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I. CWSSIC4L MECHANICS 

1. 1 The principle of stationary action. 

Consider a sys tem whose configuration a t  any time t can be described in 

t e r m s  of N coordinates 

qi(t) where i = 1 , 2 , 3 , .  . .,N 
& 

These  can be thought of a s  the components of an N-dimensional vector- 

q ( t )  = Cqz (t),  % (t), . . . , s,(t)l , ( 1 .  1) 

which i s  called the configuration of the system. The solution of the equations 

of motion f o r  the coordinates qi(tj descr ibes  the evolution of the configuration 

vector  q ( t )  in  t ime,  i. e. 

q( t+bt)  = Cq1 (t+St), qa (t+Et), . . . , ClN(t+6t)l 

where 

It  1s a remarkable fac t  that a l l  of c lass ica l  mechanics i s  derivable f r o m  a 

unifying principle, the pr inciple  of stationary a* (Hamilton's principle).  The 

principle of stationary action s tates  that i t  i s  possible to define a sca la r  

function of the configuration vector  q ( t )  and i t s  t ime derivative 4( t ) ,  i. e. 

called the Lagran~. ian  of the system, such that the integral  

i s  a n  extremum (minimum o r  maximum), o r  stationary along the particular 

parh q ( t ) ,  in  the t ime interval  tl < f < t, which describes the evolution of 

the system. The integral  of equation I .  5 i s  called the action and i s  a 

functional of the path q( t ) ,  i. e . ,  i t  a ssumes  a part icular  lCq] fo r  a 

given (vector) fuixtion of t i n e  q ( t )  in the interval  t, < t < ta. A functional 

i s  r i cher  in content than a fw.ction. A fucction assumed a part icular  

f o r  a given -2 ( o r  s e t  of values) of i t s  independent variables. X functional 

a s s u m e s  a part icular  f o r  a given Fac t ion  ( o r  set of functions), which 

-vec tors  will be denoted with underbars in these lectures .  



se rves  a s  i t s  independent variable. 

The condition that the functional 1{q] i s  stationary along the part icular  

path q( t )  implies that  if we a l te r  q ( t )  by smal l  amount 6q(t) to obtain a 

neighboring path, i. e. 

q ( t )  + q ( t )  + 6q(t) , 

which goes through the ecdpoints of the original path, i. e. 

the functional 1{q} remains  unchanged to f i r s t  o rder  in 69. In other  words, 

6 1 ( ~ )  = 1 ( q + a ~ 3  - 1{q3 = c(6qa)  . (1 .7)  

The requirement  that the functional ~ { q ] ,  the action in this case,  be 

stationary along the path q ( t )  i s ,  i n  fact, sufficient to specify the path in  the 

t ime  interval  4 < t < ta, given the initial conditions 

The part icular  path that solves the problem of extremizing the functional i s  

called rhe extremal. 



Example 1. 1. The ballistic t ra jectory 

The configuration vector  f o r  this sys tem i s  two dimensional, i. e. 

q ( t )  = Exit), y ( t ) l  

The initial conditions specify 

g o )  = ix(o), ~ ( 0 1 1  = ( o , o )  

and 

i ( 0 )  = [i(0), $ ( O ) ]  = (v, cos %, v, sin 9, ) 

The Lagrdngian function in this c a s e  i s  given by 

where m i s  the m a s s  of the ballistic object and g i s  the accelleration of 

gravity, and the action integral  i s  therefore given by 

1bJI = m 1 C+G2 + fa)  - gy] d t  . 

The end time i s  defined implicitly by the condition 

You can convince yourself that the parabolic t rajectory 

x(t) = (v, cos 8, ) t  (1. 14a) 

y ( t )  = (Vo s in  2, ) t  - i gta (1. 14b) 

i s  the extremal  of the action integral  of equation 1. 13. T r y  a few other 

paths! 



1.4 

Given the Lagrangian function L(9, $, t ) ,  the problem of determining 

the extremal ,  i .e .  the part icular  path %(t)  that extremizes the action 

integral of equation 1.5, is  a topic of the Calculus of Variations. See 

Appendix A. In part icular ,  requiring that the variation vanish to f i r s t  

o r d e r ,  we have 

where 

and 

We can now integrate the second t e r m  in the integrand of equation 1.15 by par t s  

to obtain 

61 = 1 [g - & (g) ]*69(t) d t  

Since we now require  that the action 1[q] i s  stationary for  an a r b i t r a r y  

variation of the path, we mus t  have 

Equation 1.19 i s  a vector equation which mus t  hold f o r  each component qi(t) 

of the N-dimensional vector ~ ( t j ,  i. e . ,  

Example 1.2 One-dimensional harmonic oscilator.  ,-..~~,/.~r~/// 
Consider a m a s s  rn suspended 

by  a spring with a spring constant 

k in a gravitational field with an 

accelerat ion g. 



The Lagrangian for  this system i s  given by 

1 1 
~ ( x , G , t )  = - m p  - - k x 2  + m g x  . 2 2 

Note that, in this example, the q vector  i s  one-dimensional, i .  e . ,  

q i t )  = Cs*(t)l = Cx(t)l 

and the equation of motion i s  given by 1.19'  

& =  - k x + m g  

recognized a s  Newton's law (r = ma). 

Example 1.3 Motion of two bodies subject to mutual gravitational force.  

The Lagrangian f o r  this system i s  given by 

1 1 
L = - rn I& l a  + - mJ&$ + 2 a - a  2 

\&a- %I ' 

where G i s  the gravitational constant and m a ,  mb a r e  the m a s s e s  of the two 

bodies. The q vector  in  this example i s  six-dimensional,  i. e . ,  

and the equations of motion a r e  given by 1.19', fo r  i = 1,6, which can be 

written a s  two 3-vector  equations, i. e., 

and 



0 r 

and 

X - 
m j ;  = - G ~ ~  -a 'b 

a-a a b 
IXa - & l 3  

The Lagrangian f o r  non-relativistic sys tems  whose forces a r e  derivable 

f r o m  a potential U which i s  a function of q = (q, ,Q,. . . , q N )  only, and not of 

4, can  be expressed a s  the difference between the kinetic energy K and the 

potential energy U, i. e . ,  

and can usually be written down by inspection. In fact,  this i s  how the ap- 

propriate  Lagrangian was found for  the sys tems  described in examples 1. 1, 

1 . 2  and 1 .3 .  

Example 1 . 4  Find the frequency of oscillation of a m a s s  m constrained to 

move in one dimension and connected to a rigid boundary by 

means of two springs in s e r i e s ,  with spring constants kl 

and ks. 

If we define x and y a s  the elongations of spr lngs kl and ka r e s ~ e c t i v e l y ,  

we have 

1 K = 7 m ( 2  + 9)' 

1 U = 7 (kl xa + ka ya) 

and therefore 

1 1 a 
L = - 2 - ?I(& + $)" - 7 (k, x + & ya ) , 



The CJ vector  f o r  this system i s  two-dimensional and given by 

The equations of motion a r e  

and 

Subtracting the two equations we have 

kl x = k2 y 

which if we substitute i n  1.25a yields 

where 

The sys tem therefore behaves a s  if the m a s s  was connected by means of 

a single spring with a spring constant k given by 1.27b. The frequency of 

osclllatlon 1s then given by 

u: = ( k / m )  1 /2 

a s  can easily be v e r i f ~ e d  by substituting x( t )  = x(0) e-lLt into equation 1.27a. 

The f o r m  of the equations of motion, i. e. , 1.19: suggests that 

should consider the quantity aL/aG: a s  the momentum associated with the 

coordinate q..  In part icular ,  since 

and, in the c a s e s  where 

L(y.4, t )  = K(4, t )  - U(9,t)  . (1.24)  

the quantity on the right of 1 .28 i s  identifiable a s  the fo rce  affecting the 

coordinate ql, i. e . ,  

and since, f r o m  Newton's laws 



we have 

The identification of aL/a{ .  a s  the momentum associated with the 

coordinate q. survives generalizations of equation 1.28 and we a r e  led to define 

a s  the generalized momentum p. associated with the coordinate gi, a s  
1' 

in general .  

Example 1.5 Motion of a part ic le  of m a s s  m in a two-dimensional 

potential. 

1 
Kinetic energy: K = m(ka + qa)  

Potential energy: U(x, y )  

Consider now a transformation to polar coordinates 

x = r cos 8 

y = r sin 3 

in t e r m s  of which we have 

k =  i. cos 9 - r e  sin 8 

? =  i. sin 9 r e  cos 3 

and therefore 

1 
Kinetic energy: K r - m[i2 + (r8) 'J 

2 

Potential energy: U = U ( r  cos e, r sin ?) s V ( r ,  3) . 

The Lagrangian i s  then glven by 

1 
L ( r ,  a,;, 6 ,  t )  = - m[;" + ( r  - V ( r ,  4) . 2 



The 9 vector f o r  this sys tem i s  two dimensional, i .  e . ,  

q~ ( t )  = r ( t )  qa ( t )  = 3(t) . 

The  equations of motion a r e  then 

o r  

d av - dt  ( m i )  = - - a r  + m r  

and 

We see that the quantity m i  in equation 1.34 mus t  be associated with the 

( l inear)  momentum along the radial  direction, i. e . ,  

a L pr = mi- .: - 
a i  

Note that - aV/ar  i s  the p roper  expression of the radlal  fo rce ,  while the 

t e r m  m r  8" properly accounts fo r  the centr ipetal  accelerat ion (centrifugal 

fo rce) .  Similarly, the quantity - aV/aa can  be identified a s  the torque 

applied to the part ic le  by the potential, since 

where 

i s  the (two-dimensional) force derivable a s  the (two-dimensional) gradient of 

the potential. Therefore the quantity 

of equation 1.35 can now be  identiiied with the angular momentum about the 

origin. Note that i n  this example the kinetic energy, a s  given by equation 

1.33a in polar coordinates, i s  a function of both ?J and q. 

Example 1.6 M M .  

Recall that the force on a charge qc' moving in an electromagnetic field i s  

given by 

 here i s  a problem with symbols because q i s  reserved for  the g e n e r a l ~ z e d  

coordinates in  the Lagrangian. 



where g ( ~ ,  t) and e(2, t )  a r e  the electr ic  and magnetic fields respectively a t  

(2, t). Note that the electr ic  and magnetic fields a r e  not constituted by s ix 

independent sca la r  functions (8x,8 ,dZ,Bx,B ,BZ), since they mus t  satisfy 
Y Y 

Maxwell's equations. In particular,  we can define a sca la r  field q(if, t) and 

a vector  field &(x, t) ,  such that 

4 x ,  t )  = - - a -- 
and 

a 
B(x, t )  = - x A(&, t )  - air 

see, fo r  example, reference 1 , chapter 2 1. 

