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Chapter 0

Introdutory Remarks

A solid or, more generally, ondensed matter is a omplex many-body-problem (∼1023

eletrons and nulei per m3). The most important foundations of its theoretial desrip-

tion are eletroni-struture theory and statistial mehanis. Due to the omplexity of

the many-body problem there is a large variety of phenomena and properties. Their de-

sription and understanding is the purpose of this leture ourse on �ondensed matter�.

Keywords are e.g. rystal struture, hardness, magnetism, ondutivity, superondutiv-

ity, et.. The name of this leture (Theoretial Material Siene) indiates that we intend

to go a step further, i.e., �ondensed matter� has been replaed by �materials�. This is

a small, but nevertheless important generalization. When we talk about materials, then

in addition to phenomena and properties we also think of potential appliations, i.e., the

possible funtion of materials, like in eletroni, magneti, and optial devies, sensor

tehnology, atalysts, lubriation, and surfae oatings (e.g. with respet to protetion

against orrosion and mehanial srath-resistane). It is obvious that these funtions,

whih are determined to a large extent by properties on a nanometer sale, play an im-

portant role in many tehnologies on whih our lifestyle and also the wealth of our soiety

are based. Also beause of this (next to the fasination of the phenomena in fundamental

researh) today's material siene is playing a truly signi�ant role.

At the base of the funtion of materials is the eletroni struture. The �eld of eletroni-

struture theory, applied to problems from material siene desribed above, is in an

important, ative phase with rapid developments in the underlying theory, new methods,

new algorithms, and new omputer odes. For several years now a theory is evolving that,

taking advantage of high and highest performane omputers, allows (starting from the

fundamental equations of the interating many-body problem) an atomisti modelling of

omplex systems with preditive power. Two entral ingredients of suh ab initio theories

are a reliable desription of the underlying elementary proesses (e.g. breaking and for-

mation of hemial bonds), and a orret treatment of the statistial mehanis of their

interations.

Beause of the importane of many-body e�ets in the desription of the interations in

poly-atomi systems up to now a systemati treatment was barely possible. The om-

plexity of the quantum mehanial many-body problem required the introdution of ap-

proximations, whih often were not obvious. �Only� sine 1978 (or 1982)1 have reliable

alulations for solids been arried out and only this allows to hek the possibly reason-

able (and often neessary) approximations and to give the reasons for their suess; or

it is demonstrated whih approximations have to be abandoned. And even the available

preditive theories reeived a rigorous foundation (density funtional theory) only in 1964.

1V.L. Moruzzi, J.F. Janak, and A.R. Williams, Calulated Eletroni Properties of Metals, Pergamon

Press (1978) ISBN 0-08-022705-8; and M.T. Yin and M.L. Cohen, Theory of stati strutural properties,

rystal stability, and phase transformations: Appliation to Si and Ge, Phys. Rev. B 26, 5668 (1982).
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Today this development has reahed a feasible level for many types of problems, but it is

not ompleted yet.

With these �new� developments the approximations, whih in existing text books are in-

trodued ad ho, an be inspeted. Further it is possible to make quantitative preditions,

e.g. for the properties of new materials. But still theoretial ondensed matter physis or

theoretial material siene, is in an ative state of development. Phenomena investigated

or understood in a very inomplete way, inlude phase transitions, disorder, atalysis,

defets (meta-, bistabilities), properties of heterostrutures and quantum dots, rystal

growth, systems ontaining f -eletrons, high-temperature-superondutivity, eletroni

exitation, and transport.

For modern theoretial material siene there are two main hallenges:

1. To explain experimentally found properties and phenomena and to plae them in

a bigger ontext and order. This is done by developing models, i.e., by a redution

to the key physial proesses, whih enables a qualitative or semi-quantitative un-

derstanding. As mentioned before, there are examples for whih these tasks are not

aomplished yet.

2. To predit, independent of experiment, properties of systems that have not been

investigated experimentally so far � or situations that annot be investigated by ex-

periments diretly. The latter inlude onditions of very high pressures or onditions

that are hemially or radioatively harsh.

The latter point shall be illustrated by the following example:

Only today one starts to understand fundamental questions of ondensed matter. Until

reently it was not possible to show theoretially why diamond (arbon) is harder than

Si. Further, properties an be alulated under onditions whih are inaessible by ex-

periment, e.g. the visosity and the melting temperature of iron at pressures that exist

at the earth ore. These theoretial investigations have beome possible only sine 1978

(the example onerning the properties of iron an be investigated only sine about 19992).

The element arbon exists in three solid phases: i) as amorphous solid and in rystalline

form ii) as graphite and iii) as diamond3,4. Graphite is the most stable phase, i.e., the

one with the lowest internal energy. Diamond is only a metastable state, but with a rather

long lifetime. Usually when arbon atoms are brought together graphite or an amorphous

phase is formed. Only under ertain onditions (pressure, temperature) in the inner earth

2D. Alfe, M.J. Gillan, and G.D. Prie, Nature 401, 462 (1999).
3Diamond is the hardest known material, i.e., it has the highest bulk modulus. Diamonds without

defets are most transparent to light. At room temperature their thermal ondutivity is better than that

of any other material.
4This statement is slightly simpli�ed. More preisely (up to now) two types of graphite and two types

of diamond are known. Additionally sine 1968 and 1972, respetively, haoit and arbon (VI), sine 1985

fullerenes (e.g. C60) and sine 1991 arbon nanotubes are known. From the latter �soft matter� an be

formed, and they an also be used diretly as nano-materials (for example as nanotube transistors). These

systems will be disussed in more detail later.
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were diamonds formed. Therefore, in a ertain sense, diamonds are known only aiden-

tally. It annot be exluded that also other elements (Si, Ge, Ag, Au) an exist in other

yet unknown modi�ations. Examples for new, arti�ially reated materials are semi-

ondutor quantum dot or quantum wire systems, or epitaxial magneti layers5. One

the interations between atoms are understood, possibly materials with ompletely new

physial properties ould be predited theoretially. As an example, by the theoretial

investigation of semiondutor heterostrutures or of metal heterostrutures it is atu-

ally attempted to predit new materials for light emitting diodes (LEDs) or new magneti

memory devies. By the theoretial investigation of alloys and surfae alloys (for whih no

bulk-analogue exists) of new ompositions the hope is to �nd new atalysts. This sounds

like being very lose to pratial appliation. However, it should be noted that applia-

tions of suh theoretial preditions annot be expeted in the too near future, beause

in industry many pratial details (onerning the tehnial proesses, ost optimization,

et.) are ruial for the deision if a physial e�et will be used in real devies.

A theory is partiularly useful, if it has preditive power. In these days there is a hange

in ondensed matter theory. While previously the main fous was on the reprodution of

experimental results and on the transfer to similar systems, nowadays theory is applied

more and more independent of experiment, e.g. to predit new properties of solids and to

stimulate new experiments.

In reent years, two aspets have had a big impat on materials siene and ondensed

matter physis: First, the potential tehnologial importane of semiondutor physis,

magnetism, surfae physis (omputer, ommuniation and information tehnology, atal-

ysis, lubriation, new materials). Seond, sine 1980 30 Nobel prizes have been awarded

for work in the �eld of or related to materials siene. Just a short list is given here (see

also: http://www.nobel.se/):

1981 Physis: Niolaas Bloembergen and Arthur L. Shawlow �for their ontribution to

the development of laser spetrosopy� and

Kai M. Siegbahn �for his ontribution to the development of high-resolution eletron

spetrosopy�.

1981 Chemistry: Kenihi Fukui and Roald Ho�mann �for their theories, developed inde-

pendently, onerning the ourse of hemial reations�.

1982 Physis: Kenneth G. Wilson �for his theory for ritial phenomena in onnetion

with phase transitions�.

1982 Chemistry: Aaron Klug �for his development of rystallographi eletron mirosopy

5In 1988, Albert Fert and Peter Grünberg independently disovered that an inreased magnetoresistive

e�et (hene dubbed �giant magnetoresistane� or GMR) an be obtained in magneti multilayers. These

systems essentially onsist of an alternate stak of ferromagneti (e.g., Fe, Co, Ni, and their alloys) and

non-ferromagneti (e.g., Cr, Cu, Ru, et.) metalli layers. It is unusual that a basi e�et like GMR leads

in less than a deade after disovery to ommerial appliations: Magneti �eld sensors based on GMR

were already introdued into the market as early as 1996, and by now e.g. all read heads for hard diss

are built that way. In 2007 Albert Fert and Peter Grünberg were awarded the Nobel Prize in physis.
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and his strutural eluidation of biologially important nulei aid-protein om-

plexes�.

1983 Chemistry: Henry Taube �for his work on the mehanisms of eletron transfer rea-

tions, espeially in metal omplexes�.

1984 Chemistry: Robert Brue Merri�eld �for his development of methodology for hem-

ial synthesis on a solid matrix�.

1985 Physis: Klaus von Klitzing �for the disovery of the quantized Hall e�et� (von

Klitzing, Dorda, Pepper, Phys. Rev. Lett. 45, 494 (1980); Physis Today 38, 17

(1985)).

1985 Chemistry: Herbert A. Hauptman and Jerome Karle �for their outstanding ahieve-

ments in the development of diret methods for the determination of rystal stru-

tures�.

1986 Physis: Ernst Ruska �for his fundamental work in eletron optis and for the design

of the �rst eletron mirosope� and

Gerd Binnig and Heinrih Rohrer �for their design of the sanning tunneling mi-

rosope� (Physis Today, Jan. 1987, p. 17) and (Binnig, Rohrer, Gerber, Werbel,

Phys. Rev. Lett. 49, 57 (1982)).

1986 Chemistry: Dudley R. Hershbah, Yuan T. Lee, and John C. Polanyi �for their

ontributions onerning the dynamis of hemial elementary proesses�.

1987 Physis: J. Georg Bednorz and K. Alexander Müller �for their important break-

through in the disovery of superondutivity in erami materials�.

1987 Chemistry: Donald J. Cram, Jean-Marie Lejn, and Charles J. Pedersen �for their

development and use of moleules with struture-spei� interations of high sele-

tivity�.

1988 Chemistry: Johann Deisenhofer, Robert Huber, and Hartmut Mihel, �for the de-

termination of the three-dimensional struture of a photosyntheti reation entre�.

1991 Physis: Pierre-Gilles de Gennes �for disovering that methods developed for study-

ing order phenomena in simple systems an be generalized to more omplex forms

of matter, in partiular to liquid rystals and polymers�.

1991 Chemistry: Rihard R. Ernst �for his ontributions to the development of the method-

ology of high resolution nulear magneti resonane (NMR) spetrosopy�.

1992 Chemistry: Rudolph A. Marus �for his ontributions to the theory of eletron trans-

fer reations in hemial systems�.

1994 Physis: Bertram N. Brokhouse �for the development of neutron spetrosopy� and

Cli�ord G. Shull �for the development of the neutron di�ration tehnique�.

1996 Physis: David M. Lee, Douglas D. Oshero�, and Robert C. Rihardson �for their

disovery of super�uidity in helium-3�.
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1996 Chemistry: Robert F. Curl Jr., Sir Harold W. Kroto, and Rihard E. Smalley �for

their disovery of fullerenes�.

1997 Physis: Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips �for devel-

opment of methods to ool and trap atoms with laser light�.

1998 Physis: Robert B. Laughlin, Horst L. Störmer, and Daniel C. Tsui �for their dis-

overy of a new form of quantum �uid with frationally harged exitations�.

1998 Chemistry: Walter Kohn �for his development of the density-funtional theory� and

John A. Pople �for his development of omputational methods in quantum hem-

istry�.

1999 Chemistry: Ahmed H. Zewail �for his studies of the transition states of hemial

reations using femtoseond spetrosopy�.

2000 Physis: Zhores I. Alferov and Herbert Kroemer �for developing semiondutor het-

erostrutures used in high-speed- and opto-eletronis� and Jak S. Kilby �for his

part in the invention of the integrated iruit�.

2000 Chemistry: Alan J. Heeger, Alan G. MaDiarmid, and Hideki Shirakawa, �for the

disovery and development of ondutive polymers�.

2001 Physis: Eri A. Cornell, Wolfgang Ketterle, and Carl E. Wieman �for the ahieve-

ment of Bose-Einstein ondensation in dilute gases of alkali atoms, and for early

fundamental studies of the properties of the ondensates�.

2003 Physis: Alexei A. Abrikosov, Vitaly L. Ginzburg, and Anthony J. Leggett �for

pioneering ontributions to the theory of superondutors and super�uids�.

2005 Physis: Roy J. Glauber �for his ontribution to the quantum theory of optial

oherene� and John L. Hall and Theodor Hänsh for �their ontributions to the

development of laser-based preision spetrosopy, inluding the optial omb teh-

nique�.

2007 Physis: Albert Fert and Peter Grünberg �for their disovery of Giant Magnetore-

sistane�.

2007 Chemistry: Gerhard Ertl �for his studies of hemial proesses on solid surfaes�.

In the above list I ignored work on biophysis, though some developments in this area are

now beoming also part of ondensed matter physis.

The quantum-Hall-e�et (Nobel prize 1985) is roughly understood these days, whih is

true only in a limited way for its �variant� the �frational quantum-Hall-e�et� (Nobel

prize 1998). The latter is based on the strong orrelation of the eletrons and even these

days unexpeted results are found.
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The theory of high-Tc superondutivity is still unlear (Nobel prize 1987). Here, the

oupling seems to have a di�erent symmetry than in onventional BCS-superondutors.

While high-Tc superonduturs have a omplex atomi struture and onsist of at least 4

elements (z.B. La, Ba, Cu, O), reently a relatively simple material was found (MgB2),

whih also has a high ritial temperature (Tc = 39 K, this orresponds to the tempera-

ture of the �rst high-Tc superondutors; these days high-Tc superondutors with ritial

temperatures lose to 100 K are known).

In this leture:

1. Equations will not fall down from heaven, but we will derive them from �rst prin-

iples;

2. we will not only give the mathematial derivation, but also, and in partiular, we

will develop a physial feeling, i.e., we will spend a notieable amount of time in

interpreting equations;

3. we will give the reasons for approximations and larify their physial meaning and

the range of validity (as muh as this is possible).

In ontrast to most text books we will start with the �adiabati priniple� and subse-

quently disuss the quantum mehanial nature of the eletron-eletron interation. In

most text books both are introdued only in the middle or at the end.

In the �rst part of the leture we will restrit ourselves � unless stated otherwise � to

T ≈ 0 K. Sometimes an extrapolation to T 6= 0 K is unproblemati. Still, one should keep

in mind that for T 6= 0 K important hanges and new e�ets an our (e.g. due to the

entropy).

0.1 Literature for this leture:

Author: Ashroft, Neil W. and Mermin, N. David

Title: Solid state physis

Plae: Philadelphia, PA

Year: 1981

Publisher: Saunders College Publishing

ISBN: 0-03-083993-9 = 0-03-049346-3

Author: Kittel, Charles

Title: Quantum theory of solids

Plae: Hoboken, NJ

Year: 1963

Publisher: John Wiley & Sons, In
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Author: Ziman, John M.

Title: Priniples of the theory of solids

Plae: Cambridge

Year: 1964

Publisher: Cambridge University Press

Author: Ziman, John M.

Title: Models of disorder: the theoretial physis of homogeneously disordered sys-

tems

Plae: Cambridge

Year: 1979

Publisher: Cambridge University Press

ISBN: 0-521-21784-9 = 0-521-29280-8

Author: Ibah, Harald and Lüth, Hans

Title: Solid-state physis: an introdution to priniples of materials siene

Edition: 2. Ed.

Plae: Berlin

Year: 1995

Publisher: Springer

ISBN: 3-540-58573-7 = 0-387-58573-7

Author: Madelung, Otfried

Title: Festkörpertheorie, 3 Bände

Plae: Berlin

Year: 1972

Publisher: Springer

Author: Sherz, Udo

Title: Quantenmehanik

Plae: Stuttgart

Year: 1999

Publisher: Teubner

ISBN: 3519032465

Author: Dreizler, Reiner M. and Gross, Eberhard K. U.

Title: Density funtional theory: an approah to the quantum many-body problem

Plae: Berlin

Year: 1990

Publisher: Springer

ISBN: 3-540-51993-9 = 0-387-51993-9

7



Author: Parr, Robert G. and Yang, Weitao

Title: Density-funtional theory of atoms and moleules

Plae: Oxford

Year: 1994

Publisher: Oxford University Press

ISBN: 0-19-509276-7

Author: Anderson, Philip W.

Title: Basi notions of ondensed matter physis

Plae: London

Year: 1984

Publisher: Benjamin/Cummings

ISBN: 0-8053-0220-4 = 0-8053-0219-0

Author: Marder, Mihael P.

Title: Condensed matter physis

Plae: New York

Year: 2000

Publisher: John Wiley & Sons, In.

ISBN: 0-471-17779-2

Author: Martin, Rihard M.

Title: Eletroni Struture

Plae: Cambridge

Year: 2004

Publisher: Cambridge University Press

0.2 The following symbols and terms are used:

−e harge of the eletron

+e harge of the proton

m mass of the eletron

rk position of eletron k

σk spin of eletron k

ZK nulear harge of atom K

ZvK
valene of atom K

MK mass of nuleus K

RK position of nuleus K

φ eletri �eld
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Ψ many-body wave funtion of the eletrons and nulei

Λ nulear wave funtion

Φ many-body wave funtion of the eletrons

ϕ single-partile wave funtion of the eletrons

χ spin wave funtion

{RI} ≡ {R1,...,RM} atomi positions

{riσi} ≡ {r1σ1,...,rNσN} eletron oordinates (position + spin)

ε0 dieletri onstant of the vauum

ǫi single partile energy of eletron i

Vg volume of the base region

Ω volume of a primitive ell

vIon
K (r) potential of ion K at position r

0.3 Atomi Units

At least at the beginning of the leture I will use SI-units (Système International d'Unités).

However, in order to simplify the notation in quantum mehanis often the so-alled

atomi units (a.u.) are introdued. For histori reasons, there are two, slightly di�erent

onventions: Rydberg and Hartree atomi units. For both we have

length :
4πε0h̄

2

me2
= 1 bohr = 0.529177 Å = 0.0529177 nm , (0.1)

and further we have:

e2

4πε0

h̄ m energy:
h̄2

2ma2

B

h̄2

2m
Hamilton operator

of hydrogen atom

Rydberg a.u. 2 1 0.5 1 Ry = 13.606 (eV) 1 −∇2 + 2
r

Hartree a.u. 1 1 1
1
2
Ha; 1 Ha = 27.212 (eV) 0.5 −1

2
∇2 + 1

r
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Chapter 1

Introduction

1.1 The Many-Body Hamilton Operator

The starting point of a quantitative theoretical investigation of the properties of solids is
the many-body Schrödinger equation

HΨ = EΨ , with Ψ = Ψ({RI}, {rk, σk}) .

Here, the many-body wave function depends on the coordinates of all the atoms, RI , and
on the coordinates and spin coordinates of all electrons. In general, this wave function will
not separate into RI and (rk, σk) dependent components. This should be kept in mind
when below, and in most parts of this lecture, we will introduce such separation. Of course,
we will also discuss the range of its validity. The properties of matter are determined by
the electrons and nuclei and in particular by their interaction (1023 particles per cm3).
For many quantum mechanical investigations it is useful to start with an approxima-
tion, which is called the “frozen-core approximation”. This is a reasonable approximation
although a priori it is not clear why it is simplifying the theoretical treatment. Later,
however, we will realize that the frozen-core approximation in general provides a higher
accuracy and reliability to quantitative calculations. This approximation is often helpful
or convenient, but not necessarily required, i.e., the many-body problem can also be solved
without introducing this approximation.

We will assume that when condensed matter is formed from free atoms, only the va-
lence electrons contribute (significantly) to the interaction between atoms. The electrons
close to the nuclei (core electrons), which are in closed shells, in general will 0nly have
a small influence on the properties of solids. Exceptions are experiments, which more or
less directly measure the core electrons or the region close to the nuclei [e.g. X-ray photo
emission (XPS), electron spin resonance (ESR)]. Therefore it is reasonable to introduce
the following separation already in the atom, before turning to solids: Nucleus and core
electrons shall be regarded as a unit, i.e., the neutral atom consists of a positive, spheri-
cally symmetric ion of charge Zve and of Zv valence electrons.

This ion acts on each valence electron with a potential that looks like that shown in Fig.
1.1. The symbols have the following meaning:

Z: nuclear charge of the atom

Rc: radial extension of the core electrons

Zv: number of valence electrons of the neutral atom

Then the number of core electrons is Z −Zv. The solid is composed of these ions (lattice
components) and the valence electrons. As mentioned before, this approximation is not

10



η RcvIon

r

−Zv e

4πε0r

−Z e

4πε0r

Figure 1.1: Potential of a positive ion (full line), where all electrons, except those in closed
shells, have been removed. The dashed curves show the asymptotic behavior for small and
large distances.

required in a strict sense. We also did not achieve a lot, because in spite of the frozen-core
approximation the quantum mechanical problem still contains 1023 particles.

Still the approximation is reasonable and conceptionally appropriate, because it corre-
sponds to the nature of the interaction. In Table 1.1 I give the electronic configuration
and the ionic potentials for four examples. Here (and in Fig. 1.1) η is a small number
roughly of the order of Rc/(100Z). The question marks in the range η ≤ r ≤ Rc indicate
that in this range no analytic form of the potential can be given. We note that the par-
ticular form of vIon(r) and the number of valence electrons Zv have no influence on the
form of the equations that will be discussed later in this lecture.

Table 1.1: Electronic configuration and ionic (frozen core) potentials for different atoms.

atom electronic
configuration

Z Zv Rc (bohr) vIon(r) (Ry)

H 1s1 1 1 0 −2/r
He 1s2 2 2 0 −4/r

C [1s2]2s22p2 6 4 0.7
r ≥ Rc : −8/r
η ≤ r ≤ Rc : ?
r < η : −12/r

Si [1s22s22p6]3s23p2 14 4 1.7
r ≥ Rc : −8/r
η ≤ r ≤ Rc : ?
r < η : −28/r

For the construction of the Hamilton operator of the many-body Schrödinger equation of
a solid, we first start with the classical Hamilton function and subsequently replace the
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momentum p by (~/i)∇.

The many-body Hamilton operator of the solid has the following contributions:

1) The kinetic energy of the electrons

T e =
N

∑

k=1

p2
k

2m
. (1.1)

2) The kinetic energy of the ions (i.e. of the nuclei plus core electrons)

T Ion =
M

∑

I=1

P2
I

2MI

. (1.2)

If the solid contains only one type of atom, then N = ZvM .

3) The electron-electron interaction

V e−e({rkσk}) ≈
1

2

1

4πε0

N,N
∑

k,k′

k 6=k′

e2

|rk − rk′ | . (1.3)

We use {rkσk} as a short hand notation for all position and spin coordinates of
the electrons: r1, σ1, r2, σ2, r3, σ3, . . . , rN , σN . Here we have considered only the elec-
trostatic interaction. In general, also the spin of the electrons and the magnetic
interaction should and could be taken into account. Spin and magnetism in general
require to solve the Dirac equation. Often, however, a scalar-relativistic treatment
is sufficient. We will get back to this in Chapter ??.

4) The interaction of the ions

V Ion−Ion({RI}) ≈
1

2

1

4πε0

M,M
∑

I,J

I 6=J

e2

|RI − RJ |
ZvI

ZvJ
. (1.4)

Also here (even better justified than for the electrons) we did not consider the spin
of the particles. Further we have assumed that the ions cannot get too close to
each other, i.e., their interaction potentials can be described by (Zve

2/d) 1
4πε0

. Thus,
we also assumed that the distance of two ions d is larger than or equal to 2Rc, in
order to avoid an overlap of the charge densities of the core electrons. If the condi-
tion d ≥ 2Rc is not valid, the frozen-core approximation cannot be applied. Then
vIon → vNuc. = 1

4πε0

e2Z
r

has to be used.
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5) The electron-ion-interaction (without nuclear spin)

V e−Ion({rkσk}; {RI}) =
M

∑

I=1

N
∑

k=1

vIon(|RI − rk|) , (1.5)

which is often summarized as:

M
∑

I=1

vIon(|RI − rk|) = v(rk) . (1.6)

Here, v(rk) is the potential due to all the ions (nuclei + core electrons).

Consequently, the many-body Hamilton operator of the solid reads

H = T e + T Ion + V e−e + V e−Ion + V Ion−Ion . (1.7)

1.2 Separation of the Dynamics of Electrons and Ions

1.2.1 Adiabatic Approximation or Born-Oppenheimer Approxima-

tion

The dynamics is described by the time-dependent Schrödinger equation

i~
∂Ψ(t)

∂t
= HΨ(t) ,

where H is defined in Section 1.1 above (Eq. 1.7). Thus

Ψ(t) = e−i H·(t−t0)/~ Ψ(t0) .

Obviously this is the equation we like to solve, but in order to do so, we have to bring it
into a more tractable form. How can we split things up? How can we divide the problem
into smaller and tractable pieces in order to conquer the whole?

Before we start the mathematical discussion, let me give an initial remark to make the
idea plausible: The electrons can react to an external perturbation much faster than the
nuclei. This is reflected in the ratio of the (inert) masses of the nuclei and the electrons.
Some examples are:

MH/m = 1,840 ,
MSi/m = 25,760 ,
MAg/m = 86,480 .

Thus it seems to be reasonable to assume that the electrons adjust without noticeable
delay to the current lattice geometry {RI}. Then for each lattice geometry, the electrons
move independently of the motion of the nuclei (adiabatic principle). Formulated more
precisely it can be said that electrons in general react to a perturbation on a time scale of
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femtoseconds (10−15s), while nuclei require times of the order of picoseconds (10−12 s). We
assume that from the electrons point of view the ions do not move (or move sufficiently
slow).

To justify this decoupling of the motion of the electrons and the nuclei we now give an
(initially) exact discussion.

We define an operator He, in order to use its eigenfunctions as basis:

He({RI})Φν({RI}, {rkσk}) = Ee
νΦν , (1.8)

with

He = T e + V e−Ion + V e−e . (1.9)

If the kinetic energy of the lattice components would be zero (or MI/m → ∞), the
electrons could be described by this equation. But strictly speaking the meaning of the
functions Φν defined by Eq. (1.8) is only that of basis functions. The arguments {RI}
in the electronic wave function cannot be interpreted as a common variable of the wave
function, but as parameters which classify the Hamilton operator He (similar to the nu-
clear charge Z).

The following statement is exact: The solutions of H (defined by Eq. (1.1) - (1.5)) can be
expanded in terms of the functions Φν (the eigenfunctions of Eq. (1.8))

Ψ =
∑

ν

Λν({RI})Φν({RI}, {rkσk}) . (1.10)

The meaning of Eq. (1.8) and (1.10) can also be expressed as: The eigenfunctions of He

for each atomic configuration {RI} form a complete set of functions. Strictly speaking,
the eigenfunctions of one atomic configuration {RI} are complete (with respect to the
electronic coordinates), i.e., the Hilbert spaces of different atomic configurations {RI} are
the same. Still it is reasonable (here) to consider the functions Φν({RI}, {rkσk}) as being
dependent of RI . Mathematically it would also be correct to take the He(RI) and the
Φν({RI}, {rkσk}) of a certain configuration R0

I and to consider the dependence on RI

only by the coefficients Λν({RI}). This will be discussed in 1.2.2. Now, we investigate the
equation HΨ = EΨ, representing Ψ by Eq. (1.10).

Obviously, for the operator He we have

HeΛνΦν = ΛνH
eΦν = ΛνE

e
νΦν .

Also V Ion−Ion can be interchanged with Λν , but not T Ion. Applying the chain rule we
obtain

∇2
RI

(ΛνΦν) = Λν(∇2
RI

Φν) + 2(∇RI
Λν)(∇RI

Φν) + (∇2
RI

Λν)Φν . (1.11)
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Now Eq. (1.7) for the state (E,Ψ) is multiplied from the left by Φ∗
µ and integrated over

the electronic coordinates. Using Eq. (1.8), the equation used to determine the “wave
function of the electrons”, i.e., Φµ, we obtain

〈Φµ|H|Ψ〉 = EΛµ = (Ee
µ + T Ion + V Ion−Ion)Λµ+

∑

ν

M
∑

I=1

− ~
2

2MI

{

〈Φµ|∇2
RI

|Φν〉Λν + 2〈Φµ|∇RI
|Φν〉∇RI

Λν

}

. (1.12)

For each electronic state (Ee
µ,Φµ) there is one such equation. The difficult part in solving

Eq. (1.12) are the terms coupling Φµ and Φν .

This coupling of different electronic states is caused by the dynamics of the lattice atoms.
It is called electron-phonon coupling.

The electron-phonon coupling can be calculated. Then one often finds that for many prop-
erties of solids it is not very important and can be neglected. However, for the “standard
superconductivity” (BCS-theory) it is essential. Initially, for the new superconductors it
was believed that the electron-phonon interaction is not the main origin of superconduc-
tivity. Nowadays this is not generally accepted anymore. Actually, it is not clear which is
the determining mechanism. For some solids the influence of the electron-phonon coupling
on the spectrum of the lattice vibrations can be measured, and for some low-dimensional
systems the electron-phonon coupling is even responsible for structural instabilities. The
keywords are “Kohn-anomaly”, “Jahn-Teller-effect” and “Peierls instability”. These mech-
anisms are activated by some properties of the electronic structure. They will be discussed
later, when we discuss defects and surfaces.

Up to this point our derivation is exact and general statements concerning the importance
of the electron-phonon coupling are usually NOT possible. Still, we now introduce two
approximations:

1) We assume that the electrons at each time, i.e., for each lattice geometry {RI}, are
in an eigenstate of He (the motion of the lattice shall not induce transitions from
Φµ to Φν). The reason is that the electrons react fast and in fact follow instanta-
neously the nuclear motion. Therefore, the electrons do not feel the nuclear motion
and are always in the electronic ground state. The matrix elements 〈Φµ|∇2

RI
|Φν〉

and 〈Φµ|∇RI
|Φν〉 in (1.12) then are zero for µ 6= ν.

This is called the adiabatic principle or Born-Oppenheimer-approximation. Its va-
lidity, i.e., the importance of the off-diagonal elements, in general is hard to evaluate.

2) Further we want to estimate the diagonal elements of the electron-phonon interac-
tion:

a) The term 〈Φµ|∇RI
|Φµ〉 = 1

2
∇RI

〈Φµ|Φµ〉 vanishes exactly, because 〈Φµ|Φµ〉 = 1,
i.e., it is constant. The derivative of a constant is zero.
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b) For the term

− ~
2

2MI

〈Φµ|∇2
RI

|Φµ〉

we find that the electronic wave functions Φµ do not depend directly on the
nuclear positions RI . The strongest imaginable dependence would exist, if the
electrons would follow the atoms without any delay and distortion. If we, for
example, had a system containing only one valence electron per atom and each
electron follows “its” atom without delay (i.e., the valence electrons instanta-
neously follow the nucleus. This means

|〈Φµ|∇2
RI

|Φµ〉| . |〈Φµ|∇2
rk
|Φµ〉|

and further

| ~
2

2MI

〈Φµ|∇2
RI

|Φµ〉| . | m

MI

〈

Φµ

∣

∣

∣

∣

− ~
2

2m
∇2

rk

∣

∣

∣

∣

Φµ

〉

| (1.13)

≈ 10−4 × kinetic energy of an electron.

Thus, for the diagonal elements µ = ν, but unfortunately only for these, a
rough estimation is possible.

From Eq. (1.13) and the adiabatic approximation we obtain the Schrödinger equation for
the wave functions of the ions:

(

T Ion + V Ion−Ion + Ee
µ

)

Λµ = EΛµ . (1.14)

For the energetically lowest state we will often write

V Ion−Ion + Ee
µ=0 = V BO , (1.15)

and V BO is called “potential energy surface” (PES) or “Born-Oppenheimer energy sur-
face”. The PES is the energy surface the nuclei are moving on, according to Eq. (1.14).

When neglecting the coupling terms 〈Φµ|. . .|Φν〉 in Eq. (1.13), the eigenfunction of the
ground state of H has the form:

Ψ → ΨBO = Λ0({RI})Φ0({RI}, {rk, σk}) ,

where Φ0 is determined by Eq. (1.8) and Λ0 by Eq. (1.14). Equation (1.8) and Eq. (1.14)
can be calculated reliably using modern computational methods.

