, called

the “luminiferous ether” or simply the ether, whose vibrations constitute electromag-

1Of course, they aren’t consistent at all if one either makes measurements of extraordinary

precision or studies particles traveling at an appreciable fraction of the speed of light. Neither of

these things was done prior to the twentieth century.
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netic waves. The search (i.e. Michelson and Morely) was, as we know, completely

unsuccessful2, as the ether eluded all seekers.

However, for Einstein, it was the Fizeau experiment (1851) which convinced him

that the ether explaination was incorrect. This experiment looked for a change in

the phase velocity of light due to its passage through a moving medium, in this case

water.

mirrors

Transparent pipe, filled
with flowing water.

light

light

Figure 2: Diagram of Fizeau experiment

Fitzeau found that this phase velocity was given by

vphase =
c

n
± v

(
1− 1

n2

)
experiment

where n is the index of refraction of the water, and v is its velocity. The plus(minus)

sign is taken if the water is moving with(against) the light.

Lets analyze the experiment from a Galilean point of view. The dielecric water

is moving in either the same or opposite direction as the light, and so acts as a

moving source for the light with is refracted (i.e. reradiated by the water molecules).

Nonrelativistically, we just add the velocity v of the source to the wave velocity for

the stationary source. Thus Galilean therory says

vphase =
c

n
± v Galilean theory,

2Or completely successful, if we adopt a somewhat different (Einstein’s) point of view.
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which is clearly inconsistent with experiment.

The stage was now set for Einstein who, in 1905, made the following postulates:

1. Postulate of relativity: The laws of nature and the results of all experiments

performed in a given frame of reference are independent of the translational

motion of the system as a whole.

2. Postulate of the constancy of the speed of light: The speed of light is indepen-

dent of the motion of its source.

The first postulate essentially reaffirmed what had long been thought or believed in

the specific case of Newton’s law, extending it to all phenomena. The second postulate

was much more radical. It did away with the ether at a stroke and also with Galilean

relativity because it implies that the speed of light is the same in all reference frames

which is fundamentally inconsistent with the Galilean transformation.

2 Simultaneity, Separation, Causality, and the Light

Cone

2.1 Simultaneity

The second postulate - disturbing in itself - leads to many additional “nonintuitive”

predictions. For example, suppose that there are sources of light at points A and C

and that they both emit signals that are observed by someone at B which is midway

between A and C.
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A B C

CBA v

B was here
when the signals
were emitted.

Figure 3: Simultaneity depends upon the rest frame of the observer

If he sees the two signals simultaneously and knows that he is equidistant from the

sources, he will conclude quite correctly that the signals were emitted simultaneously.

Now suppose that there is a second observer, B’,who is moving along the line from

A to C and who arrives at B just when the signals do. He will know that the signals

were emitted at some earlier time when he was closer to A than to C. Also, since

both signals travel with the same speed c in his rest frame (because the speeds of the

signals relative to him are independent of the speeds of the sources relative to him),

he will conclude that the signal from C was emitted earlier than that from A because

it had to travel the greater distance before reaching him. He is as correct as the first

observer. Similarly, an observer moving in the opposite direction relative to the first

one will conclude from the same reasoning that the signal from A was emitted before

that from C. Hence Einstein’s second postulate leads us to the conclusion that events,

in this case the emission of light signals, which are simultaneous in one inertial frame

are not necessarily simultaneous in other inertial frames.

2.2 Separation and Causality

If simultaneity is only a relative fact, as opposed to an absolute one, what about

causality? Because the order of the members of some pairs of events can be reversed

by changing one’s reference frame, we must consider whether the events’ ability to
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influence each other can similarly be affected by a change of reference frame. This

question is closely related to a quantity that we shall call the separation between

the events. Given two events A and B which occur at space-time points (t1,x1) and

(t2,x2), we define the squared separation s2
12 between them to be

s2
12 ≡ c2(t1 − t2)2 − |x1 − x2|2. (5)

Let the two events be (1) the emission of an electromagnetic signal at some point in

vacuum and (2) its reception somewhere else. Then, because the signal travels with

the speed c, these events have separation zero, s2
12 = 0. This result will be the same

in any inertial frame since the signal has the same speed c in all such frames.

Now, if we have two events such that s2
12 > 0, then we have a “causal relationship”

in the sense that a light signal can get from the first event to the place where the

second one occurs before it does occur. Such a separation is called timelike. On

the other hand, if s2
12 < 0, then a light signal cannot get from the first event to the

location of the second event before the second event occurs. This separation is called

spacelike. A separation s2
12 = 0 is called lightlike.

It is important to ask whether there is some other type of signal that travels faster

than c and which could therefore produce a causal relationship between events with

a spacelike separation. None has been found and we shall assume that none exists.

Consequently, we claim that events with a timelike separation are such that the earlier

one can influence the later one, because a signal can get from the first to the location

of the second before the latter occurs, but that events with a spacelike separation are

such that the earlier one cannot influence the later one because a signal cannot get

from the first event to the location of the second one fast enough.

2.3 The Light Cone

The question now is whether the character of the separation between two events,

timelike, spacelike, or lightlike, can be changed by changing the frame in which it is
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measured. For simplicity, let the “first” event, A, occur (in frame K) at (t = 0,x = 0)

while the second takes place at some general (t,x) with t > 0. Further, let ct be larger

than |x| so that s2 > 0 and A may influence B. Consider these same two events in

another frame K ′. By an appropriate choice of the origin (in space and time) of this

frame, we can make the first event occur here, just as it does in frame K. The second

event will be at some (t’,x’).

We can picture the relative positions of the two events in space and time by using

a light cone as shown.

future

ct

| |xA

B

elsewhere

past
s < 0

s > 0

2

2

Figure 4: The Light Cone

The vertical axis measures ct; the horizontal one, separation in space, |x|. The two

diagonal lines have slopes ±1. The event B is shown within the cone whose axis is

the ct axis; any event with a timelike separation relative to the origin will be in here.

The question we wish to ask now is whether, by going to another reference frame,

one may cause event B to move across one of the diagonal lines and so wind up in

a place where it cannot be influenced by the event at the origin? The point is that

A can influence any event inside of the “future” cone; it can be influenced by any

event inside of the “past” cone; but it cannot influence, or be influenced by, any event

inside of the “elsewhere” region. If an event B and two reference frames K and K ′

can be found such that the event when expressed in one frame is on the opposite

side of a diagonal from where it is in the other frame, then we have made causality a

frame-dependent concept.

Suppose that we have two such frames. We can effect a transformation from one

to the other by considering a sequence of many frames, each moving at a velocity only
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slightly different from the previous one, and such that the first frame in the sequence

is K and the final one is K ′.
ct

| |xA

B
elsewhere

B’

Figure 5: Evolution of the event B as we evolve from frame K to K ′

If we let this become an infinite sequence with infinitesimal differences in the velocities

of two successive members of the sequence, then the positions of the event B in the

sequence of light cones for each of the frames will form a continuous curve when

expressed in a single light cone. If B crosses from timelike to spacelike in this sequence,

then at some point, B must lie on one of the diagonals. For such an event, the

separation from A is lightlike, or zero.

Consider now two events with zero separation s2
12 = 0. These events can be

coincident with the emission and reception of a light signal. But these events must

be coincident with the emission and reception of the light signal in all frames, by

the postulate of relativity (the first postulate), and so these events must have zero

separation in all inertial frames because of the constancy of the speed of light in all

frames. Consequently, what we are trying to do above is in fact impossible; that is,

one cannot move an event such as B onto or off of the surface of the light cone by

looking at it in a different reference frame, and for this reason, one cannot make it

cross the surface of the light cone. An event in the future will be there in all reference

frames. One in the past cannot be taken out of the past; and one that is “elsewhere”

will be there in any reference frame.
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2.4 The invariance of Separation

With a little more thought we can generalize the conclusion of the previous paragraph

that two events with zero separation in one frame have zero separation in all frames.

In fact, the separation, whatever it may be, between any two events is the same in

all frames. We shall call something that is the same in all frames an invariant; the

separation is an invariant. To argue that this should be the case, suppose that we

have two events which are infinitesimally far apart in both space and time so that we

may write ds12 for s12,

(ds12)2 = c2(t1 − t2)2 − |x1 − x2|2 (6)

in frame K. In another inertial frame K ′ we have separation (ds′12)2, and we have

argued that this is zero if ds2
12 is zero. If K ′ is moving with a small speed relative to

K, the separations in the two frames must be nearly equal which means that they

will be infinitesimal quantities of the same order, or

(ds12)2 = A(ds′12)2 (7)

where A = A(v) is a finite function of v, the relative speed of the frames. Furthermore,

A(0) = 1 since the two frames are the same if v = 0. Now, if time and space are

homogeneous and isotropic, then it must also be true that

(ds′12)2 = A(v)(ds12)2. (8)

Comparing the preceding equations, we see that the only solutions are A(v) = ±1;

the condition that A(0) = 1 means A(v) = 1. Hence

(ds′12)2 = (ds12)2 (9)

which is a relation between differentials that may be integrated to give

(s′12)2 = (s12)2, (10)
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thereby demonstrating that the separation between any two events is an invariant.

The locus of all points with a given separation is a hyperbola when drawn on a light

cone (or a hyperboloid of revolution if more spatial dimensions are displayed in the

light cone).

3 Proper time

Another related invariant is the so-called proper time. This is tied to a particular

object and is the time that elapses in the rest frame of that object. If the object is

accelerated, its rest frame in not an inertial frame.

K

u(t)

K’

v
v’K’’

Figure 6: Instaneous rest frames K ′ and K ′′ of an object with velocity u(t) as

measured in K

It is then useful to make use of the “instantaneous” rest frame of the object, meaning

an inertial frame relative to which the object is not moving at a particular instant

of time. Thus, if in frame K the object has a velocity u(t), its instantaneous rest

frame at time t is a frame K ′ which moves at velocity v = u(t). One may find the

object’s proper time by calculating the time that elapses in an infinite sequence of

instantaneous rest frames.

Consider an object moving with a trajectory x(t) relative to frame K. Between t

and t+ dt it moves a distance dx as measured in K. Let us ask what time dt′ elapses

in the frame K ′ which is the instantaneous rest frame at time t. The one thing we

13



know is that

(ds)2 ≡ c2(dt)2 − (dx)2 = (ds′)2 = c2(dt′)2 − (dx′)2 (11)

where, as usual, unprimed quantities are the ones measured relative to K and primed

ones are measured in K ′. Now, dx′ = 03 because the object is at rest in K ′ at time t.

Hence we may drop this contribution to the (infinitesimal) separation and solve for

dt′:

dt′ =
√

(dt)2 − (dx)2/c2 = dt

√√√√1− 1

c2

(
dx

dt

)2

= dt
√

1− u2/c2 (12)

where u ≡ dx/dt is the object’s velocity as measured in K. Now we may integrate

from some initial time t1 to a final time t2 to find the proper time of the object which

elapses while time is proceeding from t1 to t2 in frame K; that is, we are adding up

all of the time that elapses in an infinite sequence of instantaneous rest frames of the

object while time is developing in K from t1 to t2.

τ2 − τ1 =
∫ t2

t1
dt
√

1− u2(t)/c2. (13)

3.1 Proper Time of an Oscillating Clock

As an example let the object move along a one-dimensional path with u(t) = c sin(2πt/t0)

with t1 = 0 and t2 = t0. This velocity describes a round trip of a harmonic oscillator

with a peak speed of c and a period of t0. The corresponding elapsed proper time is

τ0 =
∫ t0

0
dt
√

1− sin2(2πt/t0) =
∫ t0

0
dt | cos(2πt/t0)| = 2t0/π. (14)

This is smaller than t0 by a factor of 2/π which means that a clock carried by the

object will show an elapsed time during the trip which is just 2/π times what a clock

which remains in frame K will show, provided the acceleration experienced by the

clock which makes the trip doesn’t alter the rate at which it runs.

3More correctly dx′ is a second order differential, and hence may be neglected

14



K K’

v3

6

9 = c sin( 2 t/t )π 0

3

6

9

Figure 7: The proper time for the oscillating frame is 2t/π; which is less than the

elapsed time in frame K.

If this clock is a traveller, then the traveller ages during the trip by an amount which

is only 2/π of the amount by which someone who stays at rest in K ages. One

may wonder whether, from the point of view of the traveller, the one who stayed at

home should be the one who ages more “slowly.” If the calculation is done carefully

(correctly), one finds that the same conclusion is reached; the traveller has in fact

aged less that the stay-at-home.

4 Lorentz Transformations

4.1 Motivation

So far we know the locations (t,x) and (t′,x′) of a space-time point as given in K

and K ′ must be related by

c2t2 − x · x = c2t′2 − x′ · x′, (15)

given that the origins of the coordinate and time axes of the two frames coincide. This

equation looks a lot like the statement that the inner product of a four-dimensional

vector, having components ct and ix, with itself is an invariant. It suggests that the

transformation relating (t,x) and (t′,x′) is an orthogonal transformation in the four-

dimensional space of ct and x. There is an unusual feature in that the transformation

apparently describes an imaginary or complex rotation because the inner product,
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or length, that is preserved is c2t2 − x · x as opposed to c2t2 + x · x. Recall that a

rotation in three dimensions around the ε3 direction by angle φ can be represented

by a matrix

a =




cosφ − sinφ 0

sinφ cosφ 0

0 0 1




(16)

so that

x′i =
3∑

j=1

aijxj; (17)

that is,

x′1 = cosφx1 − sinφx2

x′2 = sinφx1 + cosφx2

x′3 = x3.

(18)

For an imaginary φ, φ = iη, cosφ → cosh η, and sinφ → −i sinh η. Further, let us

reconstruct the vector as y = (x1, ix2, ix3) and make the transformation

y′i =
∑

j

aijyj. (19)

The result, expressed in terms of components of x, is

x′1 = cosh η x1 − sinh η x2

x′2 = − sinh η x1 + cosh η x2

x′3 = x3;

(20)

these are such that

x′21 − x′22 − x′23 = x2
1 − x2

2 − x2
3 (21)

since cosh2(η)− sinh2(η) = 1, so we have succeeded in constructing a transformation

that produces the right sort of invariant. All we have to do is generalize to four

dimensions.
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4.2 Derivation

Let’s begin by introducing a vector with four components, (x0, x1, x2, x3) where x0 =

ct and the xi with 1 = 1, 2, 3 are the usual Cartesian components of the position

vector. Then introduce ~y ≡ (x0, ix) which has the property that

~y · ~y = x2
0 − x · x. (22)

This inner product is supposed to be an invariant under the transformation of x and

t that we seek. The transformation in question is a rotation through an imaginary

angle iη that mixes time and one spatial direction, which we pick to be the first (y1

or x1) without loss of generality. The matrix representing this rotation is

a =




cosh η i sinh η 0 0

−i sinh η cosh η 0 0

0 0 1 0

0 0 0 1



. (23)

Now operate with this matrix on ~y to produce ~y′. If we write the components of the

latter as (x′0, ix
′), we find the following:

x′0 = cosh η x0 − sinh η x1

x′1 = − sinh η x0 + cosh η x1

x′2 = x2

x′3 = x3.

(24)

It is a simple matter to show from these results that x2
0 − x · x is an invariant, i.e.,

x2
0 − x · x = x′20 − x′ · x′ (25)

which means we have devised an acceptable transformation in the sense that it pre-

serves the separation between two events.

But what is the significance of η? Let us rewrite sinh η as cosh η tanh η. Then we

have, in particular,

x′0 = cosh η (x0 − tanh η x1)

x′1 = cosh η (x1 − tanh η x0).
(26)
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The second of these is

x′1 = cosh η (x1 − tanh η ct). (27)

Suppose that we are looking at an object at rest at the origin of K ′, and the space-

time point (t,x) is this object’s location. Then x′1 = 0 for all t′. As seen from K, the

object is at x1− vt given that v, the velocity of the object (and of K ′) relative to K,

is parallel to ε1.

K K’

ε1

ε1v

ε1

Figure 8: Coordinates for our Lorentz transform.

This is consistent with Eq. (27) provided

tanh η ≡ v

c
≡ β (28)

where β is defined as the speed v relative to the speed of light. From this relation,

we find further that

cosh η = 1/
√

1− β2 ≡ γ; (29)

this expression defines γ, a parameter that comes up repeatedly in the special theory

of relativity.

Our determination of the transformation, called the Lorentz transformation4, is

now complete. We find that, given a frame K ′ moving at velocity v = vε1 relative to

4H. A. Lorentz devised these transformations prior to Einstein’s development of the special theory

of relativity; they had in fact been used even earlier by Larmor and perhaps others. Furthermore,

it was known that Maxwell’s equations were invariant under these transformations, meaning that if

these are the right transformations (as opposed to the Galilean transformations), Maxwell’s equations

are eligible for “law of nature” status.
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K, a space-time point (t,x) in K becomes, in K ′, the space-time point (t′,x′) with

x′0 = γ(x0 − βx1) x′1 = γ(x1 − βx0) x′2 = x2 x′3 = x3. (30)

The inverse transformation can be extracted from these equations in a straightforward

manner; it may also be inferred from the fact that K is moving at velocity −v relative

to K ′ which tells us immediately that

x0 = γ(x′0 + βx′1) x1 = γ(x′1 + βx′0) x2 = x′2 x3 = x′3. (31)

4.3 Elapsed Proper Time Revisited

Let us try to use this transformation to calculate something. First, we revisit the

proper time. For an object at rest in K ′, x′ does not change with time. Also, from

our transformation,

ct = γ(ct′ + βx′1), (32)

The differential of this transformation, making use of the fact that the object is

instantaneously at rest in K ′, gives, dt = γdt′ since dx′1 is second-order in powers of

dt′. Stated in another fashion, we are considering the transformation of two events

or space-time points. They are the locations of the object at times t′ and t′ + dt′.

Because the object is at rest in K ′ at time t′, its displacement dx′ during the time

increment dt′ is of order (dt′)2 and so may be discarded. The corresponding elapsed

time dt in K is thus found to be dt = γdt′, using the Lorentz transformations of the

two space-time points. This equation may also be written as

dt′ = dt/γ =
√

1− v2/c2dt. (33)

The left-hand side of this equation is the elapsed proper time of the object while dt

is the elapsed time measured by observers at rest relative to K. If we introduce u,

the velocity of the object relative to K, and notice that u = v at time t, then we can

write dt′ in terms of u(t) as

dt′ =
√

1− |u(t)|2/c2dt, (34)
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where now dt′ in the elapsed proper time of the object which moves at velocity u

relative to frame K. We can integrate this relation to find the finite elapsed proper

time during an arbitrary time interval (in K),

τ2 − τ1 =
∫ t2

t1
dt
√

1− |u(t)|2/c2. (35)

4.4 Proper Length and Length Contraction

Next, we shall examine the Fitzgerald-Lorentz contraction. Define the proper length

of an object as its length, measured in the frame where it is at rest. Let this be L0,

and let the rest frame be K ′, moving at the usual velocity (v = vε1) relative to K.

K K’

ε1

ε1v

ε1

0L

Figure 9: Length contraction occurs along the axis parallel to the velocity.

The relative geometry is shown in the figure. The rod, or object, is positioned in K ′

so that its ends are at x′1 = 0, L0. They are there for all t′. In order to find the length

of the rod in K, we have to measure the positions of both ends at the same time t

as measured in K. We can find the results of these measurements from the Lorentz

transformation

x′1 = γ(x1 − βx0). (36)

Use this relation first with x′1 equal to 0 and then with x′1 = L0, using the same time

x0 in both cases, and take the difference of the two equations so obtained. The result

is

L0 = γ(x1R − x1L) ≡ γL (37)

where x1R and x1L are the positions of the right and left ends of the rod at some
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particular time, or x0. The difference of these is L, the length of the rod as measured

in frame K.

Our result for L can be written as

L = L0/γ =
√

1− β2L0. (38)

This length is smaller than L0 which means that the object is found (is measured)

in K to be shorter than its proper length or its length in the frame where it is at

rest. Notice, however, that if we did the same calculation for its length in a direction

perpendicular to the direction of v, we would find that it is the same in K as in K ′.

Consequently the transformation of the object’s volume is

V = V0/γ =
√

1− β2 V0 (39)

where V0 is the proper volume or volume in the rest frame, and V is the volume in a

frame moving at speed βc relative to the rest frame.

5 Transformation of Velocities

Because we know how x and t transform, we can determine how anything that involves

functions of these things transforms. For example, velocity. Let an object have

velocity u in K and velocity u′ in K ′ and let K ′ move at velocity v relative to K.

We wish to determine how u′ is related to u. In K ′, the object moves a distance

dx′ = u′dt′ in time dt′. A similar statement, without any primed quantities, holds

in K. The infinitesimal displacements in time and space are related by Lorentz

transformations:

dt = γ(v)
(
dt′ + (v/c2)dx′

)
dx = γ(v)(dx′+vdt′) dy = dy′ dz = dz′,

(40)

where we have let v be along the direction of x1 as usual. Taking ratios of the

displacements to the time increment, we have

ux =
dx

dt
=

dx′ + vdt′

dt′ + (v/c2)dx′
=

dx′/dt′ + v

1 + (v/c2)(dx′/t′)
=

u′x + v

1 + vu′x/c
2
, (41)
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uy =
1

γ(v)

u′y
1 + vu′x/c

2
, (42)

and

uz =
1

γ(v)

u′z
1 + vu′x/c

2
. (43)

These results may be summarized in vectorial form:

u‖ =
u′‖ + v

1 + v · u′/c2
u⊥ =

u′⊥
γ(v)(1 + v · u′/c2)

(44)

where the subscripts “‖” and “⊥” refer respectively to the components of the velocities

u and u′ parallel and perpendicular to v. Notice too that

u‖ =
(

u · v
v2

)
v and u⊥ = u− u‖ = u−

(
u · v
v2

)
v. (45)

It is sometimes useful to express the transformations for velocity in polar coordi-

nates (u, θ) and (u′, θ′) such that

u‖ = u cos θ and u⊥ = u sin θ, (46)

etc.; the appropriate expressions are

tan θ =
u′ sin θ′

γ(v)(u′ cos θ′ + v)
and u =

[u′2 + v2 + 2u′v cos θ′ − (vu′ sin θ′/c)2]1/2

1 + u′v cos θ′/c2
.

(47)

K K’

ε1

ε1v
θ

θ’ u

u’

Figure 10: Frames for velocity transform.

The inverses of all of these velocity transformations are easily found by appropriate

symmetry arguments based on the fact that the velocity of K relative to K ′ is just

−v.
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In it interesting that the velocity transformations are, in contrast to the ones for

x and t, nonlinear. They must be nonlinear because there is a maximum velocity

which is the speed of light; combining two velocities, both of which are close to, or

equal to, c, cannot give a velocity greater than c. A linear transformation would

necessarily allow this to happen, so a nonlinear transformation is required. To see

how the transformations rule out finding a frame where an object moves faster than c,

let us consider the transformation of a velocity |u′| = c. From the second of Eqs. (47),

we see that

u =
c2 + v2 + 2cv cos θ′ − v2(1− cos2 θ′)]1/2

1 + v cos θ′/c
= c

[(1 + v cos θ′/c)2]1/2

1 + v cos θ′/c
= c. (48)

Thus do we find what we already knew: If something moves at speed c in one frame,

then it moves at the same speed in any other frame. More generally, if we had used

any u′ ≤ c and v ≤ c, we would have recovered a u ≤ c.

5.1 Aberration of Starlight

An interesting example of the application of the velocity transformation is the ob-

served aberration of starlight. Suppose that an observer is moving with speed v at

right angles to the direction of a star that he is watching. If a Galilean transformation

is applied to the determination of the apparent direction of the star, one finds that

it is seen at an angle φ away from its true direction where tanφ = v/c.

Sol

planet

v
star c

φ

tan( ) =v/cφ (Galilean)
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Figure 11: Due to the finite velocity of light, a star is seen an angle φ away from

its true direction.

One can measure this angle by waiting six months. The velocity v is provided by

the earth’s orbital motion; six months later it is reversed and if the observer then

looks for the same star, it position will have shifted by 2φ, at least according to the

Galilean transformation.

But that prediction is not correct. Consider what happens if the Lorentz trans-

formation is used to compute the angle φ. Using Eq. (47), we see that the angle θ at

which the light from the star appears to be headed in the frame K of the observer is

tan θ =
c sin θ′

√
1− v2/c2

c(cos θ′ + v/c)
. (49)

where θ′ is its direction in the frame K ′ which is the rest frame of the sun.

φ

θ θ’

v

K’K

=π/2

φ = π/2 − θ

Figure 12: Coordinates for stargazing.

Now suppose that v is at π/2 radians to the direction of the light’s motion in frame

K ′ so that θ′ = π/2. Then we find tan θ = c/γ(v)v. To compare with the prediction

of the Galilean transformation, we need to find the angle φ, which is to say, π/2− θ.
From a trigonometric identity, we have

tan θ =
tan(π/2)− tanφ

1 + tan(π/2) tanφ
=

1

tanφ
, (50)

and so

tanφ = vγ(v)/c or sinφ = v/c. (51)
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This is the correct answer; the tangent of the angle φ differs from the prediction of

the Galilean transformation by a factor of γ which is second-order in powers of v/c.

6 Doppler Shift

The Doppler shift of sound is a well-known and easy to understand phenomenon. It

depends on the velocities of the source and observer relative to the medium in which

the waves propagate. For electromagnetic waves, this medium does not exist and so

the Doppler shift for light takes on its own special - and relatively simple! - form.

Suppose that in frame K there is a plane wave with wave vector k and frequency

ω. Put an observer at some point x and set him to work counting wave crests as they

go past him.

1 2 3 4

K

Figure 13: An observer counts wave crests.

Let him begin with the crest which passes the origin at t = 0 and continue counting

until some later time t. How many crests does he count? We can decide by first

determining when he starts. The starting time is t0 = (k · x)/kvw where vw is the

velocity of the wave in frame K. The observer counts from t0 to t and so counts n

crests where

n = (t− t0)/T ; (52)

T is the period of the wave, T = 2π/ω. Hence,

n =
1

2π

(
ωt− ω

kvw
k · x

)
=

1

2π
(ωt− k · x), (53)

since ω = vwk.
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Figure 14: Frame alignments for the Doppler problem.

Now let the same measurement be performed by an observer at rest at a point x′

in frame K ′ which moves at v relative to K. We choose x′ in a special way; it must

be coincident with x at time t (measured in K). This observer also counts crests,

starting with the one that passed his origin at time t′ = 0 and stopping with the one

that arrives when he (the second observer) is coincident with the first observer. Given

the usual transformations, the four-dimensional coordinate origins coincide, and so

both observers count the same number of crests. Repeating the argument given for

the number counted by the first observer, we find that the number counted by the

second observer can be written as

n =
1

2π
(ω′t′ − k′ · x′) (54)

where ω′ and k′ are the frequency and wave vector of the wave in K ′ and (t′,x′) is

the spacetime point that transforms into (t,x). Thus we find

ωt− k · x = ω′t′ − k′ · x′. (55)

The significance of this relation is that the phase of the wave is an invariant. Further

it appears to be the inner product of (ct, ix) and (ω/c, ik). Because we know how

(t,x) transforms to (t′,x′), we can figure out how (ω/c, ik) transforms to (ω ′/c, ik′).

Let ω/c ≡ k0 and ω′/c ≡ k′0 and consider Eq. (55) with the transformations Eq. (30)

used for t′ and x′:

ωt− k1x1 − k2x2 − k3x3 = ω′γ(t− βx1/c)− k′1γ(x1 − βct)− k′2x2 − k′3x3. (56)
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Because t and x are completely arbitrary, we may conclude that

ω = γ(ω′ + βck′1) k1 = γ(k′1 + βω′/c) k2 = k′2 k3 = k′3, (57)

or

k0 = γ(k′0 + βk′1) k1 = γk′1 + βk′0) k2 = k′2 k3 = k′3. (58)

We recognize the form of these transformations; they tell us that (k0,k) transforms

in the same way as (x0, ix), i.e., via the Lorentz transformation.

Let’s spend a few minutes thinking about the conditions under which our result

is valid. We assumed when making the argument that we have a plane wave in both

K and K ′ which means, more or less, that we are giving Maxwell’s equations Law of

Nature status since we assumed that the relevant equation of motion produces plane

wave solutions in both frames. In fact, our results are not correct for waves in general,

because many types of waves will not have this property (plane waves remain plane

waves relative to all reference frames if they are plane waves relative to one frame).

But they are correct for electromagnetic waves in vacuum.

Finally, let us look at an alternative form for our transformations. Let

k′ = k′(cos θ′ ε1 + sin θ′ ε2); (59)

the component of k′ perpendicular to ε1 is defined to be in the direction of ε2. Further,

k′ = ω′/c. Then the transformation equations may be used to produce the relations

k1 = γk′(cos θ′ + β) k2 = k′ sin θ′ ε2 and ω = γω′(1 + β cos θ′) (60)

where k2 is the component of k which is perpendicular to ε1. ¿From these results it

is easy to show that ω − ck, no surprise, and that

cos θ =
cos θ′ + β

1 + β cos θ′
; (61)

θ is the angle that k makes with the direction of v, (or ε1); that is,

k = k(cos θ ε1 + sin θ ε2). (62)

27



6.1 Stellar Red Shift

The last of Eqs. (60) in particular may be used to describe the Doppler shift of the

frequency of electromagnetic waves in vacuum. A well-known case in point is the

“redshift” of light from distant galaxies.