The appropriate  Lagrangian f o r  thls sys tem i s  given by 

1 
L(x,&,t) = - 2 m l & P  - qcC"a(x, t )  - &.A(&, t ) l  . 

a s  can b e  shown direct ly .  In part icular  

Using equations 1.37a and 1.37b we then have 

Taking the part ia l  with respect  to &, we now have 

and therefore 

We now have, f r o m  the condition for  stationary action 

and therefore,  f rom equations 1. 39  and 1.41, we obtain Newton's law of motion, 

corresponding to the Coulomb force, i. e . ,  

m g  = q c [B(x, -- t )  + & x g(5, t ) ]  

'note that 



Note now, that the appropriate momentum associated with the motion of 

the charged part ic le  through the electromagnetic field i s  given by (equation 

1.40 

p = m &  + 9, &(z, t)  . (1.43)  

This resu l t  may seem a litt le strange, because we usually consider the 

momentum of a part ic le  a s  something intr insic  to the motion of the part ic le ,  

i. e.  , p = m i .  - Equation 1.43, however, should be viewed in the s a m e  way a s  

the statement in Newtonian mechanics that the energy of a part ic le  i s  the sum 

of a kinetic and potential par t ,  i. e . ,  

If the part ic le  moves subject to  fo rces  derivable f r o m  the potential U(5) 

(i .  e . ,  conservat ive) ,  E remains constant even though an exchange may be  

1 taking place between the klnetic p a r t  of the energy [ i .  e. , 7 m \ & / '  ] and the 

potential p a r t  of the energy [i. e . ,  U(x)]. A picture that may be helpful a t  

thls point i s  that of a ( loss less )  pendulum In a gravitational field. The system 

(pendulum) moves, continuously exchanging kinetlc f o r  potential energy in a 

periodic manner .  

Note that in  the absence of a potential, the energy possesses  only a 

1 kinetic par t  and i s  equal to E = 2 rn1$)2. We should think of the momentum 

p, a s  given by equation 1.43, in much the s a m e  manner ,  a s  the s u m  of two 

parts ,  a kinetic and a n  electromagnetic. In the absence of an electromagnetic 

field, the momentum i s  only kinetic and given by 2 = &. In the presence of - 
an electromagnetic field, however, the momentum i s  composed of two par t s  

which mus t  be considered togethe-r in describing the motion. In part icular ,  

by analogy to mechanics where, if the energy i s  conserved, the 3 of the 



kinetic and potential p a r t s  i s  a constant, a lso in  the c a s e  of the motion of a 

charge in an electromagnetic field, if the momentum i s  conserved, the (vector)  

sum of the kinetlc and electromagnetic par t s  i s  a constant. See problem 1.5. 

It  should a l so  be noted that in writing the Lagrangian of equation 1.38 

we have assumed that the s c a l a r  field c ; ( ~ ,  t) and vector  field A(x, t )  a r e  

externally imposed. In part icular ,  we have not taken into account the effect 

of the motion of the charged part ic le  itself on ~ ( 2 ,  t )  and &(z, t ) ,  which you 

will recal l  ( reference 1, chapter  21) a r e  given by 

and 

where p (x, t)  and i (x, t )  a r e  the external  charge density and cur ren t  density, 
C - C - 

connected through the charge conservation equation 

a - a 
at pc(z, t )  + - ax c (x, - t )  = o , 

and t '  i s  the t ime in the past ,  spaced f r o m  the presen t  t by the time i t  

takes light to t ravel  the distance Ix - 5'1, i .  e . ,  

where c i s  the speed of light, not to be confused (hopefully!) with the sub- 

sc r ip t  c in q c, pc, ic which denotes charge. # 

1. 2 Conservation laws. An immediate benefit can be derlved by expressing 

the equations of motion of the coordinates of the system by means of the 

condition of stationary action. In part icular ,  equation 1 .19 '  can be  re-wri t ten 

a s  

F r o m  this equation, we see  that if the Lagrangian does not explicitly contain 

a part icular  coordinate q;, the corresponding momentum pi s a ~ / a { ;  

' ~ a v e  you ever  wondered why the fields s(5, t)  and &(x, t )  mus t  wait fo r  

light ( !  ? )  to come f r o m  the charyes and cur ren ts?  



i s  concerned.  In other  words,  if L(q, 2, t )  does not explicitly depend 

- BL = 0 , 
aqj 

then 

and therefore  

It is c l e a r  that the d i scovery  of the conserved momenta  depends In a 

rather c r u c i a l  way on the coordinate s y s t e m  that i s  chosen to e x p r e s s  the 

Lagrangian.  A v e r y  dramat ic  i l lus t ra t ion  of this effect  i s  afforded by our 

previous example  1.5 of the p a i r  of gravitat ing m a s s e s .  In that  case  the 

Lagrangian (which we rewr i te  h e r e )  

depends on a l l  s ix  of the coordinates (xa. ya, za, x,,, yb, z b )  and i t  

would appear  that  no momenta a r e  conserved.  While i t  i s  t rue  that no 

momenta assoc ia ted  with any of these s i x  coordinates a r e  conserved,  this 

Lagrangian in  fact  conceals  six conserved  momenta,  th ree  l inear  momenta 

and three  angular  momenta.  See problem 1.4.  

In the preceding d iscuss ion  we saw that if the Lagrangian  does not 

depend on a par t icu la r  coordinate qi, the assoc ia ted  momentum pi i s  

conserved.  We sha l l  now show that  if the Lagrangian does  not depend 

on - t ime ,  the energy  of the s y s t e m  i s  conserved.  Now if the Lagrangian 

does not have an explicit eime dependence, we mus t  have 

and therefore  

Along the path of s tat ionary action, however,  we have that 



and finally, combining the two, we have 

Consequently, if a L / a t  = 0 ,  we have along the path of s ta t ionary  act ion,  

a L 9 . - L = const. (1.49) 

Now note that  the kinet ic  energy  m u s t  always be a quadra t ic  function 

of the ki. i. e .  

( s e e  for  example re fe rence  2, 451, and we must  therefore  have 

a L 4 . -  a q  - - 2K 9 (1 .51)  

where  we have a s s u m e d  that the potential  energy  does not depend on 9 , 
i . e .  U = U(q) only. With that r e s t r i c t i o n  we a l s o  have 

and therefore  

a L 9 . --7 - L = K ( q ,  9) + U(q)  . 
a Ll 

(1.52) 

We can now identify the constant of equation 1.49 with the e n e r g y  E. 

Therefore ,  if a L / a t  = 0, then along the path of s ta t ionary  action 

Again, a s  in the c a s e  of the general ized momentum a L l a k i .  the validity 

of equation 1.53 i s  quite general .  



1. 3 The Hamiltonian. The Lagrangian that was used to derive the 

equations of motion in the fo rm 1. 19 is a function of 9, 3 and t. Thase 

equations a r e  second order  differential equations ( see  examples 1 . 2  - 1 .5)  

because K, the kinetic energy, and a s  a consequence L,  the Lagrangian, 

a r e  quadratic in the components of i. This i s  often undesirable and we 

a r e  motivated to derive a formalism that yields equations of motion that 

a r e  f i r s t  o rder  differential equations. Alternatively we might like to 

express  the evolution of the sys tem in t e r m s  of the coordinates qi and 

and the momenta pi = a L / a $ ,  instead of the coordinates qi and the 

velocities hi which must be specified a s  initial conditions to solve the 

problem. Both of these objectives can be realized by means of a 

Legendre transformation f rom a function of the independent variables  

(3, 9, t )  to the variables  (q, 2, t )  a s  follows. 

The total' differential of the Lagrangian, which is a function of 9, 

9 and t,  can be written a s  

Substituting the momenta pi = aL/aGi we have 

The second t e r m  can be re-wri t ten as 

so that 

We therefore see  that this i s  the total differential of a function, which we 

will denote by 

N - which i s  a function of (q, 2, t )  and which sat isf ies  the equations 
bl 



Now note that along the path of s ta t ionary  act ion 

d 
(1.58) 

s o  that the equations for  the e x t r e m a l  can be wr i t ten  a s  

The function H = H (5,  2, t )  i s  cal led the Hamiltonian of the s y s t e m  and 

can be seen  to be a constant of the motion if aH/a t  = - a L / a t  = 0. See 

equation 1.53 and re la ted  discussion.  

It should be emphas ized  that  the (Legendre)  t ransformat ion  f r o m  a 

function of (5, 9, t )  to a  function of (2, p, t ) ,  i . e .  f r o m  the Lagrangian 

to the Hamiltonian does not depend on the assumption that  q ( t )  i s  any 

par t icu la r  path o r ,  fo r  that m a t t e r ,  the path of s ta t ionary  act ion.  I t  i s  

a  s imultaneous t ransformat ion  of the dependent and independent var iab les .  

Equations 1.57 w e r e  derived without the benefit of E u l e r ' s  equations 

(equations 1.58).  Now, if in  addition we impose  the conditions of E u l e r ' s  

equations, we obtain equations 1. 59, cal led the canonical  equations,  for 

q ( t )  and p ( t )  along the c lass ica l  path of s ta t ionary  act ion.  These  a r e  

f i r s t  o r d e r  equations which we can solve to obtain the s y s t e m  evolution, 

given q(o) and ~ ( o ) ,  i . e .  the coordinates and associated momenta at  

a n  inatant  in  t ime .  

1.4 Poisson  bracke ts  and constants  of the motion. F r o m  the preceding 

discussion (sect ion 1.2) ,  we have s e e n  that if the Lagrangian does not 

depend explici t ly on a par t icu la r  coordinate qi, then the corresponding 

momentum p. i s  conserved along the path of s ta t ionary  action, i . e .  i s  

a  constant of the motion. S imi la r ly  if the Lagrangian i s  not an explicit 

function of t ime ,  then the energy  i s  a  constant of the motion. These  two 



s ta tements  provide us with a v e r y  powerful means  of knowing ahead of 

t ime (without solving for  the path of s ta t ionary  act ion) whether the momenta 

assoc ia ted  with the corresponding coordinates a r e  conserved,  and whether 

the energy  i s  conserved.  They  do not allow, however,  fo r  an explicit 

scheme that  would te l l  us if a par t icu la r  quantity i s  conserved.  In fact  

we have a l ready  s e e n  that  i t  may well be that the momenta  associated with 

a n  al ternative choice of coordinates a r e  conserved,  in  a manner  that  might 

not be obvious f r o m  some original  choice of coordinates for  the Lagrangian.  

We therefore  s e e k  a genera l  method for determining whether a par t icu la r  

quantity i s  conserved  o r  not. 

Consider a quantity F = F(q, p, t ) ,  which i s  s o m e  function of the 

coordinates,  the momenta  and t ime.  Then 

and along the path of s ta t ionary  act ion ( s e e  equations 1. 5 9 ) ,  we have 

o r ,  in  vec tor  notation 

The quantity in  the b r a c e s  i s  cal led the Poisson  bracket  of the quantity 

F ( q ,  p, t )  and the Hamiltonian, and denoted by 

The total t ime derivat ive along the path of s ta t ionary  act ion i s  then given by 

This  equation provides the means  of determining whether F ( 9 ,  2, t )  i s  a 

constant of the motion. In par t icu la r ,  if F i s  not a n  explici t  function of 

t ime  ( i . e .  a F / a t  = 0 )  and if the Poisson  bracke t  {H,F] i s  ze ro ,  F i s  

a constant of the motion. 



1. 5 The assumptions of c l a s s i c a l  mechanics 

The preceding f o r m a l i s m  provides a means  by which the evolution of 

any  mechanical  s y s t e m  can be determined.  F r o m  the canonical equations, 

for  example,  the coordinate vector  q ( t )  and the assoc ia ted  momentum 

vector  p ( t )  can be obtained for  a l l  t i m e s  t ,  given the i r  ini t ial  values 

q( t i ) ,  p ( t i )  a t  s o m e  t ime t = t.. The result ing solution d e s c r i b e s  

a path through the 2N-dimensional  q - p space,  cal led p h a s e  space ,  

expressed  paramet r ica l ly  in  t e r m s  of t ime.  

