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1 Bessel FuntionsIn a stritly logial approah we should perhaps, at this stage, begin on a detailed study ofthe Hypergeometri Equation, and its solutions, sine this equation enompasses as speialases many of those that one enounters in physis. However, suh a presentation wouldrun the risk of being rather dry and abstrat. Instead, we shall adopt the approah ofbeginning with the Bessel equation, and its solutions. In partiular, we shall see how to usethe methods of omplex analysis in order to determine properties of the solutions. Manyof the methods that we use will be generalisable later to other examples, inluding thehypergeometri equation.As we saw in part I of the ourse, Bessel's equation arises when one uses the method ofseparation of variables to solve an equation suh as Laplae's equation in ylindrial polaroordinates. Spei�ally, it is the radial funtions that satisfy the Bessel equation. Afterappropriate hanges of variable, this equation an be ast in the formz2 y00 + z y0 + (z2 � �2) y = 0 ; (1.1)where y is a funtion of z, and � is a onstant whih may be integer on non-integer.1.1 Jn(z) Bessel Funtion of Integer Order nConsider �rst the ase when � = n, where n is an integer (whih an be positive, negativeor zero). We an give the following onstrution of the Bessel funtion Jn(z), whih satis�es(1.1) with � = n. We de�ne Jn(z) by means of the expansione 12 z(t�t�1) = 1Xn=�1 tn Jn(z) : (1.2)This is known as a generating funtion for the Bessel funtions. In priniple one ouldexpand the left-hand side as a Laurent series in t, and by piking out all the terms propor-tional to tn, one reads o� the orresponding Bessel funtion Jn(z). Of ourse there will bein�nitely many terms in this expansion, sine eah power (t� t�1)N in the Taylor expansionof e 12 z(t�t�1) ontains all powers of t from t�N to tN .Let us begin by verifying that (1.2) does indeed give us a onstrution of solutions ofthe Bessel equation. Thus we wish to verify that Jn(z) de�ned by (1.2) does indeed satisfyz2 J 00n + z J 0n + (z2 � n2)Jn = 0 : (1.3)
3



To do this, onsider1Xn=�1�z2 J 00n + z J 0n + (z2 � n2)Jn� tn= 1Xn=�1�z2 d2dz2 + z ddz + z2 � t ddt t ddt� tn Jn= �z2 d2dz2 + z ddz + z2 � t ddt t ddt� e 12 z(t�t�1) ;= �14z2 (t� t�1)2 + 12z (t� t�1) + z2 � 14z t�2 (�2t+ 2t3 + z + 2z t2 + z t4)� e 12 z(t�t�1)= 0 : (1.4)Note that in the �rst line, we have used the fat that n2 tn an be written as t(d=dt)t(d=dt) tn.The next step is to observe that (1.2) an be turned into an expression for a singleBessel funtion, say Jm(z). All we need to do is to multiply (1.2) by t�m�1, and integrateit around a losed ontour C enirling the origin. By the theorem of residues, we have12� i IC tn�m�1 dt = Æmn ; (1.5)where the Kroneker delta funtion Æmn as usual has the meaning that Æmn = 0 unlessm = n, for whih Æmm = 1. Thus from (1.2) we obtain the result thatJn(z) = 12� i IC t�n�1 e 12 z(t�t�1) dt ; (1.6)where C is a losed ontour that enirles the origin antilokwise. We an, for example,take C to be C0, the unit irle, jtj = 1. This has furnished us with an integral representationfor the Bessel funtion Jn(z). It is evident that it is analyti for all z in the �nite omplexplane. The Jn funtions are sometimes alled Bessel Funtions of the First Kind. For now,we are assuming that n is an integer.We an express Jn(z) as a power series in z in the following way. Introdue a newintegration variable w, de�ned by t = 2w=z; thenJn(z) = 12� i �12z�n IC w�n�1 ew� 14 z2 w�1 dw ; (1.7)where again we may take the integration ontour to be the unit irle, jwj = 1. The fatore� 14 z2 w�1 an be expanded in a power series,e� 14 z2 w�1 = 1Xr=0 (�1)rr! �12z�2r w�r ; (1.8)sine this is uniformly onvergent on the irle jwj = 1. Thus we obtainJn(z) = 12� i 1Xr=0 (�1)rr! �12z�n+2r IC w�n�r�1 ew dw : (1.9)4



As we saw in part I of the ourse, the residue R at an N 'th-order pole z = z0 of a funtionf(z) is R = 1(N � 1)! h dN�1dzN�1 �(z � z0)N f(z)�iz=z0 : (1.10)Therefore the residue of the integrand in (1.9) at w = 0 is given by di�erentiating ew (n+r)times, setting w = 0, and dividing by (n + r)!, when n + r is a positive integer or zero.When n+r is a negative integer (reall that n an be positive, negative or zero), the residueis zero.Consequently, we �nd that if n is a positive integer or zero, (1.9) givesJn(z) = 1Xr=0 (�1)r �12z�n+2rr! (n+ r)! : (1.11)On the other hand if n is a negative integer, n = �m, thenJn(z) = 1Xr=m (�1)r �12z�2r�mr! (r �m)! = 1Xs=0 (�1)m+s �12z�m+2ss! (m+ s)! ; (1.12)where we set r = m+s in the seond summation. Evidently, therefore, we have the relationJ�n(z) = (�1)n Jn(z) ; (1.13)where n is any integer.Notie that by having a variety of ways of representing the Bessel funtions available inthe armoury, we an pik whihever is most onvenient for proving a partiular result. Infat the property (1.13) an be seen very easily diretly from (1.2). If we send t �! �1=tthen the e�et on the right-hand side is to send Jn(z) �! (�1)n J�n(z), while the left-handside is left unhanged.Bessel funtions have many properties that are analogous to those of trigonometrifuntions. Reall, for example, the addition formulae suh as sin(x + y) = sinx os y +os x sin y. The analogue for the Jn Bessel funtions isJn(x+ y) = 1Xm=�1 Jm(x)Jn�m(y) : (1.14)We an again prove this very easily from the generating funtion (1.2). We simply observethat from the elementary properties of the exponential funtion, it follows thate 12 (x+y)(t�t�1) = e 12x (t�t�1) e 12 y (t�t�1) : (1.15)From (1.2) this implies1Xn=�1 tn Jn(x+ y) = � 1Xp=�1 tp Jp(x)�� 1Xq=�1 tq Jq(y)� : (1.16)5



Piking out all the terms assoiated with p+ q = n in the right-hand side, and equating tothe term in tn on the left-hand side, equation (1.14) follows.Another integral representation for the Bessel funtion Jn(z) may be obtained as follows.Starting from (1.6), we may write the omplex integration variable t, whih is taken to runaround the unit irle, as t = ei �. Thus we getJn(z) = 12� Z ��� e�in�+i z sin � d�: (1.17)By dividing the integration range into two piees, namely �� � � � 0 and 0 � � � �, andthen sending � �! �� in the �rst of these, we getJn(z) = 12� Z �0 ein ��i z sin � d� + 12� Z �0 e�in�+i z sin � d� ; (1.18)and hene we arrive at the expression, known as Bessel's integral for Jn(z):Jn(z) = 1� Z �0 os(n � � z sin �) d� : (1.19)To give some idea of what the Bessel funtions Jn(z) look like, we give plots below, inFigures 1, 2, 3 and 4, for J0(z), J1(z), J5(z) and J10(z). Like the trigonometri funtionsthey are osillatory, although they are not periodi as suh sine the interval betweensuessive zeros hanges with z. As we shall see later, at large z they do asymptotiallyapproah a de�nite period. It is also evident that their magnitudes fall o�, in a rather mildway, as z inreases.
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Figure 1: The J0(z) Bessel Funtion
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Figure 2: The J1(z) Bessel Funtion
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Figure 3: The J5(z) Bessel Funtion1.2 J�(z) Bessel Funtion of Non-integer Order �Until now, we have been assuming that the order n of Jn(z) is an integer. Staying with thisassumption for just a moment longer, we may note from the integral representation (1.7)that we an diretly substitute it into the Bessel equation (1.3), to obtainJ 00n + 1z J 0n + �1� n2z2 �Jn = 12� i �12z�n IC w�n�1 h1� n+ 1w + z24w2 i ew� 14 z2 w�1 dw ;= � 12� i �12z�n IC ddw hw�n�1 ew� 14 z2 w�1i dw ;= 0 : (1.20)This last step follows from the fat that w�n�1 ew� 14 z2 w�1 is single valued, and so it returnsto its original value after ompleting the trip around the losed ontour C, whih was takento be the unit irle C0. This gives a diret proof that the integral repsesentation (1.7) for7
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Figure 4: The J10(z) Bessel Funtionthe Bessel funtion of integral order satis�es Bessel's equation.Now, a straightforward modi�ation allows us to adopt (1.7) as an integral representationfor the Bessel funtion J�(z), where now � is not restrited to being an integer. It is evidentthat a manipulation idential to (1.20) an be arried out for J�(z) de�ned byJ�(z) = z�2�+1 � i ZC w���1 ew� 14 z2 w�1 dw ; (1.21)provided that we make an appropriate di�erent hoie for the ontour C. (We shall keepthe same symbol C, but it will now mean something di�erent.) Thus we substitute (1.21)into (1.1), deduing that J�(z) does indeed satisfy this equation as long asZC ddw hw���1 ew� 14 z2 w�1i dw = 0 : (1.22)This will be true provided that the quantityw���1 ew� 14 z2 w�1 (1.23)returns to its initial value after following round from the beginning to the end of the pathdesribed by C. Clearly, when � is not an integer, we annot take C to be the unit irleany more. Instead, we an take C to be very like the Hankel ontour that we used in partI of the ourse, only now reeted aross the imaginary axis. Thus we take a ontour thatstarts at �1 just below the real axis, loops antilokwise around the origin, and exits to thewest again just above the real axis; see Figure 7 below . At both the starting and �nishingpoints, therefore, the real part of w is �1, and so the ew fator ensures that (1.23) vanishesat both ends. To be preise, we take jargwj � � on the ontour.8



Figure 5: The ontour of integration for the integral (1.21) for J�(z)This integral representation for J�(z) an be expressed as a power series. We may notethat the integral itself in (1.21) de�nes an analyti funtion z, and so it must admit aTaylor expansion. In fat, the integral has a series expansion in powers of q � z2, whih anbe obtained by di�erentiating under the integral sign, to onstrut the Taylor expansion.De�nining h(q) � ZC w���1 ew� 14 q w�1 dw ; (1.24)we onstrut the series expansionh(q) = h(0) + q h0(0) + 12q2 h00(0) + 16q3 h000(0) + � � � = 1Xr=0 qrr! h(r)(0) ;= 1Xr=0 (�q)r4r r! ZC w���r�1 ew dw ;= 2� i 1Xr=0 (�q)r4r r! �(� + r + 1) : (1.25)This last result omes from the ontour-integral expression for the Gamma funtion thatwe derived in part I of the ourse, namely1�(z) = � 12� i Z e�t (�t)�z dt ; (1.26)where  denotes the Hankel ontour, whih runs from +1 just above the real axis, swingsin around the origin, and goes out east again just below the real axis. (This is just the9



reetion of our urrent ontour C aross the imaginary axis.) Thus we arrive at the resultthat J�(z) has the series expansionJ�(z) = 1Xr=0 (�1)r z�+2r2�+2r r! �(� + r + 1) : (1.27)It is easy to see that this expansion agrees with the one that we derived in (1.11), in thease that � is a non-negative integer. It also oinides with (1.12) in the ase that � is anegative integer. In general, for arbitrary � we take (1.21) as the integral representationde�ning J�(z), and (1.27) as the series representation for J�(z).Notie that sine J�(z) satis�es Bessel's equation (1.1), and this equation is invariantunder sending � �! ��, it follows that J�(z) and J��(z) generially give us the two linearly-independent solutions of the Bessel equation. This argument would break down, of ourse,if it were the ase that J��(z) were simply a onstant multiple of J�(z). We know that thisis preisely what does happen if � is an integer, sine then we have the relation (1.13) whihtells us that J�n(z) = (�1)n Jn(z). This is, however, a peuliarity of integer values for �.When � 6= integer, it is lear from (1.27) that J��(z) annot be a onstant multiple ofJ�(z). (The powers of z in the expansions of J�(z) and J��(z) will be ompletely di�erent.)Thus when � 6= integer, the general solution of the Bessel equation (1.1) is given by�J�(z) + � J��(z) ; (1.28)where � and � are onstants. We shall see later how to obtain the seond independentsolution to (1.1) when � is an integer.Here are a ouple of sample plots of Bessel funtions J�(z) with non-integer order �.We present the ases � = 13 and � = �13 , in Figures 5 and 6 below.We may generalise the Bessel integral (1.19) for the integer-order Bessel funtions to thease where the order is non-integral. First, we note that by performing the transformationw = 12z t, we an ast the integral representation (1.21) into the formJ�(z) = 12� i ZC t���1 e 12 z(t�t�1) dt : (1.29)This will be an analyti funtion of z provided that Re(z t) is negative when t heads ofto �1 at the beginning and end of the ontour. We shall deform the ontour so that itonsists of a line running from �1 to �1 just below the real axis, then a unit irle runningantilokwise around the origin, and �nally a line running from �1 to �1 just above the10
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Figure 6: The J 13 (z) Bessel Funtion
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Figure 7: The J� 13 (z) Bessel Funtionreal axis. (See Figure 8 below.) Initially we shall take z to be real and positive, but byanalyti ontinuation we may then allow z to be any omplex number with Re(z) > 0.The part of the ontour omprising the unit irle an be handled preisely as in thease of the integer-order result (1.19). The two line integrals give additional ontributionshe(�+1) � i2� i � e�(�+1) � i2� i i Z 11 x���1 e 12 z(�x+x�1) dx ; (1.30)where we have written t = e�i� x for the ingoing and outgoing piees respetively. Thuswriting x = e�, we arrive at the result, due to Shl�ai, thatJ�(z) = 1� Z �0 os(� � � z sin �) d� � sin ��� Z 10 e�� ��z sinh � d� : (1.31)11



Figure 8: The deformed ontour for deriving Shl�ai's integralNotie that in the speial ase where � is an integer, this redues immediately to the previousresult (1.19).1.3 Reurrene Formulae for the Bessel FuntionsNotie that from the integral representation (1.21) for the Bessel funtion J�(z), we anderive a simple expression for obtaining J�+1(z) in terms of J�(z). To do this, multiply(1.21) by z�� and di�erentiate with respet to z, to getddz�z�� J�(z)� = 12�+1 � i ddz ZC w���1 ew� 14 z2 w�1 dw ;= � z2�+2 � i ZC w���2 ew� 14 z2 w�1 dw ;= �z�� J�+1(z) : (1.32)In other words, we have J�+1(z) = �z� ddz �z�� J�(z)� ; (1.33)whih an trivially be written also asJ�+1(z) = �z�+1 dz dz �z�� J�(z)� ; (1.34)
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Iterating (1.34) one, we getJ�+2(z) = �z�+2 dz dz �z�� J�+1(z)�= z�+2 dz dz � dz dz �z�� J�(z)�� : (1.35)Clearly we an repeat this as many times as we wish, to obtain the reurrene formulaJ�+r(z) = (�1)rz�+r h dz dz ir �z�� J�(z)� ; (1.36)where r is any non-negative integer.Another reurrene formula an be obtained by onsidering J�+1(z) + J��1(z), whih,from (1.21), an be written asJ�+1(z) + J��1(z) = z�2�+1 � i ZC(12z w�1 + 2w z�1)w���1 ew� 14 z2 w�1 dw ;= 2z z�2�+1 � i ZC w�� �1 + z24w2� ew� 14 z2 w�1 dw ;= 2z z�2�+1 � i ZC w�� ddw ew� 14 z2 w�1 dw ;= 2�z z�2�+1 � i ZC w���1 ew� 14 z2 w�1 dw ; (1.37)where in the last line we integrated by parts, and made use of the fat that the \boundaryterm" in the integration by parts vanishes. (This is the same property that we used previ-ously in order to show that J�(z) de�ned by (1.21) satis�ed the Bessel equation.) Thus wehave obtained the reurrene formulaJ�+1(z) + J��1(z) = 2�z J�(z) : (1.38)1.4 Bessel Funtions of Half-integer OrderThe Bessel funtions J�(z) take on a partiularly simple form when � is half an odd integer.Consider the ase when � = 12 . In general we have the series expansion (1.27), namelyJ�(z) = 1Xr=0 (�1)r z�+2r2�+2r r! �(� + r + 1) : (1.39)Setting � = 12 , we may observe �rst that�(12 + r + 1) = (12 + r) �(12 + r) = (12 + r)(12 + r � 1) �(12 + r � 1) ;= (12 + r)(12 + r � 1) � � � 12 � �(12 ) ;= 2�r�1 (2r + 1)(2r � 1)(2r � 3) � � � 3 � 1 � �(12 ) : (1.40)13



Furthermore, we may writer! = 2�r (2r) (2r � 2)(2r � 4) � � � 4 � 2 : (1.41)Combined with the fat that �(12) = p�, we therefore have thatr! �(12 + r + 1) = 2�2r�1p� (2r + 1)! : (1.42)Substituting into (1.39), we therefore obtainJ 12 (z) = r2z� 1Xr=0 (�1)r z2r(2r + 1)! ; (1.43)whene J 12 (z) = r 2� z sin z : (1.44)From our previous reurrene formula (1.36), it then immediately follows thatJr+ 12 (z) = r 2� zr+ 12 h dz dz ir �sin zz � ;= 1p� (2z)r+ 12 h ddz2 ir �sin zz � ; (1.45)where r is any non-negative integer. It is lear after a moment's thought that this meansthat Jr+ 12 (z) = Pr(z) sin z +Qr(z) os z ; (1.46)where Pr(z) and Qr(z) are polynomials in z� 12 .1.5 The Seond Solution of Bessel's EquationWe saw previously that if � is not an integer, the Bessel funtions J�(z) and J��(z) arelinearly independent, and both solve the Bessel equation (1.1). Being a seond-order di�er-ential equation, the Bessel equation has exatly two linearly independent solutions, and sothey may be taken to be J�(z) and J��(z) when � is non-integral.When � is an integer n the above reasoning fails beause, as we saw in (1.13), Jn(z) andJ�n(z) are now linearly dependent; Jn(z) = (�1)n J�n(z). As is often the ase when the\seond solution" of a di�erential degenerates for some speial values of the parameters,one an in fat still extrat the seond solution by taking an appropriately resaled limit.In the present ase, we do this by a onstrution in whih we take the di�erene betweenthe J�(z) and J��(z) solutions, divide by a quantity that vanishes appropriately at � =integer, and then take the limit where � tends to the integer n. The idea is that the14



vanishing denominator sales up the numerator that is otherwise tending to zero, so that a�nite and non-zero result is obtained.To be preise this seond solution, known, not surprisingly, as the Bessel funtion of theseond kind, and denoted by Y�(z), is de�ned byY�(z) = J�(z) os �� � J��(z)sin �� : (1.47)First, note that for a generi (non-integer) value of z, Y�(z) is just a ertain linear ombi-nation of J�(z) and J��(z), with the oeÆients of both terms being �nite and non-zero.Thus when � is non-integral, Y�(z) is a perfetly good hoie for the seond solution of theBessel equation.1Now, onsider what happens when � is taken to be an integer, n. The numeratorbeomes preisely the ombination (�1)n Jn(z) � J�n(z) that vanishes by virtue of therelation (1.13). However, as promised, the denominator vanishes too. We end up, as � issent to n, with a \zero divided by zero" expression that atually has a regular limit. Ofourse given that this limit exists, whih we shall show in a moment, it follows that Yn(z)solves the Bessel equation, sine Y�(z) solves it for all non-integer �, and this will ontinueto be true as � approahes the integer n. So it remains to show that the limit does indeedexist, and that the resulting funtion Yn(z) is linearly independent of Jn(z).We an show both of these properties together, in fat. Reall that the Wronskian oftwo solutions y1 and y2 of a seond-order linear di�erential equation is de�ned by�(y1; y2) � y1 y02 � y2 y01 : (1.48)Reall also that the Wronskian of the two solutions is non-vanishing if and only if thesolutions are linearly independent.For the Bessel equation, ifz2 y001 + z y01 + (z2 � �2) y1 = 0 ;z2 y002 + z y02 + (z2 � �2) y2 = 0 ; (1.49)then multiplying the seond equation by y1 and subtrating the �rst equation multipliedby y2 from it, we get z2 (y1 y002 � y2 y001) + z (y1 y02 � y2 y01) = 0 ; (1.50)whene z�0 +� = 0 : (1.51)1Sometimes Y�(z) is known as the Neumann funtion, and is denoted instead by N�(z).15



This an be immediately solved for the Wronskian, giving log� + log z = onstant, or inother words � = z ; (1.52)where  is a onstant. So the question of linear independene omes down to whether in apartiular ase the onstant  turns out to be zero or not.Let us �rst onsider the Wronskian of J�(z) and J��(z). We expet to �nd that it isnon-zero when � is not an integer, but that it beomes zero when � is an integer. Let's see ifthis is what happens. Sine we have established the result (1.52), we have only to determinethe onstant  (whih we expet to be dependent on �, but, of ourse, independent of z.)We an �x  for the ase y1 = J�(z), y2 = J��(z) by looking at any onvenient range ofthe oordinate z; the most onvenient thing is to look at the plae where z is very small,sine this allows us to use just the leading-order terms in the series expansions of the Besselfuntions.We have from (1.27) thatJ�(z) = 2���(1 + �) z� +O(z�+2) ;J��(z) = 2��(1� �) z�� +O(z��+2) ; (1.53)Therefore, substituting into (1.48), we �nd that�(J� ; J��) = � 2�z �(1 + �)�(1� �) +O(1) : (1.54)Of ourse sine we know that J�(z) and J��(z) satisfy the Bessel equation, and that �must be of the form (1.52) for any two solutions, this means that the higher-order termsrepresented by O(1) are atually zero. The point is, though, that we an be sure thatonly the leading-order terms that we displayed expliitly in (1.53) ontribute to the O(1=z)result. (The higher terms from (1.53) would obviously ontribute to � at orders zs withs � 0.)Now, we use some standard properties of the Gamma funtion that were proved in PartI of the ourse, namelyx�(x) = �(x+ 1) ; �(x) �(1� x) = �sin�x : (1.55)Putting these together, we learn that �(1+�) �(1��) = � �= sin(� �), and so (1.54) beomes�(J� ; J��) = �2 sin ��� z : (1.56)16



So, omparing with (1.52), we have  = �2 sin ��� : (1.57)Thus we have found the expeted result, namely that J� and J�� are linearly independentfor all � exept when � is an integer.Now onsider the Wronskian �(J� ; Y�) of J� and Y� , de�ned in (1.47). Clearly sine�(J� ; J�) is always zero, this will simply be given by the ontribution from the seond termin Y� : �(J� ; Y�) = � 1sin �� �(J� ; J��) = 2� z : (1.58)In the �nal stage here, we have substituted our previous result for �(J� ; J��).Our expression (1.58) shows that J�(z) and Y�(z) are linearly-independent for all valuesof �, integer and non-integer. This is what we wanted to show. Also, the fat that theWronskian in (1.58) has turned out to be a �nite and non-zero onstant multiple of 1=zshows that our limiting proedure to onstrut Y�(z) at integer � is a good one; it hasprodued a funtion that has neither diverged nor vanished.Let us investigate the properties of Y�(z) a little further. For now, we shall restritattention to looking at the behaviour near z = 0. We have already seen how the J�(z)Bessel funtion behaves, in the power-series expansion (1.27). Writing out the �rst fewterms for J�(z), we see that it isJ�(z) = z�2� �(� + 1) h1� z24(� + 1) + z442 (� + 1)(� + 2) � z643 (� + 1)(� + 2)(� + 3) + � � � i :(1.59)Now, in Part I of the ourse, we disussed how one in general onstruts the seondindependent solution of a seond-order linear ODE in terms of a given original solution. Inpartiular, we saw that given a solution y1(z), and Wronskian �, then the seond solutiony2(z) is obtained as y2(z) = y1(z) Z z �(t)y1(t)2 dt : (1.60)Of ourse if one takes di�erent values for the onstant lower limit of integration here, onegets di�erent onstant multiples of the original solution y1(z) added to the seond solutiony2(z). This is to be expeted; if y2(z) is a solution linearly independent of y1(z), then so isy2(z) + � y1(z) for any onstant �.From this disussion, it follows that with an appropriate hoie of the lower limit ofintegration, we must have thatY�(z) = 2� J�(z) Z z 1t J�(t)2 dt : (1.61)17



Here, we have substituted the result (1.58) for the Wronskian of J�(z) with Y�(z). Now, wemay take the series expansion for J�(z) given in (1.59), and substitute it into (1.61):Y�(z) = 22�+1 �(� + 1)2 J�(z)� Z z t�2��1 h1+ t22(� + 1) + (2� + 5) t416(� + 1)2 (� + 2) + � � � i : (1.62)For generi (i.e. non-integer) values of �, it is lear that term-by-term integration of theintegral in (1.62) will just generate powers of z of the form z�2� , z�2�+2, z�2�+4, et.. Infat, we know that at the end of the day the result must be that the entire expression in(1.62) just produes some linear ombination of J�(z) and J��(z), sine these are the twolinearly independent solutions of Bessel's equation when � is not an integer.However, when � = n = integer, it is evident that there will always be a partiular termin the integrand in (1.62) that is of the form t�1. For example, if � = 0 it will be the �rstterm in the square brakets that gives t�1. If � = 1, it will be the seond term that givest�1, and so on. The point is that whenever � is an integer, we are �nding that the integralin (1.62) yields a logarithm, sine Z z t�1 dt = log z : (1.63)Thus we have learned that when � = n is an integer, the seond solution Yn(z) alwayshas a logarithmi divergene as z tends to zero. This logarithmi behaviour is in fatpreisely what is expeted from a general analysis of the properties of the seond solutionof a di�erential equation expanded around a regular singular point (see the disussion inPart 1 of the ourse).In order to obtain the full struture of the small-z series expansion for Y�(z), it iseasiest to go bak to the original de�nition (1.47). As we have seen above, the nature ofthe expansion will depend signi�antly on whether or not � is an integer, sine there willbe logarithims involved if � is an integer, but not otherwise. In fat, we are really onlyinterested in �nding the series expansion when � is an integer, sine for non-integer �, Y�(z)is nothing but a non-singular linear ombination of J�(z) and J��(z), eah of whih an beexpanded straightforwardly using (1.27).We need, therefore, to study Y�(z) given by (1.47) as � approahes an integer n. Wemay write � = n+�, where � will be sent to zero. We an assume, without loss of generality,that n is a non-negative integer. We haveos �� = os(n+ �)� � (�1)n ;sin �� = sin(n+ �)� � (�1)n sin �� � (�1)n � � : (1.64)18



Therefore from (1.47) we �nd thatYn(z) = 1� � �Jn+�(z)� (�1)n J�n��(z)� ; (1.65)in the limit where � is sent to zero. In other words, we have to pik out the O(�) term in(Jn+�(z) � (�1)n J�n��(z)). (We know, of ourse, that there is no �-independent term, byvirtue of the relation Jn(z) = (�1)n J�n(z) that we derived earlier.)Some useful lemmata are the following:�z2�n+� = �z2�n e� log( 12 z) = �z2�n (1 + � log z2 + � � �) ;1�(p+ �+ 1) = 1�(p+ 1)�1� �  (p+ 1) + � � � � ; (1.66)1�(q � �+ 1) = �sin(q � �)�� �(�q + �) = (�1)q ��(�q) + � � �where p is a non-negative integer, q is a negative integer, and in all ases the terms rep-resented by � � � are of order �2 or higher, and are therefore not needed in our limitingproedure. The funtion  (z) is the digamma funtion, de�ned by (z) � �0(z)�(z) : (1.67)One an show that for an integer argument m, it is given by (m) = � + m�1Xr=1 1r ; (1.68)where  = 0:5772157 : : : is the Euler-Masheroni onstant, de�ned as the limit when m �!1 of 11 + 12 + 13 + � � �+ 1m � logm: (1.69)Using the lemmata, we �nd thatJn+�(z)� (�1)n J�n��(z)= 1Xr=0 (�1)rr! �z2�n+2r (1 + � log z2 + � � �)(1 � �  (n+ r + 1) + � � �)�(�1)n � n�1Xr=0 (n� r � 1)!r! �z2��n+2r + � � � (1.70)�(�1)n 1Xr=n (�1)rr! �z2��n+2r (1� � log z2 + � � �)(1 + �  (�n+ r + 1) + � � �) ;where the seond and third lines ome from splitting the r summation for J�n��(z) intothe range where r � n is negative, and the remainder, where r � n � 0. After making a19



shift of the summation variable in the third line, r �! r+n, one immediately sees that, asexpeted, all the �-independent terms anel out, and what remains an be written asJn+�(z)� (�1)n J�n��(z) = � 1Xr=0 (�1)rr! (n+ r)! �z2�n+2r h2 log z2 �  (n+ r + 1)�  (r + 1)i�� n�1Xr=0 (�1)r (n� r � 1)!r! �z2��n+2r +O(�2) : (1.71)Finally, therefore, we �nd by substituting into (1.65) and sending � to zero that Yn(z)has the series expansionYn(z) = 1� 1Xr=0 (�1)rr! (n+ r)! �z2�n+2r h2 log 12z �  (n+ r + 1)�  (r + 1)i� 1� n�1Xr=0 (�1)r (n� r � 1)!r! �z2��n+2r : (1.72)1.6 Asymptoti Expansions of J�(z) and Y�(z)So far, we have studied the expansions for J�(z) and Yn(z), expressed as power series aroundz = 0. The resulting expression (1.27) for J�(z) is onvergent for all �nite z, sine J�(z)is analyti in the �nite omplex plane. For Yn(z), the series (1.72) has a branh point andpoles at z = 0, as signalled by the ourrene of the logarithms and inverse powers of z, butotherwise it is analyti in the �nite omplex plane. These series are, in partiular, usefuland usable for answering all questions about the small-z behaviour of the Bessel funtions.We should also like to know how the Bessel funtions behave at large values of theirargument z. For example, in a sattering problem, where z might parameterise the radialoordinate that measures the distane from the sattering-entre, one would like to knowhow the sattered waves depend on z at large distane. We shall in fat study an exampleof suh a sattering problem later.Finding the large-z behaviour of a funtion is the kind of problem that we studied atthe end of Part 1 of the ourse, under the heading of Asymptoti Expansions. In a typialexample, and indeed the Bessel funtions are no exeption, one annot obtain onvergentpower-series expansions at large z, owing to the fat that they have essential singularities atin�nity. Another example of suh a funtion is the exponential ez. Transforming from theomplex variable z to w = 1=z, we see that in the viinity of z =1 the exponential lookslike e1=w with w lose to zero. This has a singularity at w = 0 that is \worse" than anypower-law 1=wn, no matter how large n is. This is what is alled an essential singularity.We saw in Part I of the ourse that in suh irumstanes, when there is an essentialsingularity, one may still be able to onstrut a useful series expansion that approximates20



a funtion F (z) at large z. However, it will no longer be a onvergent series; instead, it isan asymptoti expansion. We refer the reader to Part 1 of the leture notes for details. Abrief summary of the idea is as follows.An ordinary onvergent power series approximates F (z) to better and better auray,at �xed z, as more and more terms are inluded in the sum. Eventually, the agreementbeomes perfet as the number of terms is taken to in�nity. By ontrast, an asymptotiexpansion is atually divergent; if one sums up all the terms at a �xed value of z, the sumdiverges. However, instead what we do is to look at a �xed number of terms in the series;the �rst N terms, let us say. Then, as z is made larger and larger, the N -term series givesa better and better approximation to F (z), beming perfet in the limit when z beomesin�nite. For any given �nite value of z there is a limit to how good an approximation wean get; beyond a ertain point, adding in more terms in the series makes things worse, notbetter. Nonetheless, the asymptoti expansion is a very useful approximation that gives allthe required information about the large-z asymptoti behaviour of the funtion.We have obtained the integral representation (1.29) for the Bessel funtion J�(z). Avery useful tehnique for onstruting the asymptoti expansion of a funtion de�ned by anintegral representation is by means of the Method of Steepest Desent. This was disussedin detail in Part 1 of the ourse, and we shall not present all the details again here. Thegeneral idea, expressed in the notation of variables that we are using in this setion, is thatone has an integral representation of the formF (z) = ZC g(t) ez f(t) dt ; (1.73)where f(t) is suh that Re(z f(t)) goes to �1 at both ends of the range of integration alongthe ontour C. The idea is that as z is taken very large, the integrand beomes dominatedby the point (or points) in the omplex t-plane where f(t) is stationary, f 0(t) = 0. Thefuntion g(t) is assumed to have suh a form that it varies only slowly in the viinity ofthe point, whih is at, let us say, t = t0. Then, what one does is to deform the ontour sothat it passes through the stationary point at t = t0, and swing it around so that it followsthe path of steepest desent as one moves away from t = t0 in either diretion along theontour. To a good approximation, sine one hasf(t) = f(t0) + 12(t� t0)2 f 00(t0) + � � � ; (1.74)the integral is now just dominated by a Gaussian integrand of the forme�12u2 ; (1.75)21



where u is the renamed integration variable after having deformed the ontour so that itfollows the path of steepest desent. All other fators in the integrand an just be takenoutside the integration, with their original argument t replaed by the value t0 at thestationary point. If there is more than one stationary point, we just repeat the proedureat eah, and add up the ontributions.Without further ado, let us now use the method of steepest desent to alulate theasymptoti behaviour of the Bessel funtion J�(z). We have, from (1.29),J�(z) = 12� i ZC t���1 e 12 z(t�t�1) dt ; (1.76)and so omparing with (1.73) we havef(t) = 12(t� t�1) : (1.77)This has stationary points at f 0(t) = 12 (1 + t�2) = 0, in other words at t = �i. Note thatwe have f(i) = i, and f(�i) = �i. The �rst thing we do now is to deform the ontour C sothat it passes through the points t = �i.Consider the ontribution from t = +i �rst. Expanding f(t) in a Taylor series aroundt = +i, we have f(t) = i� i2 (t� i)2 + � � � : (1.78)(The �rst term is just f(i), and of ourse there is no linear term sine f 0(i) = 0.) To deformthe ontour so that it follows the path of steepest desent, it is useful to introdue a newintegration oordinate u in plae of t, whih will be real along the steepest-desent path.We do this by de�ning it to be suh that� i2 (t� i)2 = �u22z : (1.79)(Take z to be real and positive for now.) Thus we have(t� i)2 = u2z e� 12 i� : (1.80)Taking the square root, we get t� i = � upz e� 14 i� : (1.81)We have hosen the square root with the minus sign here beause we want the ontour torun in the natural antilokwise diretion as u runs from negative to positive values. Thusfor negative u, the ontour approahes t = i from the south-east, and as u goes positive it22



leaves t = i in a north-westerly diretion (the slope of the line being preisely �1). Notethat to hange integration variable from t to u, we shall havedt = dtdu du = � 1pz e� 14 i� : (1.82)Let us all I+ the ontribution to J�(z) from this stationary point at t = +i. Thus from(1.76) we shall have I+ � � 12� i �e 12 i�����1 1pz e� 14 i� ei z Z e� 12u2 du : (1.83)The fators sitting out at the front ome from taking t���1 outside the integral, settingt = i = e 12 i� as we do so; making the transformation from dt to du using (1.82); and takingout the fator ez f(i) = ei z that omes fromez f(t) � ez f(t0)� 12u2 : (1.84)The integration over u an be exellently approximated by allowing the limits to be �1and +1, sine we are assuming that z is large. (See (1.79); when z is large, u an be largewhile t is still rather lose to t = i.) Thus the integral is just a Gaussian, whih gives afator of p2�. Putting it all together, we therefore haveI+ � 1p2� z ei(z� 12� �� 14�) : (1.85)Now we onsider the ontribution I� to J�(z) from the other stationary point, at t = �i.Expanding around this point we havef(t) = �i + i2 (t+ i)2 + � � � ; (1.86)and so we hoose our real integration variable u that parameterises the path of steepestdesent to be suh that (t+ i)2 = u2z e 12 i� : (1.87)This time, the square root will be t+ i = upz e 14 i� ; (1.88)so that the ontour omes in from the south-west, and head onwards to the north-east, as itshould. The slope here is preisely +1. Thus we �nd by a similar alulation to the abovethat I� � 1p2� z ei(�z+ 12� �+ 14�) : (1.89)23



t = i

t = -i

Figure 9: The deformed Bessel ontour that follows the paths of steepest desent at t = �i.The deformed ontour that we have used in the steepest-desent integrals is depited inFigure 9. Notie that the ontour is running at preisely the 45-degree angles implied by(1.81) and (1.88) as it passes through the points t = +i and t = �i respetively.Finally, we put the two results together, J�(z) = I+ + I�, givingJ�(z) � r 2� z os(z � 12� � � 14�) : (1.90)This is our asymptoti formula for the large-z behaviour of the Bessel funtion J�(z).Notie that this result �ts very niely with what we saw in the various graphs of Besselfuntions, in Figures 1 to 6. One an see from the plots that the intervals between suessivezeros seem to be settling down to equal steps, preisely as is implied by the asymptotiallyosine form appearing in (1.90). Furthermore, one an see from the graphs that the am-plitude of the osillation is falling o� in a rather mild way as z gets larger. This also isunderstandable from the asymptoti expression (1.90), whih has a 1=pz prefator to theosine funtion.The asymptoti formula that we have obtained here is the leading term in the fullasymptoti expansion. As was disussed in Part 1 of the ourse, there is a systematiproedure for onstruting the expansion to any desired number of terms. Essentially, whatone does is to replae the trunated Taylor series for f(t) in (1.74) by the full series, or24



at least as many terms as one wishes to work with. The rede�ned integration oordinateu is then given by the orresponding full expression, rather than the trunated one (1.80).Other than that, and the assoiated ompliations that now arise from having to invert soas to express dt=du in terms of u, things proeed pretty muh as before. The result, whihwe shall derive later, an be shown to beJ�(z) � r 2� z h os(z � 12� � � 14�) 1Xr=0 ar z�2r + sin(z � 12� � � 14�) 1Xr=0 br z�2r�1i ; (1.91)where a0 = 1 andar = (�1)r(2r)! 26r �(4�2 � 12)(4�2 � 32) � � � (4�2 � (4r � 1)2)� ;br = (�1)r+1(2r + 1)! 26r+3 �(4�2 � 12)(4�2 � 32) � � � (4�2 � (4r + 1)2)� : (1.92)Our result above orresponds to the leading-order term with the oeÆient a0 = 1 in thisasymptoti expansion. In pratie, (1.90) is ommonly quite suÆient.Having struggled to obtain the asymptoti form of J�(z), it is, fortunately, now a relativetriviality to get the analogous formula for Y�(z). We need only refer bak to the originalde�nition of Y�(z), given in (1.47), and plug in the result (1.90). After an elementary useof the identities for the produt of two trigonometri funtions, we get the result:Y�(z) � r 2� z sin(z � 12� � � 14�) : (1.93)1.7 The Hankel Funtions H (1)� (z) and H (2)� (z)We have seen that asymptotially, J�(z) and Y�(z) beome very similar to ertain osineand sine funtions. Not surprisingly, perhaps, it turns out that it is often onvenient to in-trodue omplex ombinations of J�(z) and Y�(z), whih have the property of approahingomplex exponentials of the form e�i z asymptotially. In partiular, these are very onve-nient ombinations to use when onsidering solutions of a wave equation. Aordingly, onede�nes the so-alled Hankel funtions of the �rst and seond kind, denoted by H(1)� (z) andH(2)� (z) respetively, byH(1)� (z) = J�(z) + iY�(z) ; H(2)� (z) = J�(z)� iY�(z) : (1.94)Clearly, from (1.90) and (1.93), when z is large they have the asymptoti behaviourH(1)� (z) � r 2� z ei(z� 12 � �� 14�) ; H(2)� (z) � r 2� z e�i(z� 12 � �� 14�) : (1.95)25