Strictly, the motion of the ions would have to be described quantum mechanically. When
Eq. (1.14) is solved, one finds that almost always it can be replaced by the classical
(Newton) equations of motion. Quantum mechanical effects like zero point vibrations and
tunneling only rarely play an important role. Hydrogen, as the lightest element, is an
exception, but already for deuteron a classical treatment is sufficient in most cases.
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In general, at stable geometries the functions Λ0 are narrowly peaked and centered at the
atomic sites {RI}. Consequently, for the ground state of Eq. (1.15) we have:

E0 = Ee
0({R0

I}) +
1

4πε0

1

2

M,M
∑

I,J

I 6=J

e2

|R0
I − R0

J |
ZvI

ZvJ
+ 〈Λ0|T Ion + V BO({R0

I − RI})|Λ0〉

(1.16)

The last term describes the quantum mechanical corrections, i.e. zero-point vibrations.
Equation (1.17) forms the basis of the ab initio calculation of the electronic, structural,
elastic and vibrational properties of solids. E0 is often called total energy (or structural
energy). We have recommended (but it is not necessary) to use the frozen-core approxi-
mation for V e−Ion and we have applied the adiabatic approximation.

The Born-Oppenheimer potential, V BO({RI}) refers to the actual position of the ions
(which typically change with time), and it assumes that the functions Φµ({RI}, {rk, σk})
refer to exactly these positions. A hard proof of the validity of the Born-Oppenheimer
approximation is not possible and in fact depends on the actual problem, because there
might be situations, in which the electrons react slower than assumed above, and then
they will not be able to follow the motion of the nuclei exactly, but with some delay and
distortion.

The derivation in this paragraph was reasonable in order to show the form of the matrix
elements of the electron-phonon interaction. Further, we wanted to estimate the order of
magnitude of the matrix elements. In principle, for each calculation the validity of the
Born-Oppenheimer-approximation should be checked by a explicit calculation of the ma-
trix elements in Eq. (1.13) or at least by an estimation.

1.2.2 Static Approximation

We now briefly give an alternative derivation, which is often called the “static approx-
imation”. The nuclei are always in motion, but in many cases will just vibrate around
a position that represents a minimum of the Born-Oppenheimer potential energy, {R0

I},
and we now investigate the Hamilton operator He({R0

I}), which yields the wave functions
of the electrons Φν({R0

I}, {rk, σk}) (cf. Eq. (1.8)). Also the Hamiltonian He({R0
I}) defines

(by its eigenvectors) a complete set of functions, which we can use as a basis set for the
general problem. Though this basis now refers to a fixed (static) geometry the treatment
is as general as that of Section 1.2.2. However, the equation will look different. Neverthe-
less, they describe the same physics.

In the present treatment the wave function of the solid is

Ψ({RI}, {rkσk}) =
∑

ν

Λ̂ν({RI})Φν({R0
I}, {rkσk}) . (1.17)

This equation is (so far) exact, too. But the expansion coefficients are different; therefore
the “hat” above the Λ. The components of the Hamilton operator containing the ion-ion
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and the electron-ion interaction (cf. Eq. (1.4) and (1.5)), (using ∆RI = RI −R0
I) we write

as :

V Ion−Ion({RI}) = V Ion−Ion({R0
I}) + V ph({∆RI}) , (1.18)

V e−Ion({RI}, {rkσk}) = V e−Ion({R0
I}, {rkσk}) + V e−ph({∆RI}) . (1.19)

From this we obtain the equation for the determination of the coefficients of the expansion
and the energy eigenvalues of the solid

Ee
µΛ̂µ + T IonΛ̂µ + V Ion−Ion({R0

I})Λ̂µ+
∑

ν

〈

Φµ({R0
I}, {rkσk})

∣

∣V e−ph + V ph
∣

∣ Φν({R0
I}, {rkσk})

〉

Λ̂ν = EµΛ̂µ . (1.20)

The difference to Eq. (1.12) is that in the second line now there is no differential operator,
and Ee

µ is no more a function of {RI}, but is evaluated at point {R0
I}.

Typically the Born-Oppenheimer potential-energy surface has many minima. These cor-
respond to stable or metastable geometries. V BO now is only one point of the Born-
Oppenheimer-surface, a minimum. At low temperature this minimum defines the equilib-
rium geometry.

If we neglect the coupling terms 〈Φµ| . . . |Φν〉 in Eq. (1.20), for the general wave function
of the ground state we have

Ψ → Ψstatic = Λ̂0Φ0 .

Here Φ0 is the solution of He({R0
I}) and Λ̂0 is the solution of [T Ion + Ee

0({R0
I}) +

V Ion−Ion({R0
I})]Λ̂0 = E0Λ̂0. The error which is introduced by this ansatz and by the ne-

glect of the coupling constants of Φµ and Φν in Eq. (1.20), respectively, will be discussed in
the exercises by a perturbation approach (the result is that in first order the error is zero).

1.2.3 Examples

What can we learn from V BO and the equation

E0 = Ee
0({R0

I}) +
1

4πε0

1

2

M,M
∑

I,J

I 6=J

e2

|R0
I − R0

J |
ZvI

ZvJ

+ quantum mechanical corrections for lattice vibrations ? (1.21)

The difficulty in the evaluation of Eq. (1.23) or Eq. (1.8) is the calculation of Ee
0, i.e., the

solution of the Schrödinger equation of the electrons. This will be done later (in part 3),
and there it will be discussed in greater detail. Now we assume that Ee

0({RI}) is known,
in order to show for two examples, what we can learn using Eq. (1.23).
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V BO

M

zero point
energy

a0 a

aa0 + ∆a

cohesive energy
≈ 5 eV

Figure 1.2: The total energy per atom (without zero point vibrations) as a function of
the interatomic distance. The minimum of the curve determines the stable equilibrium
geometry. The lattice constant, as measured, is not exactly at the minimum of the curve,
but it is the average over the zero point vibrations: a0 + ∆a.

1.2.3a Structure, Lattice Constant, and Elastic Properties of Per-
fect Crystals

For a cubic crystal, due to the periodicity, the dependence of the total energy E0 in Eq.
(1.23) on the {RI} is reduced to a single variable a, which determines the interatomic
distance in a crystal. In Fig. 1.2 the total energy per atom is shown schematically: The
cohesive energy is the energy, which is gained by the formation of the crystal from the
individual atoms.

The minimum of the total energy determines the equilibrium position and therefore the
lattice constant a0 of the crystal. The “bulk modulus” B0, which describes the dependence
of the equilibrium geometry on the external pressure, can be determined from the energy
curve E(a). It is defined as the product of the second derivative (curvature) of the energy
times the volume V (at the equilibrium distance a0):

B0 =
1

K
= V

∂2E(V )

∂V 2

∣

∣

∣

∣

a=a0

, (1.22)

where V is the volume per atom (for a cubic crystal V = a3), and K is the compressibility.

Figure 1.2 shows the typical course of the binding energy of polyatomic systems as a func-
tion of the interatomic distance, and this form is often called “equation of state”. Typically
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V BO is calculated for about 10 geometries and the curve is represented by an analytical fit.

The minimum of the “equation of state” is close to, but not exactly the lattice constant
of the solid, because the “equation of state” shows a clear asymmetry.

The order of magnitude of the zero point vibrations can be estimated from the uncertainty
relation:

∆P∆X ≥ ~/2 .

If ∆X = 0.1 bohr(a typical interatomic distance is 5 bohr≈ 2.5 Å), for silicon it follows

P 2

2M
≈ 0.02eV/atom .

In comparison to the binding energy of the solid (cohesive energy) this is a small number
(≈ 1

200
Ecoh), but still the zero point vibrations do have a measureable effect (e.g. ≈ 0.1 -

0.5% increase of the lattice constant compared to a neglect of 〈Λ0|T Ion+V BO({∆RI})|Λ0〉).

In Chapter 6 (cohesion) we will e.g. return to the “equation of state” and there we will
compare different crystal structures.

Obviously, when higher-energy vibrations are excited (by higher temperatures) the lattice
constant increases. This is due to the non-harmonic behavior of V BO around its minimum:
For a value smaller than a0 the potential energy increases strongly due to Pauli repulsion.
All solids with one atom per unit cell show such thermal expansion.

1.2.3b Lattice Waves (Phonons)

When intending to calculate the energy of lattice waves (phonons), E0 has to be investi-
gated as function of the wave length λ and the direction of the lattice wave. Figure 1.3
shows the example of a “frozen phonon”. The magnitude of η “tells”, how many phonons
of wave length λ are excited. The energy of this lattice wave follows from the energy dif-
ference E0({RI}) − E0({R0

I}), where {R0
I} gives the equilibrium geometry of the lattice

and {RI} the periodically distorted geometry.

From the energy of the lattice wave we can for example obtain quantitative results for
the specific heat of the lattice (cf. Ashcroft and Mermin, p. 452-454) and the thermal
expansion.
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η

η

a0

λ = 2 a0

r

Figure 1.3: Schematic picture of a snapshot of a lattice wave (frozen phonon). The arrows
give the direction of the distortion of the atoms. The wave length is λ = 2a0, and a0 is
the equilibrium distance of the atoms. The amplitude of the distortion is η.

1.3 The Ewald Method

(References: J.C. Slater, Insulators, Semiconductors and Metals, Quantum Theory of
Molecules and Solids, Vol. 3, McGraw Hill, 1967, S. 215-220)

The sum appearing in Eq. (1.16)

〈

Λ0

∣

∣V Ion−Ion
∣

∣ Λ0

〉

M
=

EIon−Ion

M
=

1

M

1

4πε0

1

2

M,M
∑

I,J

I 6=J

e2

|R0
I − R0

J |
ZvI

ZvJ
, (1.23)

gives the electrostatic interaction energy of the ions and is an important contribution to
the total energy. For ionic crystals (e.g. if one considers NaCl as being composed of Na+

and Cl− ions) it is even the dominating part of the total energy. Strictly speaking, only
the combined electrostatic energy of the ions and the electrons (see Chapter 3), i.e. of
the charge neutral solid, is a mathematically well-defined quantity. While the physical
meaning of the sum of Eq. (1.23) is clear, summing up the interactions of the point-like
charges of the ions is a non-trivial problem. This is because the sum converges very slowly
or not at all, i.e., even for a very large number of atoms M the result depends on the order
of summation, or on the shape of the surface which includes the part already summed up.
The reason is the long range of the Coulomb interaction.

In the following we discuss a simple reformulation of the problem which provides a well-
behaved expression for the ionic interaction energy. The main idea is to rewrite the in-
teraction energy by (i) adding charge clouds that compensate (or screen) the point-like
ions and thereby result in a rapidly convergent sum over charge neutral units, and (ii)
subtracting the electrostatic interaction energy of these ficticious charge clouds which is
readily obtained from the Poisson equation in Fourier (or reciprocal) space.
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The methodical treatment of Eq. (1.23) is important for actual calculations, but it is
also interesting, because it clarifies a methodical approach that in a similar way is also
helpful for other problems. In general the procedure can be described as follows: If there
is an apparently unsolvable problem, first a similar (and possibly uninteresting) problem
is solved and then the difference of the two systems is investigated.

The problem in the calculation of the sum in Eq. (1.23), i.e., the poor convergence,
originates from the fact that the number of atoms of the same distance is growing with
separation. We discuss the example of a periodic solid with only one atom per unit cell1

(and therefore only one atom type). It follows

EIon−Ion

M
=

1

4πε0

1

2

M
∑

I=2

Z2
ve

2

|RI − R1|
=

1

2
Zveφ(R1) . (1.24)

φ(R1) is the electrostatic potential generated by the ions I = 2, 3, · · ·M at position R1,
and because of the periodicity we have φ(R1) = φ(R2) = φ(R3), etc. . The electrostatic
potential can be calculated from the Poisson-Equation. If e n+(r) is the charge density of
the nuclei and the core electrons, then we have (Poisson-equation)

∇2φ̃(r) = − e

ε0

n+(r) . (1.25)

In these equations initially we take into account all atoms including (I = 1). Later we
will remove the contribution of (I = 1), which does not appear in Eq. (1.24). We have:

φ(R1) = φ̃(R1) − contribution of the charge density of the ion #1 . (1.26)

First, the reason for the difficulties in evaluating Eq. (1.26) will be pointed out. Because
in a periodic crystal n+(r) is periodic, we have

n+(r) =
∑

Gn

n+(Gn)eiGnr (1.27)

with

n+(Gn) =
1

Ω

∫

Ω

n+(r)e−iGnrd3r (1.28)

and RnGn = 2πΓ, where Γ is an integer number. Ω is the volume of the unit cell1

(cf. Chapter 4). We have

n+(Gn = 0) =
1

Ω
Zv ; (1.29)

and because of the Poisson-equation (1.28) it follows for the electrostatic potential φ̃

∇2φ̃(r) = − e

ε0

∑

Gn

n+(Gn)eiGnr (1.30)

1The unit cell is the smallest unit which can be used to construct a periodic solid.
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√
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and therefore

φ̃(r) =
e

ε0

∑

Gn

n+(Gn)eiGnr

|Gn|2
+ C , (1.31)

which is easily verified by evaluating ∇2φ̃(r). We point out that the singularity of Eq.
(1.33) for Gn = 0 does not play a role. It is cancelled by a corresponding singularity in
the other contributions to the total energy, which appear in V e−e and V e−Ion . This is
reasonable, because for a neutral system the term Gn = 0 has to disappear after all. The
singularity for Gn = 0 in Eq. (1.33) will therefore be ignored.

If e n+(r) would only contain the nuclear charges, i.e., δ-functions, then for all terms we
have n+(Gn) = Zv

Ω
. We note for Eq. (1.24) and (1.31) that the potential of δ-shaped charge

densities converges poorly in real space and in Fourier space.

On the other hand in Eq. (1.33) one recognizes that the convergence of the series would
be better if we had a charge density n+(r), for which n+(Gn) decreases with increasing
|Gn|2. An exponential decay would be best. It follows that a sum of Gaussian functions
has to converge nicely. Thus we first investigate such Gaussian-shaped charge densities,
although this does not directly correspond to what we are interested in:

n+
Gauss(r) = Zv

M
∑

I=1

(α

π

)3/2

e−α|r−RI |
2

. (1.32)

We have normalized the individual Gaussian functions, i.e., we have

∫

(α

π

)3/2

e−α|r−RI |
2

dr = 1 , (1.33)

and 2/
√

α is the width of the individual Gaussians (cf. Fig. 1.4). The Fourier representa-
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tion of n+
Gauss(r) has the form:

n+
Gauss(Gn) =

Zv

Ω

M
∑

I=1

∫

Ω

(α

π

)3/2

e−α|r−RI |
2

e−iGnrd3r =
Zv

Ω
e
−

„

G
2
n

4α

«

, (1.34)

and for the corresponding electrostatic potential we obtain from the Poisson equation

φ̃Gauss(r) =
Zv

Ω

e

ε0

∑

Gn

e
−

„

G
2
n

4α

«

eiGnr

|Gn|2
+ C (1.35)

=
Zve

4πε0

M
∑

I=1

erf(
√

α|r − RI |)
|r − RI |

+ C . (1.36)

Here erf is the error function

erf(x) =
2√
π

∫ x

0

e(−x′2)dx′ . (1.37)

This means,

Zve

4πε0

× erf(
√

α|r − RI |)
|r − RI |

(1.38)

is the electrostatic potential, which is created by a Gaussian charge density cloud being
centered at position RI (cf. Fig. 1.5).

In contrast to φ̃(r) in (1.31) this sum (Eq. (1.34) and (1.36)) converges excellently. This
is because of the factor exp(−G2

n/4α). The smaller α, the wider are the Gaussians and
the smoother is φGauss(r) and the better is the convergence with respect to Gn.

Because we are not interested in Gaussian clouds, we write for the density of interest

n+(r) =
{

n+(r) − n+
Gauss(r)

}

+ n+
Gauss(r) . (1.39)

Together, the first two components describe a neutral charge, i.e., δ-shaped point charges,
which are surrounded by oppositely charged Gaussian clouds and therefore are screened.
It is therefore obvious that the sum over such neutral objects converges rapidly in real
space. The charge distribution is shown in Fig. 1.6. The last term in Eq. (1.39) converges,
as discussed above, very nicely in Fourier space.

We recognize that the contributions being centered at different positions now do not
interact (or interact only weakly). The electrostatic field of these two components is:

φ1,2(r) =
Zve

4πε0

M
∑

I=1

{

1 − erf(
√

α|r − RI |)
|r − RI |

}

+ C . (1.40)

The term in the curly brackets of Eq. (1.41) vanishes with increasing distance to the
nucleus at position RI . Consequently, the sum converges rapidly. Only a few atomic
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Figure 1.6: Charge distribution of point charges and surrounding Gaussian charge densi-
ties. Delta-functions are represented by arrows.

positions in the neighborhood of r have to be taken into account. The third contribution
in Eq. (1.40) of n+(r), the Gaussian clouds, we describe in the representation (Eq. (1.31)).
For the potential that we want to calculate, we obtain

φ(r) = +
Zve

4πε0

M
∑

I=1

1 − erf(
√

α|r − RI |)
|r − RI |

+
Zv

Ω

e

ε0

∑

Gn

e−
G

2
n

4α eiGnr

|Gn|2
− Zve

4πε0

1

|r − R1|
+ C . (1.41)
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Here we have now removed also the RI = R1 contribution (cf. Eq. (1.26)).

Finally, I will briefly discuss the integration constant C. The electrostatic potential φ(r),
as written down in Eq. (1.42), depends on α. Of course this is unphysical and unwanted.
The reason for this dependence is that we have not yet determined the integration con-
stant C, which appeared in the solution of the Poisson-equation for φGauss(r).

From the condition that φ should not depend on α we obtain the integration constant C.
It has to be fulfilled:

dφ(r)

dα
= 0 . (1.42)

The calculation yields:

C = −πZve

Ωα
× 1

4πε0

. (1.43)
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Chapter 2

The Fermi Method

2.1 Statistical Mechanics

At finite temperatures there are thermal excitations of the electronic system, i.e., in
thermodynamic equilibrium not only the ground state (Ee

0, Φ0({rkσ})) of He is present,
but also excited states. Thus, due to thermal fluctuations all states (Ee

ν , Φν) are realized
with a certain probability. Assuming that the number of particles and the temperature
are determined by external conditions, we have a canonical ensemble and the probability
P (Ee

ν , T ) for the occupation of state (Ee
ν , Φν) is proportional to exp(−Ee

ν/kBT ). Here kB

is the Boltzmann constant. The ensemble is described by the density operator

ρ =
∑

ν

P (Ee
ν , T )|Φν >< Φν | . (2.1)

Of course the ensemble of all states has to be normalized to 1 and therefore we have

∑

ν

P (Ee
ν , T ) = 1 =

1

Ze

∑

ν

exp(−Ee
ν/kBT ) . (2.2)

One obtains
Ze =

∑

ν

exp(−Ee
ν/kBT ) = Tr(exp(−He/kBT )) . (2.3)

Ze is the partition function of the electrons and is related to the Helmholtz free energy:

−kBT ln Ze = F e = U e − TSe , (2.4)

where U e and Se are the internal energy and the entropy of the electronic systems, i.e
of the electron-hole excitations. Below at Eq. (2.6) we will come back to this point.
Consequently, the probability of a thermal occupation of a certain state (Eν , Φν) is

P (Ee
ν , T ) =

1

Ze
exp(−Ee

ν/kBT ) = exp[−(Ee
ν − F e)/kBT ] . (2.5)

At finite temperature we therefore need the full energy spectrum of the many-body Hamil-
ton operator. Then we can calculate the partition function (Eq. (2.3)) and the free energy
(Eq. (2.4)). Let us now discuss briefly, how the internal energy and the entropy can be
determined separately1: The internal energy is what up to now we have called total energy
at finite temperature:

U e(T ) =
∑

ν

Ee
ν(T )P (Ee

ν , T ) . (2.6)

In the general case, i.e., when also atomic vibrations are excited, we have U = U e + Uvib,
not just U e.

1cf. e.g. N.D. Mermin, Phys. Rev. 137, A 1441 (1969); M. Weinert and J.W. Davenport, Phys. Rev. B
45, 13709 (1992); M.G. Gillan, J. Phys. Condens. Matter 1 689 (1989); J. Neugebauer and M. Scheffler,
Phys. Rev. B 46, 16067 (1992); F. Wagner, T. Laloyaux, and M. Scheffler, Phys. Rev. B 57, 2102 (1998).
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From the laws of thermodynamics [(∂u/∂T )V = T (∂s/∂T )V ] and from the third law of
thermodynamics (s → 0 if T → 0) we obtain

se =
Se

V
= −kB

∑

i

[

f(ǫi, T ) ln f(ǫi, T ) + (1 − f(ǫi, T )) ln (1 − f(ǫi, T ))
]

. (2.7)

Here we used the energy and entropy per unit volume (u = U/V, s = S/V ), and f(ǫi, T )
is the Fermi function (see below). The derivation is particularly simple, if one assumes
that we are dealing with independent particles (Eq. (2.11), (2.12), below).

From Eq. (2.4) or (2.7) we obtain the specific heat

cv =
1

V

(

∂U

∂T

)

V

(2.8)

=
T

V

(

∂S

∂T

)

V

. (2.9)

Here we removed the superscript e and in fact mean U = U e + Uvib and S = Se + Svib.
The calculation of cv of metals is an important example of the importance of Fermi-Dirac
statistics of the electrons (cf. Ashcroft-Mermin p. 43, 47, 54).

2.2 Fermi Statistics of the Electrons

Let us assume that the N electrons of our many-body problem occupy single particle
levels. Then we also know that due to the Pauli principle each single particle level can
be occupied with two electrons at most (one electron with spin up and one electron with
spin down). With this assumption it follows (for T = 0 K) that the N lowest energy levels
ǫi are occupied:

Ee(T = 0K) = Ee
0 =

N
∑

i=1

ǫi + ∆ , (2.10)

where ∆ is a correction describing the electron-electron interaction. For independent par-
ticles ∆ is zero, but for the many-body problem it is very important (see Chapter 3).

The ǫi then are eigenvalues of an effective single-particle Hamiltonian

h =
−h̄2

2m
▽2 +V eff(r) .

Employing the above description in terms of the density matrix (cf. Marder, Chapter
6.4 and Landau-Lifshitz, Vol. IV) to a situation of independent particles gives for finite
temperature the lowest energy that is compatible with the Pauli principle as

Ee(T ) =
∞
∑

i=1

ǫif(ǫi, T ) + ∆ . (2.11)
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Figure 2.1: The Fermi distribution function [Equation (2.12)].

The index i is running over all single particle states.

The occupation probability (cf. e.g. Ashcroft-Mermin, Eq. (2.41) - (2.49) or Marder, Chap-
ter 6.4) of the ith single particle level ǫi is given by the Fermi function:

f(ǫ, T ) =
1

exp[(ǫ − µ)/kBT ] + 1
. (2.12)

Here kB is the Boltzmann constant and µ is the chemical potential of the electrons, i.e.,
the lowest energy, which is required to remove a particle from the system:

−µ = Ee(N − 1) − Ee(N) . (2.13)

How are µ and its temperature dependence determined? The number of electrons is N ,
and it is independent of the temperature. Therefore, we have

N =
∞
∑

i=1

f(ǫi, T ; µ) . (2.14)

For a given temperature this equation contains only one unknown quantity, the chemical
potential µ. If all ǫi are known, µ(T ) can be calculated.

2.3 Some Definitions

We will now introduce some definitions and constrain ourselves to a so-called “jellium”
system. The most simple way (i.e., the crudest approximation to the atomic structure) to
investigate the Schrödinger equation of the Hamilton operator

He = T e + V e−Ion + V e−e (2.15)
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is obtained when setting V e−Ion +V e−e as a constant function of the electron coordinates.
We note that this crude approximation provides reasonable and helpful results for some
problems. A system with V e−Ion = constant is called “jellium”, and if V e−Ion as a function
of the electronic coordinates is constant, then it can easily be shown that also V e−e is
constant2 We like to consider here a system without spin-orbit interaction. Thus spin and
position coordinates can be separated.

Φ({rkσk}) = Φ({rk})χ({σk}) . (2.16)

Without introducing a new approximation the zero point of the energy is chosen in a way
that the constant potential V e−Ion + V e−e vanishes. Then the Hamilton operator of the
electrons has the simple form

He = T e =
N
∑

k=1

− h̄2

2m
∇2

rk
, (2.17)

and the many-body Schrödinger equation decomposes into a number of N single particle
equations

− h̄2

2m
∇2ϕj(r) = ǫjϕj(r) . (2.18)

The solutions of Eq. (2.17) are plane waves

ϕk(r) = eikr , (2.19)

and the energy eigenvalues are

ǫ(k) =
h̄2k2

2m
, (2.20)

where the vectors k and the components kx, ky, kz have to be interpreted as quantum
numbers, up to now noted as index j in (ǫj, ϕj): the state of an electron of the Hamilton
operator (2.17) is labeled by the quantum number k and the spin s. The wave length

λ = 2π/k (2.21)

is called de Broglie wave length.

The wave functions in Eq. (2.19) are not normalized (or they are normalized with respect
to δ functions). In order to obtain a simpler mathematical discussion often it is useful, or
helpful, to constrain the electrons to a finite volume. This volume is called the base region,
Vg, and it shall be large enough to obtain results independent of its size.3 The base region
Vg shall contain N electrons and M atoms. The shape of the base region in principle is
meaningless. For simplicity here we chose a box of the dimensions Lx, Ly, Lz (cf. Ashcroft,

2For systems with very low densities, however, electrons will localize themselves at T = 0 K due to
the Coulomb repulsion. This is called Wigner crystallization and was predicted in 1930.

3For external magnetic fields the introduction of a base region can give rise to difficulties, because
then physical effects often depend significantly on the border.
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Mermin: Exercise for more complex shapes). For the wave function we could chose an
almost arbitrary constraint (because Vg shall be large enough). It is advantageous to use
periodic boundary conditions

ϕ(r) = ϕ(r + Lxex) = ϕ(r + Lyey) = ϕ(r + Lzez) . (2.22)

Here ex, ey, ez are the unit vectors in the three Cartesian directions. This is also called
the Born-von Karman boundary condition.

As long as Vg, or Lx ×Ly ×Lz is large enough, all physical results do not depend on this
treatment. Sometimes also anti-cyclic boundary conditions are chosen in order to check
the independence of the results of the choice of the base region.

Using Eq. (2.22) and the normalization condition
∫

Vg

ϕ∗

k
(r)ϕk′(r)d3r = δk,k′ (2.23)

we obtain

ϕk(r) =
1√
V g

eikr . (2.24)

Because of Eq. (2.22), i.e., because of the periodicity, only discrete values are allowed for
the quantum numbers k, i.e., k · Liei = 2πni and therefore

k =

(

2πnx

Lx

,
2πny

Ly

,
2πnz

Lz

)

, (2.25)

with ni being arbitrary integer numbers. Thus, the number of vectors k is countable and
finite. Each k point therefore has the volume

(2π)3

Vg

(2.26)

in k-space.

Each state ϕk(r) can be occupied by two electrons. In the ground state at T = 0 K the
N/2 k points of lowest energy are occupied by two electrons each. Because ǫ depends
only on the absolute value of k, these points fill (for non-interacting electrons) a sphere
in k-space of radius kF (the “Fermi sphere”). We have

N = 2
4

3
πk3

F

Vg

(2π)3
=

1

3π2
k3

FVg . (2.27)

Here the spin of the electron (factor 2) has been taken into account, and Vg/(2π)3 is the
density of the k-points (cf. Eq. (2.26). The particle density of the electrons in jellium is
constant:

n(r) = n =
N

Vg

=
1

3π2
k3

F , (2.28)
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and the charge density of the electrons is −en, and kF =
3
√

3π2n.

For the single particle of the highest energy (in the ground state at T = 0 K) we get

ǫF =
h̄2

2m
k2

F =
h̄2

2m
(3π2n)2/3 . (2.29)

Often for jellium-like systems the electron density is given by the density parameter rs.
This is defined by a sphere 4π

3
r3
s , which contains exactly one electron. One obtains

4π

3
r3
s = Vg/N = 1/n . (2.30)

The density parameter rs is typically given in bohr units.

For metals rs is typically around 2 bohr (remember: this only refers to the valence elec-
trons), and therefore kF is approximately 1 bohr−1, or 2 Å−1, respectively.

Later, we will often apply Eq. (2.29) and (2.30) because some formulas can be presented
and interpreted more easily, if ǫF, kF and n(r) are expressed in this way.

Now we introduce the (electronic) density of states:

N(ǫ)dǫ = number of states in the energy interval [ǫ, ǫ + dǫ] .

For the total number of electrons in the base region we have:

N =
∫ +∞

−∞

N(ǫ)f(ǫ, T )dǫ . (2.31)

For free electrons (jellium) we have for the density of states:

N(ǫ) = 2
Vg

(2π)3

∫

d3k δ(ǫ − ǫk)

=
2Vg4π

(2π)3

∫

k2dk δ(ǫ − ǫk)

=
Vg

π2

∫ dǫk
|∇kǫk|

2mǫk

h̄2
δ(ǫ − ǫk)

=
Vg

π2

∫

dǫk

√
m

h̄
√

2ǫk

2mǫk

h̄2
δ(ǫ − ǫk)

=
mVg

π2h̄3

√
2mǫ . (2.32)

For ǫ < 0 we have N(ǫ) = 0. The density of states for two- and one dimensional systems
is discussed in the exercises (cf. also Marder).

Figure 2.2 shows the density of states and the occupation at T = 0 K and at finite
temperature. The density of states at the Fermi level is

N(ǫF)

Vg

=
3

2

N

Vg

1

ǫF

=
m

h̄2π2
kF (2.33)

The figure shows that at finite temperature holes below µ and electrons above µ are gen-
erated.
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Figure 2.2: Density of states of free electrons
√

(ǫ)f(ǫ, T ) and the separation in occupied
and unoccupied states for two temperatures.
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Chapter 3

Electron-Electron Interaction

In the adiabatic approximation the motion of the electrons and the nuclei are decoupled.
Still, equations (1.9) and (1.13) describe systems containing 1023 particles. In the following,
we will discuss methods that enable us to deal with a many-body Schrödinger equation
like Eq. (1.9). The wave function Φν({riσi}) and its energy Ee

ν are determined by the
equations (1.9) and (1.10). We write down Eq. (1.10) once more

He =
N∑

k=1

− h̄2

2m
∇2

rk
+

N∑

k=1

v(rk) +
1

2

1

4πε0

N,N∑

k,k′

k 6=k′

e2

|rk − rk′| . (3.1)

v(rk) is the potential of the lattice components (ions or nuclei) of the solid. Often it is
called “external potential”.

At this point we briefly recall the meaning of the many-body wave function. It depends
on 3N spatial coordinates and N spin coordinates. Because the spatial coordinates are
all coupled by the operator V e−e, generally they cannot be dealt with separately. In a
certain sense this is analogous to the single-particle problem. Here, the wave function
ϕ(x, y, z) depends on three spatial coordinates (the spin will be neglected here), and the
motion in x-direction is generally not independent of the y-direction. The same is true
for x and z, and for y and z. This means, ϕ(x, y, z) does not describe 3 independent
one-dimensional particles, but 1 particle with 3 spatial coordinates. In the same way the
N -particle Schrödinger equation has to be treated as a many-body equation with 3N
spatial coordinates. One can say that the total of all the electrons is like a glue, or a mush
and not like 3N independent particles.

If the electron-electron interaction would be negligible or if it could be described as

V e−e ?
=

N∑

k=1

ve−e(rk) , (3.2)

i.e., the potential at position rk does not explicitly depend on the positions of the other
electrons, then it would not be a major problem to solve the many-body Schrödinger
equation. Unfortunately, such a neglect cannot be justified: The electron-electron inter-
action is Coulombic; it has an infinite range and for small separations it becomes very
strong. Learning about this electron-electron interaction is the most interesting part of
solid-state theory. Thus, now we will describe methods, that enable us to take into account
the electron-electron interaction in an appropriate manner. There are four methods (or
concepts) that can be used:

1. Method of the “effective single-particle theory”: Here we will emphasize in particular
the importance of density-functional theory (DFT)1. Primarily, DFT refers to the

11998 Walter Kohn was awarded the Nobel prize in chemistry for the development of density-functional
theory.
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ground state, Ee
0. In principle it can be used also to calculate excited states. In this

chapter we will discuss DFT (and its precursors) with respect to the ground state,
and in part II of this lecture we will describe the calculation of excited states and
time-dependent DFT (TD-DFT).

2. The Green-function self-energy theory: This method is very general, but not appli-
cable in most cases. One constructs a series expansion in interactions and necessarily
many terms have to be neglected, which are believed to be unimportant (cf. e.g. the
book by Inkson and the book by Mahan). We will come back to this method in part
II of this lecture, because it allows for the calculation of excited states. The first term
of such series expansion of Feynman-diagrams is called the GW -approximation. Here
G is the operator of the Green-function, which e.g. belongs to the effective single-
particle problem of the Hartree theory or of the density-functional theory, and W
is the screened Coulomb interaction of the electrons.