Implici t  in  this  descr ip t ion ,  you will recognize,  i s  that, 

(i) i t  i s  possible to specify both the coordinates and momenta 

of the s y s t e m  at  s o m e  t ime ti (o r  any t ime for  that m a t t e r ) ,  

o r  

( i i )  that the concept of a path through phase space ,  along which 

the s y s t e m  evolves,  i s  a valid one. H 

Interest ingly enough, the validity of t h e s e  assumpt ions  i s  i n  fact  not 

supported by exper imenta l  evidence, even though they may appear  intuitively 

self-evident .  Our  c u r r e n t  views of the workings of nature a r e  consistent  

with the notion that the evolution of a s y s t e m  proceeds  through a region 

in  phase space ( a s  opposed to  a well-defined t ra jec tory)  whose joint 

extent (e .g .  root  mean  s q u a r e )  along each  coordinate-momentum conjugate 

p a i r ,  a t  any one t ime ,  can never be l e s s  than a cer ta in  minimum. If we 

' ~ h e s e  two assumptions a r e  evidently not independent, for if we specify 
q ( t )  and p ( t )  a t  the s a m e  t ime then a path would be definable. - 



w e r e  to look c lose ly  enough a t  a port ion of the s y s t e m  evolution, in  the 

p a r t  of phase space  along, say ,  a par t icu la r  conjugate coordinate-  

momentum p a i r ,  we might s e e  something like the sketch below 

where  AgiApi 5, fixed constant. 

Class ica l  mechanics  i s  then to be considered a s  applicable to the 

range  of phenomena for  which the finite extent of the region in phase space 

along the evolution of the s y s t e m  i s  negligible. This  i s  a lmos t  always 

the c a s e  i n  the macroscopic  world,  where  c lass ica l  mechanics and the 

concept of a path a r e  valid approximations.  It i s  found to be inadequate 

i n  the microscopic  world of nuclei, a t o m s ,  e lec t rons ,  photons, e t c . ,  fo r  

which we need a different  f o r m a l i s m ,  the f o r m a l i s m  of Quantum Mechanics.  
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Problems  

1. 1 Compute the value of the action integral of equation 1. 12 i o r ,  

a .  The parabolic t rajectory of equation 1. 14. 

b. A circular  a r c  that sat isf ies  the initial conditions. Let the 

radius be  a variable and compute the integral a s  a function 

of the radius of curvature.  

c.  A half-cycle sine wave, a s  a function of the period. 

d. Use any other curve of your choosing. 

e.  Choose a part icular  value for  vo and 8,, in  example 1. 1, 

plot the four curves and compute the numerical value of the 

action in each case .  

1 .2 Show that the Lagrangian L(cJ,~, t )  i s  not uniquely defined through the 

equations of motion and the principle of stationary action. In part icular  

show that the al ternat ive L a g r a n g ~ a n  L 1 ( q , 4 ,  t ) ,  given by 

where a i s  any constant and G is  any function of q and t ,  yields the 

s a m e  equations of motion. 

1.3 Express  the kinetic energy of a single part ic le ,  i .  e . ,  

1 K = - m l G r  
2 - 

in ( i )  Cartesian coordinates, i .  e . ,  

x = (x,Y, 2)  - 

(ii) Cylindrical coordinates, i .  e.  , 

where 

x = r cos@ , y = r s i n @ ,  

and 

( i i i )  spherical  polar  coordinates 

x = ( r , @ , e j  , - 

where 

x = r c o s q  s i n g ,  y = r s i n $  s i n g ,  z = r c o s  2 . 



1 .4  Express  the Lagrangian of example 1.3 in t e r m s  of the separation 

between the two m a s s e s  

X --& - X a ,  - 

the position of the center  of m a s s  

and the total and reduced m a s s e s  

(i) Show that the th ree  components of the momentum of the center  of 

m a s s  a r e  conserved, i .  e . ,  

(ii) Express  the vector  z in t e r m s  of spherical  polar  coordinates 

and show that the angular momentum about the z-axis i s  con- 

served.  Can you show that the other two components of angular 

momentum a r e  a l so  conserved? 

1.5 Express  the Lagrangian zorresponding to the motion of a charged 

part ic le  in an electromagnetic field (equation 1.38 ) i n  s p h e r ~ c a l  polar 

coordinates. 

( i )  Compute the angular momentum p + ,  corresponding to the 

azimuthal angle 9 .  

(ii)  Show that if the s c a l a r  potential m(5,  t )  and the vector potential 

A(x, t )  a r e  azimuthally symmetr ic ,  pb of par t  ( i )  i s  conserved. -- 
( i i i )  Discuss the "paradox" described in reference I ,  section 17-4. 

1.6 Assuming that 

L = K(q,q)  - U(q) 

and that K i s  a quadratic function of i, i .  e . ,  

show that 



1.7 Derive the Hamiltonian for  the motion of a charged par t ic le  i n  a 

constant e lec t romagnet ic  field. 

1.8 F r o m  the defining equation for  act ion (equation 1. 5 )  

d I  a .  Compute - 
dt 

b. E x p r e s s  the act ion in tegra l  i n  t e r m s  of the Hamiltonian and 

i t s  var iab les .  

c.  Compute dI a s  a total  differential  and f r o m  i t  the par t ia l  

der iva t ives  

d. Show that act ion i s  a re la t iv i s t ic  invariant  (Hint: consider  d I )  

1 . 9  Using the definition of the Poisson  bracke t ,  show 

a .  ( f , g l  = - Cg,fl  



II. WAVE MECHANICS 

2.1 An interference experiment. 

Consider a monochromatic light source a t  the origin (a  l a s e r  f o r  example), 

of wavelength 1, whose output i s  incident on a plate PI a t  z = zl which h a s  

two holes a t  x = f A/Z and y = 0. Consider a l so  a second plate Pa a t  

z = z~ = zl + L, paral le l  to PI. See figure 2. 1. 

F igure  2. 1. An interference apparatus. 

If we expose a photographic plate placed on Pa we will record a com- 

plicated pattern I(x, y, zs )  ar is ing f rom the interference,  a t  each point (x, y )  

on Pa, between the waves emanating f rom each of the two orif ices  on PI. 

More specifically, the total amplitude (electr ic  field) a t  a location (x, y) on 

Pa i s  given by 

where E+ and E- a r e  the amplitudes of the waves f r o m  each of the or if ices  

a t  x = + a /2  and x = - a /2  respectively. The resulting intensity I ( x ,  y, en), a 
o r  fo r  low light levels,  the probability of detection P(x, y, z2 ), i s  then given 

by 
;:< 

I&(X, Y, ~a ) a P(x,  Y, ze) " E (x, Y, ze ) E(x, Y ,  22 , (2 .2 )  

where a superscr ipt  ' denotes the complex conjugate function. 

These  resul ts  can be derived f rom Maxwell's equations which a l so  pre -  

dict  that  the shape of I (x, y. zz) i s  independent of the light intensity; a resu l t  a 
a l so  borne out by experiment. In other words, if we define 

where W i s  the power output of the source, the function f(x, y, zz ) i s  indepen- 

dent  of W. 



Example 2. 1 

Compute the light interference pattern ar is ing in the apparatus  of 

figure 2.. 1. 

Both E-i-(_f, t )  and E- ( r ,  t) ,  f o r  z, < z < za,  a r e  spherical  waves which, 

f o r  dis tances Ik - r+( and I r  - r-1 much l a r g e r  than the dimension ( say  

d iameter )  of the or if ices ,  can be written a s  

i(kIf - ' + I -  u t )  

r - r  - -+ 1 
and 

where a+  and a -  a r e  complex constants (with units of length) and Eo i s  the 

amplitude of the electr ic  field a t  some reference point to the lef t  of PI 

[say a t  (0, 0, z;)]. Then the intensity a t  Pa i s  given by equations 2. 1 and 

2.2, o r  

I Q ( x , y , z a ) "  IE+(X,Y,Z,) + E - ( x , y j 3 ) I a  . 
and expanding the square we have 

Il (x, y, 2s) o E+ (x, y, ze) E+(x, Y,  za ) + E- ' (x, Y, 22)  E-(x, Y, ) 

The f i r s t  two t e r m s  can be identified a s  the intensities of the waves f r o m  the 

x = t k / Z  dnd x = - k/2 or if ices  r e ~ p e c t i v e l y  that w e  would obaerve ueparately, 

i. e . ,  fo r  each one a s  if the other one was plugged up. The c r o s s  products 

in the third and fourth t e r m s  give r i s e  to the interference,  i .  e . ,  

Substituting f o r  the expressions of E+ and E-, we have 

and, f o r  smal l  x/L,  y /L ,  I / L ,  

- ikx(I /L)  * ikx(fi/L) 
+ a- a+ e 

I. (x, y, 2 2 )  EOa int  I (2.4d)  
L~ + (I /2)= + x2 + y2 



which holds to cubic o rder  in x /L ,  y / L  and A/L. If we now make the sub- 

s titutions 

we have, 

Since E: i s  proportional to the source s t rength W, the l ineari ty  of the 

interference phenomenon (equation 2 . 3  and related discussion) can be seen. 

This behavior of light i s  well documented and does not appear surpris ing 

being attributable to the accepted wave nature of light. What i s  perhaps l e s s  

amenable to intuitive explanation i s  that if we replace the monochromatic light 

source with a source of monoenergetic electrons, the resu l t  i s  essentially the 

same.  A s imi la r  interference pattern I (x, y, z ~ )  will appear  on a suitable 

detector plate, with a possible change in scale  depending on the energy of the 

electrons and the dimensions A and L of the interference apparatus. This  

interference pattern, properly normalized a s  we did for  light in equation 

2 . 3 ,  remains unchanged a s  we decrease  the intensity (electrons per  second) 

of the source,  even to the point when a t  any one t ime only one electron i s  in 

flight between the source and the detector  plate Pa. Of course,  a s  we de- 

c r e a s e  the source electron cur ren t  we will s t a r t  detecting individual e lectrons 

arr iving a t  PB.' Nevertheless, the count r a t e  a s  a function of x and y would 

be proportional to the interference function I (x, y, ze ) .  The inescapable con- 

clusion i s  that, just l ike light, a single electron behaves a s  a wave with a n  

amplitude $(x, t )  such that the probability of detecting an electron a t  a location 

x i s  given by - 

The interference pattern then a r i s e s  because, a s  in the c a s e  of light, the 

amplitude on the detector  plate i s  a superposition of the amplitudes of the 

waves f rom each of the orifices, i. e. 

'The situation is ,  of course,  no different f r o m  that of l ight  where, if we de- 
c r e a s e  the light intensity, we would replace the photographic plate with a 
photomultiplier tube and count individual photons. 



2.2 Wave packets. 

A plane wave of wavelength X can be represented by an amplitude 

u(5, t )  given by 
it& . 5 - lu(&) t j  

u(z, t)  = U(k)e 

where k i s  the wavevector along the direction of propagation, whose magni- 

tude i s  given by 

zlr k = lhl = - X '  ( 2 . 9 )  

and w(&) i s  the angular frequency associated with the wavenumber k. 

v 
planes of constant phase 

Figure 2 .2 .  Plane wa've of wavenumber k. 