K K’

v

star
earth

light

Figure 15: Light from receding stars in K ′ is redshifted when seen in K.

Given an object receding from the observer in K and emitting light of frequency ω ′

in its own rest frame, K ′, we have cos θ′ ≈ −1 and

ω = γω′(1− β) = ω′
√

1− β
1 + β

. (63)

For, e.g., β = 1/2, ω = ω′/
√

3. The observer sees the light as having much lower

frequency than that with which it is emitted; it is “red-shifted.”

7 Four-tensors and all that

5 It is no accident that (x0,x) and (k0,k) transform from K to K ′ in the same way.

They are but two of many sets of four objects or elements that have this property.

They are called four-vectors. More generally, there are sets of 4p elements, with

p = 0, 1, 2..., which have very similar transformation properties and which are called

four-tensors of rank p. The better to manipulate them when the time comes, let us

spend a little time now learning some of the basics of tensor calculus.

5The introduction to tensor calculus given in this section is largely drawn from J. L. Synge and

A. Schild, Tensor Calculus, (University of Toronto Press, Toronto, 1949).
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Consider the usual frames K and K ′ with coordinates x̄ and x̄′, respectively; x̄

stands for (x0,x) and similarly for x′. Let there be some transformation from one

frame to the other which gives

x̄′ = x′(x̄), (64)

with an inverse,

x̄ = x(x̄′). (65)

These transformations need not in general be linear.

A contravariant vector or rank-one tensor is defined to be a set of four quan-

tities or elements aα, α = 0, 1, 2, 3, which transform from K to K ′ according to the

rule

a′α =
3∑

β=0

∂x′α

∂xβ
aβ ≡ Aαβa

β. (66)

This equation serves to define Aα
β,

Aαβ ≡
∂x′α

∂xβ
; (67)

we have also introduced in the last step the summation convention that a Greek

index, which appears in a term as both an upper and a lower index, is summed from

zero to three.

For any contravariant vector or tensor, we are going to introduce also a covariant

vector or tensor whose components will be designated by subscripts. Define a co-

variant vector or rank-one tensor as a set of four objects bα, α = 0, 1, 2, 3, which

transform according to the rule

b′α =
3∑

β=0

∂xβ

∂x′α
bβ ≡ A β

α bβ (68)

where we have defined

A β
α ≡

∂xβ

∂x′α
. (69)

The generalization to tensors of ranks other than one is straightforward. For

example, a rank-two contravariant tensor comprises a set of sixteen objects T αβ which
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transform according to the rule

T ′αβ = AαγA
β
δT

γδ (70)

and a rank-two covariant tensor has sixteen elements Tαβ which transform according

to the rule

T ′αβ = A γ
α A

δ
β Tγδ. (71)

Mixed tensors can also be of interest. The rank-two mixed tensor T̄ is a set of sixteen

elements T αβ which transform according to

T ′αβ = AαγA
δ
β T

γ
δ. (72)

Generalizations follow as you would expect.

The inner product of ā and b̄ can be6 defined as

ā · b̄ ≡ bαa
α. (73)

Consider the transformation properties of the inner product:

ā′ · b̄′ = a′αb′α = A γ
α A

α
δbγa

δ; (74)

however,

A γ
α A

α
δ =

∂xγ

∂x′α
∂x′α

∂xδ
=
∂xγ

∂xδ
= δγδ (75)

where

δγδ ≡





1 γ = δ

0 γ 6= δ
(76)

Hence

ā′ · b̄′ = δγδ a
δbγ = aγbγ = ā · b̄. (77)

The inner product is an invariant, also known as a scalar or rank-zero tensor.

Notice that when we wrote the Kronecker delta function, we gave it a superscript

and subscript as though it were a rank-two mixed tensor. It in fact is one as we can

6We will present a different but equivalent definition later.
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show by transforming it from one frame to another. Let δβα be defined as above in the

frame K and let it be defined to be a mixed tensor. Then we know how it transforms

and so can find it in a different frame K ′ (where we hope it will turn out to be the

same as in frame K:

δ′αβ = AαγA
δ
β δ

γ
δ = AαγA

γ
β =

∂x′α

∂xγ
∂xγ

∂x′β
=
∂x′α

∂x′β
= δαβ (78)

which means that the thing we defined to be a rank-two mixed tensor is remains the

same as the Kronecker delta function in all frames.

The operation which enters the definition of the inner product is to set a con-

travariant and a covariant index equal to each other and then to sum them. This

operation is called a contraction with respect to the pair of indices in question. It

reduces the rank of something by two. That is, the sixteen objects bαa
β form a

rank-two tensor, as may be shown easily by checking how it transforms (given the

transformation properties of bα and aβ). After we perform the contraction, we are

left with a rank-zero tensor.

7.1 The Metric Tensor

Now think about how we can use these things in relativity. We have a fundamental

invariant which is the separation between two events; specifically,

(ds)2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 (79)

is an invariant,

(ds)2 = (ds′)2. (80)

We would like to write this as an inner product dx̄ · dx̄, where

dx̄ · dx̄ = dxαdx
α. (81)

However, in order that we can do so, it must be the case that the covariant four-vector

dx̄ have the components

dx0 = dx0 and dxi = −dxi for i = 1, 2, 3. (82)
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In general, the components of the contravariant and covariant versions of a four-

vector are related by the metric tensor ḡ which is a rank-two tensor that can be

expressed in covariant, contravariant, or mixed form (just like any other tensor of

rank two or more). In particular, the covariant metric tensor is defined for any

system by the statement that the separation can be written as

(ds)2 ≡ gα,βdx
αdxβ, (83)

plus the statement that it is a symmetric tensor.

How do we know that this is a tensor? From the fact that its double contraction

with the contravariant vector x̄ is an invariant and from the fact that it is symmetric,

one can prove that it is a rank-two covariant tensor.7

In three-dimensional Cartesian coordinates in a Euclidean space such as we are

accustomed to thinking about, the covariant metric tensor is just the unit tensor.

In curvilinear coordinates (for example, spherical coordinates) it is some other (still

simple) thing. For the flat four-dimensional space that one deals with in the special

theory of relativity, we can see from Eqs. (79) and (83), and from the condition that

ḡ is symmetric, that it must be

g00 = 1, gii = −1, i = 1, 2, 3, and gαβ = 0, α 6= β. (84)

Next, we introduce the contravariant metric tensor. First, we take the determinant

of the matrix formed by the covariant metric tensor,

g ≡ det[gαβ] = −1 (85)

Then one introduces the cofactor, written as ∆αβ, of each element gαβ in the matrix.

The elements of the contravariant metric tensor are defined as

gαβ ≡ ∆αβ

g
. (86)

7See, e.g., Synge and Schild.
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We need to demonstrate that this thing is indeed a contravariant tensor. From the

standard definitions of the determinant and cofactor, we can write

gαβ∆αγ = gβα∆γα = δγβg (87)

from which it follows that

gαβg
αγ = δγβ = gβαg

γα. (88)

When contracted (as above) with a covariant tensor, the thing we call a contravariant

tensor produces a mixed tensor. In addition, it is symmetric which follows from the

symmetry of the covariant metric tensor. This is sufficient to prove that the elements

gαβ do form a contravariant tensor.

It is easy to work out the elements of the contravariant metric tensor if one knows

the covariant one; for our particular metric tensor they are the same as the elements

of the covariant one.

The metric tensor is used to convert contravariant tensors or indices to covariant

ones and conversely. Consider for example the elements xα defined by

xα = gαβx
β. (89)

It is clear that the result is a covariant tensor of rank one. It is the covariant version

of the position four-vector x̄ and has elements (x0,−x). Similarly, we may recover

the contravariant version of a four-vector or tensor from the covariant version of the

same tensor by using the contravariant metric tensor:

xα = gαβxβ = gαβgβγx
γ = δαγ x

γ = xα. (90)

More generally, one may raise or lower as many indices as one wishes by using

the appropriate metric tensor as many times as needed. Among other things, we can

thereby construct a mixed metric tensor,

gβα = gαγg
γβ; (91)
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Using the explicit components of the covariant and contravariant metric tensors, one

finds that this is precisely the unit mixed tensor, i.e., the Kronecker delta,

gβα = δβα (92)

Finally, we earlier defined the inner product of two vectors by contracting the

covariant version of one with the contravariant version of the other; we can now see

that there are numerous other ways to express the inner product:

ā · b̄ = aαbα = gαγa
αbγ = gαγaγbα; (93)

In particular, the separation is now seen to be the same as x̄ · x̄,

(s)2 = gαβx
αxβ = xαxα. (94)

There is one piece of unfinished business in all of this. We have defined a metric

tensor; it was defined so that the separation is an invariant. We still do not know (if

we assume we haven’t as yet learned about Lorentz transformations) the components

Aαβ and A α
β of the transformation matrices. Just any old transformations won’t

do; it has to be consistent with our metric tensor, i.e., with the condition that the

separation is invariant. This implies some conditions on the transformations. We

shall return to this point later.

7.2 Differential Operators

Differential operators also have simple transformation properties. Consider the basic

example of the four operators ∂/∂xα. The transformation of this from one frame to

another is found from the relation

∂

∂x′α
=
∂xβ

∂x′α
∂

∂xβ
≡ A β

α

∂

∂xβ
. (95)

The components of this operator transform in the same way as the components of

a covariant vector which means that the four differential operators ∂/∂xα form a
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covariant four-vector. That being the case the elements

A β
α =

∂xβ

∂x′α
(96)

are the elements of a rank-two mixed tensor, and that is why we have all along used

for them notation which suggests that they are components of such a tensor.

It is equally true that ∂/∂xα is a contravariant four-vector operator. Consider

∂

∂x′α
=
∂xβ
∂x′α

∂

∂xβ
= gβγ

∂xγ

∂x′δ
∂x′δ

∂x′α

∂

∂xβ

= gβγg
δαA γ

δ

∂

∂xβ
= Aαβ

∂

∂xβ
. (97)

Since the operator transforms in the same way as a contravariant four-vector, it is a

contravariant four-vector!

Either of these four-vectors is called the four-divergence. Let’s introduce some

new notation for them:

∂α ≡
∂

∂xα
(98)

is the way we shall write a component of the covariant four-divergence, and

∂α ≡ ∂

∂xα
(99)

is the way we write a component of the contravariant four-divergence.

We can construct some interesting invariants using the four-divergence. For ex-

ample, the inner product of one of them with an four-vector produces an invariant,

∂αAα = ∂αA
α =

∂A0

∂x0
+∇ ·A. (100)

Also, the four-dimensional Laplacian

∂α∂α =
∂2

∂x02 −∇ · ∇ ≡ 2 (101)

is an invariant, or scalar, operator.
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7.3 Notation

It is natural to present four-vectors using column vectors and rank-two tensors using

matrices. Thus a four-vector such as x̄ becomes

x̄ =




x0

x1

x2

x3



, (102)

and its transpose is

x̃ = (x0 x1 x2 x3). (103)

Using this notation, we can write, e.g., the inner product of two vectors as

ā · b̄ = aαb
α = gαβa

αbβ = ãḡb̄. (104)

Notice however, that if ã were the transpose of the covariant vector, we would write

the inner product as ãb̄. The notation leaves something to be desired. Be that as it

may, we can write a transformation as

x′α = Aαβx
β or x̄′ = Āx̄. (105)

We will only make use of this abbreviated notation when it is necessary to cause lots

of confusion.

8 Representation of the Lorentz transformation

Our next task is to find a general transformation matrix8 Ā. As pointed out earlier,

the basic fact we have to work with is that the separation is invariant,

gαβdx
αdxβ = gαβdx

′αdx′β. (106)

8This could be the fully contravariant version, the fully covariant version or one of the two mixed

versions. If we know one of them, we know the others because we can lower and raise indices with

the metric tensor.

36



Knowing this, and knowing also that

x′α = Aαβx
β, (107)

it is a standard and straightforward exercise in linear algebra to show that

det |A| = ±1. (108)

Just as in three dimensions, there are proper and improper transformations which

satisfy our requirements. The proper ones may be arrived at via a sequence of in-

finitesimal transformations starting from the identity, Aα
β = gαβ . All transformations

generated in this manner have determinant +1. The improper ones cannot be con-

structed in this way, even though some of them can have determinant +1. An example

is Aαβ = −gαβ ; it has determinant +1 but is an improper transformation and cannot

be arrived at by a sequence of infinitesimal transformations.

In this investigation we shall construct proper Lorentz transformations and shall

build them from infinitesimal ones. Let’s start by writing

Aαβ = δαβ + ∆ωαβ, (109)

where ∆ωαβ is an infinitesimal. From the invariance of the interval, one can easily

show that of the sixteen components ∆ωαβ, the diagonal ones must be zero and the

off-diagonal ones must be such that

∆ωαβ = −∆ωβα; (110)

notice that both indices are now contravariant, in contrast to the previous equation.

If we write the preceding relation with one contravariant and one covariant index, we

will find the same − sign if the two indices are 1, 2, or 3, and there will be no −
if one index is 0 and the other is one of 1, 2, or 3. Evidently, it is simpler to use a

completely contravariant form. 9

9The point is, we can use any form for the tensor that we like because all forms can be found

from any single one. Therefore, it makes sense to use that form in which the relations are simplest,

if there is one.
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These results demonstrate that we have just six independent infinitesimals. We

may take them to be a set of six numbers without indices if we introduce suitable

basis matrices. One such set of matrices is given by

(K1)αβ =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0




; (K2)αβ =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0




(111)

(K3)αβ =




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0




; (S1)αβ =




0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0




(112)

(S2)αβ =




0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0




; (S3)αβ =




0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0



. (113)

The most general infinitesimal transformation can now be written as

Ā = ḡ −∆ω · S̄−∆ζ · K̄; (114)

where ∆ω contains three independent infinitesimal components as does ∆ζ; these

are, respectively, just infinitesimal coordinate rotations and infinitesimal relative ve-

locities.

Powers of the matrices K̄i and S̄i have some very special properties. For example,

(K̄1)2 =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




and (S̄1)2 =




0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 −1




; (115)
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consequently, powers of the matrices tend to repeat; the periods of these cycles are

two and four for the K̄’s and the S̄’s, respectively so that, for any m and integral n,

(K̄i)
m+2n = (K̄i)

m and (S̄i)
m+4n = (S̄i)

m. (116)

We have seen above what is the second power in each case; for the K̄’s, the third

power is the same as the first and for the S̄’s, one finds the negative of the first,

(S̄i)
3 = −S̄i; (117)

and finally, the fourth power of one of the S̄’s has two 1’s on the diagonal, much like

the even powers of the K̄’s.

We can construct the matrix for a finite transformation by making a sequence of

many infinitesimal transformations. To this end consider some finite ω and ζ and

relate them to the infinitesimals by

∆ω = ω/n and ∆ζ = ζ/n, (118)

where n is a very large number. Now apply Ā (given by Eq. (114)) to x̄ n times,

thereby producing some x̄′:

x′α =

(
g − ω · S

n
− ζ ·K

n

)α

α1

(
g − ω · S

n
− ζ ·K

n

)α1

α2

...

(
g − ω · S

n
− ζ ·K

n

)αn−1

αn

xαn

(119)

We want to take the n→∞ limit of this expression. In general,

lim
n→∞

(
1 +

a

n

)n
= ea, (120)

as one can show by, e.g., considering the logarithm. Applying this fact, we find that

x′α = Aαβx
β (121)

where

Aαβ =
(
e−ω·S−ζ ·K

)α

β
. (122)
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We can get a little understanding of what this equation is telling us by considering

some special cases which are also familiar. For example, let ω = 0 and ζ = ζε1. Then

Ā = e−ζK̄1 = 1− ζK̄1 +
ζ2

2
K̄2

1 −
ζ3

6
K̄3

1 + ...

= 1− K̄1

(
ζ +

ζ3

6
+ ...

)
+ K̄2

1

(
1 +

ζ2

2
+ ...

)
− K̄2

1

= 1− K̄2
1 + (cosh ζ)K̄2

1 − (sinh ζ)K̄1 (123)

or

Aαβ =




cosh ζ − sinh ζ 0 0

− sinh ζ cosh ζ 0 0

0 0 1 0

0 0 0 1




(124)

which should be familiar. Similarly, if ω = ωε1 with ζ = 0, one finds

Aαβ =




1 0 0 0

0 1 0 0

0 0 cosω sinω

0 0 − sinω cosω




(125)

which we recognize as a simple rotation around the x-axis.

Our general result for Ā allows us to find the transformation matrix for any

combination of ω and ζ. In particular, one can show that for ω = 0 and general ζ

such that β has magnitude tanh ζ and is in the direction of ζ. Writing the components

of β as βi, i = 1, 2, 3, we find that Ā is

Aαβ =




γ −γβ1 −γβ2 −γβ3

−γβ1 1 +
(γ−1)β2

1

β2
(γ−1)β1β2

β2
(γ−1)β1β3

β2

−β2
(γ−1)β1β2

β2 1 +
(γ−1)β2

2

β2
(γ−1)β2β3

β2

−γβ3
(γ−1)β1β3

β2
(γ−1)β2β3

β2 1 +
(γ−1)β2

3

β2



, (126)

in case anybody wanted to know.
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9 Covariance of Electrodynamics

In this section we are going to demonstrate the consistency of the Maxwell equations

with Einstein’s first postulate. But first we must decide more precisely what it means

for a “law of nature” to be “the same” in all inertial frames. The relevant statement

is this: an equation expressing a law of nature must be invariant in form under

Lorentz transformations. When this is the case, the equation is said to be Lorentz

covariant or simply covariant, which has nothing to do with the definition of covariant

as opposed to contravariant tensors. And what is meant by the phrase “invariant in

form” which appears above? It means that the quantities in the equation must

transform in well-defined ways (as particular components of some four-tensors, for

example) and that when terms are grouped in an appropriate manner, each group

transforms in the same way as each of the other groups. In order to determine whether

the Maxwell equations can have this property, we must first figure out how each of

the physical objects in those equations, that is, E, B, ρ, and J, transforms.

9.1 Transformations of Source and Fields

9.1.1 ρ and J

Let’s start with the electric charge. It is an experimental observation that charge is

an invariant. If a system has a particular charge q as measured in one frame, then it

has the same charge q when the measurements are made in a different frame. From

this (experimental) fact and things we already know, we can determine how charge

density and current density transform.
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K K’

vρ( )x

Figure 16: The charge density transforms like time.

Suppose that we have a system with charge density ρ, as measured in K, and ρ′ as

measured in K ′. Then in volume d3x in K, there is charge dq where

dq = ρd3x = ρd3x dt/dt (127)

where we have introduced an infinitesimal time element dt as well. Similarly, in K ′,

the charge dq′ in the volume element d3x′ can be written as

dq′ = ρ′d3x′dt′/dt′. (128)

Now, if d3x′ is what d3x transforms into (that it, if it is the same volume element

as d3x), then charge invariance implies that dq = dq′. Further, if dt′ is what dt

transforms into, then we can say that

c d3x′dt′ ≡ d4x′ =

∣∣∣∣∣
∂(x′0, x′1, x′2, x′3)

∂x0, x1, x2, x3)

∣∣∣∣∣ d
4x ≡ | det[Ā]|d4x. (129)

But the determinant of Ā is unity, so we have shown that a spacetime volume element

is an invariant,

d4x = d4x′. (130)

As applied to the present inquiry, we use this statement along with the equality of

dq and dq′ (and the invariance of c) to conclude that

ρ/dt = ρ′/dt′. (131)

This relation can be true only if the charge density transforms in the same way as

the time; that is, it must be the 0th component of a four-vector.
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Where are the other three components of this four-vector? They are the current

density. Since J is ρ times a velocity, which is in turn the ratio dx/dt, we can write

J = ρu = ρ
dx

dt
; (132)

in view of the fact that ρ/dt is an invariant, J must transform in the same way as

dx, which is to say, as the 1,2,3 components of a (contravariant) four-vector. Hence

we have the contravariant current four-vector

Jα = (cρ,J); (133)

the covariant current four-vector is

Jα = (cρ,−J). (134)

Knowing this, we are not surprised to find that the charge conservation equation

is a four-divergence equation,

∂ρ

∂t
+∇ · J = 0 or ∂αJ

α = 0. (135)

Notice that this equation is “covariant” in the sense introduced earlier; both sides are

scalars.

9.1.2 Potentials

Now we shall proceed by demanding that all the relevant equations be Lorentz co-

variant. We shall apply this requirement to equations that we already have and see

what are the implications for the fields E and B and also see that no contradictions

arise. Let’s start with the equations for the potentials in the Lorentz gauge. The

equations of motion are

2A(x, t) =
4π

c
J(x, t) and 2Φ(x, t) = 4πρ(x, t); (136)

these can all be written in the very brief notation

2Aα(x, t) =
4π

c
Jα(x, t) (137)
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where we have introduced

Aα ≡ (Φ,A) (138)

which must be a contravariant four-vector if the equations of motion above are the

correct equations of motion for the potential in the Lorentz gauge in every inertial

frame. Notice that the potentials in gauges other than the Lorentz gauge will not

form a four-vector.

The Lorentz condition, which is satisfied by potentials in the Lorentz gauge, is

∇ ·A(x, t) +
1

c

∂Φ

∂t
= 0; (139)

this equation may also be written as a four-divergence of a four-vector,

∂αA
α = 0. (140)

9.1.3 Fields, Field-Strength Tensor

Let’s look next at E and B; these are given by

B(x, t) = ∇×A(x, t) and E(x, t) = −∇Φ(x, t)− 1

c

∂A(x, t)

∂t
. (141)

Look at just the x-components:

Ex = −1

c

∂Ax
∂t
− ∂Φ

∂x
= −∂A

1

∂x0
− ∂Φ

∂x1
= −∂A

1

∂x0

+
∂A0

∂x1

= −∂0A1 + ∂1A0. (142)

Similarly, a component of the magnetic induction turns out to be, e.g.,

Bx = −∂2A3 + ∂3A2. (143)

Given the four-vector character of the differential operators and of the potentials, we

can see that these particular components of the electric field and magnetic induction

are elements of a rank-two tensor which we have expressed here in contravariant form.

Let us define the field-strength tensor F̄ by

F αβ ≡ ∂αAβ − ∂βAα. (144)
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This turns out to be

F αβ =




0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0



. (145)

Because the tensor is antisymmetric, it has just six independent entries, these being

the six components of E and B.

The corresponding covariant tensor is easily worked out. It is the same as the

contravariant one except that the signs of the entries in the first column and the first

row are reversed. A somewhat different object which contains the same information

is the dual field-strength tensor F̄ which is defined by

Fαβ ≡ εαβγδ
1

2
Fγδ (146)

where the fully antisymmetric rank-four unit pseudotensor with components εαβγδ is

in turn defined by specifying (1) that in frame K

εαβγδ ≡





1 if αβγδ is an even permutation of 1234

−1 if αβγδ is an odd permutation of 1234

0 otherwise,

(147)

and (2) that it transforms to other frames as a rank-four pseudotensor must,

(ε′)αβγδ ≡ det[Ā]AαφA
β
χA

γ
ψA

δ
ωε
φχψω. (148)

Applying this definition, one can show that the components of this pseudotensor are

given by Eq. (147) not only in frame K but in all inertial frames.

Although ε̄ is a pseudotensor as opposed to a true tensor, the distinction will

not be important for us so long as we stick to proper Lorentz transformations or to

improper ones that have determinant +1. In what follows, we will refer to it as a

tensor even though we know better; similarly we will refer to the dual tensor as a

“tensor” (as was done in the definition) even though it is in fact a pseudotensor.
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Returning now to the original point, Fαβ is, explicitly,

Fαβ =




0 −Bx −By −Bz

Bx 0 Ez −Ey
By −Ez 0 Ex

Bz Ey −Ex 0



. (149)

9.2 Invariance of Maxwell Equations

Now we know how everything transforms; it remains to be seen whether the Maxwell

equations are Lorentz covariant. The inhomogeneous equations are

∇ · E(x, t) = 4πρ(x, t) and ∇×B(x, t)− 1

c

∂E(x, t)

∂t
=

4π

c
J(x, t). (150)

The first of these is
∂F 10

∂x1
+
∂F 20

∂x2
+
∂F 30

∂x3
=

4π

c
J0. (151)

Because F 00 ≡ 0, we may add a term ∂F 00/∂x0 to the left-hand side of this equation

and then find that it reads

∂αF
α0 =

4π

c
J0. (152)

This equation is clearly the 0th component of a four-vector equation in which the

left-hand side is obtained by taking the divergence of a rank-two tensor. The other

three inhomogeneous Maxwell equations may be analyzed in similar fashion and the

four may be concisely written as

∂αF
αβ =

4π

c
Jβ (153)

where β =0,1,2, and 3. These are manifestly Lorentz covariant.

The homogeneous Maxwell equations are

∇ ·B(x, t) = 0 and ∇× E(x, t) = −1

c

∂B(x, t)

∂t
. (154)
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The first one can be written as

∂F10

∂x1
+
∂F20

∂x2
+
∂F30

∂x3
= 0, (155)

or, since F00 = 0,

∂αFα0 = 0. (156)

The others can be expressed in similar fashion, and all four are contained in the

following equation:

∂αFαβ = 0, (157)

where β =0, 1, 2, and 3. This form is clearly covariant, establishing the covariance

of Maxwell’s equations. These equations are components of a rank-one pseudotensor.

They may also be written as components of a rank-three tensor. Notice that ∇·B = 0

is, in tensor notation,
∂F 31

∂x2
+
∂F 23

∂x1
+
∂F 12

∂x3
= 0. (158)

The remaining three homogeneous Maxwell equations can be expressed in similar

fashion, and all four can be written as

∂αF βγ + ∂γF αβ + ∂βF γα = 0 (159)

where α, β, and γ are any three of 0,1,2,3, giving four equations. The other possible

choices of the superscripts (involving repetition of two or more values) give nothing

(They give 0=0). Hence we have succeeded in writing each of the homogeneous

Maxwell equations in the form of an element of a rank-three tensor and the Lorentz

covariant equation we have constructed simply says that this tensor is equal to zero.

10 Transformation of the electromagnetic field

The transformation properties of E and B are easily worked out by making use of

our knowledge of how a rank-two tensor must transform:

(F ′)αβ = AαγA
β
δF

γδ, (160)

47



or, in matrix notation,

F̄ ′ = ĀF̄ Ã (161)

where Ã is the transpose of the matrix representing Ā. If we pick a frame K ′ which

is moving at velocity v = cβε1, then

Ā =




γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1



≡ Ã. (162)

Given the field tensor from Eq. (145), we have

F̄ Ã =




βγEx −γEx −Ey −Ez
γEx −βγEx −Bz By

γEy − βγBz −βγEy + γBz 0 −Bx

γEz + βγBy −βγEz − γBy Bx 0




(163)

and

F̄ ′ =




0 −Ex −γEy + βγBy −γEz − βγBy

Ex 0 βγEy − γBz βγEz + γBy

γEy − βγBz −βγEy + γBz 0 −Bx

γEz + βγBy −βγEz − γBy Bx 0



. (164)

This is an antisymmetric tensor - as it should be - and we can equate individual

elements to the appropriate components of B′ and E′. One finds

B′x = Bx B′y = γ(By + βEz) B′z = γ(Bz − βEy)

E ′x = Ex E ′y = γ(Ey − βBz) E ′z = γ(Ez + βBy). (165)

By examining these relations for a bit, one can see that

E′‖ = E‖ E′⊥ = γ[E⊥ + (β ×B)]

B′‖ = B‖ B′⊥ = γ[B⊥ − (β × E)]
(166)
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where the subscripts refer to components of the fields parallel or perpendicular to β.

From the transformations one may see that when E ⊥ B, it is possible to find a

frame where one of E′ and B′ (which one?) vanishes. This is achieved by picking

β ⊥ E and β ⊥ B with an appropriate magnitude. For example, if |B| > |E|, we

take

β = β(E×B)/|E||B| (167)

where β is to be such that E′⊥ = 0, or

0 = E + β ×B = E + β[(E×B)×B]/|E||B|
= E− βE|B|/|E| = E(1− β|B|/|E|)

(168)

so that we find

β = |E|/|B| (169)

which is possible if B > E.

10.1 Fields Due to a Point Charge

Another example of the use of the transformations is the determination of the fields

of a charge moving at constant velocity. Suppose a charge q has velocity u = βcε1

relative to frame K. Let K ′ move at this velocity relative to K so that the charge in

at rest in the primed frame. Further, choose the coordinates so that the charge is at

x′ = 0. Then the fields in this frame are

B′(x′, t′) = 0 and E′(x′, t′) =
q

r′3
x′. (170)

Let us restrict attention, without loss of generality, to the z ′ = 0 plane. There, the

electric field is

E′ =
q

(
√
x′2 + y′2)3

[x′ε1
′ + y′ε2] (171)

Using the transformations of the electromagnetic field, we find that the nonvanishing

components of the fields in frame K are

Ex =
qx′

(x′2 + y′2)3/2
Ey =

γqy′

(x′2 + y′2)3/2
(172)
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and

Bz =
γβqy′

(x′2 + y′2)3/2
. (173)

In order for these expressions to be of any use, we should express the fields in terms

of t and x rather than the primed spacetime variables.