The Hankel funtions an be obtained elegantly from the ontour integral representation(1.29), by making suitable hanges to the hoie of ontour. Spei�ally, we an show thatthey are given by H(1)� (z) = 1� i ZC1 t���1 e 12 z (t�t�1) dt ;H(2)� (z) = 1� i ZC2 t���1 e 12 z (t�t�1) dt ; (1.96)where the ontours C1 and C2 are hosen as follows. The ontour C2 starts out like theoriginal ontour in Figure 7, just below the real axis out west at t = �1. It heads in andswings half way around the origin, and then dives diretly in to the origin along the positivereal axis. The ontour C1 is the reetion of this aross the real axis; it omes out from theorigin, swings up and around, and heads o� to the west, just above the real axis, eventuallyreahing t = �1. The two ontours are depited in Figure 10 below.
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Figure 10: The ontours C1 and C2 for the Hankel funtions H(1)� (z) and H(2)� (z).The reason why suh ontours are allowed is that as t heads in to the origin along the realaxis, the fator e� 12 z t�1 in the integrand goes to zero (when the real part of z is positive.)Thus we again have the situation that when one substitutes into the Bessel equation, the\boundary term" arising from integration by parts vanishes at both ends of the ontour, justlike it did in our earlier disussion of the integral representation for J�(z). Thus with eitherof the ontours C1 or C2, the integral de�nes a funtion that satis�es Bessel's equation.26



Let us now verify that indeed the expressions for H(1)� (z) and H(2)� (z) in (1.96) are inagreement with the de�nitions (1.94). It is lear that the sum of the ontours C1 and C2 isequivalent, up to allowed deformations, to the ontour C used in the integral representation(1.29) for J�(z). Therefore we an immediately verify from (1.96) and (1.29) that indeedwe shall have J�(z) = 12(H(1)� (z) +H(2)� (z)) : (1.97)It remains to show from (1.96) thatY�(z) = 12i(H(1)� (z)�H(2)� (z)) ; (1.98)whih is what is required by (1.94). To do this, we �rst make the hange of integrationvariable t = ei�=s in the expression for H(1)� (z) in (1.96). Note that sine the imaginarypart of t is positive on the ontour C1, it follows that this maps into a ontour for s whereagain its imaginary part is positive.2 In fat for this reason, the ontour for the transformedintegral using s an again be taken to be just C1. The starting point t = 0 beomes s = �1,while the endpoint t = �1 beomes s = 0. This reversal of the diretion is ompensatedby the fat that dt=t = �ds=s. The fat that the ontour has been mapped bak onto itselfis ruial, beause it means that we an again interpret the integral as giving a Hankelfuntion of the �rst kind; this time, with order ��. Thus we �nd thatH(1)� (z) = 1� i e�i � � ZC1 s��1 e 12 z (�s�1+s) ds ;= e�i � �H(1)��(z) : (1.99)By a similar argument, in whih we hange the integration variable in the expressionfor H(2)� (z) in (1.96) by t = e�i�=s, we dedue also thatH(2)� (z) = ei � �H(2)��(z) : (1.100)(The hange of variable here ensures that t, whose imaginary part is negative on the ontourC2, maps into s that also has negative imaginary part. Again, this means that s an beintegrated along the same ontour as was t.)Having established these two results we an now not only express J�(z) in terms ofH(1)� (z) and H(2)� (z) using (1.97), but also J��(z) in terms of H(1)� (z) and H(2)� (z). These2Consider a point on the ontour C1 in the omplex t plane. Sine t lies in the upper half plane, it hasthe form t = r ei �, where 0 < � < �. Therefore s = ei�=t = r�1 ei(���), and so s lies in the upper half planetoo. 27



an then be plugged into the original de�nition of Y�(z) in terms of J�(z) and J��(z) asgiven in (1.47). This givesY�(z) = 12 sin �� � os �� (H1� (z) +H(2)� (z))� ei � �H(1)� (z)� e�i � �H(2)� (z)� : (1.101)Colleting terms, we see that this produes preisely the expression (1.98). This ompletesthe demonstration that the original de�nitions (1.94) of the Hankel funtions agree preiselywith the integral representations given in (1.96).Notie that we an easily repeat the previous derivation of the asymptoti behaviourof the J�(z) Bessel funtion, for the ase of the Hankel funtions H(1)� (z) and H(2)� (z). Infat, we have already obtained all the neessary results in setion 1.6. When we appliedthe method of steepest desent there, we found that the ontour C passed through twostationary points, at t = +i and t = �i, and so we obtained two ontributions whih, whenadded, gave the asymptoti form of J�(z). For the Hankel funtions we have the sameintegrand (multiplied by a fator of 2), but now with the ontour C1 or C2. In fat inthe method of steepest desent the ontour C1 will be deformed to one that passes justthrough the single stationary point at t = +i. Likewise, C2 will be deformed to a ontourpassing just through the t = �i stationary point. Thus the asymptoti forms of H(1)� (z) andH(2)� (z) will be preisely equal to 2I+ and 2I� respetively, where I� are the ontributionsoming from the steepest-desent integrations around t = �i respetively in setion 1.6.Sure enough, we see that the asymptoti forms of H(1)� (z) and H(2)� (z) given in (1.95) arepreisely in agreement with 2I+ and 2I� respetively, where I� were obtained in (1.85) and(1.89).1.8 Orthogonality of Bessel funtionsIf the Bessel equation (1.1) is divided by z, it assumes the self-adjoint form(z y0)0 + �z � �2z � y = 0 : (1.102)From the general disussion of Sturm-Liouville problems (see Part 1 of the leture ourse),this means that, with respet to suitable boundary onditions, the Bessel funtions willsatisfy orthogonality relations. These will be useful, for example, when we analyse problemsthat involve solving Laplae's equation or the wave equation in situations with ylindrialsymmetry, where Bessel funtions arise in the solutions.Reall, for example, that Laplae's equation in ylindrial polar oordinates (�; �; z) is1� ����� � �� �+ 1�2 �2 ��2 + �2 �z2 = 0 : (1.103)28



Separating variables by writing  = R(�)�(�)Z(z), we getd2Zdz2 � k2 Z = 0 ; d2�d�2 + �2 � = 0 ; (1.104)d2Rd�2 + 1� dRd� + �k2 � �2�2 �R = 0 ; (1.105)where k2 and �2 are separation onstants. Resaling the radial oordinate by de�ningx = k �, and renaming R as y, the last equation takes the standard Bessel formx2 d2ydx2 + x dydx + (x2 � �2) y = 0 : (1.106)Thus the radial funtions R(�) are of the formR(�) = J�(k �) or Y�(k �) : (1.107)In a typial eletrostatis problem, the potential  will be required to be regular onthe axis at � = 0. For now, onsider an example where in addition  = 0 on a ylindrialsurfae at some radius � = a. This implies that the general solution of Laplae's equationwill be expressed in terms of the J�(z) and Y�(z) Bessel funtions.3 The requirement ofregularity at � = 0 implies that the Y�(z) Bessel funtions are exluded (as indeed, if � isnot an integer, are the J�(z) Bessel funtions for � < 0). So for now, let us just onsiderJ�(z) as the expansion funtions.We have seen from the plots of the Bessel funtions, and from their asymptoti be-haviour, that J�(z) has a disrete in�nite set of zeros, at points on the real z axis thatasymptotially approah an equal spaing. Let us say that the m'th zero of J�(z) ours atz = ��m ; so J�(��m) = 0 : (1.108)So m = 1 is the loation of the �rst zero, m = 2 is the loation of the seond, and so on,as z inreases from 0. They our at de�nite values of ��m, though it is not easy to giveexpliit expressions for ��m.If we are wanting to impose the requirement that the potential  vanishes on a ylindrialsurfae at � = a, then we shall want to expand  in terms of Bessel funtions J�(k �) forwhih k a is equal to one of the quantities ��m de�ned above. In other words, this determines3If the boundary onditions were di�erent, we ould instead have a situation where the separation onstantk above were imaginary, in whih ase we would be dealing with Bessel funtions of the form J�(i z), et.Theseare given di�erent names (just like hyperboli as opposed to trigonometri funtions), and we shall disussthem later. Like the hyperboli funtions, they have real-exponential rather than osillatory behaviour.29



the set of values for the separation onstant k that an arise in this boundary-value problem.Thus we shall onsider the Bessel funtion expressionsJ�(��m �=a) ; (1.109)these will form our expansion futions for the radial funtion R(�). Substituting suh anR(�) into (1.105), and multiplying by �, we get� d2d�2 J�(��m �=a) + dd� J�(��m �=a) + ��2�m �a2 � �2� �J�(��m �=a) = 0 : (1.110)Now we follow the usual story for proving orthogonality, of muliplying (1.110) byJ�(��n �=a), and on the other hand writing the equivalent equation to (1.110) but withm replaed by n, multiplying it by J�(��m �=a), and subtrating the latter from the former.This gives J�(��n �=a) dd��� dd�J�(��m �=a)�� J�(��m �=a) dd��� dd�J�(��n �=a)�= �2�n � �2�ma2 � J�(��m �=a)J�(��n �=a) : (1.111)Next, we integrate this from � = 0 to � = a. On the left-hand side we integrate by parts,�nding that there is now a anellation of the resulting two integrands, leaving only the\boundary terms." Thus we have���� J�(��n �=a) dd�J�(��m �=a)���a0 � ���� J�(��m �=a) dd�J�(��n �=a)���a0= �2�n � �2�ma2 Z a0 J�(��m �=a)J�(��n �=a) � d� : (1.112)Realling from (1.27) that near � = 0, J�(��n �=a) is proportional to �� , we see thatwith our assumption that � � 0 the lower limits on the left-hand side of (1.112) will givezero. Furthermore, the upper limits will also give zero, sine by onstrution J�(��m) = 0.Thus we arrive at the onlusion that for m 6= n (whih implies ��m 6= ��n), we shall haveZ a0 J�(��m �=a)J�(��n �=a) � d� = 0 : (1.113)Having established orthogonality whenm 6= n, it remains to determine the normalisationof the integral that we get when instead we take m = n. To do this, let x = ��m �=a, sothat Z a0 J�(��n �=a)2 � d� = a2�2�n Z ��n0 J�(x)2 x dx : (1.114)30



To evaluate the integral on the right-hand side, we integrate by parts, by writing J�(x)2 x =12d=dx(x2 J�(x)2)� 12x2 d=dx(J�(x)2), so thatZ x2x1 J�(x)2 x dx = h12x2 J2� ix2x1 � Z x2x1 x2 J� J 0� dx : (1.115)We have also allowed rather more general upper and lower limits of integration x1 and x2here, sine then the resulting formula will be of wider appliability. Now use the Besselequation (1.1) to write x2 J� as �2 J� � xJ 0� � x2 J 00� , so that we getZ x2x1 J�(x)2 x dx = h12x2 J2� ix2x1 � Z x2x1 ��2 J� J 0� � xJ 0�2 � x2 J 0� J 00� �dx ;= h12x2 J2� ix2x1 � Z x2x1 �12�2 (J2� )0 � 12(x2 J 0�2)0�dx= 12hx2 J2� � �2 J2� + x2 J 0�2ix2x1 : (1.116)In our spei� ase we have integration limits x1 = 0, x2 = ��n. Therefore the �rst twoterms in the �nal line vanish at both our endpoints (reall that ��n are preisely the valuesof argument for whih J�(��n) = 0). For the �nal term, we use (1.33), expanded out togive J 0�(z) = �z J�(z)� J�+1(z) : (1.117)Thus, with our assumption that � � 0 we see that x2 J 0�2 will vanish at x = 0. Also, from(1.117) we see that J 0�(��n) = �J�+1(��n), and soZ ��n0 J�(x)2 x dx = 12�2�n J�+1(��n)2 ; (1.118)implying �nally thatZ a0 J�(��m �=a)J�(��n �=a) � d� = 12a2 J�+1(��n)2 Æmn : (1.119)With this orthogonality relation, it is now a simple matter to determine the oeÆientsin an expansion for solutions of Laplae's equation, expressed in terms of the J� Besselfuntions, so as to math a given boundary ondition. The essential point is that, just likea Fourier series, a suitable funtion an be expanded as a Fourier-Bessel series, i.e. a sumover a omplete set of Bessel funtions. Spei�ally, in the present ase we an expand anywell-behaved funtion f(�) that is regular at � = 0 and that vanishes at � = a as a sum ofthe form f(�) = 1Xn=1 n J�(��n �=a) : (1.120)Multiplying by J�(��m �=a) � and integrating, the orthogonality relation (1.119) gives usZ a0 f(�)J�(��m �=a) � d� = 12a2 J�+1(��m)2 m ; (1.121)31



thus determining the expansion oeÆients m.Consider the following example. A onduting ylinder of height h and radius a is heldat zero potential. A at ondutor loses o� the ylinder at z = 0, and is also at zeropotential. The top fae, at z = h, is held at some spei�ed potential (�; �; h) = 	(�; �) : (1.122)The problem is to determine the potential everywhere inside the avity.From (1.104) we see that the z dependene and � dependene of the separation funtionsZ(z) and �(�) will be Z(z) � sinhkz ; osh kz ;�(�) � os �� ; sin �� : (1.123)The vanishing of the potential on the plate at z = 0 means that for Z(z), we shall haveonly the sinhkz solution. The periodiity in � means that � must be an integer.Thus the general solution of Laplae's equation for this problem will be (�; �; z) = 1Xm=0 1Xn=1Jm(�mn �=a) (amn sinm�+ bmn sinm�) sinh(�mn z=a) : (1.124)The expansion oeÆients amn and bmn are determined by mathing this solution to thespei�ed boundary ondition (1.122) at z = h. Thus we have	(�; �) = 1Xm=0 1Xn=1Jm(�mn �=a) (amn sinm�+ bmn sinm�) sinh(�mn h=a) : (1.125)The orthogonality relation (1.119) for the Bessel funtions, together with the standardorthogonality for the trigonometri funtions, means that all we need to do is to multiply(1.125) by Jp(�pq �=a) sin p� or Jp(�pq �=a) sinp� and integrate over � and � in order toread o� the integrals that determine the individual oeÆients apq and bpq. It is easy to seethat the result isapq = 2� a2 sinh(�pqh=a)Jp+1(�pq)2 Z 2�0 d� Z a0 � d�	(�; �)Jp(�pq �=a) sin p� ;(1.126)bpq = 2� a2 sinh(�pqh=a)Jp+1(�pq)2 Z 2�0 d� Z a0 � d�	(�; �)Jp(�pq �=a) os p� :In this setion, we have seen how to make an expansion of solutions of Laplae's equationor the wave equation in terms of the Bessel funtions J� , appropriate to a system withylindrial symmetry. Furthermore, we made the assumption that the �eld we were solving32



for (for example, the eletrostati potential) was required to be non-singular on the axisof symmetry, and vanishing at radius � = a. Another example where suh boundaryonditions would be appropriate is a strehed membrane forming a irular drum, for whihthe osillations would vanish on the rim of the drum, and, of ourse, they would be non-singular in the middle of the membrane.In di�erent irumstanes one might want to onsider a situation with a di�erent bound-ary ondition at � = a. For example, in an eletrostatis problem one might require thatthe eletri �eld, rather than the potential, vanish at � = a. In this ase one would insteadwant to impose that the derivative of the potential vanish at � = a. This example ouldbe handled by a very similar method to the one we used, and only some of the �ne detailswould hange. Essentially, one would now be hanging the boundary onditions in theSturm-Liouville problem (see the leture notes for Part 1 of the ourse). Again we wouldbe working with orthogonal sets of Bessel eigenfuntions but now in (1.112) the boundaryterms that arise from integration by parts when proving orthogonality would vanish forslightly di�erent reasons. For example, if we require � =�� = 0 at � = a, then we wouldhange our hoie of the onstants ��� so that instead of being de�ned as the zeros of J�(z),they would instead be de�ned as the zeros of J 0�(z). With appropriate suh hanges, thedisussion would then go through in a very similar vein.Another modi�ation that might arise in a slightly di�erent kind of problem is that wemight need also to make use of the \seond solution" of the Bessel equation. The generalseries expansion after separating variables in Laplae's equation or the wave equation wouldinvolve both the J� and the J�� (or Y� , if � is an integer) Bessel funtions. In other words,Bessel funtions that are singular at � = 0 might be needed too. This ould happen eitherbeause one for some reason needed to allow the �eld  to be singular there, or else beause� = 0 might not be within the region under onsideration. An example would be if wewere solving an eletrostatis problem in the region between two onentri ylinders ofradii a and b. Now, we would in general need the seond-solution Bessel funtions as well.Again, it is not too muh of an extension of the methods developed already in this setionto ope with suh a irumstane. One would need to establish appropriate orthogonalityproperties for the extended set of Bessel funtions, and to establish normalisation resultsanalogous to (1.116).Going through the details of suh modi�ations and generalisations would really be\more of the same." There are more interesting things to pursue, so let's move on.33



1.9 Modi�ed Bessel Funtions of the First and Seond KindA familiar feature of the equation for simple harmoni motion, y00(z) + !2 y(z) = 0 is thatits osillatory solutions sin!z and os!z beome instead the non-osillatory hyperbolifuntions sinh!z and osh!z if the sign of the !2 term is reversed, to give y00(z)�!2 y(z) =0. Of ourse another way of ahieving this sign reversal is by sending z �! i z in the originalsimple harmoni equation, and hene also in its solutions. One has the familiar relationsthat sin iz = i sinh z ; os iz = osh z : (1.127)The di�erential equation with the hyperboli funtions as solutions also ommonly arises inphysis. For example, in a solution by separation of variables, it might be that a separationonstant has one sign for ertain types of boundary ondition, and the opposite sign forother types of boundary ondition. And this sign hange ould preisely manifest itself intaking us from trigonometri to hyperboli funtions.The story is very similar for the Bessel funtions. We have seen that the solutions J�(z)and Y�(z) of Bessel's equation z2 y00 + z y0 + (z2 � �2) y = 0 (1.128)are osillatory (for real z), at least when jzj is large enough. If we now make the replaementz �! i z, then the equation takes the form, known as the Modi�ed Bessel Equation,z2 y00 + z y0 � (z2 + �2) y = 0 : (1.129)Clearly its solutions will follow from those of (1.128) by making the replaement z �! i zin the arguments of J�(z) and Y�(z).Atually, our use of the word \learly" here was perhaps a little optimisti. The problemis that although the basi fats are lear, there is a lot of onfusion aused by di�erentnotations in the literature. Let's make an unontroversial de�nition �rst. All authors agreeto de�ne a \modi�ed Bessel funtion of the �rst kind," alled I�(z), as followsI�(z) � e� 12� � i J�(z e 12� i) : (1.130)The ontroversy omes with the hoie of de�nition for the \modi�ed Bessel funtion of theseond kind," alled4 K�(z). Here, we shall de�ne K�(z) as follows:K�(z) � 12� e 12 (�+1) � iH(1)� (z e 12� i) ; (1.131)4It seems that everybody agrees on its name, and its symbol, if not its de�nition. It's not lear whetherone should regard that as a good thing or a bad thing!34



where H(1)� (z) is the �rst Hankel funtion, introdued earlier. From our previous de�nitions,it follows that alternative (equivalent) ways of writing K�(z) areK�(z) = 12� e 12 (�+1)� i �J�(z e 12� i) + iY�(z e 12� i)� ;= � (I��(z)� I�(z))2 sin �� : (1.132)Obviously, from our previous disussions for J�(z) and Y�(z), it is the ase that I�(z) andK�(z) onstitute two linearly-independent solutions of the modi�ed Bessel equation.We shall stik with these de�nitions. Just as a parentheti remark, we may note that thehief \rival" to this de�nition is one where our K�(z) is multiplied by a fator of os ��. Thelogi for this extra fator is that then, the I� and theK� modi�ed Bessel funtions will satisfyidential reurrene relations. Without the os ��, there will be slightly di�erent formulaefor I� and K� . The prie to be paid, however, for making them uniform in this respet isthat the os �� fator will kill o� the K� funtion ompletely if � is half an odd integer. Forthat reason, the \rival" de�nition has fallen into disfavour. Another reason for preferringthe de�nition we are using here is that it is the one used in the algebrai omputing languageMathematia, whih is an immensely powerful tool for analyti mathematial omputation.Having settled on the notation, now let us move on to the more substantial items onthe agenda. First, we an immediately write down a power-series expansion for I�(z), validfor small z, by substituting the de�nition (1.130) into (1.27), to getI�(z) = 1Xr=0 1r! �(� + r + 1) �z2��+2r : (1.133)Notie how the phase fator in (1.130) has preisely removed the phase fator arising fromreplaing z by z e 12� i in (1.27), and furthermore, how the (�1)r fator is also removed.Reall that we had previously determined that the series expansion (1.27) is onvergentin the entire �nite omplex plane. Sine all we have really done is to rotate z through 90degrees, it follows that the series expansion (1.133) is also onvergent in the entire �niteomplex plane. This does not, however, neessarily mean that it will remain small! Indeed,it is obvious from (1.133) that if we take z to be real and positive, then the series for I�(z)is a sum of positive terms. Therefore, if we take z to be very large and positive, then itfollows that I�(z) will get very large. (This does not ontradit the onvergene of theseries. Think of the series for ez , ez = 1Xr=0 1r! zr : (1.134)Again, for real positive z this is the sum of positive terms, and again it follows that for large35



positive z it gets very large. But we know from kindergarten that the series onverges forall �nite z.) Keep this fat in mind as we move on to the next stage in the development.In a moment, we shall present an extremely useful integral representation for K�(z).Before doing so, we shall establish a property of K�(z) whih haraterises it as being quitedistint in its behaviour from I�(z). We saw in (1.95) how the Hankel funtion H(1)� (z)behaves at large values of jzj. It follows, given the de�nition (1.131) for K�(z), that at largez we shall have that K�(z) � r �2z e�z : (1.135)Notie again how all the phase fators have niely anelled, upon substitution of (1.131)into (1.95). The key point to notie from this is that as z tends to +1, K�(z) tends tozero.Now, we an present the integral representation for K�(z). It isK�(z) = p��(� + 12) �z2�� Z 11 e�z x (x2 � 1)�� 12 dx ; � > �12 ; �12� < arg z < 12� :(1.136)The proof that this integral really does give K�(z) onsists of three parts. First, we provethat it satis�es the modi�ed Bessel equation, whih shows that it must be some linearombination of K�(z) and I�(z). Next, we prove that in fat it is purely a multiple ofK�(z), with no ontamination from I�(z). Finally, we test its normalisation, to show thatit is exatly K�(z), and not some onstant multiple of it.To prove that the integral in (1.136) indeed de�nes a solution of the modi�ed Besselequation, we simply substitute it in. The easiest way to do this is to de�nef(z; x) � z� e�z x (x2 � 1)�� 12 : (1.137)This is the \beef" of what appears on the right-hand side of (1.136) before integration,with all the multipliative onstant fators dropped. Now substitute this into the modi�edBessel equation (1.129), givingz2 f 00 + z f 0 � (z2 + �2) f = z�+1 e�z x (x2 � 1)�� 12 (z x2 � z � (2� + 1)x) ; (1.138)(where a prime means a derivative with respet to z, of ourse). Now observe that theright-hand side here an be written as a total derivative with respet to x, and so:z2 f 00 + z f 0 � (z2 + �2) f = ddx hz�+1 e�z x (x2 � 1)�+ 12 i : (1.139)Now integrate this equation with respet to x, evaluated between the limits x = 1 andx = 1, and reall that, from (1.136), we are hoping to show that the integral of the left-hand side of (1.139) is zero. This is exatly what we �nd; the integral of the right-hand side36



of (1.136) gives hz�+1 e�z x (x2 � 1)�+ 12 i11 ; (1.140)and this vanishes at both limits provided that � > �12 , and Re(z) > 0. Thus it is establishedthat (1.136) de�nes a funtion that satis�es the modi�ed Bessel equation. It follows that itmust be some linear ombination of the two independent solutions K�(z) and I�(z).Next, we want to show that there is no \ontamination" from I�(z). This is simple,sine we have seen that K�(z) and I�(z) have diametrially opposite behaviours for largepositive z; I�(z) diverges, whilst K�(z) goes to zero. Now, it is manifest from (1.136) thatthis integral de�nes a funtion that tends to zero as z tends to positive in�nity, beause ofthe fator e�z x in the integrand. Therefore it must be that the integral is produing purelyK�(z), with no admixture of I�(z). (Even a tiny admixture of the form K�(z) + � I�(z), nomatter how small � was, would eventually have to diverge for suÆiently large z. Thus wededue that � must be rigorously zero.)Finally, we need to hek that the normalisation of the integral (1.136) is orret, so thatit is produing exatly K�(z),, and not some multiple of it. This an be �xed by lookingat a speial ase, sine only one onstant mulipliation fator needs to be determined. Thisan be done by looking at large z, and omparing with (1.135). To do this, it is better �rstto make a hange of integration variable in (1.136); we let x = 1 + t=z. This givesK�(z) = r �2z e�z�(� + 12) Z 10 e�t t�� 12 �1 + t2z ��� 12 dt : (1.141)At large z we an neglet the t=(2z) term in the integrand, sine by the time t beomeslarge enough for t=(2z) to outweigh 1, the e�t fator in the integrand will have rendered theontribution from this portion of the integration range insigni�ant. Thus approximatelywe shall have K�(z) � r �2z e�z�(� + 12) Z 10 e�t t�� 12 dt ; (1.142)at large z. The integral now just gives �(� + 12), and so we �nd thatK�(z) � r �2z e�z : (1.143)This is exatly the same as the normalisation in (1.135). We have thus ompleted thedemonstration that (1.136) gives preisely the K�(z) modi�ed Bessel funtion.The main reason for pursuing this rather lengthy derivation is that the integral rep-resentation (1.136) for K�(z) provides us with a very simple way to obtain asymptotiexpansions for not only K�(z) itself, but also I�(z), J�(z) and Y�(z), to arbitrary order.37



More preisely, it is the integral expression (1.141) that we shall use. All we have to dois to make a binomial expansion of the fator (1 + t=(2z))�� 12 in the integrand of (1.141),and then integrate term by term. (Reall from Part 1 of the ourse that one is allowed tointegrate term by term in an asymptoti expansion.)Making the binomial expanion, we �nd that (1.141) givesK�(z) � r �2z e�z�(� + 12) 1Xr=0 �(� + 12) (2z)�rr! �(� � r) Z 10 e�t t�+r� 12 dt ;= r �2z e�z 1Xr=0 �(� + r + 12)r! �(� � r + 12) (2z)r (1.144)Using elementary properties of the Gamma funtion, one an see that this gives us theasymptoti seriesK�(z) � r �2z e�z h1 + (4�2 � 12)1! 8z + (4�2 � 12)(4�2 � 32)2! (8z)2 + � � � i : (1.145)Our derivation of this series was based on the use of the integral representation (1.136),whih is onvergent for �12� < arg z < 12�. But atually, the asymptoti expansion we havearrived at an be shown to be valid for the wider range of arguments �32� < arg z < 32�.(Reall that K�(z) has a branh point at z = 0, as demonstrated by the z� fator in itspower-series expansion around z = 0. Therefore, for generi �, the range �32� < arg z < 32�sill overs a lot less than the full range of phases for z that one needs to onsider, eventhough it is more than a omplete irulit around the origina of the omplex plane.)We have arrived at the result for the omplete asymptoti expansion of K�(z). Theleading-order term is the one we found in (1.135), whih ame, originally, from our steepest-desent analysis of the integral represenations for J�(z) and the Hankel funtions. In fatthe asynptoti expansions for all the assorted Bessel funtions an easily be given in termsof the result (1.145). First, let us write it asK�(z) = r �2z e�z �P�(i z) + iQ�(i z)� ; (1.146)whereP�(z) � 1� (4�2 � 12)(4�2 � 32)2! (8z)2 + (4�2 � 12)(4�2 � 32)(4�2 � 52)(4�2 � 72)4! (8z)4 + � � �Q�(z) � (4�2 � 12)1! (8z) � (4�2 � 12)(4�2 � 32)(4�2 � 52)3! (8z)3 + � � � : (1.147)From the original de�nition (1.131) of K�(z) in terms of H(1)� (z), it then follows thatH(1)� (z) = r 2� z ei (z� 12� �� 14�) �P�(z) + iQ�(z)� ; �� < arg z < 2� : (1.148)38



The seond Hankel funtion is the omplex onjugate of the �rst, soH(2)� (z) = r 2� z e�i (z� 12� �� 14�) �P�(z)� iQ�(z)� ; �2� < arg z < � : (1.149)Next, sine J�(z) is the real part of H(1)� (z) we shall haveJ�(z) = r 2� z �P�(z) os(z� 12� �� 14�)�Q�(z) sin(z� 12� �� 14�)� ; �� < arg z < � :(1.150)On the other hand Y�(z) is the imaginary part of H(1)� (z), and soY�(z) =r 2� z �P�(z) sin(z� 12� �� 14�)+Q�(z) os(z� 12� �� 14�)� ; �� < arg z < � :(1.151)Finally, sine I�(z) is de�ned in terms of J�(z) by (1.130), we an obtain its asymptotiexpansion from (1.150), givingI�(z) = ezp2� z �P�(i z)� iQ�(i z)� ; �12� < arg z < 12� : (1.152)1.10 A Sattering CalulationThe speial funtions of mathematis, suh as the Bessel funtions, typially arise whensolving Laplae's equation, the Shr�odinger equation or the wave equation by the methodof separation of variables. One lass of physial problem in partiular where they an arise isin the study of sattering. A typial situation is that one sits at a large distane (e�etively,at in�nite distane) from some partile or objet, and sends in waves, whih are satteredo� the objet. One then looks at what omes bak, from one's vantage point at in�nity.To alulate this sattering proess, one solves the wave equation (or maybe Shr�odingerequation) desribing the propagation of the waves under the inuene of the satteringobjet, and imposes appropriate boundary onditions at the sattering entre, as ditatedby the physis of the problem. Essentially what one then obtains is an expression for theoutgoing and ingoing waves at in�nity that result from having sent in an initial wave.Let us onsider a nie example of a sattering problem where we an use some of theBessel-funtion tehnology that we have been studying. The example is not a traditionalone, but it has the merit of being simple, and maybe even a bit more interesting thanthe \old faithfuls." We shall onsider a blak hole in �ve spaetime dimensions. As faras the relevant equations are onerned, all that we need to know is that spin-0 �elds �propagating in the bakground geometry of this blak hole satisfy the equationd2�dr2 + 3r d�dr + h!2 + !2 � `(`+ 2)r2 i� = 0 : (1.153)39



Here r is the radial oordinate, the blak hole event horizon is loated at r = 0, and we shallsit safely out at in�nite distane from it, at r =1. The onstant ! is the frequeny of thewave, and ` is the angular quantum number analogous to the usual ` of quantum mehanisin four spaetime dimensions. (The entrifugal potential inD spaetime dimensions is of theform `(`+D� 3)=r2, whih explains the `(`+2) fator here. The fator of 3=r multiplyingd�=dr is aonther tell-tale sign that we are in D = 5 dimensions; it would be (D � 2)=r ingeneral.) The equation (1.153) has ome from making a rather standard sort of separationof variables, writing the original salar wavefuntion � as� = �(r)Y` e�i! t ; (1.154)where the Y` represent spherial harmonis analogous to the familiar Y`m(�; '), but nowthey are de�ned on a 3-sphere rather than a 2-sphere.If we now let � =  =r, the equation (1.153) beomesr2 d2 dr2 + r d dr + h!2 r2 + (!2 � (`+ 1)2i� = 0 : (1.155)Introduing a new radial oordinate z = ! r, and de�ning�2 = (`+ 1)2 � !2 ; (1.156)the equation beomes preisely Bessel's equationz2  00 + z  0 + (z2 � �2) = 0 : (1.157)Thus the solutions for � are � = �r J�(! r) + �r J��(! r) : (1.158)Now, we want to study what happens when we send in a wave from in�nity, and to seewhat omes bak at us from the blak-hole \satterer." We know the general solution for thewaves, so now we must impose the appropriate boundary onditions. In fat the boundaryonditions are very simple here. To make an analogy that will be understood by anyone whohas ever had to deal with the problem of okroahes in the kithen, a blak hole works justlike the \Roah Motel" that you an buy in the stores. This useful devie enties okroahesinto it, whereupon they eat an attrative-tasting poison and die. The advertising sloganfor the Roah Motel is \They hek in, but they don't hek out!" A blak hole worksin just the same way. Imagine ingoing waves, represented by okroahes walking radiallyinwards along the diretion of dereasing r, and outgoing waves represented by okroahes40



walking radially outwards, with r inreasing. The blak-hole boundary ondition is that atthe horizon (r = 0), there are only ingoing waves, but no outgoing waves; \they hek in,but they don't hek out."How do we reognise a wave that is ingoing and one that is outgoing? Sine the timedependene of the wave is of the form e�i! t, as in (1.154), it follows that an ingoing waveis one whose phase inreases as r dereases. For example,� � e�i! t�i! r (1.159)is an ingoing wave, sine to sit �xed on a given wavefront one has to go to smaller valuesof r as t gets bigger. Conversely, an example of an outgoing wave would be� � e�i! t+i! r : (1.160)Sine we have to impose the boundary ondition on the waves at r = 0, let us look atthat region �rst. From (1.27), we know that for very small z we shall haveJ�(z) � 1�(� + 1) �z2�� : (1.161)Thus from (1.158), we see that the r-dependene of the salar waves will be of the generalform r��, with � given by (1.156). If � is real, the solutions are in fat not wavelike atall. To have waves, we shall need the frequeny ! to be suÆiently large that � beomesimaginary, i.e. ! > `+ 1. Let us therefore assume that this is the ase, and de�ne � = i q,with q � q!2 � (`+ 1)2 ; with ! > `+ 1 : (1.162)Thus we shall have� � �r �(1 + i q)ei q log(! r=2) + �r �(1� i q)e�i q log(! r=2) (1.163)near r = 0. (We have used that xy = ey log x here.)We saw previously that an outgoing wave is one whose phase inreases as r inreases.This means that the �rst term in (1.163) is outgoing, while the seond term is ingoing. Theblak-hole boundary ondition tells us therefore that� = 0 ; (1.164)whih means that the physial wave solutions (1.158) are� = �r J�i q(! r) : (1.165)41



Now, we look in the asymptoti region near r = 1. For this, we use the asymptotiexpansion (1.90), whih is J�(z) � r 2� z os(z � 12� � � 14�) : (1.166)(This leading-order term is good enough here.) From (1.165), we therefore have� � �r r 2� ! r os(! r + 12q � i� 14�) ;� �2r r 2� ! r e 12 q � e 14 i� he�i! r � i e�� q ei! ri : (1.167)We reognise the �rst term in the square braket as an ingoing wave, and the seond termas an outgoing wave.The prefator in front of the square braket in (1.167) is unimportant for our immediatepurposes, sine it is a ommon fator in both terms. The key point is that we have foundthat waves out at in�nity have the general struture � e�i! r + S0 ei! r ; (1.168)with S0 = �i e�� q. So sending in a wave of unit strength, we get bak a wave with strengthS0. Thus S0 tells us how muh omes bak, as a fration of what is sent in. The quantityS0 is alled the S Matrix. We an use it to alulate the Absorption Probability P , whihwill in general be given by P = 1 � jS0j2. Thus for this blak hole sattering problem, theabsorption probability is given byP = 1� e�2� q = 1� e�2�p!2�(`+1)2 ; ! > `+ 1 : (1.169)On the other hand, when ! � `+ 1, there is no absorption at all sine there is no wavelikebehaviour at the horizon, and so P = 0. This mathes on smoothly to the result in (1.169).As the frequeny of the waves gets larger and larger, the sattering tends exponentially tozero, and aordingly the absorption probability tends to 1. The blak hole is behavingmore and more like a \sink," with everything that is sent in just disappearing behind thehorizon, and no baksatter oming bak to the asymptoti region near r =1.One an onsider many other physial sattering proesses, and analyse them in a similarway. The general priniples will always be the same, although the details, suh as theboundary onditions, will depend on the physial problem one is onsidering. But always,the idea is to send in waves from in�nity, impose appropriate boundary onditions at thesattering entre, and then look at the ratio between ingoing and outgoing wave omponentsat in�nity. 42



Notie that both in the solution of potential-theory problems, and in sattering alu-lations, an absolutely ruial point is that one needs to know how a spei� solution ofthe Bessel equation behaves in di�erent regions. For example, in the sattering alulationwe needed to know the asymptoti behaviour at large z for the solution that had a givenbehaviour near z = 0. It would not be good enough simply to know that for small z thetwo solutions of Bessel's equation look likeu1 � z� ; u2 � z�� ; (1.170)(see (1.161)), and that for large z the two solutions look likev1 � z� 12 os z ; v2 � z� 12 sin z ; (1.171)(see (1.166)). (These asymptoti forms ould, for example, be obtained diretly from theBessel equation, by taking z to be small or large respetively.) The ruial point is thatone needs to know exatly what the relation between the small-z and large-z forms of aspei� solution are; in partiular, one needs to know exatly what the onstants ai and biare in the relation v1 = a1 u1 + b1 u2 and v2 = a2 u1 + b2 u2. This is preisely the sort ofinformation that we have been able to obtain as a result of having integral representationsfor the Bessel funtions.2 Hypergeometri and Conuent Hypergeometri Funtions2.1 Hypergeometri FuntionsLet us begin by onsidering the following power series,y(z) = 1 + a b z1! + a(a+ 1) b(b+ 1)(+ 1) z22! + a(a+ 1)(a + 2) b(b+ 1)(b + 2)( + 1)( + 2) z33! + � � � (2.1)whih an be onveniently written asy(z) = 1Xn=0 (a)n (b)n()n znn! ; (2.2)where we de�ne the Pohhammer symbol (a)n by(a)n � �(a+ n)�(a) = a(a+ 1)(a + 2) � � � (a+ n� 1) : (2.3)(Note that (a)0 = 1.) The funtion de�ned by this power series is alled the HypergeometriFuntion 2F1(a; b; ; z); thus 2F1(a; b; ; z) = 1Xn=0 (a)n (b)n()n znn! : (2.4)43