The constant U(k) can be complex and has a modulus whose square i s  

proportional to the intensity of the wave, i.  e.,  

Using a superposition of waves of this type i t  i s  possible to synthesize 

any distribution f(5,b) of wave amplitude in space, a t  an instant in time 

where, from the properties of the Fourier  transform (see Appendix B )  the 

# 
function F(k, h ) is, given by 

 here i s  a variety of conventions that different authors use concerning the 
(1 /Zn) factor in the Fourier integrals. The convention adopted here i s  that 
the 2 r  i s  used to cancel the "units" of radians in the wavenumber k o r  the 
angular frequency m. 



Moreover, i f  the frequencies u(&) a r e  known, the evolution in  t ime of the 

wave amplitude f(5, t )  i s  now completely described by 

-=a 

It i s  noteworthy to observe that even though waves of the type described 

by equation 2.8 a r e  a i f o r m l y  distributed in  x, they can be  superimposed to 

synthesize distributions that a r e  localized in  some region of space 

Example 2.2 

A wave amplitude a t  t = 0 i s  given by (one dimension) 

i' 
for  1x1 < a /2  

f(x)  = (2. 14) 

0 f o r l x ) >  a /2  . 

Find the distribution of wavenumbers contributing to that function. 

Using the one dimensional form of equation 2.  12, we have 



Consequently, using the one dimensional f o r m  of equation 2. 1 1 ,  we have 

ikx The l inear  superposition of waves e of equation 2. 16 in te r fe res  

constructively fo r  1x1 < s / 2  to yield and destructively f o r  1x1 > a/2 to 

resu l t  in  complete cancellation outside. 

The symmetry i n  the pa i r  of equations 2 .  11 and 2 .  12 should be noted. 

It  suggests that i t  i s  equivalent to think of F(k, t )  a s  the distribution of 

wavenuinbers required to synthesize f (5 ,  t) ,  and to think of f(2, t )  a s  the 

amplitude distribution in &-space required to synthesize a part icular  super-  

position F(k, t) of wavenumbers & a t  t ime t. 

Parseva l ' s  theorem (normalization). The square of the modulus of 

f(x, t )  is a measure  of the intensity of the wave a t  (5, t ) ,  i. e . ,  

Conversly, the square of the modulus of F(&, t )  i s  a measure  of the intensity 

of the wave to be  associated with the wavenumber k a t  t ime t ,  i. e . ,  

A s  a consequence of P a r s e v a l ' s  theorem (see  Appendix B, $14), we have 

which i s  a plausible statement since the total intensity in  5 -space  mus t  be 

equal to the total intensity in  &-space. We a r e  talking about the same 

wave ! 

If the integrals  in  equation 2. 1 9  exist,  we can normalize f(5, t )  and 

F(k, t )  such that 



- F(k, t )  
F(k, t )  = 

[($ 7 IF., . ) I  d3k 

- m 1 l" 

where the two denominators a re ,  of course  the same.  We then have 

Expectation values. If the distributions f(2, t )  and F(k, t )  a r e  localized 

in 5-space  and k-space  respectively, we can compute the mean position 

(center of "mass" if you will) of a superposition f(5, t )  of wave amplitudes by 

weighting each coordinate 5 with the intensity I (x, t),  i. e . ,  x- 

which, in general,  can be a function of time. The interchange of 5 and 

a! 
f*(5, t )  i s  legal since 5 f8(5, t )  = f (x, t )  2. It was done for reasons that will 

be apparent in a moment. The wave distribution f(2, t) in equation 2 .  23  and 

2 . 2 3 '  have been normalized such that 

If not, the expectation value of x can be computed by means of 

Similarly, we can compute the mean wavenumber of the corresponding 

superposition F(&, t) of wave amplitudes, i. e., 



which, in general, can also be a function of time. The interchange of 

* 
F (lc, t) and k is, again, obviously legal. The quantities (5) and (k) are  

called expectation values of 5 and k respectively. In fact, the expectation 

values of any function of 5 or k can be computed in a similar fashion. i. e. ,  

( Q k ) )  = f*(z,t) *(s, t) f k ,  t)d35 

and similarly 

The functions f(5, t) and F@, t) in equations 2.. 24, 2 .25  and 2 . 2 6  a re  assumed 

normalized to unity in the sense of equation 2.22. 

An interesting symmetry arises between the expectation values of 5 and k 

from the fact that f(2, t)  and F(&, t) a re  Fourier transform pairs. Consider 

equation 2. 24', which we re-write below, 

The quantity in the brackets can be computed in terms of f(5, t)  using the 

differentiation property of the Fourier transform (Appendix B , problem B.. 4). 

In particular 

where 
a a a 

(2.28) 

denotes the gradient in 5-space. Substituting equation 2 . 2 7  into 2.24' we have 

where we have interchanged the order of integration. The quantity in the 
* 

braces we recognize a s  f '.(z, t) and therefore 

The quantity -i 3/85 i s  an operator that operates on the function to i ts  right. 

In other words we f i rs t  compute 



and then the expectation values of 

to obtain 

(k) = ^e (kx) + ^e (k ) + sz (kZ) . 
X Y Y (2.32) 

Equation 2 .  26 is shorthand for equations 2.30a, 2.30b, 2. 30c, 2.31a, 2. 31b, 

2.31c, 2.32. 

The result of equation 2.29 can be generalized so that the expectation 

value of any function of k can be computed f rom the distribution of wave 

amplitudes in 5- space. In particular, the expectation value of equation 2 .26  

can also be computed in te rms of 

Corresponding formulae also apply when computing expectation values 

of 5 using wave amplitudes in k-space. By similar arguments we can show 

that if 

f(z, t) eqik.lf d3% . 
then 

and, in general, 

where 



denotes the gradient in  k- space. 

Note that 

k- space 

(2.37) 

- = -1 - - k ,  a 5  

where the c a r e t  (") denotes the corresponding operator .  

Localization. In addition to asking where a wave packet is,  in 5 -space  

o r  k-space,  by means of the expectation value of 5 o r  k_ respectively 

(equations 2 .23 ,  2 . 2 4  o r  2.29,  2.34), we can find out something about the 

degree  of localization of the packet in  &-space o r  k -space  by computing the 

mean square deviation f r o m  (&) o r  ( k )  respectively. To  simplify the thinking, 

we will r e s t r i c t  the discussion to one dimension. The extension to higher 

dimensions i s  s t raight  forward. 

Assume that a wave packet has a wave amplitude in position space given 

by f(x) a t  some initial t ime t = 0, such that 

and 

( k )  = 2T I $(k) k F ( k ) d k  = ko , 

where 

~ ( k )  f(x) e-ikx dx J 
and where f(x) has  been normalized such that 

To  m e a s u r e  the spread of the wave packet we now compute the mean square 

deviations about xo and k, respectively, i. e . ,  ( s e e  equations 2.25 and 2.26)  

 AX)^ E ( ( ~ - ~ ~ ) a )  = f*(x) ( ~ - q ) ~ f ( x ) d x  I (2.41a) 

and 

( ~ k ) ~  = t (k  6 kd)= ) = (2.41b) 



~f we now define (q = (x) ,  ko = (k)) 

we have (see Appendix B, $10) 

where 

-m 

and therefore 

(AX)' 1 xa Ig(x)12dx 

and 

Making use of the operator k for x-space, we can also write equation 2 .46  as 

or, integrating by parts assuming that g(*m) = 0, we have Cg8(x) s dg/dx] . 



subject to the normalization condition 

Suppose we now make the transformation 

where (Y i s  a r e a l  constant. If a 1, the effect of this transformation is to 

generate  a function g(x) whieh i s  nar rower  (more  localized) but t a l l e r  such that 

The spread of g ( x )  in  x-space i s  given by 

and s imilar ly 

o r ,  equivalently 

1 A';; = - Ax 

Consequently, we can localize a wave packet ~ ( x )  to a smal le r  region i n  x-xpace, 

but only a t  the expense of localization in k-space. What is interesting, 

however, i s  that the joint spread Ax- Ak remains unaltered by such a t ransfor-  

mation, i. e. , 

A X A ~  = AZ-AK (2.53) 

and i s  therefore only a function of the shape of g(x). 



Example 2.. 3. Consider the wave packet 

Find the root mean square deviations in  x-space and k-space. 

Normalization: 

and therefore 

Note that (x) = (k) = 0. Therefore 

and 

and consequently, Ax = a / m  and' Ak = n / a .  Note that the joint spread 

Ax. Ak = ( 3 / 1 0 ) l / ~ ,  i s  indeed independent of a. 

Does there exis t  a minimum joint spread?  In other  words, does there 

exis t  a function g(x) such that 

Substituting f rom equations 1. 45 and 1. 48, we have 

subject to 



g(*m) = 0 and Ig(x)Iadx = 1 

- m 

Now g(x) i s  in general- a complex function which we can write a s  

g(x) = ~ ( x )  ei4(x) . (2 .  36) 

It i s  easy to see, however, that for any function u(x), the functional 

~ ( u , ~ ]  attains i t s  minimum if p l (x )  = 0, o r  e ( x )  = To = const. The problem 

then becomes the minimization of 

subject to the constraints 

u(im) = 0 and ua (x) dx = 1 , 
- a) 

with respect  to a l l  r e a l  functions u(x). Now, the minimization of l? (u,eo] ,  

with respect  to u(x), subject to the normalization integral, is equivalent to 

the minimization of 

with respect  to u(x) and X. This i s  evidently so, since the condition for  a 

minimum with respect  to X, i. e. , 

a 
J ~ E U I  = 0 ,  

i s  in  fact the normalization condition. 

This problem can be solved using the methods of the calculus of variations. 

See appendix A. We cannot use the Euler equation, however, since our func- 

tional does not involve a single integral but ra ther  the product of two integrals 

Nevertheless, the same ideas apply and we seek the solution u(x), such that a 

small  variation u(x) + eq(x) leads to a second order  change in J(u}, i. e.  

6J= J{u+cq]  - ~ { u ]  = O(ea) . 

The function en(x) must  be small, i. e. e lq(x)lu(x) 1 << 1, and u(x) + cq(x) must  

also satisfy the boundary conditions a t  + m ,  i. e. 

The resulting functional J i s  then given by 
1 



- i J T e  dX} + H. O.T. 
-a, 

Note that the sum of the f i r s t  two t e r m s  a r e  equal to J (u]  and that, X 

Therefore 

6 J = .TX{u+e73 - JX[u3 

where we have substituted 

(Ax, = [ xa ua (x )  dx (2.61a) 

and 

Since 

where 

65 mus t  be ze ro  to f i r s t  o rder  in E, for  a l l  (x), we must  have '1 

the boundary conditions on u(x) a r e  given by equation 2 .  58. 

Equation 2 .  62 can be simplified by a change of variables 

-1/2 5 z ax and v(<)  = a u(x) , (2.63) 

[note that va (5)  d5 = ua (x) dx] to yield 

a 

Choosing 

we have 

v S 1 ( a  + (a - s ~ ) v ( < )  = o 



with the boundary conditions 

v(*m) = 0 and [ va ( , )d<  = 1 , 

and where the substitution was made 

X p = -  
Ax. Ak 

It i s  perhaps a trivial point but may be worth mentioning that the transformation 

given by equation 2.50 actually describes a different wave packet, whereas the 

transformation of equations 2 .  63 describes the same wave packet by means of 

different variables. 