3. Many-body wavefunction approaches (quantum chemistry): Here the basic variable
is the many-body wavefunction. There are different methods which seek to obtain
increasingly accurate (sophisticated) approximations to the many-body wavefunc-
tion. The starting point or lowest level is Hartree-Fock theory, where the wavefunc-
tion is described by a single Slater-determinant (as discussed in 3.2, Hartree-Fock
theory reduces the to an effective single-particle method). Higher-level methods
seek to improve the wavefunction within many-body perturbation theory (here,
2nd and higher-order Møller-Plesset approaches [MPx] are widely used) or non-
perturbatively (such as Coupled Cluster [CC] and configuration interaction [CI]
approaches). Though these approaches are very successful for molecules, they be-
come computationally too expensive to deal with systems that contain more than
≈ 100 electrons (≈ 1000 if one tries very hard). For solids, these approaches are in
general not (yet) feasible.

4. The quantum Monte Carlo method: Here the expectation value of the many-body
Hamilton operator He is calculated using a very general ansatz of many-body wave
functions in the high-dimensional configurational space. Then the wave functions are
varied and the minimum of the expectation value 〈Φ|He|Φ〉/〈Φ|Φ〉 is determined.
Due to the availability of fast computers and several methodological developments
in recent years this method has gained in importance. It will be discussed in part II
of this lecture.

Now we will discuss density-functional theory in detail. This will be done step by step to
clarify the physical contents of the theory. Thus, we begin with the Hartree and Hartree-
Fock theory and then proceed, via Thomas-Fermi theory, to density-functional theory.

3.1 Hartree Approximation

The ansatz of Hartree shows how a theory evolves or can evolve. Often initially an intuitive
feeling is present. Only after that one attempts to derive things in a mathematical way.
Hartree (Proc. Camb. Phil. Soc. 24, 89, 111, 426 (1928)) started from the following idea:
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The effect of the electron-electron interaction on a certain electron at position r should
approximately be given by the electrostatic potential, which is generated by all other
electrons on average at position r, i.e., it should approximately be possible to replace the
potential V e−e({ri}) of the many-body Schrödinger equation by

V e−e({ri})
!≈

N∑

k=1

vHartree(rk) (3.3)

with

vHartree(r) =
e2

4πε0

∫
n(r′)

|r− r′|d
3r′ . (3.4)

Then the many-body Hamilton operator decomposes into N single-particle operators

He =
N∑

k=1

h(rk) . (3.5)

Each electon would then be described by an effective single-particle Schrödinger equation
with a Hamilton operator

h = − h̄2

2m
∇2 + v(r) + vHartree(r) . (3.6)

The validity of Eqs. (3.3) – (3.6) may seem to be reasonable. Often, however, this ap-
proch is an (often drastic) approximation. Only a more precise treatment can show how
problematic this approximation is, and this shall be done now.

Mathematical Derivation of the Hartree Equations

Starting from the general many-body equation, Eqs. (3.3) – (3.6) shall be derived. In
particular the approximation connected with Eq. (3.6) shall be identified. Before we start,
we note that He does not contain the spin of the electrons explicitly and therefore, also
no coupling between the spin and position is included. Thus, for the eigenfunctions of He

we must have
Φν({riσi}) = Φν({ri}) χν({σi}) . (3.7)

To take into account orbital as well as spin quantum numbers, from now on we will label
the set k of quantum numbers as follows

ν ≡ oνsν ,

with oν representing the orbital quantum numbers of set ν and sν the spin quantum
numbers. In the free electron gas (cf. Chapter 2) oν represents all possible values of the 3
numbers: kx, ky, kz. For each state sν is ↑ or ↓.

For the spin component we have (because He does not contain spin-orbit and spin-spin
coupling)

χν({σi}) = χs1
(σ1)χs2

(σ2)...χsN
(σN) . (3.8)
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Figure 3.1: Schematic representation of the expectation value of the Hamilton operator as
a “function” of the vectors of the Hilbert space. The dashes at the Φ-axis label the wave
functions of type ΦHartree. They cannot reach the function Φ0, but can get close to it.

Here, we have χ↑(σ) = { 1 for σ = +1/2
0 for σ = −1/2

and χ↓(σ) = { 0 for σ = +1/2
1 for σ = −1/2

, i.e.

σ labels two components of the Pauli spinors,
(
1
0

)
and

(
0
1

)
, respectively. For the spatial

part such a product ansatz is invalid, because He due to the electron-electron interaction
couples the positions of “different” electrons. For the lowest eigenvalue of the Schrödinger
equation the variational principle holds, i.e., for the ground state of He we have

Ee
0 ≤
〈Φ|He|Φ〉
〈Φ|Φ〉 , (3.9)

where the Φ are arbitrary functions of the N -particle Hilbert space, which can be differen-
tiated twice and can be normalized. If we constrain the set of functions Φ and consider the
Hilbert space defined by the subset given by the eigenfunctions of He, we most probably
will not obtain Ee

0 exactly. Consequently, the ansatz for independent particles

Φ({ri}) ≈ ΦHartree({ri}) = ϕo1
(r1)ϕo2

(r2) . . . ϕoN
(rN) (3.10)

in general is an approximation. Functions that can be written as Eq. (3.10) do not span
the full Hilbert space of the functions Φ({ri}), which can be differentiated twice and can
be normalized. A certain restriction of the set of the allowed functions is acceptable, but
we also note that an estimation (determination) of Ee

0 using the variational principle is
“dangerous”, i.e., it is unknown, how close to Ee

0 the result will be. Generally we are
not interested in the exact value of Ee

0, but an error of 0.1 eV could be acceptable.
Schematically, the variational principle can be described by Fig. 3.1. Because the Hartree
ansatz (Eq. (3.10)) for sure is an approximation, we have

Ee
0 <
〈ΦHartree|He|ΦHartree〉
〈ΦHartree|ΦHartree〉 . (3.11)

Due to the normalization condition we have

〈ΦHartree|ΦHartree〉 =

∫
. . .

∫
|ΦHartree({ri})|2d3r1 . . . d3rN = 1 , (3.12)
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〈ϕoi
|ϕoi
〉 =

∫
|ϕoi

(r)|2d3r = 1 . (3.13)

Orthogonality of the different ϕoi
is not required, because we do not want to restrict

ΦHartree any further than we have already done by Eq. (3.10). However, we will obtain
that it is – quasi automatically – fulfilled. With the Hartree ansatz (Eq. (3.10)) the
expectation value of the energy is

〈ΦHartree|He|ΦHartree〉 =

∫
ϕ∗

o1
(r1)ϕ

∗
o2

(r2) . . . ϕ∗
oN

(rN)

[
N∑

k=1

−h̄2

2m
∇2

rk
+ v(rk)

]
(3.14)

ϕo1
(r1)ϕo2

(r2) . . . ϕoN
(rN)d3r1 . . . d3rN

+
1

2

e2

4πε0

∫
ϕ∗

o1
(r1)ϕ

∗
o2

(r2) . . . ϕ∗
oN

(rN)




N,N∑

k,k′=1

k 6=k′

1

|rk − rk′|




ϕo1
(r1)ϕo2

(r2) . . . ϕoN
(rN)d3r1 . . . d3rN .

=
N∑

k=1

∫
ϕ∗

ok
(rk)

{
− h̄2

2m
∇2 + v(rk)

}
ϕok

(rk)d
3rk

+
1

2

e2

4πε0

N,N∑

k,k′

k 6=k′

∫∫
ϕ∗

ok
(rk)

ϕ∗
ok′

(rk′)ϕok′
(rk′)ϕok

(rk)d
3rkd

3rk′

|rk − rk′| .(3.15)

Equation (3.14) can be understood as an energy functional:

〈ΦHartree|He|ΦHartree〉 !
= ẼHartree

[
ϕo1

, ϕo2
. . . ϕoN

, ϕ∗
o1

, ϕ∗
o2

. . . ϕ∗
oN

]
(3.16)

Here ϕ and ϕ∗ are considered as two independent functions. Alternatively, the real and
the imaginary part of ϕ could be considered as separate variables.

Ansatz (Eq. (3.10)) represents a significant restriction to the possible functions. Still, we
will continue and determine “the best” single-particle functions from this set of functions,
i.e., those single-particle functions, which minimize ẼHartree[ϕo1

. . . ϕ∗
oN

]. The hope is that
the minimum of 〈ΦHartree|He|ΦHartree〉 will be rather close to the true ground state energy
Ee

0. Thus, we vary the expression (Eq. (3.14)) with respect to the functions ϕ∗
oi
(r) and

ϕoi
(r). The variation is not fully free, because only those functions can be considered,

that can be normalized to one. This constraint (Eq. (3.13)) can be taken into account
in the variational problem using the method of Lagrange multipliers. Then we obtain an
equation to determine the best ϕoi

(r):

Q[ϕo1
, . . . , ϕoN

, ϕ∗
o1

, . . . , ϕ∗
oN

] = ẼHartree[ϕo1
. . . ϕoN

, ϕ∗
o1

. . . ϕ∗
oN

]

−
N∑

k=1

{ǫok
(1− 〈ϕok

|ϕok
〉)} ≡ minimum , (3.17)

where the ǫok
are the Lagrange-multipliers.
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Equation (3.16) can be formulated in the following way: We search for the minimum of
the functional Q, and for the minimum we have:

δQ = Q
[
ϕo1

, ϕo2
, . . . , ϕoN

, ϕ∗
o1

, ϕ∗
o2

, . . . , ϕ∗
oi

+ δϕ∗
oi
, . . . , ϕ∗

oN

]

− Q
[
ϕo1

, . . . , ϕoN
, ϕ∗

o1
, . . . , ϕ∗

oi
, . . . , ϕ∗

oN

]
= 0 , (3.18)

for an arbitrary variation δϕ∗
oi
, i = 1 . . . N , or δϕoi

, i = 1 . . . N .

Therefore, if we vary ϕ∗
oi
(r), with Eq. (3.16) we obtain

〈
δϕoi

∣∣∣∣−
h̄2

2m
∇2 + v(r)

∣∣∣∣ ϕoi

〉
+

N∑

k=1

k 6=i

e2

4πε0

〈
δϕoi

ϕok

∣∣∣∣
1

|rk − ri|

∣∣∣∣ ϕok
ϕoi

〉
= ǫoi

〈δϕoi
|ϕoi
〉 .

(3.19)

Because the constraint (normalization of the ϕoi
) is taken into account by the method

of the Lagrange-multipliers, this equation is valid for arbitrary variations δϕoi
. Thus, the

equation used to determine the functions ϕoi
(r) is

[
− h̄2

2m
∇2 + v(r)

]
ϕoi

(r) +
N∑

k=1

k 6=i

e2

4πε0

〈
ϕok

∣∣∣∣
1

|rk − r|

∣∣∣∣ ϕok

〉
ϕoi

(r) = ǫoi
ϕoi

(r) . (3.20)

We rewrite this equation and obtain
[
− h̄2

2m
∇2 + v(r) + vHartree(r) + vSIC

oi
(r)

]
ϕoi

(r) = ǫoi
ϕoi

(r) , (3.21)

where

vHartree(r) =
e2

4πε0

∫
n(r′)

|r− r′|d
3r′ (3.22)

with

n(r) = 〈Φ|
N∑

k=1

δ(r− rk)|Φ〉 =
N∑

k=1

|ϕok
(r)|2 , (3.23)

and

vSIC
oi

(r) = − e2

4πε0

∫ |ϕoi
(r′)|2

|r− r′| d3r′ . (3.24)

n(r) is the particle density of all electrons and −en(r) is the charge density of all electrons.
The first equals sign in Eq. (3.22) holds in general, i.e., this is the quantum mechanical
definition of the electron density. The second equals sign is valid only for independent
particles and for the Hartree approximation.

The term vHartree(r), generally called the Hartree potential, can also be expressed in the
differential form of electrodynamics (Poisson equation):

∇2vHartree(r) = −e2

ε0

n(r) (3.25)
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The potential vSIC
σi

(r) is the self-interaction correction of the Hartree potential. It takes
into account that an electron in orbital ϕoi

(r) shall not interact with itself, but only with
the (N − 1) remaining electrons of the system. Equation (3.20) is now “sufficiently sim-
ple” to be solved using modern numerical methods. Often the potential vSIC

σi
(r) is then

neglected. However, since recent years it became clear that this additional approximation
is typically not justified. If the functions ϕoi

(r) were known, we could calculate the total
energy from Eq. (3.14) or the electron distribution using Eq. (3.22). The latter can be com-
pared to measurements (e.g. X-ray diffraction). Additionally, using the charge distribution
of the electrons, the nature of the forces, which stabilize the solid, can be understood.
One finds that several quantities obtained from the Hartree approximation agree well with
experimental data. Further, we find that the negative values of the Lagrange parameters
ǫoi

, introduced due to the normalization, agree approximately with measured ionization
energies. An exact discussion of the physical meaning of the Lagrange parameters will be
given later (in the context of the Hartree-Fock theory).

Obviously, the Hartree Eq. (3.20) is no ordinary single-particle equation. Formally, it can
be written as a single-particle equation,

{
− h̄2

2m
∇2 + veff(r)

}
ϕoi

(r) = ǫoi
ϕoi

(r) . (3.26)

However, the “effective potential” itself depends on the solutions ϕoi
(r). Therefore, Eq.

(3.25) is an effective (but not a true) single-particle equation. This, for example, implies
that the total energy is not equal to the sum of the ǫoi

, which would be the case for
non-interacting particles in the single-particle states ϕoi

(r).

Nevertheless, using the ϕoi
via Eq. (3.14) the total energy can be obtained. How can an

equation like Eq. (3.25) be solved, if the potential

veff(r) = v(r) + vHartree(r) + vSIC
oi

(r) (3.27)

initially is unknown, because n(r) is not known? For this purpose the so-called self-
consistent field method (SCF) is applied. First, one starts with a reasonable guess, i.e.,
one estimates n(r). Then the density is improved step by step until the correct result is
obtained.

A first crude approximation for n(r) of a solid is obtained by assuming that it can be
written as a simple superposition of the electron densities of the individual atoms

nstart(r) =
M∑

I=1

nAtom
I (|r−RI |) . (3.28)

This is correct for large interatomic distances, but it is a severe approximation when the
electron densities of different atoms overlap. Nevertheless, Eq. (3.27) is a possible and not
bad “zeroth approximation”. Once a “zeroth approximation” has been made, one pro-
ceeds as shown in Fig. 3.2. At the end of such a calculation the wave functions ϕok

(r) and
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zeroth approximation
(“guess”):

n(r) or veff, 0(r)

-

Schrödinger equation

{
− h̄2

2m
∇2 + veff, i(r)

}
ϕok

(r) = ǫok
ϕok

(r)

?
improved particle density of the
electrons

n(r) =
N∑

k=1

|ϕok
(r)|2

?

electrostatics

vHartree(r) =
1

4πε0

∫
e2n(r)

|r− r′|d
3r′

or

∇2vHartree(r) = −e2

ǫ0

n(r)

?

veff, neu(r) = v(r) + vHartree(r)

?

comparison, if veff, new(r) and
veff, old(r) = veff, i(r) differ

-&%
'$

no end

&%
'$

yes

i→ i + 1

6

mixing:

veff, i+1(r) = αveff, i(r)
+ (1− α)veff, neu(r)

with α > 0.9

-

-

Figure 3.2: Scheme of the self-consistent field method for the solution of the Hartree
equation. Here, vSIC has been neglected. Analogous diagrams exist for Hartree-Fock and
density-functional theory.
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the potential veff(r) are self-consistent, i.e., their differences in two subsequent iterations
are arbitrarily small. Typically, between 5 and 50 iterations are required.

3.2 Hartree-Fock Approximation

The Hartree wave function (Eq. (3.10)) has an important disadvantage: It does not sat-
isfy the Pauli principle. Due to the variational principle, this does not necessarily have
a drastic impact on the calculated energy, but for sure it would be better, to remove or
reduce this disadvantage. In a many-electron system there is an important interaction
between the particles, which in the single-particle picture is formulated in the following
way: A single-particle wave function can be occupied by only one electron. More generally,
in the many-body picture, the Pauli principle states that the N -particle wave function
of fermions has to be antisymmetric with respect to the interchange of all coordinates
(spatial and spin) of two particles.

In order to fulfill the Pauli principle, Fock suggested to replace the wave function used in
Hartree theory by a suitable linear combination, a so-called Slater determinant2

ΦHF({riσi}) =
1√
N !

∣∣∣∣∣∣∣∣

ϕo1s1
(r1σ1) . . . ϕoNsN

(r1σ1)
ϕo1s1

(r2σ2) . . . ϕoNsN
(r2σ2)

. . .
ϕo1s1

(rNσN) . . . ϕoNsN
(rNσN)

∣∣∣∣∣∣∣∣
. (3.29)

The factor 1/
√

N ! ensures the normalization of the many-body wave function. The many-
body wave function (Eq. (3.28)) changes sign on interchange of the coordinates (spatial
and spin) of two particles. For a determinant this is obvious, because the interchange of
two particles corresponds to the interchange of two rows of the determinant.

For two-electron systems (e.g. H− or He) the wave function reads

ΦHF =
1√

1× 2
(ϕ1(r1σ1)ϕ2(r2σ2)− ϕ2(r1σ1)ϕ1(r2σ2)) , (3.30)

where the one-particle states i =: (oi si) can be, for instance, 1 =: (o1 ↑), 2 =: (o1 ↓)
(two electrons with opposite spin in the same orbital) or 1 =: (o1 ↑), 2 =: (o2 ↑) (two
electrons with the same spin in different orbitals).

2From here on we label the one-particle states by quantum numbers oi instead of ki to emphasize that
they refer to the position-space component of these states.
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And also the normalization is fulfilled:

〈ΦHF|ΦHF〉 =
1

2!

∑

σ1,σ2

∫∫ {
ϕ∗

1(r1σ1)ϕ
∗
2(r2σ2)ϕ1(r1σ1)ϕ2(r2σ2)

−ϕ∗
1(r1σ1)ϕ

∗
2(r2σ2)ϕ1(r2σ2)ϕ2(r1σ1)

−ϕ∗
1(r2σ2)ϕ

∗
2(r1σ1)ϕ1(r1σ1)ϕ2(r2σ2)

+ϕ∗
1(r2σ2)ϕ

∗
2(r1σ1)ϕ1(r2σ2)ϕ2(r1σ1)

}
d3r1 d3r2

=
1

2
(1 + 0 + 0 + 1)

= 1 . (3.31)

The single-particle functions shall be normalized and orthogonal,

〈ϕoisi
|ϕojsj

〉 = δoi,oj
δsi,sj

with ϕoisi
(r, σ) = ϕoisi

(r)χsi
(σ) . (3.32)

Note that the spatial functions for spin ↑ and spin ↓ states do not have to be the same. In
Hartree theory the spatial functions were assumed to be independent of the spin states so
that the spin quantum numbers si could be omitted. In Hartree-Fock theory this is not
the case anymore. 3

Now we proceed in the same way as in the Hartree theory, i.e., we will make use of
the variational principle 〈Φ|He|Φ〉 = E[Φ] ≥ Ee

0. It should be noted that ansatz (Eq.
(3.28)) still is not general. It allows for an infinite number of possibilities, because the
ϕoisi

(r, σ) are arbitrary functions (which can be normalized), but still the set of all vectors
in Hilbert space that can be written like Eq. (3.28), do only form a subset of the Hilbert
space of the N -particle problem. Many vectors in Hilbert space can only be expressed as
a linear combination of Slater determinants. Consequently, again we will not necessarily
obtain the ground state energy exactly, but often an approximation will be obtained. How-
ever, most probably the approximation will be better than the approximation obtained
in Hartree theory, because now the subset of the Hilbert space satisfies the quantum me-
chanical properties (Pauli principle) of the electrons. Similar to Hartree theory, using Eq.

3Because the (non-relativistic) Hamilton operator of Eq. (3.1) commutes with the operators for the
total spin and its z-projection, the exact solutions of the many-electron Schrödinger equation should be
eigenfunctions of all of these operators. In principle, this imposes constraints on the form of Φ and the
one-particle orbitals. On the other hand, such (spin symmetry) constraints typically lead to higher (i.e.
poorer) ground state energies compared to freely varied orbitals. In the context of Hartree-Fock theory,
one may make restrict the orbitals ϕoi↑ ≡ ϕoi↓ to ensure that ΦHF has the proper spin symmetry (say,
for a singlet or triplet He atom). This approach is often refered to as “restricted open-shell Hartee-Fock”
(RHF). Or, one may allow the spin-up and -down orbitals to differ. For systems with an unequal number
of spin-up and -down electrons, such “unrestricted Hartree-Fock” (UHF) calculations yield indeed lower
ground state energies than RHF. The price is that ΦUHF in general does not describe a pure spin state
but a mixture of different spin states.
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(3.28) we now obtain the expectation value of the energy

EHF[ΦHF] = 〈ΦHF|He|ΦHF〉

=
N∑

i=1

∑

σ

∫
ϕ∗

oisi
(r, σ)

{
− h̄2

2m
∇2 + v(r)

}
ϕoisi

(r, σ)d3r (3.33)

+
1

2

e2

4πε0

N,N∑

i,j

i6=j

∑

σ,σ′

∫∫
ϕ∗

oisi
(r′, σ′)ϕ∗

ojsj
(r, σ)ϕoisi

(r′, σ′)ϕojsj
(r, σ)

|r− r′| d3r d3r′

−1

2

e2

4πε0

N,N∑

i,j

i6=j

∑

σ,σ′

∫∫
ϕ∗

ojsj
(r′, σ′)ϕ∗

oisi
(r, σ)ϕoisi

(r′, σ′)ϕojsj
(r, σ)

|r− r′| d3r d3r′ .

The sums over the spins vanish, because ϕoisi
(r, σ) = ϕoisi

(r)χsi
(σ) and

∑

σ

χ∗
si
(σ)χsj

(σ) = δsi,sj
. (3.34)

In the first line of Eq. (3.32) we obtain
∑

σ

χ∗
si
(σ)χsi

(σ) = 1 . (3.35)

In the second line we obtain
∑

σ,σ′

χ∗
si
(σ′)χsi

(σ′)χ∗
sj

(σ)χsj
(σ) = 1 . (3.36)

In the third line we obtain
∑

σ,σ′

χ∗
sj

(σ′)χ∗
si
(σ)χsi

(σ′)χsj
(σ) =

∑

σ

δsi,sj
χ∗

si
(σ)χsj

(σ) = δsi,sj
. (3.37)

This means that in Eq. (3.32) all sums,
∑

σ,σ′ , can be removed. Only in the last line this
sum has to be replaced by a Kronecker symbol. A comparison of Eq. (3.28) with the
corresponding equation of Hartree theory (Eq. (3.14)) shows that we now have obtained
an additional term

Ẽx[{ϕ∗
oisi

, ϕoisi
}] = −1

2

e2

4πε0

N,N∑

i,j

i6=j

δsi,sj

∫∫
ϕ∗

oisi
(r)ϕ∗

ojsj
(r′)ϕoisi

(r′)ϕojsj
(r)

|r− r′| d3rd3r′ .(3.38)

This term enters because of the inclusion of the exchange interaction (Pauli principle).
Thus the letter x is used as index. It is an abbreviation for the word “exchange”.

This term has a negative sign. Compared to Hartree theory it therefore lowers the energy.
Now it is clear that Hartree-Fock theory is a better approximation than Hartree theory.
In Eq. (3.28) the condition i 6= j in both sums can be omitted, because for i = j the last
two terms cancel each other. By summing over the spins we obtain

EHF[{ϕ∗
oisi

, ϕoisi
}] = Ts[{ϕ∗

oisi
, ϕoisi

}] + Ee−Ion[{ϕ∗
oisi

, ϕoisi
}]

+ EHartree[{ϕ∗
oisi

, ϕoisi
}] + Ex[{ϕ∗

oisi
, ϕoisi

}] , (3.39)
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with

Ts[{ϕ∗
oisi

, ϕoisi
}] =

N∑

i=1

∫
ϕ∗

oisi
(r)

{
− h̄2

2m
∇2

}
ϕoisi

(r)d3r , (3.40)

the functional of the kinetic energy of non-interacting electrons in the single-particle states
ϕoisi

(r). The other quantities are:

Ee−Ion[{ϕ∗
oisi

, ϕoisi
}] =

∫
v(r)n(r) d3r , (3.41)

EHartree[{ϕ∗
oisi

, ϕoisi
}] =

1

2

e2

4πε0

∫∫
n(r)n(r′)

|r− r′| d3r d3r′ , (3.42)

and

Ex[{ϕ∗
oisi

, ϕoisi
}] = −1

2

e2

4πε0

N,N∑

i,j

δsi,sj

∫∫
ϕ∗

oisi
(r)ϕ∗

ojsj
(r′)ϕoisi

(r′)ϕojsj
(r)

|r− r′| d3rd3r′ .(3.43)

The electron density is

n(r) =
N∑

i=1

|ϕoisi
(r)|2 . (3.44)

For the last term in Eq. (3.42) we have written Ex (without tilde): Ex = Ẽx−ESIC. Here,
ESIC is the term i = j, which does not appear in Eq. (3.37). Nowadays the quantity Ex

is called exchange energy. Consequently, EHartree now contains the self-interaction of the
electrons, while Ex takes into account the correction of this self-interaction, and addition-
ally Ex makes sure the Pauli principle is fulfilled.

The “best” functions ϕoisi
(r), i.e., the functions yielding the lowest energy, are obtained

if Eq. (3.42) is varied in the ϕ∗
oisi

(r) or in the ϕoisi
(r), respectively. This again has to be

done taking into account the normalization and the orthogonality of the ϕoisi
(r). Both

have been used already in the construction of Eq. (3.32) and (3.38). We have

δ

{
EHF[{ϕ∗

oisi
, ϕoisi

}] +

N,N∑

i,j

λoisi,ojsj
[δoisi,ojsj

− 〈ϕoi
|ϕoj
〉]
}

= δQ = 0 . (3.45)

In the derivation of the Hartree theory only the normalization has been considered as
a constraint. This is sufficient here as well; but mathematically it is easier to consider
both, orthogonality and normalization as constraints (cf. Slater “The Self-consistent Field
...”, Vol. 2, Chapter 17). The functional in the curly brackets in Eq. (3.44) we call
Q[ϕ∗

o1s1
, . . . , ϕ∗

oNsN
, ϕo1s1

, . . . , ϕoNsN
]. If we form the functional derivative of this func-

tional4 Q and take into account that ϕ∗
oisi

and ϕoisi
have to be treated as independent

variables (which are given by their real and imaginary parts, i.e., by two functions), for
the variation of ϕ∗

oisi

δ

δϕ∗
oksk

(r)
Q[{ϕ∗

oisi
, ϕoisi

}] = 0 for k = 1 . . . N , (3.46)

4Note: δ
δf(x)

∫
f(x′)g(x′) dx′ = g(x) .
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we obtain the set of equations

{
− h̄2

2m
∇2 + v(r) + vHartree(r)

}
ϕoksk

(r)− e2

4πε0

N∑

j=1

δsk,sj

∫
ϕ∗

ojsj
(r′)ϕoksk

(r′)ϕojsj
(r)

|r− r′| d3r′

=
N∑

j=1

λoksk,ojsj
ϕojsj

(r) ,

(3.47)
with

vHartree(r) =
e2

4πε0

∫
n(r′)

|r− r′| d
3r′ . (3.48)

At a first glance, this equation looks unfamiliar. Due to the exchange term and due to the
right side it does not look like a Schrödinger equation. However, it can be easily shown
that it can be written in a familiar form. To show this we investigate the matrix λojsj ,oisi

.
Multiplying Eq. (3.46) from the left by ϕ∗

olsl
(r) and integrate over r, we obtain

Alk + Blk = λolsl,oksk
, (3.49)

where

Alk =

∫
ϕ∗

olsl
(r)

{
− h̄2

2m
∇2 + v(r) + vHartree(r)

}
ϕoksk

(r)d3r (3.50)

and

Blk = − e2

4πε0

N∑

j=1

δsk,sj

∫∫
ϕ∗

olsl
(r)ϕ∗

ojsj
(r′)ϕoksk

(r′)ϕojsj
(r)

|r− r′| d3r d3r′ . (3.51)

The matrix A defined this way is obviously Hermitian, i.e., we have Alk = A∗
kl. If we take

the complex conjugate of B we obtain

B∗
kl = − e2

4πε0

N∑

j=1

δsj ,sk

∫∫
ϕoksk

(r)ϕojsj
(r′)ϕ∗

olsl
(r′)ϕ∗

ojsj
(r)

|r− r′| d3r d3r′ = Blk . (3.52)

Therefore, also B is Hermitian and thus λolsl,oksk
as well. If follows that there must be a

unitary transformation
∑

ol

Uok,ol
ϕok

(r) = ϕ̃ok
(r) (3.53)

and

∑

om,on

U †
ok,om

λomsl,onsk
Uon,ol

= ǫoksk
δolsl,oksk

, (3.54)

so that matrix λ is transformed into a real, diagonal matrix. We obtain the equation to
determine the ϕ̃oksk

(r)
{
− h̄2

2m
∇2 + v(r) + vHartree(r) + vx

k(r)

}
ϕ̃oksk

(r) = ǫoksk
ϕ̃oksk

(r) (3.55)
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with

vx
k(r)ϕ̃oksk

(r) = − e2

4πε0

N∑

i=1

δsisk

∫
ϕ̃∗

oisi
(r′)ϕ̃oksk

(r′)ϕ̃oisi
(r)

|r− r′| d3r′ . (3.56)

Equation (3.54) is called the Hartree-Fock equation. Once the single-particle wave func-
tions {ϕ̃oisi

} have been obtained using Eq. (3.54), in the next step the total energy can
be calculated using Eq. (3.38).

The exchange term vx
k(r) does not look like a normal potential, because it is an integral

operator. In 1951 Slater pointed out that it can be written in a familiar form. For this
purpose (Eq. (3.55)) is multiplied by

ϕ̃oksk
(r)

ϕ̃oksk
(r)

= 1 . (3.57)

Using the definition

nHF
k (r, r′) =

N∑

i=1

δsi,sk

ϕ̃∗
oisi

(r′)ϕ̃oksk
(r′)ϕ̃oisi

(r)

ϕ̃oksk
(r)

(3.58)

for the exchange particle density the exchange potential adopts the following form

vx
k(r) = − e2

4πε0

∫
nHF

k (r, r′)

|r− r′| d3r′ . (3.59)

Now, the potential vx
k is almost a “normal” multiplicative operator, but it is different for

each particle. vHartree + vx
k describes the interaction of electron k with the other electrons.

This interaction, vx
k , is present only for those electrons, which have the same spin, i.e.,

si = sk . In principle, the expression (Eq. (3.57)) is not defined at the points where ϕ̃oksk
(r)

are zero, but this is not a problem, because nHF
k (r, r′) can be extended continously. From

now on, when talking about the Hartree-Fock equation, we mean Eq. (3.54), and we will
now leave away the tilde on the ϕoksk

(r).

3.3 The Exchange Interaction

Here, the physical meaning of the Hartree and the Hartree-Fock equations will be inves-
tigated in more detail. In particular the exchange energy will be made plausible, and the
problems of Hartree-Fock theory will be discussed, i.e., which physical many-body effects
are missing in this theory. The effective single-particle Hamilton operator of the Hartree
and of the Hartree-Fock equations is:

h = − h̄2

2m
∇2 + v(r) + vHartree(r)

+





− e2

4πε0

∫
nH

k (r′)

|r− r′| d
3r′ = vSIC

k (r) Hartree,

− e2

4πε0

∫
nHF

k (r, r′)

|r− r′| d3r′ = vx
k(r) Hartree-Fock,

(3.60)
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with

nH
k (r′) = |ϕok

(r′)|2 (3.61)

and nHF
k (r, r′) from Eq. (3.57). Nowadays, vSIC

k is often neglected, and the ansatz veff =
v + vHartree is termed Hartree approximation. We will not introduce this additional ap-
proximation here.

We have
∫

nH
k (r′) d3r′ = 1 (3.62)

∫
nHF

k (r, r′) d3r′ = 1 . (3.63)

Both densities nH
k (r′) and nHF

k (r, r′) represent one electron, i.e., in both cases the self-
interaction included in vHartree is removed. Equation (3.62) is an important sum rule,
which also holds for the exact theory. However, nHF

k (r, r′) contains more than just the
correction of the self-interaction. We will investigate this for a simple system now. Because
now we are dealing with the electron-electron interaction (and not with the electron-ion
interaction), we investigate a system, in which the potential of the lattice components
(i.e., of the ions) varies only weakly. Thus we set v(r) = v ≡ constant. We want to use
this to demonstrate the meaning of the exchange interaction. For such a jellium system the
Hartree-Fock equations are solved by plane waves. This will be the result of our discussion
(but we note in passing that there are also more complex solutions: “spin density waves”).
Therefore, the single-particle wave functions are

ϕoisi
(r) =

1√
Vg

eikir . (3.64)

With these wave functions we obtain:

nH
k (r′) =

1

Vg

= constant , (3.65)

i.e., the density nH
k and the electron k, respectively, is smeared out uniformly over the

whole volume. The particle density interacting with the Hartree particle k is

n(r′)− nH
k (r′) =

N

Vg

− 1

Vg

. (3.66)

If particle k is located at r = 0, the distribution of the other electrons is as shown in Fig.
3.3. Strictly speaking the line in Fig. 3.3 is at (1− 1

N
). But because N is arbitrarily large,

this cannot be distinguished from 1.