It is, apparently, alled the hypergeometri funtion beause it is a natural generalisationof the funtion 1=(1� z) that gives the geometri series 1 + z + z2+ z3 + � � �. The notationwith the subsripts 2 and 1 on the 2F1 signi�es that the series expansion has 2 Pohhammersymbols in the numerator, and 1 in the denominator. The use of semiolons as delimitersfor the  parameter is onventional too. Notie that beause of the fat that �(x) is in�nitewhen x = 0 or a negative integer, the parameter  must not be zero or a negative integer.On the other hand, if a or b is zero or a negative integer, then the series terminates andbeomes just a �nite polynomial. Note also that 2F1(a; b; ; z) is equal to 2F1(b; a; ; z).It is easy to see that the hypergeometri funtion satis�es the Hypergeometri Equationz(1 � z) y00(z) + [� (a+ b+ 1) z)℄ y0(z)� a b y(z) = 0 : (2.5)We an hek this by simply plugging (2.4) into (2.5), and shifting the summation variablesin eah term as neessary so as to get z-dependene zn for eah term. In other words, justhek that the oeÆient of eah power of z vanishes. To do this, it is useful to observethat the Pohhammer symbol satis�es the relation(a)n+1 = �(a+ n+ 1)�(a) = (a+ n) �(a+ n)�(a) ;= (a+ n) (a)n : (2.6)We disussed the hypergeometri equation a little in Part 1 of the ourse. Dividing (2.5)by z(1� z), we see that the oeÆient of y0(z) then has �rst-order poles 1=z and 1=(1� z),as does the oeÆient of y(z) (sine z�1 (1 � z)�1 = z�1 + (1 � z)�1). Realling that thedi�erential equation y00(z) + p(z) y0(z) + q(z) y(z) = 0 (2.7)has a regular singular point at z = z0 if p(z) and/or q(z) diverge there, but (z � z0) p(z)and (z � z0)2 q(z) are �nite, we see that the hypergeometri equation has regular singularpoints at z = 0 and z = 1. Furthermore, if we let z = 1=w, we �nd that the transformedequation is (w � 1) d2ydw2 + [2� + (a+ b� 1)w�1℄ dydw � a bw2 y = 0 ; (2.8)and therefore w = 0, orresponding to z = 1, is also a regular singular point. Thus thehypergeometri equation is non-singular everywhere exept at three regular singular points,loated at z = 0, 1 and1. Any seond-order linear ordinary di�erential equation with threeregular singular points an be transformed into the anonial form of the hypergeometriequation, by making appropriate hages of variable, and so it enompasses a rather broadlass of di�erential equations, inluding many that one enounters in physis.44



It is a standard result in the theory of di�erential equations, whih we disussed in Part 1,that at least one of the two solutions of a seond-order ODE (ordinary di�erential equation)an be obtained as an expansion around a regular singular point z0 of the equation, in theform y = (z � z0)s 1Xn=0 an (z � z0)n ; (2.9)where s is a root of a ertain seond-order polynomial equation alled the indiial equation.5Furthermore, in a situation where the funtion q(z) in (2.7) atually happens not to have aseond-order pole ontribution at the regular singular point, one root of the indiial equationis s = 0. This is the ase at z = 0 in the hypergeometri equation, and so we know thatthere should ertainly exist one solution that is a pure analyti power series when expandedaround the point z = 0. This is exatly what we have in (2.4); a pure analyti power-seriessolution to the hypergeometri equation.Another standard result from the theory of ODEs is that the radius of onvergene ofthis power series solution will be equal to the distane from the expansion point, z = 0, tothe next nearest singular point of the equation. In the ase of the hypergeometri equation,this will be the regular singular point at z = 1. Thus we learn that the power series (2.4)is onvergent in the disk jzj < 1. This an easily be veri�ed by applying the ratio test foronvergene of a series. We take the ratio R of the (n+1)'th term divided by the n'th term.If the modulus of this ratio is less than 1 in the limit as n tends to in�nity, then the seriesonverges absolutely; if it is greater than 1 it diverges, and if it equals 1, a more deliateanalysis is needed. In our ase, from (2.4), we haveR = (a)n+1 (b)n+1()n+1 (n+ 1)! ()n n!(a)n (b)n z = (n+ 1) (n+ )(n+ a) (n+ b) z (2.10)in the limit when n �!1, implying that we get jRj = jzj. Thus the series indeed onvergesfor jzj < 1, and diverges for jzj > 1.The hypergeometri equation, being of seond order, must have two linearly-independentsolutions. We may, in general, obtain the seond solution as follows. Make the substitutiony(z) = z1�w(z) in the hypergeometri equation (2.5). After a ouple of lines of simplealgebra, one �nds that w(z) satis�esz (1� z)w00 + [2� � (a+ b� 2+ 3) z℄w0 � (a� + 1)(b � + 1)w = 0 : (2.11)5Generially, if the two roots s1 and s2 of the indiial equation do not di�er by an integer, then bothsolutions an be obtained in the form (2.9). But more often than not, life being what it is, it turns out thatases of partiular interest orrespond to the situation where s1 � s2 is and integer.45



This an be reognised as the hypergeometri equation again, but now with the parameters(a� + 1; b� + 1; 2� ) instead of (a; b; ). Thus we see thaty2 = z1� 2F1(a� + 1; b� + 1; 2� ; z) (2.12)is another solution of the hypergeometri equation. It is obvious that if  is not an integer,this solution is linearly independent of the original solution 2F1(a; b; ; z), sine (2.12) isa then a power series in non-integer powers of z whereas 2F1(a; b; ; z) is a power seriesin integer powers of z. If  is an integer then one an show that (2.12) is in general thesame solution as 2F1(a; b; ; z) (exept for speial values of the parameters a and b). Thesituation is very reminisent of the Bessel equation, where J��(z) provides a solution thatis independent of J�(z), exept when � is an integer. As in that ase, it turns out here thatin suh a \degenerate" situation, the seond independent solution will inlude logarithmterms.We may onstrut an integral representation for the hypergeometri funtion as follows.We begin by introduing the Beta Funtion B(p; q), de�ned as6B(p; q) � �(p) �(q)�(p+ q) : (2.13)Clearly B(p; q) = B(q; p). Now onsider the following expression for �(p) �(q), whih isobtained just by taking the produt of two standard integral representations for the Gammafuntion: �(p) �(q) = Z 10 e�u up�1 du Z 10 e�v vq�1 dv : (2.14)Now let u = x2, v = y2 and then hange to polar oordinates; x = r os �, y = r sin �;�(p) �(q) = 4 Z 10 dx Z 10 dy e�x2�y2 x2p�1 y2q�1= 4 Z 10 dr Z 12�0 d� e�r2 r2p+2q�1 (os �)2p�1 (sin �)2q�1= 2 Z 10 d� Z 12�0 d� e�� �p+q�1 (os �)2p�1 (sin �)2q�1= 2�(p+ q) Z 12�0 d� (os �)2p�1 (sin �)2q�1 ; (2.15)where in the third line we have hanged variable again, from r to � = r2, allowing us toreognise a standard integral representation for �(p + q). Finally, the further hange ofvariable from � to t = sin2 � yields the result thatB(p; q) = �(p) �(q)�(p+ q) = Z 10 (1� t)p�1 tq�1 dt : (2.16)6An upper-ase Greek beta is written as B. 46



Using the Beta funtion, we an therefore write the ratio (b)n=()n in the power seriesfor the hypergeometri funtion as(b)n()n = B(b+ n; � b)B(b; � b) = 1B(b; � b) Z 10 (1� t)�b�1 tb+n�1 dt : (2.17)Thus from (2.4) we shall have2F1(a; b; ; z) = 1B(b; � b) 1Xn=0 (a)n)n! zn Z 10 (1� t)�b�1 tb+n�1 dt : (2.18)Interhanging the order of the integration and summation, we an sum the resulting seriesby noting from the binomial theorem that1Xn=0 (a)nn! zn tn = 1Xn=0 �(a+ n)�(a)n! (z t)n = (1� z t)�a : (2.19)Thus we arrive at the following integral representation for the hypergeometri funtion:2F1(a; b; ; z) = �()�(b) �( � b) Z 10 (1� t)�b�1 tb�1 (1� z t)�a dt : (2.20)This is valid for any omplex value of z provided that z is not real and larger than 1. (Thisrestrition ensures that the (1� z t)�a fator does not give rise to a pole or branh point inthe integrand at t = 1=z.) The branh of (1�x t)�a must be hosen so that (1�x t)�a �! 1as t goes to zero, and the parameters b and  must be suh that Re() >Re(b) > 0. Notethat this represents an analyti ontinuation of the original power-series expression (2.4)for 2F1(a; b; ; z), whih was onvergent only for jzj < 1.By playing around with this integral representation, and others, one an establish manyproperties and inter-relations among hypergeometri funtions. We shall not go into toomuh further detail here, sine the subjet is a vast one, and is disussed at length inmany books. We shall just reord a few more fats here, without proof, to show the sortof relations that one an establish. Firstly, there is another integral representation for thehypergeometri funtion, known as the Barnes Integral,2F1(a; b; ; z) = �()2� i �(a) �(b) Z i1�i1 �(a+ s) �(b+ s) �(�s)�(+ s) (�z)s ds ; (2.21)whih is proven by establishing that the term (a)n (b)n zn=(()n n!) in the power-series ex-pansion (2.4) is the residue of the integrand at s = n. This integral gives the hypergeometrifuntion as a funtion analyti in the domain de�ned by the inequality jarg zj < �, and soagain, it is an analyti extension of the original series de�nition (2.4).One an use the Barnes representation (2.21) in order to obtain a new power seriesfor 2F1(a; b; ; z) that is onvergent when jzj > 1. After some e�ort, one arrives at the47



onlusion that�(a) �(b)�() 2F1(a; b; ; z) = �(a) �(b� a)�(� a) (�z)�a 2F1(a; a� + 1; a� b+ 1; z�1)+�(b) �(a� b)�(� b) (�z)�b 2F1(b; b� + 1; b� a+ 1; z�1) ;(2.22)where jarg (�z)j < �. Sine the hypergeometri funtions on the right-hand side both have1=z as argument, it follows that when jzj > 1 the original power series (2.4) an be used inorder to obtain a series expansion for the right-hand side, and hene a series expansion for2F1(a; b; ; z) that is onvergent for jzj > 1. The formula (2.22) is typial of many relationsthat one an obtain, relating 2F1(a; b; ; z) to hypergeometri funtions with argument 1=zor (1� z) or z=(1� z), and so on. It an easily be shown that eah term on the right-handside of (2.22) is separately a solution of the original hypergeometri equation.Notie that the power series in 1=z that we obtain by using (2.22) together with theoriginal series (2.4) is a perfetly onvergent one, rather than an asymptoti expansion. Thisis beause z = 1 is a regular singular point of the hypergeometri equation. In the nextsubsetion we shall see what happens when we take a singular limit of the parameters in thehypergeometri equation, resulting in the regular singular point at z = 1 being moved out tojoin the one at z =1. In this limit the point at in�nity beomes an irregular singular point,and orrespondingly one is bak to the situation where one an obtain only an asymptotiexpansion, as opposed to a onvergent power-series expansion, around z = 1. In fat,as we shall see, this limit in whih two regular singular points join together to make anirregular singular point gives an equation, alled the onuent hypergeometri equation,that inludes our old friend the Bessel equation as a speial ase.2.2 Conuent Hypergeometri FuntionsWe have seen that the hypergeometri equationz (1� z) y00(z) + [� (a+ b+ 1) z)℄ y0(z)� a b y(z) = 0 : (2.23)has three singular points, all of them regular singular points, loated at z = 0, 1 and1. Their preise loations an be moved around by making transformations of z, suhas onstant shifts and salings. Consider in partiular the following transformation, underwhih z �! zb ; (2.24)implying that the hypergeometri equation beomesz (1� z b�1) y00(z) + [� (a+ b+ 1) b�1 z)℄ y0(z)� a y(z) = 0 ; (2.25)48



(after dividing out by b). Evidently, at this stage the singular points of the equation havebeen transformed to z = 0, b and 1.Now, let us send b to in�nity. We an see that this is a perfetly well-de�ned limit ofthe equation (2.25), whih leads toz y00 + (� z) y0 � a y = 0 : (2.26)This is alled the Conuent Hypergeometri Equation. The name omes from the fat thatthe two regular singular points z = b and z = 1 in (2.25) have joined together (in aonuene), at z =1. Beause they are now superimposed, one �nds that the singularityat z = 1 is now more divergent, and in fat it is now an irregular singular point. (Oneshows this by the usual proedure of letting z = 1=w, and studying the struture of thesingularity in the equation at w = 0.)Let us see what has happened to the hypergeometri funtion 2F1(a; b; ; z) that was asolution of the hypergeometri equation, in this limiting proess. We shall havelimb!1 2F1(a; b; ; z=b) : (2.27)From (2.4), the b dependene of the term in zn in the power series for 2F1(a; b; ; z=b) willtherefore be (b)n=bn, and so we havelimb!1 (b)nbn = limb!1 b (b+ 1)(b + 2) � � � (b+ n� 1)bn = 1 : (2.28)Thus we have the solution 1F1(a; ; z) = 1Xn=0 (a)n()n znn! (2.29)to the onuent hypergeometri equation (2.26). Observe that the notation here is inaordane with the previous one, namely that the subsripts 1 and 1 on 1F1 signify thatthere is 1 Pohhammer symbol in the numerator, and 1 in the denominator, in eah termin the series.Now that we have derived it, let us hange the symbols of its arguments to the moreonventional ones 1F1(a; b; z). This funtion is alled a Conuent Hypergeometri Funtion,or a Kummer Funtion. It is often denoted by the symbol M(a; b; z), and its full name isKummer's regular funtion, so we haveM(a; b; z) = 1Xn=0 (a)n(b)n znn! ; (2.30)satisfying the onuent hypergeometri equationz y00 + (b� z) y0 � a y = 0 : (2.31)49



Sine the singular point of the equation nearest to the regular singularity at z = 0 isthe irregular singular point at z = 1, we know that the series (2.30) will be onvergenteverywhere in the �nite omplex plane.The same limiting proess an be applied also to the seond solution (2.12) of thehypergeometri equation. Doing so, we obtain the seond solution for the onuent hyper-geometri equation, y2 = z1�bM(a� b+ 1; 2 � b; z) : (2.32)As in the ase of the hypergeometri equation, here this solution to the onuent hyperge-ometri equation is linearly-independent of y1 �M(a; b; z) as long as b is not an integer.If, on the other hand, b = 1 then learly y2 is exatly equal to y1. If b = N , where N isan integer � 2, then y2 beomes singular, but an be resaled by an appropriate onstantfator before setting b = N so as to render the expression �nite. It then turns out to beproportional to y1 again. For example, using the power-series expansion (2.29), the seondsolution given in (2.32) has the formy2 = z1�b �1 + (a� b+ 1) z2� b + (a� b+ 1)(a � b+ 2) z22! (2 � b)(3 � b)+(a� b+ 1)(a� b+ 2)(a � b+ 3) z33! (2� b)(3 � b)(4� b) + � � � � : (2.33)Clearly eah term beyond the �rst diverges as b is set equal to 2, but if we �rst multiply by(2� b), and then set b = 2, we get the �nite resulty2 = (a� 1)�1 + 12a z + 112 a(a+ 1) z2 + 1144a(a+ 1)(a+ 2) z3 + � � � � : (2.34)This an be ompared with the series expansion of M(a; b; z) itself at b = 2, whih, from(2.29), isM(a; 2; z) = 1 + 12a z + 112 a(a+ 1) z2 + 1144a(a+ 1)(a + 2) z3 + � � � : (2.35)Thus at b = 2 we have that limb!2 (2� b) y2 = (a� 1) y1 ; (2.36)with analogous results at b = 3, 4, 5, et.This is exatly like the situation with the J�(z) and J��(z) Bessel funtions, at � =integer. As in that ase, the way to extrat a seond linearly-independent solution is to takethe di�erene between the two solutions thatare independent for non-integer parameter b,and divide out by an appropriate fator that vanishes as b approahes an integer, so as to50



reover a �nite result analogous to Yn(z). Thus one de�nes the seond solution here to beU(a; b; z) � �sin� b h M(a; b; z)�(b)�(a� b+ 1) � z1�bM(a� b+ 1; 2 � b; z)�(a)�(2 � b) i : (2.37)Following similar steps to those that we used for Yn(z), one an �nd the series expansionfor U(a; b; z) around z = 0. This involves showing �rst that the quantity in square braketsin (2.37) vanishes at b = N = 2; 3; 4; : : :, and then arefully expanding around b = N + �and piking up the terms of �rst order in �. For example, by doing this for b = 2 one �ndsthat U(a; 2; z) beomesU(a; 2; z) = 1�(a) z + 2 +  (a) + log z�(a� 1) +O(z; z log z) : (2.38)Here  is the Euler-Masheroni onstant and  (s) = �(s)0=�(s) is the Digamma funtion.We see the familiar appearane of logarithmi terms in the series expansion. On aount ofthis non-analytiity at z = 0, the funtion U(a; b; z) is alled Kummer's Irregular Funtion.In general it an be shown that at b = n + 1, where n � 0 is an integer, the funtionU(a; b; z) has the series expansionU(a; n+ 1; z) = (�1)n+1n! �(a� n) hM(a; n+ 1; z) log z +1Xr=0 (a)r zr(n+ 1)r r! � (a+ r)�  (r + 1)�  (n+ r + 1)�i+(n� 1)!�(a) z�nM(a� n; 1� n; z)n ; (2.39)where the notation M(a � n; 1 � n; z)n means that just the �rst n terms in the seriesexpansion for M(a� n; 1� n; z) are retained.We an also derive integral representations for the Kummer funtions, by taking theappropriate limit in the original expressions for the hypergeometri funtions. For example,we may begin with the integral representation (2.20) for 2F1(a; b; ; z). Now we atuallyknow that this must be symmetri under the exhange of the labels a and b, even thoughit is not obvious, sine the original series expansion for the hypergeometri funtion issymmetri in a and b. Thus we know from (2.20) that we must also have2F1(a; b; ; z) = �()�(a) �(� a) Z 10 (1� t)�a�1 ta�1 (1� z t)�b dt : (2.40)In this form, the proess of replaing z by z=b and sending b to in�nity is easily implemented,sine the only b dependene omes from the fator(1 � z t b�1)�b : (2.41)51



Now it is a standard result7 that the limit of (1 � x=b)�b as b tends to in�nity is just ex,and hene we �nd thatlimb!1 2F1(a; b; ; z b�1) = �()�(a) �(� a) Z 10 (1� t)�a�1 ta�1 ez t dt : (2.42)Finally, replaing  by b for onveniene, we have the result thatM(a; b; z) = �(b)�(a) �(b� a) Z 10 (1� t)b�a�1 ta�1 ez t dt : (2.43)This has restritions on the values of the parameters that follow diretly from those for thehypergeometri integral (2.20), namely that Re(b) > Re(a) > 0. It is valid for any �nite z,and so it de�nes M(a; b; z) as a funtion analyti everywhere in the �nite omplex plane.This aords with the fat that the series expansion (2.30) is onvergent for all �nite z.One an easily show from (2.43), by making the hange of integration variable t = 1�s,that M(a; b; z) = ezM(b� a; b;�z) : (2.44)This is known as Kummer's �rst formula.To lose this setion, here are some examples that show how speial ases of the onuenthypergeometri funtions orrespond to other well-known funtions. The Bessel funtions,for example, are speial ases:M(� + 12 ; 2� + 1; 2i z) = �(� + 1) ei z �12z��� J�(z) ;U(� + 12 ; 2� + 1; 2i z) = 12p� e�� i (�+ 12 ) ei z (2z)�� H(2)� (z) : (2.45)Among many other speial ase are the exponential funtion ez =M(a; a; z), the Laguerrepolynomials M(�n; �+ 1; z) = n!(�+ 1)n L(�)n (z) ; (2.46)and the Hermite polynomialsM(�n; 12 ; 12z2) = (�12 )�n n!(2n)! H2n(z) ; M(�n; 32 ; 12z2) = (�12 )�n n!(2n+ 1)! z�1H2n+1(z) : (2.47)7Whih an be proven by noting that at large b we have 1 � x=b = e�x=b + O(b�2), implying that(1 � x=b)�b = (e�x=b)�b (1 + ex=bO(b�2))�b = ex (1 + ex=bO(b�2))�b. Now note that 1 + ex=bO(b�2) hasthe form ey=b2 +O(b�3) for some y, and hene (1 + ex=bO(b�2))�b = e�y=b (1 + e�y=b2 O(b�3))�b. Iteratingthis, we see that all the fators assoiated with these higher terms beome 1 as b is sent to in�nity, leavingthe result ex
52



2.3 Asymptoti Expansions and the Stokes PhenomenonSine the point z = 1 in the onuent hypergeometri equation is an irregular singularpoint, we expet that any series expansions for its solutions expanded around z =1 will beasymptoti series rather than onvergent ones. We an study this in detail for the regularKummer funtion M(a; b; z) by making use of the integral representation (2.43).First, we must ontrive by making an appropriate hange of variables to separate outthe z dependene in the exponential funtion from the t dependene, in suh a way thatwe an make a series expansion of the integrand in inverse powers of z. We need the sortof transformation of integration variable that took the integral representation (1.136) forthe modi�ed Bessel funtion K�(z) into the form (1.141). However, this does not work outquite so easily in the present ase, on aount of the range of the integration variable t in(2.43) being [0; 1℄ rather than [1;1℄. The answer to how to handle this problem is a rathersimple one, namely to write the integral R 10 as R 10 = R 1�1� R 0�1. Thus we rewrite (2.43) asM(a; b; z) = �(b)�(a) �(b� a) h Z 1�1(1� t)b�a�1 ta�1 ez t dt� Z 0�1(1� t)b�a�1 ta�1 ez t dti :(2.48)Note that this hoie of lower limit �1 on both the integrals is an appropriate one whenRe(z) is positive.8Let us onsider �rst the ase where z is taken to be real, positive and large. In the �rstintegral, we make the hange of variable from t to u de�ned by t = 1 � u=z, while in theseond integral we hange to w de�ned by t = �w=z. Both integrals now run from 0 to 1over their respetive integration variables:M(a; b; z) = �(b)�(a) �(b� a) hza�b ez Z 10 e�u ub�a�1 (1� u z�1)a�1 du+(�z)�a Z 10 e�w wa�1 (1 + w z�1)b�a�1 dwi : (2.49)We shall see below that the two integrals are approximately equal to �(b � a) and �(a)respetively, whih are �nite and non-zero for generi a and b. Sine we are onsideringthe ase where z is real, large and positive it follows that the ontribution from the �rstterm will be overwhelmingly larger than that from the seond term, on aount of the ezprefator. Thus only the �rst term will ontribute in the asymptoti expansion for largepositive z.8Of ourse one an write R 10 = R 1t0 � R 0t0 for any hoie of t0. We shall see below that a hoie other thant0 = �1 beomes appropriate when z is to be taken large and negative.53



Notie how with these hanges of variable we have ontrived to turn the integrands intofuntions that an be expanded in power series in 1=z. Spei�ally, to evaluate the �rstterm in (2.49) we use the binomial theorem to obtain(1� u z�1)a�1 = 1Xr=0 �(a)r! �(a� r) �� uz �r : (2.50)Substituting this into the �rst integral in (2.49), the term-by-term integration beomes atriviality, sine all the terms are of the form R10 e�x x�1 dx, whih is just �(). Thus weobtain the asymptoti expansion for M(a; b; z), valid when z is real, large and positive:M(a; b; z) � �(b)�(b� a) za�b ez 1Xr=0 �(b� a+ r)r! �(a� r) �� 1z�r : (2.51)It should be emphasised that every term in this expansion is more important than even theleading-order term oming from the seond integral in (2.49) that we dropped.A brief pause for a word on terminology is appropriate here. Stritly speaking, we shouldnot all (2.51) itself an asymptoti expansion; the exponentials fator ez is not stritlyallowed in the de�nition of an asymptoti series. Rigorously-speaking, an asymptoti seriesmust involve a sum only over (inverse) powers of z, of the form Pn�0 z�n. And in fat,as we disussed in Part I, the exponential funtion ez itself has the asymptoti expansionez � 0 when z tends to �1, and admits no asymptoti expansion at all when z tends to+1. So stritly speaking, we should really take the ez fator in (2.51) over to the left-handside, and say that it is e�zM(a; b; z) that has the asymptoti expansion (given by (2.51)with the ez fator omitted). Of ourse we atually know perfetly well how ez behaves atlarge positive and negative z and so in fat we are perfetly happy to leave it in there onthe right-hand side, and in pratie we usually refer to (2.51) as an asymptoti series forM(a; b; z). But it is worth bearing this point in mind, to avoid possible onfusion later.Now, onsider instead the situation when z is real, large and negative, so that z = �jzj.In this ase, we should use the identity that R 10 = R10 � R11 . Using this in (2.43), we nowmake the hanges of variable t = u=jzj in the �rst of these integrals, and t = 1 + w=jzj inthe seond. This leads to the expressionM(a; b; z) = �(b)�(a) �(b � a) hjzj�a Z 10 e�u ua�1 (1� u jzj�1)b�a�1 du�(�jzj)b�a�1 e�jzj Z 10 e�w wb�a�1 (1 + w jzj�1)a�1 dwi : (2.52)This time, it is lear that as z tends to �1 the �rst term overwhelmingly dominates overthe seond, beause of the e�jzj prefator in the seond term. Again we perform a binomial54



expansion of the z-dependent fator in the integrand of the �rst term, this time obtainingthe following asymptoti expansion, valid for z real, large and negative:M(a; b; z) � �(b)�(a) jzj�a 1Xr=0 �(a+ r)r! �(b� a� r) �� 1jzj�r : (2.53)The nature of the asymptoti expansions for M(a; b; z) for large positive z and for largenegative z are totally di�erent. To emphasise the point, let's ompare the leading-orderterms in the two ases: M(a; b; z) � 8>><>>: �(b)�(a) za�b ez ; z �! +1�(b)�(b�a) jzj�a z �! �1 (2.54)Atually, we should not be surprised by the fat that a funtion an have totally di�erentasymptoti expansions depending upon the diretion in whih one heads o� to in�nity. Wealready saw this in Part I of the ourse, in the disussion of asymptoti expansions, when wefound that ez has the asymptoti series expansion ez � 0 for z large and negative, whilst noasymptoti expansion exists at all for z large and positive. (Reall the autionary disussionabove about the strit meaning of an asymptoti series, and interpret these observationsappropriately within the spirit of those remarks!) The di�erent asymptoti behavioursexhibited by M(a; b; z) for large positive and negative z is muh more interesting than thesituation for the exponential funtion, however.One way of seeing why the upper asymptoti expansion in (2.54) ould not possibly bevalid for all values of arg(z) is as follows. We know that M(a; b; z) is analyti in the whole�nite omplex z plane, and therefore in partiular, it must be a single-valued funtion of z.Thus if we write z = jzj ei �, then we know that if we allow � to inrease by an angle 2�,then the funtion M(a; b; z) must return to its initial value.Obviously, for generi values of the parameters a and b, the upper funtion in (2.54) isnot single valued, and so if we were to allow � to inrease by 2� we would pik up a phasefator e2� (a�b) i 6= 1 ; (when (a� b) 6= integer) : (2.55)Thus the asymptoti expansion has a behaviour that is totally wrong, if we allow z to beswung around by a full 2� angle. Similar remarks apply to the lower formula in (2.54).This observation is an example of what is alled the Stokes Phenomenon, and it is in fatwhat almost always happens with asymptoti expansions. To see exatly what is going on,we need to do a rather more areful analysis of the asymptoti behaviour of M(a; b; z) notmerely for z real and large, but for z omplex and large, of the form z = jzj ei � with jzj large55



and the phase � allowed to take any value. What we shall �nd is that for � in a ertain rangearound � = 0, an appropriate generalisation of the upper asymptoti behaviour in (2.54)ours, whislt for � in the rest of the range, around � = �, an appropriate generalisationof the lower asymptoti behaviour in (2.54) ours. There are ertain rossover angles onwhih both types of asymptoti behaviour have roughly equal importane.To study the Stokes phenomenon in more detail, we need to repeat the previous analysis,but now for the ase where z tends to in�nity with some phase �. In other words, we takez = ei � jzj and send jzj to in�nity, holding the angle � �xed. We shall onsider �rst the aseof angles � in the range 0 < � < �; the reason for plaing this restrition in this ase willbeome apparent below. We now use the identity thatZ 10 dt = Z �1 e�i �0 dt� Z �1 e�i �1 dt : (2.56)Use this in (2.43), with the ontours of integration now running with an angle � relative tothe negative real axis. In the �rst integral, we make the hange of variablet = �w e�i �jzj = w ei(���)jzj ; (2.57)while in the seond integral we make the hange of variablet = 1� u e�i �jzj : (2.58)In eah ase, to traverse the stated ontour we shall have the new integration variable w oru running from 0 to +1. After simple algebra, we get the following:M(a; b; z) = �(b)�(a) �(b� a) hei(���) ajzja Z 10 e�w wa�1 �1 + wz �b�a�1 dw+ez e�i(b�a) �jzjb�a Z 10 e�u ub�a�1 �1� uz �a�1 dui : (2.59)The integration ontours in the omplex t-plane are depited in Figure 11 below.Sine the integrand in (2.43) has branh points at t = 0 and t = 1, we must establisha onvention about where to hoose our branh uts, and then stik with this hoie in thesubsequent analysis. Spei�ally, when we deompose the integral in (2.43) into a di�ereneof two integrals as in (2.56), with t running o� to in�nity somwhere in the omplex t-plane,we must establish a onvention about where the branh ut running out to in�nity will lie.Let us hoose the negative real t axis. This means that we must restrit � to lie in between0 and �, so that the ontours for the two t integrations don't ross over the real t axis andpass through the branh points at t = 0 or t = 1.56
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Figure 11: The ontours for 0 < � < � (solid lines) and �� < � < 0 (dashed lines)Eventually, we make binomial expansions of the quantities (1 + w=z)b�a�1 and (1 �u=z)a�1 in the integrands, to obtain the full asymptoti expansions. First, it is useful tofous just on the leading-order terms, where, for very large jzj, we approximate these fatorsby 1. This an be done for exatly the same reason as we disussed previously, namely thatby the time w or u has beome large enough that jw=zj or ju=zj annot be negleted inomparison to 1, the exponential fator will have beome so tiny that the error is very small.In fat in the subsequent disussion we an always fous just on the two leading-order terms,with the understanding that eah is always to be supplemented by its binomial-expansiondesendants.For the leading-order terms, the integrals that remain to be evaluated then simply give�(a) and �(b� a) respetively, and so the leading ontributions from eah integral giveM(a; b; z) � �(b)�(b� a) jzj�a ei(���) a + �(b)�(a) jzja�b ejzj ei� ei(a�) � ; (2.60)where, it will be realled, 0 < � < �. In fat if z is real and positive we have already obtainedthe result (2.51), whih is preisely (2.60) with � = 0, bearing in mind that the �rst termin (2.60) is negligable ompared with the seond in this ase, on aount of the latter's ejzj57



fator. If, on the othere hand, z is real and negative then the previously-obtained expansion(2.53) an be seen to be preisely in agreement with setting � = � in (2.60), and bearingin mind that now only the �rst term in (2.60) ontributes, on aount of the e�jzj fator inthe seond term.Suppose instead we now take � at some intermediate angle 0 < � < �. If we take � = 12�,the exponential fator in the seond term now just beomes ei jzj, whih is a phase fatorof unit modulus. At � = 12�, therefore, the exponential has no damping e�et, and the twoterms in (2.60) have roughly equal size. Thus both terms, and their binomial-expansiondesendants, will be inluded in the asymptoti expansion at � = 12�. As � ranges from0 to �, the expression (2.60) (and its binomial desendants) therefore gives the orretasymptoti expansion, with the �rst term disappearing altogether at � = 0, and the seondterm disappearing at � = �.Now let us onsider what happens in the region where �� < � < 0, i.e. when z is inthe lower-half omplex plane. It an be seen from Figure 11 that if we simply allowed �to pass through 0 and beome negative in the previous integral deomposition (2.56), thenthe integration ontours for t would now have swung down below the negative real t-axis,rossing over the branh ut running out to �1 in the omplex t-plane. On the other hand,nothing untoward should happen when we swith over between � = +� and � = ��, sinethis orresponds to t running out along the positive real axis, where there is no branh ut.To make sure that this works, we must now taket = �w e�i �jzj = w e�i(�+�)jzj ; (2.61)t = 1� u e�i �jzj ; (2.62)for the rede�nitions in the two integrations. Note that the �rst rede�nition here di�ers fromthe one in (2.57) that we used when 0 < � < �. This di�erene preisely takes aount ofthe need to avoid the branh ut from t = 0 to t = �1. Following through the analogoussteps to our previous ones, we now �ndM(a; b; z) � �(b)�(b� a) jzj�a e�i(�+�) a + �(b)�(a) jzja�b ejzj ei� ei(a�) � ; (2.63)for �� < � < 0, replaing (2.60) that was valid for 0 < � < �.Notie that as � runs from 0 to negative values, the �rst term here emerges from beinginsigni�ant (relative to the seond term), and takes over as the dominant term by the time� is passing through �12�. Now at � = 0 the �rst term in (2.63) has a fator e�2� a i inomparison to the �rst term in (2.60) at � = 0. This makes it look as if there would be a58



disontinuity in the asymptoti expansion of the funtion M(a; b; z) at � = 0, but atuallythere isn't. The reason is preisely beause the term with the apparent disontinuity is the�rst term in (2.60) or (2.63), and this term is absent from the asymptoti expansion at� = 0 on the grounds of its insigni�ane in omparison to the seond term. (Morse andFeshbah refer to it as being \in elipse" at � = 0, whih is quite an apt desription.)On the other hand, we an see that the �rst term in the expansion (2.60) at � = �, whereit dominates over the seond term, is in preise agreement with the �rst term in (2.63) at� = ��. This would not have happened if we had not made the replaed the rede�nition(2.57) by (2.61). Without the replaement, we would have got an answer at � = �� thatdi�ered from the answer at � = pi by a fator of e2� a i. This would have ontradited thefat thatM(a; b; z) is analyti, and should therefore not exhibit any branh-point behaviour.The summary of this rather long and tortuous disussion is the following. The onuenthypergeometri funtion M(a; b; z) is itself analyti in the �nite omplex plane, and soin partiular it has no branh points. However, the presene of the branh points in theomplex t-plane in the integrand of (2.43) means that one has to be areful, when derivingthe asymptoti expansion ofM(a; b; z), to handle the hoie of integration ontour arefully.When this is done properly, one �nds that the asymptoti expansion an be expressed asa set of results valid in di�erent \pathes," orresponding to di�erent ranges for the phase� of the omplex variable z. In eah path the expansion naively appears to su�er fromnot being single-valued, but atually everything is OK beause one is not allowed to letthe phase angle � stray far enough in any partiular expansion expression for the lak ofsingle-valuedness in that expression to beome evident. The expressions for the asymptotiexpansions in eah path join on smoothly and ontinuously to one another, as one swings� around to pass from one path to the next. This is despite the fat that ertain terms intwo neighbouring pathes an appear to have di�erent phase fators (like the e2� a i fatorwe enountered above). The point is that suh a term is always \in elipse" at the valueof � where the rossover between the pathes ours, and so the two expressions merelydi�er by a phase fator that multiplies 0. The bottom line is that one ends up with a setof expression for the asymptoti expansions that orretly desribe the large-z behaviour ofthe single-valued funtion M(a; b; z).The situation an be summarised mathematially as follows. The asymptoti expansionof the funtion �(a) �(b � a)M(a; b; z)=�(b), with z = ei � jzj and jz large is given by� = �� : �(a) jzj�a ;�� < � < 0 : �(b� a) jzja�b ei(a�b) � ez + �(a) jzj�a e�ia (�+�) ;59



� = 0 : �(b� a) jzja�b ez ;0 < � < � : �(b� a) jzja�b ei(a�b) � ez + �(a) jzj�a eia (���) ;� = � : �(a) jzj�a ;� < � < 2� : �(b� a) jzja�b ei(a�b) (��2�) ez + �(a) jzj�a eia (���) ;� = 2� : �(b� a) jzja�b ez ; (2.64)and so on.3 Integral Transforms and Fourier SeriesIntegral transforms an provide a very useful tehnique for onstruting the solutions ofdi�erential equations. We have in fat already enountered several examples of integralrepresentations for solutions of di�erential equations, whih an be derived by applyingthe methods of integral transforms. They are also very familiar in other ontexts, suh asthe Fourier transform that has many appliations in mathematial physis, for example inquantum mehanis and in wave theory. We shall begin with a general disussion of the useof integral transform methods for solving di�erential equations.3.1 Solution of ODEs by Integral TransformsThe general idea of an integral transform is that we write a funtion y(z) as an integral,y(z) = Z K(z; t) f(t) dt ; (3.1)where K(z; t) is alled the Kernel Funtion. y(t) is said to be the integral transform of thefuntion f(t). For now, we shall leave the range of the integration over t unspei�ed; thehoie for the integration range depends upon the details of the problem. It might sometimesbe a real integral between spei�ed limits, or it might instead be a ontour integral in theomplex t-plane.Let us begin with an example, to illustrate the basi idea and utility of an integraltransform. Suppose we wish to solve the seond-order ODEz y00 + (b� z) y0 � a y = 0 : (3.2)This will be reognised as the onuent hypergeometri equation, whih we enountered inthe previous hapter. A rather signi�ant feature of this equation is that it is, of ourse, ofseond order in z derivatives, but the oeÆients involve expliit powers of z only up to the60



power 1. For reasons that will emerge in a moment, this means that it is useful to writey(z) as an integral transform of the form (3.1), with the kernel funtion K(z; t) hosen tobe K(z; t) = ez t : (3.3)This, of ourse, has the property thatddz ez t = t ez t ; d2dz2 ez t = t2 ez t ; (3.4)et.The transformation (3.1) with a kernel of this exponential type is known as the LaplaeTransform.Substituting (3.1) into the di�erential equation (3.2), we therefore obtainZ f(t)�z t2 + (b� z) t� a� ez t :dt = 0 (3.5)Now of ourse the kernel ez t also has the property thatz ez t = ddt ez t ; (3.6)whih is in some sense \dual" to (3.4). Thus we an write (3.5) asZ f(t)�t2 ddt + b t� t ddt � a� ez t dt = 0 ; (3.7)and so after an integration by parts we getZ �t(t� 1) _f(t) + (2� b) t f(t) + (a� 1) f(t)� ez t dt = 0 ; (3.8)where we use a dot to denote a derivative with respet to t. We have assumed here thatthe boundary term from the integration by parts gives zero. This is up to us to arrange, bymaking a suitable hoie of limits or ontour for the integration.As we shall see later, for suitable hoies of kernel funtion K(z; t), suh as ez t, thetransform (3.1) is invertible, in the sense that for every admissable y(z) there is a uniquefuntion f(t) that produes it. In partiular, the funtion that produes 0 must itself be 0.We may therefore onlude from (3.8) that the integrand is zero, and so in other wordst(t� 1) _f(t) + (2� b) t f(t) + (a� 1) f(t) = 0 : (3.9)This di�erential equation in the transform variable t, is, lukily, muh easier to solve thanthe original equation (3.2). In partiular, it is only of �rst order in derivatives, unlike theoriginal equation, whih was of seond order. The reason for this is preisely beause of61



the fat that we drew attention to earlier, namely that the original equation (3.2) onlyinvolved z to the powers 0 and 1 in the oeÆients of y(z), y0(z) and y00(z). The \dual"relation between (3.4) and (3.6) for the kernel funtion ez t means that eah derivative inthe original equation beomes a multipliation by t inn the transformed equation, and vieversa. (Notie that (3.9) has t to the powers 0, 1 and 2 in its oeÆients of f(t) and _f(t).)The transformation to the �rst-order di�erential equation (3.9) has in fat given us anequation that an be solved very easily, namely_ff = a� 1t � b� a� 11� t ; (3.10)whose solution is f = ta�1 (1� t)b�a�1 : (3.11)Thus we onlude that the solution of the onuent hypergeometri equation (3.2) is givenby y(z) = Z ta�1 (1� t)b�a�1 ez t dt : (3.12)We have, essentially, reprodued the integral representation (2.43) of the previous hapter,whih gave us the regular Kummer funtion M(a; b; z). Atually, we have produed some-thing a little more general here, sine we have not yet spei�ed any partiular hoie forthe integration limits. In the integral representation (2.43) for M(a; b; z) the integral wastaken from t = 0 to t = 1, and indeed one an easily verify that the boundary term that wedropped in getting from (3.7) to (3.8) vanishes at these endpoints. In fat, the boundaryterm is hez t ta (1� t)b�ai ; (3.13)whih indeed vanishes at t = 0 and t = 1, provided that b > a > 0.There are other ways of arranging for the boundary term (3.13) to vanish, instead oftaking the integration limits to be 0 and 1. For example, we ould take them to be 1 and1,provided that the real part of z is negative, and that b > a. The freedom to hoose di�erentpossibilities for the ontour of integration reets the fat that the original di�erentialequation (3.2) has two independent solutions. By making an appropriate hoie, we an getthe seond solution U(a; b; z), Kummer's irregular funtion. We enountered examples alsoin Chapter 1, where a di�erent hoie of ontour gave a di�erent and linearly-independentsolution of the di�erential equation, in the ontext of the Bessel funtions. Namely, we sawthat the integral representation (1.29) produed the J�(z) Bessel funtion for one hoie ofontour, but it produed instead H(1)� (z) or H(2)� (z) for di�erent hoies of ontour.62