Rewriting equation 2. 6 5  we have 

which, when we multiply with v(C) and integrate f rom -m to +oo, yields 

The integral on the right hand slde 1s just the normalization integral and equal 

to unlty. The integral on the lef t  can be integrated by par t s  to yield 

The two integrals a r e  given by 

and 

where we have substituted for  a in t e r m s  of equation 2 .  64. Therefore, f rom 

equation 2. 68 we have 

It  would appear that since IT = p/Z ,  the lowest value of the joint spread 

T l  I Ax.AK can be  obtained by setting p equal to zero. This ,  however, i s  

not so  because the problem posed by equation 2 .65,  combined with the con- 

ditions 2 .66,  i s  a n  eigenvalue problem. Perhaps a more  recognizable form 



might be 

where 

with v(rtm) = 0 and v(5) normalizable. Such problems have solutions fo r  selected 

values of the constant p = P called the eigenvalues of the problem and to each n 

of these there corresponds a unique function v (9) which i s  called the e- n 

function of the nth eigenvalue. 

The solution to this part icular  problem i s  given by 

p = 2 n + l  ; n = O , 1 ,  . . .  
n 

and 

where the hn(S) a r e  the Hermite polynomials, defined by 

and A i s  the normalization constant given by 

( s ee  Appendix C) .  

F r o m  this solution we therefore have that the minimum joint spread i s  

equal to p0/2, or, equivalently, 

Ax-Ak 2 1/2  0 
The wave packet corresponding t o ' t h i s  joint spread i s  then given by vo(<), o r  

[&(<) 11 and i s  seen to be a gaussian.  Any other shape wil l  necessari ly be 

characterized by a l a rge r  joint spread. 

There i s  a relatively simple way, using a trick, to prove that 

Ax. Ak 2 1 / 2  and that the wave packet that does i t  i s  a gaussian ( see  problem 

2. 6). The method of calculus of variations was used, however, because i t  i s  

instructive and leads to resul ts  which will be  directly related to subsequent 

material  in  quite a different context. 
0 



Suppose now that we ask for  the superposition of wavenumbers cor res -  

ponding to v, ( 5 )  ? Well we have that if 

then 

also a gaussian. Note that f o r  the minimum joint spread wave packet (see 

equations 2. 69a and 2.69b) we have 

What about u(x)? To t ransform f rom 5 to x (and K to k)  we need 

a = ( ~ k / A x ) ' / ~ ,  which has units of reciprocal length ( see  eq. 2 .  63 and 2.64). 

Note, however, that the joint spread IT = Ax- Ak is dimensionless and, a s  we 

in fact showed, can depend only on the shape of u(x), being invariant under a 

transformation that scales  the x-axis ( o r  the k-axls fo r  that matter).  See 

equations 2. 50, 2. 52 and 2. 53 and related discussion. Consequently, the 

solution to the minimization of Jl can only determine the wave packet to within 

such a transformation. If Ax i s  given, however, we have ( see  equation 2.63) 

and since Ak = RIAx and, corresponding to u,,, R = l /2 ,  we have 

Similarly ( see  Appendix B, 48), we have for  the Fourier  t ransform 

?4 
b b a ba - (d + bx) = - a(xa + a X) = - a(x + z) + 



and therefore 

The symmetry of equations 2. 78 and 2. 79 i s  noteworthy. 

Wave packets of definite x o r  k. What happens to the wave packet a s  we 

l e t  Ax - O ?  Well i t  will get narrower,  since i t  will have a smal le r  second 

moment, but it will also get ta l ler  since i t  must  remain normalized. See 

equation 2. 50 and related discussion. The packet in k-space, however, is 

getting wider and lower since Ax. Ak = constant. By way of example, compare 

the wave packet described by equations 2. 78 and 2 .79  where the dependence on Ax, 
+ 

Ak i s  explicit. As we pass  to the l imit  of Ax = 0 , uoa(x) has become in- 

finitely ta l l  and infinitely narrow, i. e.,  

a f o r  x = 0 
di- [uoa = { 

AX - O+ o for  x f o , 

remaining, however. normalized, i. e . ,  

which has the properties of these equations, namely 

6(x) = 
fo r  x f 0 

We can imagine 6(x) a s  an infinitely tall, infinitely thin, unit-area spike a t  the 

origin. I t  i s  called the Dirac delta function and described in Appendix D. 

Corresponding to this limiting u(x), the modulus squared of the original wave 

packet f(x) i s  given by ( see  equations 2.42 and 2.  56) 

 h he function 6(x) i s  called a "generalized function" because, s t r ic t ly  speaking, 

a function that i s  non-zero a t  only one point has a measure  of ze ro  and m u s t  

therefore have an integral which i s  zero in conventional analysis.  



where 

or ,  in other words, i t  i s  a l l  concentrated a t  x = (x)  = x,. 

What happens tc u o a ( k )  a s  Ax - o'? F r o m  equation 2 .  79, we see  that 

since Ak = ZlAx, Ak - m and uoa(k)  - constant. 

Consequently a wave packet that i s  completely localized in x-space i s  uniformly 

spread out in k-space. Conversly, a wave packet with a definite wavenumber 

(localized in k-space) i s  uniformly spread in x-space. 

These resul ts  a r e  quite general  and hold for  any shape f(x) o r  F(k) .  To illus- 

t ra te  this behavior, study example 2. 2 on page 2.5 and problem 2 .  3 a s  

a -o+. 

Commuting operators  and simultaneous localization. Our inabzlity to 

localize the wave packet in x and k simultaneously (i. e . ,  TT = A x  Ak f O), IS 

related in an important way to the fact  that the operators  > and Lk do not 

commute. This can be shown a s  follows. 

Note, f i r s t  of all ,  that the expectation values fo r  both 2 and a r e  real  

i. e . ,  

and 
/, 

Now because x, i s  real ,  we must  have 

and therefore the operator 2 must  satisfy the relation 

for  any function f(x). Equation 2 .84  is easily verified since in x-space, 

2 = x and fSx = (xf)*. Similarly, because % i s  a l so  real,  we must  have 



fo r  any function f(x) .  Equation 2.85 can also be directly verified by integration 

a 
by par t s  recalling that in x-space = - i x. In general,  an operator 2 that 

satisfies the relationship, fo r  any pair of functions f(5) and g(x), 

is called Hermitian. F r o m  the preceding discussion we see  that the expectation 

values of a Hermitian operator a r e  always real.  

Consider now two Hermitian operators  I and 6. These two operators  

will in general  not commute, i. e. , 

By way of example, consider the operators  2 and and the action of the 
X 

operator products 2; and k on a wave packet f(5). In part icular  
X X 

af 2 C f(2) = - i x  - x ax 

whereas 

a kx^x f (5) = - i - af ax ( x f )  = - i f  - i x -  ax 

o r  

(2fcx - frX2) f (2) = i f(5) . (2. 87)  

The quantity In parentheses i s  called the commutator of 2 and kx and denoted 

by [$, kx]. F o r  any pair  of operators  2 and 6 we denote 

See problem 2 .  F r o m  equation 2 . 8 7  we then see  that 

The commutator fo r  a pair of operators  2 and 6 will, in general,  be an 

operator itself, i. e. 

[a ,b]  *a6 - 6; = i"c (2.90) 

where if *a and 6 a r e  Hermitian, 2 i s  a l so  Hermitian. See problem 2.  

W e  can compute the expectation values of ^a and 6 and the mean square 

deviations Aa and Ab corresponding to any wave packet ~(z),  i. e . ,  

<(% - (%))a ) = Jy*(i - dS5 (2.91) 



and 

or ,  if we define the operators  

we have 

Now if the operators  ^a and 6 a r e  Hermitian, the operators  ^a' and 6 '  a r e  a l so  

Hermitian and we have 

and s imilar ly - 

Combining 2 .95a  and 2.95b we have 

Now for  any two functions f(2) and g(q) we must  have (Schwartz inequality) 

where the equality holds if f(5) = y - g ( 5 )  Substituting f(5)  = ^a'$(x) and 

g(q) = 6'$(5) we have 

(fib)' 2 1 / @1+)*(6!$) dZxr  

or ,  slnce 2 '  has been assumed Hermitian, 

( ~ a ) ~ ( A b ) '  2 / t"(^a161)y bqla . 

Now, 

216' = (^al6' + 613) + 1 (zlbl - 612) 
2 

or, substituting f rom equation 2.  90 for  the commutator, we have 

%161 = (̂ a161 + 651) + 1 E 
2 (2.99) 

and therefore, substituting in equation 2 .98 ,  



Substituting *a = and 6 = fcx we have 

= - i (2,  Ex] = 1 

and obtain the previously established result,  

The equality in equation 2. 100 holds if the Schwartz inequality 2 . 9 7  i s  an 

equality, i. e. , if 

fo r  some constant y, and if 

( ( (Z  - (%))(6 - (6) )  + (6 - ($)I(% - (%)) I )  = 0 , 

or ,  carrying out the multiplications, if 

1 (^a6 + 62) = ( ^ a ) ( % )  . 

Localization in three dimensions. What if the wavepacket extends i n  th ree  

dimensions, i. e . ,  f = f(z)? It i s  c l e a r  that i t  i s  then possible to ask  more  

complicated questions about joint localization. F o r  example, how small  can 

the following joint spreads be? 

Ax. Ay, Ax. A$, AZ . Akz, Ak . A k z  . 
Y 

In each ca se  Aq denotes the root mean square deviation of the variable q f rom 

i t s  expectation value, e. g . ,  in x-space, 

where 4 i s  the operator  corresponding to the quantity q. 

We can use the resul t  of the preceding section to answer these questions 

very simply. In part icular  since 

we have, 



where 6. .  i s  the Kronecker delta. Consequently i t  i s  possible to localize a 
11 

wave packet in two 5-directions, e. g. , about (x) and ( y ) ,  o r  about two &- 

directions, e.  g . ,  about (kx) and (k  ) and a l so  about one ~ - d i r e c t i o n  and one 

k-direction, provided they a r e  along different axes, i. e . ,  (Ax). (Ak ) can be - Y 
zero  whereas (Ay). (Ak ) cannot. 

Y 

Wave packet motion. Phase  velocity and group velocity. Le t  us consider 

now a one-dimensional wave packet that can be  expressed a s  a superposition 

of plane waves, i. e . ,  

where - ikx 
f ( x , o ) e  dx . 

X 

F r o m  equation Z. lO5a we can s ee  that f(x, t) i s  a superposition of waves with 

a phase velocity 

If a t  t = 0, the wave packet i s  localized in a region 

and 

k, - A &  G k G k ,  + A & ,  (2. 107b) 

what can we say about the wave packet a t  a l a t e r  time? 

The "center of mass" (x) will move, since 

(x(t))  = f (x, t) x f(x, t) dx I *  
iw(k)t - i w  (k) t 

= 2 w 1 F~ (k) e (i s) FO(W e dk , 

which, if w(k) i s  differentiable in the region covered by F,(k), yields 

and therefore 

= ( ~ ( 0 ) )  + ( v )  t , 



where<v>is a constant (independent of time) with units of velocity and given by, 

(v)  6 - fv j II (k) I F~ (k) I. dk . (2. 109) 

The integral given by equation 2. 109 i s  like the ones we use to compute 

the expectation value of a function of k, i. e., 

(v) = (a8(k))  / u l ( t )  IF OW^ d t  

The function wl(k) has units of velocity, which we call the group velocity 

dw v (k) E - 
g dk 

associated with the wavenumber k. The translational velocity of the center 

of mass i s  then given by 

(v) , -I, 2 T / v g ( k ~ ~ ~ o ( k ) ~ a d k  . (2. 11 1) 

We can estimate the integral by noting that the integrand i s  the product of 

wt(k) and I Fo(k)la, where IF,, (k)la is  localized about ko. 