Therefore, for extended wave functions, vSIC
k (r) is negligible.

The corresponding particle density interacting with an electron in
single-particle state ϕoksk

in the Hartree-Fock theory is

n(r′)− nHF
k (r, r′) . (3.67)
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Figure 3.3: Distribution of the (N − 1) electrons seen by particle ϕk(r), which is located
at r = 0 (in the Hartree approximation and for jellium).

If particle k is at position r, then the (N − 1) other particles have a distribution, which is
given by Eq. (3.66). Like in the Hartree approximation (Eq. (3.66)) also contains exactly
N − 1 particles. What does this density look like?

nHF
k (r, r′) =

N∑

i=1

δsi,sk

ϕ∗
oisi

(r′)ϕoksk
(r′)ϕoisi

(r)

ϕoksk
(r)

(3.68)

=
1

Vg

N
2∑

ki

e−ikir
′

eikkr′eikire−ikkr (3.69)

=
1

Vg

N
2∑

ki

ei(ki−kk)(r−r′) . (3.70)

In order to simplify the representation, here we have assumed that the system is nonmag-
netic and therefore each spatial state ϕoi

(r) is occupied by two electrons. Because nHF
k is

different for each state, one obtains a better impression of the meaning of Eq. (3.69), if
one averages over all electrons:

nHF(r, r′)
!
=

N∑

k=1

ϕ∗
ok

(r)nHF
k (r, r′)ϕok

(r)

n(r)
(3.71)

=
Vg

N

1

Vg

1

Vg

2

N
2∑

kk

e−ikk(r−r′)

N
2∑

ki

eiki(r−r′) . (3.72)

The sum over the vectors ki and kk can be evaluated easily, if one changes from a discrete
to a continuous representation (cf. the discussion following Eq. (2.18)):

N
2∑

ki

→
∫ kF

0

Vg

(2π)3
d3k (3.73)

We obtain

Vg

(2π)3

∫ kF

0

eik(r−r′)d3k =
3

2
N

(kFr̂) cos(kFr̂)− sin(kFr̂)

(kFr̂)3
, (3.74)
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Figure 3.4: Distribution (averaged) of the (N−1) other electrons with respect to a particle
that is located at position r = 0 (in the Hartree-Fock approximation and for jellium).

with r̂ = |r− r′|.

It follows:

nHF(r̂) =
9

2

N

Vg

(
(kFr̂) cos(kFr̂)− sin(kFr̂)

(kFr̂)3

)2

, (3.75)

nHF therefore is spherically symmetric. The particle density of the other electrons felt by
a (averaged) Hartree-Fock particle, looks like that shown in Fig. 3.4. The concentration
of the electrons of like spin is lowered in the neighborhood of the investigated electron.
This is formulated in the following way: An electron is surrounded by its exchange hole.
The quantity nHF

k (r, r′) is called particle density (with respect to r′) of the exchange hole
of an electron at position r.

The difference between the Hartree and the Hartree-Fock approximation (cf. Fig. 3.4, or
the equations (3.64) and (3.74)) is that nH

k (r′) only depends on r′, i.e., it is the same for
each position r of the observed particle. But nHF

k (r, r′) and nHF(r, r′) depends on the po-
sition of the particle, i.e., on the position of the particle for which we are actually solving
the Hartree-Fock equation using nHF

k . nHF
k fulfills the Pauli principle: If the investigated

electron k is at position r, then all other electrons of like spin are displaced from position
r. Due to the Pauli principle the electrons of like spin do not move independently of each
other, but their motion is correlated, because in its neighborhood an electron displaces
the other electrons. Although we have solved the time-independent Schrödinger equation,
this dynamic Pauli correlation is taken into account. This is because the Pauli interaction
is not explicitly included in the Hamilton operator, but is taken into account via the
constraint of an “antisymmetric wave function”. Another correlation should appear (in
an exact theory) due to the Coulomb repulsion for all electrons, i.e., also for electrons
of unlike spins there must be a displacement of electrons. But this Coulomb repulsion is
included only in an averaged way in Hartree as well as in Hartree-Fock theory, so that the
correlation resulting from the Coulomb repulsion is missing in both theories. Hartree-Fock
therefore contains a part of the correlation, the so-called Pauli correlation. Nevertheless,
it is commonly agreed that the term correlation is used for all that is missing in Hartree-
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Fock. This usage is not very fortunate, but it has become generally accepted5.

For the exchange potential (cf. Eq. (3.58)) of a jellium system we obtain (with plane
waves as eigenfunctions) for the dependence of vx on state km the result shown in Fig.
3.5. In Chapter 2.3 we have set the potential as spatially constant and the same (state-
independent) for all (free) electrons. Here we will see how far this can be justified for
interacting (real) electrons.

0

0.5

1

0 kF

k = |k|

−vx
k

π
2kF

4πε0

e2 = F
(

k
kF

)

-

6

	

Figure 3.5: The exchange potential as a function of state k for a jellium system.

The calculation goes as follows:

vx
k(r) = − e2

4πε0

∫
nHF

k (r− r′)

|r− r′| d3r′ ,

= − e2

4πε0

1

(2π)3

∫ kF

0

∫
ei(k′−k)br

|̂r| d3r̂ d3k′ , (3.76)

where r̂ = r− r′. We have

1

|r− r′| = 4π
1

(2π)3

∫
eiq(r−r′)

q2
d3q . (3.77)

Thus, we obtain

vx
k = − e2

4πε0

4π

(2π)3

∫ kF

0

1

|k− k′|2 d3k′ . (3.78)

We have used
∫

ei(q−k+k′)brd3r̂ = (2π)3δ(q + k′ − k) . (3.79)

5In the field of density-functional theory the definition is modified.
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If the integration is done, one obtains

vx
k = − e2

4πε0

2kF

π
F (

k

kF

) , (3.80)

where

F (x) =
1

2
+

1− x2

4x
ln

∣∣∣∣
1 + x

1− x

∣∣∣∣ . (3.81)

The function F
(

k
kF

)
is shown in Fig. 3.5.

For the further discussion of Hartree-Fock theory we have a look at the eigenvalues of the
Hartree-Fock equation. In the jellium approximation it follows:

〈ϕk|h|ϕk〉 = ǫ(k) =
h̄2k2

2m
+ 〈ϕk|vx

k|ϕk〉 . (3.82)

Here, the zero point of the energy was set to the average electrostatic potential:

v(r) +
e2

4πε0

∫
n(r′)

|r− r′|d
3r = 0 . (3.83)

The expectation value of the exchange potential is given by Eq. (3.77):

〈ϕk|vx
k|ϕk〉 = vx

k〈ϕk|ϕk〉 = − e2

4πε0

2kF

π
F (

k

kF

) , (3.84)

and for Eq. (3.81) we obtain:

ǫ(k) =
h̄2k2

2m
− e2

4πε0

2kF

π
F (

k

kF

) (3.85)

with F (x) from Eq. (3.80).

This derivation shows that plane waves are in fact eigenfunctions of the Hartree-Fock
Hamilton operator, i.e., they diagonalize the Hartree-Fock operator. However, we do not
have the dispersion relation of
free electrons anymore, but there is an additional term, which depends on k and which
gives rise to a lowering of the single-particle energies. If we now compare the relation (Eq.
(3.83)) of Hartree-Fock theory with the one of free electrons (veff(r) = constant) or with
Hartree theory, we obtain Fig. 3.6 .

In Fig. 3.6 it can be seen:

1. For very small k the dispersion of Hartree-Fock particles is parabolic. The curvature
of this parabola is different from the one of free electrons. If k is very small we obtain

ǫ(k) =
h̄2k2

2m∗
+ C for |k| → 0 . (3.86)

For the effective mass of the Hartree-Fock particles we have:

m∗

m
=

1

1 + 0.22 (rs/aB)
for |k| → 0 , (3.87)

for k → 0, m∗ is smaller than m (rs is typically between 2 and 3 bohr).
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Figure 3.6: Dispersion of the single-particle energies in jellium for free electrons (or Hartree
particles) and for Hartree-Fock particles (Eq. (3.83)), shown here for the density parameter
(rs = 4 bohr).

2. The band width of the occupied states is significantly larger for

Hartree-Fock particles than for Hartree particles, a factor 2.33 in Fig. 3.6.

3. For k = kF there is an obviously unphysical result:

The derivation

∂ǫ(k)

∂k
→∞ for k → kF (3.88)

becomes logarithmically infinite. This has consequences for metallic properties and
for the heat capacity. Both are described mainly by the electrons close to the Fermi
energy. The reason for the singularity is in the 1

|r−r′|
behavior of the electron-electron

interaction. If the interaction was screened, e.g.

e−λ(|r−r′|)

|r− r′| , (3.89)

the singularity would not exist (cf. Ashcroft-Mermin, p. 337).
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4. The potential vx
k is typically in the range of 5-15 eV. Because many phenomena in

solid-state physics are determined by energy differences in the order of 0.1-0.5 eV,
an exact treatment of the exchange interaction is crucial.

3.4 Koopmans’ Theorem
6

In the discussion of the Hartree equation we pointed out that the Lagrange parameters
ǫoi

seem to correspond (at least approximately) to ionization energies. This statement will
be investigated in more detail now for the Hartree-Fock equation.

The energy, which is required to remove an electron from state k in an N electron system
is

Ik = EN−1
k − EN =

〈
ΦN−1

k

∣∣He,N−1
∣∣ ΦN−1

k

〉
−

〈
ΦN

∣∣He,N
∣∣ ΦN

〉
. (3.90)

Here we assume that the removed electron is excited to the zero point of the energy (the
vacuum level), and there is a free particle of zero kinetic energy. ΦN is the ground state
wave function of the N electron system and ΦN−1

k the wave function of the N −1 electron
system, the state k being unoccupied. If state k is the highest occupied state of the N
electron system (i.e., state N), then Ik is the ionization energy. In order to investigate Eq.
(3.90) we make the following assumptions:

1) Removing an electron has no influence on lattice geometry, or more precisely, we
assume that the electron removal happens very fast (e.g. by optical excitation),
so that the lattice components do move only after the ionization (Franck-Condon
principle).

2) The many-body wave functions shall be single Slater determinants (i.e., the discus-
sion refers to the Hartree-Fock approximation).

3) Removing the k-th electron does not affect the single-particle wave functions of the
other electrons. This assumption is reasonable, as long as the number of electrons
is large and the density |ϕok

(r)|2 of the electron being removed is rather extended.
Then vHartree(r) and nHF

j (r, r′) remain basically unchanged, and, consequently also
all ϕoi si

remain essentially unchanged.

In particular assumptions 2) and 3) are rather drastic. These two assumptions mean that
the wave function ΦN−1 is derived from the wave function ΦN by deleting line k and
column k in the Slater determinant ΦN . Then we obtain, using Eq. (3.89), (3.32), and
(3.54)

Ik = 〈ΦN−1
k |

N∑

i=1

i6=k

− h̄2

2m
∇2

ri
+ v(ri)|ΦN−1

k 〉+ 1

2

e2

4πε0

〈ΦN−1
k |

N,N∑

i,j=1

i6=j

i,j 6=k

1

|ri − rj|
|ΦN−1

k 〉

− 〈ΦN |
N∑

i=1

− h̄2

2m
∇2

ri
+ v(ri)|ΦN〉 − 1

2

e2

4πε0

〈ΦN |
N,N∑

i,j=1

i6=j

1

|ri − rj|
|ΦN〉
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≈ −〈ϕoksk
|− h̄2

2m
∇2 + v(r)|ϕoksk

〉

− e2

4πε0

N∑

i=1

i6=k

∫∫
ϕ∗

oksk
(r′)ϕ∗

oisi
(r)ϕoisi

(r)ϕoksk
(r′)

|r− r′| d3r d3r′

+
e2

4πε0

N∑

i=1

i6=k

δsk,si

∫∫
ϕ∗

oksk
(r)ϕ∗

oisi
(r′)ϕoisi

(r)ϕoksk
(r′)

|r− r′| d3r d3r′

= −〈ϕoksk
|hHF|ϕoksk

〉

= −ǫoksk
. (3.91)

Thus what we had assumed before is valid approximately, indeed: The meaning of the
quantities introduced as Lagrange parameters ǫok

or ǫoksk
is (approximately) the negative

value of the energy that is required to remove an electron from orbital k. It follows that
also excitation energies, i.e., a transition from an occupied state i to an unoccupied state
j is (approximately) determined by the ǫok

:

∆Ei→j ≈ ǫj − ǫi (3.92)

These statements (Eq. (3.91)) and (Eq. (3.92)) are called Koopmans’ theorem. They are
valid approximately for the valence electrons of atoms and for extended states of solids.
However, when one excites an electron from a localized state, one does not only obtain a
single discrete line. Due to many-body effects (electronic relaxation and excitations) one
obtains several “peaks”. Then Koopmans’ theorem (approximately) gives the center of
mass of the function Ik(ǫ).

3.5 The Xα Method

(Hartree-Fock-Slater Method)

Initially, the Hartree-Fock method was applied to atoms without major difficulties. For
solids, however, it was realized that it is very complicated7. This is only due to the ex-
change term. Because of these difficulties in 1951 Slater suggested (Phys. Rev. 81, 385
(1951); 82, 5381 (1951)), to simplify this term. This simplification, although introduced
ad hoc, was very successful. Later, i.e., by density-functional theory, it was realized that
the treatment introduced by Slater as a simplification in fact corresponds to an important
physical theorem and is not an approximation but even an improvement of Hartree-Fock
theory.

The difficulty in Hartree-Fock theory is that the exchange potential is state-dependent.
For jellium the expectation value of the exchange potential vx

k is given by Eq. (3.79) and
it reads

7In recent years there have been several better Hartree-Fock calculations for solids: Stollhoff (1987),
Gigy-Baldereschi (1987), Louie (1988). In particular Dovesi et al. have developed a Hartree-Fock program
(“CRYSTAL”) for solids. The next step is to take into account “exact exchange” in the context of density-
functional theory.
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vx
k = − e2

4πε0

2kF

π
kFF

(
k

kF

)
with kF =

3
√

3π2n . (3.93)

The complicated aspect of the exchange potential is that it is different for different states
k. Slater therefore introduced the idea to average over all k to obtain a (state-independent)
“average potential”. However, how should such “average” be performed? If one averages
over all occupied states the function F (k/kF) becomes the number 0.75. But one could
also claim that only the states at kF are important: Electrons can react to external per-
turbations only by transitions to excited states, and the enegetically lowest excitations
happen at ǫF (or kF ). At kF F has the value 0.5. Exactly this value (F = 0.5) is also
obtained, if one averages over all states in the expression for the total energy (Eq. (3.42)),
before the functional derivative δEHF/δϕ is calculated. This is because a variation after
averaging mainly refers to the Fermi edge. One obtains:

vx
F= 3

4

(r) = − 3

2π

e2

4πε0

3

√
3π2n(r)

averaging over all occupied
states of the Hartree-Fock
equation (F = 0.75).

(3.94)

vx
F= 1

2

(r) = − 1

π

e2

4πε0

3

√
3π2n(r)

Averaging in the expression of
the total energy or by taking
into account only the states at kF

of the Hartree-Fock equation
(F = 0.5).

(3.95)

Now in n(r) we have again noted the r dependence, to indicate that the discussion is
also valid for slowly varying densities. Because Hartree-Fock theory is not exact anyway
(Coulomb correlation is missing), Slater suggested to introduce the following quantity for
the impractical exchange potential

vxα(r) = −α
3

2π

e2

4πε0

3

√
3π2n(r) , (3.96)

where α is a parameter of value
2

3
< α < 1 . (3.97)

The higher value (i.e., α = l) corresponds to the exchange potential originally derived
by Slater (F = 0.75). Today, from the point of view of density-functional theory, the
potential for α = 2/3 (for F = 0.5) would be called exchange potential. In the seventies
α was determined for atomic calculations and then transferred to solids and molecules
(K. Schwarz, Vienna). If α is chosen to obtain a good agreement with experimental total
energies one finds that α should obtain a value of ≈ 2

3
. Slater believed that the obtained

α ≈ 2
3
-exchange potential represents an improvement, because the Coulomb correlation is

taken into account semi-empirically. Today this is interpreted differently [cf. Kohn, Sham,
Phys. Rev. 140, A 1193 (1965), Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954)].

From a puristic theoretician’s point of view Slater’s empirical treatment was not satis-
fying, because the derivation was not really justified. Still this treatment had impressive
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success. The Xα-potential is illustrated in Fig. 3.7. It gives an impression of the depen-
dence on the density and of the strength of the exchange interaction. Most metals have
a density of rs = 2 bohr, or n = 0.03 bohr−3. Here, the exchange potential has a value of
about 7 eV, and consequently one recognizes that for an accurate theoretical treatment
in general it will be very important to take into account the exchange potential precisely.
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Figure 3.7: The Xα-potential as a function of the density n (atomic units). the density,
as usual, depends on the position, the value n is different for each r. And for this value
of n, the figure gives vxα(r).

3.6 Thomas-Fermi Theory and the Concept of

Screening
The basic concept behin this approach is very useful. The main reason for solving the
Hamilton operator of the solid is to learn something about the distribution of the electrons
of the solid in the many-body ground state Φ, i.e., about the electron density:

n(r) =

〈
Φ

∣∣∣∣∣

N∑

i=1

δ(r− ri)

∣∣∣∣∣ Φ

〉
. (3.98)

The question arises if it is really necessary to calculate the many-body wave function Φ.
When thinking of the the approaches of Hartree, Hartree-Fock, and Hartree-Fock-Slater,
one could ask, if one really has to calculate ∼ 1023 single-particle wave functions ϕoi

(r),
in order to calculate

n(r) =
N∑

i=1

|ϕoisi
(r)|2 , (3.99)
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or if n(r) can be calculated directly. We start from the effective single-particle equation

{
− h̄2

2m
∇2 + veff(r)

}
ϕi(r) = ǫiϕi(r) , (3.100)

where the effective potential is taken e.g. from the Hartree or Hartree-Fock-Slater theory.
We ask ourselves if it is possible to calculate the density directly from the potential v(r),
without calculating the wave function and without solving the Schrödinger equation. In
this context we note that n(r) is a functional of the external potential v(r): v(r) defines
the many-body Hamilton operator and the latter determines everything, also n(r). It is
unclear, however, if the particle density n(r) can be expressed explicitly as a functional
of the potential of the ions (lattice components). To continue, we start with the jellium
model: Then the single-particle wave functions are plane waves, and the expectation value
of the single-particle Hamiltonian is:

ǫi =
h̄2

2m
k2

i + veff . (3.101)

For the highest occupied state, i.e., for the weakest bound electron, we have:

h̄2

2m
k2

F + veff = ǫN = µ . (3.102)

The fact that ǫN = µ will be shown below. For a non-jellium system, as long as the poten-
tial veff(r) varies slowly in r, Eq. (3.101) is still valid, but only approximately. Actually,
one should replace veff(r) by 〈ϕoN

|veff |ϕoN
〉. Because this is not done here, the following

derivation should be considered as a semi-classical approximation.

For the jellium system (and for slowly varying densities) we can define a (position depen-
dent) Fermi-k-vector (cf. Eq. (2.30)),

kF(r) = 3

√
3π2n(r) (3.103)

and obtain the following equation for the electron of the highest energy:

h̄2

2m

(
3π2n(r)

)2/3
+ veff(r) = µ . (3.104)

Since µ is the energy of the weakest bound electron, it has to be spatially constant. The
first term of the left side of Eq. (3.103) is the kinetic, the second the potential energy.
This equation enables us for a given µ to calculate the density n(r) from v(r) without
solving a Schrödinger equation. The ∼ 1023 particles do not appear explicitly as individual
particles. Equation (3.104) tells that there is a discrete relation between veff(r) and n(r),
at least for jellium, or close to jellium systems

Equation (3.103) is called the Thomas-Fermi equation. For veff = v + vHartree it is equiv-
alent to the Hartree equation, and for veff = v + vHartree + vxα it is equivalent to the
Hartree-Fock-Slater Equation.
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The Thomas-Fermi equation (3.102) can also be derived from a variational principle. This
shall be done here for the Hartree theory. We have:

Ee = 〈Φ |He|Φ〉

=
N∑

i=1

〈
ϕoi

∣∣∣∣−
h̄2

2m
∇2

∣∣∣∣ ϕoi

〉
+

∫
v(r)n(r)d3r +

e2

4πε0

1

2

∫∫
n(r)n(r′)

|r− r′| d3rd3r′ ,

(3.105)

and for jellium we have:

N∑

i=1

〈
ϕoi

∣∣∣∣−
h̄2

2m
∇2

∣∣∣∣ ϕoi

〉
=

Vg

Vg(2π)3
2

∫ kF

0

h̄2

2m
k2 d3k

= 4π
2

(2π)3

h̄2

2m

∫ kF

0

k4dk =
1

5π2

h̄2

2m
k5

F

=
1

5π2

h̄2

2m
(3π2n)5/3 = T Jellium

s [n] . (3.106)

Thus, we have found that for jellium and probably also for slowly and weakly varying
densities n(r), the expectation value 〈Φ|He|Φ〉 can be written as a functional of the
density (at least in the Hartree approximation). Then for jellium we obtain

δT Jellium
s [n]

δn(r)
=

h̄2

2m

(
3π2n(r)

)2/3
. (3.107)

Because the total energy of the ground state is Ee
0 = MinΦN 〈ΦN |He|ΦN〉, we write

Ee
0 = Minn(r)E

e[n] . (3.108)

With the assumption that the total number of particles remains constant, the minimiza-
tion is written as

δ
{
Ee[n]− µ

(∫
n(r)d3r−N

)}

δn(r)
= 0 . (3.109)

Here µ is the Lagrange parameter taking care of the constraint that the total number of
electrons is N . Equation (3.108) apparently is equal to the Thomas-Fermi equation

µ =
h̄2

2m

(
3π2n(r)

)2/3
+ veff(r) , (3.110)

with

veff(r) = v(r) +
e2

4πε0

∫
n(r′)

|r− r′|d
3r′ . (3.111)

We did not prove that the variational principle is really valid (Eq. (3.108)), but we have
“simply” assumed its validity. Further, it should be mentioned that in addition to the
condition of the conservation of the particle number actually other constraints would be
important as well, namely that only densities n(r) must be considered that are physically
meaningful, e.g.: n(r) must be real and always positive.

59



We had already see that µ is the energy of the weakest bound electron. Let is look again
at the meaning in terms of the variational principle. Equation (3.109) gives

δEe[n]

δn(r)
= µ ,

and if we specify this variation to a change in electron number, we obtain as a special
case

dEe

dN
= µ

which is, in fact, the definition of the chemical potential. Consequently, µ is the chemical
potential, i.e., the energy required to change the particle number.

The Concept of Screening

Equation (3.103) shows that n(r) is a functional of veff(r):

n(r) = F1[v
eff(r); µ] (3.112)

=
1

3π2

[
2m

h̄2

(
µ− veff(r)

)]3/2

. (3.113)

Now we introduce a small perturbation

veff(r) −→ veff(r) + ∆veff(r) . (3.114)

Here µ shall remain unchanged, i.e., the energy, that is required to remove the weakest
bound electron shall stay the same as it was without perturbation, because the pertur-
bation is small. This will hold, e.g. when ∆veff is a spatially localized perturbation of the
potential in a macroscopic system, e.g. a defect atom in a semiconductor. Now we ask,
how the particle density will change

n(r) −→ ñ(r) = n(r) + ∆n(r) . (3.115)

For the perturbed system we have the Thomas-Fermi equation for ñ:

µ =
h̄2

2m

[
3π2ñ(r)

]2/3
+ veff(r) + ∆veff(r) , (3.116)

and the comparison with Eq. (3.113) yields

ñ(r) = F1[v
eff + ∆veff ; µ] = F1[v

eff(r); µ−∆veff(r)] . (3.117)

Now we call µ − veff = α and expand (3.117) in a Taylor series around the point α = µ.
This yields

ñ(r) = F1[v
eff(r); α]

∣∣∣∣∣
α=µ

− ∂F1[v
eff(r); α]

∂α

∣∣∣∣∣
α=µ

·∆veff(r) + O
(
[∆veff ]2

)
. (3.118)

It follows

∆n(r) = ñ(r)− n(r)

= −∂F1[v
eff(r); α]

∂α

∣∣∣∣
α=µ

·∆veff(r) + O
(
[∆veff ]2

)
. (3.119)
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Actually we are interested in the relation between v(r) and n(r), or between ∆v(r) and
∆n(r). To obtain this relation, we consider here the Hartree approximation. Then we
have:

∆veff(r) = ∆v(r) +
e2

4πε0

∫
∆n(r′)

|r− r′| d
3r′ (3.120)

or with the Poisson equation,

∇2(∆veff(r)) = ∇2(∆v(r))− e2

ε0

∆n(r) . (3.121)

In the Fourier representation we have:

∆n(k) =
ε0

e2
k2

[
∆veff(k)−∆v(k)

]
= −∂F1[v

eff(r); α]

∂α

∣∣∣∣
α=µ

·∆veff(k) . (3.122)

If we set ∂F1

∂α

∣∣
α=µ

= ε0

e2 k
2
0, we obtain

k2 + k2
0

k2
∆veff(k) = ∆v(k) . (3.123)

The quantity k0 is called the Thomas-Fermi wave vector. We have now derived an equa-
tion, which (in the Hartree approximation and for a jellium-type system) describes the
relation between the origin of the perturbation (change of the potential of the ions) and the
potential (effective potential) acting on the single-particle wave functions. This equation
corresponds closely to a description, which is known from electrodynamics: The relation
between the strength of an electric field E and the dielectric displacement D is

D = εE , (3.124)

where ε is the dielectric constant (generally a tensor). Therefore, we can and want to
continue our investigation by starting from the relation ∆v(r) ⇀↽ ∆veff(r), and considering
in terms of a microscopic materials equation of electrodynamics. In the context of Thomas-
Fermi theory in k-space we write (cf. Eq. (3.123)):

∆v(k) = ε(k)∆veff(k) (3.125)

with the Thomas-Fermi dielectric constant

ε(k) =
k2 + k2

0

k2
. (3.126)

For small values of k2, i.e., large wave lengths, the jellium approximation is well justified
and then equations (3.125) and (3.126) are equivalent to the Hartree theory. Still k0 is
unknown, but it will be determined below (Eq. (3.137)). In real space we obtain

∆v(r) =

∫
ε(r, r′)∆veff(r′)d3r′ . (3.127)

All the many-body quantum mechanics is now hidden in the dielectric constant. In case
we were dealing with a spatially isotropic, uniform and homogenous system, we would
have:

ε(r, r′) = ε(|r− r′|) . (3.128)
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To demonstrate the scientific content of the Thomas-Fermi theory we will now discuss the
screening in the neighborhood of a point charge in a solid (e.g. a defect in a crystal). We
start from:

∆v(r) =
−e2

4πε0

Z

r
. (3.129)

In k-space we obtain

∆v(k) =
−e2

4πε0

Z

k2
, (3.130)

and for the effective potential we obtain:

∆veff(k) =
k2

k2 + k2
0

∆v(k) =
−e2

4πε0

Z

k2 + k2
0

. (3.131)

When we go back into real space, we have

∆veff(r) =
−e2

4πε0

Z

r
e−k0r . (3.132)

Now it is clear that not an “external” perturbation charge Z · e, with a potential −e2

4πε0

Z
r

is
acting on the electron, but a screened Coulomb potential (Eq. (3.132)). This potential is
also called Yukawa potential (the name originates from the theory of mesons, where this
potential also plays a role). The Thomas-Fermi wave vector k0 determines the strength
of the screening. When 1/k0 becomes infinite, then there is no screening. The effective
potential of Eq. (3.132) is shown in Fig. 3.8.
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Figure 3.8: Change of the effective potential induced by a point charge at r = 0 with
Z = 1. In the Thomas-Fermi approximation with k0 = 1.1 bohr−1, i.e. for rs ≃ 2 bohr.
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This polarization charge density, ∆n(r), i.e., the change of the electron density induced
by the perturbation, according to Eq. (3.124) with (3.133) is:

∆n(k) = −ε0

e2
k2

0∆veff(k) = Z
k2

0

k2 + k2
0

· 1

4π
. (3.133)

In real space we obtain the result,

∆n(r) = Z
k2

0

4π

e−k0r

r
, (3.134)

which is shown in Fig. 3.9. Physically this result means that a positive perturbation charge
at r = 0 induces an attraction of the valence electrons of the solid to the perturbation
charge. This increases the negative charge density in the neighborhood of r = 0, and the
perturbation is screened. One says that the “valence charge density is polarized”.
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Figure 3.9: Change of the electron density induced by a positive point charge at r = 0
with Z = 1. In the Thomas-Fermi approximation with k0 = 1.1 bohr−1 and rs ≃ 2 bohr.

The area under the curve is equal to Z =
∫

∆n(r) d3r, i.e., the charge belonging to ∆n(r),
is exactly equal to the perturbation charge, but with an opposite sign. How important,
or how efficient is this screening; i.e., how large is k0 for realistic systems?

ε0

e2
k2

0 =
∂F1[v

eff(r); α]

∂α

∣∣∣∣
α=µ

=
∂

∂α

1

3π2

{
2m

h̄2

(
α− veff

)}3/2
∣∣∣∣∣
α=µ

=
3

2

2m

h̄23π2

{
2m

h̄2

(
α− veff

)}1/2
∣∣∣∣∣
α=µ

=
m

h̄2π2
kF . (3.135)
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We have:

k2
0 =

e2

ε0

m

h̄2π2
kF =

e2

ε0

m

h̄2π2

[
3π2n

]1/3
(3.136)

If we express the density by the density parameter rs, we have

k0 =
2.95√
rs/aB

Å
−1

. (3.137)

Because rs is generally in the range 1 . . . 6 bohr, the screening happens very fast, i.e., on
a length scale of 1/k0 ≈ 0.5 Å. This length is comparable to, or even shorter than, the
distance between the atoms in a crystal (typically 2–3 Å). A more accurate calculation
yields qualitatively the same result. But there are also significant differences. A more ac-
curate calculation (which is significantly more complicated) is shown in Fig. 3.10. The
reasons for the differences to Fig. 3.9 are that now not T Jellium[n], but the correct kinetic
energy has been used. Further, no semiclassical approximation for veff has been assumed,
and no Taylor-series expansion and approximation for F1[v

eff ; α] has been used, and the
exchange interaction has been taken into account. The correct kinetic energy, T , yields
oscillations (Friedel oscillations).

The basic idea of Thomas-Fermi theory to calculate n(r) directly from v(r) is for sure
interesting. However, generally the mentioned approximations are too drastic. Improve-
ments of the kinetic energy term (cf. Eq. (3.106)) have been suggested by C.F. Weizsäcker.
The correction term is proportional to |∇n(r)|2 /n(r).
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Figure 3.10: Change in the charge density induced by a defect atom (arsenic) in a silicon
crystal. The top figure shows a contour plat in the (110) plane, and the bottom shows the
density change along the [111] direction.
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3.7 Density-Functional Theory8

We are still interested in the properties of a solid, which is described by the many-body
Hamilton operator

He =
N∑

i=1

− h̄2

2m
∇2

ri
+ v(ri) +

1

2

e2

4πε0

N,N∑

i,j

i6=j

1

|ri − rj|
. (3.138)

We will assume that the ground state of

HeΦ = EeΦ (3.139)

is non-degenerate. Further we will assume that the system is non-magnetic, i.e., the par-
ticle density of the spin-up and spin-down electrons shall be the same:

n↑(r) = n↓(r) , (3.140)

where for the total particle density as usual we have:

n(r) = n↑(r) + n↓(r) (3.141)

=

〈
Φ

∣∣∣∣∣

N∑

i=1

δ(r− ri)

∣∣∣∣∣ Φ

〉
. (3.142)

From (3.140) and (3.141) we then obtain

n↑(r) = n↓(r) =
n(r)

2
(3.143)

The assumptions of a “non-degenerate ground state” and Eqs. (3.141) and (3.143) can
also be omitted, but the following discussion is simpler when they are made. First, we
give the theorem of Hohenberg und Kohn, and subsequently we will prove its validity:

The expectation value of He is a functional of the particle density n(r):

〈Φ|He|Φ〉 = Ev[n] =

∫
v(r)n(r)d3r + F [n] . (3.144)

Here the functional F [n] does not depend explicitly on v(r).