The integral transformation with the kernel ez t was partiularly nie in the example ofthe onuent hypergeometri equation beause of the fat that the oeÆients in front ofy(z), y0(z) and y00(z) in (3.2) involve only the zero'th and �rst powers of z, implying thatthe transformed di�erential equation (3.9) is only a �rst-order equation. Sometimes, a dif-ferential equation may have higher powers of z that an be removed by making appropriatehanges of the dependent and independent variables. The Bessel equation is an example ofthis type, as is the modi�ed Bessel equation,z2 y00(z) + z y0(z)� (�2 + z2) y(z) = 0 : (3.14)Taken as it stands, this would give us a seond-order di�erential equation for f(t) aftermaking the transformation (3.1) with K(z; t) = ez t. However, it is easy to see that if we lety(z) = z� e�z w(z) ; (3.15)and then let z = 12 ~z, the modi�ed Bessel equation beomesd2wd~z2 + (2� + 1� ~z) dwd~z � (n+ 12)w = 0 : (3.16)This is just the onuent hypergeometri equation (3.2), with a = � + 12 and b = 2� + 1.Indeed, this makes expliit the way in whih the Bessel funtions and modi�ed Besselfuntions arise as speial ases of the onuent hypergeometri funtions.There are other examples, of ourse, where one annot redue the oeÆients of they00(z), y0(z) and y(z) terms to onstants and linear powers, no matter how hard one trieswith hanges of variable. It may well happen, therefore, that the transformed equation is\worse" then the original one. On the other hand, it may be that by making a di�erenthoie for the kernel funtion K(z; t), the situation might like better. In fat the kernelK(z; t) = ez t is the suitable one when dealing with an equation with one regular singularpoint and one irregular singular point of a ertain partiular kind. Spei�ally, this kernelworks well in the ase of the onuent hypergeometri equation, whih has an irregularsingular point that omes from the onuene of two regular singular points. In fat, weobtained the equation by taking a limit of the hypergeometri equation, in whih its regularsingular points at z = 1 and z =1 fused together.To transform the hypergeometri equationz(1� z) y00(z) + [� (a+ b+ 1) z℄ y0(z)� a b y(z) = 0 (3.17)into a nie form, a di�erent kernel, namely K(z; t) = (z � t)�, is appropriate, where � is aonstant that we shall hoose for onveniene. An integral transform using a kernel of this63



type is known as an Euler Transform. Thus if we transform y(z) aording toy(z) = Z (z � t)� f(t) dt; (3.18)then substituting into (3.17) we get, after olleting powers of z,Z (z�t)��2 h(�+a)(�+b) z2�[�(�+�1)+(2ab+�(a+b+1)) t℄ z+(� +a b t) tif(t) dt = 0 :(3.19)Now reall that we are free to hoose the onstant � at will. By hoosing � = �a or� = �b, the term in z2 in the large square brakets in (3.19) will disappear. The two hoiesare equivalent, so let us, w.o.l.o.g., hoose � = �a. The integral (3.19) now beomesZ h(z � t)�a�1 [� b t+ (a+ 1)(t � 1)℄ + (a+ 1) t (t � 1)(z � t)�a�2i f(t) dt = 0 : (3.20)Observe that we an write the last fator in the large square brakets as(a+ 1) t (t� 1)(z � t)�a�2 = t (t� 1) ddt (1� z t)�a�1 ; (3.21)giving usZ h(z � t)�a�1 [� b t+ (a+ 1)(t � 1)℄ + t (t� 1) ddt (z � t)�a�1i f(t) dt = 0 : (3.22)Integrating by parts, and invoking the expeted uniquness of transform, we then deduethat f(t) must satify the �rst-order di�erential equationt (t� 1) _f(t)� [� a+ (a� b� 1) t℄ f(t) = 0 : (3.23)It is easy to solve this, to obtain f(t) = ta� (t � 1)�b�1, and hene we learn that thesolution of the hypergeometri equation is given byy(z) = Z (t� 1)�b�1 ta� (z � t)�a dt : (3.24)This is very like the integral representation for 2F1(a; b; ; z) that we enountered in theprevious hapter, in equation (2.20); in fat if we send t to 1=t in (3.24), then up to anunimportant onstant fator we reover the integral representation in (2.20). As usual,we must hoose the ontour of integration suh that the boundary terms arising from theintegration by parts give zero. From (3.22), and the solution for f(t), this means thathta��1 (t� 1)�b (z � t)�a�1i (3.25)should vanish when evaluated between the integration limits. One possible hoie, providedthat Re() > Re(b) > 0, is to take t to run from t = 1 to t =1. This is preisely equivalent64



to the integration range used in (2.20), bearing in mind the inversion t �! 1=t between(2.20) and (3.24).We have now seen two examples of integral transforms, one using the kernel K(z; t) =ez t, for solving the onluent hypergeometri equation, and the other using the kernelK(z; t) = (z� t)�, for solving the hypergeometri equation. In eah ase the kernel has nie\reiproal" properties, in that derivatives with respet to z and with respet to t bear somenie relation to one another. To omplete this part of the disussion, let us onsider theproedure in a more general setting, leaving the hoie of kernel in the integral transform(3.1) unspei�ed.Suppose we wish to solve the seond-order ODE (ordinary di�erential equation)Lz[y(z)℄ � p0(z) y00(z) + p1(z) y0(z) + p2(z) y(z) = 0 : (3.26)The subsript z on the di�erential operator Lz de�ned by this equation indiates that thederivatives are with respet to z:Lz = p0(z) d2dz2 + p1(z) ddz + p2(z) : (3.27)Ating with this operator on the integral transform (3.1), we an take the di�erentialoperator inside the integration, provided that the integral is suitably onvergent, to givethen gives Lz[y(z)℄ = Z Lz[K(z; t)℄ f(t) dt : (3.28)If the kernel K(z; t) has been hosen appropriately, the quantity Lz[K(z; t)℄ an be re-expressed as a di�erent di�erential operatorMt ating on some other funtion fK(z; t), thistime with the derivatives being with respet to t instead of z:Lz[K(z; t)℄ =Mt[fK(z; t)℄ : (3.29)Sometimes it may be the ase that fK(z; t) is atually the same funtion as K(z; t) itself.As an example, reall our integral transform of the hypergeometri equation, where weused K(z; t) = (z� t)�a. From (3.17) and (3.22), it will be seen that fK(z; t) = (z� t)�a�1,with Lz = z(1� z) d2dz2 + [� (a+ b+ 1) z℄ ddz � a b ;Mt = t(t� 1) ddt + � b t+ (a+ 1)(t� 1) : (3.30)On the other hand, in the example of the onuent hypergeometri equation, where thekernel was K(z; t) = ez t, we see from (3.2) and (3.7) that in this ase we have fK(z; t) =65



ez t = K(z; t), and Lz = z d2dz2 + (b� z) ddz � a ;Mt = t(t� 1) ddt + b t� a : (3.31)More generally, let us suppose that with a hoie of kernel funtion K(z; t) that isappropriately \mathed" to the di�erential operator (3.27) for the spei� funtions p0(z),p1(z) and p2(z) in question, there is some di�erential operator Mt suh that (3.29) issatis�ed, whereMt has the form9Mt = �0(t) d2dt2 + �1(t) ddt + �2(t) : (3.32)The idea now is that after ating on (3.1) with the di�erential operator Lz, we use (3.29)and then integrate by parts to move the t derivatives o� fK(z; t) and onto f(t):Lz[y(z)℄ = Z Lz[K(z; t)℄ f(t) dt= Z Mt[fK(z; t)℄ f(t) dt= Z ��0(t) f(t) d2fK(z; t)dt2 + �1(t) f(t) dfK(z; t)dt + �2(t) f(t)fK(z; t)� dt= Z �� d(�0(t) f(t))dt dfK(z; t)dt � d(�1(t) f(t))dt fK(z; t) + �2(t) f(t)fK(z; t)+ ddth�0(t) f(t) dfK(z; t)dt + �1(t) f(t)fK(z; t)i�dt= Z �hd2(�0(t) f(t))dt2 � (d(�1(t) f(t))dt + �2(t) f(t)i fK(z; t) (3.33)+ ddth�0(t) f(t) dfK(z; t)dt � fK(z; t) d(�0 f(t)dt + �1(t) f(t)fK(z; t)i� dt :We may write this asLz[y(z)℄ = Z �fK(z; t)Mt[f(t)℄ + dP (f;fK)dt � dt ;= Z fK(z; t)Mt[f(t)℄ dt+ hP (f;fK)i ; (3.34)9We are assuming here that the operator Mt is of at most seond order in derivatives. This, of ourse,is not guaranteed; it all depends on the details of the original di�erential operator Lz, and on one's hoieof kernel funtion K(z; t). In pratie, it is unlikely that we would want to use this method for solving thedi�erential equation if the transformed equation turned out to be of higher order in derivatives than theoriginal one. Sine we are assuming that we start with a seond-order di�erential operator Lz, then wemay restrit our disussion to those ases where Mt involves no higher than seond derivatives also. Theextension to higher-order operators is totally straightforward.66



whereMt is the adjoint of the operatorMt, and P (f;fK) is the the bilinear onomitant off(t) and fK(z; t):Mt[f(t)℄ � d2dt2 (�0(t) f(t))� ddt (�1(t) f(t)) + �2(t) f(t) ; (3.35)P (f;fK) � �0(t) f(t) dfK(z; t)dt � fK(z; t) d(�0 f(t)dt + �1(t) f(t)fK(z; t) : (3.36)The square brakets enlosing P (f;fK) in the seond line indiate that it is to be evaluatedat the endpoints of the integration.Now, we make the usual kind of argument that we shall hoose a ontour for the inte-gration in (3.1) suh that the bilinear onomitant P (f;fK) returns to its initial value atthe end of the ontour, so that the boundary term [P (f;fK)℄ in (3.34) is zero, and so wesimply have Lz[y(z)℄ = Z fK(z; t)Mt[f(t)℄ dt : (3.37)Thus we onlude that y(z) de�ned by (3.1) satis�es the original di�erential equationLz[y(z)℄ = 0 if the funtion f(t) satis�es the di�erential equation Mt[f(t)℄ = 0. Of oursethe hope is that we have made a fortunate hoie for K(z; t) so that the transformed equa-tion is easier to solve than the original one.In our example of the hypergeometri equation, we see from (3.22), (3.35) and (3.36)that in this ase we shall haveMt[f(t)℄ = � ddt �t(t� 1) f(t)�+ �� b t+ (a+ 1)(t� 1)� f(t) ;P (f;fK) = t(t� 1) f(t) (z � t)�a�1 : (3.38)On the other hand, for the example of the onuent hypergeometri equation, it followsfrom (3.7), (3.35) and (3.36) that in this aseMt[f(t)℄ = � ddt �t(t� 1) f(t)�+ (b t� a) f(t) ;P (f;fK) = t(t� 1) f(t) ez t : (3.39)Both these examples are rather simpler than the general disussion, beause the di�erentialoperator Mt is only of �rst order in derivatives, and so �0(t) = 0.3.2 The Fourier TransformWe onluded the previous subsetion by onsidering the general ase of an integral trans-form (3.1) where the kernel funtion K(z; t) is unspei�ed. We also looked at spei�67



examples, for whih we had K(z; t) = ez t and K(z; t) = (z � t)�. The integral trans-form is alled the Laplae transform when K(z; t) = ez t, and the Euler transform whenK(z; t) = (z � t)�.In pratie, there is a rather small number of di�erent kernels that turn out to be useful,and most of these are losely related to the Fourier transform. The Fourier transform is thename given to the ase where one uses K(z; t) = ei z t as the kernel funtion. Its relation tothe Laplae transform K(z; t) = ez t is obvious. We shall now proeed with a more detailedstudy of the Fourier transform, sine it is one that is used extensively in mathematialphysis.First, let us establish some notation. We shall de�ne the Fourier transform F (k) of afuntion f(x) as follows: F (k) = 1p2� Z 1�1 ei k x f(x) dx : (3.40)The need for 2� fators somewhere in the disussion is inevitable, and stems from theinonvenient fat that a unit irle has irumferene 2� rather than 1. Putting in a p2� inthe de�nition of the Fourier transform gives the symmetrial result that the inverse Fouriertransform is f(x) = 1p2� Z 1�1 e�ik x F (k) dk : (3.41)The fat that this is the inverse of the Fourier transform (3.40) is a non-trivial result, knownas Fourier's Theorem. We an prove it by viewing the Fourier transform as the limit of aFourier series. Before doing this, note that be substituting (3.40) into (3.41), we have anequivalent statement of Fourier's theorem, namely thatf(x) = 12� Z 1�1 dk Z 1�1 dy ei k (y�x) f(y) : (3.42)Yet another way of expressing this is that sine this is true for any (reasonable) funtionf(x), it must be that 12� Z 1�1 dk ei k (y�x) = Æ(y � x) ; (3.43)where Æ(y � x) is the Dira delta funtion, with the property thatf(x) = Z 1�1 f(y) Æ(y � x) dy ; (3.44)for any (reasonable) funtion f(x). We shall postpone for now the issue of de�ning exatlywhat onstitutes a \reasonable" funtion. We shall return to this later, when we disuss
68



the topi of Generalised Funtions, of whih the Dira delta funtion is an example.10 Notethat by replaing the integration variable k by �k in (3.43), we immediately see that theDira delta funtion is symmetrial:Æ(y � x) = Æ(x� y) : (3.45)Now for the proof of Fourier's theorem. First, onsider the Fourier series for funtionsf(x) de�ned on the interval �12b � x � 12b. It is muh simpler to work with the Fourierseries using omplex exponentials, rather than dealing separately with sines and osines, sowe shall onsider the following expansion:f(x) = 1Xn=�1an e2� inx=b : (3.46)Note that all the funtions e2� inx=b used in this expansion indeed have the property ofreturning to their original values after x is advaned through a distane b, sine every termin the series has this property. The Fourier oeÆients an an be determined by multiplying(3.46) by e�2� imx=b, and integrating over the interval �b=2 � x � b=2. Sine we haveZ b=2�b=2 e2� i (n�m) x=b dx = hb e2� i (n�m) x=b2� i (n�m) ib=2�b=2 = 0 (3.47)when m 6= m, while it gives Z b=2�b=2 dx = b (3.48)when m = n, this implies thatZ b=2�b=2 f(x) e�2� imx=b dx = b am : (3.49)Substituting bak into (3.46) then gives11f(x) = 1b 1Xn=�1 Z b=2�b=2 f(y) e2� in (x�y)=b dy : (3.50)We want to onsider the limit where the interval b is sent to in�nity. To do this, weintrodue a ontinuous variable k whih at disrete points kn takes the values kn = 2� n=b.10Mathematiians grumbled at �rst when Dira introdued the delta funtion, maintaining that it wasn'twell-de�ned. Later, they introdued the notion of generalised funtions, and made it respetable. So insteadof the mathematiians' eyes glazing over when the physiists make dubious manipulations with ill-de�nedfuntions, now the physiists' eyes glaze over when the mathematiians make them rigorous in exrutiatingdetail.11There are some interesting subtleties in the theory of Fourier series, assoiated with what is known asthe Gibbs Phenomenon. We shall return to look at this later.69



The di�erene between adjaent points is �k � kn+1 � kn = 2�=b. We an rewrite (3.50)as f(x) = 12� 1Xn=�1�k Z b=2�b=2 f(y) ei kn (x�y) dy : (3.51)Now, as we take b �! 1, the interval �k between adjaent values of kn goes to zero, andthe sum is replaed by an integral: 1Xn=�1�k �! Z 1�1 dk : (3.52)Thus (3.51) beomes f(x) = 12� Z 1�1 dk Z 1�1 f(y) eik (x�y) dy : (3.53)This is preisely equivalent to (3.42) (send k to �k to get exatly (3.42)), and so Fourier'stheorem is proven.One an easily prove some general properties of the Fourier transform. Trivially obviousones are that the Fourier transform is a linear operator ating on f to give F . Let us denotethe operation of taking the Fourier transform by LF (where the subsript F here stands forFourier), so that we have LF[f ℄ = F , LF[g℄ = G, et. Then the linearity impliesLF[f + g℄ = LF[f ℄ + LF[g℄ ;LF[a f ℄ = aLF[f ℄ ; (3.54)where in the seond line the quantity a is an arbitrary onstant. Another general propertyis that the Fourier transform of the derivative of a funtion is equal to �i k times the Fouriertransform of the funtion itself:LF[f 0(x)℄ = �i kLF[f(x)℄ = �i k F (k) : (3.55)This is easily proved by writing down the Fourier transform of f(x) and then integrating byparts to push the derivative onto the exponential ei k x. The assumption that the funtionf(x) is a \reasonable" one justi�es the neglet of the boundary terms at x = �1 that arisefrom the integration by parts.Parseval's Theorem:A useful result that an be proven from the de�nition (3.40) of the Fourier transform isthe following, known as Parseval's Theorem:Z 1�1 jF (k)j2 dk = Z 1�1 jf(x)j2 dx : (3.56)70



To show this, we substitute from (3.40) into the left-hand side, interhange the orders ofintegration, and then use the expression (3.43) for the Dira delta funtion:Z 1�1 jF (k)j2 dk = 12� Z 1�1 dk Z 1�1 dx ei k x f(x) Z 1�1 dy e�ik y f(y) ;= Z 1�1 dx Z 1�1 dy f(x) f(y)� 12� Z 1�1 dk ei k (x�y)� ;= Z 1�1 dx Z 1�1 dy f(x) f(y) Æ(x � y)= Z 1�1 f(x) f(x) dx= Z 1�1 jf(x)j2 dx : (3.57)(As usual, a more areful disussion ould be given in whih the irumstanes where theinterhange of the orders of integration are determined. In pratie, it is valid for all\reasonable" funtions f(x).)A small generalisation of Parseval's theorem an be obtained by replaing the funtionf(x) by f(x) + g(x). Of ourse sine the Fourier transform (3.40) is a linear operation onf(x), it trivially follows that the Fourier transform of f(x)+g(x) is F (k)+G(k), where F (k)and G(k) are the Fourier transforms of f(x) and g(x) respetively. Thus we immediatelyhave from Parseval's theorem (3.56) thatZ 1�1 jF (k) +G(k)j2 dk = Z 1�1 jf(x) + g(x)j2 dx : (3.58)Expanding this out, we getZ 1�1 �jF (k)j2 + jG(k)j2 + F (k)G(k) + F (k)G(k)� dk= Z 1�1 �jf(x)j2 + jg(x)j2 + f(x) g(x) + f(x) g(x)� dx : (3.59)Using the original statement (3.56) of Parseval's theorem, we see that the �rst terms oneah side are equal, as are the seond terms on eah side, and soZ 1�1 �F (k)G(k) + F (k)G(k)� dk = Z 1�1 �f(x) g(x) + f(x) g(x)� dx : (3.60)If instead we were to replae f(x) by f(x)+i g(x) in (3.56), we would, by a similar argument,have thatZ 1�1 �F (k)G(k) � F (k)G(k)� dk = Z 1�1 �f(x) g(x) � f(x) g(x)� dx : (3.61)Combining these two results, we arrive at the onlusion thatZ 1�1 F (k)G(k) dk = Z 1�1 f(x) g(x) dx : (3.62)71



The Convolution Integral:Another useful property of the Fourier transform involves the following integral:h(x) � 1p2� Z 1�1 dy f(y) g(x� y) ; (3.63)whih is alled the onvolution of f and g. It is also sometimes known as the Faltung of fand g, from the German for \folding." (It is a kind of shifted overlap between f(x) andg(�x).) If the funtions f(x), g(x) and h(x) have Fourier transforms F (k), G(k) and H(k)respetively, then we an show thatH(k) = F (k)G(k) : (3.64)This is easily proven, by multiplying (3.63) by 1=(p2�) ei k x and integrating over all x. Thisgives H(k) = 12� Z 1�1 dy f(y) Z 1�1 dx g(x� y) ei k x : (3.65)Now hange integration variable from x to z = x� y in the seond integral here, givingH(k) = 12� Z 1�1 dy f(y) eik y Z 1�1 dz g(z) ei k z ; (3.66)and hene (3.64).Note that the expression (3.63) is atually symmetrial between f and g, as may be seenby hanging the integration variable from y to z = x� y. Of ourse this symmetry is evenmore obvious in the Fourier-transformed version (3.64).Fourier Transforms and Quantum Mehanis:The Fourier transform an be viewed as a mapping between position spae and mo-mentum spae representations in quantum mehanis. Consider �rst wavefuntion  p inone spatial dimension that is an eigenstate of the momentum operator, with eigenvalue p: p(x) = 1=(p2�) ei px=�h. De�ning the wave-vetor k = p=�h, this is k(x) = 1p2� eik x : (3.67)We shall refer to k simply as the momentum, sine up to an irrelevant onstant fator,that's what it is.12 To map into momentum spae, we take the inverse Fourier transform of12In high-energy physis one usually takes the bull by the horns and hooses units where �h = 1, whihsaves a lot of tedious writing. The same is done for the speed of light, and for Newton's onstant, so thatone works in dimensionless units where �h =  = G = 1. For mysterious reasons, people in other disiplinesapparently prefer to arry around the redundant baggage of superuous dimensionful onstants. There isno physis ontained in these; it is merely a reetion of one's deision to measure, for example, distane inmetres, while time is measured in seonds, rather than \the time taken for light to travel a ertain numberof metres." 72



 k0(x), obtaining	(k) = 1p2� Z 1�1  k0(x) e�i k x dx = 12� Z 1�1 ei (k0�k) x dx= Æ(k � k0) ; (3.68)where in the �nal step we have used the de�nition (3.43) of the Dira delta funtion.Note that the rôles of k and x are reversed here, relative to our de�nition of the Fouriertransform (3.40) and the inverse transform (3.41). (This is a minor inonveniene in thenotation, resulting from the fat that we onventionally give a positive-frequeny wave atime dependene e�i! t, whih implies that a positive-momentum wave has x dependeneei k x. This does not mesh ideally with the onventional hoie of eik x as the kernel in theFourier transform (3.40). C'est la vie!) There should be no onfusion on this point, butjust to larify our onventions, let us emphasise that we shall always refer to an integralof the form 1=(p2�) R (�) ei � � d� as a Fourier transform, and an integral of the form1=(p2�) R (�) e�i � � d� as an inverse Fourier transform, regardless of the names that wehappen to be using for the variables.More generally, if a wave funtion  (x) in position spae is a superposition of momentumeigenstates, then it has an equivalent representation 	(k) in momentum spae, given by	(k) = 1p2� Z 1�1  (x) e�i k x dx : (3.69)The inverse of this, by Fourier's theorem, is (x) = 1p2� Z 1�1	(k) ei k x dk : (3.70)One an view this as the ontinuous limit of a sum over momentum eigenstates, and thefuntion 	(k) has the imterpretation of being the \amplitude" of the momentum eigenstateei k x in the sum. The derivative operator d=dx in position spae therefore beomes simplya multipliation by i k in momentum spae:d (x)dx = 1p2� Z 1�1(i k)	(k) ei k x dk : (3.71)If we substitute (3.70), with ~k as the integration variable, into the Shr�odinger equation�d2 (x)dx2 + V (x) (x) = E  (x) ; (3.72)we therefore get 1p2� Z 1�1 d~k �~k2	(~k) + V (x)	(~k)�E	(~k)� ei ~k x = 0 : (3.73)73



Muliplying this by 1=(p2�) e�i k x and integrating over x, this givesk2	(k) + Z 1�1 d~k	(~k)� 12� Z 1�1 dxV (x) ei (~k�k)x��E	(k) = 0 ; (3.74)sine the x integrations in the �rst and last terms simply give Dira delta funtions. Thex integration in the potential term gives 1=(p2�)V(k � ~k), where V is the inverse Fouriertransform of the potential V , and so the Shr�odinger equation in momentum spae hasbeome k2	(k) + 1p2� Z 1�1 V(k � ~k)	(~k) d~k = E	(k) : (3.75)The term involving the potential here is preisely of the form of the onvolution integral(3.63), and in fat we e�etively re-derived the relation (3.64) here.In quantum mehanis j (x)j2 dx is the probability that the partile lies in the interval[x; x+ dx℄ in position spae. In terms of the momentum-spae representation, j	(k)j2 dk isthe probability that the momentum lies in the interval [k; k + dk℄. This an be establishedby showing that the expetation value of the momentum, and all higher powers of themomentum, are the same whether alulated in the position-spae or momentum-spaerepresentation. Parseval's theorem (3.56) tells us that the total probability for the partileto be somewhere (= 1) is equal to the total probability for its momentum to be something.More generally, from (3.62), we an learn that an overlap integral between two wavefuntions 1(x) and  2(x) in position spae is equal to the overlap integral evaluated in momentumspae using their inverse Fourier transforms 	1(k) and 	2(k).Poisson Summation Formula:This an be expressed as follows. If F (k) is the Fourier transform of f(x), then1Xn=�1 f(n z) = p2�z 1Xn=�1F (2� n=z) : (3.76)To prove this, we simply use the de�nition of the inverse Fourier transform (3.41),together with the usual assumption of the interhangeability of the orders of integrationand summation: 1Xn=�1 f(n z) = 1p2� Z 1�1 dk 1Xn=�1 e�ik n z F (k) ;= p2� Z 1�1 dk 1Xn=�1 Æ(k z � 2� n)F (k) ;= p2�z Z 1�1 dk0 1Xn=�1 Æ(k0 � 2� n)F (k0=z) ;74



= p2�z 1Xn=�1 F (2� n=z) ; (3.77)where in the step from line 2 to line 3 we hanged integration variable from k to k0 = k z.In the step from line 1 to line 2, we used the fat that1Xn=�1 einx = 2� 1Xn=�1 Æ(x� 2� n) : (3.78)Essentially, this is the statement that the funtions einx form a omplete set on the unitirle: Taking our disussion at the begining of the setion, and setting b = 2� in (3.50),we see that for x restrited to a single overing of the unit irle, suh as �� � x � �, wemust have 1Xn=�1 einx = 2� Æ(x) : (3.79)Sine obviously einx is periodi in x, with period 2�, it must be that when x is allowedto range over the entire real line the funtion (3.79) must get repeated at intervals of 2�,giving rise to the \omb" of delta funtions, as in (3.78).An example of the use of the Poisson summation formula is to evaluate ertain spei�in�nite sums. Consider, for example, the funtion f(x) = 1=(1 + x2). Its Fourier transformis given by F (k) = 1p2� i Z 1�1 dx ei k x1 + x2 = r�2 e�jkj : (3.80)(This is easily proven using the alulus of residues: If k > 0, the integration ontour anbe losed o� with a large semiirle in the upper-half x plane, and so the integral is givenby the residue of the pole at x = i. On the other hand if k < 0, the ontour an insteadbe losed o� with a semiirle in the lower-half plane, and now one piks up the residue atx = �i.) Applying the Poisson summation formula (3.76), we therefore get1Xn=�1 f(n z) = 1Xn=�1 11 + n2 z2 = �z 1Xn=�1 e�2� jn=zj ;= �z �1Xn=�1 e2� n=z + �z 1Xn=0 e�2� n=z ;= �z h e�2�=z1� e�2�=z + 11� e�2�=z i ; (3.81)and hene 1Xn=�1 11 + n2 z2 = �z oth ��z � : (3.82)75



Another appliation of the Poisson summation formula is the following. In the studyof di�erential operators suh as the Laplae operator r2, it is sometimes neessary tostudy the distribution of its eigenvalues �n, de�ned by �r2 un = �n un, where un are theorresponding eigenfuntions. This an be done by studying the so-alled heat kernel�(t) �Xn dn e�� t �n ; (3.83)where dn is the degeneray of the eigenvalue �n. Clearly, if �(t) is known for all t, thenthis enodes a lot of information about the values, and degeneraies, of the eigenvalues. Ofpartiular importane is to know how �(t) behaves for very small values of t, sine this givesinformation about the limiting distribution of the eigenvalues for large �n.Consider the following simple example, where we look at the 1-dimensional Laplaianr2 = d2=dx2 on the unit irle. The eigenfuntions are einx, with eigenvalues �n = n2, andso �(t) = 1Xn=�1 e�� t n2 : (3.84)If we let f(x) = e�x2=2, then �(t) is of the formPn f(n z) as in (3.76), with z = p2� t. Butthe Fourier transform of e�x2=2 is just e�k2=2, sine1p2� Z 1�1 dx e�x2=2 ei k x = 1p2� Z 1�1 dx e�(x�i k)2=2 e�k2=2= 1p2� Z 1�1 dy e�y2=2 e�k2=2 = e�k2=2 ; (3.85)where we have hanged integration variable from x to y = x� i k. Thus from (3.76) we �ndthat 1Xn=�1 e�� t n2 = 1pt 1Xn=�1 e�� n2=t ; (3.86)whih when re-expressed in terms of �(t), is nothing but�(t) = 1pt ��1t � : (3.87)Thus we have a remarkable relation between the large-t and small-t behaviour of the heatkernel for the Laplaian on the irle. In partiular, sine it is obvious from (3.84) that atlarge t have � � 1, we see that at small t we have�(t) � 1pt : (3.88)
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3.3 The Laplae TransformThe Laplae transform is losely related to the Fourier transform. In the Fourier transform(3.40), it is evident that the funtion f(x) should obey some suitable fall-o� onditionsat x = �1, in order that the integral be well-de�ned. Essentially, we sould require thatf(x) �! 0 as x tends to �1. Atually, sine we have adopted the priniple that delta-funtions are aeptable \funtions" we an be a little more tolerant. For example, wewould say that the onstant funtion f(x) = 1 has a valid Fourier integral (3.40), givingF (k) = p2� Æ(k). More generally, f(x) an be a sine or osine or omplex exponential. Forexample, if f(x) = os x, we shall have, from (3.40)F (k) = r�2 �Æ(k � 1) + Æ(k + 1)� : (3.89)As it stands, we annot, however, allow the funtion f(x) to have any divergent be-haviour at large jxj. The Laplae transform is e�etively a modi�ation of the oneptof the Fourier transform that does allow suh kinds of divergent behaviour for f(x). TheLaplae transform FL(p) of f(x) is de�ned byFL(p) = Z 10 e�p x f(x) dx : (3.90)It is evident that this will be well-de�ned for p > 0, even if f(x) has a power-law divergenef(x) � xm as x tends to in�nity, for any arbitrarily large onstant m. Even if f(x) divergesexponentially, f(x) � ea x, the integral will still be well-de�ned provided that p > a.Obviously there is a rather lose onnetion between the Laplae and the Fourier trans-forms. In fat, if we de�ne f+(x) byf+(x) = ( f(x) x > 00 x < 0 ; (3.91)then the Fourier transform of f+(x) will be F+(k) given byF+(k) = 1p2� Z 10 f(x) ei k x dx ; (3.92)and so evidently we shall have FL(p) = p2� F+(i p) : (3.93)We now need to �nd the inverse of the Laplae transform. Again, this an be done by usingwhat we already know about Fourier transforms.77



Suppose that we are onsidering a funtion f(x) that has an exponential divergene ofthe form ea x as x tends to in�nity, where a is a onstant with a positive real part. We maythen introdue the funtion g(x), whih tends to zero as x tends to in�nity, wheref(x) = e x g(x) ; (3.94)and  is a real positive number suh that  > Re(a). The Fourier transform G+(k) of thefuntion g+(x) given by g+(x) = ( g(x) x > 00 x < 0 (3.95)is therefore well-de�ned, and so by Fourier's theorem we an then take the inverse Fouriertransform of G+(k) to get bak to g+(x). Hene we haveg(x) = 12� Z 1�1 dt eix t Z 10 dy e�i t y g(y) : (3.96)From (3.94) this means thatf(x) = 12� e x Z 1�1 dt eix t Z 10 dy e�i t y e� y f(y) : (3.97)Now hange integration variable from t to s =  + i t. This givesf(x) = 12� i Z +i1�i1 ds es x Z 10 dy e�s y f(y) : (3.98)The y integral here an be reognised as giving preisely the Laplae transform FL(s) off(y), and so (3.98) allows us to read o� the inverse of the Laplae transform:f(x) = 12� i Z +i1�i1 ds es x FL(s) : (3.99)This is alled the Bromwih Integral. The integration ontour runs vertially in the omplexs plane, along a line whose real part is . The real onstant  an be hosen arbitrarily,subjet only to the requirement that the ontour should run to the right of any singularitiesof FL(s). Any hoie of  that ahieves this will do, and the answer does not depend onwhih suh value for  we hoose.Let us onsider an example. Suppose we are given the funtionFL(s) = 1s� a ; (3.100)where a is a real onstant, and we are required to alulate its inverse Laplae transform.The funtion FL(s) has a pole at s = a, so we should take a ontour in (3.99) with  > a.The integral (3.99) will be 12� i Z +i1�i1 ds es xs� a : (3.101)78



This an be evaluated by means of the alulus of residues, by losing o� the ontour witha large semiirle swinging out and around to the west. This is justi�able for x > 0, sinethe funtion es x will then beome exponentially small on the semiirle as the radius goesto in�nity. (See Part I of the ourse for a disussion of suh integrals.) The losed ontourenloses the simple pole at s = a, meaning that by the alulus of residues the integral justevaluates to give 12� i Z +i1�i1 ds es xs� a = ea x ; for x > 0 : (3.102)Thus we have derived that the inverse Laplae transform of the funtion 1=(s� a) is ea x.This result is easily veri�ed, by simply heking what the Laplae transform of ea x is.From (3.90), this will beFL(p) = Z 10 ea x e�px dx = Z 10 e�(p�a) x dx= "�e�(p�a) xp� a #x=1x=0 = 1p� a ; (p > a) ; (3.103)whih is indeed bak to where we started. Observe how the funtion ea x, whose Laplaetransform is 1=(s � a), does diverge at large x (assuming a is positive), and, aordingly,the argument s of the Laplae transform FL(s) = 1=(s� a) is restrited to have s > a.13The Laplae transform obeys general properties that are losely analogous to those forthe Fourier transform that we disussed prevsiouly. If we denote by LL the operation oftaking the Laplae transform, then we obviously have the linearity propertiesLL[f + g℄ = LL[f ℄ + LL[g℄ ;LL[a f ℄ = aLL[f ℄ ; (3.104)where a is any onstant. The analogue of the Fourier result (3.55) is a little more involvedhere, owing to the fat that the integration range in the Laplae transform is only semi-in�nite. Thus if FL(p) = LL[f(x)℄ is the Laplae transform of f(x), then taking the Laplaetransform of f 0(x) we getLL[f 0(x)℄ = Z 10 dx e�p x f 0(x) = pFL(p) + he�px f(x)ix=1x=0= pFL(p)� f(0) : (3.105)13It might seem surprising that although the Laplae transform FL(s) is valid only for s > a, in ourevaluation of the inverse transform in (3.99) we preisely plae ourselves in the region Re(s) < a in theomplex s-plane. This is just a manifestation of analyti ontinuation: The Laplae transform FL(s) wasonstruted under the requirement s > a, but having obtained it, it an atually be analytially extendedto the entire omplex s-plane, where it de�nes the meromorphi funtion 1=(s � a). It is this analytiallyextended funtion that is used in (3.99) to evaluate the inverse Laplae transform.79