If wl(k) is  a smooth function in the vicinity of 16, we have 

and, substituting 2. 112 into 2 .  119, yields 

Therefore, the center of mass (x(t)) of the wave packet moves with constant 

velocity which i s  approximately given by the group velocity evaluated a t  ko. 

These results a re  extendable in a straight forward fashion to three dimensions, 

where the phase velocity is  given by 



and where ^ek i s  a unit vector in the direction of 3. The group velocity i s  - 
given by 

aw (3) 
v (k) s - 
-g- a& 

where a/ak denotes the gradient i n  k-space ( see  equation 2.36) .  

Note that if the wave packet can be described by an  equation like 2.105, 

the expectation value of k i s  a constant, i. e. , 

and therefore 

Frequency and time. We can s i t  a t  a part icular  location 5 = ~ f i  and 

watch (if we had complex eyes!) one of these wave packets go by. This will 

give, of course,  the time dependence of the wave amplitude at 3, i. e. , 

f ( 2 ,  t). Any function of time, however, can be decomposed into a Fourier  

superposition of frequencies w, i. e . ,  

where g ( 3  , w )  is given by the inverse Four ie r  transform, i. e . ,  

I iurt 
S ( 3 , w )  = f ( 3 , t ) e  d t  . 

Note that a s  a resul t  of Parseva l ' s  theorem (Appendix B,  514), 

permitting us, if either of the integrals exist, to normalize ~(Jc, t )  and 9(x,iu) 

simultaneously, in t and w respectively, a s  we did with 5 and 12. 

Following the preceding formalism we can ask  fo r  the expected t ime of 

a r r i va l  (t(?fi )) of the wave packet a t  5 = g , given by 

and the mean frequency a t  g 



where- we have assumed that f and 9 have been normalized. Equation 2 .  120 

can be re-written in  t e rms  of a t ime integral if we note that 

which we can substitute in equation . 120 to obtain 

Similarly, the expectation value for  t can be expressed in t e rms  of an  

integral over  al l  the frequencies, i. e . ,  

The symmetry between t and w reminds us of the propert ies  of the (x, k) 

pair.  In fact,  f rom the above equations, we s ee  that we can define a time 

and a frequency operator  given by: 

The similar i ty between 2. 123 and 2 . 3 7  should not escape unnoticed. 

We can derive the expected mean square  deviation of t and w f r om 

( t )  and (m) respectively. In particular, 

and 

We now note that; f o r  the same reasons a s  hold for  the (x,k ) pair,  a wave 
X 

packet  cannot be localized in time and frequency simultaneously. Using the 

resul t  f r o m  noncommuting operators ,  we then have 

1 ht.Aw 2 7 ([€.311 

and since 

we have that 

Cf,?] = - i  



and therefore 

This  resu l t  i s  fami l ia r  to electr ical  engineers  who know that they mus t  

use a detection sys tem with a bandwidth Aw to define the a r r i v a l  t ime of a 

pulse to within a A t  of the o rder  of (AW)-'. Equivalently, if we define the 

number of cycles N in the pulse by the rat io  

we have 

TN 
A t a m ,  

and therefore 

a resu l t  well-known in spec t ra l  analysis  that says that the percentage frequency 

spread of an oscillatory wave, whose amplitude is modulated in  t ime to in- 

clude a cer tain number of cycles, is inversly proportional to the number of 

cycles. 
I 



2.3 Energy and Momentum. On December of 1900, Max Planck announced 

that he was able to account fo r  the shape of the black body radiation spectrum 

by assuming that the energy in each mode of frequency V, in  a cavity filled 

with electromagnetic radiation, was discretized a s  an integer multiple of a 

quantity proportional to v, i. e . ,  

where h, the constant of proportionality, was independent of frequency. 

With this assumption, he computed the energy spectrum (we will derive 

where c i s  the speed of light and kg i s  the Boltzman constant 

(kg 1.38 x lo-'' J/K). In this formula, h was an undetermined constant 

whose value was .selected to provide a good f i t  to the experimental data. The 

data and the resulting f i t  a r e  shown in figure 2.3. The resulting value of h, 

was very close to the presently accepted value of 

Figure 2.3. Planck'e black body epectrum prediction (solid line) 

versus  the experimental data. Note that X = C/V. 

(Ref. 1 ,  figure 1-11). 



The idea in  Planck 's  model was that  the energy i n  each mode was the 

sum of the energies  of lit t le "bundles" (quanta) each of which had a n  energy 

where 

h = h/2r  . 

The total energy was then equal to the number of "quantav t imes the energy 

of each "quantum", i. e. , 

En(v) = n e = nhv = nhw . (2. 132) 

Not long a f te r  (1905), Einstein proposed that a n  electron ejected f r o m  a 

metal  by shining light of frequency V, would have a n  energy given by 

where W,, called the work function, is the minimum energy that  m u s t  be  

supplied to the electron f o r  i t  to leave the metal.  The prediction i s  that 

there exis ts  a minimum frequency 

that i s  independent of the intensity of light, below which electrons cannot be 

ejected f r o m  the metal.  This  proposal was  dramatical ly  substantiated by 

Millikan when i n  1914 he published his  resu l t s  of the voltage required to stop 

electrons ejected f r o m  a metal  by light of frequency v. See f igure 2.4. 

Einstein was awarded the 1921 Nobel p r ize  i n  physics (which he received 

in 1922) fo r  his  work on the photoelectric effect, and should be credi ted for  the 

X formulation of the concept of an elementary excitation of electromagnetic radiation. 

It i s  remarkable a t  f i r s t  sight, that the spectrum of thermal  emission of light and 
c R ; c ; t Y h 5  

the ejection of p w s  f r o m  a meta l  under the influence of light, phenomena so  

different, could be explained in t e r m s  of the s a m e  idea. Given the electronic 

charge, the slope of the data  f r o m  Millikan's measurements  a l so  gives, of course,  

the value of P lanck ' s  constant h. 

0 
00 Lrk)i> 
z 'The t e r m  "photon" was coined by G. N. in  1926. See A. P a i s ,  "Einstein 

N 
+ and the Quantum Theory", Rev. of Mod. Phys . ,  Oct. 1979, pp. 861-914, esp. 

z p. 887 (footnote by M. Delbrcck). 
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Figure 2 .  4. Photoelectric effect data of the stopping potential, 

as a function of light frequency, for electron8 

ejected from lithium (Ref. 2 ,  figure 1-3). 



As a result of a rather different line of research, Compton in 1923 published his 

experimental data of x-ray scattering from graphite, in which he found in addition to a strong 

maximum correspoading to light unshifted in wavelength, a second maximum of a longer wave- 

length shifted by an amount AX which was a function of the scattering angle 8. See figure 

2.5. 

- 
slits 

Figure 2.5. Compton's scattering experiment and resul ts  (taken f rom Ref. 1 ,  

figures 2-5 and 2-6). 



Compton was able to explain his resu l t s  by assuming that light whose 

wavelength i s  X had to be associated with quanta (photons) whose momentum i s  

given by 

p = h/X (2. 134) 

o r ,  in  t e r m s  of the wavevector k, 

where h is the s a m e  constant that was derived f r o m  the blackbody theory of 

Planck and which had been used to explain the photoelectric effect. The shifted 

peak in intensity i s  to be  understood a s  resulting f r o m  photons elastically . 

scat tered by electrons in the graphite. The momentum los t  is then a function 

of the scattering angle and taken up by a recoiling electron. The intensity 

maximum a t  the unshifted light wavelength i s  s t i l l  the resu l t  of e lectron 

scat ter ing but, i n  this case,  the momentum is transfered to the atom a s  a 

whole. Momentum i s  of course  conserved h e r e  also. The atom, however, - 
i s  so mass ive  (compared to the electron) that the momentum los t  to i t  is 

negligible. The scattering that resul ts  in the shifted peak, a s  a resu l t  of a 

single recoiling electron, is called Compton scattering. The scattering with 

the momentum transfered to a whole atom i s  called Thomson scattering. 

The calculation of the momentum los t  to the recoiling electron in 

Compton scattering mus t  be c a r r i e d  out relativistically cor rec t ly  and yields 

f o r  the shift 

where h i s  Planck 's  constant, m e  i s  the r e s t  m a s s  of the electron and c is 

the speed of light. The fac tor  in  front  has  units of length and is called the 

Compton wavelength, 

- 2.43 x 10-lam s 0.0243 h , m c - (2. 137) 

and can be seen to correspond to the wavelength shift  AX a t  a scattering angle 

of 8 = 90'. Note that Comptonls data  (figure 2 . 5 )  a r e  i n  good agreement  with 

this prediction. Note that since, in  genera l  

we m u s t  have 

E = pc 

0 
f o r  a photon, which has ze ro  r e s t  m a s s  %, and therefore equations 2. 131 and 

m 
0\ 
CI 2. 135 a r e  consistent with each other. 

N 
A The preceding experimental data provide compelling evidence that i n  

addition to i t s  obvious wave-like nature, can behave a s  if i t  is composed of 
h 



"objects" whose energy i s  given by 

corresponding to light of angular frequency w  = 2sv, and momentum which is 

given bx 

(2. 140b) 

corresponding to a wavevector k( = 2 a I X .  The relationship between the angular 

frequency w  and the wavevector Ikl, i. e. , 

where c i s  the speed of light, can then be seen to be a re-statement of the 

fact that, for  a particle of zero res t  mass, we must have 

Impressed by the ideas of' Planck, Einstein and Compton, Louis de Broglie 

proposed in 1924 in his Ph.D. thesis that the established dual wave-particle 

nature of light was also valid for material particles (non-zero res t  mass).  Ln 

particular, he proposed that a wave should be associated with the motion of a 

particle, with a wavenumber k given in terms of the particle momentum by 

k = ~ l h  , - (2. l43a) 

and a frequency w  given in terms of the particle energy by 

w = E l h  . (2. 143b) 

The idea was very attractive having a unifying simplicity, a s  Einstein was quick 

to recognize, but there existed no experimental data to support o r  refute it. 

Two years  later,  i t  was pointed out by Elsasser  that if matter possessed 

wave-like properties i t  could be proven by a diffraction experiment from a 

crystal, a s  was done in the case of X-rays. This idea was confirmed by 

experiments performed by Davisson and Germer in the United States, and by 

Thomson in Scotland. See figure 2.6. These results established the relation- 

ship between wavelength of "matter waves" and the momentum of the associated 

particle that was predicted by de Broglie to a very high degree of accuracy. 

Louis de Broglie received his Nobel prize, a s  did Davisson and Thomson a few 

years  later.  

The results of section 2.3  on wave packets acquire a very important 

significance in the light of the energy-frequency and momentum-wavenumber 

association. In particular, the localization relations (equation 2.104 and 2.127) 



Figure 2 . 6 .  X-ray (top picture) and electron beam (bottom picture) 

diffraction from aluminum powder (reference 3 ,  

figures 9.2b and 9.6) .  



now become 

(Axi)(Ax-) 2 0 
J 

Equation 2. 144b, in particular, i s  the tombstone of classical mechanics stating 

that we cannot simultaneously specify the position and momentum of a particle 

along a particular direction to better than the joint spread given by 2.144b. 