Proof of this statement: It is immediately clear that F = 〈Φ|T e + V e−e|Φ〉 is a functional
of Φ, but initially it is surprising that it is supposed to be a functional of n(r). Now we
will show that Φ is a functional of n(r), as long as we constrain ourselves to functions,
which are defined according to Eq. (3.144) and Φ is the ground state wave function of
an arbitrary N -particle problem. Because of the word “arbitrary”, i.e., v(r) is arbitrary,

8References: P. Hohenberg, W. Kohn, Phys. Rev. 136, B 864 (1964); W. Kohn, L. Sham, Phys. Rev.
A 140, 1133 (1965); M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979); R.M. Dreizler, E.K.U. Gross,
Density Functional Theory (Spinger, 1990); R.G. Parr, W. Yang, Density-Functional Theory of Atoms
and Molecules (Oxford University Press 1994); R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689
(1989)
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this is not a constraint of physical relevance. Mathematically, however, this is a noticeable
restriction.

The opposite of our goal is known: n(r) is a functional of Φ:

n(r) =

〈
Φ

∣∣∣∣∣

N∑

i=1

δ(r− ri)

∣∣∣∣∣ Φ

〉
. (3.145)

The question to be answered is: Is the mapping of Eq. (3.144) reversibly unique (cf. Fig.
3.11)?
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erators of type of Eq. (3.1) or
Eq. (3.142) .

The set of the particle densi-
ties n(r), which belong to non-
degenerate ground states of the
N -particle problem.

Figure 3.11: Relation between wave functions and particle densities. The Hohenberg-Kohn
theorem states that the dashed case does not exist, i.e., two different many-body wave
functions have to yield different densities.

The proof of the theorem of Hohenberg and Kohn and of the statement Φ = Φ[n] is done
following the principle “reductio ad absurdum”:

Starting point: v(r) and ṽ(r) shall be two physically different potentials, i.e., we have

v(r)− ṽ(r) 6= constant . (3.146)

These two potentials define two Hamilton operators He and H̃e (for simplicity we con-
strain ourselves to operators, that have a non-degenerate ground state (for a more general
discussion we refer to the work of Levy).
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Assumption 1: Both Hamilton operators have the same ground state wave function. It
follows

(H̃e −He)Φ0 =
N∑

i=1

{ṽ(ri)− v(ri)}Φ0 = (Ẽe
0 − Ee

0)Φ0 , (3.147)

and from this one obtains (with the exception of a discrete number of points, for which
Φ0 is zero)

N∑

i=1

{ṽ(ri)− v(ri)} = Ẽe
0 − Ee

0 . (3.148)

This means that ṽ(r) − v(r) is constant which is in contradiction to the starting point.

It follows: Our assumption 1 that He and H̃e have the same eigenfunction, is wrong.
Therefore, we have that Φ0 and Φ̃0 are different.

Assumption 2: We assume that Φ0 and Φ̃0 (even though Φ0 6= Φ̃0) both can give rise to
the same particle density n(r). This corresponds to the dashed arrows in Fig. 3.11 . We
then get

Ee
0 = 〈Φ0|He|Φ0〉 <

〈
Φ̃0|He|Φ̃0

〉
=

〈
Φ̃0

∣∣∣∣∣H̃
e −

N∑

i=1

ṽ(ri) +
N∑

i=1

v(ri)

∣∣∣∣∣ Φ̃0

〉
, (3.149)

therefore,

Ee
0 < Ẽe

0 +

〈
Φ̃0

∣∣∣∣∣

N∑

i=1

{v(ri)− ṽ(ri)}
∣∣∣∣∣ Φ̃0

〉
(3.150)

and

Ee
0 < Ẽe

0 +

∫
{v(r)− ṽ(r)}n(r)d3r . (3.151)

Similarly, we obtain for Ẽe
0 = 〈Φ̃0|H̃e|Φ̃0〉:

Ẽe
0 < Ee

0 −
∫
{v(r)− ṽ(r)}n(r) d3r (3.152)

If we add equations (3.153) and (3.154), we obtain

Ee
0 + Ẽe

0 < Ee
0 + Ẽe

0 , (3.153)

a contradiction. This means that assumption 2 is wrong. Thus we have proven:

Two different ground states Φ0 and Φ̃0 must yield two different particle densities n(r) and
ñ(r). This has the following consequences:

a) Ev[n]
!
= 〈Φ|He|Φ〉 is a functional of n(r). In fact, what we had shown was even

more general, namely: Φ = Φ[n]. Here, the functionals are only defined for the set
of particle densities, that can be constructed from a ground state wave function of
an arbitrary N -particle Hamilton operator He, where v(r) is an arbitrary function
(cf. Fig. 3.11).
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b) In the expression

Ev[n] =

∫
n(r)v(r) d3r + F [n] (3.154)

F [n] is a universal functional of n(r). This means that the functional F is indepen-
dent of the “external” potential v(r).

c) Ev[n] obtains under the constraint
∫

n(r)d3r = N (3.155)

a minimum for the correct particle density. This minimum defines the ground state
energy and the ground state electron density n0:

Ee
0 = Minn(r)Ev[n] = Ev[n0] . (3.156)

Thus, the variational principle for 〈Φ|He|Φ〉 can exactly be reformulated in terms of a
variational principle for Ev[n]. The new variational principle is:

δ

{
Ev[n]− µ

(∫
n(r)d3r−N

)}
= 0 , (3.157)

or
δEv[n]

δn(r)

∣∣∣∣
n0

= µ . (3.158)

Here the constraint of a constant total number of particles being equal to N is taken into
account by the method of Lagrange multipliers, i.e., we have included the condition

∫
n(r)d3r = N . (3.159)

Still some physically important conditions are missing, e.g. that n(r) ≥ 0 and that n(r)
has to be continuous. These are necessary conditions, which have to be fulfilled by the
functions of the range of Ev[n], and which we will have to take into account when do-
ing the variation in an actual calculation. Compared to Hartree and Hartree-Fock theory
we achieved a significant advantage: Earlier we had to insert a wave function depending
on 1023 coordinates in the functional to be minimized. This treatment led to obvious
difficulties and approximations, which were introduced before the actual variation was
performed. Now we have to insert functions depending on three coordinates only into the
functional, and, up to now, i.e., up to Eq. (3.158), we have introduced no approximation.

We have shown: The ground state electron density determines the many-body Hamilto-
nian, uniquely. As the many-body Hamiltonian determines everything, we can also tell –
in principle – the ground state electron density determines everything: the ground state,
all excited states, all physical properties.

So far, we have shown that the functional Ev[n] does exist. However, we have not shown
how it looks like. In fact, we also have not shown that it can be written as a closed math-
ematical expression.
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Figure 3.12: Schematic figure for the variational principle of 〈Φ|He|Φ〉 and Ev[n].

For the actual variation Kohn and Sham suggested the following procedure. We write:

Ev[n] = Ts[n] +

∫
v(r)n(r)d3r + EHartree[n] + Exc[n] (3.160)

with

EHartree[n] =
1

2

e2

4πε0

∫∫
n(r)n(r′)

|r− r′| d3rd3r′ . (3.161)

Ts[n] is the kinetic energy functional of non-interacting electrons. Although generally it is
not explicitly known as a function of n(r), it will be introduced here. In fact, Ts[n] cannot
be written down in a closed mathematical form as a functional of the density. However,
we know a series expansion:

Ts[n] =
1

5π2

h̄2

2m

(
3π2n(r)

)5/3
+O (∇n(r)) , (3.162)

where the first term is the result for jellium, i.e. when ∇n(r) = 0.

δTs

δn(r)
=

h̄2

2m

(
3π2n(r)

)2/3
(3.163)

was used in the Thomas-Fermi theory, i.e. for jellium.

Introducing here Ts[n] – the exact one, not Thomas-Fermi – is still an approximation
in mathematical terms. There may be physically reasonable densities that ly outside the
range of definition of Ts[n]. However, from a physicist’s point of view it appears to be
plausible that all physically meaningful densities can be constructed from

(
− h̄2

2m
∇2 + ṽ(r)

)
ϕoi

(r) = ǫoi
ϕoi

(r) , (3.164)

with n(r) =
N∑

i=1

|ϕoi
(r)|2 (3.165)

and arbitrary ṽ(r). For such densities the kinetic energy is

Ts[n] =
N∑

i=1

〈ϕoi
| − h̄2

2m
∇2|ϕoi

〉 . (3.166)
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We note that Eq. (3.164) formally describes the ground state of a system of non-interacting
electrons moving in the potential ṽ(r).9

For the exchange-correlation functional we obtain

Exc[n] = 〈Φ|He|Φ〉 −
∫

v(r)n(r)d3r− Ts[n]− EHartree[n]

= F [n]− Ts[n]− EHartree[n] . (3.167)

The variational principle Eq. (3.158) applied to the energy functional Eq. (3.160) yields

δTs[n]

δn(r)

∣∣∣∣
n0

+ veff([n0], r) = µ (3.168)

with

veff([n], r) =
δ
{∫

v(r)n(r)d3r + EHartree[n] + Exc[n]
}

δn(r)

= v(r) +
e2

4πε0

∫
n(r′)

|r− r′| d
3r′ +

δExc[n]

δn(r)
. (3.169)

We note that Eq. (3.168) determines the ground state density of interacting electrons. For-
mally, it is an equation for non-interacting electrons moving in the potential veff([n], r),
because per definition Ts[n] is the kinetic energy of non-interacting electrons of density
n(r) (see Eqs. (3.164) – (3.166)). It seems plausible that the set of densities defined this
way covers all physically reasonable densities or at least come arbitrarily close. As long
as Ts[n] is a well behaved functional, the assumption (of “being arbitrarily close”) should
be sufficient. But this point still has not been discussed conclusively in the literature.

From Eq. (3.168) we obtain the equivalent single-particle Schrödinger equation

{
− h̄2

2m
∇2 + veff([n], r)

}
ϕoi

(r) = ǫoi
ϕoi

(r) . (3.170)

Obviously, this is an effective single-particle equation, because veff depends on the solu-
tions that we are seeking.

Equation (3.170) together with Eq. (3.165) and (3.169) is called the Kohn-Sham equation.
It is solved using an SCF procedure. Although the functional Ts[n] is not explicitly known
as a functional in n, we can, by replacing Eq. (3.168) by the equivalent Eq. (3.170), still

9For non-interacting electrons the Hamiltonian is H ′ =
∑N

i=1

(
− h̄2

2m
∇2

ri
+ ṽ(ri)

)
and the many-body

wavefunction Φ({ri}) is a Slater-determinant. The ground state for N such particles is determined
by minimization with respect to the single-particle orbitals, δ

δϕ⋆
oi

(r)

{
〈Φ|H|Φ〉 − ǫoi

(∫
n(r)d3

r−N
)}

=
{
− h̄2

2m
∇2 + ṽ(r)− ǫoi

}
ϕoi

(r) ≡ 0 (and c.c.), i.e. Eq. (3.164). According to the Hohenberg-Kohn theo-

rem, we can also obtain the ground state from the density functional E′
ṽ[n] =

∫
n(r)ṽ(r)d3

r + Ts[n], i.e.
Ts[n] defines the functional F [n] of Eq. (3.154) for non-interacting electrons. The variational principle,

Eq. (3.158), then yields
δE′

ṽ
[n]

δn(r)

∣∣∣
n0

= δTs[n]
δn(r)

∣∣∣
n0

+ ṽ(r) = µ.
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treat it exactly. This has the technical disadvantage that we end up with the N single-
particle functions, which we wanted to avoid. For the evaluation of the total energy Ev[n]
we need Ts[n]. The calculation of Ts[n] is done using one of the two following equations.
Generally, for non-interacting particles we have:

Ts[n] =
N∑

i=1

〈ϕoi

∣∣∣∣−
h̄2

2m
∇2

∣∣∣∣ ϕoi
〉 , (3.171)

=
N∑

i=1

ǫoi
−

∫
veff [nin](r)n(r)d3r . (3.172)

Here veff(r) is determined from Eq. (3.169), and ǫoi
is obtained from Eq. (3.170). Thus,

we have proven that Ts is a functional of n. Here veff has to be calculated from a density
nin(r), because if we interpret Ts[n] as a functional, veff has to be exactly the potential,
which generates the ǫoi

and the ϕoi
(r) and n(r). Generally, nin(r), which is used for the

calculation of veff(r) will differ from n(r). Only at the end of the SCF cycle both densities
are the same.

As a side remark we note that the self-consistent solution of the variational principle
would not be changed if Ts[n] was not be used, but e.g.

T̃ [n] =
N∑

i=1

ǫoi
−

∫
veff([n], r)n(r)d3r , (3.173)

or different equations, which differ only by O(nin − n) from Ts[n]. But here we continue
using Ts[n].

Up to now no approximation has been introduced (apart from the reasonable assumption
described by Eq. (3.165)). Therefore we have – in contrast to Hartree and Hartree-Fock
– first made use of the variational principle of the ground state, and now we will start to
think about approximations.

In Hartree and Hartree-Fock theory first an approximation (ansatz of the wave function)
was introduced and then the expectation value of He was investigated. Experience shows
that it is particularly important to treat Ts[n] as accurately as possible, in order to ob-
tain e.g. the shell structure of the electrons in atoms (s-,p-,d-electrons), which cannot be
described with Thomas-Fermi theory. The Kohn-Sham ansatz permits one to treat Ts[n]
exactly.

Using Eq. (3.171) or (3.172) we can evaluate Ts[n] without knowing the functional ex-

plicitly. Just one thing remains unknown: Exc[n] and vxc(r) = δExc[n]
δn(r)

. We know that

Exc[n] is a universal functional10, i.e., the functional does not depend on the system: The
hydrogen atom, the diamond crystal etc. are described by the same functional. Unfor-
tunately, we do not know the exact form of Exc[n]. It is also not clear, if the functional
can be given in a simple, closed form at all, or if Exc is similar to Ts. Analogous to the

10Strictly, F [n] is a universal functional in n. Because F [n] = Ts[n] + EHartree[n] + Exc[n], cf. Eq.
(3.165), this is also valid for Exc[n].
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Thomas-Fermi-Weizsäcker ansatz for Ts[n], we consider a series expansion starting from
jellium (the homogeneous, interacting electron gas, where we have v(r) = constant and
n(r) = constant),

Exc[n] = Exc−jellium[n] + O(∇n) . (3.174)

We rewrite the exchange-correlation energy as follows

Exc[n] =

∫
ǫxc[n]n(r)d3r , (3.175)

and

Exc−jellium[n] =

∫
ǫxc−jellium[n]n(r)d3r . (3.176)

Here ǫxc−jellium[n] is the exchange-correlation energy per particle in a jellium system of
constant density n. Because n(r) is constant, i.e., n is just a number, ǫxc−jellium then is
a function of the density: ǫxc−jellium(n). We generalize this expression to the following
statement: For systems with a slowly varying density, Exc[n] can be replaced by

Exc−LDA[n] =

∫
n(r) ǫxc−jellium(n(r)) d3r . (3.177)

Here n is the local density, i.e., the density at position r.

“Slowly varying” means that the system can be regarded as a collection of jellium sys-
tems, where neighboring systems have only slightly different densities. Therefore, in a
strict sense, n(r) at a scale of 2π

kF

must change only marginally. 2π
kF

is the shortest wave
length, appearing in the occupied states of a jellium system. Generally, for real systems
this “mathematical requirement” for n(r) is not fulfilled, i.e., 2π

kF

≈ 5Å is of the same
order as the interatomic distances. Still, experience shows that the ansatz Eq. (3.177)

n (10−2
◦

A−3)

-

6

0

-5

-10

0 5 10 15 20 25 30

−ǫxc−jellium(n)
(eV)

← Wigner (1938)

←− Ceperley - Alder (1980) −→

Gell-Mann - Br
..
uckner (1957) →

Figure 3.13: The exchange-correlation energy per particle for jellium systems of density
n.
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Figure 3.14: Exchange potential (F = 0.5 or α = 2/3, cf. Eq. (3.85)) and the exchange-
correlation potential as a function of the electron-density. The difference of both is the
correlation potential.

works surprisingly well. This will be explained later. As a side remark we note that for
Ts[n] a local-density approximation is very poor, but for Exc[n] such an approximation is
apparently acceptable.

The approximation (3.177) is called the local-density approximation (LDA). In this ap-
proximation each point in space (only for Exc[n]) is treated like a jellium system. For
the density at this point n(r) then Exc[n] for jellium of density n is inserted. For this
the function ǫxc−jellium(n) is required. What does ǫxc−jellium(n) look like? Already in 1938
Wigner determined ǫxc for jellium in the limit of small densities (Trans. Faraday Soc.
34, 678 (1938)). In 1957 Gell-Mann and Brückner discussed the limit of high densities
using many-body theories (Phys. Rev. 106, 364 (1957)). In 1980 it became possible using
computer calculations to address also the range in between (Ceperley, Alder, Phys. Rev.

Lett. 45, 566 (1980)). Today, the function ǫxc−jellium(n), or ǫxc−jellium(rs) (rs = 3

√
3

4πn
),

is numerically well known. It is shown in Fig. 3.13. Table 3.1 gives the average electron
density and the corresponding rs parameter for some metals.

If we know ǫxc[n], the exchange-correlation potential of the Kohn-Sham equation can be
calculated:

vxc−LDA(r) =
δExc−LDA[n]

δn(r)
=

∂

∂n

(
n ǫxc−jellium(n)

)∣∣∣∣
n=n(r)

= ǫxc−jellium(n) + n
∂ǫxc−jellium(n)

∂n

∣∣∣∣
n=n(r)

. (3.178)

Figure 3.14 shows the correct vxc potential for jellium in comparison to the previous
Hartree-Fock-Slater result.
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atom

number of
valence
electrons
in the
atom

number of
atoms per
primitive unit
cell

lattice con-
stant (Å)

average
density
(1022 cm−3)

rs (bohr)

Li 1 1 3.49 4.70 3.25
Na 1 1 4.23 2.65 3.93
K 1 1 5.23 1.40 4.86
Cs 1 1 6.05 0.91 5.62
Cu 1 1 3.61 8.47 2.67
Ag 1 1 4.09 5.86 3.02
Al 3 1 4.05 18.1 2.07
Ga 3 1 4.51 15.4 2.19

Table 3.1: Average electron density of metals. For Cu and Ag the electrons of the 3d- and
4d-shells have not been counted as valence electrons. For several problems this approxi-
mation is too crude.

In order to interpret the exchange-correlation potential of DFT-LDA theory, we proceed
like for Hartree and Hartree-Fock (cf. the discussion of Fig. 3.4). We write:

EHartree[n] + Exc[n] =
e2

8πε0

∫
n(r)

∫
n(r′)− nxc(r, r′)

|r− r′| d3r d3r′ . (3.179)

The density n − nxc is shown in Fig. 3.15. The interpretation is to view the exchange-
correlation energy as a correction of the Coulomb interaction of the Hartree term, i.e., a
particle at position r does not interact with particles being distributed like n(r′), but it
feels a particle distribution n(r′)−nxc(r, r′) .11 For the corresponding terms in the effective
potential we have:

vHartree(r) + vxc(r) =
δ

δn(r)

(
EHartree[n] + Exc[n]

)

=
e2

4πε0

∫
n(r′)− nxc(r, r′)

|r− r′| d3r′ − e2

8πε0

∫∫ n(r′)
(

δ
δn(r)

nxc(r′,r′′)
n(r′′)

)
n(r′′)

|r− r′| d3r′ d3r′′ ,

(3.180)

where the first term again shows that a particle at position r interacts with a particle
distribution n(r′)−nxc(r, r′). The second term includes in addition changes of the particle
distribution nxc when the density is varied.

11Here we have expressed the exchange-correlation energy as − 1
2

e2

4πε0

∫∫ n(r)nxc(r,r′)
|r−r

′| d3
rd3

r
′. In the

literature, exchange-correlation is often discussed in terms of the so-called exchange-correlation hole
hxc(r, r′) ≡ −nxc(r, r′). The function n(r)n(r′)−nxc(r, r′) is identical to the (coupling constant averaged)
pair-correlation function, i.e. the probability of finding an electron at position r

′ if there is already one
at r.
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Figure 3.15: Distribution of the N − 1 other electrons with respect to a particle that is
located at position r = 0, i.e. the pair-correlation function (for jellium).
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Figure 3.16: Like Fig. 3.15, but for larger electron-electron separations.

In the neighborhood of a particle the density is reduced. The origins of this reduction
are the Pauli principle and the Coulomb repulsion. Strictly, this reduction has to be
explained by a dynamical treatment. This is the origin of the term correlation (of the
motion). But in a time-independent theory dynamic correlation can also be described
as mentioned above. We summarize: Hartree theory does not include correlation, i.e., a
Hartree particle sees a distribution of the other particles, which is independent of its po-
sition. Hartree-Fock theory includes the correlation of electrons of like spin originating
from the Pauli principle. This “Pauli correlation” is called exchange interaction. In prin-
ciple density-functional theory is exact (and for jellium it can be carried out numerically
exact). It contains exchange as well as the correlation caused by the Coulomb repulsion.
But since the functional Exc[n] in its general form is unknown, DFT combined with the
LDA is accurate only for interacting electronic systems of slowly varying densities. For
inhomogeneous systems the LDA is an approximation, but a surprisingly good one! For no
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Figure 3.17: Exchange-correlation hole −nxc(0, r′) of an electron at position r = 0 (for
jellium). The lower part of the plot shows how many electrons are removed from, or shifted
into, a spherical shell r′± δr′ due to exchange and correlation, respectively. The top part
shows how nxc(0, r′) integrates up to satisfy the sum rule Eq. (3.181).

interacting many-body problem Hartree is exact and the Hartree-Fock approximation is
exactly right only for those systems, for which the ground state is one Slater determinant.

Surprisingly, it turned out that DFT-LDA yields rather reliable results also for systems
of strongly varying densities. This can be made plausible: The LDA can be understood as
an approximation for the shape of the exchange-correlation hole, and because in Exc and
in vxc only the integral over nxc enters, the errors in the shape of the exchange-correlation
hole cancel to some extent12.

The exchange-correlation hole −nxc(r, r′), i.e. the reduction of electron density n(r′) −
nxc(r, r′) around the position of an electron at r, is a plausible consequence of the Pauli
exclusion principle and Coulomb repulsions. Figure 3.15 illustrates their effect for jellium.
In Hartree theory the electrons are essentially treated as if they moved independently
from one another (like in an ideal gas of non-interacting fermions), i.e. their exchange-
correlation hole is zero. The effect of the Pauli exclusion principle is to reduce the prob-
ability of finding electrons with the spin σ around an electron at position r with the
same spin σ; therefore the probability of finding two electrons at the same position is
0.5 (for jellium with n↑ = n↓. Coulomb repulsion pushes the electrons further apart and
thus reduces the pair-correlation function (deepen the exchange-correlation hole) at short
electron-electron separations and increases it at larger separations (see Fig. ). At r = r′

the pair-correlation function displays a “cusp”, i.e. a finite slope, which is a consequence
of the the 1/r singularity of the Coulomb interaction. Here, in Fig. 3.15, we also see the
quantum mechanical nature of the electron. For a classical particle the density of the
exchange-correlation hole must go to zero at r = r′, because when a particle is at position

12For a detailed discussion cf. Barth, Williams, in “The inhomogeneous electron gas”, also R.O. Jones
and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).
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r not other particle can be at the same position. In quantum mechanics the uncertainty
principle weakens the meaning of “particle at position r”” and therefore n(r′)− nxc(r, r′)
is non-zero at r = r′.

Without proof, we also state another strict property of nxc(r, r′): As each electron of the
N -electron problem interacts with the (N − 1) other electrons, and because

∫
n(r′) d3r′ = N ,

it follows that ∫
nxc(r, r′) d3r′ = 1 . (3.181)

This sum rule is illustrated in Fig. 3.17 for jellium. Any reasonable approximation to
Exc[n] must fulfil this condition, for instance it is fulfilled by the LDA.

3.7.1 Meaning of the Kohn-Sham Single-Particle Energies ǫok

– The DFT Analog of Koopmans’ Theorem –

Density-functional theory was derived with the goal that n(r) and Ee
0 = Minn(r)Ev[n] are

physical quantities. There was no meaning assigned to ϕok
(r) or ǫok

. These appeared in
the theory as technical quantities, somewhat similar to the single-particle energies which
appeared in Hartree-Fock theory. Only via Koopmans’ theorem we found out that the
Hartree-Fock single-particle energies are approximate ionization energies.

Often one reads that in DFT Koopmans’ theorem is not valid and that the single-particle
energies of the Kohn-Sham equation have no physical meaning. In narrow terms this
statement is right. However, we like to emphasize that there is a theorem in DFT that
is practically equivalent to Koopmans’ theorem. As mentioned above, i.e. considering the
derivation of the Kohn-Sham equation, the Kohn-Sham single-particle energies do not
seem to have a direct physical meaning. However, we found that the ǫok

are neverthe-
less required, i.e. in the expression of the kinetic energy when the total energy has to
be calculated (cf. Eq. (3.172)). Only the highest occupied Kohn-Sham level has a direct
physical meaning: The highest occupied level (of the exact DFT) is the ionization energy
(Almbladh, v. Barth, Phys. Rev. B 31, 3231 (1985)).

In order to clarify the physical meaning of the Kohn-Sham single-particle energies we
introduce occupation numbers:

n(r) =
N∑

k=1

|ϕok
(r)|2 (3.182)

=
∞∑

k=1

fok
|ϕok

(r)|2 . (3.183)

At zero temperature we have

fok
=

{
1 for k = 1 . . . N

0 otherwise ,
(3.184)
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and

Ts[n] =
∞∑

k=1

fok
ǫok
−

∫
veff(r)n(r)d3r . (3.185)

Strictly, Ev[n] is defined only for fok
= 0 or 1. Now we will assume that the range of

the fok
can be extended to non-integer occupations. For example, for a finite temperature

description the occupation numbers would be given by the Fermi function. This extension
of the fok

is obviously not a problem for all parts of the energy functional, except for Exc,
as we do not know it exactly. However, for all known approximations of Exc this extension
of the range of possible fok

is unproblematic. We then get

∂Ev[n]

∂fok

=

∫
δEv[n]

δn(r)

∂n(r)

∂fok

d3r , (3.186)

where
∂n(r)

∂fok

= |ϕok
(r)|2 , (3.187)

because the ϕok
(for a given veff) do not depend explicitly on the occupation numbers.

We do not want to assume here that the variational principle δEv [n]
δn(r)

= µ is fulfilled, and

therefore calculate δEv [n]
δn(r)

:

δEv[n]

δn(r)
=

δTs[n]

δn(r)
+ vHartree(r) + vxc(r) + v(r) (3.188)

=
δTs[n]

δn(r)
+ veff(r) . (3.189)

It follows that

∂Ev[n]

∂fok

=

∫
δEv[n]

δn(r)

∂n(r)

∂fok

d3r

=

∫
δTs[n]

δn(r)
|ϕok

(r)|2 d3r +

∫
veff(r)|ϕok

(r)|2 d3r . (3.190)

Because ∫
δTs[n]

δn(r)
|ϕok

(r)|2 d3r =
∂Ts[n]

∂fok

, (3.191)

and with
∂Ts

∂fok

= ǫok
−

∫
veff(r)|ϕok

(r)|2d3r , (3.192)

we obtain the result
∂Ev[n]

∂fok

= ǫok
. (3.193)

This equation also holds for the highest occupied state, k = N , which, at least in metals,
is called the Fermi energy:

∂Ev[n]

∂foN

= ǫoN
= ǫF , (3.194)

and because δEv [n]
δn(r)

= µ it follows that µ = ǫF. Figure 3.18 shows an example for ǫok
as

function of the occupation number. However, here the local spin-density approximation
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Figure 3.18: The function ǫok
(N)) for the 2s and 2p states of the Be atom (Z = 4) as a

function of the electron number (from N = 2 to N = 4.4). The neutral Be atom has the
configuration 1s2 2s2. At first the occupation of the 2s↓ level is changed from zero to one
(from left to right). Then the occupation of the 2s↑ level is changed and then that of the
2p↓ level. The local spin-density approximation is employed.

for Exc has been used. This represents an improvement over the ansatz n↑ = n↓, and it
will be discussed in Section 3.7.3 below. Due to the kinetic energy, the functions ǫok

(f)
are not differentiable at some points. These points are found at integer values of N where
a new spin channel or a new shell is added.

Now we look at an ionization event, i.e., the transition from the ground state ΦN to the
state ΦN−1

k plus a free electron of zero energy. The index k of the wave function marks
that the level k is no more occupied. In the exact meaning of the word, ionization refers
to the highest level, i.e. ok = oN . However, in general (e.g. by photoemission) one can also
remove more strongly bound electrons.

The ionization energy is

Ik = EN−1
k − EN (3.195)

= −
∫ 1

0

∂Ev[n]

∂fok

dfok
(3.196)

= −
∫ 1

0

ǫok
(fok

) dfok
. (3.197)
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Here we assume that the geometry of the lattice is not changed by the ionization. For the
ionization from extended levels of a solid this assumption is justified. And in general it
represents the Franck-Condon principle which states that the displacement of the nuclei
follows the electronic excitation (or the ionization) with some delay. Using the mean value
theorem of calculus we obtain:

Ik = −ǫok
(0.5) . (3.198)

This expression is called Slater-Janak-“transition-state”. When a calculation is carried
out and the level k is occupied by only half an electron, the energy ǫok

approximately
equals the ionization energy. If the functions ϕk(r) are extended, n(r) and therefore also
veff(r) and thus also the values of ǫok

practically will not change, if the occupation of a
level, fok

, is changed. Then we have ǫok
(fok

= 1) ≈ ǫok
(fok

= 0.5) and the single-particle
levels correspond to the ionization energies: Ik = −ǫok

. Thus, we get the same result
as obtained by Koopmans’ theorem of Hartree-Fock theory, and the proof is even more
plausible here in DFT than it was before in Hartree-Fock theory.

We mention here only in passing another shortcoming of the LDA, besides the mentioned
poor correction of the electron self-interaction. It can be shown that the true Exc[n] func-
tional has kinks at integer values of N when plotted as a continous function of the number
of electrons. This is somewhat analogous to Ts[n] which also has kinks due to the level
structure of the Kohn-Sham eigenvalues (e.g. the shell structure of atomic orbitals). These
kinks in Exc[n] give rise to discontinuities in δExc

δn
= vxc when studied as a function of par-

ticle number. We may get back to this point and the current theories for excited states at
the end of the semester. The LDA does not have such kinks in Exc or discontinuities in vxc.

Experience shows that although Ee
0 = minn(r)Ev[n] is affected by the approximation to

the xc-functional, I (as an energy difference) is often rather accurate; the errors of the
LDA cancel to some extent in the calculation of the difference. This is reasonable but not
proven. It shall be illustrated now for the (extreme) example of the hydrogen atom. There
is hardly any similarity between the hydrogen atom and the many-body problem of an
extended solid. But it points to the problems of the LDA and the error compensation. In
density-functional theory we have:

{
− h̄2

2m
∇2 − e2

4πε0

1

r
+

e2

4πε0

∫
n(r′)

|r− r′| d
3r′ + vxc(r)

}
ϕ(r) = ǫϕ(r) (3.199)

In an exact calculation for the ground state of a hydrogen atom we have:

e2

4πε0

∫
n(r′)

|r− r′|d
3r′ + vxc(r) = 0 , (3.200)

because in a one-electron system there is no electron-electron interaction. The correspond-
ing (exact) lowest energy value then is ǫ1s = −13.6 eV. In the LDA, however, the two
terms in Eq. 3.200 do not cancel. The eigenvalue obtained from the LDA therefore is
significantly above the exact eigenvalue: ǫLDA

1s = −6.4 eV. Thus, for the hydrogen atom
the jellium approximation for vxc is very bad. Quite obviously, the orbital of a hydrogen
atom is not extended but very localized. Nevertheless, even here we see that differences
of total energies are rather good: I ≈ −ǫLDA

1s

(
1
2

)
= +12.4 eV. Generally we have: Due to
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the poorly corrected self-interaction in the LDA the eigenvalues ǫLDA
k are too high, i.e.,

they correspond to too small ionization energies. This is the more true, the more a state
is localized13. Consequently, for localized states the ǫok

are no good approximation for
ionization energies, but in general ǫok

(0.5) is a rather good approximation.

3.7.2 Hellmann-Feynman Theorem

Already in 1933 the theory was very close to an invention of DFT. Back then, i.e. 31 years
before the Hohenberg-Kohn paper, it was shown that forces acting on nuclei are only due
to electrostatic interactions between the nuclear charges and the electron density. When
FK is the force acting on atom (or nucleus) K, i.e.

FK = −∂Ev[n]

∂RK

(3.201)

in the language of DFT, Hellmann (1933, 1937) and Feynman (1939) showed within an
exact derivation, starting from the many-body Schrödinger equation that

−∂Ev[n]

∂RK

= FK = −
∫

∂v(r, {RI})
∂RK

n(r) d3r . (3.202)

Starting from DFT, the proof is simple and will be done in the exercises (see also Scheffler,
Vigneron, Bachelet, Phys. Rev. B 31, 6541 (1985)).