The Laplae transforms of higher derivatives of f(x) an be alulated similarly. One �nds,for example, that LL[f 00(x)℄ = p2 FL(p)� p f(0) + f 0(0) : (3.106)Some Simple Laplae Transforms, and Their Uses:First, let's take the Laplae transform of a few simple funtions, to see what we get.The simplest of all is f(x) = 1, for whih the Laplae transform will beLL[1℄ = Z 10 dx e�p x = 1p : (3.107)Of ourse we should note that this is true for p > 0. If p � 0 the Laplae transform off(x) = 1 does not exist.Slightly less trivially, take f(x) = x��1. In order to have onvergene of the integral atthe lower limit, we must require Re(�) > 0. However, it doesn't matter how big the realpart of � gets, beause the exponential e�px in (3.90) will ensure onvergene at x = 1,provided that p is positive. Then we shall haveLL[x��1℄ = Z 10 dx e�p x x��1 = p�� Z 10 dy e�y y��1 = �(�) p�� : (3.108)Finally, onsider taking f(x) = eia x, whih is losely related to a ase we looked atpreviously. This gives LL[ei a x℄ = Z 10 dx e�x (p�ia) = 1p� i a ;= p+ i ap2 + a2 ; (3.109)again valid only for p > 0. Taking real and imaginary parts, we thus learn that the Laplaetransforms of the osine and sine funtions are given byLL[os a x℄ = pp2 + a2 ;LL[sina x℄ = ap2 + a2 : (3.110)We saw earlier that one of the appliations of integral transforms is for solving di�erentialequations, by transforming them into a (hopefully!) simpler form. In fat we have studiedsome fairly ompliated examples. For a little light relief, let's take a di�erential equationfrom kindergarten, and solve that using the Laplae transform. Suppose we have a harmoniosillator, satisfying the familiar old equationf 00(x) + f(x) = 0 ; (3.111)80



subjet, let's say, to the boundary onditions y(0) = 1, y0(0) = 0. Taking the Laplaetransform of (3.111), and making use of the results (3.105) and (3.106) above, we obtain ingeneral p2 FL(p) + FL(p)� p f(0)� f 0(0) = 0 : (3.112)This an then be solved algebraially for FL(p), in terms of the boundary onditions onf(x) and f 0(x) at x = 0. In our example, we have f(0) = 1 and f 0(0) = 0, and soFL(p) = pp2 + 1 : (3.113)As it happens, we saw just a few paragraphs previously what funtion has this as its Laplaetransform, namely os x (see (3.110)), and so from (3.113) we onlude that the solution tothe di�erential equation (3.111), subjet to the given boundary onditions, isf(x) = os x : (3.114)More generally, if f(0) and f 0(0) were both non-vanishing, we would solve (3.113) to getFL(p) = f(0) pp2 + 1 + f 0(0) 1p2 + 1 : (3.115)Again, by good hane, we already know what funtion has this seond term as its Laplaetransform (see (3.110) again), and so here we onlude that the original di�erential equation(3.111) has the general solutionf(x) = f(0) os x+ f 0(0) sinx : (3.116)Of ourse if we had not been fortunate enough to know the funtions whose Laplae trans-forms give the two terms in (3.115) we ould easily have derived them using the Bromwihintegral (3.99) for the inverse Laplae transform, muh as we did earlier in equation (3.101).One might begin to wonder, though, whether in this example one were using a sledge-hammer to rak a nut!14 However, it is perhaps useful to have looked at the details ofhow one solves a di�erential equation by Laplae transform methods in a trivially simpleexample, sine essentially the same tehniques are used in more ompliated ases too.Convolution Theorem for the Laplae Transform:There is a onvolution theorem for the Laplae transform that is losely analogous to theone for the Fourier transform that we met previously. Realling that we �rst obtained the14There is a Latin phrase ignotum per ignotius, whih is perhaps appliable here.81



Laplae transform from the Fourier transform by onsidering funtions of the form f+(x)de�ned in (3.91), whih vanish for x < 0 and equal f(x) for x > 0, we should now use suhfuntions in the type of onvolution integral (3.63) that we studied before. Thus we mayde�ne h(x) = Z 1�1 f+(y) g+(x� y) dy = Z x0 f(y) g(x� y) dy : (3.117)(We do not inlude a 1=p2� fator here beause the overall 2� that omes from taking atransform followed by its inverse is, by onvention, treated asymmetrially in the ase of theLaplae transform.) The substantial point to notie is that the onvolution integral for twofuntions, in the ontext of a Laplae transform, is de�ned with integration limits runningfrom 0 to x: h(x) � Z x0 f(y) g(x� y) dy : (3.118)This has happened, obviously, beause of the vanishing of f+(x) and g+(x) when x isnegative.The most diret way to derive the onvolution theorem here is to take a Laplae trans-form of (3.118). Thus we getHL(p) = Z 10 dx e�p x h(x) = Z 10 dx Z x0 dy e�px f(y) g(x� y)= Z 10 dy Z 1y dx e�px f(y) g(x� y)= Z 10 dy Z 10 dz e�p (y+z) f(y) g(z) = Z 10 dy e�p y f(y) Z 10 dz e�p z g(z)= FL(p)GL(p) : (3.119)In getting to the seond line, we have used the fat that the original region of integrationin the (x; y) plane is only the lower-triangular half of the positive (x; y) quadrant, i.e. thetriangular area between the positive x-axis and the line y = x. In the integration on line 1,it is overed by vertial strips, 0 < y < x, with x then running up to in�nity. It an insteadbe overed by horizontal strips, y < x < 1, with y running from 0 to in�nity, and this iswhat is done in line 2. To get to line 3, we then make a shift of the x integration variable,to z = x � y, implying that now the seond integral runs from z = 0 to z = 1. The twointegrals now fall apart into a produt of two independent ones, giving the produt of theLaplae transforms of f(x) and g(x). Thus we have onluded that if FL(p), GL(p) andHL(p) are the Laplae transforms of f(x), g(x) and h(x) respetively, and if h(x) is theonvolution of f(x) and g(x) de�ned in (3.118), thenHL(p) = FL(p)GL(p) : (3.120)82



Notie, by the way, that the onvolution (or Faltung) de�ned in (3.118) has the samesymmetry property as the one de�ned in (3.63) for the Fourier transform. Namely, if wehange integration variable in (3.118) from y to z = x� y, then we �nd thath(x) = Z x0 f(y) g(x � y) dy = Z x0 g(z) f(x � z) dz : (3.121)Again, the symmetry between f and g is even more manifest in the Laplae-transformedexpression (3.120).Here is a simple example of the use of the onvolution theorem in solving a di�erentialequation. Like our previous example, we'll take the simple-harmoni equation, but this timewith a soure term: f 00(x) + f(x) = g(x) : (3.122)For simpliity, suppose that f(0) = f 0(0) = 0 here. Thus from (3.105) and (3.106), we �ndthat the Laplae transform of the equation isp2 FL(p) + FL(p) = GL(p) ; (3.123)where GL(p) is the Laplae transform of the soure term g(x). Solving for FL(p) we getFL(p) = GL(p) 1p2 + 1 : (3.124)Sine we an reognise the fator 1=(p2 +1) as the Laplae transform of sinx (see (3.110)),we an invoke the onvolution theorem to give usf(x) = Z x0 g(x� y) sin y dy : (3.125)This result is, of ourse, easily derivable by other methods too, but again it serves toillustrate a method that has rather general appliability.3.4 The Gibbs PhenomenonIn our proof of Fourier's theorem earlier, we invoked the easily-proven results for the disreteanalogue of the Fourier transform, namely the Fourier series. We remarked at that time thatthere was an interesting subtlety in the Fourier expansion, known as the Gibbs Phenomenon.Although it is slightly o� the mainstream of our present disussion, it is perhaps interestingto look at it here, sine it may not ome up again later.The Gibbs phenomenon is seen when one onsiders the Fourier series expansion for afuntion with a disontinuity. This happens quite often in a Fourier series, sine it desribesa periodi funtion whih an, for example, have a sudden \jump" when the end of the period83



is reahed. Let us onsider a onrete example, of a square-wave with period 2�, whih antherefore be expanded in terms of the omplex exponential funtions einx, asf(x) = 1Xn=�1an einx : (3.126)Let us take f(x) to be f(x) = ( +1 0 < x < ��1 � < x < 2� : (3.127)As in (3.49), the Fourier oeÆients will then be given byan = 12� Z 2�0 dy e�iny f(y)= 12� Z �0 dy e�in y � Z 2�� dy e�iny= 1i� n �1� (�1)n)� ; (3.128)and they are non-zero only when n is odd. Noting that in the sum (3.126) we an thenreplae n by �n as the summation variable when n is negative, we onlude that thesquare-wave (3.127) has the Fourier series expansionf(x) = 4� 1Xr=0 1(2r + 1) sin[(2r + 1)x℄ = 4� � sinx+ 13 sin 3x+ 15 sin 5x+ � � � � : (3.129)Obviously the terms are getting smaller in magnitude as r inreases, and so we anexpet that if we onsider a partial sum from r = 0 only as far as r = M , we should geta better and better approximation to the square wave as M inreases. And essentially,this expetation is orret, exept that there is one small subtlety that one might not haveforeseen. This an be best illustrated �rst by looking at a few plots of the partial sums in(3.129) where only the �rst few terms are inluded. Below, in Figures 12-16, we give theplots for the �rst term alone (a sine wave); the �rst two terms; the �rst three; the �rst ten,and �nally the �rst twenty.
As an be seen from the various plots, it is indeed broadly-speaking true that as weinlude more and more terms in the sum, we get a loser and loser approximation to thesquare wave (3.127). However, it also beomes apparent that no matter how many terms weinlude, there always seems to be an \overshoot" every time there is a disontinuity in the84
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Figure 12: The �rst term in the Fourier series for the square wave
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Figure 13: The �rst 2 terms in the Fourier series for the square wavesquare-wave. As we inlude more terms in the sum, the width of the overshoot gets less, butits height seems to be staying roughly the same. This overshoot is the Gibbs phenomenon.We an show relatively easily that it will always be there, no matter how many terms weinlude in the sum. And indeed, it always leads to something like an 18% overshoot of thetrue value of the funtion, at the disontinuity. Atually, we should remark that there ismore than just a single overshoot; as an be seen rather learly in Figure 16 there is a sortof \ringing" phenomenon whih ours after the overshoot, whih takes a while to settledown.To study the Gibbs phenomenon, we go bak to the seond line in (3.128), and leavingthe integrals unevaluated, substitute the expressions for the oeÆients an bak into (3.126).However, we shall now restrit the summation to run only over the �nite range�N � n � N .85
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Figure 14: The �rst 3 terms in the Fourier series for the square wave
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Figure 15: The �rst 10 terms in the Fourier series for the square waveAt the same time interhanging the orders of the integration and the summation, this givesSN (x) = 12� Z �0 dy NXn=�N ein (x�y) � 12� Z 2�� dy NXn=�N ein (x�y) : (3.130)We an expliitly evaluate the sum here, sine it is just a geometrial series:NXn=�N ein (x�y) = e�N (x�y) 2NXn=0 ein (x�y) = e�N (x�y) "1� ei (2N+1) (x�y)1� ei (x�y) # ;= sin[(N + 12 )(x� y)sin[12(x� y)℄ : (3.131)Plugging (3.131) into (3.130), and hanging integration variable from y to � = y � x inthe �rst integral, and � = 2� � (y � x) in the seond, we getSN (x) = 12� Z ��x�x d� sin(N + 12 )�sin 12� � 12� Z �+xx d� sin(N + 12 )�sin 12� : (3.132)86
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Figure 16: The �rst 20 terms in the Fourier series for the square waveJuggling the integration limits around, by usingZ ��x�x � Z �+xx = Z ��x � Z �x � Z �+x + Z x = Z x�x� Z �+x��x ; (3.133)this an be rewritten asSN (x) = 12� Z x�x d� sin(N + 12 )�sin 12� � 12� Z �+x��x d� sin(N + 12 )�sin 12� : (3.134)Now let u = (N + 12 ) �, leading toSN (x) = 1� Z (N+ 12 )x�(N+ 12 )x du sinu(2N + 1) sin[u=(2N + 1)℄� 1� Z (N+ 12 )(�+x)(N+ 12 )(��x) du sinu(2N + 1) sin[u=(2N + 1)℄ : (3.135)Suppose now that we look in the region 0 < x < �, with x signi�antly smaller than �.The �rst integral in (3.135) will be muh larger than the seond one, when N is large. Tosee this, note that the argument of the sine funtion in the denominator of the integrand,u=(2N + 1) is ranging over the values�12 x � u=(2N + 1) � 12 x (3.136)in the �rst integral, while in the seond integral it is ranging over the values12 (� � x) � u=(2N + 1) � 12 (� + x) : (3.137)Thus the denominator of the integrand never goes to zero in the seond integral, and thisintegral tends to zero as N tends to in�nity. On the other hand, the denominator of the87



integrand does go to zero within the integration range in the �rst integral. At large N , thisgives, to a good approximationSN (x) � 1� Z 1�1 du sinuu ; for 0 < x < � ; (3.138)when N gets very large. The integral here is a standard one (we evaluated it in Part I ofthe ourse, using Cauhy's prinipal-value integral, for example), implying thatSN (x) � 1 ; for 0 < x < � ; (3.139)exatly as we would hope.In the above, we assumed that x was greater than zero, but less than �, and that it isheld �xed as N was sent to in�nity. We showed that SN (x) then onverges to 1 as N issent to in�nity. Suppose instead we now arrange to sit on the peak of the Gibbs overshoot,and see what happens there as N is sent to in�nity. This peak will our when S0N (x) hasits �rst zero as x inreases from 0, and learly it will be at a very small value of x whenN is large. Let it our at x = Æ. Again the seond integral in (3.135) will be negligibleompared with the �rst when N gets large, and so for small positive x we know that SN (x)is given approximately by SN (x) � 1� Z (N+ 12 ) x�(N+ 12 ) x du sinuu ; (3.140)sine the argument u=(N + 12 ) in the sine funtion in the denominator is so small that wean approximate sin[u=(N + 12 )℄ by u=(N + 12). This integral is expressible in terms of theSine Integral Si(x) � Z x0 du sinuu : (3.141)First, however, we need to di�erentiate (3.140) with respet to x, to �nd the �rst zero ofS0N (x) as x inreases from 0. This is easy, sine it just givesS0N (x) � 2� x sin[(N + 12 )x℄ : (3.142)The �rst zero therefore ours at x = Æ = 2�2N + 1 : (3.143)Plugging into the expression (3.140 for SN (x), we �nd thatlimN!1SN (�=(2N + 1)) = 1� Z ��� du sinuu = 2� Si(�) = 1:1798 : : : : (3.144)88



Thus we see that the �rst peak exeeds the true value f(x) = 1 by about 18%, even as N issent to in�nity.15 As an be seen from (3.143), the width of the overshoot spike gets smallerand smaller as N inreases, beoming vanishingly small in the limit.It may be realled, for example from Part I of the ourse, that the expressions in thetop line of (3.128) for the Fourier expansion oeÆients an an be shown to optimise theauray of the expansion for the funtion f(x). Furthermore, these expressions for thean are optimal not only for the entire in�nite series expansion, but also if one takes onlya partial sum, as we have been doing. How does this square up with what we have beenseeing with the Gibbs phenomenon? After all, 18% is a pretty serious error! The resolution,of ourse, is that as we have seen, the width of the overshoot-spike gets less and less as thenumber of terms inluded in the partial sum is inreased. And when one says that thehoie (3.128) for the an oeÆients in the Fourier series is the one that gives the \best �t"to the funtion f(x), it should be realled that the measure of suess here is de�ned to bea least-squares average. Namely, the hoie for the oeÆients an in (3.128) minimises thequantity QN � Z 2�0 ������f(x)� NXn=�N an einx������2 dx ; (3.146)making it vanish in the limit where N goes to in�nity. It is evident that the overshoot-spikesassoiated with the Gibbs phenomenon will give no ontribution in the limit when N goesto in�nity, sine their height is �nite (about 9% of the disontinuity; in our example thefuntion jumps from �1 to +1 at x = 0), while their width goes to zero.We an also examine the details of the \ringing" that is learly visible in Figure 16, bylooking at the values of the funtion SN (x) at its �rst few extrema. As before, the loationsof these points are easily determined from the expression (3.142) for S0N (x). Thus the m'thzero of S0N (x) is at x = Æm = 2�m2N + 1 : (3.147)15Note that Morse and Feshbah spoil an otherwise nie derivation of this result (at least in the editionI have) by misalulating the loation of the peak in the �nal stage of the omputation. They obtain theexpression (3.144) with limits ��=2 in the integral, and then make the false laim that1� Z �=2��=2 du sinuu = 1:1798 : : : (3.145)although the atual value of their integral is 0:8726 : : :. Their mis-identi�ation of the loation of the peakhas atually set them at a point where SN (x) is smaller than 1. Even Homer nods, oasionally!
89



In the limit when N beomes large, the value of SN (Æm) is then given byS(Æm) = 1� Z m��m� du sinuu : (3.148)Taking m = 1 gives us bak the results (3.144) for the value at the �rst peak. As we takem = 3; 5; 7; : : : we will get the values at the later peaks, while taking m = 2; 4; 6; : : : willgive the values at the suessive troughs in between the peaks. The results for the �rst fewpeaks and troughs are given below:m = 1 3 5 7 9S(Æm) = 1.17898 1.06619 1.04021 1.02883 1.02246The values of the �rst �ve peaksm = 2 4 6 8 10S(Æm) = 0.90282 0.94994 0.96641 0.97475 0.97978The values of the �rst �ve troughsFinally, we may remark that although we foussed on the example of a square-wavefuntion expressed as a Fourier series, the Gibbs phenomenon is a very general one. Anytime that one makes a series expansion of a funtion with disontinuities, as a sum oversome omplete set of eigenfuntions of a Sturm-Liouville operator, the same phenomenonof overshoot-spikes and ringing will our.4 Integral Equations4.1 IntrodutionThe idea of formulating physial laws in terms of di�erential equations is a very familiarand fundamental one. Indeed, all the fundamental laws of physis fall into this ategory;for example the Maxwell equations, the Einstein equations of general relativity, and theequations governing the fundamental partile interations of the strong and weak intera-tions. There are times, however, when it turns out that a system an be more onvenientlydesribed in terms of integral equations, and in some ases where one is dealing with an ef-fetive marosopi theory rather than a fundamental one, a desription in terms of integalequations beomes a neessity. 90



Let us begin by introduing the most ommon types of integral equation that one en-ounters. We shall disuss four types, whih are as follows:Fredholm Equation of the First Kind:f(x) = Z ba K(x; t)�(t) dt ; (4.1)Fredholm Equation of the Seond Kind:�(x) = f(x) + � Z ba K(x; t)�(t) dt ; (4.2)Volterra Equation of the First Kind:f(x) = Z xa K(x; t)�(t) dt ; (4.3)Volterra Equation of the Seond Kind:�(x) = f(x) + � Z xa K(x; t)�(t) dt ; (4.4)In all four ases, �(t) is the unknown funtion that must be solved for. The kernelK(x; t) is given, as is the funtion f(x) in the two equations of the seond kind. If thefuntion f(x) is zero, the equation is said to be homogeneous, sine it then sales uniformlyunder a onstant saling of �(t). The quantity � the integral equations of the seond kindis a onstant.First, let's establish a mnemoni for remembering whih equation is whih. The di�er-ene between the Fredholm and the Volterra equations is that the Fredholm equations haveFixed limits of integration, while the Volterra equations have Variable limits of integration.Integral equations of the Seond kind have a Seond term as well as the integral, while theequations of the First kind have Fewer terms. So that is easy!91



Notie that the Fredholm equation of the �rst kind looks very like the sort of equation wehave enountered already in our disussion of integral transforms. Essentially, the equationan be viewed as taking the transform of �(t) using the kernel K(x; t). In order to solve for�(t), we therefore need to �nd the inverse transform. This would be very easy, for example,if the given kernel funtion was K(x; t) = eix t, sine then we would simply have to take theinverse Fourier transform of the given funtion f(x) in order to obtain our solution �(t).Another example of an integral equation that we have already enountered is theShr�odinger equation re-expressed in momentum spae, whih we obtained in equation(3.75): (E � k2)	(k) = 1p2� Z 1�1 V(k � ~k)	(~k) d~k ; (4.5)where V is the inverse Fourier transform of the potential V (x). This is a homogeneousFredholm equation of the seond kind. We already have a lue about how one might solveit, from the fat that we obtained it from an ordinary di�erential equation by taking aFourier transform.We an, however, imagine a more general situation in this quantum-mehanial example,for whih an integral equation beomes unavoidable. Let us go bak to the original x-spaeShr�odinger equation, �d2 (x)dx2 + V (x) (x) = E  (x) ; (4.6)and re-write it as d2 (x)dx2 +E  (x) = Z 1�1 V (x; x0) (x0) dx0 : (4.7)This beomes idential to (4.6) if V (x; x0) is given byV (x; x0) = V (x) Æ(x � x0) : (4.8)When (4.8) holds the interation is an ordinary loal one; the wavefuntion at the point xsenses the potential at the same point x. More generally, one ould onsider situations withnon-loal interations, in whih the wavefuntion at x senses the e�ets from other positionstoo, and this is what is desribed by (4.7). Suh interations would not be desirable in atheory at the fundamental level (imagine the possible impliations for aausal faster-than-light transfer of information, for example!).16 However, they ould arise at some e�etivelevel. The non-loal equation (4.7) is an integro-di�erential equation, with  (x) appearingboth via its derivatives, and within an integral.16In any ase the Shr�odinger equation itself is learly not \fundamental" sine it is not even relativisti.92



One an Fourier-transform the non-loal equation (4.7), muh as we did earlier for theusual loal equation, to obtain(E � k2)	(k) = Z 1�1 V(k; ~k)	(~k) d~k ; (4.9)where V(k; ~k) = 12� Z 1�1 dx Z 1�1 dy V (x; y) e�i (k x�~k y) : (4.10)The previous loal ondition (4.8) an easily be seen to implyV(k; ~k) = 1p2� V(k � ~k) ; (4.11)and then (4.9) redues to the previous result (4.9). The general result (4.9) is itself of theform of a homogeneous Fredholm equation of the seond kind.In this example, one we have generalised to the non-loal interation, it is most naturalto write the equation for  (x) in the form of an integro-di�erential equation, and indeedthere is really no way to write a pure di�erential equation. This is inevitable, in view ofthe non-loal nature of the interation that is being desribed. We improve things, in somesense, by transforming to momentum spae, sine now the equation beomes purely anintegral equation.In other examples one has a hoie as to whether to work with an equation in integralor di�erential form. One might think that in suh ases it is better to stik with the morefamiliar di�erential form. There are, however, ertain advantages to having an equationexpressed in integral form, most notably assoiated with the issue of boundary onditions.In a di�erential equation one has to supply information about the boundary onditions assupplementary data. In an integral equation, on the other hand, the information about theboundary onditions is e�etively already enoded in the equation itself. This an be useful,for example, if one is wanting to study the asymptoti properties of the solution, subjet tospei� boundary onditions, in a ase where approximate methods must be used.An Integral Equation from a Di�erential Equation:The point about the boundary onditions an be illustrated by onstruting an example,somewhat arti�ially. Consider the seond-order ordinary di�erential equationy00(x) + p(x) y0(x) + q(x) y(x) = g(x) ; (4.12)with spei�ed boundary onditionsy(a) = y0 ; y0(a) = y00 : (4.13)93



This an be turned into an integral equation by the following proedure. First, we integrate(4.12): y0(x) = � Z xa p(t) y0(t) dt� Z xa q(t) y(t) dt+ Z xa g(t) dt + y00 : (4.14)Notie that we have spei�ed the lower limit of the integration, and thus we have been ableto inorporate the boundary ondition on y0(a) from (4.13). Now integrate the �rst termon the right-hand side by parts, to gety0(x) = �p(x) y(x) + Z xa �p0(t)� q(t)� y(t) dt+ Z xa g(t) dt + p(a) y0 + y00 : (4.15)Next, we integrate this equation again:y(x) = � Z xa p(t) y(t) dt + Z xa ds Z sa dt�p0(t)� q(t)� y(t) + Z xa ds Z sa dt g(t)+�p(a) y0 + y00� (x� a) + y0 : (4.16)At this stage we note that by integrating by parts, we an show that for any funtionf(t) we shall have17Z xa ds Z sa dt f(t) = � Z xa ds s f(s) + hs Z sa dt f(t)is=xs=a = Z xa dt (x� t) f(t) dt : (4.17)Using this, we an re-express (4.16) asy(x) = � Z xa dt p(t) y(t) + Z xa dt (x� t)�p0(t)� q(t)� y(t) + Z xa dt(x� t) g(t)+�p(a) y0 + y00� (x� a) + y0 : (4.18)Finally, we introdue funtions K(x; t) and f(x) de�ned as follows:K(x; t) � (x� t)�p0(t)� q(t)�� p(t) ;f(x) � Z xa dt (x� t) g(t) + �p(a) y0 + y00� (x� a) + y0 : (4.19)(Note that these are onstruted purely from the original quantities given in the di�erentialequation and the boundary onditions.) We an now write the equation (4.18) in the �nalform y(x) = f(x) + Z xa K(x; t) y(t) dt : (4.20)This an be reognised as a Volterra equation of the seond kind. Notie that all informationabout the boundary onditions is already enoded in the formulation of the equation. For17If you look at this disussion in Arfken, he makes a real dog's breakfast of it, by onfusing the dummyintegration variable s and the integration limit x. 94



example, if we set x = a in (4.20) we learn that y(a) = f(a), and from the de�nition off(x) in (4.19), this tells us that y(a) = y0.Consider a simple example, where p(x) = 0 and q(x) = 1, and g(x) = 0, so that theoriginal di�erential equation (4.12) is just the simple harmoni osillator,y00(x) + y(x) = 0 : (4.21)Suppose also that we hoose our boundary onditions so that y0 = 0, y00 = 1. From (4.19)and (4.20) we therefore get the integral equationy(x) = x+ Z x0 (t� x) y(t) dt : (4.22)One an easily verify that this is satis�ed by y(x) = sinx. Of ourse this is not a \derivation"of the solution, more a veri�ation that what we already know atually works. We shalldisuss later how one goes about solving suh equations.An Example with Two End-point Boundary Conditions:The derivation above was tailored spei�ally to the ase where the boundary onditionswere as stated in (4.13). Clearly we ould adjust the derivation slightly to aomodatedi�erent types of boundary ondition. Sine our priniple objetive at this stage is notsimply to turn familar di�erential equations into unfamiliar integral equations, we shallnot pursue this point in great detail here. Let us take one spei� example, with di�erentboundary onditions, in order to illustrate the point. Consider again the harmoni osillatorequation (4.21), but now with the boundary onditionsy(0) = 0 ; y(a) = 0 : (4.23)Integrating (4.21) one gives y0(x) = � Z x0 y(t) dt+ y0(0) : (4.24)We don't know yet what to substitute for y0(0), sine this is not one of the given boundaryonditions any more. So we proeed by integrating again, to gety(x) = � Z x0 (x� t) y(t) dt+ y0(0)x ; (4.25)after using (4.17). Now we an set x = a, and thereby obtain an expression for y0(0):y0(0) = y(0)a + 1a Z a0 (a� t) y(t) dt ; (4.26)95



whih an be plugged bak into (4.25) to givey(x) = � Z x0 (x� t) y(t) dt + xa Z a0 (a� t) y(t) dt : (4.27)Using the identity that �(x� t) = t (a� x)=a� x (a� t)=a, we therefore gety(x) = Z a0 ta (a� x) y(t) dt+ Z ax xa (a� t) dt : (4.28)Now de�ne the kernel K(x; t) byK(x; t) = 8>><>>: ta (a� x) ; t < xxa (a� t) ; x < t ; (4.29)in terms of whih (4.28) an be written asy(x) = Z a0 K(x; t) y(t) dt : (4.30)This is a homogeneous Fredholm equation of the seond kind. The kernel K(x; t) hereis in fat the Green funtion for the equation (4.21), subjet to the boundary onditionsy(0) = y(a) = 0. It is symmetri in x and t. If plotted as a funtion of t, it onsists of astraight-line segment starting at the origin, and inreasing with positive gradient 1 � x=auntil the point t = x is reahed. For t > x it is a straight-line segment with negativegradient �x=a, whih reahes the t axis at t = a. The kernel is ontinuous at t = x, butwith a disontinuity of �1 in its gradient there.Solutions Using Fourier and Laplae Transforms:We have already remarked that if one were presented with the following Fredholm equa-tion of the �rst kind, f(x) = Z 1�1 eix t �(t) dt ; (4.31)then solving for �(t) would be easy, sine we just reognise this as a Fourier transform.Thus we an invoke Fourier's theorem and immediately write down the solution, namely�(t) = 12� Z 1�1 e�ix t f(x) dx : (4.32)Of ourse when we say that we have solved the equation here, what we mean is that wehave \redued it to quadratures." Whether or not an expliit losed-form solution an bepresented depends on whether the given funtion f(x) allows us to perform the integralexpliitly. 96



Similarly, there are other Fredholm equations of the �rst kind that ould be reognisedas Laplae transforms, or ertain other related transforms suh as the Mellin or Hankeltransforms. In all suh ases, a proedure for solving the equation by inverting the trans-formation exists.There are somewhat more general types of integral equation that an also be solvedby Fourier transform tehniques, or by analogous proedures related to the other lassi�edintegral transforms. Suppose we have the following Fredholm equation of the �rst kind:f(x) = Z 1�1 k(x� t)�(t) dt ; (4.33)where k(x � t) is the given kernel, and we wish to solve for �(t). Note that the kernel israther speial here, being a funtion of just the single variable ombination (x� t). We anreognise (4.33) as being nothing but a onvolution integral of the funtions k and �. Aswe saw in our disussion of Fourier transforms, the Fourier transform of the onvolution oftwo funtions is proportional to the produt of the Fourier transforms of the two onvolvedfuntions. The preise statements, with all 2� fators, are given in (3.63) and (3.64).Comparing with (4.33), we see that the solution to (4.33) will be given by�(x) = 12� Z 1�1 e�ix t F (t)K(t) dt ; (4.34)where F (t) and K(t) are the Fourier transforms of f(x) and k(x):F (t) = 1p2� Z 1�1 eix t f(x) dx ; K(t) = 1p2� Z 1�1 eix t k(x) dx : (4.35)So provided that the neessary integrals an be evaluated, the solution for �(x) an beobtained.It is lear that a straightforward extension of this proedure allows us to solve theFredholm equation of the seond kind, again in the speial ase where the kernel is k(x� t),and where the limits of the integration are �1. Fourier transforming the integral equation�(x) = f(x) + � Z 1�1 k(x� t)�(t) dt (4.36)and using the onvolution theorem gives�(t) = F (t) + �p2�K(t)�(t) ; (4.37)whih an be solved for �(t) to give:�(t) = F (t)1� �p2�K(t) : (4.38)97



Finally, we take the inverse Fourier transform to get the solution as�(x) = 1p2� Z 1�1 F (t)1� �p2�K(t) e�ix t dt : (4.39)A similar tehnique an be used to solve the Volterra equation of the seond kind, in thespeial ase where the kernel is of the form k(x� t), and the lower limit of the integrationis 0: �(x) = f(x) + � Z x0 k(x� t)�(t) dt (4.40)The integral here an be reognised as the onvolution integral (3.118) of the Laplaetransform. Thus using (3.120) we now onlude that the solution for �(x) is�(x) = 12� i Z +i1�i1 F (s)1� �K(s) ex s ds ; (4.41)where F (s) and K(s) are the Laplae transforms of f(x) and k(x). The integral in (4.41) isthe Bromwih integral for the inverse Laplae transform, whih we disussed in setion 3.3.Reall that the real onstant  should be hosen so that the vertial ontour of integrationlies to the right of any singularities of the integrand. The solution for the Volterra equationof the �rst kind is easily derivable by this method too. Or, one an obtain it from (4.41)by noting from the original Volterra equations (4.3) and (4.4) that if we replae f(x) by�� f(x) in (4.4), and then send � �! 1, we obtain (4.3). Thus the solution to the Volterraequation of the �rst kind, for the kernel k(x� t), will be�(x) = 12� i Z +i1�i1 F (s)K(s) ex s ds ; (4.42)4.2 Degenerate KernelsOne might think from this title that we were about to stray o� the topi of integral equationsand undertake an investigation of improper goings-on in the OÆers' Mess, but atuallythis will be a perfetly respetable analysis of a rather general tehnique for solving integralequations with a partiular type of kernel funtion K(x; t). In fat a less sensational-sounding and more desriptive terminology is Separable Kernels.The idea is the following. Suppose the kernel funtion K(x; t) in an integral equation isseparable, in the sense that it an be written as a �nite sum of N fatorised terms:K(x; t) = NXj=1Mj(x)Nj(t) : (4.43)A kernel K(x; t) that was of the form of any polynomial in x and t would thus be of thisdegenerate type. So also would the kernel os(x� t), sineos(x� t) = osx os t+ sinx sin t : (4.44)98



Suppose we wish to solve a Fredholm equation of the seond kind, for a degeneratekernel of the form (4.43). Substituting into (4.2) we obtain�(x) = f(x) + � NXj=1 Mj(x) Z ba dtNj(t)�(t) : (4.45)The integrals appearing here are just onstants, sayj = Z ba dtNj(t)�(t) ; (4.46)and if we knew what they were we would have the solution for �(x), sine (4.45) gives�(x) = f(x) + � NXj=1 jMj(x) : (4.47)Of ourse we dont yet know what the onstants i are, sine they are given by the integrals(4.46) whih themselves involve the unknown funtion �(x). However, if we multiply (4.47)by Ni(x) and integrate, we get i = bi + � NXj=1 Aij j ; (4.48)where we have also de�ned onstants bi and Aij bybi = Z ba dxNi(x) f(x) ;Aij = Z ba dxNi(x)Mj(x) : (4.49)Now, sine the onstants bi and Aij are simply alulated as integrals of given funtions, itfollows that we an view (4.48) as a system of N simultaneous equations for the N unknownsi. In matrix notation, these equations are~ = ~b+ �A~ ; (4.50)or in other words (1l� �A)~ = ~b : (4.51)This an be solved for ~ by inverting the matrix, to give~ = (1l� �A)�1~b ; (4.52)and so the problem is solved.If the Fredholm equation is homogeneous, meaning f(x) = 0 and hene ~b = 0, then(4.51) beomes (1l� �A)~ = 0 ; (4.53)99



whih does not in general admit any non-zero solution for ~. The only way it an admit asolution is if the determinant of (1l� �A) should happen to vanish. This is beause havinga solution of (4.53) would imply that ~ was an eigenvetor of (1l��A) with zero eigenvalue.But the determinant of a matrix is equal to the produt of its eigenvalues, and hene a zeroeigenvalue means a zero determinant. Thus for a homogeneous Fredholm equation with adegenerate kernel to have a non-zero solution, it would have to be thatdet(1l� �A) = 0 : (4.54)This is a standard eigenvalue equation, giving an N 'th-order polynomial equation for theeigenvalues 1=� of the matrix A.Let us onsider an example. Suppose we wish to solve the homogeneous Fredholmequation �(x) = � Z 1�1(x+ t)�(t) dt : (4.55)The kernel is degenerate, withM1(x) = 1 ; M2(x) = x ; N1(t) = t ; N2(t) = 1 : (4.56)Simple integration gives A11 = A22 = 0, A12 = 2=3 and A21 = 2, or in other wordsA =  0 232 0 ! : (4.57)The ondition (4.54) for the vanishing of the determinant then implies����� 1 �23��2� 1 ����� = 0 : (4.58)One easily �nds that this gives 1� 4�2=3 = 0, with solutions �1 = p3=2 and �2 = �p3=2,with the orresponding eigenvetors~1 = �1  1p3! ; ~2 = �2  1�p3! ; (4.59)where �1 and �2 are arbitrary onstants. (One annot expet these to be determinedwhen solving a homogeneous equation.) Plugging these results bak into (4.47), we get thesolutions � = p32 : �(x) = 12p3�1 (1 +p3x) ;� = �p32 : �(x) = �12p3�2 (1�p3x) : (4.60)100



4.3 Neumann Series Solution of Integral EquationsAnother method that an sometimes be useful for solving integral equations is the Neu-mann series expansion method. This an, in partiular, be useful as a way of getting anapproximate solution, up to the �rst few orders in an expansion parameter. The idea anbe illustrated by onsidering an inhomogeneous Fredholm equation of the seond kind:�(x) = f(x) + � Z ba dtK(x; t)�(t) : (4.61)The simplest way to desribe the idea of the method is as follows. Let us suppose that� an be thought of as a \small parameter." We may therefore say that as a leading-order approximation, the integral equation (4.61) is simply �(x) � f(x). Let us write thisleading-order result as �0 = f(x) : (4.62)Sine � is assumed small, we an then make a next-order approximation in whih we use �0in plae of � in the integral in (4.61), and get the next approximation to the true solution:�1(x) = f(x) + � Z ba dtK(x; t)�0(t) : (4.63)Sine already have our expression for �0 as the known funtion f(x), this means thateverything on the right-hand-side of (4.63) is in priniple alulable. The proess an thenbe repeated again and again, and at eah stage one uses the just-obtained approximation�n in the integral in (4.61) in order to get the next approximation �n+1:�n+1(x) = f(x) + Z ba dtK(x; t)�n(t) : (4.64)It is helpful to express this in a slightly di�erent way, as follows. Viewing � as aparameter for keeping trak of the order in the expansion, we may write�n(x) = nXk=0�k uk(x) : (4.65)Substituting this into the original integral equation (4.61), and then equating order-by-orderin � we learly obtainu0(x) = f(x) ;u1(x) = Z ba dt1K(x; t1) f(t1) ;u2(x) = Z ba dt2 Z ba dt1K(x; t1)K(t1; t2) f(t2) ;� � � (4.66)un(x) = Z ba dtn Z ba dtn�1 � � � Z ba dt1K(x; t1)K(t1; t2) � � �K(tn�1; tn) f(tn) :101



If we are luky, the proedure desribed above will be a onvergent one, and the solutionto the original integral equation (4.61) will be given by�(x) = limn!1�n(x) = 1Xk=0�k uk(x) : (4.67)Of ourse in pratie it might be that explitly performing the integrals (4.66) might gettoo diÆult to do one n gets very big, and so we might well just stop after a few termsand view that as an approximate solution to the problem. But still, we should like to knowthat the series would in priniple be onvergent.Testing for onvergene is, of ourse, not going to be easy if we an't evaluate theintegrals, but we an ahieve something, at least, by making the traditional sort of \worst-ase" estimates. Thus we may observe from (4.66) that we shall havej�n un(x)j � j�nj jf jmax jKjnmax jb� ajn : (4.68)Here, jf jmax means the maximum value of jf(x)j in the interval a � x � b, and jKjmaxmeans the maximum value of jK(x; t)j that it ahieves anywhere in the ranges taken by xand t. By Cauhy's ratio test we an ertainly therefore be sure of onvergene ifj�j jKjmax jb� aj < 1 : (4.69)One an view this as a ondition on the smallness of the parameter � that is needed foronvergene. Of ourse if this ondition is not satis�ed it may still be that the series isonvergent, sine we made some pretty drasti worst-ase assumptions in getting to (4.68).Let us look at an example. Consider the following inhomogeneous Fredholm equationof the seond kind: �(x) = x+ � Z 1�1 dt (t� x)�(t) : (4.70)For the leading approximation we have �0(x) = x, and plugging this into the integral in(4.70) we then get �1(x) = x+ � Z 1�1 dt (t� x) t = x+ 23 � : (4.71)Using this to alulate �2(x), and then this for �3(x) gives�2(x) = 23�+ (1� 43�2)x ;�3(x) = 23� (1� 43�2) + (1� 43�2)x : (4.72)Clearly we only ever generate x to the powers 0 and 1 in eah iteration, so we an usefullysimply the disussion by making the de�nition�n(x) = an + bn x ; (4.73)102



where an and bn are onstants. Substituting this into�n(x) = x+ � Z 1�1 dt (t� x)�n�1(t) ; (4.74)we easily get an = 23� bn�1 ; bn = 1� 2�an : (4.75)From this we an see thatan = 23� (1� 2�an�2) ; bn = 1� 43 �2 bn�2 : (4.76)It is atually nier at this point to de�ne a new eigenvalue � instead of �, related by� = p32 � ; (4.77)so that we have an = �p3 � �2 an�2 ; bn = 1� �2 bn�2 : (4.78)It is then easy to show by indution thata2p = a2p�1 = 1p3 �1� �2 + �4 � �6 + � � � � (�1)p �2(p�1)� ; p � 1 ;b2p�2 = b2p�1 = 1� �2 + �4 � �6 + � � � � (�1)p �2(p�1) ; p � 1 ; (4.79)with a0 = 0. The �rst few examples area0 = 0 ; a1 = a2 = �p3 ; a3 = a4 = �p3(1� �2) ; a5 = a6 = �p3(1� �2 + �4) ;b0 = b1 = 1 ; b2 = b3 = 1� �2 ; b4 = b5 = 1� �2 + �4 ; (4.80)and so on.The �nal solution �(x) to our equation (4.70) is obtained by taking the limit where ngoes to in�nity, so that �(x) = a+ b x wherea = limn!1an = �p3 1Xm=0(�1)m �2m ; b = limn!1 bn = 1Xm=0(�1)m �2m : (4.81)Clearly these sums onverge if �2 < 1, and they diverge if �2 > 1, so in this ase theNeumann series solution is onvergent forj�j < p32 : (4.82)Atually, we an do rather better here, sine the in�nite series in (4.81) is geometri,and therefore expliitly summable:1Xm=0(�1)m �2m = 11 + �2 : (4.83)103