K K’

v

b

n
q

z z’

x x’

ψ

y’y

r

vt

Figure 17: Charge fixed in K ′ detected by an observer at P in K.

We shall look in particular at the fields at the point x = bε2. His position translates,

via the Lorentz transformations, into K ′ as

y′ = y x′ = −γvt and z′ = 0. (174)

Using these in the expressions for E and B, we find

Ex = −γqvt/[b2 + (γvt)2]3/2

Ey = γqb/[b2 + (γvt)2]3/2

Bz = γβqb/[b2 + (γvt)2]3/2.

(175)

It is instructive to study these results. They tell us the field at a point (0,b,0)

in K when a charge q goes along the x axis with speed v, passing the origin at time

t = 0. The fields are zero at large negative times, then Ex rises and falls to zero at

t = 0 and repeats this pattern with the opposite sign at positive times. The other

two rise to a maximum value at t = 0 and then fall to zero at large positive time. The

duration in time of the pulse if of order b/γv and becomes very short if v → c because

then γ becomes arbitrarily large. The maximum field strengths are, for Ey, γq/b
2,

and, for Bz, γβq/b
2. Notice that for a highly relativistic particle, β → 1, Ey ≈ Bz
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and also that the maximum pulse strength scales as γ which means it becomes very

large (but for a very short time) as the velocity approaches c.
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In this chapter we shall study the dynamics of particles and fields. For a particle,

the relativistically correct equation of motion is

dp

dt
= F (1)

where p = mγu; the corresponding equation for the time rate of change of the

particle’s energy is
dE

dt
= F · u. (2)

The dynamics of the electromagnetic field is given by the Maxwell equations,

∇ · E(x, t) = 4πρ(x, t) ∇ ·B(x, t) = 0

∇× E(x, t) +
1

c

∂B(x, t)

∂t
= 0 ∇×B(x, t)− 1

c

∂E(x, t)

∂t
=

4π

c
J(x, t). (3)

These are tied together by the Lorentz force which gives F in terms of the electro-

magnetic fields

F = q
[
E +

1

c
(u×B)

]
(4)

and by the expressions for ρ(x, t) and J(x, t) in terms of the particles’ coordinates

and velocities

ρ(x, t) =
∑
i qiδ(x− xi(t))

J(x, t) =
∑
i qiui(t)δ(x− xi(t)).

(5)

In view of the fact that we already know all of this, what further do we want to

do? Two things: (1) Formulate appropriate covariant Lagrangians and Hamiltonians

from which covariant dynamical equations can be derived; and (2) applications.

1 Lagrangian and Hamiltonian of a Charged Par-

ticle in an External Field

We want to devise a Lagrangian for a charged particle in the presence of given applied

fields which are treated as parameters and not as dynamic variables. This Lagrangian
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is to yield the equations of motion Eqs. (1) and (2) with F given by the Lorentz force.

These equations can be written as

dpα

dt
=

q

mcγ
F αβpβ (6)

which is almost in Lorentz covariant form. A more obviously Lorentz covariant form

can be obtained by using the fact that the infinitesimal time element dt can be related

to an infinitesimal proper time element dτ by dt = γdτ . Then we have

dpα

dτ
=

q

mc
F αβpβ. (7)

To get a Lagrangian from which these equations follow, we postulate the existence

of the action A which may be expressed as an integral,

A =
∫ b

a
dA, (8)

over possible “paths” from a to b. The action is an extremum for the actual motion

of the system.

x

t
Possible paths which contribute to
the action.

In this case, the system consists of a single particle. The paths have the constraint

that they start at given (xa, ta) and end at (xb, tb).

Next comes a delicate point. We could say that the first postulate of relativity

requires that A be the same in all inertial frames1, which elevates the action and its

1This argument is (elegantly) made in The Classical Theory of Fields
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consequences to “law of nature” status. It seems better to regard the invariance of A

as an assumption or postulate in its own right and to see where that leads us.

Rewrite Eq. (8) as follows:

A =
∫ b

a
dA =

∫ tb

ta

dA

dt
dt ≡

∫ tb

ta
Ldt. (9)

This equation expresses nothing more than the parametrization of the integral using

the time and the definition of the Lagrangian L as the derivative of A with respect

to t. Let us further parametrize the integral using the proper time τ of the particle,

A =
∫ τb

τa
Lγdτ (10)

where we use dt = γdτ , γ = 1/
√

1− u2/c2, u being the particle’s velocity as measured

in the lab frame or the frame in which the time t is measured. The proper time is

an invariant, so if we believe that A is one also, we have to conclude that Lγ is an

invariant. This statement of invariance greatly limits the possible forms of L.

1.1 Lagrangian of a Free Particle

Consider first the case of a free particle. What invariants may we construct from the

properties of a free particle? We have only the four-vectors p̄ and x̄. The presumed

translational invariance of space rules out the use of the latter. That leaves only the

four-momentum and the single invariant pαpα = m2c2 which is a constant. Hence we

are led to Lγ = C where C is a constant. Hence, L = C/γ and

A = C
∫ τb

τa
dτ = C

∫ tb

ta
dt
√

1− u2/c2. (11)

We may find the constant C by appealing to the nonrelativistic limit and expanding

in powers of u2/c2.

A ≈ C
∫ tb

ta
dt

(
1− u2

2c2
+ · · ·

)
. (12)
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The term proportional to u2 should be the usual nonrelativistic Lagrangian of a free

particle, mu2/2. This condition leads to

C = −mc2 (13)

and so

Lf = −mc2
√

1− u2/c2 (14)

is the free-particle Lagrangian.

1.1.1 Equations of Motion

The equations of motion are found by requiring that A be an extremum,

δA = δ
(∫ tb

ta
dt L

)
= 0. (15)

The path x(t) is to be fixed at the end points ta and tb, δx(ta) = δx(tb) = 0. Writing

L as a function of the Cartesian components of the position and velocity, we have,

allowing for possible position-dependence which will appear if the particle is not free,

L = L(xi, ui, t), and

δA =
∑

i

∫ tb

ta
dt

[(
∂L

∂xi

)
δxi +

(
∂L

∂ui

)
δui

]
. (16)

But δui is related to δxi through ui = dxi/dt, so

δA =
∑

i

∫ tb

ta
dt

[(
∂L

∂xi

)
δxi +

(
∂L

∂ui

)
δ

(
dxi
dt

)]

=

(
∂L

∂ui

)
δxi

∣∣∣∣∣

tb

ta

+
∫ tb

ta
dt

[
∂L

∂xi
− d

dt

(
∂L

∂ui

)]
δxi(t) (17)

where we have integrated by parts to achieve the last step. The first term in the final

expression vanishes because δxi = 0 at the endpoints of the interval of integration.

Arguing that δxi(t) is arbitrary elsewhere, we conclude that the factor [...] in the

final expression must vanish everywhere,

d

dt

(
∂L

∂ui

)
− ∂L

∂xi
= 0 (18)
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for each i = 1, 2, 3.

These are the Euler-Lagrange equations of motion. Let’s apply them to the free-

particle Lagrangian Lf ,

∂Lf
∂xi

= 0 and
∂Lf
∂ui

= mγui, (19)

so
d

dt
(mγu) = 0 (20)

is the equation of motion. It is the same as

dp

dt
= 0 (21)

which is correct for a free particle.

1.2 Lagrangian of a Charged Particle in Fields

Next suppose that there are electric and magnetic fields of roughly the same order of

magnitude present so that the particle experiences some force and acceleration. Then

L = Lf +Lint where Lint is the “interaction” Lagrangian and contains the information

about the fields and forces. For the action to be an invariant, it must be the case

that

Aint ≡
∫ tb

ta
Lintdt (22)

is an invariant which means Lintγ has to be an invariant. Now, in the nonrelativistic

limit one has, to lowest order, L = T − V with V = qΦ, so we have in this limit

Lintγ = −qΦγ = −qEΦ/mc2 = −(q/mc)p0A
0. This is not an invariant but can be

made one by including the rest of p̄ · Ā2, and we expect that the result is valid not

just in the nonrelativistic limit but in general:

Lintγ = −
(
q

mc

)
pαA

α. (23)

2We have little choice other than this form since we only have the p, x and A four-vectors to

work with
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This choice of Lint gives the desired invariant and reduces to the correct static limit.

It is the simplest choice of the interaction Lagrangian with the following properties:

1. Translationally invariant (in the sense that it is independent of explicit depen-

dence on x; the potentials do depend on x)

2. Linear in the charge (as are the forces on the particle)

3. Linear in the momenta (as are the forces)

4. Linear in the fields (as are the equations of motion of the particle)

5. A function of no time derivatives of pα (appropriate for the equations of motion)

1.2.1 Equations of Motion

Let us proceed to the Euler-Lagrange equations of motion. The total Lagrangian is

L = −mc2
√

1− u2/c2 +
q

c
u ·A− qΦ; (24)

∂L

∂xi
=
q

c
u · ∂A

∂xi
− q ∂Φ

∂xi
∂L

∂ui
=

mc2

√
1− u2/c2

ui
c2

+
q

c
Ai, (25)

so
d

dt

(
∂L

∂ui

)
=

d

dt
(mγui) +

q

c

∂Ai
∂t

+
q

c
(u · ∇)Ai. (26)

Notice the last term on the right-hand side of this equation. It is there because when

we take the total time derivative, we must remember that the position variable x on

which A depends is really the position of the particle at time t, so, by application of

the chain rule, we pick up a sum of terms, each of which is the derivative of A with

respect to a component of x times the derivative of that component of x with respect

to t; the last is a component of the velocity of the particle.
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Finally, the equations of motion are

d

dt
(mγui) = −q

c

∂Ai
∂t
− q

c
(u · ∇)Ai − q

∂Φ

∂xi
+
q

c
u · ∂A

∂xi

= qEi +
q

c
u · ∂A

∂xi
− q

c
(u · ∇)Ai. (27)

These are supposed to be familiar; consider

(u×B)i = [u× (∇×A)]i = [∇(u ·A)− (u · ∇)A]i = u · ∂A

∂xi
− (u · ∇)Ai. (28)

Comparison of this expansion with Eq. (27) demonstrates that the latter can be

written as
dpi
dt

= qEi +
q

c
(u×B)i. (29)

1.3 Hamiltonian of a Charged Particle

One can also make a Hamiltonian description of the system. Introduce the canonical

three-momentum π with components

πi ≡
∂L

∂ui
= γmui +

q

c
Ai = pi +

q

c
Ai. (30)

Then the Hamiltonian3 is

H = π · u− L = π · u +mc2
√

1− u2/c2 + qΦ− q

c
(u ·A). (31)

We want H to depend on x and π but not on u. To this end consider how to write

u in terms of π,

π =
mu√

1− u2/c2
+
q

c
A, (32)

or (
π − q

c
A
)2
(

1− u2

c2

)
= m2u2 (33)

3The hamiltonian H(q, p) obtained from the Lagrangian through a Legendre transformation

H =
∑
i piq̇i − L(q, q̇)
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which may be solved for u to give

u = c
cπ − qA√

m2c4 + (cπ − qA)2
(34)

Use of this result in the expression for the Hamiltonian leads to

H =
√
m2c4 + (cπ − qA)2 + qΦ. (35)

The development of Hamilton’s equations will be left as an exercise.

The Hamiltonian is the 0th component of a four-vector. Notice, from Eq. (35),

that

(H − qΦ)2 − (cπ − qA)2 = m2c4, (36)

is an invariant. This invariant is the inner product of a four-vector with itself. The

spacelike components are cπ− qA = cp, and the timelike component is H− qΦ. The

vector is just the energy-momentum four-vector in the presence of fields,

pα = (E/c,p) =
(

1

c
(H − qΦ),π − e

c
A
)
. (37)

1.4 Invariant Forms

Next we are going to repeat everything that we have just done, but in a manner that

is “manifestly” covariant. That is, we want to rewrite the Lagrangian in terms of

invariant 4-vector products. We can write the free-particle Lagrangian as

Lf = −mc2
√

1− u2/c2 = −1

γ

√
E2 − p2c2 = − c

γ

√
pαpα = −mc

γ

√
UαUα (38)

where

Uα = (E/mc,p/m) ≡ dxα/dτ (39)

is a four-vector we shall call the four-velocity. The action of the free particle is

A = −
∫ tb

ta
dt γ−1mc

√
UαUα = −mc

∫ τb

τa
dτ
√
UαUα (40)
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Note the manifestly invariant form. However, note that we must also impose the

constraint UαUα = c2. Thus we may not freely vary this action to find the equations

of motion. There are two ways to overcome this. First, we could introduce a Lagrange

multiplier to impose the constraint4, or we could introduce an additional degree of

freedom into our equations, and use it to impose the constraint a posteriori. Following

Jackson, we will follow the later (less conventional) route. To this end we rewrite the

action, and introduce s.

A = −mc
∫ τb

τa

√
dxαdxα = −mc

∫ sb

sa
ds

√

gαβ
dxα

ds

dxβ

ds
(41)

where the path of integration has been parametrized using some (invariant) s. We

shall now treat each dxα/ds as an independent generalized velocity, and the La-

grangian takes on the functional form L(xα, dxα/ds, s). This (more general) parametriza-

tion of the action integral is just as good as the standard one using the time; the

Euler-Lagrange equations of motion, found by demanding that A be an extremum,

are familiar in appearance,

d

ds

(
∂L̃

∂(dxα/ds)

)
− ∂L̃

∂xα
= 0 (42)

In this case, we obtain the equation of motion

mc
d

ds


 dx

α/ds√
dxβ

ds

dxβ
ds


 = 0 (43)

These velocities are constrained by the condition
√

gαβ
dxα

ds

dxβ

ds
ds = cdτ (44)

because there are really only three independent generalized velocities, so that

m
d2xα

dτ 2
= 0 (45)

4This approach is discussed in Electrodynamics and Classical Theory of Fields and Par-

ticles by A.O. Barut, Dover, page 65
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Analyzing and including the interaction Lagrangian in the same manner leads to

a total Lagrangian and an action which is

A = −
∫ sb

sa
ds


mc

√

gαβ
dxα
ds

dxβ
ds

+
e

c

dxα
ds

Aα(x)


 ≡ −

∫ sb

sa
ds L̃. (46)

The equation of motion may be found in the same manner and in the present appli-

cation these turn out to be

m
d2xα

dτ 2
=
e

c
(∂αAβ − ∂βAα)

dxβ
dτ

, (47)

and they are correct, as one may show by comparing them with the standard forms.

The corresponding canonical momenta are

πα =
∂L̃

∂(dxα/ds)
= mUα +

e

c
Aα. (48)

Hence the Hamiltonian is

H̃ = παU
α − L̃ =

1

2m

(
πα −

eAα
c

)(
πα − eAα

c

)
− 1

2
mc2. (49)

Hamilton’s equations of motion5 are

dxα

dτ
=
∂H̃

∂πα
=

1

m

(
πα − e

c
Aα
)

dπα

dτ
= − ∂H̃

∂xα
=

e

mc

(
πβ −

eAβ
c

)
∂αAβ (50)

2 Lagrangian for the Electromagnetic Field

The electromagnetic field and fields in general have continuous degrees of freedom.

The analog of a generalized coordinate qi is the value of a field φk at a point x̄. There

are an infinite number of such points and so we have an infinite number of generalized

5For H(p, q) Hamiltons equations are q̇i = ∂H
∂pi

, are ṗi = −∂H∂qi , and ∂L
∂t = −∂H∂t
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coordinates. The corresponding “generalized velocities” are derivatives of the field

with respect to the variables, ∂φk(x̄)/∂xα or ∂φk(x̄)∂xα with α = 0, 1, 2, 3.

qi → φk(x̄)

q̇i →
∂φk(x̄)

∂xα
(51)

Instead of a Lagrangian L which depends on the coordinates and velocities qi and q̇i,

one now has a Lagrangian density L, and the Lagrangian is obtained by integrating

this density over position space,

L =
∫
d3x L(φk(x̄), ∂αφk(x̄)); (52)

The action is the integral of this over time, or

A =
∫
d4xL(φk(x̄) , ∂αφk(x̄)). (53)

Given that A and d4x are invariants, L must also be an invariant.

The Euler-Lagrange equations of motion are obtained as usual by demanding that

A be an extremum with respect to variation of the fields, or

δA/δφk(x̄) = 0 (54)

for each field φk. The resulting equations are, explicitly,

∂β
(

∂L
∂(∂βφk)

)
− ∂L
∂φk

= 0. (55)

Now let’s turn to the question of an appropriate Lagrangian density for the elec-

tromagnetic field. The things we have to work with are F αβ, Aα, and Jα, if we rule

out explicit dependence on space and time (a translationally invariant universe). We

must make an invariant out of these. One which practically suggests itself is

L = − 1

16π
FαβF

αβ − 1

c
JαA

α. (56)
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The various constants are a matter of definition; otherwise we have something which

is linear in components of Ā and of J̄ , and bilinear derivatives of components of Ā.

Let’s write it out in detail:

L = − 1

16π
(∂αAβ − ∂βAα)(∂αAβ − ∂βAα)− 1

c
JαA

α

= − 1

16π
gαγgβδ(∂

γAδ − ∂δAγ)(∂αAβ − ∂βAα)− 1

c
JαA

α (57)

The generalized fields (called φk above) are the components of Ā. Hence the

functional derivatives of L which enter the Euler-Lagrange equations are

∂L
∂(∂βAα)

=
1

4π
Fαβ and

∂L
∂Aα

= −1

c
Jα (58)

and so the equations of motion are

1

4π
∂βFβα =

1

c
Jα. (59)

These are indeed the four6 inhomogeneous Maxwell equations. The homogeneous

equations are automatically satisfied because we have constructed the Lagrangian

in terms of the potentials. The charge continuity equation follows from taking the

contravariant derivative of the equation above,

1

4π
∂α∂βFβα =

1

c
∂αJα; (60)

the left-hand side is zero when summed because Fαβ = −Fβα and so we have

∂αJα = 0. (61)

3 Stress Tensors and Conservation Laws

Conservation of energy emerges from the usual Lagrangian formulation if L has no

explicit dependence on the time; then dH/dt = 0 which means that the Hamiltonian

6Four equations come from the one scalar and one vector inhomogeneous Maxwell’s equations
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is a constant of the motion. If we want to carry this sort of thing over to our field

theory, we need to construct a Hamiltonian density H whose integral over all position

space, H, is interpreted as the energy. If one proceeds in analogy with the particle

case, he would take a Lagrangian density

L = L(φk(x̄), ∂αφk(x̄)); (62)

introduce momentum fields

Πk(x̄) ≡ ∂L/∂(∂φk/∂t); (63)

and a Hamiltonian density

H =
∑

k

Πk(x̄)(∂φk(x̄)/∂t)− L. (64)

We are going to generalize this procedure by introducing a rank-two tensor instead

of a simple Hamiltionian density. The reason is that if one has a simple density and

introduces H as

H =
∫
d3xH =

∫
dx0

d3x

dx0

H, (65)

and if one wants this to be an energy, which, as we have seen, transforms as the 0th

component of a four-vector, then H should be the (0,0) component of a rank-two

tensor. To this end, let us introduce

ψαk (x̄) ≡ ∂L/∂(∂αφk) (66)

and

T αβ ≡
∑

k

ψαk (x̄)∂βφk − gαβL. (67)

This rank-two tensor is called the canonical stress tensor.

3.1 Free Field Lagrangian and Hamiltonian Densities

Let’s see what form the Lagrangian density and canonical stress tensor take in the

absence of any sources Jα. In this case the Lagrangian density becomes Lff , the
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free-field Lagrangian density.

Lff = − 1

16π
FαβF

αβ (68)

By carrying out the implied manipulations we find

T αβ = − 1

4π
gαγFγδ∂

βAδ − gαβLff . (69)

Look in particular at T 00:

T 00 = − 1

4π
(F0γ∂

0Aγ)− 1

8π
(E2 −B2)

= − 1

4π

[
Ex

1

c

∂Ax
∂t

+ Ey
1

c

∂Ay
∂t

+ Ez
1

c

∂Az
∂t

]
− 1

8π
(E2 −B2)

=
1

4π
E2 + E · ∇Φ− 1

8π
(E2 −B2) =

1

8π
(E2 +B2) +

E · ∇Φ

4π
. (70)

This contains the expected and desired term (E2 +B2)/8π, which is the feild energy

density, but there is an additional term E · ∇Φ. Because ∇ · E = 0 for free fields, it

is the case that E · ∇Φ = ∇ · (EΦ) and so the integral over all space of this part of

T 00 will vanish for a localized field distribution. Hence we find that

∫
d3xT 00 =

1

8π

∫
d3x (E2 +B2) (71)

is indeed the field energy.

And what of the other components of the stress tensor? These too have some

unexpected properties. For example, one can show that

T 0i =
1

4π
(E×B)i +

1

4π
∇ · (AiE) (72)

and

T i0 =
1

4π
(E×B)i +

1

4π

[
(∇× (ΦB))i −

∂

∂x0

(ΦEi)

]
. (73)

Evidently, this tensor is not symmetric. Also, one would have hoped that these

components of the tensor would have turned out to be components of the Poynting
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vector, with appropriate scaling, so that we would have found an equation 0 = ∂αT
0α

which would have been equivalent to the Poynting theorem,

∂u

∂t
+∇ · S = 0. (74)

Although this is not going to happen, there is some sort of conservation law contained

in our stress tensor. One can show that

∂αT
αβ = 0 (75)

which gives not one but four conservation laws. To demonstrate this equation, con-

sider the following:

∂αT
αβ =

∑

k

∂α

[
∂L

∂(∂αφk)
∂βφk

]
− ∂βL

=
∑

k

[
∂α

(
∂L

∂(∂αφk)

)
∂βφk +

(
∂L

∂(∂αφk)

)
∂β(∂αφk)

]
− ∂βL

=
∑

k

[(
∂L
∂φk

)
∂βφk +

(
∂L

∂(∂αφk)

)
∂β(∂αφk)

]
− ∂βL (76)

where we have used the Euler-Lagrange equations of motion Eq. (55) on the first term

in the middle line. Now we can recognize that the terms summed over k in the last

line are ∂βL since L is a function of the fields φk and their derivatives ∂αφk. Hence

we have demonstrated that

∂αT
αβ = ∂βL − ∂βL = 0 (77)

These give familiar global conservation laws when integrated over all space for a

localized set of fields. Consider

0 =
∫
d3x ∂αT

αβ =
∂

∂x0

(∫
d3xT 0β

)
+
∫
d3x

∂

∂xi
(T iβ). (78)

The last term on the right-hand side is zero as one shows by integrating over that

coordinate with respect to which the derivative is taken and appealing to the fact that
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we have localized fields which vanish as |xi| becomes large. Hence our conclusion is

that
d

dt

(∫
d3xT 0β

)
= 0 (79)

If one looks at the explicit components of the tensor, one finds that these simply say

the total energy and total momentum are constant, using our identifications (from

chapter 6) of u and g as the energy and momentum density.

u =
1

8π

(
E2 +B2

)
g =

1

4πc
(E×B) (80)

3.2 Symmetric Stress Tensor

It is troubling that the canonical stress tensor is not symmetric. This becomes a

serious problem when one examines the angular momentum. Consider the rank-three

tensor

Mαβγ ≡ T αβxγ − T αγxβ. (81)

If this is to represent the angular momentum in some way we would like it to provide

a conservation law in the form ∂αM
αβγ = 0. But that doesn’t happen. Rather,

∂αM
αβγ = T γβ − T βγ + (∂αT

αβ)xγ − (∂αT
αγ)xβ = T γβ − T βγ (82)

which doesn’t vanish because T̄ is not symmetric.

The standard way out of this and other difficulties associated with the asymmetry

of the canonical stress tensor is to define a different stress tensor which works. By

regrouping terms in the canonical stress tensor one can write

T αβ =
1

4π

(
gαγFγδF

δβ +
1

4
gαβFγδF

γδ
)
− 1

4π
gαγFγδ∂

δAβ. (83)

Now, the second term is

− 1

4π
gαγFγδ∂

δAβ = − 1

4π
F αδ∂δA

β =
1

4π
F δα∂δA

β =

1

4π
(F δα∂δA

β + Aβ∂δF
δα) =

1

4π
∂δ(F

δαAβ). (84)

18



This is a four-divergence, so for fields of finite extent, it must be the case that

∫
d3x ∂δ(F

δ0Aβ) = 0. (85)

Moreover, it has a vanishing four-divergence,

∂α∂δ(F
δαAβ) = 0, (86)

which follows from the antisymmetric character of the field tensor. Hence, if we

simply remove this piece from the stress tensor, leaving a new tensor θ̄, known as the

symmetric stress tensor,

θαβ ≡ 1

4π
(gαγFγδF

δβ +
1

4
gαβFγδF

γδ), (87)

then this tensor is such that

d

dt

(∫
d3x θ0β

)
= 0 and ∂αθ

αβ = 0. (88)

It is easy to work out the components of this tensor; they are (i, j = 1, 2, 3)

θ00 = 1
8π

(E2 +B2)

θi0 = θ0i = 1
4π

(E×B)

θij = − 1
4π

[EiEj +BiBj − 1
2
δij(E

2 +B2)].

(89)

Hence in block matrix form,

θαβ =




u cg

cg −T (M)
ij


 (90)

where T
(M)
ij is the ij component of the Maxwell stress tensor. The conservation laws

∂αθ
αβ = 0 (91)

are well-known to us. They are the Poynting theorem, for β = 0, and the momentum

conservation laws
∂gi
∂t
−
∑

j

∂T
(M)
ij

∂xj
= 0. (92)
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when β = i

Now consider once again the question of angular momentum. Define

Mαβγ ≡ θαβxγ − θαγxβ. (93)

Then the equations

∂αM
αβγ = 0 (94)

express angular momentum conservation as well as some other things.

3.3 Conservation Laws in the Presence of Sources

Finally, what happens if there are sources? Then we won’t find the same form for

the conservation laws. Consider

∂αθ
αβ =

1

4π

[
∂γ(FγδF

δβ) +
1

4
∂β(FγδF

γδ)
]

=
1

4π

[
(∂γFγδF

δβ + Fγδ(∂
γF γβ) +

1

2
Fγδ(∂

βF γδ)
]
. (95)

Making use of the Maxwell equations ∂γFγδ = 4π
c
Jδ, we can rewrite this as

∂αθ
αβ +

1

c
F βδJδ =

1

8π

[
Fγδ(∂

γF δβ + ∂γF δβ + ∂βF γδ)
]
. (96)

Now recall that (these are the homogeneous Maxwell’s equations)

∂γF δβ + ∂βF γδ + ∂δF βγ = 0, (97)

so Eq. (90) may be written as

∂αθ
αβ +

1

c
F βδJδ =

1

8π
Fγδ(∂

γF δβ − ∂δF βγ). (98)

However,

(∂γF δβ − ∂δF βγ)Fγδ = (∂γF δβ + ∂δF γβ)Fγδ (99)

is a contraction of an object symmetric in the indices γ and δ and one which is

antisymmetric; therefore it is zero. Hence we conclude that

∂αθ
αβ = −1

c
F βδJδ. (100)
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The four equations contained in this conservation law are the familiar ones

∂u

∂t
+∇ · S = −J · E when β = 0 (101)

and
∂gi
∂t
−
∑

j

∂

∂xj
T

(M)
ij = −[ρEi +

1

c
(J×B)i] when β = i . (102)

4 Examples of Relativistic Particle Dynamics

4.1 Motion in a Constant Uniform Magnetic Induction

Given an applied constant magnetic induction, the equations of motion for a particle

of charge q are
dE

dt
= F · u = 0,

dp

dt
=
q

c
(u×B) = mγ

du

dt
(103)

where the last step follows from the fact that p = mγu and the fact that γmc2,

the particle’s energy, is constant because magnetic forces do no work. Hence the

equations reduce to
du

dt
= u× ωB (104)

where ωB = qB/mγc. Notice that this frequency depends on the energy of the

particle. For definiteness, let B = Bε3. Also, write u = u‖ε3 + u⊥ where u⊥ · ε3 = 0.

1

2

3

B

u
a

From the equations of motion, one can see that u‖ is a constant while u⊥ obeys

du⊥
dt

= ωB(u⊥ × ε3), (105)
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or
dux
dt

= ωBuy and
duy
dt

= −ωBux. (106)

Combining these we find, e.g.,

d2ux
dt2

= −ω2
Bux (107)

with the general solution

ux = u0e
−iωBt (108)

where u0 is a complex constant. Further,

uy =
1

ωB

dux
dt

= −iux, (109)

so

u⊥ = u0(ε1 − iε2)e−iωBt. (110)

We may integrate over time to find the trajectory:

dx

dt
= u‖ε3 + u⊥ (111)

and so

x(t) = x(0) +
∫ t

0
dt′

[
u‖ε3 + u0(ε1 − iε2)e−iωBt

′]

= x(0) + u‖tε3 + i
u0

ωB
(ε1 − iε2)(e−iωBt − 1). (112)

The physical trajectory is the real part of this and is, for real u0,

x(t) = x(0) + u‖tε3 +
u0

ωB
[sin(ωBt)ε1 + (cos(ωBt)− 1)ε2]. (113)

This equation describes helical motion with the helix axis parallel to the z-axis. The

radius of the axis is a, where a = u0/ωB.