13Taking into account the spin in the LSDA improves the value for the ionization energies of the
hydrogen atom at the “transition-state” for half-occupation slightly: I ≈ −ǫLSDA

1 ( 1
2 ) = 13.35 eV, ǫ1(1) =

−7.32 eV and ∆Ee = 13.1 eV, for the H-atom.
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3.7.3 Spin Polarization

References:

Kohn and Sham (1965), Barth, Hedin (1972), Rajagopal, Callaway (1973), Levy.

Strictly, the ground state density alone defines the full problem: The ground state density
determines the many-body Hamilton operator, which determines everything. However, the
dependence of the total energy on the density is very complicated, and possibly cannot
be represented in a closed mathematical form. Therefore, it is reasonable to soften the
puristic approach and to start, e.g. for magnetic systems, with densities for spin up and
spin down electrons as independent variables. This establishes the spin-density-functional
theory (SDFT) and is an important and simple improvement of DFT. In this way, also
magnetic effects can be described. For non-magnetic systems SDFT and DFT are identical.
In the spin-density-functional theory the density matrix is used as the basic variable:

ns,s′(r) = 〈Φ|Ψ+
s (r)Ψs′(r)|Φ〉 (3.203)

here s and s′ represent the spin orientations of individual particles: ↑ or ↓. Ψ+
s (r) and Ψs′(r)

are field operators, i.e., creation of a particle at position r with spin s and annihilation of
a particle at position r with spin s′. Φ is the ground state wave function of the N electron
system. The particle density (the basic variable in DFT) is

n(r) = n↑(r) + n↓(r) , (3.204)

and the magnetization density is

m(r) = µB{n↑(r)− n↓(r)} . (3.205)

Here, instead of n↑↑ I have used only n↑ and instead of n↓↓ only n↓. Thus, we only need
the diagonal elements. The Bohr magneton µB is defined as

µB =
eh̄

2mc
. (3.206)

Now we want to use

n↑(r) = 〈Φ|
N∑

k=1

δsk,↑ δ(r− rk)|Φ〉 (3.207)

and

n↓(r) = 〈Φ|
N∑

k=1

δsk,↓ δ(r− rk)|Φ〉 (3.208)

as the basic variables. Exactly analogous to standard DFT we obtain a single-particle
equation: {

− h̄2

2m
∇2 + veff

sk
(r)

}
ϕoksk

(r) = ǫoksk
ϕoksk

(r) . (3.209)

The wave functions ϕok↑ and ϕok↓ are now determined from two different equations, but
these equations are coupled, because the effective potential depends on n↑ and n↓:

veff
sk

(r) = v(r) +
e2

4πε0

∫
n(r)

|r− r′| d
3r + vxc

sk
(r) , (3.210)
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with

vxc
sk

(r) =
δExc[n↑, n↓]

δnsk
(r)

, (3.211)

and

nsk
(r) =

N∑

i=1

δsk,si
|ϕoisi

(r)|2 . (3.212)

The exchange-correlation potential now depends on the spin orientation. For practical
calculations the local spin-density approximation is introduced:

Exc−LSDA =

∫
n(r) ǫxc−jellium (n(r),m(r)) d3r . (3.213)

Here, ǫxc−jellium (n,m) is the exchange-correlation energy per particle of a homogeneous
electron gas of constant particle density n and constant magnetization density m. The
exchange-correlation potential of the LSDA depends on the local electron density in a sim-
ilar way as in LDA. However, the exchange and the correlation contribution of vxc−LSDA

sk
(r)

or ǫxc−LSDA additionally depend on the spin-orientation.

Apart from spin-density theory also other generalizations have been investigated: Velocity-
dependent forces, spin-orbit-coupling, relativistic formulation (→ Dirac equation). These
will not be discussed here (cf. Rajagopal, Calloway, Phys. Rev. B 87, 1912 (1973); Mac
Donald, Vosko: J. Phys. C 11, L943 (1978); Rajagopal, J. Phys. C 11, L943 (1978)).

3.7.4 Two Examples

Finally, we will demonstrate for two examples, which type of information can be obtained
using DFT-LDA and SDFT-LSDA calculations. Later, at the detailed discussion and ex-
planation of the nature of cohesion of solids we will use such calculations again.

Before 1980 systematic high-quality DFT calculation were not possible, partly due to the
lack of efficient and reliable algorithms, partly due to the lack of computational power.
Therefore, it was often not understood how the electron density is distributed in the crystal
and how the solid is stabilized. It was, for example, not clear, why silicon does exist in the
diamond structure or why silver has a fcc structure. Using parameter-free, self-consistent
DFT calculations an initial understanding was obtained. However, we are still at the
beginning, but with good perspectives: Efficient algorithms and powerful hardware are
available, and compared to 1980 the efficiency of state-of-the-art algorithms is very much
higher. The main advantage of such parameter-free, self-consistent DFT calculations is
that the results can be analyzed in detail, i.e., which parts are essential for the stabilization
of the solid and which are not. Such theoretical investigations of static and low-frequency
dynamical properties usually are performed via the self-consistent calculation of the Kohn-
Sham equation. The self-consistent field procedure is almost identical to the Hartree
approximation discussed before (cf. Fig. 3.2), but now the effective potential additionally
contains exchange and correlation. The only external parameters given (by the scientist)
are the nuclear charge (i.e., the decision of the material, e.g. Si or Ag). In general, the
lattice geometry will be varied in order to find the most stable geometry, i.e., the lowest
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energy structure, and to analyze n(r) for this structure. For these calculations there are
still several serious practical problems that are not visible in Fig. 3.2. These problems are:

1. The solution of the effective Schrödinger equation. For this purpose suitable methods
have to be developed (cf. Chapter 5). Such an equation cannot be solved analytically
(except for the hydrogen atom and the linear harmonic oscillator).

2. The calculation of n(r) as an integral or the summation of the |ϕoi
(r)|2, respectively.

3. The calculation of the Poisson Eq. (3.104) for arbitrary charge densities −en(r).

4. Approximations for the exchange-correlation functional Exc[n].

Figure 3.19: Density-functional theory calculations (using the local-density approximation
for the exchange-correlation energy) of the total energy for various crystal structures of
silicon as function of the volume per atom. The volume-axis is normalized such that the
value 1.0 corresponds to the experimental result known for the diamond structure of Si.
(M.T. Yin and M.L. Cohen, ”Theory of static structural properties, crystal stability, and
phase transformations: Application to Si and Ge”, Phys. Rev. B 26, 5668-5687 (1982)).

Figure 3.19 shows a “historic figure”, namely what I consider to be the first convinc-
ing example demonstrating what type of problems can be tackled by density-functional
theory calculations14. These are calculations performed in the group of Marvin Cohen

14Another early, impressive example of the power of density-functional theory calculation is the book by
V.L. Moruzzi, J.F. Janak, and A. R. Williams, “Calculated Electronic Properties of Metals”, Pergamon
Press (1978).
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in Berkeley. The figure shows the total energy for silicon as function of the volume per
atom, where the volume was normalized such that 1.0 is that of the experimentally known
result for Si in the diamond structure. The results show clearly that the lowest energy of
all considered structures is indeed found for the diamond structure, and the minimum of
the theoretical curve is very close to the experimental result. If the volume is reduced the
figure also reveals that there is a phase transition that eventually brings the system into
the beta-tin structure. The slope of the common tangent of two curves for the beta-tin
and the diamond structures gives the pressure at which the phase transition sets in. This
common tangent is called the Gibbs construction. Such calculations can predict and ex-
plain why solids behave as they do, and new materials of hitherto unknown structure or
composition can be investigated as well.

Figure 3.20: A cut through the earth showing the various shells (left) and the calculated
melting curve for iron. (D. Alfè, G.D. Price, and M.J. Gillan, “Melting curve of Iron at
Earth’s core pressures from ab-initio calculations”, Nature 401, 462-464 (1999).)

In Fig. 3.20 I show a more recent example and this demonstrates how density-functional
theory calculations can tell us things about geology that we cannot learn otherwise. Save
knowledge about the earth only exists about the crust and the upper mantle. However, it
is interesting and indeed important to know more about the central region of our planet,
as this, for example contains information about the origin, the development, and the fu-
ture of the earth. One aspect here also is the question what determines the earth magnetic
field and its fluctuations and changes. The structure of the earth (left side in Figure 3.18)
is known from measurements of the propagation, time delays, phase differences of earth
quake waves, as these are reflected when the composition or the aggregate state in the
earth change. The inner core of the earth is most likely solid and then we have the outer
core which is liquid. We know the depth and we also quite accurately can estimate the
pressure that is present at the phase boundary between the solid and the liquid core.
The material down there is mostly iron probably with some fraction of O, S, Se and C.
Unclear, however, is the temperature at this place.

In fact, we don’t know at what temperature does iron melt when it is put under such
a high pressure of 330 GPa, and we have no idea how such melt may behave. What is
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the local structure and what is the viscosity of the melt at such extreme conditions? The
problem is that such pressure can hardly be reached in the laboratory. With a diamond
anvil cell one gets somewhat close, i.e., to 200 GPa, but not to 330 GPa.

Density-functional theory calculations by Alfè et al. (see also http://chianti.geol.ucl.ac.uk/
∼dario/ and http://chianti.geol.ucl.ac.uk/∼dario/resint.htm) have shown that the melt-
ing temperature of iron at 330 GPa is 6.670 K (cf. Fig. 3.18, right). Thus, this must be
the temperature at the interface between the inner and the outer core. In simple words
one could say, that DFT was used as a thermometer to determine the temperature at an
inaccessible place.

Furthermore, the authors studied the viscosity. The previously existing experimental es-
timates differed by many orders of magnitude. The DFT work showed that liquid iron in
the outer core should have a local coordination similar to that of the hcp structure, and
the viscosity is only by a factor of 10 higher than that of liquid iron at standard pressure.
This is actually on the lowest side of the previous experimental estimates. Of course there
are also some uncertainties in the theoretical result. These arise, because a somewhat
small supercell was used, the exchange-correlation functional was, of course, treated ap-
proximately, and the authors studies pure iron, i.e., without the O, S, etc. fractions that
must be there as well. All together the uncertainty of the calculated viscosity may be a
factor of 3. This is still a much lower uncertainty than that of experimental studies.

It is now clear that in the outer core local circulations and turbulent convection will occur.
At most of the previous, experimentally estimated values for the viscosity this would not
be possible.

3.8 Summary (Electron-Electron Interaction)

Chapter 3 was “only” concerned about the properties of the electronic ground state, e.g.
the basic equations that one has to solve to learn about the total energy (internal energy),
density of the electrons, screening, lattice structure, lattice constant, elastic properties,
lattice vibrations, and approximate electronic excitations. In the following summary of
the most important equations we assume for clarity that spin polarization is absent, i.e.,

n↑(r) = n↓(r) =
n(r)

2
. (3.214)

The Hamilton operator of the electrons is

He = T e + V e−Ion + V e−e (3.215)

=
N∑

i=1

− h̄2

2m
∇2

ri
+

N∑

i=1

v(ri) +
1

2

e2

4πε0

N,N∑

i,j=1

i6=j

1

|ri − rj|
. (3.216)

The total energy is

E0 = Ee
0 + EIon−Ion with Ee

0 = MinΦ〈Φ|He|Φ〉 . (3.217)
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The density-functional theory of Hohenberg and Kohn means that the many-body Schrödin-
ger equation with the Hamilton operator (Eq. ( 3.215)) can be transformed into a self-
consistent field theory. Hohenberg and Kohn have shown that

〈Φ|He|Φ〉 =

∫
v(r)n(r)d3r + F [n] = Ev[n] (3.218)

with the particle density of the electrons

n(r) =
N∑

i=1

〈Φ|δ(r− ri)|Φ〉 (3.219)

and
F [n] = 〈Φ|T e + V e−e|Φ〉 . (3.220)

For a given external potential v(r) and taking into account the conservation of the number
of particles (

∫
n(r)d3r = N), Ev[n] assumes a minimum at the correct particle density

n(r), and at the value Ee
0 for the energy of the electronic ground state. We have:

δTs[n]

δn(r)

∣∣∣∣
n0

+veff(r) = µ . (3.221)

Here Ts[n] is the kinetic energy functional of independent (non-interacting) particles. It
must not be confused with T e = 〈Φ|T e|Φ〉, which is defined for interacting systems. We
have:

δTs[n]

δn(r)
=

h̄2

2m

(
3π2n(r)

)2/3
+ O (∇n(r)) . (3.222)

It should be noted, however, that this series expansion converges slowly and is therefore
probably not useful; using only the Thomas-Fermi approximation to the kinetic energy is
very inaccurate.

For veff(r) we have:

veff(r) = v(r) +
e2

4πε0

∫
n(r′)

|r− r′|d
3r′ +

δExc[n]

δn(r)
, (3.223)

where Exc[n] is the exchange-correlation functional. We have:

Exc[n] = 〈Φ|He|Φ〉 −
∫

v(r)n(r)d3r− Ts[n]− 1

2

1

4πε0

∫∫
n(r)n(r′)

|r− r′| d3rd3r′ . (3.224)

The quantity µ introduced as a Lagrange parameter in Eq. (3.221) is the chemical poten-
tial of the electrons.

The particle density of Eq. (3.219) can also be determined using the Kohn-Sham equation:

{
− h̄2

2m
∇2 + veff(r)

}
ϕok

(r) = ǫok
ϕok

(r) (3.225)

with

n(r) =
N∑

k=1

|ϕok
(r)|2 . (3.226)
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Equation (3.221) means: In principle it is possible to determine n(r) directly from v(r),
i.e., the many-body wave function Φ(r1σ1, . . . , rnσN) is not required explicitly.

The problem with the calculation is that the functional Ts[n] is not explicitly known, or
that the known approximations are inaccurate or very complicated. Although the func-
tional Ts[n] cannot be given in a closed mathematical form, its value is calculated exactly
when the Kohn-Sham equation is used. Experience shows that the exact calculation of
Ts[n] is very important.

Exc[n] is also not known exactly. A known approximation for Exc[n] and for vxc(r) = δExc[n]
δn(r)

is the “local-density approximation” (LDA).

Equation (3.225) means that the many-body problem of the Hamilton operator of Eq.
(3.215) can be brought into the form of a single-particle equation to be solved self-
consistently. The potential, in which the N independent quasi particles ϕok

(r) move,
veff(r), is local (i.e., it is multiplicative) and is identical for all particles. In practical cal-
culations the only approximation introduced concerns Exc[n].

Approximations:

1. Local-density approximation (LDA):

Exc[n] =

∫
n(r) ǫxc[n](r)d3r → Exc−LDA[n] =

∫
n(r)ǫxc−jellium (n(r)) d3r

(3.227)
ǫxc−jellium(n) is the exchange-correlation energy per particle of the homogeneous
electron gas (jellium) of density n. Strictly, Eq. (3.227) is valid only for slowly
varying densities. Experience with this approximation for calculations of atoms,
molecules and solids shows that Eq. (3.227) in general can also be applied to these
systems.

2. The Hartree-Fock approximation is obtained from Eq. (3.223) and (3.225), when

δExc[n]

δn(r)
= vxc(r) (3.228)

is replaced by

vx
k(r) = − e2

4πε0

∫
nHF

k (r, r′)

|r− r′| d3r′ . (3.229)

nHF
k (r, r′) =

N∑

i=1

δsi,sk

ϕ∗
oisi

(r′)ϕoksk
(r′)ϕoisi

(r)

ϕoksk
(r)

(3.230)

is called exchange particle density. This approximation is obtained, if the many-body
wave function is constructed from one Slater determinant.

Problems:

a) vx
k(r) depends on the index (quantum number) of the wave function to be

calculated.
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b) vx
k(r) contains only exchange, i.e., the correlation of the electrons due to the

Pauli principle. The correlation arising from the Coulomb repulsion between
electrons is missing.

3. The Hartree approximation is obtained when Exc[n] and vxc(r) are neglected. Strictly,
vxc(r) should be replaced by

vSIC
k (r) = − e2

4πε0

∫ |ϕok
|2

|r− r′| d
3r , (3.231)

which is, however, typically ignored. This approximation is obtained, if the many-
body wave function is constructed as a simple product of single-particle functions.

4. The Thomas-Fermi approximation is obtained from Eq. (3.221), (3.222) and (3.224),
if the following approximation is introduced:

a) in Ts[n] O(∇n) is neglected

b) in Exc[n] O(∇n) is neglected

Problems: The approximation for Ts[n] generally yields an error of 10% in the total
energy. The shell structure of the atoms is not described.
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Chapter 4

Lattice Periodicity

4.1 Symmetry

In part 3 we saw that the many-body problem can be reduced exactly to the self-consistent
solution of effective single-particle equations:

hϕoi
(r) = ǫoi

ϕoi
(r) (4.1)

with

h = −
h̄2

2m
∇2 + veff(r) . (4.2)

In the effective potential, the electrostatic potential of the nuclei depends on the atomic po-
sitions, the Hartree and the exchange-correlation potential are determined by the charge
density of the electrons. Since the densities depend on the positions of the atoms, the
symmetry properties of veff(r) are determined the arrangement of the lattice components
(nuclei), i.e., by the symmetry of v(r). Note that this does not always mean that the sym-
metry of veff(r) has to be the same as that of any given system of nuclei. In principle, the
charge density (and thus, veff(r)) could have a lower symmetry than a given arrangement
of nuclei.1 However, this will then lead to residual forces on the nuclei, “pulling” them
into the same (lower) symmetry state as veff(r). In general, the symmetries of v(r), n(r)
and veff(r) will thus be consistent with one another when the nuclei are at their equi-
librium position. Since the operator ∇2 is invariant with respect to translation, rotation
and inversion in real space, the symmetry of h is determined only by veff(r). Now we will
see what we can learn from such investigations of the symmetry. In order to study the
properties depending on the periodic arrangement of the atoms, we first have to intro-
duce several definitions. The fundamental property of a crystal or a crystalline solid is the
regular arrangement of its constituents, i.e., the nuclei. “Periodicity” and “order” are not
synonyms, and the most recent definition by the “International Union of Crystallography”
therefore reads: “A crystal is a solid having an essentially discrete diffraction pattern.”
Periodic crystals form a subset. At this point we note that in nature crystals are more
frequent than expected: Not only diamond and quartz are crystals. Also metals often have
a crystalline structure, although their outer shape usually is not so pronounced as, e.g.
for salts or for minerals.

A periodic crystal is characterized by the fact that by a certain translation it is mapped
onto itself. A translation is defined by a vector

Rn = n1a1 + n2a2 + n3a3 , (4.3)

1So-called spin or charge density waves in periodic crystals are an example for cases where the nuclei
may have a different (higher) translational symmetry (see below) than the resulting veff(r). Examples are
the so-called Peierls instability, or the magnetic ground state of Cr, where the periodicity of the electronic
spin density extends over many unit cells of the actual nuclear subsystem.
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a1

a2

Figure 4.1: A two-dimensional Bravais lattice. The choice of the primitive vectors a1, a2

is not unique.

where ni ∈ Z and the vectors ai are linearly independent. For the translation operator we
have

TRn
f(r) = f(r + Rn) , (4.4)

where f(r) is an arbitrary function. We have

TRn
veff(r) = veff(r + Rn) = veff(r) (4.5)

and
TRn
∇2f(r) = ∇2f(r + Rn) = ∇2TRn

f(r) . (4.6)

This means that TRn
and h commutate: Then for the Hamilton operator h we have

TRn
hϕoi

(r) = hϕoi
(r + Rn) = hTRn

ϕoi
(r) = ǫoi

ϕoi
(r + Rn) . (4.7)

The vectors ai introduced above are called primitive vectors. The set of points defined by
{Rn} is called a Bravais lattice (cf. Fig. 4.1). For obvious reasons the term Bravais lattice
is often also used for the set of vectors {Rn}. The choice of the primitive vectors is not
unique, generally the shortest primitive translations are chosen. The points of the Bravais
lattice do not need to correspond to the positions of individual atoms. As a warning we
mention that not every apparently symmetric set of points constitutes a Bravais lattice
(cf. the example in Fig. 4.2). Apart from translations, which shift all points in space,
generally the structure of a crystal is also invariant with respect to symmetry operations
that keep at least one point fixed, so-called point symmetries (details will be given later).
The smallest structural unit of a crystal is called the primitive cell or the primitive unit

cell. If the primitive unit cell is shifted by all vectors of the Bravais lattice, the full space is
filled without gaps or overlap. Similar to the definition of primitive vectors the definition
of the primitive unit cell is not unique. A primitive unit cell contains exactly one point
of the Bravais lattice. Thus, a possible choice for the primitive unit cell would be the
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a1

a2

Figure 4.2: The crossing points of the honeycomb structure do not form a Bravais lattice,
but the centers of the dumbbells do. Thus, the hexagonal structure is also called a Bravais

lattice with basis, i.e., for each point of the Bravais lattice in this case there are two atoms,
which in this context are called basis.

body spanned by the shortest primitive vectors. This choice has the disadvantage that
the primitive unit cell defined this way often does not have the same symmetry (point
symmetry) as the Bravais lattice. But there is always a primitive unit cell, which has the
same symmetry with respect to reflection, rotations and inversion as the Bravais lattice.
This is the Wigner-Seitz cell: It consists of the region, which is closer to a certain Bravais
lattice point than to all other Bravais lattice points. The Wigner-Seitz cell has the same
symmetry as the Bravais lattice. For the construction of the Wigner-Seitz cell, one starts
with an arbitrary point of the Bravais lattice. The surface is obtained by connecting this
lattice point with its nearest neighbors. In the middle of the connecting line a plane per-
pendicular to this line is constructed. A two-dimensional example is shown in Fig. 4.3,
and some three-dimensional examples are shown in Fig. 4.4.

Often it is more illustrative to construct a crystal structure from larger unit cells instead
of primitive cells (“conventional unit cells”). Four important examples for Bravais lattices
are the sc (simple cubic), fcc (face-centered cubic), bcc (body-centered cubic) and the
hexagonal Bravais lattice (cf. Fig. 4.4).

Apart from translations TRn
there may be further symmetry operations of the crystal:

1) Rφ rotation

1a) Cn normal rotation by φ = 2π
n

1b) Sn improper rotation

2) σ reflection
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Figure 4.3: The Wigner-Seitz cell of a square net of points.

3) i = S2 inversion

4) T̂Rφ screw rotation

5) T̂ σ glide reflection

Generally, the term “rotation” includes “normal rotations” as well as improper rotations.
An improper rotation is the following combination of operations: First, rotate about a
certain axis by the angle φ and then reflect at the plane perpendicular to this axis.
Screw rotation and glide reflection are combinations of rotations and reflections and non-
primitive translations. The example of a glide reflection is shown in Fig. 4.5.

If we want to distinguish between proper and improper rotations, instead of the symbol
Rφ we use the following symbols: Operator of the normal rotation: Cn. Operator of the
improper rotation: Sn. The letter C results from “cyclic”. The Index n gives the rotation
angle φ as φ = 2π/n.

The operation of inversion at the origin, i.e., x→ −x, y → −y, z → −z is labeled by
the letter i. We have: i = S2-reflections are labeled by the letter σ. They can be composed
of a rotation and an improper rotation: σ = C−1

n ⊗ Sn.

It can easily be seen that the set of symmetry operations of a body has group properties.
Therefore, we have the four laws (O,A,N,I):

1) There is an operation ⊗ :

a, b ∈ G→ a⊗ b = c ∈ G

2) The associative law is valid:

a⊗ (b⊗ c) = (a⊗ b)⊗ c
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Figure 4.4: Some Bravais lattices and the corresponding Wigner-Seitz cells.

3) There is a neutral element E:

a⊗ E = E ⊗ a = a

4) For each element in G there is an inverse element:

a⊗ a−1 = E = a−1 ⊗ a

For the elements of the Bravais lattice, i.e., for the translations, additionally we have the
commutative law a⊗ b = b⊗ a:

TRm
+ TRn

= TRn
+ TRm

= TRn+Rm
(4.8)

Thus, the translational group is Abelian.

A subset U of G, that is closed with respect to the operation ⊗ and itself has group
properties, is called a subgroup. The set of elements, which is generated by operating all
elements of U on a given element a of the group, is called a coset (notation a⊗U). The
cosets themselves are not groups. For non-Abelian groups one has to distinguish between
right (U⊗a) and left cosets (a⊗U). If, in a special case, right and left cosets of a subgroup
U are the same, the subgroup U is called a normal divisor of G.

As an example for a point symmetry we now investigate the point group of a cube. The
group is labeled Oh, the letter O referring to “octahedra”. This point group is rather
important. Many important crystals have this point symmetry or at least the symmetry
of a subgroup of Oh. The sc, fcc, and bcc Bravais lattices have Oh symmetry.
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T (Translation)

σ (Mirror)

Figure 4.5: The system of two atom types is mapped on itself by a combination of trans-
lation T and reflection (glide reflection symmetry). The translation T and the reflection σ
alone would not be symmetry operations. In this example the glide reflection is identical
to a screw rotation. For the screw rotation a translation and a rotation (here by 1800) are
combined.

symbol operation number
E unit operation 1
C4 rotation around the x-, −x-, y-, −y-, z- or −z-axis by 2π/4 6
C2 rotation around the x-, y- or z-axis by 2π/2 3
C2 rotation around the six axes cutting the edges of the cube

in the middle by 2π/2
6

C3 rotation around the four space diagonals by ±2π/3 8
⊗ i all operations given up to here ⊗ i 24

Table 4.1: The 48 symmetry operations of the cube, i.e., the point group Oh.

In Table 4.1 the symmetry operations are described. Reflections do not appear explicitly
in the table, but they are included in the symmetry operations of Oh. We have σv = i⊗C2

and σd = i⊗ C ′

2. The index at σ indicates if the plane is crossing the cube vertically (v)
or diagonally (d).

As another term we introduce is the class of conjugate elements (often just called class).
Two symmetry operations a and b are part of such a class if there is an element c of this
group, so that we have

a = c−1bc (4.9)

a and b are then called “similar symmetry operations” or “conjugate operations”. Sym-
metry operations of the “same kind” are in one class. In Table 4.1 we already intuitively
summarized the symmetry operations according to classes. Only in the last row we con-
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x

y

Rφ r = r̃

rφ

Figure 4.6: Operator Rφ. Here: Rotation about the z-axis by the angle φ.

sidered 5 classes together. This can easily be validated. The group Oh has 10 classes. The
group O (this is the subgroup of Oh, which does not contain i) has 5 classes. The neutral
element is always a class by itself.

The total of all symmetry operations (translations, point symmetries, and combinations
of both), which map the Bravais lattice (including a possibly existing basis) on itself, form
the space group of the crystal. If we label the operator of a rotation (by the angle φ) with
Rφ (cf. Fig. 4.6), an arbitrary element of the space group can be labeled by (Rφ; TD). We
have:

(Rφ; TD)f(r) = f(r̃ + D) (4.10)

with r̃ = Rφr. Because D appears in a combination of rotation and translation operations,
it is not necessarily an element of the Bravais lattice (cf. Fig. 4.5).

It can be shown that the space group contains the required group properties. In particular
it has to be closed with respect to all operations, which are defined as:

(Rφ2
; TD2

)(Rφ1
; TD1

) = (Rφ2
Rφ1

; TRφ2
D1+D2

) (4.11)

For the inverse element we have:

(Rφ; TD)−1 = (R−1
φ ; T

−R−1

φ
D

) . (4.12)

For Bravais lattices we have: The total number of the different2 symmetry operations is
finite: There are, e.g. only four rotations: C2, C3, C4, and C6. In periodic solids there is no
rotational axis with a 5-fold symmetry or a symmetry of higher than 6 (due to transla-
tional invariance).

Proof:

The vectors of the Bravais lattice are

Rn = n1a1 + n2a2 + n3a3 . (4.13)

2The operations TRn
and NTRn

or Cn and 2Cn, 3Cn, . . . are considered the same.
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Figure 4.7: Visualization of Equations (4.19) and (4.20).

Further, the crystal shall have (at least) one rotational axis Cn, and for the moment we
leave it open, what n may be. CnRn then also is an element of the Bravais lattice. The
vectors

R′

n = Rn − CnRn (4.14)

are perpendicular to the rotational axis and are of course also part of the Bravais lattice.
The shortest of these vectors shall be labeled with a1. The vectors (kCn)a1 with k = 1 . . . n
are then also elements of the Bravais lattice; (kCn) means that the rotation is performed
k-times. They all have the same length as a1. Now we consider two vectors of different
lengths:

|a1 − (kCn)a1| = L1 (4.15)

and
|a1 + (kCn)a1| = L2 . (4.16)

Because a1 is the shortest vector perpendicular to the rotational axis, we have

L1 ≥ |a1| (4.17)

and
L2 ≥ |a1| . (4.18)

Alternatively, it would be possible that L1 or L2 are zero. In Fig. 4.7 it can be seen that
for k = 1 . . . n ∣∣∣∣sin

(
kπ

n

)∣∣∣∣ =
L1

2|a1|
(4.19)

and ∣∣∣∣cos

(
kπ

n

)∣∣∣∣ =
L2

2|a1|
. (4.20)

With condition (Eq. (4.17)) follows:

∣∣∣∣sin
(

kπ

n

)∣∣∣∣ =
L1

2|a1|
≥

1

2
= sin(30◦) (4.21)

for all numbers k ≤ n. This means that we must have kπ
n
≥ π/6, i.e., n must not be larger

than 6.
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G̃1 A1 A2 . . . AN

A1 A1 ⊗ A1 A1 ⊗ A2 . . . A1 ⊗ AN

A2 A2 ⊗ A1 . . . . . . . . .

... . . . . . . . . . . . .

AN AN ⊗ A1 . . . . . . AN ⊗ AN

Table 4.2: Multiplication table of a group G̃1 consisting of N elements. Each product
Ai ⊗ Aj is equal to an element of the group, i.e., Ai ⊗ Aj = Ak .

From Eq. (4.18) we obtain

∣∣∣∣cos

(
kπ

n

)∣∣∣∣ ≥
1

2
= cos(60◦) (4.22)

If we set k = 2, we obtain a contradiction; thus n = 5 is also impossible. Therefore, we
have proven that for a Bravais lattice only point symmetries with rotations C2, C3, C4,
and C6 can exist.

A cell with C5 or one with Cn and n > 6 cannot fill space completely or without over-
lap. This was noted already in 1619 by Johannes Kepler. However, in 1984 in rapidly
cooled aluminium-manganese-melts diffraction images of 5-fold symmetry were measured
(Phys. Rev. Letters, 53, 1951 (1984) ) and also 12-fold (Phys. Rev. Letters, May 1988)
symmetries were found. These are not periodic crystals although these are ordered sys-
tems. These “new lattices” are called quasi-crystals (cf. e.g. Physikalische Blätter 1986,
S. 373 and S. 368, Fig. 3). A certain analogy to the three-dimensional quasi crystals in
two dimensions are the so-called Penrose-patterns (cf e.g. Spektrum der Wissenschaft,
Juli 1999). This effect is also known from tiling walls or floors. When tiles of five-fold
symmetry are used one also needs other tiles to fill some areas.

From the very limited number of possible rotation axes for Bravais lattices it follows:
For Bravais lattices there are only 7 different point groups (7 crystal systems). We first
have to explain what is meant by the term “different”, or what is meant by the term
“the same”. Two groups are equivalent, if they contain the same number of elements and
if their multiplication tables are identical. The multiplication table of a point group is
defined in Table 4.2. Instead of the term “point group of the Bravais lattice” we also use
the term “crystal system” as a synonym. One of the 7 point groups, i.e., the group Oh,
has already been examined.

In Table 4.3 the 7 crystal systems are listed, where we reduce the symmetry of the sample
body (with the exception of the hexagonal point group) when going from row N to N +1.
When considering the space groups one finds that for Bravais lattices (with mono-atomic
basis) there are only 14 different space groups. This has been investigated by Frankheim
in 1842, but he made a mistake (he found 15), in 1845 Bravais found the correct number.

99



crystal system crystal axes example Bravais lattice

cubic α = β = γ = 90o

a = b = c

a b = a

c = a

sc,
fcc,
bcc,

tetragonal α = β = γ = 90o

a = b 6= c

a b = a

c

simple tetragonal,
centered tetragonal,

orthorhombic
(rhombic)

α = β = γ = 90o

a 6= b 6= c

a b

c

simple,
face centered,
body centered,
face centered,

(Basis: upper/lower facet)

monoclinic α = γ = 90o 6= β
a 6= b 6= c

von oben

Seiten

a b

c

simple monoclinic,
centered monoclinic,

triclinic α 6= β 6= γ
a 6= b 6= c

α
β

γ

a

b

c

Parallelepiped (Spat),
opposite facets are

parallel

simple triclinic,

trigonal α = β = γ 6= 90o

a = b = c

a b = a

c = a

simple trigonal,

hexagonal α = β = 90o

γ = 120o

a = b 6= c

g

c

a

a

simple hexagonal.