This gives us the �nal solution�(x) = �p3 (1 + �2) + x1 + �2 : (4.84)After rewriting in terms of � again, this is�(x) = 2�3 + 4�2 + 3x3 + 4�2 : (4.85)In fat we have been luky here, sine now as a result of summing the in�nite series, wehave ahieved an analyti ontinuation of the Neumann series solution, whih is now validfor all � exept � = �i. It is easy to verify, by diret substitution, that (4.85) solves18 theoriginal integral equation (4.70) for all values of �.The same general idea of solving by the Neumann series methods an also be appliedto integral equations the Volterra type. To illustrate this, let us take an integral equationthat looks very like our previous example (4.70), exept that now we take the integrationlimit to involve x: �(x) = x+ � Z x0 dt (t� x)�(t) : (4.87)Again, we think of � as an order parameter, and thus we have the leading-order solution �0 =x. Substituting this into the integral on the right-hand side gives us the next approximation�1(x) = x+ � Z x0 dt (t� x) t = x� � x36 : (4.88)Substituting this again, we get�2(x) = x+ � Z x0 dt (t� x)�t� � t36 � = x� � x36 + �2 x5120 : (4.89)One further step yields �3(x) = x� � x36 + �2 x5120 � �3 x75040 : (4.90)It is pretty lear where this is leading:�n(x) = ��1=2 nXr=0(�1)r (�1=2 x)2r+1(2r + 1)! : (4.91)18Atually, of ourse, we ould have solved this even more simply without ever using a series solution. Atthe stage where we observed that �n(x) was of the form (4.73) we ould have seen that this would ontinueto be true in the limit where n tends to in�nity. Thus we ould simply have substituted the trial solution�(x) = a+ b x into (4.70), and solved the two algebrai equations result from separately equating the termsof orde 0 and 1 in x, namely a = 23� b ; b = 1� 2� a : (4.86)This diretly gives the same result as (4.85). Bear in mind, therefore, that (4.70) is really a rather trivialtoy example that we are onsidering just to illustrate a few of the general methods that have been disussed.104



In the limit as n tends to in�nity we get the omplete solution�(x) = limn!1�n(x) = ��1=2 1Xr=0(�1)r (�1=2 x)2r+1(2r + 1)!= ��1=2 sin(�1=2 x) : (4.92)We ould, of ourse, quite easily set up an iterative sheme to derive this rigorously,rather than simply observing the trend from the �rst few terms in the series. If we did so,there would be no surprises or subtleties, and we would rather quikly get the result in adedutive way. Alternatively, we an just substitute (4.92) bak into the integral equation(4.87), and verify that it is indeed a solution. Sine it is obvious from the Neumann seriesapproah that at eah stage in the iteration we get a spei� and unique result for �n, therean only be one possible �nal answer and so if we �nd that our proposed solution indeedsolves the integral equation then we know that it is the unique answer.Notie, by the way, that (4.87) with � = 1 is preisely the integral equation that weprodued a while baki in (4.22), by integrating the simple harmoni osillator equationy00 + y = 0, subjet to the boundary onditions y(0) = 0 and y0(0) = 1. It is worthemphasising again that when we solved the integral equations (4.70) and (4.87) abovewe got unique answers in eah ase. This illustrates the point made earlier, about howthe boundary onditions are built into the integral equation. Notie also that these twoexamples show us that the solution is radially di�erent for a Volterra equation, as omparedwith a Fredholm equation with a very similar struture.5 Conformal Mappings5.1 IntrodutionAt this stage in the ourse we revert to a topi that is onerned diretly with omplexanalysis. Reall that if we have an analyti funtionw(z) = u(x; y) + i v(x; y) ; (5.1)where z = x+i y is a omplex variable, then the real and imaginary parts u(x; y) and v(x; y)satisfy the Cauhy-Riemann equations,�u�x = �v�y ; �v�x = ��u�y : (5.2)An equivalent, but more elegant, statement of the same thing is�w��z = 0 ; (5.3)105



where we are treating z = x+ i y and �z = x� i y as independent variables here19��z = 12 ��x + 12i ��y ; ���z = 12 ��x � 12i ��y : (5.5)Thus if w(z) is analyti in some region, then it depends only on z but not on �z in thatregion.We an view the funtion w(z) as a mapping from the omplex z-plane into the omplexw-plane. This mapping has some very important properties. The �rst of these is that itpreserves angles. To see what is mean by this, we need to onsider a pair of lines in thez-plane, whih interset eah other at some point, at a ertain angle. As we trae along thepath of one of these lines in the z-plane, we shall �nd that an image of this path is traedout in the w-plane. If we look at the images of the two interseting paths in the z-plane, weget two interseting paths in the w-plane. The statement about the preservation of anglesis that the angle between the interseting paths in the z-plane is equal to the angle betweenthe interseting paths in the w-plane.To show this, let us suppose that the two lines in the z-plane interset at z = a. Letus refer to these two lines as Path 1 and Path 2. Points on Path 1 near to z = a mustlearly lie approximately on a straight line (any well-behaved path looks straight if a shortenough segment is examined), and so we an say that points on Path 1 near to z = a areharaterised by dz1 = jdz1j ei �1 ; (5.6)where �1 measures the angle that Path 1 makes with the real axis. Likewise, near to z = apoints on Path 2 will be suh that dz2 = jdz1j ei �2 : (5.7)19One might feel uneasy about this, sine we know that �z is not independent of z! The best way to larifywhat is going on is to think initially of writing x� i y as ~z, and not yet to assume that x and y are real. Itis now lear that the equations z = x+i y, ~z = x� i y give a perfetly legitimate mapping from the omplexvariables (x; y) to the omplex variables (z; ~z), and so the equations��z = 12 ��x + 12i ��y ; ��~z = 12 ��x � 12i ��y : (5.4)make perfet sense. Then, at the end of the day in any alulation, we �nally replae ~z by �z (the omplexonjugate of z), whih amounts to hoosing the \real setion" where x and y are real. Having been throughthis argument we an then see that in fat we an be impatient and not bother to wait untile the end ofthe day before setting ~z = �z; we an just use �z right from the beginning, and keep at the bak of our mindswhat it is that it really means. (If you weren't onfused about this point before reading this footnote, itwould probably have been better if you hadn't read it!)106



Tha angle between the two paths is learly �2 � �1.Now, we onsider the mapping into the omplex w-plane. We shall havedw = dwdz dz ; (5.8)Now a ruial property of the derivative dw=dz of an analyti funtion is that at a givenpoint z it is independent of the diretion of dz. (This is a standard result, whih was provedin Part 1 of the ourse.) Therefore if we write dw=dz = jdw=dzj ei � at z = a, we shall havedw = jdw=dzj ei � dz (5.9)at z = a, independent of the angle of dz. Thus the images of our two paths in the w-plane,whih interset at w(a), will be haraterised at nearby points bydw1 = jdw=dzj jdz1 j ei (�+�1) ; dw2 = jdw=dzj jdz2 j ei (�+�2) : (5.10)Thus the angle between the two image paths in the w-plane is learly therefore (� + �2)�(�+ �1) = �2� �1. This is the same as the angle between the original paths in the z-plane,and so the result is established.Another important point is that not only the angles but also the shapes of in�nitesimal�gures in the z-plane are mapped into the same angles and shapes in the w-plane. Tounderstand this, we have to think about how to measure in�nitesimal separations in theomplex plane. In the z-plane, Pythagoras' Theorem tells us that the distane ds betweento in�nitesimally separated points (x; y) and (x+ dx; y + dy) is given byds2 = dx2 + dy2 ; (5.11)whih an be written also as ds2 = dz d�z = jdzj2 : (5.12)The quantity ds2 is alled the metri on the omplex z-plane. Similarly, in the omplexw-plane we have a metri dŝ2, given bydŝ2 = du2 + dv2 = dw d �w = jdwj2 : (5.13)In view of the fat that dw = (dw=dz) dz, and that if w(z) is analyti at z then dw=dz hasan unambiguous meaning independent of the diretion of dz, we see that there is a simplerelation between the metris in the w-plane and the z-plane:dŝ2 = ���dwdz ���2 ds2 : (5.14)107



This equation in fat summarises all the properties of the mapping between the z-planeand the image in the w-plane. There is an overall sale fator jdw=dzj, but aside fromthat, in�nitesimal distanes all map over in the same way. So we have established thatan in�nitesimal �gure in the z-plane is mapped into a similar �gure in the w-plane, withall relative angles, and ratios of lengths, preserved. An in�nitesimal objet in the z-planemaps into one that looks exatly the same in the w-plane, up to some overall rotation andsaling. This is what is meant by a onformal mapping, or onformal transformation.5.2 Two-dimensional Laplae EquationAn important appliation of onformal mappings is for solving Laplae's equation in twodimensions. Situations where this problem arises inlude solving for eletrostati potentialsin two dimensions, and solving hydrodynamial equations in two dimensions. Of ourse suhproblems might not only arise by onsidering two dimensions in its own right; they an alsoarise if one has a three-dimensional on�guration that has a translational invariane alongone axis (for example, and in�nite ylinder lying along the z-axis). It turns out that themethods of onformal mapping an be an extremely powerful tool.To understand this, onsider a potential  (x; y) that satis�es Laplae's equation in twodimensions: r2  � �2 �x2 + �2 �x2 = 0 : (5.15)Note that from (5.5) we have��x = ��z + ���z ; ��y = i� ��z � ���z� ; (5.16)and so we an also write the Laplaian asr2 � �2�x2 + �2�x2 = 4 �2�z ��z : (5.17)Now let us see what happens if we map into the omplex w-plane In the w-plane wemay onsider a funtion 	(u; v) whih is simply the image of the funtion  (x; y) in thez-plane: 	(u; v) = 	(u(x; y); v(x; y)) =  (x; y) : (5.18)What we shall now show is that if  (x; y) satis�es Laplae's equation in the z-plane, then	(u; v) satis�es Laplae's equation in the w-plane. To see this, we note that��z = �w�z ��w : (5.19)108



Notie that there is no term (� �w=�z) �=� �w here beause we are assuming that w(z) isanalyti. By the same token, we shall have���z = � �w��z �� �w : (5.20)Furthermore, we also have �2�z ��z = ����w�z ���2 �2�w � �w : (5.21)The ruial point here is that for the same reason of analytiity of w(z), we don't pik upany \extra" term where the �=�z derivative lands on the (� �w=��z) fator in (5.20). So wesee that the Laplaians r2 and r̂2 in the z-plane and w-plane respetively, whih are givenby r2 = 4 �2�z ��z ; r̂2 = 4 �2�w � �w ; (5.22)are related by r2 = ����w�z ���2 r̂2 : (5.23)In partiular, if  (x; y) satis�es r2  = 0 in the z-pane, then the 	(u; v), the image of (x; y) in the w-plane as in (5.18), satis�es r̂2	 = 0.The upshot of this disussion is that we now have a nie way of solving two-dimensionalpotential-theory problems at our disposal. Namely, if we an solve Laplae's equationsubjet to ertain boundary onditions in one partiular \onformal frame," (say the z-plane), then we immediately know that after making a onformal mapping to the w(z)plane, the same potential will be a solution of Laplae's equation in the w-plane. Clearlythe original boundary onditions on  (x; y) will map over into \image" boundary onditionson 	(u; v) =  (x; y). For example, if  (x; y) vanishes on a ertain urve in the z-plane,then 	(u; v) will vanish on the image urve in the w-plane. Of ourse the idea is that wehoose our onformal mapping judiiously, to transform a diÆult problem into an easierone.Let us onsider an example. Suppose we wish to solve for the two-dimensional eletro-stati potential for the following situation. There is a ondutor lying along the entire yaxis, at x = 0, and irular ondutor of radius R, entred on (x; y) = (d; 0). The in�niteline is held at zero potential, and the irle is held potential  0. The problem is to �ndthe potential everywhere in the region x � 0, outside the irular ondutor, by using theonformal mapping tehnique.The whole art of solving problems like this is to spot the right onformal transformationthat maps the original problem into a simpler one. In this ase, fortunately, an artist has109



been here before us, and so we are invited to ontemplate the following transformation:z = a tanh iw2 ; (5.24)where a is a onstant. Of ourse it would atually be the inverse of this transformationthat gave us w as a funtion of z. Writing w = u + i v, some simple t(h)rigonometrimanipulations lead us tox = � a sinh vosh v + os u ; y = a sinuosh v + os u : (5.25)Thus if we look at the y-axis, x = 0, we see that it orresponds to taking v = 0, with uranging from �� to � as y ranges from �1 to 1. So we have found the image of thein�nite line ondutor.Now, onsider what happens if we eliminate u from the equations (5.25). We do this by�rst noting that we haveos u = ��ax sinhv + osh v� ;sinu = ya (osh v + osu) = �yx sinhv : (5.26)Using os2 u+ sin2 u = 1, we therefore get(ax sinh v + osh v�2 + y2x2 sinh2 v = 1 ; (5.27)whih then an be rearranged as(x+ a oth v)2 + y2 = a2sinh2 v : (5.28)Thus we see that at �xed v we have a irle of radius ja= sinh vj, entred on the point(x; y) = (�a oth v; 0) in the z-plane. This is exatly what we want, if we hoose a, andthe �xed value v0 for v, suh thatd = �a oth v0 ; R = � asinhv0 : (5.29)It is easy to see that as u ranges from �� to � at this �xed value v = v0, the image inthe z-plane traes out the points on the irle of radius R, entred on (x; y) = (d; 0) in thez-plane. This is shown in the �gure below.We have sueeded in mapping the geometry of the original problem into a onsiderablysimpler one; the original in�nite line and irular ondutors have beome the two line110
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Figure 17: The line and irle in the z-plane are mapped to two parallel line segments inthe w-plane.segments v = 0 and v = v0, with u in the range �� � u � � to over eah ondutor.Furthermore, it is easy to hek that the region between these two line segments in thew-plane maps into the region between the two ondutors in the z-plane.In fat lukily, we an think of extending the line segments to the entire range �1 � u �1 in the w-plane, sine x and y are periodi in u and so as u traverses the entire real linewe just get multiple overings of the two ondutors. This is an important point, beause itnow means that we merely have to solve Laplae's equation between the two in�nitely-longparallel \plates" at v = 0 and v = v0 in the w-plane. Sine our boundary onditions arethat 	(u; v) = 0 on the ondutor at v = 0, and 	(u; v) =  0 on the ondutor at v = v0,it follows that the solution everywhere between the parallel plates in the w-plane is	(u; v) = vv0  0 : (5.30)It only remains to express the potential (5.30) bak in terms of the (x; y) oordinates, inorder to obtain the required solution for the potential in the z-plane. From (5.24) we havew = �2 i artanh�za� ; (5.31)and so v is given by taking the imaginary part of this. Thus we arrive at the solution forthe potential in terms of x and y: (x; y) = �2 0v0 Rehartanh�za�i : (5.32)111



Finally, we may note that sine the equipotentials in the w-plane are learly simply given byv =onstant, it follows that in the original z-plane the equipotentials are the irles de�nedat �xed v by equation (5.28). (The \irle" orresponding to v = 0 has in fat blown up tobeome the y-axis.)5.3 Shwarz-Christo�el TransformationIt should be lear from the previous disussion that solving a potential theory problem intwo dimensions an beome rather simple, if one is able to �nd a onformal transformationthat maps the geometry of the original problem into a nier one, where Laplae's equationan be easily solved. Of ourse the key word in the last sentene is \if." It is not easyto give general presriptions for how to �nd the required transformation, and at times theproedure an seem more like an art than a siene. There is one lass of geometries,however, for whih a general presription an be given. Namely, we an onstrut generalformulae for mapping an N -sided polygon in the z-plane onto the real axis of the w-plane.An alarm-bell might perhaps start ringing at this point. At the beginning of our disus-sion of onformal transformations muh was made of the fat that they are angle-preserving.Now, we are proposing to \unwrap" a polygon and lay it out at along the real axis; whatis going on? There is, in fat, no paradox here. The ruial property that guaranteedthe angle-preserving nature of the onformal transformation was that the mapping w(z)was assumed to be analyti. Clearly, therefor, if we are to map a polygon into a line, thefuntion w(z) that does the job must have singularities at the verties of the polygon. Weshall now proeed to see how to onstrut this funtion, known as the Shwarz-Christo�eltransformation.Consider �rst what happens if we have a funtion w(z) suh thatdzdw = A (w � w0)��0 ; (5.33)where A is a omplex onstant, �0 is a real onstant, and w0 is a real onstant speifyinga point on the real axis in the w-plane. Let us investigate what happens as w is allowedto range along the real axis in the w-plane. Sine �0 is not in general an integer, we mustmake a de�nition about where to plae the branh ut. When w > w0, we de�ne the phase,or argument, of (w � w0)��0 to be 0.When w beomes less than w0, we imagine that it detours in a little semi-irle aroundw0 that takes it above the real axis, whih implies that the argument of (w � w0) will be112



�� �0 when w < w0. Thus we havearg dzdw = ( argA� � �0 ; w < w0argA ; w > w0 (5.34)Now, let us onsider what happens as w inreases along the real axis. At all points, ifw advanes by an in�nitesimal amount dw, we shall have arg dw = 0, sine dw is a realquantity, and so from (5.33) and (5.34) it follows that we must havearg dz = ( argA� � �0 ; w < w0argA ; w > w0 (5.35)Thus we see that as w approahes w0 from the left, a straight-line path in the z-plane istraed out, at an angle given by argA� � �0. After w has advaned to the right past w0,a straight-line path is again being traed out in the z-plane, bu now at an angle given byargA. In other words, the total path in the z-plane onsists of a straight-line segment, thena sharp turn to the left by an angle � �0, and then another straight-line segment going o�at this new angle.We now generalise the above onstrution, by hoosing w(z) to be suh thatdzdw = A (w � w0)��0 (w � w1)��1 � � � (w � wn)��n : (5.36)This will map the real axis of the w-plane into a sequene of straight-line segments Li inthe z-plane, eah suessive line segment swinging round to the left by an angle � �i relativeto the previous one. If we hoose the exponents �i to be suh thatnXi=0 �i = 2 ; (5.37)then the sum total of all the left-turning angle hanges will be 2�, and so provided we hoosethe starting and �nishing values of w appropriately, will shall have niely onstruted alosed polygon,20 sine the sum of the interior angles will be 2�. (See �gure below.) Allthat remains is to integrate (5.36), and to hoose the various onstants in the onstrutionappropriately, so as to desribe the desired polygon in the omplex z-plane.21 Notie thatsine the orners in the polygon twist round to the left as we move along the real w axis inthe diretion of inreasing w, the interior of the polygon is orresponds to the region abovethe real axis in the omplex w-plane.20Note that we are not obliged to onstrut a losed polygon. In fat, it is quite ommon that one uses aShwarz-Christo�el transformation to onstrut an open geometry with angles, suh as a U-shaped hannel.21Of ourse there is also the little matter of inverting the resulting expression for z(w) that one obtainsby this means, in order to express w as a funtion of z. Reall from our example in the previous setionthat we eventually need to know w(z), sine the potential is easily solved for in the w-plane, and must nowbe re-expressed in terms of the z variable. 113
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Figure 18: The Shwarz-Christo�el transformation.To see how the hoie of onstants will work, let us perform a ounting of parameters.We speify our N -sided polygon in the z-plane by speifying the loation of its N vertieszi (so we have n = N � 1, in terms of the integer n appearing in (5.36)). Eah of these is aomplex number, so there are 2N real parameters needed here. After integrating (5.36) weshall have z(w) = z0 +A Z w dt (t� w0)��0 (t� w1)��1 � � � (t� wn)��n ; (5.38)where z0 is the (omplex) onstant of integration. Thus we have at our disposal N realparameters wi, a further (N � 1) real parameters from �i (realling that we have the singlereal onstraint (5.37)), and 2 real parameters eah from A and z0. In total, therefore, wehave 2N + 3 real parameters available, and we need only 2N in order to math up withour required polgygon in the z-plane. This means that three of the loations wi an infat be hosen arbitrarily, and then the rest of the parameters will be uniquely determined.Usually, one hooses three of the wi so as to make life as simple as possible, from the pointof view of making the evaluation of the integral (5.38) as straightforward as possible.Commonly, one of the transformed points wi is hosen to be at in�nity. Let us thereforetake w0 = 1. If we send w0 to in�nity, after �rst resaling the onstant A by the fator(�w0)�0 , then learly (5.38) beomesz(w) = z0 +A Z w dt (t� w1)��1 (t� w2)��2 � � � (t� wn)��n : (5.39)Let us onsider some examples. Atually, there are not really that many examples onean easily onsider expliitly, beause if there are too many fators in the integrand in (5.38)or (5.39) the integral beomes diÆult or impossible to evaluate. For example, already if114



we take (5.39) with two generi fators only, we have quite a ompliated result:z(w) = z0 +A Z w dt (t� w1)��1 (t� w2)��2 ;= z0 +A0 (w � w2)1��2 2F1�1� �2; �1; 2� �2; w � w2w1 � w2� : (5.40)The ases that lead to elementary funtions are degenerate triangles and retangles.Consider �rst the example of an in�nite U-shaped hannel, formed by the lines x = 0 tox =1 at y = 0 and at y = h, together with the line y = 0 to y = h at x = 0. Suppose thatwe are interested in solving Laplae's equation inside this hannel, and thus we should liketo map the geometry into a simpler one. The idea here will be to \unwrap" the U-shapedhannel, so that it ends up attened out along the real axis in the w-plane.If you imagine oming in along the semi-in�nite line at y = h, from x = 1 down tox = 0, the hannel then makes a 90-degree left turn at (x; y) = (0; h). It then makes another90-degree left turn at (x; y) = (0; 0), before heading out to the east again along the realaxis. Thus we have �1 = 12 and �2 = 12 , and from (5.39) the required transformation isz(w) = z0 +A Z w dt (t� w1)� 12 (t� w2)� 12 : (5.41)E�etively, we are taking a degenerate triangle, with an exterior angle of � at the thirdvertex loated at z =1.It is onvenient to make a symmetrial hoie w1 = �1, w2 = 1 here, and so the integralbeomes z(w) = z0 +A Z w dtpt2 � 1 = z0 +A aroshw : (5.42)We shall want the vertex at z = 0 to orrespond to w = 1, so0 = z0 +A arosh 1 = z0 ; (5.43)while the vertex at z = ih must be at w = �1, and soih = A arosh (�1) = A i� : (5.44)Thus the onformal mapping for this problem isz = h� aroshw ; (5.45)whih, lukily, is easily inverted to givew = osh �� zh � : (5.46)115



It is easy to hek that the real axis in the w-plane has indeed been mapped onto theU-shaped hannel in the z-plane. The mapping is as follows:�1 � w � �1 maps to z =1+ ih �! z = ih ;�1 � w � 1 maps to z = ih �! z = 01 � w � 1 maps to z = 0 �! z =1 : (5.47)This is depited in the �gure below. Furthermore, it is also easy to see that points in theupper-half w-plane map into the interior region of the hannel in the z-plane. If we takez = x+ ih �� ; (5.48)then (5.46) givesw = osh�x�h + i �� = osh �x�h � os � + i sinh�x�h � sin � : (5.49)The phase � of w is therefore given bytan� = tanh �x�h � tan � ; (5.50)implying that as � goes from 0 to � (orresponding to inreasing the y value inside thehannel), the phase in the w plane inreases from 0 to �. For example at � = 12�, orre-sponding to sitting on the line at y = 12h along the middle of the hannel, we �nd � = 12�.Thus the positive imaginary axis of the w plane maps onto the line running up the middleof the hannel.
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Figure 19: The U-sphaped hannel is mapped into the three line segments in the w-plane.For another example, onsider two ondutors, one of whih onsists of the two semi-in�nite lines (x � 0; y = 0) and (x = 0; y � 0) (i.e. the x and y axes in the positive116



quadrant), and the other onsists of the in�nite line y = �d. Suppose the �rst ondutoris at potential zero, and the seond is at potential V = V0. This is an interesting geometryin whih to study the eletrostati potential, beause one an �nd an analytial solutioneverywhere, and it will desribe the \fringing �eld" in the viinity of the sharp 90-degreeangle at the origin. We shall map this geometry onto the real axis in the w-plane. Let ushoose onstants so that as w runs from �1 to 0, the z oordinate runs from z = �1� i dto z = +1 � i d. Then, as w runs from 0 to 1, the z oordinate runs from z = +1 toz = 0. Finally, as w runs from 1 to +1, the z oordinate runs from 0 to +i1. We thereforehave a 180-degree angle at the point orresponding to w = w1 = 0, implying �1 = 1, anda (�90)-degree angle at the point orresponding to w = w2 = 1, implying �2 = �1. Thusthe Shwarz-Christo�el transformation is determined by the equationdzdw = A pw � 1w : (5.51)whih integrates up to givez = z0 + 2Apw � 1 + iA log �1 + ipw � 11� ipw � 1� : (5.52)We have to be a little areful here, beause of the need to handle the branh uts properly.First, we may note that w = 1 is supposed to orrespond to z = 0. This immediately tellsus that z0 = 0. Next, we an determine A from the requirement that z should run alongthe line from z = �1� i d to z = +1� i d as w runs from �1 to 0. In this region we havepw � 1 = i� ; (5.53)where � is real and satis�es � > 1. Thus the logarithm giveslog �1 + ipw � 11� ipw � 1� = log �1� �1 + �� = i� + log ��� 1�+ 1� = i� + � ; (5.54)where � is real and runs from 0 to �1 as w runs from �1 to 0. So we havez = 2A i��A� + iA� (5.55)in this region. We are wanting z to have a onstant imaginary part �i d along this line, andso we must hoose A = i d� ; (5.56)giving z = �i d� 2d� �� d� � : (5.57)117



It is lear, looking at how � and � are varying with w, that at large negative w the �term dominates, sending the real part of z to large negative values. On the other hand asw approahes 0 from the left, the � term dominates, sending the real part of z to largepositive values. So far, so good!Now, onsider what happens for 0 < w < 1. Here we still have pw � 1 = i� with � realand positive, but now 0 < � < 1. Aordingly, the logarithm is now of the formlog �1� �1 + �� = � ; (5.58)with � real, running from � = �1 at w = 0 to � = 0 at w = 1. It follows from (5.52) thatthis w segment does indeed map into the required segment in the z-plane, with z runningfrom +1 to 0.Finally, onsider what happens when w > 1. We now have pw � 1 = � with � real andpositive here, so the region 1 < w � 1 orresponds to 0 < � � 1. Thus we havez = 2i d� �� d� log �1 + i�1� i�� (5.59)in this region. Now if we let p = log((1+i�)=(1� i�)) then we have i� = (ep�1)=(ep+1) =tanh(p=2), and so p = 2i artan � ; (5.60)whih is purely imaginary. We an now easily see that as w inreases from 1 to 1, we doindeed have z runnning from z = 0 up the imaginary axis to z = i1.In summary, we have determined that the required onformal mapping isz = 2 i d� pw � 1� d� log �1 + ipw � 11� ipw � 1� ; (5.61)with the branh point at w = 1 handled as disussed above. The mapping is illustrated inthe �gure below.Now, �nally, how do we use this transformation? We have mapped the problem of solvingLaplaes' equation into one where we have the boundary onditions that the potential V = 0on the positive real w-axis, and V = V0, whih is a given onstant, on the negative realw-axis. This is easily solved, givingV = V0� � = Im�V0� logw� ; (5.62)where � is the polar angle in the w-plane. In other words, the equipotential surfaes areradial lines oming out from the origin. It is onvenient to view the potential V as the118
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Figure 20: The two ondutors in the z-plane are mapped into line segments in the w-plane.imaginary part of an analyti funtion W :W = U + iV = V0� logw : (5.63)A question of interest here is to alulate the eletri �eld in the z-plane of the originalproblem, so that we an see the fringing-�elds near the sharp orner at z = 0. Things area little bit triky here, sine we are obviously not going to be able to invert the relationz = z(w) in (5.61) expliitly, to obtain w = w(z). Nonetheless, we an learn a lot fromwhat an be done. To do this, we note from (5.4) that�W�z = 12 �U�x + i2 �V�x + 12i �U�y + 12 �V�y ;�W��z = 12 �U�x + i2 �V�x � 12i �U�y � 12 �V�y = 0 ; (5.64)(the seond line vanishes beause W is analyti). Adding these equations gives�W�z = �U�x + i �V�x ; (5.65)whih an be rewritten using the Cauhy-Riemann equations as�W�z = �V�y + i �V�x : (5.66)This is nothing but the statement thatEx � iEy = i �W�z ; (5.67)where Ex and Ey are the x and y omponents of the eletri �eld in the z-plane. Using thehain rule, �W=�z = (�W=�w) (�w=�z), and (5.51), we therefore �ndEx � iEy = V0dpw � 1 : (5.68)119



Now, onsider �rst the region near to w = 0, for whih we shall have pw � 1 � i, andhene we get Ex � 0 ; Ey � V0d : (5.69)This is what we should expet; far over to the right-hand side, the eletri �eld shouldlook just like the �eld in a parallel-plate apaitor, with potential di�erene V0 and plate-separation d.In the region where Re(w) >> 1, we see that the �eld falls away, as it should high upin the region where Im(z) is very large. In partiular, when w is real and large, we seethat Ey = 0. This is exatly as it should be; the tangential omponent of eletri �eld at aondutor should vanish.Now onsider the region with jwj >> 1, with no partilar restrition on the phase angle.We see from (5.61) that we shall have z � 2 i d� pw ; (5.70)so from (5.68) we shall have Ex � iEy � 2iV0� z : (5.71)Taking z = Rei �, with R >> 1, we need to onsider the region 12� � � � �. Thus we haveEx � iEy � 2iV0�R e�i � ; (5.72)whih implies that Ex = 2V0�R sin � ; Ey = �2V0�R os � : (5.73)The eletri �eld lines form large quarter-irles, starting perpendiular to the real z-axis atlarge negative z, and swinging round to hit the imaginary z axis at large positive-imaginaryz. Finally, the most interesting behaviour is lose to the sharp orner at z = 0. Sine thisis lose to w = 1 we an perform a Taylor expansion of (5.61) around w = 1, �ndingz = 2i d3� (w � 1)3=2 +O((w � 1)5=2)) : (5.74)This an then used to solve approximately for (w�1)1=2 in terms of z, and then substitutedinto (5.68). The answer is thus of the formEx � iEy �  z�1=3 : (5.75)The eletri �elds beome singular as z approahes 0, as one would expet, and the preisenature of the �elds near to z = 0 is determinable.120



5.4 More on the Complex PlaneWe shall lose this hapter with some further geometrial investigation of the omplex plane.This will also serve as an introdution to the topi of the next hapter, whih will be someelementary group theory. To begin, let us reall that the omplex plane is losely related tothe so-alled Riemann Sphere. The idea here is that by adding a single point, namely thepoint at in�nity, to the ordinary omplex plane, we �nd that it now beomes a spae thatan be mapped into a ompat and losed surfae, i.e. the Riemann Sphere. It may seema little strange that in�nity is viewed as a single point, but it an easily be understood mymaking a stereographi projetion. The idea was introdued in Part I of the ourse; here,again, is the �gure showing the stereographi projetion:
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Figure 21: The point Q on the omplex plane projets onto the point P on the Riemannsphere.It is lear that any point Q in the �nite omplex plane projets onto a well-de�ned pointP on the sphere. As Q moves further and further away from the origin (think of the southpole of the sphere as touhing the omplex plane at z = 0), the orresponding point P getsloser and loser to the north pole. Eventually, as jzj tends to in�nity, the orresponding121



point P reahes the north pole. It doesn't matter in whih diretion Q heads o� to in�nity;by the time it gets there, P is at the north pole. Thus by adding the point at in�nity,the omplex plane has been mapped into the ompat surfae of the sphere. For futurereferene, let us remark that this is alled the 2-sphere, sine its surfae is 2-dimensional.Let's now look at the stereographi projetion in a little more detail. To do this, it isonvenient to take the sphere that sits on the omplex plane to have a diameter of 1, whihmeans, of ourse, that its radius is 12 . So if we take the plane to have oordinates (x; y),and take the third diretion, perpendiular to the plane, to be the t diretion (we an't allit z beause that has already been earmarked for another purpose!), then the origin of thesphere sits at (x; y; t) = (0; 0; 12). The north pole sits at (0; 0; 1), and, of ourse, the southpole is at (0; 0; 0).What we are going to do now is to work out how the usual spherial polar oordinates(�; �) for the point P on the sphere are related to the Cartesian oordinates (x; y) for theorresponding point Q in the plane. For this purpose, it is useful to give the names (~x; ~y; ~t)to the Cartesian oordinates of points in the 3-spae. The sphere is learly de�ned by theequation ~x2 + ~y2 + (~t� 12)2 = 14 : (5.76)On the other hand the line running from the north pole at (0; 0; 1) to the point Q at (x; y; 0)an be parameterised as (~x; ~y; ~z) = (�x; � y; 1 � �) ; (5.77)so that as � inreases from 0 to 1 we move along the straight line from the north pole to Q.The point P is loated at the intersetion of the surfae (5.76) and the line (5.77), whihimplies �2 (x2 + y2) + (12 � �)2 = 14 : (5.78)Multiplying out the left-hand side, we see that the 14 on the right is anelled, and so weget (1 + �2)�2 � � = 0 ; (5.79)where we have de�ned �2 � x2 + y2 : (5.80)One solution is � = 0, whih just tells us the obvious fat that the sphere and the lineinterset at the north pole. We want the other intersetion, whih therefore ours at thevalue of � given by � = 11 + �2 : (5.81)122



From (5.77), it therefore follows that the point P is loated at(~x; ~y; ~t) = � x1 + �2 ; y1 + �2 ; �21 + �2� : (5.82)To onvert to the spherial polar oordinates (�; �), we reall that this are related to(~x; ~y; ~t) by ~x = 12 sin � os� ; ~y = 12 sin � sin� ; ~t� 12 = 12 os � ; (5.83)remembering that the sphere has radius 12 and that its origin is loated at (0; 0; 12). Theseequations an be better written as~x+ i ~y = 12ei� sin � ; ~t = os2 12� : (5.84)Comparing with (5.82), and de�ning z = x + i y in the omplex plane (this is why weouldn't use z for the 3'rd axis!), we see thatos 12� = jzjp1 + jzj2 ; ei� = zjzj = rz�z ; (5.85)sine �2 = x2 + y2 = jzj2. We an neaten up this relation, by noting that the �rst equationimplies jzj = ot 12�, and so we get z = ot 12� ei� : (5.86)So (5.86) gives us the required mapping from a point P on the sphere with spherial polaroordinates (�; �) to the orresponding point z in the omplex plane.Reall that we observed earlier that the way to measure the distane ds between thein�nitesimally-separated points (x; y) and x+dx; y+dy) in the omplex plane is by Pythago-ras' Theorem, giving ds2 = dx2 + dy2 = dz d�z = jdzj2 : (5.87)This is alled the metri on the plane, sine it is the thing we use in order to measuredistanes. Suppose now that an ant lives on the sphere, and that its job is to work outthe in�nitesimal distane between the points Q at (x; y) and Q0 at (x + dx; y + dy) onthe plane. However, being short-sighted, it an only see the orresponding points P andP 0 in the surfae of the sphere, to whih it assigns spherial polar oordinates (�; �) and(� + d�; �+ d�). From (5.86), we see that the di�erentials are related bydz = �12ose 2 12� ei� d� + i ot 12� ei� d� ; (5.88)and hene the metri (5.87) in the omplex z-plane beomesds2 = jdzj2 = 14(sin 12�)4 (d�2 + sin2 � d�2) : (5.89)123



This is therefore the rule that the ant must use, for working out the distane between thetwo points in the omplex plane. Notie, however, that it is a di�erent rule from the onethat the ant will use if it wants to work out how far it atually has to walk on the surfaeof the sphere, to get from P to P 0. It is a simple geometrial exerise to work out that thedistane between the points (�; �) and (�+ d�; �+ d�) on the sphere of radius 12 is given byd~s, where d~s2 = 14(d�2 + sin2 � d�2) : (5.90)This is just like the metri we would use on the earth, to work out the distane between anytwo points. (We would do this by integrating up all the in�nitesimal ontributions alongthe path, using (5.90).)There are very important di�erenes between the metri (5.87) on the omplex plane,and the metri (5.90) on the sphere. In partiular, using the metri (5.90) we would disoverthat there is urvature. This would show up, for example, if we measured the irumfereneL of a irle of radius R on the surfae of the sphere. This is easy to work out. Wean exploit the fat (whih we shall examine in more detail later on) that the sphere is aompletely symmetrial objet, and any point on it is just like any other point (before westart attahing ities, and mountians, and things like that). Thus when onsidering a irleof radius R on the sphere, we may as well take the entre of the irle to be at the northpole, sine that makes the alulation easy.To get a irle of radius R, we must therefore walk from the north pole (� = 0) to apoint at oordinate �0 suh that R = 12�0 (realling that we are stuk with a sphere ofradius 12 here). We then measure the irumferene of this irle by walking around theline of latitude, at �xed � = �0, until the azimuthal angle � has advaned through 2�.The distane walked around the irumferene is therefore L = 12 sin �0, and so the ratio ofirumferene to radius is given by LR = 2� sin �0�0 ; (5.91)where �0 = 2R. We see that as expeted, if �0 is very small, orresponding to a very smallirle, it has the usual property that L=R = 2�. Loally, we don't notie that the earth isurved. As the radius of the irle gets bigger, however, the ratio L=R beomes less than2�, revealing that the surfae of the earth is urved. The most extreme situation ourswhen the radius of the irle beomes so big that �0 = �, i.e. when R = �=2 on our earth ofradius 12 . Now, the irumferene of the irle is in fat zero. All we have to do to traversethe irumferene in this extreme ase is to stand at the south pole and not walk at all!124