This, of course violates the fundamental assumption of classical mechanics 

that both the position and velocity (momentum divided by mass) must be 

specified as initial conditions (equation 1.8) for the equation 1. 19 of motion to 

be solved. In addition, the notion of a path must be discarded, since the 

results of joint localization suggest (when carried over to x,p - space) that 

a particle occupies a region in. phase space (x,p - space), as  i t  moves, given 

by 

and 

where, at  any time t, the joint spread Axi- Ap. must satisfy equation 2.144b. 
3 

Tliis i s  to be contrasted to classical motion given by the Hamilton equations 

and 

where 

H = H(ex,t)  , (2 .146~)  

i s  the Hamiltonian of the system. If H is  not an explicit function of 

time then 

and, by virtue of equations 2. 146, 

Thus, along the path described by equations 2. 146, the Harniltonian is  a 

constant, i. e., 

H = H(p,x) - = E . (2.148) 

The constant E i s  the energy of the system. The equations 2.146 of motion 

yield a path p(t) and x(t) in phase space which is  fixed by specifying the 



initial conditions 

See sections 1.3 and 1.5. 

We now also understand the significante of the results on wave packet 

motion. There we found that for a wave packet composed of a superposition 

of plane waves, i. e., equation 2.105, the center of mass of the packet moves 

with constant velocity, i. e.,  

where 

The fact that the packet center of mass moves with constant velocity suggests 

that i t  represents a free particle for which 

Now since E t h w  and p = hlc, i. e., both E and E a r e  proportional to h, we 

must have 

which is  equal to the classical velocity of the particle! Note that the expectation 

value of x a s  a function of time that was derived, correctly predicts the velocity 

of the particle. Note also that the group velocity, a s  given by equation 2.151 

is the proper velocity and not, for example,, the phase velocity 



of the plane waves 

i(p-5 - Et)/h 
e 

that a r e  used in the superposition. 

The fact that the expectation value of the wavenumber i s  constant in timr 

can now be identified with the fact that the expectation of the momentum is 

constant, corresponding to a free particle, i. e.,  

(2) = h (k) = const. 

or  

d 
(2) = 0 . 

There i s  an important parallel to be made between the equations of motion 

for a classical free particle and the results for a wave packet as  given by 

equations 2. 153 and 2. 154. A particle that i s  free, i. e.,  not subject to 

forces, moves with constant momentum. From the classical equation of 

motion for (equation 2.146b) we see that this occurs if the Hamiltonian is 

not a function of position, i. e.,  H = He) .  In that case we have - 
and 3 0 . 

Compare this with the results given by equations 2 .  153 and the fact that the 

energy- was a function of momentum only, behaving as the Hamiltonian of 

classical mechanics in describing the equations of motion of the expectation 

values, 

Particular significance can now be attached to the operators k and & 

which after multiplication with h become the operators for momentum and 

energy, i. e. ,  in (x, t )  - space, 

and 

Note that these operators a r e  valid in general, having been derived by 

integration by parts of the corresponding integrals for the expectation values 

(see equations 2.24' and 2.120 and related discussion) without the assumption 

that f(x, t )  was a superposition of plane waves exp[i@ -5 - w(&)t)]. The only 

assumption i s  that f(x,t), at  fixed t, possesses a Fourier transform with 

respect to x, i. e., 



where 

and also that f(x, t), a t  fixed 5 possesses a Fourier  transform with respect to 

t, i. e . ,  

S -iwt 
f (5, t)  = - 2r g(5, W )  e dw 

w 
where 

i w  t 

t 

As  a matter  of interest, note that any function f&, t)  can be expressed a s  a 

superposition in wavenumber frequency space, i. e., 

where 

The plane wave superposition, i. e . ,  equation 2. 105, i s  then the special case 

of 

$&, w )  = 2, F(h, 0) 6 [ ~  - mk)] , (2. 161) 

a s  can be shown by direct  substitution into 2 .  160a. The function UQ) i s  the 

plane wave frequency associated with the wavevector k [denoted w(&) previously], 

6 is the Dirac delta function. Consequently, a plane wave superposition i s  a 

special case  of the most  general superposition (equation 2. 160) in that i t  

associates a unique frequency m(&) with each wavevector k. 

2.4 Wave-particle duality and the uncertainty principle. It i s  worth pausing, 

perhaps, to reflect on the significance of some of these results and conclusions. 

We have seen that light, apparently described quite successfully by Maxwell's 

equations a s  a wave, can behave like a collection of particles of definite 

momentum and/or energy. In particular, light of frequency w can never 

interact with another object (or  apparatus) to lose (or gain) energy that ie a 
I 

fraction of hw. While this behavior i s  easily understood in te rms  of i ts  

particle-like behavior, it i s  difficult to reconcile with i ts  wave-like behavior. 

Specifically, it is not clear,  a t  this point, how the wave packet (that presum- 

ably represents  i t )  can be distributed in 5, a t  some particular t, a s  described 

by f(x, t), so  that the probability that i t  will interact and be detected a s  a 

whole ia given by If&, t)  la ,  which i s  obviously lase than unity everywhere. - 



Moreover, the photon, whose amplitude i s  spread out according to f ( x ,  t)  p r io r  

to being detected, mus t  be thought of a s  disappearing f r o m  everywhere e l s e  

once i t  been detected a t  some 5 = 3. The  square of the modulus of the 

wave function mus t  be thought of a s  instantly "sucked in" a t  5 = 3, i. e . ,  

[before interaction] = If(5 t )  P 

a t  the moment of I = 6 ( ~ - 3 )  . 
interaction 

These a r e  difficult notions which have actually not been completely 

clarified a s  yet  (to the b e s t  of my knowledge!). Fortunately, in the c a s e s  of 

light, the electron, and their  interaction, the situation s e e m s  to be in good shape 

in a s  much a s  there exis ts  a fo rmal i sm that  appears  to answer m o s t  of the 

properly posed questions. Many difficulties a r i s e ,  however, because the 

transition f r o m  the formal i sm to a concept is a difficult one. This  duality of 

charac te r  (part ic le  and wave) is a part icular ly elusive one, the two concepts 

being so  different. In the words of one of the old rnasters  ( reference 4, 

pages 10-11): 

"The  solution of the difficulty i s  that the two mental  pictures  
which experiments lead us to f o r m  - the one of part ic les ,  the 
other of waves - a r e  both incomplete and have only the validity 
of analogies which a r e  accura te  only in  limiting cases .  It  i s  a 
t r i t e  saying that "analogies cannot be pushed too f a r , "  yet  they 
may be justifiably used to descr ibe  things f o r  which our language 
has no words. Light and mat te r  a r e  both single entities, and 
the apparent  duality a r i s e s  in the limitations of our  language. 

It  is not surpris ing that our  language should be  incapable 
of describing the processes  occurring within the atoms,  for ,  
a s  has  been remarked,  i t  was invented to descr ibe  the ex- 
periences of daily life, and these consis t  only of p rocesses  
involving exceedingly la rge  numbers  of atoms. Fur thermore ,  
it i s  very difficult to modify our  language so  that i t  will be 
able  to descr ibe  these atomic processes ,  f o r  words can only 
descrlbe things of which we can f o r m  mental  pictures, and 
this ability, too, i s  a resu l t  of daily experience. Fortunately, 
mathematics i s  not subject to this limitation, and i t  has  been 
possible to invent a mathematical scheme - the quantum theory - 
which seems  ent i rely adequate fo r  the t reatment  of atomic proc-  
e s s e s ;  f o r  visualization, however, we m u s t  content ourselves 
with two incomplete analogies - the wave picture and the cor -  
puscular picture. ", 

and perhaps on a m o r e  elemental level,  H 

". . . our f o r m s  of perception a r e  indeed not learned by the 
individual, . . . but definitely products of evolution, like any 
other aspects  of our body and mind." 

 ax ~ e l b r ; c k ,  "On Einstein", Physics  Coloquium lecture, California Institute 

of Technology, December 6, 1979. 
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One of the mos t  dramatic  manifestations of this duality i s  the fact  that 

fo r  objects like the electron, which we classical ly  consider a s  part ic les ,  the 

same localization propert ies  ( o r  lack thereof) apply a s  do for  the photon. 

Namely that the position & momentum ( o r  velocity) cannot be specified jointly 

to bet ter  than h / 2  along the s a m e  direct ion (i. e . ,  equation 2 .  144b). Similarly, 

the energy of the s ta te  and the instant  i n  t ime that we mus t  assign to that 

s ta te  can a l so  not be specified jointly to bet ter  than h / 2  (i. e . ,  equation 2 .  144d). 

Now admittedly h i s  a smal l  number, i. e . ,  

and to the extent that i t  is, depending on the phenomenon, we can forget  about 

it. It  has  no effect on the flight of a baseball,  for  example. Phenomena on 

the atomic scale ,  however, involve quantities (the corresponding value of the 

action to be m o r e  exact) that may not be l a r g e  compared to h .  In that  c a s e  

the quantum description of such sys tems  is imperat ive.  Conceptually, however, 

we may have difficulties with the idea that a mate r ia l  par t ic le  cannot be  local- 

ized any bet ter  than the l imi t s  we have quoted. As Heisenberg says  (ref.  4 

page 15) 

"Any use  of the words 'position1 and ' elocity' with an 
accuracy exceeding that given by equation 1% i s  just a s  meaning- 
l e s s  a s  the use of words whose sense  i s  not defined." 

and he continues in  a footnote, 

"In this connection one should part icular ly r e m e m b e r  that 
the human language permi t s  the construction of sentences which 
do not involve any consequeaces and which therefore have no 
content a t  a l l  - in spite of the fact  that these sentences pro-  
duce some kind of picture in  our  imagination; e . g . ,  the s tate-  
ment that besides our  world there  exis ts  another world, with 
which any connection i s  impossible i n  principle, does not lead 
to any experimental consequence, but does produce a kind of 
picture in the mind. Obviously such a s tatement  can neither 
be  proved nor  disproved. One should be  especially careful  
in  using the words ' real i ty ,  ' 'actually, ' etc . ,  s ince these 
words v e r y  often lead to statements of the type just mentioned." 

I t  should be  clear ,  a t  this point, that the "uncertainty principle", a s  

equations 2 .  144b and 2 .  144d a r e  called, represen ts  a property of superpositions, 

which can  be expressed conveniently i n  this c a s e  in t e r m s  of the Four ie r  

t ransform. The association of momentum with wavenumber, and energy with 

frequency comes  a f te r  the fact, which i s  valid quite independently of that 

association. In part icular ,  the " u c e r t a i n t y  principle" has nothing to do with 

'our equation 2 .  144b. 
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measurement ,  even though i t  is ,  of course,  possible to argue that you cannot 

violate i t  by means  of a measurement ,  a s  is popularly done. The main trouble 

with such arguments, however, quite a p a r t  f r o m  drawing attention away f r o m  

the actual bas i s  of the "uncertainty principle", i s  that they a r e  c lass ica l  

arguments  and a t  the end one is lef t  wondering, since the discrepancy can 

apparently be resolved in t e r m s  of c lass ica l  physics, why one needs a quantum 

theory a t  all .  