It is worthwhile to establish the connection betwen a and |p⊥| where p⊥ = mγu⊥

is the momentum in the plane perpendicular to the direction of B.

p⊥ = mγu0 = mγωBa = mγ
qB

mγc
a =

qBa

c
. (114)
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B

q
p

p

1

2

p > p
1 2

This relation, p⊥ = qBa/c, tells us the radius of curvature in the plane perpendicular

to B (which is not the same as the radius of curvature of the orbit) is a linear

function of p⊥, and it suggests a simple way to select particles of a given momentum

out of a beam containing particles with many momenta. One simply passes the beam

through a region of space where there is some B applied transverse to the direction of

the beam. The amount by which a particle is deflected will increase with decreasing

p⊥ and so the beam is spread out much as a prism separates the different frequency

components of a beam of light. The device is a momentum selector.

4.2 Motion in crossed E and B fields, E < B.

For E · B = 0 in frame K, we can find a frame K ′ where E′ = 0, provided E < B.

This may be seen from the form of the field transforms.

E′‖ = E‖ E′⊥ = γ[E⊥ + (β ×B)]

B′‖ = B‖ B′⊥ = γ[B⊥ − (β × E)]
(115)

In fact, we have already solved exactly this problem in chapter 11 where we found

that K ′ moves relative to K with a velocity which is v = c(E × B)/B2. If we let

E = Eε2 and B = Bε3, then v = c(E/B)ε1, and B′ = B
√

1− E2/B2ε3.
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K
K’

1

2

3

1

2

3

v
B B’

E

E’ = 0

Now imagine a particle is injected into this system with an initial velocity7 u(0) =

u0ε1. In the frame K ′, its initial velocity is

u′(0) =
u0 − v

1 + u0v/c2
ε1. (116)

From our first example, we know that the particle will proceed to execute circular

motion in this frame, always with the same speed u′(0). What then is its motion

in frame K? Superposed on the circular motion will be a drift velocity v. If q > 0

and u0 > v, we get the first motion shown below. But if u0 < v, we get the second

motion. For the special case of u0 = v, the particle is at rest in K ′ which means it

moves in K at a constant velocity u(t) = v.

u > v u < v u = v

qq
q

B

7We could be more general and include a component of u parallel to B; this would not lead to

anything significantly different from what we are about to find.
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Such a device can be employed as a velocity selector and so it complements the

device described in the first example which was a momentum selector. The idea is

that a particle coming in with a speed u0 greater than v will experience a magnetic

force greater than the electric force and so it will be deflected accordingly. But one

coming in with a speed smaller than v will experience an electric force greater than

the magnetic one, and it will be deflected in the other direction.

The picture chages after a while, however, because the particle will speed up and

slow down under the influence of the electric field. Suppose that initially u0 > v

(u0 < v). Then the B-field (the E-field) force dominates, and the particle is deflected

in such a way that it moves against (with) the electric field. This causes it to slow

down (speed up) so that after some time u0 < v (u0 > v). Then the electric (magnetic)

field force dominates, causing the particle to swing around so that it eventually moves

with (against) the electric field force. And so on. The end result is a trajectory that

produces a time-averaged velocity equal to v or c(E × B)/B2. This is called the E

cross B drift velocity. It is in the direction of E × B no matter what is the sign of

the charge.

4.3 Motion in crossed E and B fields, E > B

This time we want to consider the motion in a frame K ′ moving at velocity v =

c(E × B)/E2 → c(B/E)ε1, if we keep the same directions of the fields as in the

preceding example. In this frame there is only an electric field E′ = E
√

1−B2/E2

which will cause the particle to move away in the direction of E′. The equations of

motion in K ′ are

mc2dγ
′

dt′
= qE ′

dy′

dt′
and

dp′y
dt′

= qE ′; (117)

the components of the momentum in the other directions are constant. One easily

solves to find

p′(t′) = p′(0) + qE ′t′ε2 (118)
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and we can then find γ ′ directly from the dispersion relation,

γ′ =
1

mc2

√
m2c4 + p′(t′) · p′(t′)c2. (119)

The speed u′y is found easily from the equation of motion for γ ′ which integrates

trivially to produce

y′(t′) = y′(0) +
mc2

qE ′
(γ′(t′)− γ′(0))

= y′(0) +

√
m2c4 + (p′(t′))2c2 −

√
m2c4 + (p′(0))2c2

qE ′
. (120)

Consider also x′⊥, the component of x′ perpendicular to the electric field. Because

p′⊥/dt = 0, it is true that γ ′y′⊥ = γ′(0)u′⊥(0), a constant. Hence

u′⊥(t′) = u′⊥(0)
√

1 + (p′(0))2/m2c2/
√

1 + (p′(t′))2/m2c2. (121)

We can integrate the velocity over time to find the displacement of the particle. For

the special case that there is no component of p′(0) in the direction of the field, one

finds that

x′⊥(t)− x′⊥(0) =
p′⊥(0)

qE ′
ln



qE ′t′

mγ(0)
+

√√√√1 +

(
qE ′t′

mγ(0)

)2

 . (122)

We can combine Eqs. (113) and (115) to remove the time and so have an equation

that determines the shape of the trajectory. For simplicity, let x′⊥(0) = y′(0) = 0.

Then one finds

x′⊥qE
′

mγ′(0)u′(0)
= ln




√√√√
(

1 +
qE ′y′

mγ′(0)

)2

− 1 + 1 +
qE ′y′

mγ′(0)


 . (123)

For short times satisfying the condition |qE ′y′/mγ′(0)| << 1, the trajectory is a

parabola,
x′⊥qE

′

mγ′(0)u′(0)
≈
√

2qE ′y′

mγ′(0)
(124)

or

y′ =
qE ′x′2⊥

2mγ′(0)(u′(0))2
. (125)
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The long time behavior is displayed for |qE ′y′/mγ′(0)| >> 1, and it is such that

y′ =
mγ′(0)

2qE ′
exp

(
x′⊥qE

′

mγ′(0)u′(0)

)
. (126)

4.4 Motion for general uniform E and B.

Then we cannot find a frame where one of the fields can be made to vanish. But

there is a frame where the electric field and magnetic induction are parallel; here the

solution of the equations of motion is relatively simple and is left as an exercise.

4.5 Motion in slowly spatially varying B(x)

.

This problem is greatly simplified by (1) the fact that then energy, or γ, is a

constant and by (2) the assumption that B(x) does not vary much relative to its

magnitude over distances on the order of the radius of the particle’s orbit.
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The topic of interest is a charged particle traversing a material medium. Such a

particle looses energy by scattering from the charged particles, electrons and nuclei,

in the material.

E
E’

E’ < E

This is an interesting system from many points of view. Historically it was extremely

important in resolving the question of the structure of matter (the Rutherford atom),

and at present energy loss is an important phenomenon in particle physics and is

also studied in detail by nuclear engineers and by condensed matter physicists in

connection with the properties of materials and radiation damage to materials.

The problem can be studied as a straightforward application of electromagnetism;

charged particles scatter from one another with the result that energy and momentum

are transferred. The scattering centers in a material are of two distinct types; there

are electrons of charge −e and small mass m ∼ 10−27 g, and there are nuclei of charge

Ze with Z up to about 102 and large mass M ∼ 10−22 g. Thus the nuclear charge is

significantly larger than that of an electron, and the nuclear mass is much larger—

some 105 times larger—than the electronic mass. It is also important to realize that

there are Z more electrons than nuclei (Z is the atomic number of the atoms in the

material) in a given volume of target material. Consequently the electrons provide Z

times as many scattering centers as the nuclei.
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e

Z e

m

M

M >> m

As we shall see, it turns out that electrons soak up most of the energy of an incident

particle while nuclei are responsible for most of the momentum transfer in the sense

that they are more effective than electrons at deflecting the incident particle from its

initial direction of motion.

1 Energy Transfer in Coulomb Collisions

The general problem of energy transfer when a charged particle traverses a material

is naturally very complicated. We shall approach it a little at a time starting with

the classical impulse approximation applied to a pair of particles.

1.1 Classical Impulse Approximation

Consider a particle (q,M), where q is the charge and M , the mass, incident with

speed v on a second particle (−e,m) at rest in the frame of our calculation. The

incident particle has total energy Mγc2, where γ = 1/(1− v2/c2)1/2. In the impulse

approximation the incident particle is treated as undeflected by the collision. Further,

the target is approximated as stationary during the collision. Then it is easy to

calculate the momentum, or impulse, transferred from the incident particle to the

target.

Given the approximation that the incident particle’s trajectory is unaffected by
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the collision, it travels with constant velocity and passes the target at some distance

b called the impact parameter.

q M
b

e
m

The momentum transferred to the target can be expressed as the integral over time

of the force acting on it, and we can find that from knowledge of the electric field

produced by the incident particle at the location of the target. From prior calculations

in Chapter 11, we know that this field is E = E⊥ + E‖ where the parallel and

perpendicular components act parallel and perpendicular to the line of motion of the

incident particle. These components are given at the target, by

E⊥(b) =
γqb

(b2 + γ2v2t2)3/2
and E‖(b) = − γqvt

(b2 + γ2v2t2)3/2
(1)

where the origin of time is chosen so that the particles are closest at t = 0.

-4 -2 0 2 4
vt/b

0

1

2

3

q/
b2

E perp

β=0.1
β=0.9

-4 -2 0 2 4
vt/b

-0.4

-0.2

0.0

0.2

0.4

Eparallel

The integral over time of E‖ is zero while that of E⊥ provides the momentum trans-
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ferred to the target,

p =
∣∣∣∣
∫ ∞

−∞
dt (−eE⊥)

∣∣∣∣ =

∣∣∣∣∣

∫ ∞

−∞
dt

eγqb

(b2 + γ2v2t2)3/2

∣∣∣∣∣ =

∣∣∣∣∣
eqb

v

∣∣∣∣∣

∫ ∞

−∞

dx

(b2 + x2)3/2

=
∣∣∣∣
qe

bv

∣∣∣∣
∫ ∞

−∞

du

(1 + u2)3/2
=

2|qe|
bv

. (2)

Next, we shall assume that p << mc so that the energy transfer to the target may

be approximated by the non-relativistic formula p2/2m. This gives us a third ap-

proximation whose validity we must scrutinize. Adopting it, we find that the energy

transfer to the target is1

∆E =
p2

2m
=

2q2e2

mb2v2
=
(
qe

b

)
(qe/b)

(mv2/2)
∝ e2

m
. (3)

Notice that the energy transfer is proportional to the square of the charge of the

target particle and inversely proportional to its mass. Possible targets are electrons

and nuclei. A nucleus has a larger charge than an electron by a factor of the atomic

number z, giving the nucleus an “advantage” by a factor of z2 when it comes to

extracting energy from the incident particle. However, nuclei are more massive than

electrons by a factor of 1836A where A is the atomic weight which is as large as or

larger than z. Furthermore, there are z more electrons than nuclei to act as targets.

Hence we see that the electrons are more effective than nuclei at taking the energy of

the incident particle by a factor of at least 1836. For this reason, we shall henceforth

suppose that the target particle is an electron so long as we are interested in the

energy transfer, as opposed to the momentum transfer, from the incident particle to

the target.

effect nucleus electron

charge z2 1

mass 1/(1836z) 1

number 1 z

total z/(1836) z

1We shall suppose qe > 0 so that the notation is simplified.
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1.2 Validity of Approximations

Our simple calculation of the energy transfer contains three distinct approximations.

1. It is assumed that the incident particle is not deflected from its straight-line

path. This assumption is valid so long as the actual angle of deflection θ obeys

the inequality θ << 1.

2. It is assumed that the target particle is at a particular point during the entire

collision. This assumption is valid provided the target recoils a distance d during

the collision which is small compared to the impact parameter b, d << b.

3. We assumed that the recoiling particle is non-relativistic, p << mc.

We can determine the conditions under which the approximations are valid. First,

the angle of deflection of the incident particle is of order p/Mγv,

p

M vγ
tan( )~θ θ

θ ≈ p

Mγv
≈ 2qe

γbMv2
=

2

γ

(
(qe/b)

Mv2

)
. (4)

Thus we require that the electrostatic potential energy of interaction at a separation

of the impact parameter should be small compared to the energy Mγv2 which is

something like the energy of the incident particle. This condition is generally met. It

is also not independent of the other conditions required for the validity of the impulse

approximation.

Second, consider the requirement that the target not recoil far in comparison

with b during the collision. From the form of the electric field

E⊥(b) =
γqb

(b2 + γ2v2t2)3/2

6



and hence the force experienced the the particle, we can see that the duration τ of

the collision is roughly b/γv. During this time the recoil particle moves a distance of

order (p/m)τ , assuming it was initially at rest, so the requirement is

b

γv

(
2qe

mbv

)
<< b or

1

γ

(qe/b)

mv2
<< 1. (5)

This inequality is much like the previous one but note the replacement of M with

the mass m. Given that the target is an electron, which has the smallest mass of all

charged particles2, the present condition is at least as strong as the condition θ << 1.

Consequently, we can forget about the latter.

Notice that the condition (5) can also be written as

1

γ

c2

v2

r0

b
<< 1 (6)

where r0 ≡ e2/mc2 is the classical radius of the electron which is about 2.82×10−13 cm.

Thus, provided the factor c2/v2γ is not much larger than unity, this condition is met

for impact parameters (almost) down to r0 which is also about the size of a baryon

or nucleus at which point we would expect the calculation to fail for entirely different

reasons. Notice, however, that the condition becomes much more severe if v is not

large, i.e., if the incident particle is not relativistic. That is not surprising; the collision

will last much longer if the incident particle moves slowly and the target has more

time to recoil during the collision.

Third, comes the condition that p << mc, or 2(qe/b)/mvc << 1. This condition

is not much different from Eq. (5).

1.3 Energy Loss

We have calculated, in the impulse approximation, the energy absorbed from an

incident particle by a single electron. There is never just one electron. We have to

figure out how to add up the contributions of many electrons to determine how much

2As far as anyone knows.
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energy the incident particle will lose per unit length of its path. Given an electron

density n, then an incident particle having speed v will pass n(vdt)(2πb db) scatterers

per unit time at distances between b and b+ db.

M v The # of particles within 
this differential volume 
= n (v dt) (2  b db)π

b

v dt = dx

The consequent energy change of the incident particle in time dt is, from Eq. (3)

d2E = −dtdb v2πbn

(
2q2e2

mb2v2

)
. (7)

Now integrate over b to get the contributions from scatterers at all distances. This

must be done with some care. Let’s just integrate b from some minimum to some

maximum:
dE

dt
= −4πnq2e2

mv

∫ bmax

bmin

db

b
= −4πnq2e2

mv
ln(bmax/bmin). (8)

The mathematical necessity of the upper and lower cutoffs on b is clear; the

integral would diverge at either end without the cutoff. Physically, what is the reason

for them? We have just seen that the impulse approximation breaks down at b → 0

because the recoiling particle recoils by a distance comparable to or larger than the

impact parameter during the collision in that limit. Referring back to the condition

that our approximation is valid

b

γv

(
2qe

mbv

)
<< b or

1

γ

(qe/b)

mv2
<< 1 ,

we see that a reasonable value for the cutoff is bmin = qe/mγv2. This will also make

certain that the incident particle’s deflection θ is small.

8



What about the upper cutoff? The physical reason for the breakdown of the

impulse approximation (which then necessitates the cutoff) at large b is that when

b is large, the collision time τ = b/γv is long. When this time is long, the natural

motions of the target cannot be neglected; that is, the electron or target is not really

at rest although we treated it as such when calculating the energy transfer. Most

electrons are bound to atoms, molecules, or ions with some binding energy Ee giving

them a natural angular frequency of motion ω0 = Ee/h̄. The corresponding period is

of order 1/ω0. The collision time must be small compared to this time or the impulse

approximation, as we have derived it, breaks down. That suggests we choose bmax

according to bmax/γv = 1/ω0 or bmax = γv/ω0.

Using these cutoffs, we find that the rate of change with time of the incident

particle’s energy is
dE

dt
= −4πnq2e2

mv
ln

(
mγ2v3

qeω0

)
. (9)

A perhaps more interesting quantity is dE/dx = v−1dE/dt,

dE

dx
= −4πnq2e2

mv2
ln

(
mγ2v3

qeω0

)
(10)

In this derivation, we have determined the lower cutoff on b by looking at the

breakdown of the classical impulse approximation. There is also a breakdown asso-

ciated with quantum effects which implies a somewhat different lower cutoff. The

quantum breakdown can be understood by appealing to the uncertainty principle.

The value of b is uncertain by an amount related to the momentum of the incident

particle. We claim that it has no momentum in the direction in which the impact

parameter is measured. We can’t really know this to be precisely the case and there

has to be an uncertainty in the impact parameter which is of order h̄/mγv. If this

uncertainty is comparable to b itself, then our calculation fails. Hence the quantum

mechanical cutoff is b
(q)
min = h̄/mγv. In any given situation, we have to use the larger

of the two lower cutoffs. The ratio of the two is

b
(q)
min

bmin
=

h̄

mγv

γmv2

qe
=
h̄v

qe
=

1

α(q/e)

v

c
≈ 137

(q/e)

v

c
(11)
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where α ≡ e2/h̄c ≈ 1/137 is the fine structure constant. If this parameter is larger

than unity, the quantum cutoff should be employed; if it is smaller than unity, the

classical one is appropriate.

2 Collisions with a Harmonically Bound Charge;

Energy Loss

One can remove the need for introducing the upper and lower cutoffs on b by doing

a more careful treatment of the (classical) energy transfer in the collision. The more

careful treatment needed at small b is relegated to the homework. The one needed at

large b, which must include the natural motion of the target particle, is given here.

M
q

v e m

ω
0

Suppose that the target is bound harmonically at a point, taken as the origin of

coordinates, meaning that there is a restoring force −mω2
0x, where x is the particle’s

position and ω0 is the natural frequency of the oscillator, in the absence of damping

or perturbing forces. Given that the particle is an electron with mass m and charge

−e, its equation of motion in the presence of an applied electric field (the one coming

from the incident particle) is

m
d2x

dt2
= −mω2

0x−mΓ
dx

dt
− eE(x, t) (12)

where the term −mΓdx/dt is a damping force proportional to the particle’s velocity;

Γ is a ‘damping constant’. This term is typically small compared to the restoring
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force term.

To simplify the solution, we will make several Approximations.

1. We have not included the magnetic force which acts on the bound charge.

This force is smaller than the electric force by a factor of the recoiling particle’s

velocity divided by c even if the incident particle is relativistic; since the recoiling

particle is not relativistic, we may ignore the magnetic force.

2. We make one more approximation which is to evaluate E(x, t) at the origin or

point where the target particle is bound; this is reasonable provided b >> |x|
because then the electric field will vary but little over distances of order |x|.

We solve Eq. (12) by making a Fourier analysis of the motion. Write

E(t) ≡ E(0, t) =
1√
2π

∫ ∞

−∞
dω′E(ω′)e−iω

′t (13)

and

x(t) =
1√
2π

∫ ∞

−∞
dω′ x(ω′)e−iω

′t. (14)

The inverse transforms are

E(ω) =
1√
2π

∫ ∞

−∞
dtE(t)eiωt (15)

and

x(ω) =
1√
2π

∫ ∞

−∞
dtx(t)eiωt. (16)

Substitute Eqs. (13) and (14) directly into the equation of motion and perform the

time derivatives to find

1√
2π

∫ ∞

−∞
dω′

[
−ω′2 − iω′Γ + ω2

0

]
x(ω′)e−iω

′t = −(e/m)√
2π

∫ ∞

−∞
dω′E(ω′)e−iω

′t. (17)

If we multiply by eiωt and integrate over t, we obtain a delta-function, δ(ω−ω ′), and

can then integrate trivially over ω′ to find a solution for x(ω) which is

x(ω) = −eE(ω)

m

1

ω2
0 − iωΓ− ω2

. (18)

11



We could now figure out what is E(ω) since we know E(t) and use it in Eq. (18)

to find x(ω) and then Fourier transform the latter to find x(t). But we aren’t really

interested in x(t). What we are trying to determine is the energy transferred to the

target from the incident charge. That energy can be found as follows:

dE

dt
= F · dx

dt
= −eE(t) · dx(t)

dt
(19)

where we again approximate E(x, t) with E(0, t). The total energy transferred in the

collision is

∆E = −
∫ ∞

−∞
dt eE(t) · dx(t)

dt

= −
∫ ∞

−∞
dt

e√
2π

∫ ∞

−∞
dω′E(ω′)e−iω

′t · d
dt

(
1√
2π

∫ ∞

−∞
dω x(ω)e−iωt

)

= −e
∫ ∞

−∞
dω (−iω)x(ω) · E(−ω). (20)

The last step is achieved by, first, taking the time derivative; second, integrating over

t to obtain a delta-function δ(ω + ω′); and, finally, integrating over ω′.

Because the electric field is real, E(−ω) = E∗(ω). Similarly, x(−ω) = x∗(ω);

hence

∆E = ie
∫ ∞

−∞
dω ω x(ω) · E∗(ω) = <

[
2ie

∫ ∞

0
dω ω x(ω) · E∗(ω)

]
. (21)

Using our solution for x(ω), we find

∆E = <
(
−2i

e2

m

∫ ∞

0
dω

ω|E(ω)|2
ω2

0 − iωΓ− ω2

)

= <
(
−2i

e2

m

∫ ∞

0
dω

ω|E(ω)|2(ω2
0 − ω2 + iωΓ)

(ω2
0 − ω2)2 + ω2Γ2

)

=
e2

m

∫ ∞

0
dω

2ω2Γ|E(ω)|2
(ω2

0 − ω2)2 + ω2Γ2
(22)

Finally, consider the limit that Γ is very small (small damping). Then the entire

weight in the integrand is at ω = ω0 which means that the only part of E which

contributes to the energy transfer is the part whose frequency matches the natural
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frequency of the oscillator. In this limit the integral can be done by evaluating E(ω)

at ω0 so that

∆E ≈ 2e2

m
|E(ω0)|2

∫ ∞

0
dω

ω2Γ

(ω2
0 − ω2)2 + ω2Γ2

=
2e2

m
|E(ω0)|2

∫ ∞

0
dx

x2

[(ω0/Γ)2 − x2]2 + x2
(23)

where x ≡ ω/Γ. The remaining integral is

I =
∫ ∞

0

dx

[(ω0/Γ)2 − x2]2/x2 + 1
≈
∫ ∞

−ω0/Γ

dy

(Γ/ω0)2[2yω0/Γ + y2]2 + 1

≈
∫ ∞

−∞

dy

4y2 + 1
=
π

2
. (24)

Hence

∆E =
πe2

m
|E(ω0)|2 (25)

in the limit of Γ << ω0.

We still need to evaluate E(ω0).

M
q

v

e m ε

ε
3

1

If the incident particle is moving in the z direction and the target lies in the x direction

relative to the track of the incident particle, then the components of the electric field

are

E‖(t) = − qvγt

(b2 + γ2v2t2)3/2
ε3 and E⊥(t) =

γqb

(b2 + γ2v2t2)3/2
ε1. (26)

Hence

E⊥(ω) =
qbγ√

2π

∫ ∞

−∞
dt

eiωt

(b2 + γ2v2t2)3/2
ε1 =

qbγ√
2π

b

γv

1

b3

∫ ∞

−∞
dx

e−i(ωb/γv)x

(1 + x2)3/2
ε1
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=
q

bv
√

2π

∫ ∞

−∞
dx

e−izx

(1 + x2)3/2
ε1 =

2q

bv
√

2π

∫ ∞

0
dx

cos(zx)

(1 + x2)3/2
ε1 (27)

where z = ωb/γv. The integral we are contemplating is a Bessel function; that is,

Kν(z) =
2νΓ(ν + 1/2)√

π zν

∫ ∞

0
dx

cos(xz)

(1 + x2)ν+1/2
; (28)

specifically,

K1(z) =
2Γ(3/2)√

π z

∫ ∞

0
dx

cos(zx)

(1 + x2)3/2
. (29)

Further, Γ(3/2) =
√
π/2, so

E⊥(ω) =
q

bv

√
2

π
zK1(z)ε1. (30)

By similar manipulations one finds that

E‖(ω) = −i q
γvb

√
2

π
zK0(z)ε3. (31)

Hence the energy transfer is, from Eq. (25),

∆E =
πe2

m

q2

b2v2

2

π

[
z2K2

1 (z) +
z2

γ2
K2

0 (z)

]
=

2q2e2

mb2v2

[
z2K2

1 (z) +
z2

γ2
K2

0(z)

]
(32)

where z = ω0b/γv = b/bmax using bmax = γv/ω0 as per the criterion discussed in the

preceding section.

0 1 2 3
x

0

1

2

3

4

K0(x) ~ -ln(x/2)
K1(x) ~ 1/x
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Cutoffs. What is the qualitative behavior of this result as a function of b? For

b << bmax, z << 1 and zK0(z) → 0 as z → 0 while zK1(z) → 1. Making these

substitutions in Eq. (32) we find that for small b, the result is the same as what

emerged from the impulse approximation.3 Thus we must still insert by hand a

cutoff for small b (bmin). For large b >> bmax, however, z >> 1 and the Bessel

functions’ behavior is

K0(z) ∼ K1(z) ∼
√
π

2z
e−z (33)

so that in this regime of b,

∆E ≈ 2q2e2

mv2b2

[
π

2z
z2

(
1 +

1

γ2

)
e−2z

]
=
q2e2πz

mv2b2

(
1 +

1

γ2

)
e−2z. (34)

Thus the large b cutoff is automatically included in this formalism

We can find the total energy loss per unit path length by integrating over b as

before. Given an electron density n, then an incident particle traversing a distance

dx will pass n(dx)(2πb db) scatterers with impact parameters between b and b + db.

The integral for the energy loss by the incident particle can then be put in the form

d2E = −(2πb db)(v dt)n∆E ,

or, since b = bmaxz = vγ
ω0
z and dx = v dt,

d2E = −2π
(
vγ

ω0

)2

z dz dx n∆E .

Then, integrating on z, we get

dE

dx
= −2πn

2q2e2

mv2

∫ ∞

zmin

dz

z

[
z2K2

1 (z) +
z2

γ2
K2

0 (z)

]
(35)

where zmin = bmin/bmax = qeω0/mγ
2v3. The integral, which is

I ≡
∫ ∞

zmin
dz z

(
K2

1 (z) +
1

γ2
K2

0 (z)

)
=
∫ ∞

zmin
dz z

(
K2

1 (z) +K2
0 (z)− v2

c2
K2

0 (z)

)
, (36)

3Which is almost miraculous because we approximated E(x, t) as E(0, t) which is not good when

b is small; evidently, some cancellation of errors takes place.
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can be done by making use of certain identities satisfied by the Bessel functions.

These identities are

K ′ν(x) = −Kν−1(x)− ν

x
Kν(x) and K ′ν(x) = −Kν+1(x) +

ν

x
Kν(x); (37)

from them, it follows that

d

dx
[xK0(x)K1(x)] = −x[K2

0 (x) +K2
1 (x)]

d

dx
[x2(K2

1 (x)−K2
0 (x))] = −2xK2

0 (x). (38)

It is now easy to do the integral; the result is

I = zminK0(zmin)K1(zmin)− v2

2c2
z2
min[K2

1 (zmin)−K2
0 (zmin)]. (39)

Now, zmin = qeω0/mγ
2v3 ∼ 10−7 or less for a relativistic particle, so we can expand

the Bessel functions in the small argument limit:

K1(x) ≈ 1/x and K0(x) ≈ −[ln(x/2) + 0.577] = ln(1.123/x). (40)

Thus I = ln(1.123/zmin)− v2/2c2, and

dE

dx
= −4πnq2e2

mv2

[
ln

(
1.123mγ2v3

qeω0

)
− v2

2c2

]
. (41)

This formula may be easily extended to a (slightly) more realistic form, accounting

for different charges with different resonant frequencies. Assume an elemental solid

with a density of atoms N , each with Z electrons. The Z electrons will be split into

groups of fj electrons distinguished by the resonant frequency of the group ωj. The

oscillator strengths fj must satisfy the sum rule
∑
j fj = Z. The groups add linearly

so that
dE

dx
= −4πnZ

q2e2

mv2

[
lnBc −

v2

2c2

]
. (42)

where

Bc =
1.123mγ2v3

qe < ω >
Z ln < ω >=

∑

j

fj lnωj (43)
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This is the classical energy-loss formula derived by Bohr in 1915. It actually works

rather well despite the fact that the effects responsible for the energy loss (scattering of

small objects by other small objects) really ought to be treated using quantum theory.

The reason why the classical theory works as well as it does is that any macroscopic

energy loss is the result of many collisions. The energy loss in each collision is not

given very accurately by the classical theory, but Eq. (41) represents the energy loss

over a large number of collisions, and that is pretty close to the mark. Thus the

usefulness of the classical theory is in part a consequence of statistical effects. Bohr’s

original formula was eventually superseded by a calculation based on quantum theory

and done by Bethe in 1930. Read the appropriate section in Jackson for more details.

3 Density Effect in Energy Loss

A charged particle traversing a material produces a local electric polarization of that

material, as a consequence of which the electric field acting on any given charge in

the material is not the electric field that we used in the preceding sections.

vq

M

Polarizable MaterialPolarizable Material

This “screening” effect is especially important for collisions of large impact parameter

b, since then the field will be screened by the charges closer to the path of the incident
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particle.

v
q

Close particles
screen the field seen
by particles with large
impact parameter b

Thus the energy loss formulas we derived earlier will overestimate the energy loss of

a charged particle traversing a polarizable medium. As we will see, this effect is most

important for fast or ultra-relativistic particles.