Let us return to our ant, and the stereographi projetion from the omplex plane. Justlike ourselves on the earth, the ant will be aware that it lives on a urved spae, sine itmeasures its own walking distanes using the sphere metri (5.90). On the other hand,during its working hours when its job is to measure distanes in the omplex plane, it hasbeen instruted to use the rule given by the metri metri (5.89) for reporting distanes.Using this rule, it will �nd no urvature, and all irles, no matter how big, will have a ratioof irumferene to radius that is equal to 2�. The point is that even though it is writtenin terms of (�; �) oordinates, the metri (5.89) is nothing but a restatement of the originalat metri jdzj2 on the omplex plane.The point of all this preamble was to draw a distintion between two very di�erent ideas.The �rst is that we an hoose to use any (well-behaved) oordinate system we like in orderto speify the loations of points in a spae. Thus, for example, on the omplex plane wean simply speify a point Q by its Cartesian x and y oordinates, onveniently groupedtogether into the omplex oordinate z = x+i y. Alternatively, we an if we wish speify thesame point by its image in the stereographi projetion, with spherial polar oordinates(�; �) that are related to z by equation (5.86). The mapping between the two oordinatesystems works well everywhere exept at the north pole itself. This freedom to desribe agiven geometrial on�guration in terms of di�erent possible hoies of oordinate systemis one of the ornerstones of Einstein's general theory of relativity, whih is the theoryof gravitation. A ruial ingredient in the theory is that our desription of physis, andphysial laws, should be formulated in suh a way that no preferred hoie of oordinatesystem need be made.The seond idea that our investigation of the stereographi projetion has introduedis that there are also genuinely di�erent geometries that an be objetively distinguishedfrom one another. Again, though, the hoie of oordinates is not important. In partiular,we saw that the at metri on the plane is geometrially quite di�erent from the urvedmetri on the 2-sphere. We wrote the at metri ds2 in two equivalent ways, using eitherCartesian or spherial polar oordinates:ds2 = dx2 + dy2 = 14ose 4 12� (d�2 + sin2 � d�2) : (5.92)By the same token, we an write the metri on the sphere in di�erent ways too. On theone hand we have d~s2 = 14(d�2 + sin2 � d�2) ; (5.93)on the sphere of radius 12 . From (5.89) we an also therefore write this in terms of the125



omplex oordinate z, related to (�; �) by (5.86), asd~s2 = sin4 12� jdzj2 ; (5.94)whih, after expressing � in terms of z, beomesd~s2 = jdzj2(1 + jzj2)2 : (5.95)Notie that the metri d~s2 on the sphere, and the metri ds2 on the plane, are relatedto one another by a multipliative fator:d~s2 = 
2 ds2 : (5.96)Of ourse the fator is oordinate-dependent, namely
 = 11 + jzj2 : (5.97)This means that the onformal struture is preserved; the shapes of in�nitesimal surfaes,and the angles between lines in in�nitesimal �gures, are the same whether they are measuredin the at metri or the sphere metri.6 Some Introdutory Geometry and Group Theory6.1 Some Properties of the 2-SphereWe shall begin by looking in more detail at at some of the properties of the 2-sphere. It isgoing to beome tedious at this stage if we ontinue to work with a sphere of radius 12 ; itwas the \natural" radius in the ontext of the stereographi projetion, but not otherwise.So onsider from now on a sphere of radius 1, whih is ommmonly alled the unit sphere.Introdue three oordinates (X;Y;Z) in Eulidean 3-spae. We sometimes denote this spaeby IR3 (indiating three real diretions). The unit sphere an then be onsidered to be thesurfae X2 + Y 2 + Z2 = 1 (6.1)in IR3.At times it will be onvenient to use an index notation for the oordinates, and so weshall de�ne Xa to mean (X1;X2;X3) = (X;Y;Z). Note that we put the index \upstairs"on the oordinates; that is a well-established onvention. It does mean, however, that onehas to be areful somtimes in order to avoid onfusion between, for example, X2 meaning Y(as it does here), and the total di�erent notion of X2 meaning X times X. Often, to avoid126



the onfusion, it is onvenient to write expliit numerial indies on oordinates downstairs,so that we would use Xa for the generi oordinates, but (X1;X2;X3) for the i = 1, 2 and3 values. This is not a perfet resolution either, and one just has to be adaptable.Let us see how to make preise our observation of a while ago that the 2-sphere is verysymmetrial, with eah point on the surfae looking like eah other point. It an be seenvery learly in the de�ning equation (6.1), in fat, if we write it asXaXa = 1 : (6.2)Alternatively, in a vetor notation, we ould de�ne the olumn vetor X asX = 0BB�XYZ 1CCA ; (6.3)so that (6.2) beomes XT X = 1 ; (6.4)where XT denotes the transpose of X.It is now evident that if we at on the olumn vetor X with any 3�3 orthogonal matrixM , to give a new olumn vetor X0 �M X, then the ondition (6.4) will be left unaltered:X0T X0 = XT MT M X = XT X = 1 ; (6.5)sine MT M = 1l. Expressed in index notation, the equivalent statement is that X 0a �MabXb, and the orthogonality ondition on the matrix is MabMa = Æb, so thatX 0aX 0a =MabXbMaX = ÆbXbX = XbXb = 1 : (6.6)Of ourse Mab here denotes the element at row a and olumn b in the matrix M . Sine Mis 3� 3 and orthogonal, it is referred to as an O(3) matrix. An orthogonal n� n matrix isorrespondingly alled an O(n) matrix.Thus we have the statement that if one ats the on the de�ning equation (6.2) with anyO(3) matrix, the equation is left unaltered. This means that O(3) is the symmetry groupof the 2-sphere. It may be helpful to look at what in�nitesimal O(3) transformations do tothe sphere. Suppose M is orthogonal, and in�nitesimally lose to the identity matrix:M = 1l +A ; (6.7)where the magnitudes of the omponents of A are in�nitesimal. Then the orthogonalityondition MT M = 1l beomes (1l +AT )(1l +A) = 1l ; (6.8)127



and sine A is in�nitesimal we an neglet the AT A term in omparison to the terms linearin A, giving A+AT = 0, so AT = �A : (6.9)So the ondition for M de�ned in (6.7) to be orthogonal when A is in�nitesimal is that Ashould be antisymmetri.This means that we an easily alulate the in�nitesimal displaements ÆXa � X 0a�Xathat result from ating with M = 1l +A:ÆXa =MabXb �Xa = (Æab +Aab)Xb �Xa = AabXb : (6.10)The number of independent omponents in a 3�3 antisymmetri matrix is learly 12�3�2,and so we an say that the symmetry group O(3) of the 2-sphere has 3 parameters.We an see diretly that the de�ning surfae (6.2) is invariant under the in�nitesimaltransformations, sine we shall then haveÆ(XaXa) = 2Xa ÆXa = 2Xa AabXb = 0 ; (6.11)where the last step follows from the fat that Aab is antisymmetri in ab, while XaXb issymmetri in ab.Note that not only is the surfae (6.2) invariant under the O(3) transformations, butso also is the metri on the 2-sphere. How do we write the metri in terms of the Xaoordinates? After all, there are three of them, but the 2-sphere needs only two oordinates.The point is that when we say the metri on the 2-sphere, we are having in mind the metrithat we would indue by taking the ordinary Eulidean metri in IR3, and then imposingthe rule that all points have to be restrited to lie on the surfae de�ned by (6.2). Thus the2-sphere metri an be written as ds2 = dXa dXa ; (6.12)subjet to the onstraint (6.2). Clearly (6.12) is also invariant under the O(3) rotations thatwe have been onsidering. Bearing in mind that M is a onstant matrix, the alulationsthat showed the invariane of (6.1) will work in exatly the same way to show the invarianeof (6.12). Sine the metri (6.12) and the onstraint (6.2) are both invariant under O(3), itfollows that the indued metri on the surfae of the sphere is invariant under O(3) also.To make ontat with some earlier disussion, let us on�rm that (6.12) together with(6.2) does indeed give us the metri that we expet to see on the 2-sphere. We an do this128



most easily by solving the onstraint equation (6.2) expliitly, whih an be done by makingthe familiar de�nitionsX = sin � os� ; Y = sin � sin� ; Z = os � : (6.13)These are nothing but the usual de�nitions relating spherial polar oordinates to Cartesianoordinates, but with the r oordinate set equal to 1 sine we have r2 � X2+Y 2+Z2 = 1.Substituting (6.13) into (6.12), we getds2 = d�2 + sin2 � d�2 : (6.14)This is exatly what we should get, for the metri on a unit 2-sphere.We an also now look at what the O(3) symmetry transformations do in terms of theoordinates (�; �) on the 2-sphere. This is most easily done at the in�nitesimal level, so wejust take (6.10), and put it together with (6.13). First, onsider ÆZ:ÆZ = A31X +A32 Y : (6.15)But ÆZ = Æ(os �) = � sin � Æ�, so we get� sin � Æ� = �A13 sin � os��A23 sin � sin� ; (6.16)where we have also used the antisymmetry to re-express A31 as �A13, and A32 as �A23.Thus we have Æ� = A13 os�+A23 sin� : (6.17)Now, we an look at ÆX, whih gives� sin � sin� Æ�+ os � os� Æ� = A12 sin � sin�+A13 os � : (6.18)But we already know how � transforms, from (6.17), so we an plug this bak in, and heneread o� the transformation for �. Colleting the results together, we then have:Æ� = A13 os�+A23 sin� ;Æ� = �A12 �A13 ot � sin�+A23 ot � os� : (6.19)This gives us the in�nitesimal transformations of the � and � oordinates on the 2-sphere,orresponding to the ation of the in�nitesimal O(3) transformation with parameters A12,A13 and A23.Notie that the transformation orresponding to the parameter A12 is partiularly sim-ple; it is just Æ� = 0 ; Æ� = �A12 : (6.20)129



This means that under this symmetry transformation the � oordinate is held �xed, and the� oordinate is shifted by an in�nitesimal onstant. We an easily visualise this symmetrytransformation; we just take a little walk along a line of latitude on the sphere. Obviouslythis is a symmetry. This an also be seen by looking at the metri (6.14) on the sphere;sending � �! �+onstant leaves the metri unaltered. The other two symmetry trans-formations, assoiated with the parameters A13 and A23 are a little harder to visualise, interms of the � and � oordinates on the 2-sphere, but they again orrespond to translationson the surfae, whih again leave the metri unhanged.6.2 Vetor FieldsIn fat the in�nitesimal transformations of the oordinates � and � that we have just seenallow us to introdue the onept of a vetor �eld. We should begin this disussion byforgetting ertain things about vetors that we learned in kindergarten. There, the oneptof a vetor was introdued through the notion of the position vetor, whih was an arrowjoining a point A to some other point B in three-dimensional Eulidean spae. This is �neif one is only going to talk about Eulidean spae in Cartesian oordinates, but it is not avalid way desribing a vetor in general. If the spae is urved, suh as the sphere, or evenif it is at but desribed in non-artesian oordinates, suh as Eulidean 3-spae desribedin spherial polar oordinates, the notion of a vetor as a line joining two distant pointsA and B breaks down. What we an do is take the in�nitesimal limit of this notion, andonsider the line joining two points A and A+ ÆA. In fat what this means is that we thinkof the tangent plane at a point in the spae, and imagine vetors in terms of in�nitesimaldisplaements in this plane.To make the thinking a bit more onrete, onsider a 2-sphere, suh as the surfae ofthe earth. A line drawn between Ney York and Los Angeles is not a vetor; for example,it would not make sense to onsider the \sum" of the line from New York to Los Angelesand the line from Los Angeles to Tokyo, and expet it to satisfy any meaningful additionrules. However, we an plae a small at sheet on the surfae of the earth at any desiredpoint, and draw very short arrows in the plane of the sheet; these are tangent vetors atthat partiular point on the earth.The onept of a vetor as an in�nitesimal displaement makes it sound very like thederivative operator, and indeed this is exatly what a vetor is. Suppose we draw a pathon the surfae of the earth, parameterised by some quantity � that inreases monotoniallyas we move along the path. The oordinates of a point P on the path will then be given by130



(�(�); �(�)), and the tangent vetor at that point isV = ��� : (6.21)Generally, if we are in a spae with oordinates xi, and there is a path xi(�) parameterisedby �, then the tangent vetor at the point P is again given by (6.21). Furthermore, usingthe hain rule for di�erentiation, we shall haveV = ��� = dxi(�)d� ��xi : (6.22)The derivatives �i � �=�xi, whih in fat are what we normally all the gradient operator,are ating here as a set of basis vetors for the tangent spae, and we may write the vetorV as V = V i �i ; (6.23)where V i are the omponents of the vetor V with respet to the basis �i;V i = dxi(�)d� : (6.24)(Of ourse here we are using the Einstein summation onvention that any dummy index,whih ours twie in a term, is understood to be summed over the range of the index.)Notie that there is another signi�ant hange in viewpoint here in omparison to the\kindergarten" notion of a vetor. We make a lear distintion betwen the vetor itself,whih is the geometrial objet V de�ned quite independently of any oordinate system by(6.21), and its omponents V i, whih are oordinate-dependent.22 Indeed, if we imaginenow hanging to a di�erent set of oordinates x0i in the spae, related to the original onesby x0i = x0i(xj), then we an use the hain rule to onvert between the two bases:V = V j ��xj = V j �x0i�xj ��x0i � V 0i ��x0i : (6.25)In the last step we are, by de�nition, taking V 0i to be the omponents of the vetor V withrespet to the primed oordinate basis. Thus we have the ruleV 0i = �x0i�xj V j ; (6.26)whih tells us how to transform the omponents of the vetor V between the primed andthe unprimed oordinate system. This is the fundamental de�ning rule for how a vetor22However, it sometimes beomes umbersome to use the longer form of words \the vetor whose om-ponents are V i," and so we shall sometimes slip into the way of speaking of \the vetor V i." One shouldremember, however, that this is a slightly sloppy way of speaking, and the more preise distintion betweenthe vetor and its omponents should always be borne in mind.131



must transform under arbitrary oordinate transformations. Suh transformations are alledGeneral Coordinate Transformations.Let us return to the point alluded to previously, about the vetor as a linear di�erentialoperator. We have indeed been writing vetors as derivative operators, so let's see why thatis very natural. Suppose we have a salar �eld  (x) de�ned in the spae. (We suppress thei index on the oordinates xi in the argument here; think of the x in  (x) as representingthe full set of oordinates,  (x1; x2; : : : ; xn).) Now, if we wish to evaluate  at a nearbypoint xi + �i, where �i is in�nitesimal, we an just make a Taylor expansion: (x+ �) =  (x) + �i �i  (x) + � � � ; (6.27)and we an neglet the higher terms sine � is assumed to be in�nitesimal. Thus we seethat the hange in  is given byÆ (x) �  (x+ �)�  (x) = �i �i  (x) ; (6.28)and that the operator that is implementing the translation of  (x) is exatly what we earlieralled a vetor �eld, �i �i ; (6.29)where Æxi � (xi + �i)� xi = �i : (6.30)Having introdued the onept of the vetor �eld, let's go bak to our disussion ofthe symmetries of the 2-sphere. Reall that we had in�nitesimal translations of the (�; �)oordinates, given byÆ� = A13 os�+A23 sin� ;Æ� = �A12 �A13 ot � sin�+A23 ot � os� ; (6.31)where A12, A13 and A23 are in�nitesimal onstants. Thinking of � and � as the two oordi-nates xi in the 2-sphere, we see that we have preisely the situation we were just looking at,with in�nitesimal omponents �i of vetor �elds that an be read o� by omparing (6.30)with (6.31). Let us give the names K12, K13 and K23 to the three vetor �elds assoiatedwith the transformation parameters A12, A13 and A23 respetively. Thus we haveK12 = ��� ;K13 = � os� ��� + ot � sin� ��� ; (6.32)K23 = � sin� ��� � ot � os� ��� :132



(We have introdued an overall fator of (�1) in eah ase, just for onveniene.)It will be realled that the three vetor �elds that we have obtained in (6.32) have avery speial property, namely that they desribe transalations on the surfae of the spherewhih leave the metri invariant. They are in fat the generators of the symmetry group ofthe 2-sphere. Reall that the symmetry group was O(3). Atually, at the in�nitesimal levelwhih we are looking at now, we an't tell the di�erene between O(3) and SO(3), wherethe \S" stands for speial, and indiates that the orthogonal O(3) matries are furthermorerestrited to have determinant equal to +1. The orthogonality onditionMT M = 1l impliesthat (detMT ) (detM) = 1 ; (6.33)and hene (detM)2 = 1 and so detM = �1, so the additional imposition of the detM = +1ondition amounts to a disrete hoie that restrits the matries M to desribing purerotations, without reetions. So in the ontext of in�nitesimal transformations, it is moreappropriate to think of the symmetry group of the sphere as being SO(3).The set of three vetors (6.32) desribe the SO(3) rotational symmetries of the 2-sphere.On any spae, the vetors that desribe the ontinous symmetries of the spae are alledKilling vetors23. The SO(3) Killing vetors (6.32) may seem rather familiar; they areexatly what one meets in quantum mehanis when studying angular momentum. Theangular momentum operators are preisely the generators of rotational translations in Eu-lidean 3-spae, and so not surprisingly, they are synonymous with vetor �elds. By thesame token the ordinary linear momentum operators P are the generators of linear trans-lations in Eulidean 3-spae, and so not surprisingly they are assoiated with the vetor�elds ��x ; ��y ; ��z : (6.34)We shall lose this disussion of vetor �elds, and Killing vetors, by looking a littlemore losely at the sense in whih the SO(3) Killing vetors in (6.32) leave the metrids2 = d�2 + sin2 � d� (6.35)on the 2-sphere invariant. To do this, we an look �rst at the more general situation of ametri on some general n-dimensional spae. We an write this isds2 = gij dxi dxj ; (6.36)23Named after nothing more sinister than a mathematiian alled Killing!133



where gij are the omponents of a 2-index symmetri tensor, alled the metri tensor. Ingeneral it depends on the oordinates xi. Thus in the ase of the 2-sphere we have x1 = �,x2 = �, and gij =  1 00 sin2 �! : (6.37)Notie that the way we are writing the metri in (6.36) is somewhat reminisent ofthe way we wrote the vetor �eld V in (6.23). In that ase, the geometrial quantity Vwas expanded in a oordinate basis, in terms of omponents V i multiplying the partialderivatives �=�xi. Here, we are expanding the geometrial quantity ds2 in terms of itsomponents gij whih multiply the oordinate di�erentials dxi. The key di�erene here isthat the indies on the metri tensor omponents gij live downstairs, whereas the index onthe omponents of the vetor �eld live upstairs. These are two quite distint types of objetthat one enounters in geometry. We may onsider a simpler example of a 1-index objet,say Ui, with U = Ui dxi : (6.38)One an again work out how the omponents Ui transform under a hange of oordinatebasis by using the hain rule:U = Uj dxj = Uj �xj�x0i dx0i � U 0i dx0i ; (6.39)from whih we read o� U 0i = �xj�x0i Uj : (6.40)This is the \inverse" of the transformation rule for the vetor �eld that we derived inequation (6.26). In a similar fashion, from the intrinsi oordinate independene of thegeometrial quantity ds2 itself, we an dedue that the omponents gij of the metri tensortransform as g0ij = �xk�x0i �x`�x0j gk` ; (6.41)under a hange of oordinate system.We have seen how the omponents of vetor �elds, suh as V i and Ui, transform undergeneral oordinate transformations. (See (6.26) and (6.40).) More generally, we an onsidertensors whose omponents omprise p upstairs indies, and q downstairs indies:T i1���ipj1���jq : (6.42)These quantities will transform analogously under general oordinate transformations, withone transformation fator like in (6.26) for eah upstairs index, and one fator like in (6.40)134



for eah downstairs index:T 0i1���ipj1���jq = �x0i1�xk1 � � � �x0ip�xkq �x`1�x0j1 � � � �x`q�x0jq T k1���kp `1���`q : (6.43)In fat we already enountered one suh example, namely the metri tensor, with ompo-nents gij , in (6.41). Tensors T i1���ipj1���jq , whih by de�nition transform aording to (6.43),are said to transform ovariantly under general oordinate transformations. Similarly, atensor-valued equation where all the terms transform aording to this rule are said to beovariant equations. This means that the rule for transforming them from the unrpimedoordinate system to the primed oordinate system is simply to put primes on everything.What ould be easier!Notie that if we make a ontration of indies in some tensor expression, then theresulting quantity now has the transformation rule that we should expet for an objetwith the redued number of free indies. For example, if we take the vetors V i and Ui, anmake a ontration, we an onstrut the salar quantity� = V i Ui : (6.44)We all this a salar beause it requires no oordinate transformation matrix at all (itouldn't, sine there are no indies for the matrix to hook onto!). Thus under generaloordinate transformations we �nd�0 � V 0i U 0i = �x0i�xk V k �x`�x0i U` = �x`�xk V k U` = Æk̀ V k U` = V k Uk = � : (6.45)More generally, if we ontrat n of the upper indies in T i1���ipj1���jq with n of the lowerindies, we shall end up with an objet with (p � n) free upper indies, and (q � n) freelower indies, whih transforms exatly as a tensor with those numbers of upper and lowerindies should.To lose this setion, let us go bak to the symmetries of the 2-sphere, or more generally,the symmetries of any metri.24 If an in�nitesimal translation Æxi = �i of the oordinatesleaves the metri invariant then we shall have ds2(x+ Æx) = ds2(x), and sogij(x+ Æx) d(xi + �i) d(xj + �j) = gij dxi dxj ; (6.46)where we need only keep quantities up to �rst order in the in�nitesimal �i. Sine fromthe hain rule we have d�i = (�k �i) dxk, we get, after appropriate hanges of the names ofdummy summation indies,gij dxi dxj + ��k �k gij + gkj �i �k + gik �j �k� dxi dxj = gij dxi dxj ; (6.47)24Not all metri have symmetries, so this disussion applies to suh symmetries as they may have.135



and so the ondition for �i to be the omponents of a Killing vetor is�k �k gij + gkj �i �k + gik �j �k = 0 : (6.48)A vetor with omponents �i that satis�es this equation is what is alled a Killing vetor,and the equation is Killing's equation.It is quite easy to verify that the three Killing vetors (6.32) that we obtained earlieron the 2-sphere do indeed satisfy Killing's equation. The easiest one to hek is K12, sineit orresponds simply to �1 = 0, �2 = 1. Sine these omponents are onstants the last twoterms in (6.48) an immediately be seen to be zero, while in the �rst term the diretionalderivative �k �k is learly just �=��, and so this gives zero sine none of the omponentsof the 2-sphere metri (6.37) depends on �. Cheking that the other two Killing vetors inequation (6.32) satisfy (6.48) takes a little more work, and in fat one now gets a non-trivialanellation between ontributions from the various terms. Of ourse there is, logially-speaking, really no need to verify that the vetors in (6.32) do indeed satisfy (6.48), sinethey were onstruted preisely to have the property of generating symmetries of the metri.But it is sometimes reassuring to hek things by di�erent methods, to reaÆrm that thereis indeed a onsistent unity in the universe!6.3 The Metri Tensor and its InverseThe metri tensor plays many important rôles in geometry. One of these is that it anbe used to lower the index on the omponents of a vetor V i, to give a quantity whoseomponents gij V j transform just like the Ui we disussed above. To hek this, we justevaluate the quantity gij V j in the primed oordinate system, whih we an easily do sinewe know exatly how gij and V j transform (see (6.41)):g0ij V 0j = �xk�x0i �x`�x0j gk` �x0j�xm V m : (6.49)But by the hain rule, we have �x`�x0j �x0j�xm = �x`�xm ; (6.50)and then by de�nition this gives us Æm̀, so we �nd:g0ij V 0j = �xk�x0i gkm V m : (6.51)This is exatly the way that a vetor with downstairs omponents, like Ui in (6.40) shouldtransform. In fat we an be eonomial with our use of symbols, and de�neVi � gij V j : (6.52)136



At the moment, the use of the metri to lower indies looks a bit like a \one-way street,"sine having got the index downstairs, we don't yet know how to get it bak upstairs again.But this is easily remedied; we just need the inverse metri. This is literally what is soundslike; we view gij as a matrix, and we de�ne the inverse of the metri to be the matrixinverse. We may write its omponents as gij . Sine we should have g�1 g = 1l, this meanswe should have gij gjk = Æik : (6.53)This an be taken as the de�nition of the inverse metri. It is easy to see, by manipulationspreisely analogous to those we performed above, that in order for (6.53) to be true in alloordinate frames, gij should indeed transform like the omponents of a tensor with twoupstairs indies (see (6.43)). It is then easily veri�ed that if we take Vi de�ned in (6.52),and now raise the index using gij , we get bak to where we started:V i = gij Vj : (6.54)More generally, we an use gij to raise indies on any tensor.Notie that we an onstrut a salar quantity from a vetor V i, by using the metritensor: V i V j gij : (6.55)This is what we an all the (magnitude)2 of the vetor. It is equivalent to the \dot produt"of a vetor with itself in traditional vetor analysis. In the general ontext we are disussinghere one sees that the metri tensor gij is essential for being able to onstrut the salarfrom V i. Of ourse this was e�etively true in the ontext of Cartesian vetor analysis also,but there the metri tensor was just Æij , and one hardly notied that one was using it. Moregenerally, we an use the metri to allow us to onstrut a salar from any two vetors:V iW j gij : (6.56)6.4 Covariant Di�erentiationA familiar onept in Cartesian tensor analysis is that the partial derivatives �i � �=�xian at on a tensor �eld to give another tensor �eld.25 However, a ruial point in Cartesiantensor analysis is that we do not onsider general oordinate transformations; rather, werestrit ourselves only to onstant transformation matries Mij whih, furthermore, are25We now use \tensor" as a generi term, whih an inlude the partiular ases of a salar, and a vetor.137



orthogonal: x0i =Mij xj ; MijMik = Æjk : (6.57)In fat we enountered preisely suh types of transformation earlier on, when onsideringthe O(3) rotational symmetry of the 2-sphere. This was beause we were embedding it in3-dimensional Eulidean spae with Cartesian oordinates. For Cartesian Tensors, there isno need to distinguish between upstairs and downstairs indies, sine the assoiated metritensor is just the Kroneker delta, gij = Æij , whih is its own inverse. Note that from (6.57)we have �x0i�xj =Mij = onstant : (6.58)In Cartesian tensor analysis a tensor is any quantity whose omponents transform withthe appropriate fators of Mij , as, for example,V 0i =Mij Vj ; ��x0i =Mij ��xj : (6.59)(The seond equation here shows that the gradient operator �=�xi is a vetor.)Now, from the above it is easy to see that if V i is a Cartesian vetor �eld, then thequantity T ij � �V i�xj (6.60)is a Cartesian tensor. We prove this by the standard tehnique of showing that it transformsproperly for a Cartesian tensor:T 0ij � �V 0i�x0j =Mj` �(Mik V k)�x` =Mj`Mik �V k�x` =Mj`Mik T k` : (6.61)The ruial step in this proof was the one where the transformation matrixMik was broughtoutside the di�erentiation, beause it is a onstant matrix. This is the step where thingsare going to be di�erent when we onsider the ase of tensors under general oordinatetransformations.The above was a review of what happens for Cartesian tensors. Now, let's get bak to themuh more general ase we are really interested in, of quantities that transform as tensorsunder the ompletely arbitrary general oordinate transformations, with x0i = x0i(xj). First,let's see what goes wrong with a naive attempt, and then we'll see how to �x it.Suppose V i is a vetor under general oordinate transformations (so it transforms as in(6.26)). Let us onsider the quantity W ij � �V i�xj : (6.62)138



Is this a tensor? To test it, we alulate W 0ij , to see if it is the proper tensorial transformof W ij. We get: W 0ij � �V 0i�x0j = �x`�x0j ��x`��x0i�xk V k�= �x`�x0j �x0i�xk �V k�x` + �x`�x0j �2x0i�x` �xk V k ;= �x`�x0j �x0i�xk W k` + �x`�x0j �2x0i�x` �xk V k : (6.63)So the answer is no; the �rst term by itself would have been �ne, but the seond termhere has spoiled the general oordinate transformation behaviour. Of ourse there is nomystery behind what we are seeing here; the seond term has arisen beause the derivativeoperator has not only landed on the vetor V k, giving us what we want, but it has alsolanded on the transformation matrix �x0i=�xk. This problem was avoided in the ase ofthe Cartesian tensors, beause we only required that they transform niely under onstanttransformations (6.58).The onept of di�erentiation is too important for us to give it up in this ontext.Aordingly, what we have to do now is to generalise the notion of a derivative, so that itdoes have the property of yielding tensors when we at with it on tensors. What we needto de�ne now is the Covariant Derivative.To abbreviate the writing, let us start to make use of the notation we briey introduedearlier, where the usual partial derivatives are written as �i:�i � ��xi : (6.64)Now, we shall de�ne the ovariant derivative rj of a vetor V i as follows:rj V i � �j V i + �ijk V k ; (6.65)where the quantities �ijk satisfy the symmetry ondition�ijk = �ikj : (6.66)They are de�ned to have preisely the orret transformation properties under generaloordinate transformations that ensure that the quantityT ij � rj V i (6.67)does transform like a tensor under general oordinate transformations. The ruial pointhere is that �ijk itself is not a tensor. It is alled a Connetion, in fat.139



First, let us see how we would like �ijk to transform, and then, we shall show how toonstrut suh an objet. By de�nition, we want it to be suh that�x0i�xk �x`�x0j r` V k = r0j V 0i � �0j V 0i + �0ijk V 0k : (6.68)Wrtiting out the two sides here, we get the requirement that�x0i�xk �x`�x0j ��` V k + �k`m V m� = �x`�x0j �`� �x0i�xm V m�+ �0ijk �x0k�xm V m= �x`�x0j �x0i�xm �` V m + �x`�x0j �2x0i�x` �xm V m +�0ijk �x0k�xm V m : (6.69)The required equality of the left-hand side of the top line and the right-hand side of thebottom line for all vetors V m allows us to dedue that we must have�x0i�xm �x`�x0j �k`m = �x0k�xm �0ijk + �x`�x0j �2x0i�x` �xm : (6.70)Multiplying this by �xm=�x0n then gives us the result that�0ijn = �x0i�xk �x`�x0j �xm�x0n �k`m � �xm�x0n �x`�x0j �2x0i�x` �xm : (6.71)This dog's breakfast is the required transformation rule for �ijk. Notie that the �rst termon the right-hand side is the \ordinary" type of tensor transformation rule. The preseneof the seond term shows that �ijk is not in fat a tensor, beause it doesn't transform likeone.The above alulation is quite messy, but hopefully the essential point omes arosslearly; the purpose of the ugly seond term in the transformation rule for �ijk is preiselyto remove the ugly extra term that we enountered whih prevented �j V i from being atensor.Lukily, it is quite easy to provide an expliit onstrution for a suitable quantity �ijkthat has the right transformation properties. First, we need to note that we should liketo de�ne a ovariant derivative for any tensor, and that it should satisfy Leibnitz's rulefor the di�erentiation of produts. Now the need for the ovariant derivative arise beausethe transformation of the omponents of a vetor or a tensor from one oordinate frameto another involves non-onstant transformation matries of the form �x0i=�xj . Thereforeon a salar, whih doesn't have any indies, the ovariant derivative must be just the samething as the usual partial derivative. Combining this fat with the Leibnitz rule, we anwork out what the ovariant derivative of a vetor with a downstairs index must be:�j (V i Ui) = (�j V i)Ui + V i �j Ui ; usual Leibnitz rule ;140



= rj (V i Ui) = (rj V i)Ui + V irj Ui ; ovariant Leibnitz rule ; (6.72)= (�j V i + �ijk V k)Ui + V irj Ui ; from de�nition of rj V i :Comparing the top line with the bottom line, the two �j V i terms anel, and we are leftwith V i �j Ui = V irj Ui + �ijk V k Ui : (6.73)Changing the labelling of dummy indies toV i �j Ui = V irj Ui + �kji V i Uk ; (6.74)we see that if this is to be true for all possible vetors V i then we must haverj Ui = �j Ui � �kjiUk : (6.75)This gives us what we wanted to know, namely how the ovariant derivative ats on vetorswith downstairs indies.It is straightforward to show, with similar tehniques to the one we just used, that theovariant derivative of an arbitrary tensor with p upstairs indies and q downstairs indiesis given by using the two rules (6.65) and (6.75) for eah index; (6.65) for eah upstairsindex, and (6.75) for eah downstairs index.To make lear what we mean by this, onsider the two-index tensor gij . We use (6.75)for eah downstairs index, givingrk gij = �k gij � �`ki g`j � �`kj gi` : (6.76)Atually this partiular example, if we take gij to be the metri tensor, is exatly what weneed next. We an now give an expliit ontrution of the onnetion �ijk. We do this bymaking the additional requirement that we should like the metri tensor to be ovariantlyonstant, rk gij = 0. This is a very useful property to have, sine it means, for example,that if we look at the salar produt V iW j gij of two vetors, we shall haverk(V iW j gij) = (rk V i)W j gij + V i (rkW j) gij : (6.77)Remembering our rule that we shall in fat freely write W j gij as Wi, and so on, it shouldbe lear that life would beome a nightmare if the metri ould not be taken freely throughthe ovariant derivative!Lukily, it turns out that all the things we have been asking for are possible. We an�nd a onnetion �ijk that is symmetri in jk, gives us a ovariant derivative that satis�es141



the Leibnitz rule, and for whih rk gij = 0. We an �nd it just by juggling around theindies in equation (6.76). To do this, we write out rk gij = 0 using (6.76) three times,with di�erent labellings of the indies:�k gij � �`ki g`j � �`kj gi` = 0 ;�i gkj � �`ik g`j � �`ij gk` = 0 ; (6.78)�j gik � �`ji g`k � �`jk gi` = 0 ;Now, add the last two equations and subtrat the �rst one from this. Using the fat that�ijk is symmetri in jk, we therefore get�i gkj + �j gik � �k gij � 2�`ij gk` = 0 : (6.79)Multiplying this by the inverse metri gkm, we immediately obtain the following expressionfor �ijk (after �nally relabelling indies for onveniene):�ijk = 12gi` (�j g`k + �k gj` � �` gjk) : (6.80)This is known as the Christo�el Connetion, or sometimes the AÆne Connetion.It is a rather simple matter to hek that �ijk de�ned by (6.80) does indeed have the re-quired transformation property (6.71) under general oordinate transformations. Atually,there is really no need to hek this point, sine it is logially guaranteed from the way weonstruted it that it must have this property. So we leave it as an \exerise to the reader,"to verify by diret omputation. The priniple should be lear enough; one simply uses theexpression for �ijk given in (6.80) to alulate �0ijk, in terms of �0i and g0ij (whih an beexpressed in terms of �i and gij using their standard tensorial transformation properties).It then turns out that �0ijk is related to �ijk by (6.71).Notie that �ijk is zero if the metri omponents gij are all onstants. This explainswhy we never see the need for �ijk if we only look at Cartesian tensors, for whih the metriis just Æij . But as soon as we onsider any more general situation, where the omponents ofthe metri tensor are funtions of the oordinates, the Christo�el onnetion will beomenon-vanishing. Note that this does not neessarily mean that the metri has to be oneon a urved spae (suh as the 2-sphere that we met earlier); even a at metri writtenin \urvilinear oordinates" will have a non-vanishing Christo�el onnetion. As a simpleexample, suppose we take the metri on the plane,ds2 = dx2 + dy2 ; (6.81)142



and write it in polar oordinates (r; �) de�ned byx = r os � ; y = r sin � : (6.82)It is easy to see that (6.81) beomesds2 = dr2 + r2 d�2 : (6.83)If we label the (r; �) oordinates as (x1; x2) then in the metri ds2 = gij dxi dxj we shallhave gij =  1 00 r2! ; gij =  1 00 r�2! : (6.84)Using (6.80), simple algebra leads to the following results:�111 = 0 ; �112 = 0 ; �122 = �r ;�211 = 0 ; �112 = 1r ; �222 = 0 : (6.85)Having obtained the Christo�el onnetion for this ase, we an illustrate how one usesit by taking the example of the Laplaian. In Cartesian oordinates we know that theLaplaian of a funtion  is just �i�i  , whih is again a salar. Obviously, in general, weshould �nd a generalisation of �i�i  that is again a salar. The answer, learly, is that theLaplaian of  is gij ri �j  ; (6.86)sine by onstrution, we know that this is a salar under general oordinate transforma-tions. Notie that we don't need a ovariant derivative for the �j that ats diretly on  ,sine that is already ovariant. Thus we have in general that the Laplaian an be writtenas gij �i �j  � gij �kij �k  : (6.87)Now, let us apply this to our simple example of the metri on the plane written in polaroordinates. Substituting from (6.84) and (6.85), we get�21  + 1r2 �22  + 1r �1  (6.88)where the last term is the one oming from the ontribution of the Christo�el onnetion.Re-expressing this in a more readable language, we have�2 �r2 + 1r � �r + 1r2 �2 ��2 ; (6.89)143



whih an also be written as 1r ��r�r � �r �+ 1r2 �2 ��2 : (6.90)This was, of ourse, an elaborate way to derive a simple and well-known result, but thatwas the whole point of the illustrative exerise; to show �rst how the new method works ina simple \toy" example.In fat there is a nie way to express the Laplaian operator in general that doesn'trequire us to grind out all the omponents of the Christo�el onnetion. Notie from (6.87)that what we need for the Laplaian is the ontrated set of quantitiesgij �kij ; (6.91)and so from (6.80) we havegij �kij = 12gij gk` (�i g`j + �j gi` � �` gij) ;= gij gk` �i g`j � 12gk` gij �` gij ;= �gij g`j �i gk` � 12gk` gij �` gij ;= �Æì �i gk` � 12gk` gij �` gij ;= ��` gk` � 12gk` gij �` gij : (6.92)Note that in getting to the third line, we have use that gk` g`j = Ækj , whih is onstant, andso (�i gk`) g`j + gk` (�i g`j) = 0.Now we use one further trik, whih is to note that as a matrix expression, gij �` gij isjust tr(g�1 �` g). But for any symmetri matrix we an write26detg = etr log g ; (6.93)and so �` detg = (det g) tr(g�1 �` g) : (6.94)Thus we have 12gij �` gij = 1pg �`pg ; (6.95)where we use the symbol g here to mean the determinant of the metri gij .Putting all this together, we havegij ri �j  = gij �i �j  + (�i gij) �j  + gij 1pg (�ipg) �j  ; (6.96)26Prove by diagonalising the matrix, so that g �! diag(�1; �2; : : : ; �n). This means that detg = Qi �i,while etr log g = ePi log �i , and so the result is proven.144



after making some onvenient relabellings of dummy indies. Now we an see that all theterms on the right-hand side assemble together very niely, giving us the following simpleexpression for the Laplaian:gij ri �j  = 1pg �i�pg gij �j  � : (6.97)This general expression gives us the Laplaian in an arbitrary oordinate system, for anarbitrary metri.As a �rst hek, let us test it on the previous example of the two-dimensional plane withthe metri ds2 = dr2 + r2 d�2 in polar oordinates. From (6.84) we instantly see that thedeterminant of the metri is g = r2, so plugging into (6.97) we getgij ri �j  = 1r �i�r gij �j  � ;= 1r ��r�r � �r �+ 1r2 �2 ��2 ; (6.98)in agreement with our previous result.As a slightly less trivial example, onsider Eulidean 3-spae, written in terms of spher-ial polar oordinates (r; �; �). These, of ourse, are related to the Cartesian oordinates(X;Y;Z) by X = r sin � os� ; Y = r sin � sin� ; Z = os � : (6.99)The metri, written in terms of the spherial polar oordinates, is thereforeds2 = dr2 + r2 d�2 + r2 sin2 � d�2 : (6.100)The determinant is therefore g = r4 sin2 � and so from (6.97) we get that the Laplaian is1r2 ��r�r2 � �r �+ 1r2 h 1sin � ��� � sin � � �� �+ 1sin2 � �2 ��2 i : (6.101)6.5 The n-sphere, SO(n+ 1) and Spherial Harmonis6.5.1 The n-sphere and its symmetriesIn an earlier disussion we looked in onsiderable detail at the onstrution of the 2-sphere,desribed as the surfae X2 + Y 2 + Z2 = 1 in IR3. All of that disussion an easily begeneralised to the ase of an n-dimensional sphere, de�ned by the surfaeXaXa = 1 ; (6.102)in IRn+1, where now of ourse the index a is understood to be summed over (n+1) values.For onveniene, we sometimes refer to the n-sphere as Sn.145