Table 4.3: The 7 Crystal Systems and 14 Bravais Lattices.
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crystal system
number
of Bravais
lattices

number
of point
groups

name of the point groups

cubic 3 5 Oh, O, Th, T , Td

tetragonal 2 7 C4, S4, C4h, D4, C4v, D2d, D4h

orthorhombic 4 3 D2, C2v, D2h

monoclinic 2 3 C2, CS, C2h

triclinic 1 2 C1, Ci

trigonal 1 5 C3, C3i, D3, C3v, D3d

hexagonal 1 7 C6, C6h, D6, C6v, D3h, D6h, C3h∑
= 14

∑
= 32

Table 4.4: Bravais lattices and point groups of the crystal structures.

fct:

bct:

1

1

2

2

3

3

top view in [100] direction

in [110] direction

[100]

[110]

layer 1 layer 2
layer 3

= layer 1

Figure 4.8: Layer sequence of a fct and of a bct lattice (at the left: projection onto the
(001) plane). Both lattices can be represented as a ct lattice.
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There are further Bravais lattices, that may come to mind analogous to sc-, fcc-, and
bcc-lattices. They are not included in the table, because they are equivalent to the ones
listed. For example, a face-centered and a body-centered tetragonal Bravais lattice are
identical (cf. Fig. 4.8).

This is a first crude classification of all possible periodic crystals in the 14 Bravais lattices.
For each crystal there is a Bravais lattice and a crystal system. In case each point of the
Bravais lattice has an inner structure (e.g. the dumbbells of Fig. 4.2), i.e., if it has a basis,
then the point symmetry of the crystal is lower than the symmetry of the Bravais lattice.
Generally, we have: The point group of a crystal is a subgroup of the crystal system. For
the cubic crystal system Oh, e.g. there are 5 subgroups, which can be present in real crys-
tals. These are the groups Oh, O (like Oh, but without inversion i), Td (the point group
of a tetrahedron: E, 8C3, 3C2, 6σd, 6S4), T (the point group of a tetrahedron, without re-
flection symmetry: E, 3C2, 4C+

3 , 4C−

3 ), the group Th = T ⊗ i, which in addition to
T contains also the operations i, 8S6, 3σd. We have used σd = C2 ⊗ i and S4 = C4 ⊗ i.
Thus, if the “inner atomic structure” of the individual points of the Bravais lattice are
taken into account, one finds: There are 32 crystalline point groups, which are compatible
with the translational properties of a crystal (cf. Table 4.4) and there are 230 space groups.

C

B

A

A

Figure 4.9: Close-packed structures hcp (left, layer sequence ABCABC. . . ) and fcc (right,
layer sequence ABAB. . . ).

If one thinks of the crystal as being composed of hard spheres and these spheres are close-
packed, one obtains a structure with the first two layers as shown in Fig. 4.9. The first
layer has a 6-fold symmetry and each sphere has 6 neighbors. The spheres of the second
layer are located in the hollow sites of the first layer. For the third layer there are two
different possibilities: The spheres could be on top of the gaps (site b) or above the spheres
of the second-last layer (site a). In the second case the arrangement of the third layer is
equal to the first, and we obtain a layer sequence ABABAB... . This is the hcp-structure.
In case b) a layer sequence of ABC... can be obtained. This is the fcc-structure.

fcc- and hcp-structures are mostly adopted by systems without directional bonds between
structural elements (in simple Bravais lattices without basis these are the atoms). Then
energetically it will be favored if each structural element can form bonds to as many
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neighbors as possible. In the fcc- and hcp-structure each structural element has twelve
nearest neighbors.

In Fig. 4.10 some important crystal structures are listed (from Ashcroft-Mermin). Further
some crystals adopting these structures and their lattice constants are given. Except for
the last example, the hexagonal structure, these are all cubic crystal systems.

Figure 4.10: Some important crystal structures. a) Simple cubic (sc) Bravais lattice, (e.g.
α-Polonium).

Fig. 4.10 – b) CsCl structure (sc with a diatomic basis).
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Fig. 4.10 – c) body-centered cubic Bravais lattice (bcc).

Fig. 4.10 – d) face-centred cubic Bravais lattice (fcc).

Fig. 4.10 – e) NaCl structure (fcc with a diatomic basis),
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Fig. 4.10 – f) Diamond structure (fcc with a diatomic basis).

Fig. 4.10 – g) Zincblende structure (fcc with a diatomic basis of different species).

Fig. 4.10 – h) Hexagonal closed packed structure (hcp, hexagonal Bravais lattice with a
diatomic basis). The table lists the lattice parameters for some elements with hexagonal
closed-packed structure (hcp), cf. Fig. 4.9.
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Bravais lattice crystal structure
point symmetry 7 crystal systems 32 crystalline point groups
point symmetry and
translational symmetry

14 Bravais lattices 230 crystalline space groups

Table 4.5: The space groups.

4.2 The Bloch Theorem

What can we learn from the symmetry properties of veff(r) for the solution of the Kohn-
Sham equation? In this paragraph we take into account (at first) the translational invari-
ance of the periodic crystal. For the Kohn-Sham equation the Hamilton operator of the
crystal and the translations of the Bravais lattice commutate (cf. Eg. (4.7)).

Thus, the functions ϕoi
(r) and TRn

ϕoi
(r) are both eigenfunctions of h, and they have the

same eigenvalue. In order to analyze this we will distinguish two cases:

a) The eigenvalue ǫoi
is non-degenerate.

Then the functions ϕoi
(r) and TRn

ϕoi
(r) are physically equivalent. They can differ

by a phase factor only:
TRn

ϕoi
(r) = eiαϕoi

(r) , (4.23)

where α is an arbitrary real number, which can depend on Rn.

In order to investigate the properties of the function α(Rn) in more detail, we apply
two translational operators Rn and Rm and obtain

TRm
TRn

ϕoi
(r) = eiα(Rm)eiα(Rn)ϕoi

(r) . (4.24)

Further we have
TRm+Rn

ϕoi
(r) = eiα(Rm+Rn)ϕoi

(r) . (4.25)

For the phase function α we obtain

α(Rm + Rn) = α(Rm) + α(Rn) , (4.26)

and we have
α(jRn) = jα(Rn) (4.27)

with j being an arbitrary integer number. The function α(Rn) therefore is linear in
Rn. Thus, it has the form

α(Rn) = kRn . (4.28)

Therefore, we have

TRn
ϕoi

(r) = ϕoi
(r + Rn) = eikRnϕoi

(r) (4.29)

This is the eigenvalue equation of the translation operator. The eigenvalues of TRn

are eikRn . The introduced vector k labels the eigenvalues of TRn
and thus also the

eigenfunctions of ϕoi
(r).
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b) The eigenvalue ǫoi
shall be degenerate.

As a second possibility we have to investigate the case that the eigenvalue is f -fold
degenerate. For the f eigenfunctions ϕl we have: The functions ϕl(r) and TRn

ϕl(r)
with l = 1 . . . f have the same energy eigenvalue ǫoi

. This means:

TRn
ϕl(r) =

f∑

m=1

Γm,lϕl(r) (4.30)

The matrices Γm,l are called representation of the translational group:

Γm,l = 〈ϕm|TRn
|ϕl〉 (4.31)

The translations TRn
form an Abelian group. This means: Since the group of the TRn

is Abelian, in the space {ϕl} with l ∈ {1 . . . f} there is a similarity transformation

of ϕl(r) to ϕ̃l(r) and thus of Γm,l to Γ̃m,l, such that the matrix Γ̃m,l is diagonal.3 This
is also formulated as follows: The irreducible representation of an Abelian group is
one-dimensional. Then, we can write:

TRn
ϕ̃l(r) = Γ̃l,lϕ̃l(r) (4.32)

Formally, this equation is the same as (4.29), and it follows that

Γ̃l,l = eikRn (4.33)

We summarize:

The translational operators of the Bravais lattice commutate with h. TRn
and h therefore

have the same eigenfunctions. The eigenfunctions and eigenvalues of h can be labeled by
the eigenvalues of TRn

or, better, by the vector k: From now on we will write ϕk(r) and
ǫ(k). k contains three quantum numbers. This labeling is not necessarily complete. The
statement that for the eigenfunctions of a crystal we have

TRn
ϕk(r) = ϕk(r + Rn) = eikRnϕk(r) (4.34)

is called Bloch theorem.4 In order to understand the meaning and the consequences of the
Bloch theorem, we have a look at the equation

ϕk(r) = eikruk(r) (4.35)

At first this is a very general ansatz for the eigenfunctions of h, because we have made
no assumptions for uk(r). We have:

TRn
ϕk(r) = eik(r+Rn)uk(r + Rn) (4.36)

Because for ϕk(r) the Bloch’s theorem is valid, we obtain

TRn
ϕk(r) = eikRnϕk(r) (4.37)

= eikRneikruk(r) (4.38)

3For the proof of this we refer to text books on group theory (e.g. Tinkham).
4This was found by Bloch during his PhD thesis, which he carried out in the group of Seitz, but

initially he was not aware of the importance of this result.
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From this we obtain the equation

uk(r + Rn) = uk(r) (4.39)

The function uk(r) has the periodicity of the Bravais lattice. This can be formulated as
follows: The solutions of the single-particle Schrödinger equation of a periodic crystal
have the form of a plane wave that is modulated by a function with lattice periodicity.
ϕk(r) generally does not have the periodicity of the lattice, but |ϕk(r)|

2. This gives rise
to a second formulation of Bloch’s theorem: Due to the translational invariance of the
Hamilton operator the eigenfunctions have the following form:

ϕk(r) = eikruk(r) with uk(r) having the periodicity of the Bravais lattice (4.40)

This form of the eigenfunctions of h gives a hint to the physical meaning of the vectors
k. When looking at the special case veff(r) = constant we know that the solutions are
simple plane waves:

ϕk(r) =
1√
Vg

eikr (4.41)

I.e., in this case the function uk(r) is constant. Vg is the volume of the base region. This
means: When going to a constant potential (infinitesimal translational invariance) k be-
comes identical to the wave vector. We note that the vector k, as appearing here, (for
crystals) is not uniquely defined. This is because different vectors k yield the same eigen-
value eikRn of TRn

. This will be investigated more closely now.

4.3 The Reciprocal Lattice

Since the vector k appears in a scalar product and in an exponent, it is not uniquely
defined. We have

eik′Rn = eikRn for k′ = k + Gm , (4.42)

if
GmRn = 2πN with N integer . (4.43)

All vectors k′ defined by Eq. (4.42) label the same eigenvalue and the same eigenfunction
of TRn

. How does the set of G-vectors defined by (4.42) look like? We define:

b1 =
2π

Ω
(a2 × a3)

b2 =
2π

Ω
(a3 × a1)

b3 =
2π

Ω
(a1 × a2) (4.44)

Here the vectors ai shall be the primitive vectors and Ω = a1(a2 × a3) is the volume of
the primitive unit cell. The vectors Gm then are

Gm = m1b1 + m2b2 + m3b3 (4.45)
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direct lattice reciprocal lattice
sc sc

hexagonal hexagonal
fcc bcc
bcc fcc

Table 4.6: Four important Bravais lattices in direct space and the corresponding Bravais
lattices in reciprocal space.

with mi being an integer number. This lattice of Gm-vectors defined in k space is called
the reciprocal lattice. (Vectors in real space have the dimension length. Vectors in recip-
rocal space have the dimension 1/length.)

The vectors of the reciprocal lattice satisfy the condition (Eq. (4.43)), and the basis vectors
of the reciprocal lattice are defined by Eq. (4.44), or by

aibj = 2πδi,j . (4.46)

The set {k+Gm} with an arbitrary vector Gm from reciprocal space labels the eigenfunc-
tions and eigenvalues of the single-particle Schrödinger equation. In order to label this
set we use the shortest vector of the set {k + Gm}. From the definition (4.45) we obtain
that the reciprocal lattice is a Bravais lattice. Therefore we consider only those k-vectors,
which are closer to point k = 0 (or G = 0) than to any other point of the reciprocal lattice.
Such a region of the reciprocal lattice is called “first Brillouin zone” (the corresponding
region of the direct lattice is called the “Wigner-Seitz cell”). A two-dimensional example
is shown in Fig. 4.11. The construction of Brillouin zones for three-dimensional Bravais
lattices is somewhat more complex, but of course also just geometry.

~a1
~a2

~b1

~b2

Figure 4.11: A two-dimensional rhombic point lattice. On the left the direct lattice and
the Wigner-Seitz cell are shown, and on the right the corresponding reciprocal lattice with
the first Brillouin zone.

It can easily be confirmed that the relations between the direct and the reciprocal lattice
noted in Table 4.6 are valid. Fig. 4.12 shows the 1st Brillouin zone of four important
direct lattices: sc, fcc, bcc, and hexagonal. The point k = 0 is always called Γ. Other
directions and points also have specific labels. Later we will need ǫ(k) for the full range
of the Brillouin-Zone of the crystal. For this purpose it is often sufficient to investigate
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a) simple cubic b) face-centered cubic

c) body-centered cubic d) hexagonal

Figure 4.12: Brillouin zones for the simple cubic a), face-centered cubic b), body-centered
cubic c), and hexagonal lattice d). The most important symmetry points and lines and
their labels are shown.

the function along certain directions or in a small part of the 1st Brillouin zone. The rest
is determined by the point symmetry of the lattice. This will be discussed later. Now we
will investigate the physical meaning of the reciprocal lattice and of the 1. Brillouin zone
for the wave functions of the effective single-particle Schrödinger equation. Due to the
translational invariance for the effective potential, veff(r + Rn) = veff(r), only the vectors
of the reciprocal lattice appear in the Fourier expansion:

veff(r) =
∑

l

veff(Gl)e
iGlr (4.47)

with GlRn = 2πN .

For the eigenfunctions of the Schrödinger equation we obtain in a similar way:

ϕk(r) = eikruk(r) = eikr
∑

m

CGm
(k)eiGmr (4.48)
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Then, the Kohn-Sham equation in reciprocal space is:

∑

m

h̄2

2m
(k + Gm)2CGm

(k)ei(k+Gm)r +
∑

l

veff(Gl)
∑

m

CGm
(k)ei(k+Gm+Gl)r

= ǫ(k)
∑

m

CGm
(k)ei(k+Gm)r (4.49)

For the CGm
(k) this means:

h̄2

2m
(k + Gn)2CGn

(k) +
∑

m

veff(Gn −Gm)CGm
(k) = ǫ(k)CGn

(k) (4.50)

For any chosen k = vector of the 1st Brillouin zone this is a set of equations, which for
a certain (given) k allows for the calculation of the expansion coefficients CGn

(k). Only
those coefficients CGn

(k) (or plane waves ei(k+Gn)r) are coupled by the periodic potential
veff(Gn −Gm), which differ by a reciprocal lattice vector. Equation (4.48) means that a
plane wave eikr in the solid does not exist alone, but due to diffraction at the periodic
potential plane waves ei(k+Gm)r are added. Equation (4.50) can also be written in matrix
form: ∑

m

hn,mCGm
(k) = ǫ(k)CGn

(k) (4.51)

with

hn,m =
h̄2

2m
(k + Gn)2δn,m + veff(Gn −Gm) (4.52)

This means that for each vector k one matrix equation has to be solved, which provides a
number of eigenfunctions and eigenvalues. Therefore, next to k another quantum number
will be introduced and we write: ϕn,k(r), ǫn(k). We find that equation (4.50) or (4.51) and
(4.52) are often quite useful for real systems and can be calculated. This is in particular
pronounced if it is combined with the so-called pseudopotential theory (cf. part V). The
main problem is the dimension of the matrix of Eq. (4.53), and in particular the calculation
of the non-diagonal elements or the sums in Eq. (4.50). We find that veff(Gl) rapidly
decreases with increasing length of the Gl and often only the first terms in veff(Gl) differ
from zero. If this is true, then the evaluation of Eq. (4.50) or (4.51) and (4.52) is possible,
because the non-diagonal part of the matrix hn,m is then of finite size. We have introduced
two quantum numbers: the vector k, which is limited to the first Brillouin zone and the
discrete index n. In order to illustrate this on a simple level, we examine a one-dimensional
example and a very weakly varying potential. Then, the energies are

ǫn(k) ≈
h̄2

2m
(k + Gn)2 . (4.53)

Figure 4.13 shows the parabola for G = 0 as a dotted line. We have found that due to
periodicity it is reasonable and sufficient to constrain k to the first Brillouin zone. This
is possible if we look at k + Gn, i.e., if we fold back parts, which are outside the first
Brillouin zone, of the dotted curve, by a suitable vector Gn. The part of Fig. 4.14 in the
range of the 1st Brillouin zone, or the function ǫn(k) is called the “band structure”.
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−2π/a −π/a 0 π/a 2π/a k

1. Brillouin
zone

G1

G2

ǫ(k)

Figure 4.13: First Brillouin zone of a one-dimensional lattice of lattice constant a. G1 and
G2 are the shortest non-zero reciprocal lattice vectors (length 2π/a). The straight line
gives the function ǫn(k).

For the further discussion of the importance of the reciprocal lattice we have taken a side
view at a crystal (cf. Fig. 4.14). We can see that the Bravais point lattice can also be
regarded as a regular arrangement of planes. There is a close relation between the vectors
of the reciprocal lattice and such parallel planes (the straight, the dashed-dotted and the
dashed planes in Fig. 4.14): For each family of lattice planes being separated by a distance
d there are reciprocal lattice vectors perpendicular to these planes. The shortest of these
reciprocal lattice vectors has the length 2π/d. The inverse of this statement is also true:
For each reciprocal lattice vector G there is a family of lattice planes perpendicular to G.
This close relation between planes of the crystal and the reciprocal lattice vectors implies
that one generally can label the planes in the crystal lattice by the shortest reciprocal
lattice vector being perpendicular to these planes.

. .

.

d1

d2d3

Figure 4.14: Side view of a crystal (i.e., of the Bravais point lattice)

These labels are called Miller indices. In general, they are defined by the cooredinates of
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the shortest possible reciprocal lattice vector of the Bravais lattice perpendicular to this
plane; by definition, they are always integer numbers and have no common factor. Note
that, usually, the Miller indices in any cubic lattice are referred to by the conventional

(cubic) cell, which for the fcc- and bcc-lattices is a sc lattice with a basis. Figure 4.15 shows
three important lattice planes for cubic crystals and their labels. In fcc and bcc lattices,
this convention leads to a formal disconnection between lattice planes and actual recipro-
cal lattice vectors: Since the primitive cells (one atom per cell) of both lattices are smaller
that the conventional cell (2 atomic for bcc, 4 atoms for fcc), some of their reciprocal lat-
tice vectors appear to be missing when written down in a in the “simple cubic” notation.
For example, for the bcc lattice we find that only (i, j, k) with i + j + k = even number
is allowed, for the fcc lattice the indices of reciprocal lattice vectors have to be either all
odd or all even numbers. Thus, the fcc, bcc, and sc lattices all have (111) lattice planes
as denoted by Miller indices and shown in Fig. 4.15, but the shortest corresponding re-
ciprocal lattice vector in bcc would have the indices (222).

Now we have a look at the origin of a reflection of electrons at (or in) a crystal, the crystal
being composed of planes. At first we imagine that a plane wave of electrons or X-rays
propagates with wave vector k. From the discussion of Eq. (4.48) we know that this wave
is not a stationary state (eigenstate). This is obtained without solving the Schrödinger
equation.

The wave is reflected at the crystal planes (cf. Fig. 4.16). We have constructive interference
(Bragg reflection), if the path difference of the waves scattered at different planes is a
multiple of the wave vector,

2d sin θ = mλ = m
2π

|k|
, (4.54)

where m is an arbitrary integer number and λ the wave length of the plane waves.

(100) (110) (111)

Figure 4.15: Important crystal planes in a cubic crystal

We rewrite this condition by using that there are reciprocal lattice vectors which are
perpendicular to the planes of interest and which have the following length:

|Gm| = m
2π

d
(4.55)
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Figure 4.16: Bragg reflection at a crystal

From Eq. (4.54) we obtain

2d
Gmk

|Gm||k|
= m

2π

|k|
. (4.56)

Here, we use that
kGm = |k||Gm| sin θ .

The condition for constructive interference (cf. Eq. (4.56)) can also be written as:

2kGm = |Gm|
2 (4.57)

or
k2 = (k−Gm)2 . (4.58)

This means: Waves with wave vectors k fulfilling the requirement (Eq. (4.58)) (i.e., the
Bragg condition), cannot propagate in the crystal. They are reflected in other directions.
The condition (Eq. (4.58)) is obviously fulfilled at the border of the Brillouin zone, i.e.,
k = Gm

2
.
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Chapter 5

The Band Structure of the Electrons

5.1 Introduction

In the Fourier representation, i.e., in the basis of plane waves,

χn (k) =
1
√
Vg

ei(k+Gn)r (5.1)

the Hamilton operator of the Kohn-Sham equation has the form:

hn,m =
h̄2

2m
(k + Gn)2δn,m + veff(Gn − Gm). (5.2)

veff(Gn − Gm) decreases with increasing length |Gn − Gm|, and thus hn,m is basically
diagonal for large |Gn − Gm|. The corresponding eigenvalue equation enables the calcu-
lation of the energies and eigenfunctions for given k.

Figure 5.1: Fourier representation of the atomic potentials of Al, Si and Ag.

In Fig. 5.1 we show the function veff(G) for three examples: Al, Si, and Ag. In fact, the
figure shows the potential1 of atoms and therefore, veff is defined for continuous values of
|G|. For a solid we have roughly

veff(r) =
M∑

I=1

veff−atom(r − RI) ,

and then, in the Fourier representation veff−atom is only needed at discrete reciprocal lat-
tice vectors. These are determined by the lattice structure, and we have: 2π

a
= 1.55 Å−1

1To be precise, Fig. 5.1 shows the effective potential for atomic pseudopotentials. The definition of
pseudopotentials is given in Section tba. below.
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(Al), 1.16 Å−1 (Si), and 1.54 Å−1 (Ag).

If all Fourier components veff(Gl) are small, we obtain the dispersion of free electrons:

ǫn(k) =
h̄2

2m
(k + Gn)2. (5.3)

ǫn(k) as a function of k is called the energy band n. For the one-dimensional case we have
shown this dispersion before (cf. Fig. 4.13). However, the one-dimensional case is not
typical, because in this case at most two-fold degeneracy can be present. Therefore, we
will now discuss a two-dimensional example, which shows all the important characteristics
of a band structure – even those of three-dimensional structures. We will investigate a
hexagonal lattice. The 1st Brillouin zone and the labels of special k-points are shown in
Fig. 5.2. If we now evaluate Eq. (5.3), we obtain the band structure of free electrons,
as shown in Fig. 5.3, for G0 = (0, 0) = Γ, G1 = 2π

a
(0, 1), G2 = 2π

a
(cos 30◦, sin 30◦) =

2π
a

(
√

3
2
, 1

2
), G3 = 2π

a
(cos 30◦,− sin 30◦) = 2π

a
(
√

3
2
,−1

2
), etc. Here, we restrict ourselves to the

boundary of the so-called irreducible wedge, which is hatched in Fig. 5.2. By reflection
and rotation of this wedge the full 1st Brillouin zone can be obtained.

Figure 5.2: Brillouin zone of a hexagonal cell. Special k-points are shown. The hatched
area is the irreducible part.

The point K is at 1
3
(G2+G3) = 2π

a
( 1√

3
, 0), and along the ΓK-direction we have k = (kx, 0).

We obtain the results:

n = 0, i.e., G0 : ǫ0(k) = h̄2

2m
k2

x

ǫ0(Γ) = 0

ǫ0(K) = h̄2

2m
(2π

a
1√
3
)2

n = 1, i.e., G1 : ǫ1(k) = h̄2

2m
(k2

x + (2π
a

)2)

ǫ1(Γ) = h̄2

2m
(2π

a
)2

ǫ1(K) = h̄2

2m
(1

3
+ 1) · (2π

a
)2
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n = 2, i.e., G2 : ǫ2(k) = h̄2

2m

{(
kx + 2π

a

√
3

2

)2
+ (2π

a
)2 · 1

4

}

ǫ2(Γ) = h̄2

2m
(2π

a
)2(3

4
+ 1

4
)

= h̄2

2m
(2π

a
)2 = ǫ1(Γ)

ǫ2(K) = h̄2

2m
(2π

a
)2 · 7

3

etc.

The result for ǫn(k) is shown in Fig. 5.3. Even for free electrons the band structure – just
because of the reduction to the 1st Brillouin zone – looks rather complicated.

Which modifications can we expect, if the potential – which has been zero so far – slightly
differs from zero? This will be investigated in more detail now.

Plane waves with different Gn are coupled by the crystal potential (Bragg-condition,
hybridization of states), i.e., wave functions and eigenvalues are different:

1√
Vg

ei(k+Gn)r −→ ϕn,k(r) =
∑

l cGn
(l)ei(k+Gl)r,

ǫn(k) −→ ǫn(k) + ∆n(k) .

For non-degenerate states the change of the energy levels is small (∼ veff(Gn)2), but it is
larger for degenerate states2 (∼ veff):

∆n(k) = ±|veff(Gn)| . (5.4)

Equation (5.4) describes the band structure close to the boundary of the 1st Brillouin
zone. This is illustrated in Fig. 5.4. The representation of ǫn(k) in the domain of the 1st
Brillouin zone is called a reduced zone scheme. Due to the equivalence of k and (k + G)
we can consider the bands ǫn(k) also as periodic functions in k-space, as shown in Fig. 5.5
for a one-dimensional example. However, the “repeated zone scheme” and the “extended

2cf. e.g. Ashcroft/Mermin, Chapter 9 or Madelung, Chapters 18–19.

Figure 5.3: Band structure of free electrons in a hexagonal lattice. The numbers in brackets
give the degeneracy.
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Figure 5.4: The band structure of nearly free electrons in a hexagonal lattice for two
different systems and two different Fermi energies: ǫ1F for 1 electron per cell and ǫ2F for 2
electrons per cell.

zone scheme” illustrated in Fig. 5.5 are very rarely used.

reciprocal lattice

1st Brillouin
zone

Γ

ΓΓ

ΓΓΓ

2π
a

−π
a +π

a

ǫ(k)

Figure 5.5: Three possible representations for ǫn(k) (one-dimensional example). Top:
reduced zone scheme. Middle: repeated zone scheme. Bottom: extended zone scheme.

5.1.1 What Can We Learn from a Band Structure?

First we note that in a N electron system at T = 0 K the N lowest-energy states are
occupied, i.e., each state ϕn,k(r) can be filled by two electrons: ↑ and ↓. One band, i.e., a
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function ǫn(k) with fixed n but variable k (k ∈ 1st BZ), can be occupied by

2
∫

1.BZ

Vg

(2π)3
d3k (5.5)

electrons. The factor 2 takes into account the spin.

We have:

2
∫

1.BZ

Vg

(2π)3
d3k = 2

Vg

(2π)3

(2π)3

Ω
= 2

Vg

Ω
= 2N̂ . (5.6)

One band can be filled by 2N̂ electrons, where N̂ is the number of unit cells in the base
volume Vg, and Ω is the volume of the unit cell. Thus, one band can be filled by 2 electrons
per primitive unit cell.

The number of electrons per primitive unit cell and the band structure determine im-
portant electric and optical properties of a solid, and we will now consider three special
systems:

• System #1: One electron per cell.
This can be, for example, alkali metals or noble metals (Cu, Ag, Au). The lowest
band of the band structure is then half filled, i.e., the Fermi energy is in the middle
of the band (cf. Fig. 5.4, ǫ1F ). Thus, directly above the highest occupied state there
are unoccupied states. The energy required to excite an electron (to give it a higher
kinetic energy), therefore is arbitrarily small. Such a system is an electric conductor.

• System #2: Two electrons per cell and a band structure as in Fig. 5.4,
left.
If ∆ < 0, like in the left firgure of Fig. 5.4, the Fermi energy is at ǫ2F . Thus, the
second band is partially filled while a fraction of the first band remains unoccupied.
Also in this case the Fermi edge cuts bands, and thus also this system is a metal.

• System #3: Two electrons per cell, and ∆ > 0 (Fig. 5.4, left).
Then, the lowest band is filled, and the Fermi energy is in the band gap above this
band. The band occupied at T = 0K is called valence band (VB), the unoccupied
band above the band gap is called conduction band (CB). The position of the Fermi
energy is then set equal to the chemical potential at T = 0K. In this case the
electrons require an energy of at least Egap = ∆KS + ∆xc for the excitation from an
occupied to an unoccupied state. Here, ∆KS is given by the Kohn-Sham eigenvalues
calculated for the N -particle ground state:

∆KS = ǫNLB − ǫNVB .

The quantity ∆xc is introduced here because in principle ∆KS does not correspond to an
excitation. We will come back to this point in Section tba. below. Systems with Egap 6= 0
consequently are not electric conductors, but, depending on the size of the band gap
∆KS + ∆xc, they are called insulators or semiconductors.
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The size of the band gap determines, for instance, the appearance of the material. The
measured band gap is the difference between the ionization energy I (removal of an
electron from the highest level of the valence band) and the affinity A (addition of an
electron in the lowest level of the conduction band)3:

Egap = I − A , (5.7)

A = EN − EN+1 , (5.8)

I = EN−1 − EN . (5.9)

From this we obtain

Egap = EN−1 − EN + EN+1 − EN

= EN−1 + EN+1 − 2EN . (5.10)

Thus, for a correct evaluation of the band gap we need information for three different
systems: The N − 1, N , and the N + 1 particle system. The Kohn-Sham eigenvalues are
typically only evaluated for the N -particle system.

On the other hand for the Kohn-Sham eigenvalues we have:

A = EN − EN+1 ≈ −ǫN+ 1
2

CB , (5.11)

I = EN−1 − EN ≈ −ǫN+ 1
2

VB , (5.12)

where we assumed that EÑ is continous and differentiable for EN−1 < Ñ < EN and
EN < Ñ < EN+1. For integer values of Ñ this may not be the case (c.f. the discussion on
the Janak-Slater transition state, Eq. (3.197)).

For the band gap we then obtain

Egap ≈ ǫ
N+ 1

2

CB − ǫ
N− 1

2

V B (5.13)

= ǫNCB − ǫNVB + ∆xc . (5.14)

In the last line we used the Kohn-Sham eigenvalues only for the N -particle ground state
and called the correction term ∆xc.

At this point it is still controversially discussed if for the exact DFT the correction ∆xc

is there at all and, if it is, how big it may be. 4 For the known approximations of the
xc functional it is quite clear, however, that the difference of the Kohn-Sham eigenvalues
(ǫNCB − ǫNVB) and the measured experimental band gap is indeed noticeable but much of
this difference is due to the approximate treatment of xc. For the LDA, for example, the
Kohn-Sham band gap underestimates the experimental band gap by about 50%. At this
point, the only practical way to calculate a band gap is to leave DFT and to employ the
many-body perturbation theory. Here, the so-called GW approximation (G is the Green
function and W is the screened Coulomb interaction) is the state-of-the-art approach (see
Section tba. below).

3I and A are both defined as positive quantities.
4 For a recent discussion see P. Mori-Sanchez, A. J. Cohen, W. Yang, Phys. Rev. Lett. 100, 146401

(2008).
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Figure 5.6: By measuring the intensity I(ǫf , θ, φ, h̄ω, e) of the electrons emitted by an
optical excitation h̄ω (ǫf is the kinetic energy of the emitted electrons in vacuum; e and
h̄ω are the electric field vector and the energy of the light), information on the occupied
states of the band structure can be obtained.

The quantity Egap determines the appearance of the materials. If Egap is lower than the
energy of visible light5, the solid looks like a metal (e.g. Si: Egap = 1.1 eV, or GaAs:
Egap = 1.45 eV). If the band gap is in the range of visible light or larger, the solid is
transparent to light (e.g. GaP: Egap = 2.35 eV looks orange because blue light is ab-
sorbed; diamond is clear and colorless: Egap ≈ 6 eV). For semiconductors Egap is in the
order of 0.5 . . . 5 eV, so that at room temperature some electrons are excited (at 300 K we
have kB ·T = 0.026 eV). For insulators we have: Egap ≫ kB ·T . The term “semiconductor”
is not well defined, i.e., strictly speaking a semiconductor is an insulator with a not too
large band gap. In my view this is, however, not a useful definitiona. Much more relevant
is the following: A semiconductor is an insulator that can be doped (i.e., impurity atoms
can be added) to generate charge carriers in the valence band and/ or in the conduction
band.

At the end of this paragraph we note that the band structure ǫn(k) can be studied ex-
perimentally. Angle-resolved photo emission (cf. Figs. 5.6 and 5.7) measures the electrons
leaving the solid upon irradiation with light of energy h̄ω, mostly UV or X-rays. More
precisely: One measures the kinetic energy ǫf of these electrons, the direction of their mo-

5Visible light is in the energy range 1.65 eV < h̄ω < 3.1 eV.
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tion kf and their number per unit time (the index “f” (“final”) refers to the final state).
From this the energy of the occupied states ǫn(k) ≈ ǫf − h̄ω and of the corresponding
k-vectors can be determined. Such experiments require a tunable light frequency and thus
a synchrotron. They are carried out for example at BESSY in Berlin, and at many other
“synchrotron light sources” in the world.