We can produce a calculation of the consequences of this “screening” effect us-

ing the familiar formalism of macroscopic electrodynamics. Let the material have a

frequency-dependent dielectric function ε(ω), as discussed in Chapter 7, so that the

displacement and macroscopic electric field, expressed as functions of position and

frequency, are related by

D(x, ω) = ε(ω)E(x, ω); (44)

the connection between any field F as a function of x and ω and the same field as a

function of x and t is

F (x, t) =
1√
2π

∫ ∞

−∞
dω F (x, ω)e−iωt (45)

with the inverse transformation

F (x, ω) =
1√
2π

∫ ∞

−∞
dt F (x, t)eiωt. (46)

Further, let us introduce Fourier transforms in space:

F (x, ω) =
1

(
√

2π)3

∫
d3k F (k, ω)eik·x (47)
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with the inverse

F (k, ω) =
1

(
√

2π)3

∫
d3xF (x, ω)e−ik·x. (48)

We begin from the macroscopic Maxwell equations with B ≡ H, i.e., µ = 1; the

inhomogeneous equations are

∇×B =
4π

c
J +

1

c

∂D

∂t
and ∇ ·D = 4πρ, (49)

and the homogeneous field equations may be replace by

B = ∇×A and E = −∇Φ− 1

c

∂A

∂t
. (50)

which ensure that ∇ · B = 0 and that ∇ × E = − 1
c
∂B/∂t. Fourier transform the

Maxwell equations (49) to find

ik×B =
4π

c
J− iω

c
D and ik ·D = 4πρ. (51)

Similarly, from the Fourier transforms of Eqs. (50) one finds

B = ik×A and E = −ikΦ + i
ω

c
A. (52)

Substitution of this pair of equations into the immediately preceding ones and using

D = εE, we arrive at Fourier transformed wave equations for the potentials:

−k(k ·A) + k2A =
4π

c
J− ω

c
ε
[
kΦ− ω

c
A
]

(53)

and

ε
[
k2Φ− ω

c
k ·A

]
= 4πρ. (54)

We can make the equations for A and Φ separate by choosing an appropriate

gauge; specifically,

k ·A(k, ω) = ε
ω

c
Φ(k, ω) , (55)

19



which is a slightly modified form of the Lorentz gauge. Within this gauge, the equa-

tions of motion are

(k2 − ε ω2/c2)A =
4π

c
J and (k2 − ε ω2/c2)Φ = 4π

ρ

ε
(56)

which are simple familiar4 wave equations.

The only macroscopic source is the incident charge5, so

ρ(x, t) = qδ(x− vt) and J(x, t) = vρ(x, t) (57)

where we approximate v as a constant, v = vε3. The Fourier transforms of these

source densities are

ρ(k, ω) =
1

(2π)2

∫
d3xdt e−i(k·x−ωt)qδ(x− vt)

=
q

(2π)2

∫ ∞

−∞
dt e−i(k·v−ω)t =

q

2π
δ(ω − v · k) (58)

and, similarly,

J(k, ω) =
qv

2π
δ(ω − v · k). (59)

The solutions for the Fourier-transformed potentials are trivially found:

Φ(k, ω) =
(

2q

ε

)
δ(ω − k · v)

k2 − ε ω2/c2

A(k, ω) =
(

2qv

c

)
δ(ω − k · v)

k2 − ε ω2/c2
(60)

Now, E(k, ω) = −ikΦ(k, ω) + i(ω/c)A(k, ω), so

E(k, ω) = 2iq

(
ωv

c2
− k

ε

)
δ(ω − k · v)

k2 − ε ω2/c2
(61)

and

B(k, ω) = ik×A(k, ω) = i
(

2q

c

)
(k× v)

δ(ω − k · v)

k2 − ε ω2/c2
. (62)

4They may not look so familiar because they are in wavenumber and frequency space.

5The dielectric function accounts for any sources associated with charges in the material.
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Now let us compute the rate at which the incident particle loses energy by finding

the flow of electromagnetic energy away from the track of this particle. Let the point

at which the fields are to be evaluated be x = bε1 and find E(x, ω) and B(x, ω):

B(x, ω) =
1

(
√

2π)3

∫
d3k eik·x i

(
2q

c

)
(k× v)

δ(ω − k · v)

k2 − ε ω2/c2

=
(2iq/c)

(2π)3/2

∫
d3k eibk1(k2ε1 − k1ε2)v

δ(ω − k3v)

k2 − ε ω2/c2

= −ε2
(2iq/c)

(2π)3/2

∫
dk1dk2 k1e

ibk1

/[
k2

1 + k2
2 +

ω2

v2

(
1− εv

2

c2

)]
(63)

Set λ2 = (ω/v)2(1− ε v2/c2) and β = v/c. Then

B(x, ω) = −iε2
2q

c(2π)3/2

∫
dk1dk2

k1e
ibk1

k2
1 + k2

2 + λ2
= −iε2

q

c
√

2π

∫
dk1

k1e
ibk1

√
k2

1 + λ2

= −ε2
q

c
√

2π

d

db



∫
dk1

eibk1

√
k2

1 + λ2


 = −ε2

q

c

√
2

π

d

db

(∫ ∞

0
dx

cos(bλx)√
1 + x2

)

= −ε2
q

c

√
2

π

d

db
[K0(bλ)] = ε2

q

c

√
2

π
λK1(bλ). (64)

Similarly,

E(x, ω) = ε1
q

v

√
2

π

λ

ε
K1(bλ)− iε3

qω

v2

√
2

π

(
1

ε
− β2

)
K0(bλ). (65)

Next, for real ε, λ2 may be positive or negative depending on whether the incident

particle moves more slowly or more rapidly than the speed of light in the medium,

c′ = c/
√
ε. For v < c′, λ2 > 0, λ is real, and E reduces to our previous result

except for the appearance of ε here and there. It is then a straightforward matter

to calculate ∆E(b) by the same procedure as before, assuming6 the field acting on a

target particle is the same as the macroscopic field.

Rather than reproducing the previous calculation, let’s look at an alternative:

we shall calculate the radial outward part (ρ component) of the Poynting vector at

x = ρρ.

6A risky assumption.
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When this component of S is integrated over all time and over a closed loop of radius

b around the path of the particle, the result is the total electromagnetic field energy

which flows away from the particle, per unit length of path, and at distance b from the

path. Letting this energy be Ef , to distinguish it from the energy change of anything

else (such as the incident particle), we have

(
dEf
dz

)

ρ=b

=
c

4π
2πb

∫ ∞

−∞
dt (E×B) · n (66)

Given the geometry introduced earlier, the quantity (E×B) · n is just −E3B2.

Let’s complete the integral:

(
dEf
dx

)

ρ=b

= −cb
2

∫ ∞

−∞
dtB2(t)E3(t) = − cb

4π

∫ ∞

−∞
dtdωdω′B2(ω′)E3(ω)e−i(ω+ω′)t

= −cb
2

∫ ∞

−∞
dωB2(−ω)E3(ω) = −cb

2

∫ ∞

−∞
dωE3(ω)B∗2(ω)

= −cb<
[∫ ∞

0
dω B∗2(ω)E3(ω)

]

= −2cbq2

πv2
<
[∫ ∞

0
dω (−iω)

(
1

ε
− β2

)
K0(bλ)

1

c
λ∗K1(bλ∗)

]

=
2q2

πv2
<
[∫ ∞

0
dω (iωλ∗b)

(
1

ε
− β2

)
K1(bλ∗)K0(bλ)

]
, (67)

an expression first derived by Enrico Fermi.
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In order for the integral to have a real part, either λ or ε must be complex. If ε

is real, then λ can still be complex if εβ2 > 1 meaning that the particle is travelling

faster than the speed of light in the material. In this case one finds the phenomenon

of Cherenkov radiation which we shall discuss presently.

For now, let us look at the case of complex ε. Introduce the frequency-dependent

polarization P(x, ω) via the relation

D(x, ω) = E(x, ω) + 4πP(x, ω); (68)

In a linear medium such as we are considering, P(x, ω) = χ(ω)E(x, ω) with χ(ω) =

(ε(ω)− 1)/4π. The frequency dependent polarization is just the Fourier transform in

time of the usual polarization P(x, t). If we calculate it using the damped harmonic

oscillator model introduced above and in chapter 7, we find

P(ω) =
ne2

m

E(ω)

ω2
0 − ω2 − iωΓ

(69)

where n is the electron density in the material; the corresponding dielectric function

is

ε(ω) = 1 +
ω2
p

ω2
0 − ω2 − iωΓ

(70)

where ωp is the plasma frequency, ω2
p = 4πne2/m.

Now we have an expression for ε(ω) based on a simple model. We need to do the

integral presented in Eq. (67). Unfortunately that cannot be done in terms of simple

functions so we shall approximate the integral in a physically reasonable way. The

important range of ω should be ω ∼ ω0 so that bλ ∼ bω/v ∼ b(ω0/v) << 1 for b less

than about an atomic size and v ∼ c; ω0 is a typical atomic energy. Thus we make

the small argument approximations

bλ∗K1(bλ∗) ≈ bλ∗
1

bλ∗
= 1 (71)

and

K0(bλ) ≈ ln(1.123/bλ) (72)
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which leads to
(
dEf
dx

)

ρ=b

=
2q2

πv2
<
[∫ ∞

0
dω iω

(
1

ε
− β2

)
ln
(

1.123

bλ

)]
. (73)

Because we just fouled up the integrand in the region ω >> ω0, we had best make

sure that no contribution comes from this region of frequency; physically, we believe

this should be the case. Since ε→ 1 sufficiently rapidly here (something that should

be checked to be sure our belief), we can guarantee convergence of the integral by

approximating β2 with 1. Then

(
dEf
dx

)

ρ=b

=
2q2

πv2
<(I) (74)

where

I =
∫ ∞

0
dω iω

[
ln
(

1.123c

ωb

)
− 1

2
ln(1− ε)

] (
1− ε
ε

)
. (75)

Using Eq. (68) for ε(ω), we have

I = i
∫ ∞

0
dω ω

( −ω2
p

ω2
0 + ω2

p − ω2 − iωΓ

)[
ln

(
1.123c

ωpb

)
− lnω +

1

2
ln(ω2 − ω2

0 + iωΓ)

]

(76)

We can employ the Cauchy theorem to evaluate this integral by closing the contour

around the first quadrant; that is, construct a closed path by adding a quarter-circle

from a point where ω is large and real to one where it is large and imaginary and

then coming down the positive imaginary-ω axis to the origin.
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ω

The integrand is
analytic within
the contour

I2I 3

I

The total integral around this contour is zero because there are no poles of the

integrand within it. This point is clarified by looking for the zeroes of the integrand’s

denominator and by looking for the zeroes of the logarithm’s argument. They are

located at points in the lower half plane and so are well away from the interior of the

contour.

The integral along the imaginary-frequency axis is, with ω = iΩ, Ω real,

I3 = −i
∫ ∞

0
idΩ

−iΩω2
p

Ω2 + ω2
0 + ω2

p + ΩΓ

[
ln

(
1.123c

bωp

)
− ln(iΩ) +

1

2
ln[−(Ω2 + ω2

0 + ΩΓ)]

]

= i
∫ ∞

0
dΩ

−Ωω2
p

Ω2 + ω2
0 + ω2

p + ΩΓ

[
ln

(
1.123c

bωp

)
− ln Ω +

1

2
ln(Ω2 + ω2

0 + ΩΓ)

]
(77)

which is pure imaginary, meaning that <(I3) = 0. The integral over the quarter-circle,

I2, is thus such that −<(I2) = <(I), or, letting ω = Ω exp(iθ) on the quarter-circle,

<(I) = −<
∫ π/2

0
iΩeiθiΩeiθdθ

( −ω2
p

ω2
0 + ω2

p − Ω2e2iθ − iΩeiθΓ

)

×
[
ln

(
1.123c

bωp

)
− ln

(
Ωeiθ

)
+

1

2
ln
(
Ω2e2iθ − ω2

0 + iΩΓeiθ
)]

= ω2
p<

∫ π/2

0
dθ

[
ln

(
1.123c

bωp

)
+O

(
Γ

Ω

)]
= ω2

p

π

2
ln

(
1.123c

bωp

)
. (78)
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Hence, (
dEf
dz

)

ρ=b

=

(
q2ω2

p

c2

)
ln

(
1.123c

bωp

)
; (79)

The negative of this quantity is the energy loss of the incident particle per unit

distance traveled.

This result is to be compared with the one we found before taking screening into

account, (
dE

dz

)

ρ>b

= −q
2ω2

p

c2

[
ln
(

1.123γc

bω0

)
− 1

2

]
. (80)

The two differ significantly in principle, if not numerically. In particular, the depen-

dence of our original formula on the specific natural frequency of the target, ω0, is

gone, replace by a dependence on ωp which depends only on the density of the target

electrons. Also, a factor of γ has, in our most recent result, disappeared from the ar-

gument of the logarithm, meaning that the energy loss by highly relativistic charged

particles is much reduced by the screening effect.

4 Cherenkov Radiation

We are also in a position to calculate energy loss by Cherenkov radiation which is

something that takes place when the incident particle’s speed exceeds the speed of

light in the medium. We can avoid the mechanism just discussed and so isolate the

Cherenkov radiation mechanism by letting ε be real (no damping). In this approx-

imation we will also miss the attenuation of the radiation. Under these conditions,

and as discussed in the last section, the only way to get any radiation is if

λ =
ω

v

√
1− ε(ω)β2 ∈ C , (81)

or, more correctly, λ must be imaginary. We must have v2 > c2/ε or there will be no

radiation. Since n =
√
ε, then c/

√
ε is the speed of light in the medium, and thus the

condition for radiation is that the particle exceed the speed of light in the medium.
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This will not happen for all frequencies. By assuming a simple model dielectric

function

ε(ω) = 1 +
ω2
p

ω2
0 − ω2

, (82)

and expressing the condition as ε(ω) > 1/β2 we can see that the radiation tends to

be emitted near regions of anomalous dispersion.

ω
ω0

Cherenkov Radiation 
is emitted only in the
shaded region where

ε(ω) > 1/β
2

ε(ω)

1/β2

Under these conditions, we evaluate the fields which are present at distance b

from the axis of the incident particle, using b large enough that we can make simple

approximations to the Bessel functions, b|λ| >> 1. Then

K0(λb) ≈ K1(λb) ≈
√

π

2λb
e−λb (83)

and so,

B(x, ω) = ε2
q

c

√
λ

b
e−λb . (84)

Similarly,

E(x, ω) = ε1
q

εv

√
λ

b
e−λb − iε3

qω

v2

1√
λb

(
1

ε
− β2

)
e−λb. (85)
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Then from Eq. (67) and the equations above, the field energy passing through the

cylinder of radius b per unit length is

(
dE

dz

)

C

=
2q2

πv2
<


∫ ∞

0
dω iω

π

2

√
λ∗

λ
e−(λ+λ∗)a

(
1

ε
− β2

)
 . (86)

The wonderful thing that happens when λ is pure imaginary is that the exponential

functions have imaginary arguments and will not become small as b becomes large.

Thus we find the energy given off as Cherenkov radiation to be

(
dE

dz

)

C

=
q2

v2
<
[∫

dω iω
√
−1

(
1− εβ2

ε

)]
=
q2

c2

∫
dω ω

(
1− 1

εβ2

)
(87)

where the integration extends over only those frequencies εβ2 > 1. One can see that

this is indeed radiative energy loss because it is independent of b provided only b is

large enough that the Bessel functions are well-represented by their large-argument

forms. In this respect it is quite distinct from the energy loss by transfer of energy to

other charged particles that we studied earlier (real as opposed to virtual photons).

We were able to treat that energy loss by examining the energy carried by the electro-

magnetic fields because the mechanism by which the energy is transferred from one

particle to another is by means of the fields; in effect, we did that calculation in such

a way as to “intercept” the energy that was on its way from one charge to another.
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From the picture above it is clear that the radiation is completely linearly polarized

in the plane containing the observer and the path of the particle. In addition the angle

θc of emission of Cherenkov radiation relative to the direction ε3 of the particle’s

velocity is given by

cos(θc) =
E1√

E2
1 + E2

3

=
c/n

v
(88)

where n =
√
ε. Thus the condition that λ be complex, and thus that required for

Cherenkov radiation, can be rephrased as the requirement that θc be a physical angle

with a cosine less than unity.

As shown in the picture below, the emission angle θc can also be interpreted in

terms of a shock wave angle.

vt

ε
ct

ε
cv >

ε
cv <

ε
ct

vt

θc

5 Momentum Transfer

The final topic we shall study in this chapter is the deflection of the incident particle

produced by scattering from the particles in the material through which it moves.

The targets mainly responsible for the deflection turn out to be the highly charged

ones—the nuclei.
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We start by introducing the number of particles incident per unit time on the

target with an impact parameter between b and b + db and at an azimuthal angle

between φ and φ+ dφ.

e

b

b + db
φd

v
q

If the incident beam has a particle number density n and a speed v, then the incident

flux is nv particles per unit area per unit time, and the number incident in the area

element just described is

d2N = nvbdbdφ. (89)

Now, given a smoothly varying scattering potential, these particles will, after scat-

tering, show up in some element of solid angle dΩ.

e

b

b + db φdv

dΩ

q

Hence we can write that

d2N = N ′dΩ (90)
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where N ′ is the number of particles scattered into unit solid angle in unit time and

dΩ is the element of solid angle into which the particular d2N particles under consid-

eration are scattered. Using Eq. (89), we have

nvbdφdb = N ′dΩ or bdφdb =
N ′

nv
dΩ (91)

The quantity N ′ is proportional to the incident particle flux; that is, the number

of particles per unit solid angle that come out in some given direction is directly

proportional to the incident flux. Hence a more intrinsic measure of the scattering

than N ′ is provided by the quantity N ′/nv, the differential scattering cross-section

dσ/dΩ:
dσ

dΩ
≡ N ′

nv
(92)

Making this substitution in Eq. (91), we get

bdφdb =
dσ

dΩ
dφ sin θdθ (93)

We will also assume that the potential between the incident particle and the scatterer

is central. In this case we have azimuthal symmetry so the particles incident on the

target in some increment dφ of azimuthal angle around φ are scattered into the same

element of azimuthal angle,

e

vq

Scattering from a central potential occurs within one plane thus is unchangedφ

thus we find

b db =
dσ

dΩ
sin θdθ or

dσ

dΩ
=

b

sin θ

∣∣∣∣∣
db

dθ

∣∣∣∣∣ (94)

where θ is the angle by which the particle is deflected or scattered.
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The differential scattering cross-section, by its definition, has dimensions of length

squared or area. We can evaluate it if we have an equation relating b and θ. In the

impulse approximation, the scattering angle θ is given by ratio of the momentum

transfer to the incident momentum; and that is, from Eq. (2),

|θ| = p

P
=
∣∣∣∣
2qe

Pvb

∣∣∣∣ (95)

e

q
P

p

where, in this equation, P = γMv is the momentum of the incident particle, and

p = 2|qe|
bv

(Eq. (2)) is the momentum transfer from the incident particle to the target.

From this relation we can evaluate |dθ/db| and find that the cross-section is

dσ

dΩ
=

b

sin θ

∣∣∣∣∣
Pvb2

2qe

∣∣∣∣∣ =
Pv

2qe sin θ

(
2qe

Pvθ

)3

=
(

2qe

Pv

)2 1

θ4
(96)

where we make the small angle approximation θ ≈ sin θ which is valid anywhere

that the impulse approximation is valid. In this, the small-angle regime, our result

matches the Rutherford scattering cross-section.

From Eq. (96) we can see that nuclei are more effective than electrons at producing

a given deflection θ. The charge e that appears in the cross-section is the charge of

the target, a holdover from when we let the target be an electron. More generally,

replace this charge by ze, in case the target is, e.g., a nucleus.

dσ

dΩ
=

b

sin θ

∣∣∣∣∣
Pvb2

2qze

∣∣∣∣∣ =
Pv

2qze sin θ

(
2qze

Pvθ

)3

=
(

2qze

Pv

)2 1

θ4
(97)

One can then see that the cross-section is proportional to z2, meaning that a nucleus

is more effective by a factor of z2 at producing a given angle of deflection θ. At the
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same time there are z times as many electrons, leading to z times as many scattering

events. This is not enough to offset the larger cross-section produced by the nuclei,

and therefore they are the dominant scatterers where deflection of the incident particle

is concerned.

5.1 Average Angle of Deflection

Of course the target is rarely composed of a single atom. Rather, we generally scatter

from a molecular solid, or material. Here, we want to calculate a typical or average

angle of deflection produced in a scattering event. That will require integrating

over θ using dσ/dΩ as the distribution function. Cutoffs on the integration must be

introduced. At small θ, corresponding to large b, the cutoff is determined by the

condition bmax ∼ a where a is an atomic size.

b

P

nucleus

a

For b > a, the target
particle does not
feel the nucleus
since it is screened
by the atomic
electrons.

The reason is that for b > a, the incident particle passes completely outside of the

electronic shell surrounding the nucleus and so the interaction between the incident
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particle and nucleus is almost completely screened. Thus

θmin ≈
∣∣∣∣
qze

Pvbmax

∣∣∣∣ ≈
∣∣∣∣
qze

Pva

∣∣∣∣ . (98)

This still leaves a large range of impact parameter b, since the nuclear radius ∼
10−13 cm. and that of a typical atomic radius is ∼ 10−8 cm.. An alternative, quantum-

based argument can be made for choosing θmin ∼ h̄/pa. There is also a maximum

scattering angle which is not of much significance in the present context; we may

suppose that θmax is of order one.

Given appropriate cutoffs, we can determine the mean value of θ2 in scattering

events. Using the small-angle approximation for all trigonometric functions, we have

< θ2 >=

∫
dΩ θ2[dσ/dΩ]
∫
dΩ [dσ/dΩ]

≈
∫ θmax
θmin

dθ/θ
∫ θmax
θmin

dθ/θ3

=
2 ln(θmax/θmin)

1/θ2
min − 1/θ2

max

≈ 2θ2
min ln(θmax/θmin). (99)

This result is some not-very-large multiple7 of θ2
min. Hence, a single scattering event

cannot be expected to deflect the incident particle very much.

A sizable net deflection can be obtained in two quite different ways. One is that a

large number of small-angle scatterings can result in a large deflection. The other is

that a single large-angle scattering, though rare, can occur. If one bombards a thin

slab of target material with a beam of particles, then what one finds is that most

of the particles which come through will have experienced a large number of small-

angle scatterings and no large-angle scatterings. These will have a distribution of net

scattering angles which reflects their experience (many small-angle scatterings). Some

particles, however, will have experienced a large-angle scattering in addition to the

many small-angle scatterings. They will have a distribution of scattering angles which

reflects their experience and which will be quite unlike the distribution of the particles

which experience only small-angle scatterings. Let’s give each of these possibilities a

little further thought.

7Because the cross-section is strongly peaked at small angles.
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5.1.1 Distribution of Small Angle Scattering

If the particle experiences only a large number of small-angle scattering events, its

deflection will resemble a random walk.

q

Multiple small angle
scatterings may be
viewed as a random
walk.

A collection of such random walkers will provide a distribution of observed scattering

angles which will have approximately a Gaussian form,

P (θ) ∼ e−(θ2/<Θ2>), (100)

where < Θ2 > is the width of the distribution. To carry the analysis further in

a quantitative manner, let’s make the random walk effectively one-dimensional by

projecting it onto a plane.

φ

θ
θ’

incident particle

Consider a particle that is scattered into the direction (θ, φ); project this direction

onto the y-z plane where it becomes θ′ with θ′ = θ sinφ for θ << 1. Hence θ′2 =
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θ2 sin2 φ, and the observed mean value of θ′2 in single scattering events is

< θ′2 >=

∫
dΩ θ′2(θ, φ)[dσ/dΩ]
∫
dΩ [dσ/dΩ]

=
1

2
< θ2 > . (101)

Also, < θ′ >= 0. Assuming that the scattering directions produced by the different

collisions that any one particle suffers are independent, and that there are many such

collisions, then, from the theory of the elementary one-dimensional random walk, the

normalized distribution of observed net scattering angles θ′ is well-approximated by

a Gaussian

Pm(θ′) =
1√

π < Θ2 >
e−θ

′2/<Θ2> (102)

with the random walk distribution width

< Θ2 >= N < θ′2 >, (103)

where N is the mean number of collisions experienced by each particle in traversing

the material. If the total cross-section is σ, the density of scatterers is n, and the

thickness of the slab is a, then N = nσa and so

< Θ2 >= nσa < θ′2 > . (104)

For our particular cross-section Eq. (97), σ = π(2qze/Pv)2/θ2
min, so, using also

Eq. (99),

< Θ2 >= 2πn
(

2qze

Pv

)2

a ln(θmax/θmin). (105)

5.1.2 The Distribution of Large Angle Scattering

This distribution may be contrasted with the one that arises for particles which

undergo a single large-angle scattering and many small-angle ones. If the net effect

of the latter is less than the deflection produced by the former, which in some sense

defines what we mean by a large-angle scattering, then we need only consider the

distribution produced by a single large-angle event. The number of such events is
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proportional to the cross-section or, for8 θ << 1,

dσ =
dσ

dΩ
dΩ =

(
2qze

pv

)2
1

θ4
dφ θdθ. (106)

We may convert θ to θ′ using θ = θ′/ sinφ,

dσ =

(
2qze

pv

)2
dθ′

θ′3
sin2 φ dφ. (107)

Now integrate φ from zero to π to pick up all events corresponding to θ′ > 0. The

result is that9

dσ =
π

2

(
2qze

pv

)2
dθ′

θ′3
. (108)

For a slab of thickness a with a density n of scatterers, the probability of having a

single large-angle scattering in an interval dθ′ around θ′ is

Ps(θ
′)dθ′ = nadσ =

π

2
na

(
2qze

pv

)2
dθ′

θ′3
. (109)

Because this distribution falls off only as θ′−3 while the multiple-scattering distribu-

tion falls off exponentially as θ′2, there is some angle θ0 such that the single-scattering

distribution is larger than the multiple scattering one for θ′ > θ0 and conversely.

Roughly speaking, the total distribution of scattered particles as a function of

θ′ is just Pm for θ′ < θ0 and Ps for θ′ > θ0. In any given system, one can easily

compute the two distributions along with θ0. It is expected that the description will

work quite well for θ′ significantly smaller than θ0 and also for θ′ significantly larger.

For θ′ ≈ θ0, the actual behavior is complicated considerably by the contribution

of particles that have undergone several scatterings through “almost-large” angles.

There are not enough such scattering events per particle for them to be properly

treated using statistical methods, and they are not easily treated in any other way,

except for numerical simulations.

8Evidently, “large-angle” means an angle large compared to θmin; it does not mean an angle so

large as to be of order one.
9The original dσ is a second-order differential; the result of integrating over φ, unfortunately still

called dσ, is a first-order differential.
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We have already calculated the radiation produced by some known charge and

current distribution. Now we are going to do it again. This time, however, we shall

consider that the source is a single charge moving in some fairly arbitrary, possibly

relativistic, fashion. Here the methods of chapter 9, e.g., multipole expansions, are

impractical and there are better ways to approach the problem.

1 Liénard-Wiechert potentials

The current and charge densities produced by a charge e in motion are

ρ(x, t) = eδ(x− x(t))

J(x, t) = ev(t)δ(x− x(t)) (1)

if x(t) is the position of the particle at time t and v(t) ≡ dx(t)/dt ≡ ẋ(t) is its

velocity. In four-vector notation,

Jµ(x, t) = ecβµδ(x− x(t)) (2)
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where βµ ≡ (1,β) is not a four-vector; β = v/c.

From J and ρ, one finds A and Φ. We can do this in an infinite space by making

use of the retarded Green’s function G(x, t; x′, t′) = δ(t − t′ − |x − x′|/c)/|x − x′|.
From here, we can evaluate the electromagnetic field as appropriate derivatives of

the potentials. All of these manipulations are straightforward. Furthermore, the

integrations are relatively easy because there are many delta functions. The problem

becomes interesting and unfamiliar, however, for highly relativistic particles which

produce large retardation effects.

Let us start from the integral expression for the potentials:

Aµ(x, t) =
∫
d3x′dt′G(x, t; x′, t′)Jµ(x′, t′)

=
1

c

∫
d3x′dt′

δ(t− t′ − |x− x′|/c)Jµ(x′, t′)

|x− x′|

= e
∫
d3x′dt′ βµ(t′)

δ(x′ − x(t′))δ(t− t′ − |x− x′|/c)
|x− x′|

= e
∫
dt′ βµ(t′)

δ(t− t′ − |x− x(t′)|/c)
|x− x(t′)| (3)

This form reflects the retarded nature of the problem.