Obviously muh of our previous disussion of the symmetries arries over straightfor-wardly to the ase of the n-sphere. The ondition (6.102) is invariant under rotations de�nedby X 0a =MabXb ; (6.103)where Mab is an O(n+ 1) matrix satisfyingMabMa = Æb : (6.104)In�nitesimally we an again write Mab = Æab + Aab, where the in�nitesimal matrix Aab isantisymmetri. This matrix has 12n(n + 1) independent omponents, so we onlude thatthe dimension of the group O(n+ 1) isdim(O(n+ 1)) = 12n (n+ 1) : (6.105)By the dimension of the group, we mean the number of ontinuous parameters needed tospeify a group element; we saw for O(3) that the answer was 3. As in the ase of O(3), thegroup elements divide into those that have determinant +1, and those that have determinant�1. The former orrespond to pure rotations in IRn+1, while the latter orrespond torotations together with a reetion. Sine the identity element obviously has determinant+1 it follows that all the in�nitesimal transformations must be ontained in SO(n+1) too.It would be quite ompliated to generalise the spherial polar oordinates that we usedon S2 to the ase of Sn, but in fat for many purposes we an perfetly well just use theCartesian oordinates Xa on IRn+1, together with the onstraint (6.102). For example, wean write the in�nitesimal SO(n + 1) transformations as ÆXa = �a, where �a = AabXb.Thus we are led to the Killing vetors Kab, de�ned byKab � Xa ��Xb �Xb ��Xa ; (6.106)where the ab indies here are labels, indiating whih Killing vetor we mean. By onstru-tion we have 12n(n+ 1) Killing vetors, sine Kab = �Kba. This is the orret number forthe SO(n+1) symmetry of the n-sphere. If we speialise to the 2-sphere, it is easy to verifythat the three Killing vetors K12, K13 and K23 de�ned by (6.106) in this ase are just thesame, after the hange to spherial polar oordinates, as the Killing vetors (6.32) that wederived previously.Notie that the Killing vetors (6.106) are nothing but the angular momentum operatorsin (n+1)-dimensional Eulidean spae. In 3 dimensions we would more ommonly use the146



totally-antisymmetri epsilon tensor �ab to re-express the angular momentum operators interms of a vetor index: La = 12�abKb = �abXb ��X : (6.107)Observe, though, that it is a very speial feature of 3 dimensions that one an replaean antisymmetri 2-index quantity like Kab by a vetor. In higher dimensions, where theorresponding totally-antisymmetri epsilon tensor has more indies, one annot turn a 2-index antisymmetri tensor into a tensor with fewer indies. In fat this serves to emphasisethat in a general dimension one should think of rotations as ourring in planes, rather thanabout axes. It is a oinidene of 3 dimensions that a rotation in the (x; y) plane an alsobe thought of as a rotation about the z axis.6.5.2 Spherial HarmonisWhen one �rst meets the spherial harmonis on the 2-sphere, it is generally in the ontext ofperforming a separation of variables in Laplae's equation or the wave equation, when usingspherial polar oordinates. In fat we just re-derived the expression for this Laplaian inthe previous setion, in (6.101). After a standard separation of variables in whih a funtion (r; �; �) is written as  (r; �; �) = R(r)Y (�; �) ; (6.108)Laplae's equation r2 = 0 beomes1R ddr �r2 dRdr �+ 1Y r2S2 Y = 0 ; (6.109)where r2S2 is the operator appearing in the large square brakets in (6.101), namelyr2S2 = 1sin � ��� � sin � ����+ 1sin2 � �2��2 : (6.110)In fat this operator is preisely the Laplaian for the unit 2-sphere, as may easily be hekedby using our general formula (6.97), with the metri ds2 = d�2 + sin2 � d�2. Introduing aseparation onstant � in the usual way, one is led from (6.109) to onsider the equation�r2S2 Y (�; �) = �Y (�; �) : (6.111)This is the equation that determines the spherial harmonis.A standard way to solve for the spherial harmonis is to write out the S2 Laplaianr2S2expliitly using (6.110), and perform a further separation of variables by writing Y (�; �) =147



P (�)�(�). This introdues another separation onstant m2, an one is left to solve theequations sin � dd� � sin � dPd� �+ (� sin2 � �m2)P = 0 ;d2�d�2 +m2 � = 0 : (6.112)The latter has solutions of the form eim�, and to get the proper periodiity under ompleterotations � �! � + 2� on the sphere, we dedue that m must be an integer. After lettingx = os � the �rst equation beomes the generalised Legendre equation,ddx �(1� x2) dPdx �+ ��� m21� x2�P = 0 : (6.113)After a onsiderable labour, involving, for example, a areful study of the solutions for thisequation obtained as a series expansion (disussed at length in Part I of the ourse), oneonludes that for the funtions P (�) to be regular at � = 0 and � (the north and southpoles of the sphere), the separation onstant � must be of the form � = ` (` + 1), where `is an integer, and �` � m � `. Thus after a rather involved hain of argument, one arrivesat the spherial harmis Y`m(�; �) being the omplet set of regular eigenfuntions of theLaplaian r2S2 on S2, with �r2S2 Y`m = ` (`+ 1)Y`m : (6.114)Of ourse one has the feature that sine m does not appear in the expression for theeigenvalues, there is a (2` + 1)-fold degeneray for the spherial harmonis with a givenvalue of `, sine m an take any of the integer values between �` and +`.This traditional approah to onstruting the spherial harmonis is a rather alula-tional one, whih provides very little group-theoreti insight into what is going on. We arein fat now in a position to give a muh simpler, and more elegant, onstrution of thespherial harmonis, whih provides us with a rather lear piture of them as representa-tions of the symmetry group SO(3) of the 2-sphere. In fat it is just as easy to onstrutthe spherial harmonis on all the spheres Sn, for arbitrary dimension n, so there is thatadvantage too.We have desribed the unit n-sphere as the surfae XaXa = 1 in IRn+1. Let us writethe metri on the unit n-sphere as d
2. It is evident that this is related to the Cartesianmetri ds2 on IRn+1 by ds2 = dr2 + r2 d
2 ; (6.115)where XaXa = r2. This is lear, if you think about how we would measure distanes inIRn+1 if it were written in \hyperspherial polar oordinates," r and y�, where y� represent148



the set of angular that one would use to parameterise points on the unit n-sphere. Thesquare of the distane between two in�nitesimally separated points in IRn+1 is therefore thesum of the square of the radial-oordinate separation dr, and the square of the distane inthe surfae of the sphere that separates the two points. Sine d
2 is the metri on the unitsphere, the distane on the sphere of radius r, where the two points are loated, will besaled by the fator r. It is easy to see that (6.115) redues to familiar ases if we onsiderIR2 and IR3, sine the metris on the unit 1-sphere and 2-sphere are just1-sphere : d
2 = d�2 ;2-sphere : d
2 = d�2 + sin2 � d�2 : (6.116)Lukily we don't ever need to de�ne the angular oordinates on Sn expliitly, in order tosolve for the spherial harmonis. We an just let them be alled y�, with 1 � � � n, but wedon't need to de�ne how they are related to the Cartesian oordinates Xa in IRn+1. (Onean usefully have in mind, though, the piture that they will be de�ned very analogouslyto the way spherial polar oordinates are related to the (X;Y;Z) oordinates on IR3.) Themetri on the unit n-sphere an then be written asd
2 = h�� dy� dy� : (6.117)The full set of (n+1) hyperspherial oordinates on IRn+1 will be (r; y�). Let us all thesehyperspherial oordinates xi, with i running from 0 to n:x0 � r ; x� � y� : (6.118)Now, using (6.117), the metri (6.115) on IRn+1 isds2 = dr2 + r2 h�� dy� dy� : (6.119)Clearly therefore the determinant g of this metri is given byg = rn h ; (6.120)where h is the determinant of the metri h�� on the unit n-sphere. Plugging into ourgeneral expression (6.97) for the Laplaian, we therefore �nd that in these hyperspherialpolar oordinates, the Laplaian on IRn+1 is given byr2Rn+1 = 1rn ��r �rn ��r�+ 1r2 r2Sn ; (6.121)where r2Sn � 1ph ��y� �phh�� ��y� � (6.122)149



is the Laplaian on the unit n-sphere. (The speial ases for n = 1 and n = 2 appear in ourexamples (6.98) and (6.101) that we looked at previously.)Having obtained this relation between the Laplaians on IRn+1 and Sn, the problemof onstruting the spherial harmonis is almost solved. First, we introdue the followingfuntions 	 on IRn+1: 	(X) = Ta1a2���a` Xa1 Xa2 � � �Xa` ; (6.123)where Ta1a2���a` is an `-index onstant tensor in IRn+1 whih is ompletely arbitrary exeptfor satisfying the following two onditions:(1) Ta1a2���a` is totally symmetri in all its indies.(2) The tensor T is totally traeless, in the sense that the ontration of any pair of indieson Ta1a2���a` gives zero: Æa1a1 Ta1a2���a` = 0 ; et. : (6.124)Clearly ondition (1) is simply making sure that we eliminate all the \redundant bag-gage" in Ta1a2���a` . Sine it appears in (6.123) ontrated onto the totally symmetrial prod-ut Xa1 Xa2 � � �Xa` , it is obvious that any part of Ta1a2���a` that was not totally symmetrialin the indies would give no ontribution anyway.Condition (2) serves a di�erent purpose. It implies that if we at with the IRn+1 Lapla-ian r2Rn+1 on 	, we shall get zero: r2Rn+1 	 = 0 : (6.125)This is beause from the de�nition of 	 in (6.123), we shall learly have�	�Xa = Taa2���a` Xa2 � � �Xa` + Ta1a���a` Xa1 Xa3 � � �Xa` + � � � Ta1a2���a` Xa1 Xa2 � � �Xa`�1= ` Taa2���a` Xa2 � � �Xa` ; (6.126)(all the ` terms are equal, beause of the total symmetry). Ating with another derivative,we therefore get �2	�Xa �Xb = ` (`� 1)Taba3 ���a` Xa3 � � �Xa` : (6.127)(This time, we have immediately used the symmetry of T to ollet the (`� 1) terms thatappear from the seond di�erentiation together. Now we see that the IRn+1 Laplaian atingon 	 gives zero:r2Rn+1 	 = �2	�Xa�Xa = ` (`� 1) Æab Taba3���a` Xa3 � � �Xa` = 0 ; (6.128)150



by virtue of ondition (2) above.Now, it only remains to make the following observation. Sine the funtion 	 de�nedin (6.123) involes a produt of ` Cartesian oordinates Xa, it is evident that it must beexpressible as 	(X) = r`  (y) ; (6.129)where y represents the angular oordinates y� on the unit n-sphere, and  (y) is independentof r. Again, it is helpful to have in mind the IR3 example here, where we haveX = r sin � os� ; Y = r sin � sin� ; Z = r os � : (6.130)Finally, sine we have established that the IRn+1 Laplaian annihilates 	 we simply haveto substitute it into (6.121) to dedue that1rn ddr �rn dr`dr � + 1r2 r`r2Sn  = 0 : (6.131)Hene we arrive at the onlusion that  is an eigenfuntion of the Laplaian on the unitn-sphere, satisfying �r2Sn  = ` (`+ n� 1) : (6.132)Notie that is we take n = 2, orresponding to the 2-sphere, we reprodue the familiareigenvalues ` (`+ 1).Two issues remain to be disussed here. The �rst is that we have ertainly produedsome eigenfuntions on the n-sphere by this method, but have we obtained them all? Theanswer is yes, and it an be seen as follows. Clearly, any regular funtion on the unitn-sphere an be smoothly extended out as a regular funtion on IRn+1. Conversely, if weonsider the set of all regular funtions on IRn+1, they will projet down so as to provideus with all possible regular funtions on Sn. Now, the regular funtions f(X) on IRn+1 anertainly be expanded in a Taylor series, whih will give a sum of terms of the form (6.123),summed over all ` � 0 (without yet imposing the traelessness of ondition (2) above):f(X) = 1X̀=0 f`(X) ; (6.133)where f`(X) � Ta1a2���a` Xa1 Xa2 � � �Xa` ; (6.134)But the imposition of traelessness on Ta1a2���a` is just a matter of organising the terms in thesum, sine a pure trae ontribution in the term f`(X) would orrespond to r2 times a termof the form f`�2(X). By the time we restrited to the unit n-sphere, by setting r = 1, this151



from f` term would therefore just be repeating what had already been onstruted in f`�2.So from the viewpoint of onstruting regular funtions on the n-sphere, the imposition oftraelessness on the tensors Ta1a2���a` is just a matter of avoiding double-ounting. Thus wean be sure that our onstrution of salar eigenfuntions of the Laplaian on Sn has givenall all the eigenfuntions. The funtions  , de�ned by (6.123) and (6.129), then, give theomplete set of spherial harmonis on Sn.The seond issue that we must still address onerns the degneraies of the eigenvalues,or, equivalently, the multipliities of the eigenfuntions  for a given value of the integer `.This is easily worked out, sine it is just a matter of ounting how many independent om-ponents the onstant tensor Ta1a2���a` has, bearing in mind the two onditions of symmetryand traelessness that we imposed. It is easy to see that a totally-symmetri tensor with `indies that eah run over (n+ 1) values has(n+ 1)(n+ 2) � � � (n+ `)`! (6.135)independents omponents. When we impose the traeless ondition on suh a tensor, wetherefore impose a number of onditions equal to the number of independent omponents ina similar tensor that has only (`� 2) indies. Thus the number of independent omponentsin our tensor Ta1a2���a` that is totally symmetri and traeless isd` = (n+ 1)(n+ 2) � � � (n+ `)`! � (n+ 1)(n+ 2) � � � (n+ `� 2)(`� 2)! ;= (n+ 1)(n+ 2) � � � (n+ `� 2)`! �(n+ `� 1)((n) + `)� ` (`� 1)� ;= n (n+ 1)(n+ 2) � � � (n+ `� 2)(2` + n� 1)`! ; (6.136)whih an be written as d` = (2`+ n� 1) (n+ `� 2)!`! (n� 1)! : (6.137)This gives us the multipliity of the eigenfuntions  with the spei� eigenvalue�` = ` (`+ n� 1) (6.138)that we found above. Notie that if we speialise to the ase of the 2-sphere, equation(6.137) redues to 2-sphere: d` = 2`+ 1 ; (6.139)as we know it should. 152



6.5.3 Irreduible Representations of SO(N)The onstrution of the eigenfuntions that we have obtained here, and the results for themultipliities of the eigenvalues, have a deeper signi�ane than might at �rst be apparent.What we have atually been doing here is onstruting irreduible representations of the thesymmetry groups SO(n+ 1) of the n-spheres. To be a bit more preise, the sets of tensorsTa1a2���a` that we have been using are themselves irreduible representations of SO(n+ 1).More generally, one an onsider many di�erent lasses of onstant tensorHa1a2���ap in IRn+1,and assoiate them with irreduible representations.To make life a little simpler, let us talk about SO(N) rather than SO(n + 1). If webegin with the tensor Ha1a2���ap in IRN , and make no symmetry or traelessness requirementat all on it, then the number of independent omponents for suh a tensor will simply beNp, sine eah index an range over N values. This set of tensors with Np omponentsis a representation of SO(N), but it is not irreduible; we an divide it into smaller self-ontained subsets of omponents. The rules for how suh subdivisions an be made are verysimple. We an do anything as long as it respets SO(N) ovariane. What this means isthat we have to treat the indies in a totally \demorati" way, and we annot single outany one index value, or subset of index values, for speial treatment.Let us take a onrete example. Suppose we take a 2-index tensor Hab in IRN , whihhas N2 independent omponents. Is this reduible, or is it already as irreduible as anbe? First, the sort of things we annot do is to pik an index value, say a = 1, and treatthat as speial. We annot divide Hab into H��, H1�, H�1 and H11, where 2 � � � N ,and laim that we are deomposing Hab into representations of SO(N); learly what we aredoing here is not ovariant from an SO(N) point of view. What we an do, however, is towrite Hab as the sum of its symmetri and antisymmetri parts:Hab = Sab +Aab ; (6.140)where Sab � 12 (Hab +Hba) ; Aab � 12(Hab �Hba) : (6.141)Now, we an ount the number of independent omponents in Sab, namely 12N(N +1), andthe number of independent omponents in Aab, namely 12N(N � 1). Of ourse the sum ofthese two gives us bak the original number of omponents for the unrestrited tensor Hab:12(N(N + 1) + 12N(N � 1) = N2 : (6.142)153



Clearly the deomposition in (6.140) is ompletely ovariant with respet to SO(N), sineit is a tensorial equation, so it is a perfetly allowable subdivision for us to make.Have we �nished? Not quite, beause there is one more thing we an do that respetsthe ovariane, and that is to extrat the trae from the symmetri tensor Sab. Thus wean write Sab = eSab + 1N S Æab ; (6.143)where S is the trae of Sab, namely S � Æab Sab : ; (6.144)and so by onstrution eSab is traeless, Æab eSab = 0 : (6.145)Clearly (6.143) and (6.144) are both perfetly SO(N)-ovariant equations; they transformovariantly under SO(N) rotations. (We are really bak to \kindergarten" Cartesian tensorshere!)With this extration of the trae, we have reahed the end of the road for the deompo-sition of the original 2-index tensor Hab. In other words, we have found that it splits intothree irreduible representations of SO(N), with dimensionsdim(Aab) = 12N(N � 1) ; dim( eSab) = 12(N � 1)(N + 2) ; dim(S) = 1 ; (6.146)These are the dimensions of the 2-index antisymmetri representation, the 2-index symmet-ri traeless representation, and the singlet of SO(N) respetively.The original Hab representation is really to be thought of as the produt of two 1-index representations. The 1-index, or vetor representation of SO(N) orresponds, as itsname implies, to taking an arbitrary onstant vetor Ha in IRn. It is lear that we annotsubdivide this representation any further by means of any allowable ovariant rules, and soit is an N -dimensional irreduible representation.We have just met four di�erent irreduible representations of SO(N), and we have seenthat the following multipliation rule applies:N �N = 12N(N � 1) + 12(N � 1)(N + 2) + 1 : (6.147)What this is saying is that the produt of the vetor representation of SO(N) with itselfgives the three irreduible representations whose dimensions are listed on the right-handside. For example, in SO(3) we have3� 3 = 3 + 5 + 1 : (6.148)154



Note that we use the underlining notation to indiate that we are talking about grouprepresentation here.27One an ontinue the proess of examining SO(N) tensors with more and more indies,in eah ase making a ovariant deomposition into the largest possible number of irreduiblepiees, and thereby one builds up the omplete set of irreduible representations of SO(N).It gets a little trikier than the examples we have looked at so far, one the tensor hasseveral indies. For example, onsider a 3-index tensor Hab. This ertainly ontains atotally-symmetri piee, and a totally antisymmetri piee, but it also has more. Thisan easily be seen by noting that sum of the independent omponents 16N(N + 1)(N + 2)of a symmetri 3-index tensor and the independent omponents 16N(N � 1)(N � 2) of anantisymmetri 3-index tensor does not add up to the N3 omponents of an arbitrary 3-indextensor. There is nothing deep or mysterious about this, of ourse, and it is really just anexerise in symmetries and ombinatoris to work out what the \extra" piees are. Of ourseone also needs to extrat all trae terms where appropriate, and ount those as separateirreduible piees. A very hand diagrammati method, known as Young Tableaux, has beendeveloped for doing all this. However, it takes us beyond the sope of this introdutorydisussion, so we shall leave it at that.For our present purposes we don't need anything terribly exoti, beause we saw thatin the ontrution of the spherial harmonis it was the totally symmetri and traelessSO(n+ 1) tensors Ta1a2���a` that were relevant. What we have now learned from the abovedisussion is that these tensors are atually giving us irreduible representations of SO(n+1), and we have already worked out their dimensions d` in (6.137). For the 2-sphere, thisbeame d` = 2`+ 1, and so what we are seeing is that the spherial harmonis on S2 ourin the following irreduible representations of SO(3):d` = 2`+ 1 = 1 ; 3 ; 5 ; 7 ; : : : (6.149)As the dimension d` = 2` + 1 of the representation gets bigger, so, orrespondingly, doesthe eigenvalue �` = ` (`+ 1).For the higher-dimensional n-spheres the dimensions of the symmetri traeless irre-duible SO(n + 1) representations beome a bit more interesting. For example, from d`given in (6.137) we have the following:SO(4) : d` = (`+ 1)2 = 1 ; 4; ; 9 ; 16 ; : : :27It also serves to show that we are doing profound mathematis here, and that we have not reverted tothe kindergarten arithmeti lass! 155



SO(5) : d` = 16(`+ 1)(`+ 2)(2`+ 3) = 1 ; 5 ; 14 ; 30 ; : : : (6.150)SO(6) : d` = 112 (`+ 1)(`+ 2)2(`+ 3) = 1 ; 6 ; 20 ; 50 ; : : :These examples are the �rst few representations of the spherial harmonis on the 3-sphere,4-sphere and 5-sphere respetively.We shall bring this ourse to a onlusion with a brief disussion of two topis relatedlosely to what has gone before. Eah deserves an entire ourse in its own right, so learlywhat will be said here will be very skethy. The �rst of the topis is loal gauge symmetries,and the seond is Riemann urvature, and general relativity.6.6 Gauge Invariane and Covariant Derivative in Quantum MehanisWe met the ovariant derivative in the ontext of the di�erentiation of general-oordinatetensors; it was neessary to introdue it in order to be able take derivatives of tensors andget tensors again. Exatly the same basi notion of a ovariant derivative arises also inother ontexts. Perhaps the simplest of these is in quantum mehanis, when we onsidera wavefuntion for a harged partile in the presene of an eletromagneti �eld.Consider �rst the very simple situation of the Shr�odinger equation for a free partile,28� �h22m ~r2  = i �h � �t : (6.151)Obviously we are free to multiply the wavefuntion  by an arbitrary onstant omplexnumber of modulus 1, without hanging anything physially; �!  0 = U  ; jU j = 1 : (6.152)We an write suh a onstant as U = ei� ; (6.153)where � is a onstant real number, whih may as well be restrited to lie in the range0 � � < 2�. The onstant U is a 1 � 1 unitary matrix, sine it satis�es U y U = 1. It is infat an element of the group U(1).It was important in the transformation (6.152) that U should be a onstant, so that itan pass freely through the derivatives in the Shr�odinger equation (6.151), thus ensuringthat  0 satis�es the same equation:� �h22m ~r2  0 = i �h � 0�t : (6.154)28In this setion we shall be assuming that we are working in ate Eulidean spae, with Cartesianoordinates, so ~r here just means the usual gradient operator of Cartesian vetor analysis.156



Suh onstant phase transformations are alled global U(1) transformations, or sometimesrigid U(1) transformations.Suppose, now, that we want to generalise the idea of the phase transformation (6.152), tothe ase where we allow the unit-phase quantity U to be dependent on the spatial position,and on time. Suh a transformation is then alled a loal U(1) transformation. Obviouslyas it stands this will give trouble in the Shr�odinger equation, sine now when we substitute(6.152) into (6.151), we will pik up terms where the spae and time derivatives land on thephase fator U . These terms will prevent the transformed wavefuntion  0 from satisfyingthe simple primed equation (6.154).This disussion should sound rather familiar. It is exatly like the situation we faed withderivatives of general-oordinate tensors, where the derivative landing on the transformationmatrix �x0i=�xj spoilt the tensor-transformation properties. Here, the problem is analogous,namely that (�i 0) is not oming out to be the same as (�i )0. In the ase of general-oordinate tensor, we introdued a ovariant derivative to solve the problem, and that isexatly what we an do here too. Thus we shall de�ne29Di  � �i  � i e�h Ai  ; D0  � � �t + i e�h � : (6.155)We now require that Ai and � should transform under the loal U(1) transformation, inpreisely suh a way as to give us what we want, whih is(Di  )0 = U Di  ; (D0 )0 = U D0 : (6.156)Let us look at Di �rst. Writing out what we require for Di in (6.156) we haveD0i  0 = (�i � i e�h A0i) (U  ) ;= U ��i  � i e�h A0i  + U�1 (�iU) � ;= U ��i � i e�h Ai� + hU�1 (�iU) + i e�h (Ai �A0i)i ;= U Di  hU�1 (�iU) + i e�h (Ai �A0i)i : (6.157)The �rst term on the bottom line is exatly what we want, so we must require that the quan-tity in square brakets be zero. In other words, Ai should have the following transformation29For now, the quantities Ai and � are just a 3-vetor and a salar, introdued for the purpose of allowingus to make loal U(1) transformations. Any similarity to things that may be familiar from eletromagnetismis entirely non-oinidental, but here we are going to derive eletromagetism from the requirement of loalU(1) invariane. 157



property under the loal U(1) transformation:A0i = Ai � i �he U�1 �iU : (6.158)If we parameterise U in the following way,U = ei e�=�h ; (6.159)where � is the loal parameter, then we see that (6.158) is nothing butA0i = Ai + �i � : (6.160)In an idential fashion, we an derive the required loal U(1) transformation of thefuntion � in the ovariant time derivative D0 in (6.155), from the seond equation in(6.156). We �nd �0 = �� ���t : (6.161)We an reognise (6.160) and (6.161) as being preisely the gauge transformation rulesof the magneti vetor potential ~A and the eletrostati potential � of eletrodynamis:~A0 = ~A+ ~r� ; �0 = �� ���t : (6.162)We have e�etively derived eletromagnetism, but purely from the onsiderations of loalU(1) invariane in quantum mehanis.The �nal step is to write out our new version of the Shr�odinger equation, using theovariant derivative. Thus in (6.151) we replae the ordinary derivatives by ovariant deriva-tives: � �h22m DiDi  = i �hD0  : (6.163)It is now manifest, from the known ovariane properties of the transformations in (6.156),that after performing an arbitrary loal U(1) transformation the Shr�odinger equation(6.163) will simply take the same form, but now with primes on  and the ovariant deriva-tives. Note that (6.163) is nothing but� �h22m �~r� i e�h ~A�2  + e � = i �h � �t ; (6.164)whih is the Shr�odinger equation for a harge partile in an eletromagneti �eld.
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6.7 Curvature, the Riemann Tensor, and General RelativityWe have seen how the Christo�el oonetion �ijk allows us to de�ne a ovariant derivative,thereby permitting an extension of the idea that is familiar in Cartesian tensor analysis thatthe derivative operator provides a mapping from tensors into new tensors. We have seenalso that the Christo�el onnetion is non-vanishing not only for a metri on a urved spaesuh as a sphere, but even for a at metri that happens to be expressed in a non-Cartesianoordinate system, suh as polar oordinates on the plane.So, for example, if we start with the at metri on the plane written in Cartesian oor-dinates, ds2 = dx2+ dy2, and then make the standard transformation to polar oordinates,we �nd that the originally-vanishing Christo�el onnetion beomes non-vanishing after theoordinate transformation. The fat that this an happen is a reetion of the non-tensorialnature of the onnetion. By ontrast, if a tensor were vanishing in one oordinate frame,it would have to remain zero in all oordinate frames. This an be seen immediately fromits transformation law, (6.43).How do we haraterise the idea of whether the spae is intrinsially urved, or not?Of ourse one approah would be to take the given metri and try making oordinatetransformations in order to see whether it an be re-expressed as the at metri in someCartesian oordinate system. But that would be a very lumsy thing to do in general, andthe mere fat that one failed to �nd a oordinate transformation that did the job mightmean nothing more than that one had not tried hard enough. Besides, it would not be anapproah that would provide very muh insight into the struture of the metri, espeiallyif it turned out that it was not merely at spae in a funny oordinate system.It should ome as no surprise, in the light of the previous observations, that the wayto haraterise the urvature of a spae is by means of a tensor quantity. The requiredobjet, alled the Riemann Tensor, has four indies, with ertain symmetry properties, andis denoted by Rijk`. If the metri is at then the Riemann tensor is zero. Sine it is atensor, this vanishing is unaltered under any general oordinate transformation, and so itprovides a genuinely oordinate-independent test for whether the metri is apable of beingtransformed into the standard Cartesian metri by a suitable oordinate transformation.At least as importantly, however, a non-vanishing Riemann tensor provides very usefulinformation about a spae that is urved.How do we de�ne the Riemann tensor? It turns out that it an be onstruted by taking
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a derivative of the Christo�el onnetion, in an appropriate way. Spei�ally, it is given byRijk` = �k �ij` � �` �ijk + �ikm �mj` � �i`m �mjk : (6.165)Looking at this, it is not manifestly apparent that it should be a tensor at all. Afterall, it is onstruted by taking partial derivatives of something that is itself not a tensor.Remarkably, however, it turns out that this is a tensor. In priniple, it an be proven by thetime-honoured method of alulating it in a primed oordinate frame, using the knownmtransformation properties of �i and �ijk, and showing that it is related to the omponentsin the original unprimed frame in the way it should be for a tensor. There is nothingoneptually diÆult involved in heking this, but it is somewhat tedious. We shall leaveit as an exerise for the interested reader.The �rst thing to notie from (6.165) is that the Riemann tensor is indeed obviouslyzero if we take gij to be the at metri in Cartesian oordinates, gij = Æij , sine alreadythat means that �ijk = 0, as we saw before. Together with the knowledge that Rijk` reallyis a tesnor, this shows that Rijk` = 0 for at spae in any oordinate system.There are further tensor quantities that an be onstrued from the Riemann tesnor, bymaking index ontrations. These therefore ontain less information than the full Riemanntensor, but they are nevertheless of great importane. First, we an de�ne the Rii Tensor,Rij = Rkikj : (6.166)One an show from the de�nition of the Riemann tensor that Rij is atually symmetri inits two indies, Rij = Rji. By ontrating with the inverse metri we an also form a salar,alled the Rii Salar R, given by R = gij Rij : (6.167)The Riemann tensor itself also has ertain symmetries. To state these, it is onvenientwe lower the �rst index, de�ning (in the standard way)Rijk` = gimRmjk` : (6.168)The symmetries are then: Rijk` = Rk`ij = �Rjik` = �Rij`k ;Rijk` +Rik`j +Ri`jk = 0 ; (6.169)all of whih an, with some algebra, be proven from the previous de�nitions. Thus Rijk` issymmetri under the interhange of the �rst pair of indies with the seond pair, and it is160



antisymmetri under the exhange of the �rst two indies, and under the exhange of thelast two indies. It also has the yli symmetri given in the seond line.Let us onsider the 2-sphere, with the metri ds2 = d�2 + sin2 � d�2, as an example.Taking the oordinates to be x1 = �, x2 = �, we havegij =  1 00 sin2 �! ; gij =  1 00 1sin2 � ! : (6.170)Simple algebra using (6.80) leads to the following results for the omonents of the Christo�elonnetion: �111 = 0 ; �112 = 0 ; �122 = � sin � os � ;�211 = 0 ; �212 = ot � ; �222 = 0 : (6.171)From the symmetries of the Riemann tensor given above, it follows that in two dimensionsthere is only one independnet omponent, and one easily �nds that this is given byR1212 = sin2 � : (6.172)The Rii tensor Rij and Rii salar R then turn out to beR11 = 1 ; R22 = sin2 � ; R12 = R21 = 0 ; R = 2 : (6.173)Notie that by omparing with (6.170), we see that the Rii tensor an be written asRij = gij : (6.174)Metris whose Rii tensors satisfy this type of equation, Rij = � gij , are alled EinsteinMetris, and they are of great importane in mathematis and in theoretial physis.We onlude this setion with some remarks about one of the most important physi-al appliations of the geometrial theory of tensors that we have been studying, namelyEinstein's theory of General Relativity. This is the theory that desribes the phenomenonof gravity, superseding the Newtonian theory of gravity. One of the ornerstones of gen-eral relativity is the fat that the \fore of gravity" is a frame-dependent onept, beingindistinguishable (by means of loal experiments) from the e�ets of aeleration. Thus onean, for example, always render the fore of gravity vanishing at some point, by puttingoneself in a freely-falling frame (not neessarily a wise thing to do!). Conversely, one anprodue a gravitational fore that is loally indistinguishable from the fore of gravity on161



the surfae of the earth, even out in the far reahes of spae, by turning on the roket-motorof a spaeraft so that is aelerates at 32 feet per seond per seond.30In general relativity the four-dimensional Minkowsi spaetime metri of speial relativ-ity is replaed by a more general four-dimensional spaetime metri. As in our previousdisussions, in some ases this might be just a rewriting of the Minkowski metri after somehange of oordinates. On the other hand, it might be a genuinly urved metri. It shouldperhaps ome as no surprise, in the light of previous remarks, that the \fore of gravity"is haraterised by the Christo�el onnetion �ijk. The frame-dependene of the oneptof the gravitational fore is now understandable, sine it is desribed by the non-tensorialquantities �ijk. For instane, in a small loal region any spae looks nearly like a pathof at spae (think of a small region on the surfae of the earth, for example), and thismeans that one an �nd a oordinate transformation in whih the metri beomes like theMinkowski metri at a point, and its �rst derivatives vanish at that same point. This impliesthat in this oordinate system the Christo�el onnetion vanishes at that point, and thenthere is no \fore of gravity." The oordinate system that one has piked that does this jobis the \loal inertial frame" or \free-fall frame."The preise way in whih the Christo�el onnetion desribes the \fore of gravity" is asfollows. Consider the worldline of a partile that is ated on by no fores other than gravity.Assuming the partile is massive, we an use the elapse of proper time � , as measured in therest frame of the partile, to parameterise its path in spaetime, xi = xi(�). The equationthat governs its motion, alled the Geodesi Equation, is thend2xid�2 + �ijk dxjd� dxkd� = 0 : (6.175)This equation is the analogue in general relativity of Newton's seond law of motion, appliedto a massive partile in a gravitational �eld. In the Newtonian limit of weak gravitational�elds and low veloities, the �rst term in the geodesi equation beomes the aeleration30These evident fats, whih are suh important foundations in General Relativity, are still, uriously,often denied by the \old guard" of adherents to the Newtonian shool of thought. Thus one still frequentlyenounters, espeially in undergraduate mehanis lasses, the ounter-Einsteinian assertion that \entrifugalfores are �titious." The trouble stems from an uneasiness, in the old Newtonian piture, with the modernonept that all oordinate frames should be equally valid. Thus \inertial frames" were singled out as theonly ones that were kosher, and so fores resulting from aeleration relative to these were deemed to be�titious. It is interesting to note that the Newtonian and the Einsteinian physiist will disagree on whatonstitutes an inertial frame. A Newtonian physiist will say that an observer standing in a laboratoryon the earth is in an inertial frame, whereas the Einsteinian physiist will say that an observer who is infree-fall, having jumped out of the laboratory window, is in a (loal) inertial frame.162



of the partile, while in the seond term the omponents �a00 of the Christo�el onnetionbeome the dominant ones, where 0 represents the time diretion, and the a index rangesover the three spatial diretions. In fat in the Newtonian limit, in Cartesian oordinates,these omponents are given by �a00 = �a �, where � is the Newtonian gravitational po-tential. Furthermore, at low veloities we have dx0=d� � 1, jdxa=d� j << 1 (we use unitswhere the speed of light is  = 1), and so the geodesi equation limits tod2xadt2 = � ���xa ; (6.176)whih is Newton's seond law for the motion of a partile in a gravitational �eld. Even in theNewtonian limit, however, we see the radially di�erent interpretations of the Newtonianand the Einsteinian viewpoints. The Newtonian physiist will only interpret the right-handside of (6.176) as a gravitational fore if he has �rst heked to see that the oordinatesystem is one that is deemed to \inertial" in the Newtonian sense. By ontrast, the generalrelativist plaes all oordinate systems on a demorati footing, and universally interprets(6.175) as the equation desribing the motion of the partile in the gravitational �eld,without any preferene for one oordinate system over another.Although we an make gravity vanish \at a point," we annot in general make it vanisheverywhere by hoie of oordinate frame, exept in the speial ase of a at spaetime.This is like the di�erene between the at 2-plane and the 2-sphere; loally, they both looklike bits of at spae, but larger exursions reveal that the plane is at, while the sphere isurved. In general relativity the urvature of spaetime is brought about by the preseneof matter, or other disturbanes (suh as gravitational waves). The preise way in whihthis happens is desribed by the Einstein �eld equations, whih readRij � 12Rgij = 8� GTij : (6.177)The quantities on the left-hand side are the Rii tensor Rij and Rii salar R of the spae-time metri gij . On the right-hand side Tij is the energy-momentum tensor of the matter,whih desribes the distribution of energy, and momentum, in the spaetime. Finally, G isNewton's onstant.31 These �eld equations are the gravitational analogue of the Maxwell�eld equations �� F �� = �4� J� ; (6.178)(or ~r � ~E = 4� �, ~r� ~B� � ~E=�t = 4� ~J if you prefer). Just as the Maxwell �eld equationsdesribe how the distribution of harges and urrents generates eletromagneti �elds, so31So there is still a plae for Newton in the New Order!163



the Einstein �eld equations desribe how the distribution of masses and momentum uxgenerate urvature. Unlike eletrodynamis, however, the general theory of relativity isa non-linear theory, whih makes it onsiderably more ompliated and subtle. Betweenthem, the geodesi equation (6.175) whih tells matter how to respond to the geometry, andthe Einstein equation (6.177) whih tells geometry how to respond to the matter, onstituteone of the most elegant and intriguing of our fundamental physial laws.
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