Figure 5.7: Comparison of a calculated empirical-pseudopotential band structure for GaAs
(J.C. Phillips and K.C. Pandey, Phys. Rev. Lett. 30, 787 (1973)) (dashed curve) with data
measured by angle-resolved photo emission (T.C. Chiang, J.A. Knapp, M. Aono, and D.E.
Eastman, Phys. Rev. B 21, 3515 (1980)). For more recent band structures of the Kohn-
Sham eigenvalues and using the LDA or the GGA the agreement is less good. In particular,
the Kohn-Sham band gap between the top of the valence band and the bottom of the
conduction band (not shown in the figure) is typically much smaller than the experimental
one (at least when the LDA or GGA are used).

The theoretical band structure of Fig. 5.7 agrees very well with the experimental data.
This clearly proves that the theory captures the right physics. However, the excellent
quantitative agreement is also a consequence of the fact that this here was an empirical

theory. Ab initio calculations are doing slightly worse for the bands. For the band gap,
between VB and CB (not shown in Fig. 5.7), DFT is so far not doing well.
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5.2 General Properties of ǫn(k)

5.2.1 Continuity of ǫn(k) and Meaning of the First and Second
Derivatives of ǫn(k)

With
ϕn,k(r) = eikrun,k(r) (5.15)

we have

hϕn,k(r) =
[
− h̄2

2m
∇2 + veff(r)

]
eikrun,k(r)

= eikr

[
− h̄2

2m
∇2 + veff(r) + h̄2

2m
k2 − 2 h̄2

2m
ik∇

]
un,k(r)

= ǫn(k)eikrun,k(r) .

(5.16)

Thus
ǫn(k) =

∫

Vg

u∗n,k(r) · h̃ un,k(r)d
3r , (5.17)

with

h̃(k) ≡
[

− h̄2

2m
∇2 + veff(r) +

h̄2

2m
k2 − 2

h̄2

2m
ik∇

]

. (5.18)

Thus, h̃(k) determines the eigenvalue problem for given vectors k ∈ BZ:

h̃(k)un,k = ǫn(k)un,k , (5.19)

for which we only have to consider one primitive unit cell because un,k(r) is periodic. In
order to investigate the analytical properties of ǫn(k) we look at the neighborhood of an
arbitrary point k. For k + κ we then have

ǫn(k + κ) =
∫
u∗n,k+κ

(r)h̃(k + κ)un,k+κ(r)d3r . (5.20)

As long as |κ| is small, the difference between h̃(k) and h̃(k + κ)

h̃(k + κ) − h̃(k) =
h̄2

2m
(κ2 + 2kκ) − h̄2

2m
2iκ∇ (5.21)

is also small. It seems reasonable to calculate the energy ǫn(k + κ) by perturbation the-
ory, i.e., to expand the functions un,k+κ(r) with respect to the functions un,k(r) of the
unperturbed problem:

ǫn(k + κ) =
∫
u∗n,k(r)h̃(k)un,k(r)d

3r
︸ ︷︷ ︸

0. Order

+
∫
u∗n,k(r)

{
h̄2

2m
(κ2 + 2kκ) − h̄2

2m
2iκ∇

}

un,k(r)d
3r

︸ ︷︷ ︸
1. Order
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+
∑

m6=n

∣∣∣
∫
u∗n,k(r){ h̄2

2m
(κ2 + 2kκ) − h̄2

2m
2iκ∇}um,k(r)d

3r
∣∣∣
2

ǫn(k) − ǫm(k)
︸ ︷︷ ︸

2. Order

+ O(κ3) . (5.22)

For convenience we now introduce the matrix element of the momentum operator:

pnm = 〈ϕn,k(r)|
h̄

i
∇|ϕm,k(r)〉

= 〈un,k(r)|h̄k +
h̄

i
∇|um,k(r)〉 , (5.23)

where the second equals sign is obtained from Bloch theorem. If we put Eq. (5.23) in
Eq. (5.22) we obtain:

ǫn(k + κ) − ǫn(k) =
h̄

m
κpnn +

h̄2

2m
κ2

+
h̄2

2m

∑

m6=n

|κpnm|2
ǫn(k) − ǫm(k)

+O(κ3) . (5.24)

The limit |κ| −→ 0 illustrates that ǫn(k) is continuous as a function of k, and that it is
differentiable. Furthermore, we obtain the gradient ∇k of ǫn(k) :

pnn =
m

h̄
∇kǫn(k) . (5.25)

The expectation value of the momentum operator therefore is not ∼k, like for free elec-
trons, but it is given by the gradient of the function ǫn(k). This is a rather important
modification and, e.g., it may occur that pnn decreases with increasing k.

For the second derivative of the energy ǫn(k) with respect to k from Eq. (5.24) in the
limit |κ| −→ 0 we obtain:

∂2

∂kα∂kβ

ǫn(k) =
h̄2

m
δαβ +

h̄2

m

∑

m6=n

Re (pα,nmp
∗
β,nm)

ǫn(k) − ǫm(k)
. (5.26)

For free electrons the second term on the right side of Eq. (5.26) vanishes, and the expres-
sion corresponds to the inverse of the inert mass of an electron. Close to maxima or minima
of the band structure Bloch electrons behave as if they had a direction-dependent mass
given by the tensor (5.26): This effective mass contains the effects due to the electron-
lattice interaction and the electron-electron interaction. Using this concept (Eq. 5.26) and
if we are interested in electronic states and their behavior at band extrema, the Hamilton
operator can be simplified:

h = − h̄2

2m
∇2 + veff(r) −→ ĥ = − h̄2

2m∗∇
2 , (5.27)

with
1

m∗ =
1

h̄2

∂2ǫn(k)

∂kα∂kβ

. (5.28)
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Here 1
m∗

is a tensor and the expression is reasonable only in the part of the Brillouin zone,
where ǫn(k) to a good approximation has a parabolic shape. This is obviously a severe
limitation, but in some later parts of this lecture the concept of the effective mass will
prove useful.

In Fig. 5.8 we show the lower edges of the conduction bands of two semiconductors. An
electron at the bottom of the conduction band of silicon (left figure) has a larger effective
mass than an electron at the bottom of the conduction band in GaAs (right figure). Thus,
the conduction band electrons in GaAs mobility is larger.

Figure 5.8: Band structure of the lower conduction band for two semiconductors, left Si
and right GaAs. For the left system at the minimum the curvature is small. Thus, 1/meff

is small, i.e., meff is large and the mobility of the charge carriers in this state is low. For
the right system at the minimum the opposite is true, i.e., the mobility of the charge
carriers at the minimum of the right system is high.

5.2.2 Time Reversal Symmetry

Further important properties of ǫn(k) are found when we consider the operation of time
reversal Tt

6:
Tt : t −→ −t . (5.29)

This operator reverses the state of motion. For the time-independent Schrödinger equation
this has the consequence that, since the position operator is invariant, spin and momen-
tum operator change signs.

At first we want to investigate a system without spin-orbit-coupling, for which we have
the Hamilton operator:

h = h∗ . (5.30)

6cf. Madelung I., p. 107; Tinkham, p. 143.
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We investigate two possibly different eigenfunctions of h, ϕn(k, r) and ϕ∗
n(k, r). Both

functions are degenerate, because we have

hϕn(k, r) = ǫn(k)ϕn(k, r) , (5.31)

and with Eq. (5.30) conjugate complex:

h∗ϕ∗
n(r) = hϕ∗

n(k, r) = ǫn(k)ϕ∗
n(k, r) . (5.32)

Are ϕn(k, r) and ϕ∗
n(k, r) physically different eigenfunctions? To answer this question we

apply the translation operator to both functions:

TRI
ϕn(k, r) = eikRIϕn(k, r) , (5.33)

or
TRI

ϕ∗
n(k, r) = e−ikRIϕ∗

n(k, r) . (5.34)

On the other hand we have:

TRI
ϕn(−k, r) = e−ikR

I ϕn(−k, r) . (5.35)

For ϕn(k, r) we thus have the quantum numbers n and k. On the other hand, for ϕ∗
n(k, r)

and for ϕn(−k, r) the quantum numbers are n and −k. Thus, ϕ∗
n(k, r) is identical to

ϕn(−k, r). The energies of ϕn(k, r) and of ϕn(−k, r) = ϕ∗
n(k, r) are ǫn(k) and ǫn(−k),

and with Eq. (5.31) we obtain:

ǫn(k) = ǫn(−k) . (5.36)

This degeneracy is often given also because of spatial inversion symmetry, but what we
have just found is also valid if the crystal does not have spatial inversion symmetry.

Now we investigate the Hamilton operator of a single-particle problem with Spin-Orbit-

Coupling:

h =

[

− h̄2

2m
∇2 + veff(r)

](
1 0
0 1

)

+
h̄2

4m2c2
σ(∇veff(r) × h̄

i
∇) , (5.37)

where the components of σ have the form

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

. (5.38)

To understand how the time-reversal operator acts on the various terms we note that
“physical” operators can be separated into two classes, operators commutating with Tt,
like e.g. the position operator:

Ttr = rTt , (5.39)

and operators anticommutating with Tt, like e.g. the momentum and spin operators:

Ttp = Tt
h̄

i
∇ = − h̄

i
∇Tt , (5.40)
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Ttσ = −σTt . (5.41)

For the Hamilton operator without an external magnetic field we then have

[h, Tt] = 0 , (5.42)

which means
hϕ = ǫϕ , (5.43)

and
h(Ttϕ) = ǫ(Ttϕ) . (5.44)

As long as ϕ and Ttϕ are linearly independent, both functions are degenerate. According
to the definitions given above Tt can be defined by the following equation:

Tt = −iσyK , (5.45)

where K is the conjugator
Kϕ = ϕ∗ . (5.46)

One can easily prove that the operator Tt defined this way has the required properties
(note: σy acts on the two components of a spinor, not on r or ∇):

(−iσyK)r = r(−iσyK) (5.47)

(−iσyK)
h̄

i
∇ = − h̄

i
∇(−iσyK) (5.48)

(−iσyK)σx = −σx(−iσyK) (5.49)

etc.

In our single-particle problem the spin state is well defined. If we investigate a wave
function with “spin up” (in the limit of j-j-coupling of the many-body system), we obtain:

Tt

[
ψ
0

]

= −iσyK

[
ψ
0

]

=

[
0
ψ∗

]

(5.50)

and analogous for “spin down”

Tt

[
0
ψ

]

= −
[
ψ∗

0

]

. (5.51)

Thus we have:
T 2

t ψ(r, σ) = −ψ(r, σ) . (5.52)

It is clear that ψ and Ttψ are orthogonal to each other, wave functions for “spin up” and
“spin down”, respectively. Therefore, as noted in Eq. (5.43) and (5.44), generally we have
that ϕn,k and Ttϕn,k are linearly independent functions and that the energy level ǫn(k) is
twofold degenerate.

Therefore, the eigenvalue ǫ of a single-particle problem is – independent of spatial sym-
metry – two-fold degenerate because of time-reversal symmetry:

ǫn(k, ↑) = ǫn(−k, ↓) . (5.53)
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As long as spin polarization can be neglected, we have further:

ǫn(k, ↑) = ǫn(k, ↓) = ǫn(−k, ↑) = ǫn(−k, ↓) , (5.54)

i.e., 4-fold degeneracy!

5.2.3 The Fermi Surface

For metals at T = 0K all single particle states with ǫn(k) ≤ ǫF are occupied. This is
in fact the definition of ǫF: For a finite N electron system we have ǫF = ǫN . For metals
(infinite and periodic) there is a Fermi surface. It is defined by the equation

ǫn(k) = ǫF . (5.55)

The Fermi surface is a surface of constant energy in k-space. It separates the occupied from
the unoccupied states. The Fermi surface consequently exists only for metals, because, if
ǫF is in a band gap, condition (5.55) is never fulfilled. Then there is no Fermi surface. At
first we investigate the Fermi surface for the example of electrons in jellium. The band

Figure 5.9: The Fermi Surface Database http://www.phys.ufl.edu/fermisurface
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structure is given by

ǫ(k) =
h̄2

2m
k2 , (5.56)

the Fermi-surface is thus the surface of a sphere of radius |k| = kF =
√

2m
h̄2 ǫF.

For nearly-free electrons in a periodic system the band structure looks more complicated
and the Fermi surface as well. We have:

ǫn(k) =
h̄2

2m
(k + Gn)2 !

= ǫF . (5.57)

Sometimes only one band index n will contribute to the Fermi surface, but in general
different n will contribute different sections.

And for the realistic materials, i.e., veff(r) 6= const., the Fermi surface looks again more
complicated. Figure 5.9 shows some examples from “The Fermi Surface Database”. More
details can be found on that webpage.

For the further, very detailed discussion of Fermi surfaces I refer to the Ashcroft-Mermin
chapters 9, 14 and 15. This can be presented hardly better than there.

5.3 The LCAO (linear combination of atomic orbitals)

Method

In part 5.1 we assumed that the potential of the solid, veff , is not particularly strong,
and that the band structure is only a weak modification of the dispersion relation of free
electrons. This led to the band structure in the approximation of nearly free electrons.
This treatment is in principle exact, but typically veff(r) =

∑
G v

eff(G)eiGr will have a
very large number of Fourier components.

To get a feeling for the wave functions and energies, and for the forces that hold the solid
together, also another point of view is possible. For this we now want to start with well
separated atoms and investigate what happens if these atoms are brought closer together.
In fact the situation present in a solid is rather in the middle between the properties of
atoms or molecules and the ones describing the behavior of nearly free electrons. The
various modern numerical methods for the calculation of the electronic structure of solids
therefore combine both aspects in their methodology. Such methods, in particular the ab
initio pseudopotential theory, the linearized muffin-tin orbital method (LMTO) and the
linearized augmented plane waves method (LAPW) are discussed in this Chapter.

We start by reminding the reader about the H2 molecule: Since the Hamilton operator
(and the potential) has a reflection symmetry, we have: the eigenstates have to be either
symmetric or antisymmetric with respect to this reflection plane. If we assume that the
molecular eigenstates are linear combinations of the atomic 1s states ϕ̂1s (cf. Fig. 5.10),
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H atom 1

•

H atom 2

•

ϕ̂1s(r − R1) ϕ̂1s(r − R2)

z

(x = y = 0)

6

-

Figure 5.10: Schematic presentation of the atomic eigenstates of two H atoms in the H2

molecule.

we have

ϕb
1s(r) =

1√
A

(ϕ̂1s(r − R1) + ϕ̂1s(r − R2)) , (5.58)

ϕa
1s(r) =

1√
A

(ϕ̂1s(r − R1) − ϕ̂1s(r − R2)) , (5.59)

where 1/
√
A ensures the normalization of the ϕb, ϕa to 1. This is illustrated in Fig. 5.11

and Fig. 5.12 shows the corresponding energy levels.

H atom 1

•

H atom 2

•

ϕb
1s(r)

“bonding”

ϕa
1s(r)

“antibonding”

z
(x = y = 0)

6

-

Figure 5.11: Schematic presentation of the electronic eigenstates in the H2 molecule.

Thus, when the atoms get closer to each other, so that the wave functions start to overlap,
there is a splitting of the energy levels:

ǫb : low energy (thus favored)

ϕb : ©+©+ : the electron density |φb|2 charge has a maximum between the nuclei

ǫa : high energy (thus unfavored)

ϕa : ©+©− : the electron density |φa|2 is zero between the nuclei
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ǫ1s

ǫa “antibonding”

ǫ1s

ǫb “bonding”

Figure 5.12: Schematic presentation of the electronic energy levels in the H2 molecule

We now use the same concept to describe a solid, i.e. we use such atom-centered basis
functions as basis set. The LCAO basis set for the representation of the wave functions
in a solid or molecule is defined by:

χα(k, r) =
1√
A

M∑

RI

γI(k)ϕ̂α(r − RI) (5.60)

with

M : Number of atoms in the base region

ϕ̂α(r − RI) : atom-like function,
centered at position RI , (e.g.
numerical solution of the atomic Kohn-Sham equation,
or Gaussians, or LMTOs with α = 1s, 2s, 2p, . . .)

From the translation invariance in a periodic crystal it follows (Bloch’s theorem) that

γI(k) = eikRI . (5.61)

Thus, there is an infinite number of phases: eikRI = +1 . . .− 1. Here, the value +1 refers
to k = 0 and the value −1 to the edge of the Brillouin zone: k = 1

2
G.

For normalization we choose the condition

〈ϕ̂α(r)|ϕ̂β(r)〉 = δα,β (5.62)

and
A = M = number of atoms . (5.63)

This yields that
〈χα(k, r)|χβ(k, r)〉 −→ δα,β ,

when the lattice constant goes to ∞.

The eigenfunctions of the single-particle hamiltonian are then written

ϕn(k, r) =
∑

β

cnβ(k)χβ(k, r) (5.64)

and the matrix equation of the Kohn-Sham equation is
∑

β

[hαβ − Sαβǫn(k)] cnβ(k) = 0 , (5.65)
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with

hαβ = 〈χα(k, r)|h|χβ(k, r)〉 (5.66)

=
1

M

∑

RI ,RJ

eik(RI−RJ )〈ϕ̂α(r − RI)|h|ϕ̂β(r − RJ)〉

=
M∑

RI

eikRI 〈ϕ̂α(r − RI)|h|ϕ̂β(r)〉
︸ ︷︷ ︸

ǫαβ(RI)

(5.67)

Sαβ = 〈χα(k, r)|χβ(k, r)〉 (5.68)

=
M∑

RI

eikRI 〈ϕ̂α(r − RI)|ϕ̂β(r)〉
︸ ︷︷ ︸

sαβ(RI)

. (5.69)

The advantage of the LCAO method, i.e., of using atomic or atom-like orbitals for ϕα(r)
is that these are very localized. The quantities ǫαβ(RI) and sαβ(RI) thus differ from zero
only for very few RI (often only for |RI| ≤ 2 or 3 interatomic distances). This results
in a high numerical efficiency and good scaling with system size. Another advantage of
the LCAO method is that the number of basis functions and consequently the dimension
of the matrices in Eq. (5.65) can be kept very small. For a solid of hydrogen atoms or
of alkali atoms (Na, Cs) as a first approximation (or for a qualitative discussion) it is
sufficient to use only one basis function per atom:

H : 1s
Li : 2s

...

Cs : 6s

(5.70)

For C, Si, Ge, GaAs one has to use at least four orbitals per atom:

C : 2s, 2px, 2py, 2pz

Si : 3s, 3px, 3py, 3pz
...

(5.71)

The “minimum basis sets” in the examples (5.70) and (5.71) allow for a qualitative de-
scription, for a more accurate quantitative description further orbitals have to be included.

What happens, when the atoms get closer to each other? Then the electronic energy levels
of the atoms split. This is sketched in Fig. 5.13. For smaller distances the sharp energy
levels become energy bands. The total number of all states is constant, i.e., independent
of the distance of the atoms.

In the spirit of such LCAO basis sets and considering a “minimum basis” we now like to
construct the band structure of a simple material.
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single-particle
energy
ǫ

ǫ2p : 3M -fold degenerate

ǫ2s : M -fold degenerate

distance between the atoms,
lattice constant

typical range for
equilibrium geometries

Figure 5.13: Schematic presentation of the energy levels of a solid as function of the
interatomic distance. For large distances one obtains the energy levels of the free atoms.

5.3.1 Band Structure and Analysis of the Contributions to
Chemical Bonding

We discuss a two-dimensional example. Although in part 5.1 we have used the hexagonal
lattice, I now want to talk about the square lattice. Because of the orthogonality of the
lattice vectors the discussion is somewhat simpler, cf. Fig. 5.14.

In a qualitative or semi-quantitative description of an s-band we will now just use one
s-orbital per atom. An estimate of the relative energies at high symmetry points in the
Brillouin zone is compiled in Table 5.1. Knowing about the continuity of the functions
ǫn(k) we can now draw the qualitative band structure (Fig. 5.15).

direct lattice Brillouin zone

a1

a2
k1

k2

Γ

M

X

Figure 5.14: The two-dimensional square atomic lattice.
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k-point ϕs(k, r) conclusion about the energy

Γ
k = (0, 0)

©+
©+©+©+
©+

fully bonding
⇒ minimum of the energy

X
k = (π

a
, 0)

©+
©−©+©−

©+
half/ half
⇒ mid value energy

M
k = (π

a
, π

a
)

©−
©−©+©−

©−
fully antibonding
⇒ maximum of the energy

Table 5.1: Schematic picture of the Bloch states of an s-band of a square lattice. Compare
with Eq. (5.60) for the basis function, with ϕ̂α = s-orbital. The Bloch state ϕs(k, r) is
shown at one atom and its four nearest neighbors.

single-particle
energy
ǫ

6

M Γ X M

•

•

•
•

Figure 5.15: Band structure of s-orbitals of the square lattice (qualitative presentation).
The dots mark the estimates obtained from Table 5.1.

For the band structure of p-states we discuss pz (oriented perpendicular to the plane of
the lattice) and px or py separately, because the two types of functions are for a two-
dimensional system independent for symmetry reasons: pz is antisymmetric with respect
to the plane of the lattice, px and py are symmetric with respect to the plane of the lattice.

The illustrations of the wave functions of pz look qualitatively the same as for s-states
(at least when looking from the top on the lattice plane). The dispersion of pz-orbitals is
thus qualitatively the same as that of s-orbitals (cf. Fig. 5.15).

In Fig. 5.16 we summarize the results for these px, py-states, of the pz-, and of the lower-
lying s-states to the band structure shown in Fig. 5.16. We recognize that this band
structure is similar to the result of nearly free electrons. The s- or p-band is similar to a
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single-particle
energy

ǫ

6

M Γ X M

s-band

py-band
)

px-band
Y

pz-band

Figure 5.16: Band structure of s- and p- states in the square lattice (qualitative repre-
sentation, the relative position of the pz band with respect to the px-, py-band is chosen
arbitrarily).

k-point ϕpx
(k, r) ϕpy

(k, r)

Γ
k = (0, 0)

©©−+

©©−+ ©©−+ ©©−+

©©−+

©−
©+

©−
©+

©−
©+

©−
©+

©−
©+

strongly antibonding strongly antibonding

X
k = (π

a
, 0)

©©−+

©©+− ©©−+ ©©+−
©©−+

©−
©+

©+
©−

©−
©+

©+
©−

©−
©+

fully bonding fully antibonding

M
k = (π

a
, π

a
)

©©+−
©©+− ©©−+ ©©+−

©©+−

©+
©−

©+
©−

©−
©+

©+
©−

©+
©−

strongly bonding strongly bonding

Table 5.2: Schematic picture of the Bloch states of the px- and py-bands of a square
lattice. Compare with Eq. (5.60) for the basis functions, with ϕ̂α = px- or py-orbital. The
Bloch states ϕpx

(k, r) and ϕpy
(k, r) are shown at one atom and its four nearest neighbors.
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parabola of free electrons, reduced to the 1st Brillouin zone and split at the points satis-
fying the Bragg-condition. This can also be shown mathematically, because a plane wave
can be expanded in spherical harmonics:

eikr = 4π
∞∑

l=0

l∑

m=−1

il
√

π

2kr
Jl+1/2(kr)Y

∗
lm(Ωk)Ylm(Ωr) , (5.72)

with Ωk and Ωr labelling the spatial angle and Jl+1/2 representing the Bessel function of
index l + 1

2
.

The above discussion and explanation of the band structure clarifies the meaning of the
quantum number k. It describes the phase difference of orbitals that are centered at dif-
ferent atoms, and λ = 2π

|k| is the wave length of the wave function. In a diatomic molecule

there are only two phases: bonding and antibonding (or +1 and −1). In a crystalline
solid there are an infinite number of phases covering the full range from “bonding” to
“antibonding” with respect to the nearest neighbor interaction. The more bonding states
are occupied (compared to antibonding states) the stronger bound (the more stable) is
the material (e.g. Fe has a higher cohesive energy than Cu).

5.4 The Density of States, N(ǫ)

The density of states is defined as the number of states per unit volume at the energy ǫ:

N(ǫ) =
∑

n

2

(2π)3

∫

1.BZ

δ(ǫ− ǫn(k))d3k . (5.73)

We want to write N(ǫ) differently to point out the characteristic structure, which enables
a relatively direct comparison between band structure and density of states.

For this purpose we write the number of states per unit volume [ǫ, ǫ+ dǫ] as follows:

N(ǫ)dǫ =
∑

n

Nn(ǫ)dǫ , (5.74)

where n is the band index and Nn(ǫ) the density of states of the band n. Then we have:

Nn(ǫ)dǫ =
2

(2π)3

∫

1.BZ

d3k ·
{

1 if ǫ ≤ ǫn(k) ≤ ǫ+ dǫ
0 otherwise

. (5.75)

This is a volume integral in k-space, which is enclosed by the surfaces ǫn(k) = ǫ and
ǫn(k) = ǫ+ dǫ. δk̃(k) shall be the distance of these two surfaces perpendicular to the first
surfaces. Then we have:

Nn(ǫ)dǫ =
2

(2π)3

∫

ǫn(k)−ǫ=0

δk̃(k)df , (5.76)

and we obtain

Nn(ǫ)dǫ =
2

(2π)3

∫

ǫn(k)−ǫ=0

1

|∇kǫn(k)|df , (5.77)
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because

∇kǫn(k) =
∂ǫn(k)

∂k̃(k)
· n̂(k) , (5.78)

where n̂ is the unit vector with a direction perpendicular to ǫn(k) = ǫ.

Characteristic structures occur at energies where the gradient in the denominator of
Eq. (5.77) becomes zero. These positions are also called Van-Hove singularities. Examples
for such singularities are given in Fig. 5.17. For three-dimensional systems these diver-
gences in the integrand can be integrated.

N
(ǫ

)

ǫ

Figure 5.17: The density of states of a band. Singularities in the density of states can be
identified (arrows).

5.5 Other Methods for Solving the Kohn-Sham

Equations of Periodic Crystals

To be completed later.For now see:
http://wwwitp.physik.tu-berlin.de/ekreide/ss08/TFP/2008-05-27/pdf/lect col.pdf

5.5.1 The Pseudopotential Method

To be completed later. For now see:
http://wwwitp.physik.tu-berlin.de/ekreide/ss08/TFP/2008-05-27/pdf/lect col.pdf
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5.5.2 APW and LAPW

To be completed later. For now see:
http://wwwitp.physik.tu-berlin.de/ekreide/ss08/TFP/2008-05-27/pdf/lect col.pdf

5.5.3 KKR, LMTO, and ASW

To be completed later. For now see:
http://wwwitp.physik.tu-berlin.de/ekreide/ss08/TFP/2008-05-27/pdf/lect col.pdf

5.6 Many-Body Perturbation Theory (beyond DFT)

To be completed later. For now see:
http://wwwitp.physik.tu-berlin.de/ekreide/ss08/TFP/2008-05-27/pdf/lect col.pdf
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At first: a reminder of the basic theory and some 
additional plots

From the many-particle problem 
to the Kohn-Sham functional 

Then two examples: p
what is it good for?

“the ab initio line of computational 
sciences and engineering” 

Modeling Materials and Bio-Molecular Properties
and Functions: The Many-Body Schrödinger Equation

Wi hWith: 1,

We know the ope-
rators and the inter-

actions. We can 
write them down

???

write them down. 

No open question 
here!
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Born-Oppenheimer Approximation

h l i f h “ l i il i ”

({rk})

Where Φν are solutions of the “electronic Hamiltonian”:

frequently (commonly) applied approximations:

({rk})({rk}) =

q y ( y) pp pp
• neglect non-adiabatic coupling (terms of order m/MI )
• keep onlyΛ0

the dynamics of electrons and nuclei decouple

Some Limits of the 
Born-Oppenheimer Approximation

It d t t f l t d d i f iIt does not account for correlated dynamics of ions
and electrons. For example:

- polaron-induced superconductivity
- dynamical Jahn-Teller effect
- some phenomena of diffusion in solids
- non-adiabaticity in molecule-surface scattering
- etc.
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Wave-Function Theories

Restrict the study to a 
selected subclass of 
functions Φ (Hartree andfunctions Φ (Hartree and 
Hartree-Fock theory);

or Quantum Monte Carlo.

The Hohenberg-Kohn Theorem (1964)
n(r)  =  n[Φ] 

=  <Φ| ∑ δ(r−ri) |Φ>
i

N

The set of particle densities 
n(r) belonging to non-
degenerate ground states of 
the N-electron problem.

The set of non-degenerate 
ground state wave functions 
Φ of arbitrary N-electron 
Hamiltonians.

The dashed arrow is not possible
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Comparison of Wave-Function and 
Density-Functional theory

Comparison of Wave-Function and 
Density-Functional theory
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Summary of Hohenberg-Kohn 
Density-Functional Theory (DFT) -- 1964

-- The many-body Hamiltonian determines everything.
(standard quantum mechanics) 

-- There is a one-to-one correspondence between the 
ground-state wave function and the many-body 
Hamiltonian [or the nuclear (or ionic) potential, υ(r)].
(standard quantum mechanics)( q )

-- There is a one-to-one correspondence between 
the ground-state electron-density and the ground-
state wave function. (Hohenberg and Kohn)

The Kohn-Sham Ansatz
-- Kohn-Sham (1965) – Replace the original many-

body problem with an independent electron problem 
that can be solved!

-- Only the ground state density and the ground state 
energy are required to be the same as in the original 
many-body problem.

M b th t Exc[ ] f ti l t b itt-- Maybe the exact Exc[n] functional cannot be written as 
a closed mathematical expression. Maybe there is a 
detour similar to that taken for Ts[n]? The challenge is 
to find useful approximate xc functionals. 
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Ts , EHartree , and Exc are all universal functionals in n(r), 
i.e., they are independent of the special system studied. 
(general theory: see the work by Levy and Lieb)

neglecting

is the local-
Ceperley and Alder (1980) 

jellium

n

density
approximation

The Exchange-Correlation Hole

Comparison 
of Hartree, 
Hartree-Fock, and
density-functional 
theories for jellium

nxc(r, r’)
Exc[n] =  

For non-jellium systems and the LDA (or the GGA)  the shape of 
nxc(r, r’) is incorrect. However, only its spherical average enters:
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Exchange-Correlation Hole in Silicon

R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal, and R. J. Needs, PRB 57, 8972 (1998) 

The spherically averaged exchange-correlation hole in variational 
Monte Carlo (VMC) and DFT-LDA with (a) one electron fixed at 
the bond center, (b) one electron fixed at the tetrahedral interstitial 
site, and (c) plots (a) and (b) superimposed with the same scale.

Most-Cited Papers in APS Journals

11 papers published in APS journals since 1893 with 
>1000 citations in APS journals (~5 times as many 
references in all science journals)references in all science journals) 

From Physics Today, June, 2005
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Certainties about Density Functional Theory

1. DFT in principle: It is exact;  a universal 
Exc[n] functional exists.[ ]

2. DFT in practice: It is probably not possible to write 
down Exc[n] as a closed mathematical expression. 
We need approximations.

The success of DFT proves that “simple” approximationsThe success of DFT proves that simple  approximations 
to the exchange-correlation functional can provide good 
results – if one knows what one is doing.

Ab Initio Electronic Structure Calculations: 
Status and Challenges

from the earth core to quantum dots to mad cow disease

geophysics

solid

liquid

biology
O

stress field at
semiconductor
nano structures

12 nm

geophysics

oxidation catalysis

O
C
O
Ru

electron density of adsorbates
Al (111)

Na Si Cl
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The first (convincing) DFT calculations:
Stability of crystals and crystal phase transitions
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Summary
-- Interacting electrons determine the properties and 

function of real materials and bio molecules.
-- Approximate xc functionals have been very successful,

but for highly correlated situations and for excited states
th blthere are problems.

Important arenas for future theoretical work:
-- Correlated systems, e.g. f-electron chemistry
-- Thermodynamic phase transitions, e.g. melting
-- Surfaces, interfaces, nanostructures – in realistic environments
-- Modeling the kinetics, e.g. of catalysis or crystal growth 

(self-assembly and self-organization)
-- Molecules and clusters in solvents, electrochemistry, 

fuel cells, external fields, transport
-- Biological problems

The challenges:
-- Find practical ways to correct the xc approximation.
-- Develop methods for bridging the length and time scales.

Some Bravais lattices and the corresponding 
Wigner-Seitz cells
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June 3, 2008
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ionization energies

electron affinity

(96 kJ/mole  = 1 eV). [From Webelements].
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June 6, 2008
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Si bandstructure
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density of states
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Ge

GaAs

ZnSe
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layered structures of graphite

hexagonal                                      rhombohedral

e-density graphite theory vs. experiment 
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e-density graphite -- diamond phase transition

Cohesive energies

(96 kJ/mole  = 1 eV). [From Webelements].
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