O

x

x(t)

e
n (t’)

x (t’)

The particle is not seen by the observer at its
present location x(t), but it appears to be at
x(t’) since light traveling from the particle
at x(t’) arrives at the observer at time t.
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The evaluation of this integral is not totally simple because the argument of the δ-

function is not a simple function of the time t′. In general when one faces an integral

of this form, one invokes the rule

∫
dt′ f(t′)δ[g(t′)] = f(t0)

/∣∣∣∣∣
dg

dt′

∣∣∣∣∣
t0

(4)

where t0 is the zero (there may be more than one) of g1, i.e., g(t0) = 0. Applying this

to the present case, we have

g(t′) = t′ + |x− x(t′)|/c− t = t′ + [(x− x(t′)) · (x− x(t′))]1/2/c− t, (5)

so

dg

dt′
= 1+

1

2c

(
−2

dx(t′)

dt′

)
· (x− x(t′))

|x− x(t′)| = 1− v(t′) · (x− x(t′))

c|x− x(t′)| ≡ 1−β(t′) ·n(t′). (6)

The unit vector n points from the point x(t′) on the particle’s path toward the field

point x; it, and β, must be evaluated at a time t′ which is earlier than t, the time

at which the field is evaluated, by some amount which is determined by solving the

equation

t′ + |x− x(t′)|/c = t. (7)

Combining Eqs. (3), (4), and (6) we find that the potentials are given simply by

Aµ(x, t) = e

[
βµ

|x− x(t′)|(1− β · n)

]

ret

=

[
eβµ

Rκ

]

ret

(8)

where R ≡ |x− x(t′)|, κ = 1− β · n, and the subscript ret means that the quantity

in brackets [...] must be evaluated at the retarded time t′ determined from Eq. (7).

Our potentials, Eq. (8), are known as the Liénard-Wieckert potentials. Probably

their most significant feature is the fact that they vary inversely as 1−β ·n or κ; this

factor can be very close to zero for n ‖ β if β is close to one, i.e., for highly relativistic

1More generally δ[g(x)] =
∑
j δ(x − xj)/|g′(xj)| where xj are the simple zeroes of g(x). If

g′(xj) = 0 (a complex zero), then δ[g(x)] makes no sense.
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particles, meaning that there is a strong maximum in the potentials produced by a

relativistic particle in the direction of the particle’s velocity (at some retarded time).

We wish next to find the electromagnetic field. One may do this in a variety of

ways. One is simply carefully to take derivatives of the Liénard-Wieckert potentials,

a procedure followed in, e.g., Landau and Lifshitz’ book, The Classical Theory of

Fields. Another, much more elegant, is to find the fields in the instantaneous rest

frame of the particle and to Lorentz-transform them to the frame interest. Another,

not very elegant at all, and about to be employed here, is to go back to the integrals,

Eq. (3), for the potentials and take derivatives of these expressions. Consider just the

vector potential,

A(x, t) = e
∫
dt′
β(t′)δ(t′ +R(t′)/c− t)

R(t′)
. (9)

If we wish to find B(x, t), we have to take derivatives of R with respect to various

components of x. Consider, for example,

∇f(R) =
df

dR
∇R =

df

dR

R

R
= n

df

dR
. (10)

Application of this simple rule gives (since ∇ × (ψa) = ∇ψ × a + ψ∇ × a, and

∇× β(t′) = 0 due to the lack of an x dependence.)

B(x, t) = ∇×A(x, t) = e
∫
dt′∇

(
δ(t′ +R/c− t)

R

)
× β(t′)

= e
∫
dt′ (n× β)

[
− 1

R2
δ(t′ +R/c− t) +

1

cR
δ′(t′ +R/c− t)

]
(11)

where the prime on the delta function denotes differentiation with respect to the

argument. Hence

B(x, t) = e

{[
β × n

κR2

]

ret

+
∫
dt′

κ

cR

(
δ′(t′ +R/c− t)

κ

)
(n× β)

}
(12)

Now, from Eqs. (5) and (6)

d(t′ +R/c− t)
dt′

= κ or κdt′ = d(t′ +R/c− t) (13)

5



and so

B(x, t) = e

{[
β × n

κR2

]

ret

+
∫
d(t′ +R/c− t)

(
n× β
cκR

)
δ′(t′ +R/c− t)

}

= e

{[
β × n

κR2

]

ret

−
∫
d(t′ +R/c− t)∂[(n× β)/cκR]

∂(t′ +R/c− t) δ(t
′ +R/c− t)

}

= e

{[
β × n

κR2

]

ret

−
[

1

κ

∂

∂t′

(
n× β
cRκ

)]

ret

}

= e

{[
β × n

κR2

]

ret

+
1

c

[
1

κ

∂

∂t′

(
β × n

κR

)]

ret

}
. (14)

The electric field can be found by similar manipulations:

E(x, t) = −∇Φ(x, t)− 1

c

∂A(x, t)

∂t

= −e
∫
dt′ n

d

dR

(
δ(t′ +R/c− t)

R

)
+
e

c

∫
dt′
βδ′(t′ +R/c− t)

R

= e
∫
dt′
{

n
δ(t′ +R/c− t)

R2
+

1

cR
(β − n)δ′(t′ +R/c− t)

}

= e
[

n

κR2

]

ret
− e

c

[
1

κ

∂

∂t′

(
β − n

κR

)]

ret

. (15)

We now have expressions for E and B, but they involve time derivatives of retarded

quantities. We can work out each of these derivatives. First, we consider just the

derivative of n = R/R. One has

∂R

∂t′
= −ẋ(t′) = −βc (16)

and

∂R

∂t′
=
∂[(x− x(t′)) · (x− x(t′))]1/2

∂t′
=

1

2R
[−2(x−x(t′)) · ẋ(t′)] = −n · ẋ(t′) = −n ·βc

(17)

Hence,
1

c

dn

dt′
=

1

cR

∂R

∂t′
− 1

cR2
R
∂R

∂t′
= − 1

R
[β − (n · β)n] . (18)

The quantity in brackets is can be written more concisely:

(n · β)n− β = (n · β)n− (n · n)β = n× (n× β); (19)
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hence we find
1

c

dn

dt′
=

1

R
n× (n× β). (20)

Employing this useful result we have, for the electric field,

E(x, t) = e

[
n

κR2
+

1

κ2R2
n× (n× β) +

n

cκ

∂

∂t′

(
1

κR

)
− 1

cκ

∂

∂t′

(
β

κR

)]

ret

= e

[
n(1− n · β)

κ2R2
+

1

κ2R2
[(n · β)n− β]

]

ret

+

[
n

cκ

∂

∂t′

(
1

κR

)
− 1

cκ

∂

∂t′

(
β

κR

)]

ret

(21)

or

E(x, t) = e

[
n− β
κ2R2

+
n

cκ

∂

∂t′

(
1

κR

)
− 1

cκ

∂

∂t′

(
β

κR

)]

ret

. (22)

This expression may be related to that for the magnetic induction,

B(x, t) = e

[
β × n

κR2

]

ret

+
e

c

[
1

κ

∂

∂t′

(
β × n

κR

)]

ret

= e

[
β × n

κR2

]

ret

+
e

c

[
1

κ

∂

∂t′

(
β

κR

)
× n

]

ret

+e

[
β

κ2R
×
(

1

R
n× (n× β)

)]

ret

= e

[
β × n

κR2

]

ret

+
e

c

[
1

κ

∂

∂t′

(
β

κR

)
× n

]

ret

+e
[

1

κ2R2
[n ((n× β) · β)− (n× β)(n · β)]

]

ret
(23)

Next, put all terms proportional to n×β over the same denominator, which is κ2R2,

and also make use of the fact that (n× β) · β = 0, to find

B(x, t) = e

[
β × n

κ2R2

]

ret

+
e

c

[
1

κ

∂

∂t′

(
β

κR

)
× n

]

ret

(24)

This is our final expression. Comparing it with Eq. (22) for E(x, t), we can see that

B(x, t) = [n]ret × E(x, t). (25)
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Thus we can find B(x, t) quite easily provided we can find E(x, t). Henceforth, we

won’t spend more time on B but will examine only E from which B then follows

trivially.

To have an explicit expression for E with no time derivatives, we need to evaluate

∂

∂t′

(
1

κR

)
= − 1

κ2R2

[
κ(−n · βc) +R

(
−n · ∂β

∂t′

)
−Rβ · [(n · β)n− β]

c

R

]

= − c

κ2R2

[
(1− n · β)(−n · β)− R

c
(n · β̇) + β · [β − (n · β)n]

]

= − c

κ2R2

[
β2 − n · β − R

c
(n · β̇)

]
(26)

and so

E(x, t) = e

[
n− β
κ2R2

+
n

cκ

( −c
κ2R2

)(
β2 − n · β − R

c
n · β̇

)
− β̇

cκ2R

]

ret

−e
[
β

cκ

( −c
κ2R2

)(
β2 − n · β − R

c
n · β̇

)]

ret

= e

[
1

κ3R2
n
(

1− β2 +
R

c
n · β̇

)
+

β

κ3R2

(
−1 + β2 − R

c
n · β̇

)
− 1

cκ2R
β̇

]

ret

= e

[
(n− β)(1− β2)

κ3R2

]

ret

+ e
[

1

cκ3R

(
(n− β)(n · β̇)− (1− n · β)β̇

)]

ret
.(27)

The second bracket in the final expression contains the quantity

(n− β)(n · β̇)− n · (n− β)β̇ = n× [(n− β)× β̇], (28)

so

E(x, t) = e

[
(n− β)(1− β2)

κ3R2

]

ret

+
e

c

[
n× [(n− β)× β̇]

κ3R

]

ret

. (29)

If there is no acceleration, then β̇ = 0 and only the first term in E and the

corresponding term in B are finite. These terms fall off with distance as 1/R2, and

hence cannot give rise to a net flux of radiation to infinity. If there is an acceleration,

then the second term of E, and the corresponding term in B are finite. These fall off

as 1/R, and hence will give rise to radiation, meaning that the charged particle will
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emit radiation only if it is accelerated. Hence the two terms are interpreted as the

non-radiation and radiation parts respectively.

From these results when β̇ = 0, we should be able to recover the results for

the fields of a uniformly moving charge which we derived in chapter 11 (Jackson

Eq. 11.152). With the particle moving along the x-direction with a constant velocity

v, the fields felt by an observer a distance b away are

E‖ = −γqvt/[b2 + (γvt)2]3/2

E⊥ = γqb/[b2 + (γvt)2]3/2.
(30)

where the observer and particle are closest at time t = 0. It is a reasonably simple

task to show that this is the same result as Eq. (29) above when β̇ = 0. Consider the

diagram below in which the path of a charged particle is along the abscissa. At time

t, the retarded and real location of the particle are P’ and P respectively, while O is

the observation point. The time required for light to travel from P’ to the observer

O is t = R/c, in which time the particle travels βR =PP’. Thus the distance P’Q is

βR cos θ = β · nR. From this it follows that the distance OQ is R − β · nR. Then

[(1− β · n)R]2 = r2 − (PQ)2 = r2 − β2R2 sin2(θ). Thus, as R sin θ = b

[(1− β · n)R]2 = b2 + v2t2 − β2b2 =
1

γ2

(
b2 + γ2v2t2

)
, (31)

and transverse component of Eq. (29) when β̇ = 0 is

e

[
(R sin θ)

γ2 (1− β · n)3 R3

]

ret

=
ebγ

[b2 + (γvt)2]3/2
(32)

P’ P

O

Q

M

r

R=OP’

n v θ
-vtR β

β n.
(1-    

   ) b
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2 Radiation from an Accelerated Charge; the Lar-

mor Formula

Even given Eqs. (25) and (29), the problem of calculating the fields emitted from a

charge moving along an arbitrary trajectory is non-trivial. This is largely due to the

effect of retardation. The problem is greatly simplified if the particle is not moving

too fast.

In order to consider this limit, let’s consider the trajectory of a particle shown

below.

x(t) R

x

a

We will assume that the origin is located in the center of the region of interest of

the particles trajectory, and that this region of interest is of linear dimension a (an

example would be an electron bound to a classical atom, where a would be the Bohr

radius).

There are two ways in which the problem simplifies in the nonrelativistic limit,

β << 1. First, we may approximate

κ ≈ 1 n− β ≈ n 1− β2 ≈ 1 . (33)

Second, and much more importantly, we can approximate functions of the retarded

time

f(t− |x− x(t′)|/c) (34)
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by making a Taylor series expansion around the origin

f(t− |x− x(t′)|/c) ≈ f(t− r/c) + x(t′) · ∇f(t− r/c) + · · · (35)

where r = |x|. The ratio of the second term to the first is roughly f ′x(t′)/fc, where

the prime means differentiation of f with respect to t − r/c. If this is small, as it

must be for β ¿ 1, then the second term in the series may be neglected, then

f(t− |x− x(t′)|/c) ≈ f(t− r/c) . (36)

This approximation is sometimes called the dipole approximation (we will see why

directly). Here the effects of retardation are simple but not insignificant. They are

simply due to the separation of the charge from the observer, not due to the motion of

the charge. Thus, the only way they are significant is if the acceleration of the charge

changes abruptly and it takes a while for the emitted fields to reach the observer. 2

With the approximations described above, the electric field becomes

Enr(x, t) = e
[

n

R2

]

ret
+
e

c

[
n× (n× β̇)

R

]

ret

. (37)

The Poynting vector is given by

S =
c

4π
(E×B) =

c

4π
E× ([n]ret × E)

=
c

4π
{[n]retE · E− E([n]ret · E)} . (38)

If we take the limit of large R and keep just the radiation terms, then we find that

E(x, t) =
e

c

[
n(n · β̇)− β̇

R

]

ret

; B(x, t) = [n]ret × E =
[
− e

cR
n× β̇

]

ret
(39)

Note that n ·E = n ·B = 0 for these radiation fields, thus (as usual) the radiation is

transverse. The Poynting vector due to the radiation is then given by

S =
ce2

4πR2c2

[
n
∣∣∣n× (n× β̇)

∣∣∣
2
]

ret
(40)

2For example, suppose a particle starts to oscillate back and forth at time t = 0, there will be no

signal felt at the observer’s location x for what may be a very long time t = r/c.
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The angular distribution of radiated power is

dP
dΩ

= R2(S · n) (41)

which is easily evaluated by expanding the cross products. The result is

dP
dΩ

=
e2

4πc
(β̇2 sin2 θ) =

e2

4πc3
(v̇2 sin2 θ) (42)

where θ is the angle between n and β̇ (at the retarded time).

.
β

β

In these last expressions we have dropped the reminder that n and R must be evalu-

ated at the retarded time.

The radiation pattern is characteristic of dipole radiation with the reference z

axis parallel to the direction of the particle’s acceleration. The shape and magnitude

of the distribution are independent of the particle’s velocity and proportional to the

square of the acceleration. The total power radiated is the integral over all directions

of the distribution,

P =
∫
dΩ

dP
dΩ

=
2

3

e2v̇2

c3
(43)

which is known as the Larmor formula for the power radiated by an accelerated

particle.

12



2.1 Relativistic Larmor Formula

We turn now to the relativistic generalization of the Larmor formula. One can de-

termine this generalization by consideration of how power transforms under Lorentz

transformations. There are actually two ways (that I know of) to do this, of which

Jackson does one. One can also find it from direct computation and that is what we

shall do. The first step is to consider just how we shall define the power radiated by

a particle. The point is that the rate at which energy crosses a closed surface sur-

rounding the particle depends on that surface because of retardation. We are going

to calculate the power as a function not of the time t at which the fields are measured

on the surface but rather as a function of the retarded time t′. Consider a surface

S which encloses the particle at all times during which it is radiating. The power

crossing unit area at x on S at time t is S(x, t) ·n, where n is a unit outward normal,

and so the total energy crossing this unit area is

W =
∫ ∞

−∞
dtS(x, t) · n. (44)

Now let us transform to the retarded time t′:

W =
∫ ∞

−∞
dt′

dt

dt′
S(x, t(t′)) · n =

∫ ∞

−∞
dt′ κ[S(x, t(t′)) · n]. (45)

The integrand of this expression we identify as dW/dt′, the rate at which the par-

ticle radiates what eventually passes through the unit area on S at x. This is the

instantaneous radiated power, and if we multiply it by R2 we get dP(t′)/dΩ:

dP(t′)

dΩ
= κR2S · n. (46)

If we suppose that R is large enough that only the radiation fields need be retained,

then we find, from our results for the fields and the definition of the Poynting vector,

that
dP(t′)

dΩ
=

e2

4πc

[n× ((n− β)× β̇)]2

(1− n · β)5

∣∣∣∣∣
t′

(47)
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Of course, if one wants to know the radiated power per unit area at the time that it

actually gets there, then he will have to address the calculation of the retardation. In

other words, the radiated intensity at time t depends upon the behavior of the particle

at t′, and the differential time elements are different as well: dt = dt′(1 − n · β)ret.

For example, if a particle of velocity β is impulsively accelerated for a time τ , and

then brought to rest, a pulse of radiation will appear at the observer at time t = r/c,

of duration τ(1 − n · β)ret. The total energy lost of the particle, of course, must

eventually equal the energy radiated, but the energy lost by the charge per unit time

will differ from the energy radiated per unit time by the factor (1− n · β)ret

However, by calculating the instantaneous power radiated, we have avoided having

to calculate the retardation. Thus we can proceed with a calculation of the energy

lost. Our result, Eq. (47), depends in a complicated way on both β and β̇ making

it possible for rather remarkable angular distributions to occur. The total power

radiated can also be computed by integrating the distribution over directions:

P(t′) =
e2

4πc

∫ dΩ

κ5
[n× ((n− β)× β̇)]2

=
e2

4πc

∫ dΩ

κ5

{[
(n− β)(n · β̇)− β̇(1− β · n)

]2}

=
e2

4πc

∫ dΩ

κ5

{
(1− 2n · β + β2)(n · β̇)2

− 2(n · β̇ − β · β̇)(β̇ · n)(1− n · β) + β̇2(1− 2β · n + (β · n)2)
}

(48)

Let the angle between β and n be θ; further, let cos θ = u; also, let the angle between

β and β̇ be θ0. Then

P(t′) =
e2β̇2

2c

∫ 1

−1

du

κ5

{
(β2 − 1)

[
u2 cos2 θ0 +

1

2
(1− u2) sin2 θ0

]

+2 cos2 θ0 uβ(1− βu) + (1− 2βu+ β2u2)
}

=
β̇2e2

2c

∫ 1

−1

du

(1− βu)5

{
−u2(1− β2) + 2uβ(1− βu) + 1− 2βu+ β2u2

+ sin2 θ0

[
(1− β2)u2 − (1− u2)(1− β2)/2− 2βu+ 2β2u2

]}
(49)

=
β̇2e2

2c

∫ 1

−1

du

(1− βu)5

{
(1− u2) + sin2 θ0

[(
3

2
+

1

2
β2
)
u2 − 2βu− 1

2
(1− β2)

]}
.
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Now introduce x ≡ 1− βu; then

P(t′) =
β̇2e2

2cβ3

∫ 1+β

1−β

dx

x5

{
(β2 − 1 + 2x− x2)

+ sin2 θ0

[(
3 + β2

) (
1− 2x+ x2

)
/2− 2β2 (1− x)− β2

(
1− β2

)
/2
]}

=
β̇2e2

2cβ3

∫ 1+β

1−β

dx

x5

{(
β2 − 1 + 2x− x2

)

+ sin2 θ0

[(
3− 4β2 + β4

)
/2 + (−2 + β2)x+

(
3 + β2

)
x2/2

]}

=
β̇2e2

2cβ3

{(
β2 − 1

4x4
+

2

3x3
− 1

2x2

)

+ sin2 θ0

(
(3/2− β2/2)(1− β2)

4x4
+
β2 − 3

3x3
+

3 + β2

4x2

)}

=
β̇2e2γ6

cβ3

{(
−(β + β3) + 2(3β + β3)/3− β(1− β2)

)

+ sin2 θ0

[
(3− β2)(β + 3β3)/2 + (−3 + β2)(β + β3/3) + (3 + β2)(β − β3)/2

]}

=
β̇2e2γ6

cβ3

{
2

3
β3 − 2

3
β5 sin2 θ0

}
=

2β̇2e2γ6

3c
(1− β2 sin2 θ0). (50)

Putting the result back in terms of vectors and their products, we have

P =
2e2γ6

3c
[β̇2 − (β × β̇)2]. (51)

This is the relativistic generalization of the Larmor formula.

It is instructive to look at some simple examples.

2.1.1 Example: Synchrotron

An electron moves in a circle of radius R at constant speed.

e

R

15



The acceleration is then entirely centripetal and has magnitude β̇ = cβ2/R. Then

β̇2 − (β × β̇)2 =
c2β4

R2
(1− β2) =

c2β4

R2γ2
, (52)

and so

P =
2e2cγ4β4

3R2
(53)

which can be rewritten in terms of the particle’s kinetic energy as

P =
2e2c

3R2

(
E

mc2

)4

β4. (54)

The energy emitted per cycle of the motion is ∆E = Pτ where τ is the period of the

motion, τ = 2πR/βc. Hence,

∆E =
4πe2β3

3R

(
E

mc2

)4

. (55)

An electron of energy E = 500Mev in a synchrotron of radius R = 102 cm will radiate

in each cycle and energy ∆E ≈ 10−8 erg ∼ 104 ev which is a non-trivial amount if

one wants to increase the electron’s energy or even to maintain it. Basically, one

must apply an accelerating voltage of at least ten thousand volts during each cycle to

break even, i.e., to maintain the electron’s energy. This radiation is the reason why

circular very-high-energy electron accelerators don’t exist; however, the synchrotron

is a great Xray source.

But if one wants to produce high-energy protons in a circular accelerator, that is

a lot easier, especially if one is willing to make R rather large. For example, a 10Tev

proton in a machine of radius R = 3×106 cm, which is about nineteen miles, radiates

away considerably less than 104 ev in one cycle.

2.1.2 Example: Linear Acceleration

An electron is accelerated in the direction of its velocity, β ‖ β̇.

16



e

β β.

In this instance one trivially finds from Eq. (51) that

P =
2e2γ6

3c
β̇2. (56)

This doesn’t look very encouraging (for an accelerator design) because of the factor of

γ6, but against this one has the fact that the only acceleration the particle feels is the

one produced by the fields acting to increase the particle’s kinetic energy; in the case

of the round accelerator, there is a large acceleration even for a particle of constant

energy. Thus, in the case of a linear accelerator, there is much less acceleration to

produce radiation. To make this point more clearly, let’s write the acceleration in

terms of the time rate of change of the particle’s momentum,

v̇ =
dv

dt
=

1

mγ3

dp

dt
(57)

and so

P =
2e2

3m2c3

(
dp

dt

)2

. (58)

Now relate the rate of change of momentum to the rate of change of energy of the

particle,
dp

dt
= F =

dE

dx
, (59)

and so

P =
2e2

3m2c3

(
dE

dx

)2

(60)

or
P

dE/dt
=

2e2

3m2c3

dE/dx

dx/dt
=

2

3β

(e2/mc2)

mc2

dE

dx
, (61)
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which says that the power radiated away is quite negligible in comparison with the

rate at which energy is being pumped into the particle unless one pumps the energy

in at a rate (in space) dE/dx comparable to the rest energy of the particle, mc2,

in a distance rc = e2/mc2. This distance is rather small, being about 3 × 10−13 cm

for an electron, and it is difficult to put so much energy into the particle in such a

small distance (500, 000 volts in a distance of 10−13 cm!). Hence particles in linear

accelerators lose an insignificant amount of energy to radiation. The difficulty with

such accelerators is that, like all things excepting round ones, they must sooner or

later end.

3 Angular distribution of radiation

In this section we consider the angular distribution of the radiation emitted by an

accelerated charge. On the basis of what we said about the potentials, we expect to

find that it is strongly focussed in the forward direction, or parallel to the velocity,

in a frame where the particle has a speed close to c. As at the end of the preceding

section, we shall consider some particular examples. The basic equation is

dP
dΩ

=
e2

4πc

{
n×

[
(n− β)× β̇

]}2

(1− n · β)5
; (62)

the right-hand side of this expression is to be evaluated at the retarded time t′.

3.1 Example: Parallel acceleration and velocity

Let a particle have parallel velocity and acceleration. If these define the z direction,

and n points at an angle θ to the z axis,

18



e

β β.
θ

n

then one finds

dP
dΩ

=
e2β̇2

4πc

sin2 θ

(1− β cos θ)5
=
e2v̇2

4πc3

sin2 θ

(1− β cos θ)5
, (63)

and the total power is

P =
2e2v̇2

3c3
γ6

dP
/d

Ω

β=0.05
β=0.5

v

For β close to one, this expression provides dramatic confirmation of the inadequacy

of the multipole expansion for describing radiation from accelerated charges. This

radiation pattern is sharply peaked close to the z axis and is actually zero precisely

on the axis. One would have to keep many multipole terms to produce such a distri-

bution.

We can find various basic properties which characterize the distribution. It has a
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maximum at a value of θ or of u ≡ cos θ which we can find by differentiating:

0 =
d

du

(
1− u2

(1− βu)5

)
= − 2u

(1− βu)5
+

5β(1− u2)

(1− βu)6
, (64)

or

−2u(1− βu) + 5β(1− u2) = 0. (65)

This quadratic equation has the solution

u =
1

3β
[
√

1 + 15β2 − 1] or θm = arccos

[
1

3β
(
√

1 + 15β2 − 1)

]
. (66)

Further, β2 = 1− 1/γ2, so for β close to one, β ≈ 1− 1/2γ2 and

θm ≈ arccos

{
1

3

(
1 +

1

2γ2

)[
4

(
1− 15

32γ2

)
− 1

]}

≈ arccos

(
1− 1

8γ2

)
≈ 1

2γ
. (67)

Also, the power distribution becomes, in the relativistic limit,

-2.0 -1.0 0.0 1.0 2.0
γθ

0.00

0.10

dP
/d

Ω

dP
dΩ

=
e2v̇2

4πc3

θ2

(1− β + βθ2/2)5
=
e2v̇2

4πc3

32θ2

[2(1− β) + βθ2]5

=
e2v̇2

4πc3

32γ5θ2

(1 + γ2θ2)5
=

8e2v̇2

πc3
γ3 γ2θ2

(1 + γ2θ2)5
(68)

This may be integrated to find the rms angle

< θ2 >=
1

γ
=
mc2

E
(69)
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3.2 Example: Acceleration Perpendicular to Velocity

β

β φ

θ

.

n

x

y

z

A particle in instantaneously circular motion has its acceleration perpendicular to its

velocity. Let β = βε3 and β̇ = β̇ε1. Then, letting θ and φ specify the direction from

the particle (at time t′) to the observation point x, we have

ε3 = cos θ n− sin θ θ and ε1 = sin θ cosφn + cos θ cosφθ − sinφφ. (70)

Using these conventions we can work out the relevant vector products:

(n−β)× β̇ = β̇[cos θ cosφφ+ sinφθ−β(sin θ sinφn + cos θ sinφθ+ cosφφ)] (71)

and so

[n× ((n− β)× β̇)]2 = β̇2[cos2 φ(β − cos θ)2 + sin2 φ(1− β cos θ)2]

= β̇2[β2 cos2 φ− 2β cos θ cos2 φ+ cos2 θ cos2 φ+ sin2 φ

−2β cos θ sin2 φ+ β2 cos2 θ sin2 φ]

= β̇2[cos2 φ(β2 + cos2 θ − 1− β2 cos2 θ) + (1− β cos θ)2] .(72)

Hence

dP
dΩ

=
e2v̇2

4πc3

{
1− cos2 φ(1− β2) sin2 θ

(1− β cos θ)2

}
1

(1− β cos θ)3

=
e2v̇2

4πc3(1− β cos θ)3

{
1− cos2 φ sin2 θ

γ2(1− β cos θ)2

}
. (73)
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In this case we find that there is radiation in the forward direction, or θ = 0. In

fact the main peak in the radiation is in this direction. If one makes a small angle

expansion of the power distribution in the case of highly relativistic particles, he will

find the result
dP
dΩ

=
2e2v̇2

πc3

γ6

(1 + γ2θ2)3

{
1− 4γ2θ2 cos2 φ

(1 + γ2θ2)2

}
. (74)

v

β

β = 0.5

= 0.05

Further, the total radiated power is

P =
2e2v̇2

4πc3
γ4. (75)

3.3 Comparison of Examples

From the expressions for the total power produced in each of our two examples, we

see that for a given magnitude of acceleration, there is a factor of γ2 more radiation

produced when the acceleration is parallel to the velocity than when it is perpendic-

ular. This is a misleading statement in some sense because what is actually applied

22



to a particle is not an acceleration but a force, and a given force will produce quite

different accelerations when applied perpendicular and parallel to the velocity. For a

force applied parallel to the velocity,

F =
dp

dt
= mγ3dv

dt
(76)

and for a force applied perpendicular to v,

F =
dp

dt
= mγ

dv

dt
. (77)

Hence the powers produced in the two cases, expressed in terms of the forces or dp/dt,

are

P⊥ =
2e2

3m2c3
γ2

(
dp

dt

)2

and P‖ =
2e2

3m2c3

(
dp

dt

)2

. (78)

Thus, for a given applied force, γ2 more radiation is produced if it is perpendicular

to v than if it is parallel. Of course, if the force comes from a magnetic field, then it

has to be perpendicular to the velocity.

3.4 Radiation of an Ultrarelativistic Charged Particle

The radiation emitted at any instant from an accelerating charged particle may be

decomposed into components coming from the parallel and perpendicular accelera-

tions of the particle. From the discussion above, it is clear that the radiation of an

ultrarelativistic γ À 1 particle is dominated by the perpendicular acceleration com-

ponent. Thus the radiation is approximately the same as that emitted by a particle

moving instantaneously in a circle of radius

ρ =
v2

v̇⊥
(79)

Since the angular width of the pulse is ∼ 1/γ, the particle will travel a distance

d ∼ ρ∆θ ∼ ρ

γ
(80)
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while illuminating the observer for a time

∆t ∼ d

v
∼ ρ

γv
. (81)

If we assume that pattern of radiation is roughly that of a coiled beam of rectangular

cross-section then the front edge of the beam will travel

D = c∆t ∼ ρc

γv
=

ρ

γβ
(82)

in time ∆t; whereas, the trailing edge will be a distance

L = D − d ≈
(
β − β2

β2

)
ρ

γ
≈
(

1− 1

2γ2
− 1 +

1

γ2

)
ρ

γ
=

ρ

2γ3
(83)

behind the front edge since the charge moves the distance d in the same time interval.

Thus the pulse width is roughly L in space or L/c in time.

This derivation (straight out of Jackson) raises about as many questions as it

answers. Perhaps the most fundamental is this: why is ∆t different than the observed

width of the pulse L/c. The difference is that ∆t is really a difference of retarded

times; whereas, L/c is in the time frame of the observer. Lets repeat this calculation

more carefully, distinguishing between the observer’s time and the particles (retarded)

time.
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The pulse width for a distant observer would be

L

c
= t2 − t1 = (t′2 +R2/c)− (t′1 +R1/c) = ∆t− (R1 −R2) /c . (84)

1 2

Point 1: Observer first begins to see pulse
Point2: Observer just stops seeing pulse.

Since R1 −R2 ≈ v′∆t, we have

L

c
= t2 − t1 = ∆t(1− v/c) ≈ ∆t

2γ2
=

ρ

2γ3
, . (85)

where the right hand side is to be evaluated in the retarded time.

An observer would receive periodic pulses of width L/c in time.

T = L /c
0 0

T= L/c

P(t)

t

From the principles of Fourier decomposition, we can also estimate the type of radia-

tion the observer would receive. From the uncertainty principle ∆t∆ω ∼ 1, the pulse

would contain components up to a cutoff3 of roughly

ωc ∼
c

L
∼ c

ρ
γ3 (86)

3Higher frequency components would yield a narrower pulse
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However, the frequency ω0 of the circular motion is v/ρ ≈ c/ρ. Thus, a broad

spectrum of radiation is emitted up to γ3 times the fundamental frequency of the

rotation. This kind of radiation, called synchrotron radiation provides a good, more

or less continuous, source of radiation in the range from visible and ultraviolet to soft

X-rays.

Thus in a 200 MeV electron synchrotron where γ ≈ 400 and the fundamental

frequency is ω0 ≈ 3× 108, the frequency of the emitted radiation extends to 2× 1016.

In a 10 GeV synchrotron, x-rays can be produced. Thus synchrotrons can be used as

high intensity radiation sources. Synchrotrons are now even being used in industry

as radiation sources for x-ray lithography4.

4 Frequency Distribution of the Radiated Energy

The radiation produced by rotating charges is predominantly at the fundamental

frequency ω0 of the motion with much smaller amounts at integral multiples, or

harmonics, of this frequency. The expansion parameter in the problem is k0a =

ω0a/c ∼ v/c = β, and the energy emitted at higher frequencies than the fundamental

is proportional to some power of this parameter. For β << 1, this energy will be

relatively small. But if β ∼ 1, there will be a significant fraction of the total radiated

energy appearing at higher frequencies.

There is a simple and instructive way to see roughly how may harmonics will

contribute to the radiation. For a relativistic particle, dP/dΩ is a peaked distribution

which has a width in angle δθ ∼ 1/γ. If the particle is, e.g., travelling in a circle

with a frequency of motion ω0, then the particle sweeps through an angle δθ in a time

δt′ ∼ δθ/ω0 = 1/γω0. This is of the order of the duration of the pulse observed at

some fixed point in space, but measured in units of the time at the source. The time

4Physics Today, October 1991.
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which passes at the location of the observer is

δt = δt′
dt

dt′
= κδt′. (87)

Further, during the pulse, n is parallel to β, n ·β = β with corrections of order 1/γ2

and so κ ∼ 1− β[1 +O(1/γ2)] ∼ 1/γ2. Hence δt ∼ 1/γ3ω0. Now, a pulse which lasts

a time δt at a point must contain in it frequencies of order5 1/δt. Thus the pulse

which our observer sees must have in particular frequencies of order ω ∼ γ3ω0. If the

particle is highly relativistic, γ >> 1, then the typical frequencies in the pulse will be

much larger than the frequency of the particle’s motion, or ω0; they will be γ3 times

as large, meaning that many harmonics must contribute to the pulse.

4.1 Continuous Frequency Distribution

To make our analysis of the radiation more quantitative we are going to consider the

Fourier transforms in time of the fields at an observation point x. Start from the

expression for the angular distribution of radiated power:

dP
dΩ

=
c

4π
(E(x, t)×B(x, t)) · [nR2]ret. (88)

Using just the radiation fields, noting that they are transverse to n far away from the

source, and making use the fact that B(x, t) = [n]ret × E(x, t), we can write

dP
dΩ

=
c

4π
{[R]retE(x, t)}2 . (89)

For simplicity of notation, define

a(t) ≡
√
c

4π
[R]retE(x, t). (90)

Then, in terms of a(t) the angular distribution of radiated power is

dP
dΩ

= [a(t)]2. (91)

5In quantum theory this statement would be called the uncertainty principle.
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Further, from Eq. (29),

a(t) =

√
e2

4πc

[
n× [(n− β)× β̇]

κ3

]

ret

. (92)

Introduce also the Fourier transform6 a(ω) of a(t):

a(t) ≡ 1√
2π

∫
dωe−iωta(ω); a(ω) =

1√
2π

∫
dteiωta(t). (93)

Using the Fourier integral (and its complex conjugate) for a(t) in Eq. (91), we can

write the power distribution as

dP(t)

dΩ
=

1

2π

∫
dωdω′ a(ω)e−iωt · a∗(ω′)eiω′t. (94)

Integrating over all t, and thereby generating an expression for the angular distribu-

tion of the total radiated energy, we find

dW

dΩ
≡

∫ ∞

−∞
dt
dP(t)

dΩ
=
∫
dωdω′ δ(ω − ω′)a(ω) · a∗(ω′)

=
∫ ∞

−∞
dω |a(ω)|2 =

∫ ∞

0
dω

{
|a(ω)|2 + |a(−ω)|2

}
. (95)

The reality of a(t) demands that a∗(−ω) = a(ω), and so the two terms in the inte-

grand are identical:

dW

dΩ
= 2

∫ ∞

0
dω |a(ω)|2 ≡

∫ ∞

0
dω

dI(ω)

dΩ
. (96)

The integrand, dI/dΩ, is interpreted as the total radiation received per unit frequency

per unit solid angle during the entire pulse of radiation. It is simply the square of

a(ω); further a(ω) is

a(ω) =

√
e2

4πc

1√
2π

∫
dt eiωt

[
n× [(n− β)× β̇]

κ3

]

ret

=

√
e2

8π2c

∫
dt′

[
n× [(n− β)× β̇]

κ2

]
eiω(t′+R(t′)/c) (97)

6The field a(t) depends on x as well as on t; we suppress the former dependence as it is not of

interest at present.
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It’s déja vu all over again. Recalling the typical equations generated in Chapter 9,

we can see that this one probably can be obtained without great difficulty from what

we did there. Proceeding in familiar fashion, then, let us look at this integral in the

far zone which means approximate R in the exponent by

R = |x− x(t′)| ≈ r − n · x(t′) (98)

and so

a(ω) =

√
e2

8π2c

∫
dt′ eiωt

′
eiωr/ce−iωn·x(t′)/c

[
n× [(n− β)× β̇]

κ2

]
(99)

or

a(ω) = eiωr/c
√

e2

8π2c

∫
dt′ eiω(t′−n·x(t′)/c)

[
n× [(n− β)× β̇]

κ2

]
. (100)

P

O

x(t’)
n R(t’)

If we confine the integration to times when the particle is accelerating, i.e. confine

it to the shaded region above, then we can put this integral into a form such that the

integrand involves β but not β̇; that can be done by, in essence, a parts integration.

First, consider

d

dt′

(
n× (n× β)

κ

)
= −n× (n× β)

κ2
(−n · β̇) +

n× (n× β̇)

κ2
(1− n · β) (101)

where we have not kept derivatives of n because they give corrections of relative order

|x(t′)/R|. Now group terms as follows:

d

dt′

(
n× (n× β)

κ

)
=

n× (n× β̇)

κ2
+

n×
{
n× [(n · β̇)β − (n · β)β̇]

}

κ2
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=
n× (n× β̇)

κ2
+

n×
{
n× [n× (β × β̇)]

}

κ2

=
n× [(n− β)× β̇]

κ2
(102)

where we have used the fact that

n×
{
n×

[
n× (β × β̇)

]}
= −n× (β × β̇). (103)

Using this identity to do a parts integration of the expression for a(ω) we find (again,

drop terms proportional to powers of 1/R)

a(ω) = −eiωr/c
√

e2

8π2c

∫
dt′ iω(1− n · β)

(
n× (n× β)

κ

)
eiω(t′−n·x(t′)/c)

= −
√

e2

8π2c
iωeiωr/c

∫
dt′[n× (n× β)]eiω(t′−n·x(t′)/c). (104)

Combining this result and Eq. (96), we find for the radiated energy per unit frequency

per unit solid angle

dI(ω)

dΩ
=
e2ω2

4π2c

∣∣∣∣
∫
dt′ [n× (n× β)]eiω(t′−n·x(t′)/c)

∣∣∣∣
2

. (105)

In this derivation we were not careful when doing the parts integration, meaning

that we did not worry about whether the terms involving the integrand evaluated at

the endpoints of the interval of integration contribute to the result. Consequently,

in any application of Eq. (105), one should check to see whether this assumption is

justified; there are occasions when it is not and then, naturally, the contributions from

the endpoint(s) must be included. Our formulation of dI/dΩ is most appropriate for a

source with an open orbit in which case the natural limits on the integration are ±∞,

and there is usually no difficulty in ignoring the contributions from the endpoints

where the particle is far away and unaccelerated; however, that is not enough to

guarantee that the endpoints contribute nothing.
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4.2 Discrete Frequency Distribution

For truly cyclic motion, it is more convenient and perhaps more sensible from a

physical point of view to set up a Fourier series to express the frequency distribution

of the radiation.

t’= 0 t’ = τ

O
x(t’) Px

The point is that for non-cyclic motion, the distribution of radiation in frequency will

be continuous and the integral formula we derived above is appropriate for expressing

this distribution. But for cyclic motion, the radiation will be distributed in frequency

space only at harmonics or multiples of the fundamental frequency of the motion

and so a sum or series expansion of dI(ω)/dΩ is more appropriate for expressing the

distribution. We shall now set up this sum. To get started, suppose that the period

of the motion is τ ′ = 2π/ω0. Then, letting the period measured by an observer at a

point x be τ , one can show that τ = τ ′. That is, a time t for the observer and the

corresponding retarded time t′ are related by

t = t′ +R(t′)/c. (106)

One period later in the life of the source, its time has increased to t′ + τ ′ and the

signal emitted by the source at this time will reach the observer at a time t+ τ which

is

t+ τ = t′ + τ ′ +R(t′ + τ ′)/c. (107)

But R(t′ + τ ′) = R(t′) for the cyclic motion so

t+ τ = t′ + τ ′ +R(t′)/c. (108)
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Comparing Eqs. (106) and (108), we see that τ = τ ′.

The radiation fields produced by this cyclic motion of a charged particle will also

be periodic. Hence where we formerly had a Fourier integral for a(t), we now have

a Fourier series, a sum over frequencies which are integral multiples of the sources’s

frequency,

a(t) =

√
c

4π
[RE(t)] ≡

∞∑

n=−∞
ane

−inω0t (109)

with

an =
ω0

2π

∫ 2π/ω0

0
dt a(t)einω0t. (110)

The energy received during one cycle, per unit solid angle, at some point x is the

integral of dP/dΩ over one period. We shall write it as dW/dΩ,

dW

dΩ
≡
∫ 2π/ω0

0
dt
dP(t)

dΩ
=

∫ 2π/ω0

0
dt |a(t)|2

=
∑

n,m

∫ 2π/ω0

0
dt (an · a∗m)e−i(n−m)ω0t =

2π

ω0

∞∑

n=−∞
|an|2

=
4π

ω0

∞∑

n=1

|an|2. (111)

Notice that the n = 0 term has been discarded in the final expression; that is okay

because there is no radiation at zero frequency. The radiated energy at the frequency

nω0 is determined by an, which is

an =
ω0

2π

∫ 2π/ω0

0
dt

[
n× [(n− β)× β̇]

κ3

]

ret

√
e2

4πc
einω0t

=
ω0

2π

√
e2

4πc

∫ 2π/ω0

0
dt′

n× [(n− β)× β̇]

κ2
einω0(t′+R(t′)/c). (112)

We can now do the same integration by parts that led to Eq. (104) and find

an = −ω0

2π

√
e2

4πc
inω0

∫ 2π/ω0

0
dt′ [n× (n× β)]einω0(t′+R(t′)/c), (113)

with no contribution ever from the end points of the interval as they correspond to

the same point on the periodic orbit of the particle. From Eq. (113), |an|2 follows
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easily and hence dW/dΩ from Eq. (111). Notice also that the time-averaged power

distribution is just (
dP
dΩ

)

ave

=
dW

dΩ

/(
2π

ω0

)
(114)

4.3 Examples

4.3.1 A Particle in Instantaneous Circular Motion

Suppose we have a particle in instantaneous circular motion, meaning that its accel-

eration is, at least temporarily, perpendicular to its velocity. Any particle subjected

to a magnetic field but no electric field will satisfy this condition. We might do the

calculation by supposing that the motion is truly periodic and circular and using the

relatively easily applied Fourier series approach just developed. It is more difficult

and therefore more challenging to use the Fourier integral approach. Let’s try the

latter.

First, we want to characterize the orbit of the particle. A circular orbit at constant

speed can be described as

β = β[(cosω0t
′)ε1 + (sinω0t

′)ε2] (115)

and, for sufficiently small times t′, meaning ω0t
′ << 1, we have

β ≈ β(ε1 + ω0t
′ε2) (116)

with corrections of order (ω0t
′)2. Let the observer be located in the x-z plane; then

n = cos θ ε1 + sin θ ε3 where θ << 1 if the observer is to experience the strong pulse

of radiation that the particle emits in the forward direction. We know that the times

of importance at the source for this pulse at the position of the observer are of order

t′ ∼ 1/ω0γ. Consequently, in our approximation for β, we lose corrections of relative

order (ω0t
′)2 ∼ 1/γ2 in each of the components.

Let’s work out n× (n×β). Define a unit vector ε⊥ ≡ n× ε2 = cos θ ε3− sin θ ε1;

it will prove to be useful.
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n ε

v

ε

vt/ρ
θ

ρ

n× β = β[(n× ε1) + ω0t
′(n× ε2)] = β(sin θ ε2 + ω0t

′ε⊥); (117)

and

n× (n× β) = β(sin θ ε⊥ − ω0t
′ε2). (118)

Further, the interesting range of θ is of order 1/γ << 1, so let us replace sin θ by θ.

Further, let ε2 be designated ε‖. Then, using this equation in Eq. (105) and setting

nω0 = ω, we find

dI(ω)

dΩ
=
e2ω2

4π2c

∣∣∣∣
∫
dt′ (βθε⊥ − ω0t

′ε‖)e
iω(t′−n·x(t′)/c)

∣∣∣∣
2

. (119)

We need to evaluate the exponent in order to complete the integral. Consider

n · x(t′) = cos θ (ε1 · x(t′)) =
cβ

ω0

cos θ sinω0t
′

≈ cβ

ω0

(
1− θ2

2

)(
ω0t
′ − 1

6
(ω0t

′)3
)

; (120)

Notice that we have kept the leading term and corrections to it of order 1/γ2. Basi-

cally, we have kept all phases of order unity when ω0t
′ ∼ 1/γ, θ ∼ 1/γ, and ω ∼ ω0γ

3,

these being what we believe to be the important ranges of t′, ω, and θ. Hence the

total phase is, to the order indicated,

ω[t′ − n · x(t′)/c] = ωt′ − ωβ

ω0

ω0t
′
(

1− θ2

2

)
+
ωβ

ω0

1

6
(ω0t

′)3

(
1− θ2

2

)

= ωt′
(

1− β +
βθ2

2

)
+
ωβ

6ω0

(ω0t
′)3

(
1− θ2

2

)

≈ ωt′
(

1

2γ2
+
θ2

2

)
+

ω

6ω0

(ω0t
′)3
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=
(
ω

2ω0

) [
ω0t
′
(

1

γ2
+ θ2

)
+

1

3
(ω0t

′)3

]
. (121)

With the foregoing expression for the phase, we are able to write the frequency

and angle distribution of the intensity as

dI(ω)

dΩ
=
e2ω2

4π2c

∣∣∣∣∣

∫ ∞

−∞
dt′ (θε⊥ − ω0t

′ε‖)e
i ω
2ω0

[
ω0t′
(

1
γ2 +θ2

)
+ 1

3
(ω0t′)3

]∣∣∣∣∣

2

. (122)

The integration has been extended to ±∞ even though the integrand is accurate only

for |ω0t
′| ∼ 1/γ (or less). The extended range of integration is sensible only if there is

no important contribution coming from other regimes of t′. That is the case because

the term in the phase proportional to t′3 produces rapid oscillations of the integrand

at larger |t′| which yield a very small net contribution to the integral.

Introduce x such that ω0t
′ ≡ x(1/γ2+θ2)1/2. The important range of t′ corresponds

to |x| ∼ 1 and the frequency distribution of the intensity is given by

dI(ω)

dΩ
=
e2ω2

4π2c

∣∣∣∣∣∣
1

ω0

√
1

γ2
+ θ2

∫ ∞

−∞
dx

[
θε⊥ −

√
1

γ2
+ θ2 xε‖

]
e
i ω
2ω0

(
1
γ2 +θ2

)3/2

(x+ 1
3
x3)
∣∣∣∣∣∣

2

.

(123)

Let

η =
ω

3ω0

(
1

γ2
+ θ2

)3/2

. (124)

Then

dI(ω)

dΩ
=

e2ω2

4π2c ω2
0

∣∣∣∣∣

∫ ∞

−∞
dx

[√
1

γ2
+ θ2 θε⊥ +

(
1

γ2
+ θ2

)
xε‖

]
ei

3
2
η(x+x3/3)

∣∣∣∣∣

2

≡ e2ω2

4π2c ω2
0

∣∣∣∣∣

√
1

γ2
+ θ2 θI⊥ε⊥ +

(
1

γ2
+ θ2

)
I‖ε‖

∣∣∣∣∣

2

. (125)

where

I⊥ =
∫ ∞

−∞
dt ei(3ηt+ηt

3)/2 (126)

and

I‖ =
∫ ∞

−∞
dt tei(3ηt+ηt

3)/2. (127)
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These integrals may be expressed in terms of Airy functions which are modified Bessel

functions of order 1/3 and 2/3. An integral representation7 of the function Ai is

π

(3a)1/3
Ai[x/(3a)1/3] =

∫ ∞

0
dt cos(xt+ at3) =

1

2

∫ ∞

−∞
dt ei(xt+at

3). (128)

From this representation one can see that

I⊥ =
2π

(3η/2)1/3
Ai[(3η/2)2/3]. (129)

As for I‖, it is

I‖ =
∫ ∞

−∞
dt tei(3ηt+ηt

3)/2 =
∫ ∞

−∞
dt tei(xt+ηt

3/2)

∣∣∣∣
x=3η/2

=
1

i

d

dx

(∫ ∞

−∞
dtei(xt+ηt

3/2)
)∣∣∣∣
x=3η/2

=
1

i

d

dx

(
2π

(3η/2)1/3
Ai[x/(3η/2)1/3]

)∣∣∣∣∣
x=3η/2

=
2π

i(3η/2)2/3
Ai′[(3η/2)2/3]. (130)

The prime on the Airy function denotes differentiation with respect to the argument.

The connection between Airy functions and modified Bessel functions is8

Ai[(3η/2)2/3] =
1

π

[
(3η/2)2/3

3

]1/2

K1/3(η). (131)

Also9,

−Ai′[(3η/2)2/3] =
1

π

(3η/2)2/3

√
3

K2/3(η). (132)

Thus we may express the result for the frequency distribution of intensity in terms of

modified Bessel functions as

dI(ω)

dΩ
=

e2

4π2c

(
ω

ω0

)2
∣∣∣∣∣

√
1

γ2
+ θ2θ

2√
3
K1/3(η)ε⊥ +

(
1

γ2
+ θ2

)
2

i
√

3
K2/3(η)ε‖

∣∣∣∣∣

2

=
e2

3π2c

(
ω

ω0

)2
(

1

γ2
+ θ2

)2 [
K2

2/3(η) +
θ2

1/γ2 + θ2
K2

1/3(η)

]

=
3e2γ2

π2c

(
ω

ωc

)2

(1 + γ2θ2)2

[
K2

2/3(η) +
γ2θ2

1 + γ2θ2
K2

1/3(η)

]
(133)

7Abramowitz and Stegun, 10.4.32.

8Abramowitz and Stegun, 10.4.14.

9Abramowitz and Stegun, 10.4.16.
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with

ωc = 3γ3ω0 and η =
ω

3ω0

(
1

γ2
+ θ2

)3/2

=
ω

ωc
(1 + θ2γ2)3/2. (134)

This is a fairly transparent, if not simple, result. The variable η is proportional

to ω and is scaled by 3γ3ω0 ≡ ωc which we believe, on the basis of arguments given

earlier, to be the appropriate or characteristic scale of frequency in this radiating

system. For η << 1,

Kν(η) ∼ Γ(ν)

2

(
2

η

)ν
(135)

and for η >> 1,

Kν(η) ∼
√
π

2η
e−η. (136)

Thus, for η << 1 and at θ = 0,

dI(ω)

dΩ
=

3e2

π2c
γ2
(
ω

ωc

)2
(

Γ(2/3)

2

)2 (
2

ω/ωc

)4/3

=
e2

c

(
Γ(2/3)

π

)2 (
3

4

)1/3 ( ω
ω0

)2/3

.

(137)

If θ 6= 0, we pick up a contribution proportional to K2
1/3, leading to an additional

term which is proportional to ω4/3. Note also that the term we do have is produced

by waves with the electric field polarized in the plane of the particle’s orbit.

In the large frequency regime, ω >> ωc and θ = 0, we find

dI(ω)

dΩ
=

e2

π2c
3γ2

(
ω

ωc

)2 π

2ω/ωc
e−2ω/ωc =

e2

2πcγ

ω

ωc
e−2ω/3γ3ω0 . (138)

The accompanying figure shows the angular distribution of radiation at several values
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of ω/ωc.

0.0 0.5 1.0 1.5
γθ

0.0

0.1

0.2

0.3

d
I/

d
Ω

ω/ωc=3.0
ω/ωc=0.8
ω/ωc=0.1

This figure also very clearly makes the point that at a given frequency, except for the

very low ones, the intensity is greatest at the smallest angles.

4.3.2 A Particle in Circular Motion

Let’s do the same sort of calculation for truly circular motion. Then, from Eqs. (111)

and (113), we find that the energy emitted per cycle per unit solid angle is

dW

dΩ
=
∞∑

n=0

dWn

dΩ
=

4π

ω0

∞∑

n=1

|an|2 (139)

with

|an| =
√

e2

16π3c
nω2

0

∣∣∣∣∣

∫ 2π/ω0

0
dt′ (n× β)einω0(t′−n·x(t′)/c)

∣∣∣∣∣ . (140)

An individual term in the sum, dWn/dΩ, is the energy per cycle per unit solid angle

radiated at frequency ωn = nω0. It can be written as

dWn

dΩ
=

4π

ω0

e2n2ω4
0

16π3c

∣∣∣∣∣

∫ 2π/ω0

0
dt′ (n× β)einω0(t′−n·x(t′)/c)

∣∣∣∣∣

2

. (141)

If we divide by the period, 2π/ω0, we find the time-averaged power at frequency nω0

per unit solid angle,

dPn
dΩ

=
e2n2ω4

0

8π3c

∣∣∣∣∣

∫ 2π/ω0

0
dt′ (n× β)einω0(t′−n·x(t′)/c)

∣∣∣∣∣

2

. (142)
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Let the motion be in the x-y plane as before,

x(t′) = a[ε1 cos(ω0t
′) + ε2 sin(ω0t

′)] (143)

a
x(t’)

n

ε

ε

θ

1

2

α = π − θ/2

so that

β(t′) =
ω0a

c
[−ε1 sin(ω0t

′) + ε2 cos(ω0t
′)]. (144)

Also, write n in terms of the usual10 spherical coordinates,

n = ε3 cos θ + ε1 sin θ cosφ+ ε2 sin θ sinφ. (145)

Then

n · x(t′) = a[sin θ cosφ cos(ω0t
′) + sin θ sinφ sin(ω0t

′)] = a sin θ cos(ω0t
′ − φ), (146)

and

n× β(t′) =
aω0

c
[−ε2 cos θ sin(ω0t

′)− ε1 cos θ cos(ω0t
′)

+ε3 sin θ(cosφ cosω0t
′ + sinφ sinω0t

′)]

=
aω0

c
[−ε2 cos θ sin(ω0t

′)− ε1 cos θ cos(ω0t
′) + ε3 sin θ cos(ω0t

′ − φ)].(147)

10But be aware that the angle θ in this example is the polar angle and not the latitude as in the

previous example; the angle α introduced below is the latitude, i.e., the same as the θ of the previous

example.

39



We must do the integral

I =
∫ 2π/ω0

0
dt′(n×β)einω0(t′−n·x(t′)/c) ≡ β

ω0

[−ε1K cos θ− ε2J cos θ+ ε3L
′ sin θ] (148)

where ω0t
′ = y, and

K =
∫ 2π

0
dy cos(y + φ)ei(ny−nβ sin θ cos y)einφ

J =
∫ 2π

0
dy sin(y + φ)ei(ny−nβ sin θ cos y)einφ

L′ =
∫ 2π

0
dy cos yei(ny−nβ sin θ cos y)einφ (149)

with β = aω0/c. Thus



J

K





=
∫ 2π

0
dy





sin(y + φ)

cos(y + φ)




einφeinye−inβ sin θ cos y

= einφ
∫ 2π

0
dy


sinφ





cos y

− sin y





+ cosφ





sin y

cos y






 ei(ny−nβ sin θ cos y)

≡ einφ


sinφ





L

M





+ cosφ




M

L






 (150)

where

M =
∫ 2π

0
dy sin y einy−inβ sin θ cos y

=
1

inβ sin θ

∫ 2π

0
dy einy

d

dy

(
e−inβ sin θ cos y

)

= − 1

β sin θ

∫ 2π

0
dy einye−inβ sin θ cos y = − 2π

β sin θ

Jn(nβ sin θ)

in
, (151)

and

L =
∫ 2π

0
dy cos y einye−inβ sin θ cos y

=
1

−i
d

d(nβ sin θ)

∫ 2π

0
dy ei(ny−nβ sin θ cos y)

= −2π

i

1

in
dJn(nβ sin θ)

d(nβ sin θ)
(152)
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Hence

|I|2 =
β2

ω2
0

[
cos2 θ (|K|2 + |J |2) + sin2 θ |L|2

]

=
4π2β2

ω2
0


cos2 θ

(
Jn(nβ sin θ)

β sin θ

)2

+ (cos2 θ + sin2 θ)

(
dJn(nβ sin θ)

d(nβ sin θ)

)2

 .(153)

Also,

dPn
dΩ

=
e2n2β2ω2

0

2πc



(
dJn(nβ sin θ)

d(nβ sin θ)

)2

+
cot2 θ

β2
(Jn(nβ sin θ))2


 . (154)

For better comparison of this result with things we already know, let us look at

some limiting cases. First, in the nonrelativistic limit, β << 1, we expect that only

the n = 1 term will contribute appreciably and, in addition, we can use the small

argument approximation to the Bessel function,

J1(x) ≈ x/2 and J ′1(x) ≈ 1/2 (155)

so that
dP1

dΩ
=
e2β2ω2

0

2πc

(
1

4
+

cot2 θ sin2 θ

4

)
=
e2ω4

0a
2

8πc3
(1 + cos2 θ) (156)

which may be compared with the result of a completely nonrelativistic calculation as

in, e.g., Jackson, Problem 14.2(b). In the highly relativistic limit, on the other hand,

we have β ≈ 1 and we also know that most of the radiation is close to the equatorial

plane or θ ≈ π/2. Let us introduce α ≡ π/2− θ << 1. Then

dPn
dΩ

=
e2n2β2ω2

0

2πc



(
dJn(x)

dx

)2

+
tan2 α

β2
(Jn(x))2



∣∣∣∣∣∣
x=nβ cosα

. (157)

The argument of the Bessel function Jn is comparable to n but is always less than n.

For this particular range of argument, it is the case11 that

Jn(x) =
1

π

√
2(n− x)

3x
K1/3

(
2
√

2(n− x)3/2

3
√
x

)
, (158)

11See, e.g., Watson, Bessel Functions, p. 249.
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or

Jn(x) =
1

π

y1/3

31/6x1/3
K1/3(y) where y =

2
√

2(n− x)3/2

3
√
x

. (159)

Also,
dJn(x)

dx
=

1

π31/6

d

dx

(
y1/3K1/3(y)

x1/3

)
. (160)

As shown in the figure below, for the interesting values of x, K1/3(y) varies much

more than x.
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K
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3(
y)

n=1
n=2
n=3

Thus, the preceding derivative may be approximated by

dJn(x)

dx
≈ 1

π31/6x1/3

d[y1/3K1/3(y)]

dy

dy

dx

= −y
1/3K2/3(y)

π31/6x1/3

dy

dx
=
y1/3K2/3(y)

31/6x1/3

√
2(n− x)1/2

3x3/2
(2x+ n). (161)

Hence

dPn
dΩ

=
e2β2n2ω2

0y
2/3

2πcπ231/3x2/3

[
n2 sin2 α

x2
K2

1/3(y) +
2(n− x)(2x+ n)2

9x3
K2

2/3(y)

]
. (162)

Now let’s see what can be said about y and x. Expanding in powers of α and 1/γ,

we have

y ≈ n

3

(
1

γ2
+ α2

)3/2

and x ≈ n

(
1− 1

2γ2
− α2

2

)
, (163)
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so
dPn
dΩ

=
e2ω2

0n
2

6π3c

(
1

γ2
+ α2

)2 [
K2

2/3(y) +
α2γ2

1 + α2γ2
K2

1/3(y)

]
. (164)

This term describes radiation at the particular frequency ω = nω0, so we can also

write it as

dPn
dΩ

=
ω2

0

2π

e2(ω2/ω2
0)

3π2cγ6
(1 + α2γ2)2γ2

[
K2

2/3(y) +
α2γ2

1 + α2γ2
K2

1/3(y)

]
(165)

with

y =
ω

3ω0γ3
(1 + α2γ2)3/2 ≡ ω

ωc
(1 + α2γ2)3/2. (166)

By grouping terms appropriately in Eq. (165) we can write

dPn
dΩ

=
ω2

0

2π

3e2

π2c

(
ω

ωc

)2

(1 + α2γ2)2γ2

[
K2

2/3(y) +
α2γ2

1 + α2γ2
K2

1/3(y)

]
. (167)

This is the time-averaged power received at latitude α, at frequency ω = nω0, per unit

solid angle. The energy/cycle received at this frequency is obtained if we multiply by

2π/ω0, and, finally, the energy per unit frequency is found it we multiply by a factor

of the inverse spacing of the harmonics, or 1/ω0. Hence we conclude that for a single

pulse, meaning one cycle of the particle,

dI(ω)

dΩ
=

2π

ω2
0

dPn
dΩ

=
3e2

π2c

(
ω

ω0

)2

(1 + α2γ2)2γ2

[
K2

2/3(y) +
α2γ2

1 + α2γ2
K2

1/3(y)

]
(168)

which is precisely what we found when we calculated the radiated intensity from a

particle in instantaneous circular motion.

5 Thomson Scattering; Blue Sky

It’s time for a change of pace to something with less nineteenth-century analysis.

Thomson scattering provides just such a respite. It is the scattering of radiation by

a free charge. The mechanism involved, classically, is the coupling of the charge to

the incident electric field E0; this produces acceleration of the charge and consequent
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radiation by the accelerated charge which becomes the “scattered” radiation. We saw

in Chapter 9 how one can describe scattering of electromagnetic radiation in this way.

We didn’t actually do Thomson scattering at that time, so we’ll do it now.

Thomson scattering is to be distinguished from Compton scattering in which the

same phenomenon is treated using quantum theory. One must use quantum theory,

when λ, the wavelength of the radiation, is comparable to the Compton wavelength of

the scatterer, λ = 2πc/ω ∼ h̄/mc ≡ λc; λc is the Compton wavelength. This condition

may also be written as h̄ω ∼ 2πmc2 which says that if the photon energy h̄ω (∼ eV) is

comparable to the particle’s rest energy mc2 (∼ MeV), then the calculation must be

done using quantum theory. For, e.g., visible light the photon energy is much smaller

than an electron’s rest energy so the Thomson scattering, or classical, calculation is

quite adequate.

Assuming a nonrelativistic particle, we can make use of the Larmor formula for

the scattered radiation,

dP
dΩ

=
e2

4πc3
a2 sin2 Θ where Θ = 6 (n, a) (169)

for the instantaneous radiated power. To find the acceleration a of the particle, we

must solve the equation of motion of the scatterer. The force on it is provided by the

incident electric field,

E0 = E0εe
i(k·x−ωt) (170)

where for convenience we shall let k = kε3 and assume linear polarization of the

incident plane wave ε = cosψ ε1 + sinψ ε2.
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Similarly, we shall suppose for simplicity that the charged particle has no velocity

component along the direction of k and shall ignore the magnetic force which is

reasonable so long as the particle is nonrelativistic. Letting the particle be located in

the z = 0 plane, we find that it experiences an incident field

E0 = εE0e
−iωt; (171)

given that it has a mass m and charge e, the force acting on it is F = eE0 = ma, so

a = ε
eE0

m
e−iωt, (172)

and

a · n =
eE0

m
sin θ(cosψ cosφ+ sinψ sinφ)e−iωt. (173)

where θ and φ specify, in spherical coordinates, the direction to the observation point.

The time average of the power emitted in some particular direction will be pro-

portional to

< a2 sin2 Θ >=< a2(1− cos2 Θ) >=< a2 − (a · n)2 >=
e2E2

0

2m2
[1− sin2 θ cos2(ψ − φ)]

(174)

where the brackets < ... > denote a time average. If the incident radiation is not

polarized, then we must average over ψ with the result that

< a2 sin2 Θ >=
e2E2

0

2m2

(
1− 1

2
sin2 θ

)
=
e2E2

0

4m2
(1 + cos2 θ) (175)

45



and
dP
dΩ

=
e4

16πc3m2
|E0|2(1 + cos2 θ) (176)

is the time-averaged power distribution when the incident wave is unpolarized.

We define the scattering cross-section in the usual way, i.e., the time-averaged

power per unit solid angle divided by the time-averaged incident power per unit area,

dσ

dΩ
=

dP/dΩ

(c/8π)|E0|2
=

1

2

(
e2

mc2

)2

(1 + cos2 θ). (177)

This is J. J. Thomson’s formula for the scattering of light by a charged particle. The

total cross-section is

σ =
∫
dΩ

(
dσ

dΩ

)
=

1

2

(
e2

mc2

)2

4π(1 + 1/3) =
8π

3

(
e2

mc2

)2

≡ 8π

3
r2
c (178)

where rc is the classical radius of the particle. For an electron it is ∼ 3× 10−13 cm

and σ is about 0.7× 10−24 cm2.

We may also calculate the scattering of radiation by a bound charge using the

model of a damped harmonic oscillator. Let a charge e with mass m be bound at the

origin of coordinates with a natural frequency of oscillation ω0 and damping constant

Γ. Then, given an applied electric field

E0(x, t) = εE0e
i(k·x−ωt) (179)

with k = kε3, we know from earlier calculations that the charge will respond with a

displacement

x(t) = x0e
−iωt where x0 =

eE0/m

ω2
0 − ω2 − iωΓ

ε (180)

if we approximate E0(x, t) by E0(0, t) as is reasonable when the particle’s displacement

from the origin is small compared to the wavelength of the incident radiation. That

is certainly true for visible light and an atomic electron.

From x(t) it is a simple matter to compute the acceleration,

a = −ε eE0ω
2/m

ω2
0 − ω2 − iωΓ

e−iωt, (181)
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and then to find the radiated, or scattered, time- and incident-polarization-averaged

power per unit solid angle,

dP
dΩ

=
e2

16πc3

(
eE0

m

)2
(

1 + cos2 θ

(1− ω2
0/ω

2)2 + Γ2/ω2

)
; (182)

the scattering cross-section follows:

dσ

dΩ
=

1

2
r2
c

(
1 + cos2 θ

(1− ω2
0/ω

2)2 + Γ2/ω2

)
. (183)

For sufficiently large ω, ω >> ω0,Γ, the cross-section reduces to the Thomson result

as it should since for very large ω the particle will respond to the field as though it

were a free particle. Also, for ω << ω0 and ω2
0/Γ, we find the Rayleigh scattering

result,
dσ

dΩ
=

1

2
r2
c

(
ω

ω0

)4

(1 + cos2 θ) (184)

with the characteristic ω4 behavior indicating dipole scattering.

Why is the sky blue? Why is the light polarized when we look at the sky perpen-

dicular to the line of sight from us to the sun?

sun sky

P

ε

ε ε1 2

3

n

6 Cherenkov Radiation Revisited

While studying the energy loss of a charged particle traversing a material, we derived

an expression for the rate of energy loss through Cherenkov radiation. Specifically,

47



for a charge q moving at speed β through a medium with a real dielectric function

ε(ω), we found that the energy loss per unit path length is

dE

dx
=
q2

c2

∫

εβ2>1
dω ω(1− 1

ε(ω)β2
). (185)

The form of this expression suggests that the radiation per unit length of path per

unit frequency is given by the integrand,

dI(ω)

dx
= ω

q2

c2

(
1− 1

ε(ω)β2

)
. (186)

What we did not do is look at the form of the potentials and fields in real space and

time. That is interesting and revealing, so we are going to do it now using retarded

potentials.

Before starting, lets be sure that we understand the physical mechanism giving

rise to the radiation. It is not the incident particle, which may be reasonably de-

scribed as having constant velocity, that is doing the radiating. Rather, the incident

particle produces fields which act on the particles in the medium, causing them to

be accelerated in various ways. They then produce radiation fields which, when the

incident particle moves more rapidly than the speed of light in the medium, but not

when it moves more slowly, add in a coherent fashion to give Cherenkov radiation.

vt

ε
ct

ε
cv >

ε
cv <

ε
ct

vt

θc

No Radiation Cherenkov Radiation
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It is not easy to see why the fields must cancel when the particle is moving slower

than the speed of light, but it is easy to see why they must not when it is moving

faster than light in the medium. Consider the right hand side of the figure above.

Before the wake of the radiation hits a particle in the medium, it does not feel the

incident particle. Once the wake hits a particular particle in the medium, not only it,

but all of its neighbors accelerate in a direction perpendicular to the wake (depending

upon the relative charge). Clearly these particles will radiate coherently.

If we are going to produce a calculation of Cherenkov radiation, then, we have to

find the total field produced by all of the particles and not just the incident particle.

We in fact did that in Chapter 13 in the space of k and ω. Here we want to determine

appropriate Liénard-Wieckert potentials for this field so as to find it in real space and

time. That turns out not to be very hard if we ignore the frequency-dependence of

the dielectric function.

Consider the Fourier-transformed potentials A(k, ω) and Φ(k, ω) produced by the

incident charge in the medium where it is taken to have constant velocity. As we

have seen, these obey the equations
(
k2 − ω2

c2
ε

)
Φ(k, ω) = 4π

ρ(k, ω)

ε
(
k2 − ω2

c2
ε

)
A(k, ω) =

4π

c
J(k, ω) (187)

where ρ and J are the macroscopic sources, i.e., the charge and current density of the

incident particle. Given that ε is independent of ω, then these are the same as the

equations obeyed by the potentials of a fictitious system consisting of a point particle

with charge q/
√
ε moving at constant velocity v in a ‘vacuum’ where the speed of

light is c′ = c/
√
ε. Let’s rewrite them in such a way as to see this correspondence

more clearly:
(
k2 − ω2

c′2

)
[
√
εΦ(k, ω)] = 4π

ρ(k, ω)√
ε

(
k2 − ω2

c′2

)
A(k, ω) =

4π

c′
J(k, ω)√

ε
. (188)
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Now let’s think about these potentials in real space and time. Because they are

the same as a particle with a renormalized charge q/
√
ε moving in a vacuum with a

renormalized speed of light is c′, we can write them as Liénard-Wieckert potentials

using the renormalized charge and velocity of signal propagation,

√
εΦ(x, t) =

q√
ε

[
1

κR

]

ret
(189)

and similarly for A(x, t). In this case the retardation means that κR should be

evaluated at the time t′ = t − R(t′)/c′. Further, if x(t′) = vt′, v = vε3, and x =

zε3 + ρε⊥, then

R(t′) = (z − vt′)ε3 + ρε⊥. (190)

Also, for this system, κ = 1 − n · v/c′. Notice that κ can be negative; the absolute

value of κ should be employed in evaluating the potential because the potential really

involves |κR| as one may see by going back to its derivation, especially Eq. (4).

ρ

ε

ε

α

x

x
X

R

v(t’)

z

3

It is useful to introduce a vector X ≡ x−vt which is the relative displacement of

the observation point and the particle at time t. Then

R = x− vt′ = x− vt+ v(t− t′) = X + v(t− t′), (191)

and

t− t′ = R/c′ = |X + v(t− t′)|/c′. (192)
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Square this relation to find

(t− t′)2 =
X2

c′2
+
v2

c′2
(t− t′)2 +

(
2X · v
c′2

)
(t− t′). (193)

This is a quadratic equation that can be solved for t − t′; there are two solutions

which are

t− t′ =
−X · v ±

√
(X · v)2 − (v2 − c′2)X2

v2 − c′2 . (194)

Acceptable solutions must be real and positive. Given that v2 > c′2, which we know

to be the regime where there is Cherenkov radiation, we find that there are either no

such solutions or there are two of them. The conditions under which there are two

are

X · v < 0 and (X · v)2 > (v2 − c′2)X2. (195)

Let the angle between X and v be α. Then we require, first, that α be larger than

π/2 and, second, that X2v2 cos2 α > (v2 − c′2)X2 or cos2 α > 1− c′2/v2. Hence there

is a cutoff angle α0 given by

α0 = arccos(−
√

1− c′2/v2) (196)

such that for α < α0 there is no potential. There can thus be potentials and fields

at time t only within a cone whose apex is the current position of the particle and

which has an apex angle of π − α0. Within this cone the potential is the sum of two

terms, Φ = Φ1 + Φ2, corresponding to the two allowed values of t− t′. Making use of

Eq. (191), and the fact that R ‖ n, we see that we can write, for either case,

[κR]ret = |(1−n·v/c)·R| = R−v·R/c = |X+v(t−t′)|−X·v/c′−v2(t−t′)/c′. (197)

Using Eqs. (189) and (197) with Eq. (194) for t− t′, one finds that Φ1 ≡ Φ2 and that

Φ(x, t) =
(

2q

ε

)
1

X
√

1− (v2/c′2) sin2 α
. (198)

A similar expression can be found for A(x, t) and with a bit more work one can

compute the radiated power, recovering the same equations as found in chapter 13
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for the particular case that ε(ω) is a constant. Such a dielectric function never exists,

of course, and so our conclusions are flawed in some respects. One of them has to do

with the form of Φ close to α = α0; Eq. (198) indicates that it in fact diverges here.

That would indeed happen if signals with all frequencies traveled at speed c′ so that

such a singular non-dispersing wave front could be built by superposing waves with

many different wavelengths including ones approaching zero. In reality, there is no

such singularity although the amplitude of the wave does have a strong maximum at

the leading edge.

7 Cherenkov Radiation; Transition Radiation

This time we will do a calculation using perturbation theory much the way we did

scattering via perturbation theory. We will learn a little bit more about the character

of Cherenkov radiation and will also derive a new (to us) phenomenon. The basic

requirement for validity of the calculation is to have |ε(ω) − 1| << 1 so that we

can get away with calculating the true macroscopic fields as a correction to the fields

produced by the incident particle in vacuum. We have shown that, when expressed as

a function of x and ω, the electric field of a particle with charge q moving at constant

velocity v = vε3 on a trajectory x(t) = vt is, in vacuum,

Ei(x
′, ω) =

√
2

π

qω

γv2
eiωz

′/v[K1(ωρ′/γv)ερ′ − (i/γ)K0(ωρ′/γv)ε3]. (199)
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This field produces a polarization in the medium which is

P(x′ω) =
ε(ω)− 1

4π
Ei(x

′, ω) (200)

and a dipole moment P(x′, ω)d3x′ in a volume element d3x′. From chapter 9 (Eq. (43)),

we know that such a harmonic dipole moment gives rise to a radiation field

dErad(x, ω) =
eikR

R
k2[n× {P(x′, ω)d3x′}]× n. (201)

In the radiation zone we can expand R = |x− x′| as R = r − n · x′, leading to

Erad(x, ω) =
eikr

r

(
ε(ω)− 1

4π

)
k2
∫

V
d3x′ e−ikn·x

′{[n× Ei(x
′, ω)]× n} (202)

=
eikr

r

(
ε(ω)− 1

4π

)
k2
∫
d2x′⊥{[n× Ei(x

′
⊥, 0, ω)]× n}e−ikx′ sin θ

∫
dz′ei(ωz

′/v−kz′ cos θ)

(203)

where we have specified k = k(ε3 cos θ + ε1 sin θ) without loss of generality since the

fields are invariant under rotation around the direction of v. Also, k = ω
√
ε(ω)/c =

ω/vp where vp is the phase velocity of a wave with frequency ω. If the medium is

infinite in the z direction, we can complete the integration over z ′ with ease and find

Erad(x, ω) =
eikr

r

(
ε(ω)− 1

4π

)
k2δ(ω/v− k cos θ)

∫
d2x′⊥{[n×Ei(x

′
⊥, ω)]×n}eikx′ sin θ.

(204)
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Notice that k and ω are related by k = ω
√
ε(ω)/c = ω/vp so that we find no radiation

field unless cos θ = vp/v which can only happen if v > vp. We seem to be on the

right track. The implication is that there is radiation coming out of this system in a

direction n which makes an angle α0 with the z axis where α0 = arccos(vp/v). What

we have shown in chapter 13 is that this is the direction of the outcoming radiation,

which is Cherenkov radiation, is perpendicular to the “bow wave” shown in the figure

earlier.

We can get something new out of this calculation also. Suppose that v < vp and

that the medium is finite in extent in the z direction. If it begins at z = 0 and ends

at some arbitrary, large, value of z, then the integral over z ′ is not from −∞ to +∞
but rather starts from zero and will be non-zero even though v < vp.

q

z=0

The corresponding radiation, known as transition radiation, comes about because

of the presence of the boundary, in this case between vacuum and dielectric. The

integral we must do can be evaluated with the use of a convergence factor (which

emulates the damping present in most materials):

∫ ∞

0
dz′ eiz

′(ω/v−k cos θ) = lim
η→0

∫ ∞

0
dz′ e[−η+i(ω/v−k cos θ)]z′

= lim
η→0

(
−1

−η + i(ω/v − k cos θ)

)
=

i

ω/v − k cos θ
, (205)
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and so

Erad(x, ω) =
eikr

r

ε(ω)− 1

4π
k2

(
i

ω/v − k cos θ

)∫
d2x′⊥ {[n× Ei(x

′
⊥, ω)]× n}e−ikx′ sin θ.

(206)

More generally, a slab of material of finite thickness d produces an integral over z ′

which is
∫ d

0
dz′ ei(ω/v−k cos θ)z′ =

i
(
1− ei(ω/v−k cos θ)d

)

ω/v − k cos θ
. (207)

Whether we treat a finite slab or no, we have to do the integral over the other two

coordinates. The integrand involves (n × Ei) × n. For a given n = k/k, Ei, and x′,

and noting that ερ′ = cosφ′ ε1 + sinφ′ ε2, we have

(n× Ei)× n = (Eρ cosφ′ cos θ − Ez sin θ)(ε2 × n) + Eρ sinφ′ε2. (208)

The second term is an odd function of φ′ and will give zero when integrated over x′⊥.

Thus we must do the integral

I =
∫
d2x′⊥(n× Ei)× ne−ikx

′ sin θ (209)

=

√
2

π

qω

γv2
(ε2 × n)

∫
dx′dy′ [K1(ωρ′/γv) cos θ cosφ′ + (i/γ)K0(ωρ′/γv) sin θ]e−ikx

′ sin θ

(210)

Now, cosφ′ = x′/ρ′ and

cosφ′K1(ωρ′/γv) =
x′

ρ′
K1(ωρ′/γv) = −γv

ω

∂K0(ωρ′/γv)

∂x′
. (211)

Using this in the expression for I, we can do an integration by parts and find

I =

√
2

π

qω

γv2
(ε2 × n)

∫
dx′dy′

[
− ikγv sin θ

ω
K0(ωρ′/γv) cos θ +

i

γ
K0(ωρ′/γv) sin θ

]

=

√
2

π

q

v
(−i sin θ)

(
k cos θ − ω

γ2v

)
(ε2 × n)

∫
dx′dy′K0(ωρ′/γv)e−ikx

′ sin θ. (212)

The integral over x′ can be done using the identity

∫ ∞

0
dz K0(β

√
z2 + t2) cos(αz) =

π

2
√
α2 + β2

e−|t|
√
α2+β2

. (213)
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Thus,

I =

√
2

π

q

v
ε2 × n(−i sin θ)

(
k cos θ − ω

γ2v

)∫ ∞

−∞

πdy′ exp(−|y′|
√
k2 sin2 θ + ω2/γ2v2)

√
k2 sin2 θ + ω2/γ2v2

=

√
2

π

q

v
ε2 × n(−i sin θ)

(
k cos θ − ω

γ2v

)
2π

k2 sin2 θ + ω2/γ2v2
. (214)

Hence

Erad = eikr
ε(ω)− 1

4πr

k2 sin θ

ω/v − k cos θ

2
√

2π(q/v)ε2 × n

k2 sin2 θ + ω2/γ2v2

(
k cos θ − ω

γ2v

)
. (215)

7.1 Cherenkov Radiation in a Dilute Collisionless Plasma

This is a general result. Let us look at some specific example in a simple limit in

order to extract the salient qualitative features of transition radiation. First, we shall

choose a dielectric function. A very simple one, which has the added virtue that for

some frequencies ε < 1 so that it is impossible to have Cherenkov radiation, is that

for a dilute collisionless plasma, ε(ω) = 1− ω2
p/ω

2.

Plasma

ε(ω) = 1 − ω / ω22
p

v

q

For ω large enough, this function is less than, but close to, unity so that it satisfies

the criteria for validity of the perturbation theory. Then

(ε(ω)− 1)k2/4π = −ω2
pk

2/4πω2 = −ω2
p/4πc

2 (216)

where we approximate ω by ck wherever it is not important.12 Suppose also that

12This can be done in some places because ε(ω) ≈ 1; in other places the difference ε(ω) − 1 is

needed and here we cannot set ε(ω) equal to 1.
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γ >> 1, i.e., that the particle is highly relativistic. These conditions allow us to

approximate as follows:

ω

v
−k cos θ =

ω

v
− ω

vp
cos θ =

ω

βc
−ω
c

√
ε cos θ ≈ ω

c(1− 1/2γ2)
−ω
c

(
1− ω2

p

2ω2

)(
1− θ2

2

)

(217)

≈ ω

c

(
1

2γ2
+

ω2
p

2ω2
+
θ2

2

)
=

ω

2γ2c

(
1 +

γ2ω2
p

ω2
+ γ2θ2

)
≡ ω

2γ2c

(
1 +

1

ν2
+ η

)
(218)

where

ν ≡ ω/γωp η ≡ γ2θ2 β =
√

1− γ−2 ≈ 1−1/2γ2 and
√
ε =

√

1− ω2
p

ω2
≈ 1− ω2

p

2ω2
.

(219)

Also,

ω2

γ2v2
+k2 sin2 θ =

ω2

γ2β2c2
+
ω2ε sin2 θ

c2
=

ω2

γ2β2c2
[1+γ2β2ε sin2 θ] ≈ ω2

γ2c2
(1+η) (220)

while

k cos θ − ω

vγ2
=
ω

c

√
ε(ω) cos θ − ω

βcγ2
=
ω

c

(√
ε(ω) cos θ − 1

βγ2

)
≈ ω

c
. (221)

Hence,

Erad =
eikr

r

(−ω2
p

4πc2

)
θ(2
√

2π)(q/c)(ω/c)ε2 × n

(ω/2γ2c)(1 + η + 1/ν2)(ω2/γ2c2)(1 + η)

= −e
ikr

r

ω2
p

4π

2γ4θ2
√

2πqε2 × nω

cω(1 + η + 1/ν2)ω2(1 + η)

= −e
ikr

r

√
2

π

γ
√
η

ν2

qε2 × n

c(1 + η + 1/ν2)(1 + η)
. (222)

The radiated energy per unit frequency per unit solid angle is13

d2I(ω)

dΩdω
= 2

c

4π
|rErad(x, ω)|2 =

q2γ2

π2c

η

ν4(1 + η + 1/ν2)2(1 + η)2
. (223)

13Previously, we just called this dI/dΩ.
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We can write dΩ = sin θdθdφ ≈ θdθdφ = dηdφ/2γ2 and integrate over φ to find the

distribution per unit η. Also, let’s write the frequency in terms of ν, dν = dω/γωp,

to find

d2I

dηdν
=
∫
dφ

d2I

dΩdω

dω

dν

dΩ

dη
=

d2I

dΩdω

γωpπ

γ2
=
q2γωp
πc

η

ν4(1 + η + 1/ν2)2(1 + η)2
. (224)

This expression fails at small ν (ω ∼ ωp). It falls off as η−3 at large η. It peaks as a

function of η around η = 1 for small ν and at η = 1/3 for large ν. If one integrates

over η the result is

dI

dν
=
q2γωp
πc

[(1 + 2ν2) ln(1 + 1/ν2)− 2]. (225)

Further, the total energy radiated is

I =
∫ ∞

0
dν
dI

dν
=
q2γωp

3c
=

(q/e)2γh̄ωp
3

e2

h̄c
=

(q/e)2

3(137)
(γh̄ωp). (226)

A typical photon energy is γh̄ωp/3 (ν = 1/3), so the number of photons emitted

on average is (q/e)2/137 which is quite a bit smaller than one. However, a sizable

amount of transition radiation can be obtained by employing a stack of thin slabs of

material with adjacent slabs having significantly different dielectric constants. Then

there is some radiation produced at each interface between different materials.

8 Example Problems

8.1 A Relativistic Particle in a Capacitor

A particle of charge e and mass m initially at rest is accelerated across a parallel

plate capacitor held at (stat) voltage V ; the distance between the plates is d. Assum-

ing nonrelativistic motion, find the total energy radiated by the particle during this

process. Then, without calculation, answer or estimate the following:

1. The angular distribution of the radiated energy of the particle,
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2. the order of magnitude of typical frequencies emitted from the charge, and

3. the angular distribution of radiated energy from the charge if it were highly

relativistic.

Solution. The field in a parallel plate capacitor is constant, thus so is the accel-

eration of the charged particle and its radiation.

P =
2

3

e2

c3
a2 W =

∫
Pdt =

2

3

e2

c3
t

where t is the duration of the pulse.

a = F/m = eE/m = eV/md and t =
√

2d/a

Hence, solving for W

W =
2
√

2e7/2V 3/2

3c3m3/2d

In the non relativistic limit, the angular distribution of the radiation is given by

sin2(θ) where the angle is measured relative to the velocity vector. The typical fre-

quencies can be found using the Fourier uncertainty principle. Since the retarded

duration of the pulse is the same as the observer’s duration for a nonrelativistic par-

ticle, we have ω ∼ 1/t =
√
eV/md2. In the relativistic limit the angular distribution

of the radiation will be strongly pitched in the direction of the velocity/acceleration,

but will be zero along the axis. The maximum of the pulse of radiation will be at an

angle of θ ∼ 1/γ away from the axis defined by the velocity vector.

8.2 Relativistic Electrons at SLAC

At the Stanford linear accelerator, devices have been added at the end of the accel-

erator to guide electrons and positrons around roughly semicircular paths until they

collide head-on as shown in the sketch below. If each particle has a total energy

of 50GeV and rest energy of 0.5 MeV, while the circular paths have radii of about
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1km, roughly what is the fraction of the particles energy lost to radiation before the

collision takes place?

e+

-e

collision
area

1 km

accelerator beams
e+

-e

Solution. To determine the power radiated, we must use the relativistic Larmor

formula. For β̇ ⊥ β, |β × β̇| = |ββ̇|, so the power radiated is

P =
2e2

3c
γ6
[
β̇

2 −
(
β × β̇

)2
]

=
2e2

3c
γ6β̇2

(
1− β2

)
=

2e2

3c
γ4β̇2

The acceleration is centripetal, so β̇ = v2/cr ≈ c/r, so

P =
2e2

3c
γ4 c

2

r2

Counting the initial deflection of the particles into the circular region, both the elec-

tron and the positron travel about 3/4 of a circle. The time it takes to do this is

roughly τ = 3πr/2c (assuming that the particles travel roughly at velocity c), so the

energy radiated is

∆E =
πe2

r
γ4

Since γ = E/mc2, the relative energy loss is

∆E

E
=
πe2/r

mc2
γ3
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For E = 50 GeV and mc2 = 0.511 MeV, γ ≈ 105, and the relative energy loss is

∆E

E
=

π23 (10−20) (1015)

0.911 (10−27) (9) (1020) (105)
≈ 0.9× 10−2

or roughly only one percent of the energy is lost.
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