A second point that should be  made concerns the probabilistic interpretation 

of If(z, t ) Ia ,  i. e . ,  that i t  r epresen ts  the probabili* of detection (interaction 

with the apparatus) .  This  has caused a n  awful lot of trouble in  the pas t  (and 

s t i l l  causing it today!). The reason is that the word probability i s  usually 

associated with something that i s  random, like the throwing of a pa i r  of dice. 

The difficulty has  been compounded by the use  of the word uncertainty to de- 

sc r ibe  the joint localization propert ies  of superpositions in  phase space. There  

i s  nothing uncertain about the evolution in t ime of the wave function (wave 

packet). A single electron "knows" that i t  cannot land on a node of the inter-  

ference pattern! 

2. 5 Summary and conclusions. The correspondence principle. 

We have seen  that the data on diffraction and interference f o r  both light 

and m a t t e r  (non-zero r e s t  m a s s )  suggest: 

(i) The association of a complex amplitude with the motion of a n  

object of in te res t  that i s ,  in  general,  a function of space and 

time, i. e.,  f(z, t). 

(ii)  This complex amplitude, in  o r d e r  fo r  us  to  descr ibe  the 

interference data, mus t  be expressible  in t e r m s  of a 

superposition of other  amplitudes, e. g . ,  

where the C ' s  a r e  complex coefficients, or, in  the mos t  n 

general  case,  a s  a continuous superposition, e .  g. , 
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(iii) The square  of the modulus of f(5, t)  mus t  be identified with the 

probability of detecting the sys tem a t  (2, t), i. e . ,  

p ( 5 , t )  = I f ( s , t ) l a  . 

(iv) If the superposition is going to b e  valid, the equations of 

motion m u s t  be  l inear  and homogeneous, i. e . ,  i f  fi (5 t )  

and fa (5, t )  a r e  solutions, 

f(5, t)  = C 1  flk, t )  + C l  fa (5, t )  

mus t  a lso be a solution. 

(v) Y the equations of motion a r e  expressible  a s  differential 

equations, they mus t  be of f i r s t  o rder  in  time, i. e . ,  

f ( 5  0) should be sufficient to specify f(2, t)  f o r  a l l  t. 

and finally 

(vi) F o r  l a r g e  values of the action, i. e . ,  if h i s  negligible, the 

solution of the equations of motion should coincide with the 

c lass ica l  equation of motion, which we know, i n  that limit,  

a r e  correct .  

This l a t t e r  constraint  has been termed the correspondence principle, formulated 

by N. Bohr in 1923. 

We have a l so  seen that light and mat te r  possess  a dual charac te r  in that 

they simultaneously display the propert ies  of both part ic les  and waves. 

(vii) An entity of energy E and momentum E is to be associated 

with a wave of angular frequency w and wavevector & 

according to the relations 

E r h w  

s h& 

and vice versa, where h i s  Planck 's  constant. 

(viii)  When working in (5, t )  - spac J the angular frequency and 

wavevector can be represented in t e r m s  of the operators  
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a & = i z  

a k =  - i -  ax 
and corresponding to these, by virtue of (vii), 

a 5 = i h -  a t  
a 2 P - i h  - . 
ax 
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Problems 

2. 1 In the light interference experiment (figure 2 .  1) assume that the frequency 

of the light source i s  a slowly varying function of time, i .e . ,  

where wl(t) measures the excursions of a ( t )  about: a mean value wo.  If 

wl(t) << w(t) compute the resulting interference pattern on the plate Pa. 

2.2 Instead of a single light source which illuminates an orifice plate to 

generate two spherical waves, we now use two lasers  a t  x = It L/2 

whose frequencies have been matched a s  well a s  ~ o s s i b l e .  Nevertheless, 

the frequencies of the two l a se r s  drift slightly so that 

where w l / w +  << 1 and w l / w  << 1. Compute the resulting interference .- 
pattern assuming that the measurement always represents an average 

over a time T. What happens to the measured, interference pattern as  

we reduce the l a se r  intensity? What happens when the field between 

zl and 28 contains the energy corresponding to one photon in a given 

time? Assume that wl(t) i s  a slowly varying function of time. . 

2 . 3  A one-dimensional wave packet a t  t-= 0 i s  given by (a :, 0) , 

A cos Cn(x - xo)/al e ibx ; I X  - a / 2  

f(x) = 
o ; ( x  - a 1 2  . 

(i) Find the distribution of wavenumbers contributing to f(x). 

(ii) Find (XI, ( k) , Ax = <d- 2, Ak x < d m  2 
the joint spread Ax. Ak. 

2.4 Prove that ( (x - (x))=) = (xa) - ( x ) ~  in general. 

2 . 5  Prove that the minimum of the joint spread 

l?{g(x)) = Ax- Ak , 

where the function g(x) i s  complex and given by 

g(x) = u(x) eiq(x' , 

i s  attained when ~ ( x )  = const. 



. . 

Problems. continued 

2. 6 From the inequality 

I& g(r) + b.g1(xll= 2 0 . 
prove that 

1 Ax-& 2 z ,  

and that the equality corresponds to a wave packet 

where A may be a complex constant. 

' 2 .  7 Prove the following properties of operator commutators 

(i) [ i 6 ] +  [ 6 , i ] =  o 

2.8 If the operators ^a and 6 both commute with their commutators, 

show that 
I 

and 

(ii) [?in, 61 = nin" [^a, 61 . 

2.9 Prove that 

dQ(x) [ ~ ( x ) . L ~ l  = i . 
Compare this result with that of the previous problem i f  the function 

Q(x) can be expanded in a power series. 

2. 10 If i and 'b a r e  Hermitian operators, prove that L C ,  MA*- 

[9,6] = î c , 

i s  also a Hermitian operator. 



Problems (continued) 

2. 11 A monochromatic plane wave with a wavevector k = k i s  incident on 
X X 

a plate a t  x = 0 with a s l i t  of width b. Estimate the spreading of the 

beam that emerges from the sllt. 

a ' 

--.  
4 

--._ 

2 .  12 D ~ s c u s s  the momentum transferred to an isolated electron that absorbs a 

photon, i. e. 

t 

2 .  13 In computing the motlon of the center of m a r s  { x ( t ) )  of a one-dimensional 

wave packet, we found 

where v i s  approximately given by 

where 

m (k) = - k l ~ ~ ( k ) l ~  dk = constant . 

,k 

In comparing the velocity of a f ree  particle with the classical  resul t  

we found, however, that 

az a~ ( " ) = V r e = -  
m a p a X  

(1.153) 

exactly. Discuss the apparent discrepancy, in view of the fact that 

we require  the expectation value of the center  oi mass of the wave 

packet to move classically. 



Prob lems  (continued) 

2. 1 4  A one-dimensional wave packet of light (UJ = 2 r c / ~ )  a t  t = 0 is given by 

the superposit ion 

ikx 

where  (k. > 01 

L O  for  k > k2 o r  k < kl . 

Find f(x, t )  and desc r ibe  the resulting evolution i n  t ime of I f(x, t)  1". 

2. 15 We a r e  given that  the wave amplitude a t  t = 0, f o r  a one-dimensional 

wave packet of light (w = Zrrc/X), i s  given by 

where  f,(x) i s  a & function. Find f (x , t )  and desc r ibe  the resulting 

evolution in  t ime of If(x, t )  la . 

Hint: Careful! 

2. 16 Black body radiation. Compute the number of modes of electromagnetic 

radiation in  a rectangular conducting cavity of volume V,  with a frequency 

between v and V +  6 V .  Assuming that each mode i s  in thermal  equil ibrium 

with the cavity which i s  a t  a temperature  T, compute the c l a s s i ca l  

expectation value of the energy of the radiation i n  the cavity i n  the 

frequency in terval  V < v '  < v + 6v, if the probability that  i t  has  an 

energy E i s  given by the Boltzmann factor 

p(E)dE a e -E /kT  dE 

Compare  your r e su l t  with Planck 's  formula (2. 130) in the l imi t  of 

hv/kT << 1. 

2. 17 Photoelectric effect. Using the data in  f igure  2. 4, compute h/e,  the 

ra t io  of P lanck ' s  constant to the electronic charge.  Compare with the 

accepted value of h using the known electronic charge.  



Problems (continued) 

2.  18 Compton scattering. Derive the wavelength shift 

for Compton scattering (equation 2 .  136). Why 

i s  the relativistic calculation necessary? 



3. THE SCHR~DINCER EQUATION 

3.1 Hermitian Operators. Eigenfunctions and eigenvalues. 

We have seen f rom the preceding discussion that i t  i s  possible to associ- 

ate with the physical quantities of coordinate, momentum, energy and time, etc., 

operators whose expectation values correspond to the classical values for these 

quantities. 

Example 3. 1. The expectation value of the momentum. 

Given a wavepacket $(5, t), we can compute the expectation value of the 

momentum using the momentum operator for  5-space, i. e. 

(r, t) : $(r ,  t)d35 

We would like to generalize this idea and assign an operator to every 

physical observable of interest. The expected value of the observable would 

then be computed for a system described by a wave $(E, t)  by the integral 

Now, if the expectation value (Q) corresponds to a physical quantity, 

i t  must be real, i. e. 

for  any $ ( s t ) .  The lat ter  equation places important restrictions on the 

operator d that satisfies the relation 

for  any $(z, t) and t) i s  called Hermitian. It  therefore proves necessary 

to res t r ic t  the operators representing physical observables to Hermitian 

9 operators . 

'strictly speaking, we have shown that a Hermitian operator has real  expecta- 

tion values. Equation 3.3, however, appears more restrictive and whereas 

it i s  clearly sufficient that the operators be Hermitian, we have not shown 

that it is necessary. 



Example 3.2. Show that the momentum operator  i s  Hermitian. 

We have 

* 
Given a n  a rb i t ra ry  operator  A, i t  i s  useful to define i t s  adjoint operator  

it, by the equation 

/ ( A h ) * ,  d 3 5  = 1 cP * (A$) d3X . (3 .  4) 

Evidently Hermitian operators  a r e  self-adjoint ( their  own adjoint). 

Several important theorems can be proven: 

'Theorem 1. The expectation values of Hermitian operators  a r e  real .  This 

follows from equation 3 .  3 and the previous diecussion. 

Theorem 2 .  The sum of two Hermitian operators  i s  a l so  Hermitian. 

Theorem 3 .  If A i s  a complex number, then A '  (complex conjugate) i s  i t s  

adjoint operator .  

Theorem 4. If A i s  not Hermitian then 

t A + =  ( A d  A )  (3. 5a) 

and 

A-  = i(A - A*) 

a r e  Hermitian. Therefore any operator  can be written a s  a 

l inear  combination of two Hermitian operators ,  i. e.  

Theorem 5. If C i s  the product of two a rb i t ra ry  operators ,  i. e. 

C Z A B ,  

update 



then 

t t  ct = ( A B ) ~ =  B A . 

The action of an operator 6 on a function f(&, wili in general yield some 

other function g ( ~ ) ,  i. e. 

A 

For an important class of functions, corresponding to an operator Q, the action 
A 

of the operator Q on the function results in a multiple of the same function, 

where, in general, X may be a complex number. Functions 9 (x), which for a A - 
given operator 6 satisfy equation 3. 8, a r e  called eigenfunctions of 6 (6 s own 

functions, in German), and the constants a r e  called the corresponding 

eigenvalues. More often than not, additional constraints a r e  placed on the 

solutions of equation 3. 8, for  example, we may require that $(z) be normal- 

ized, i. e. 

/ $*(& $(x) dax = 1 

v 

inside a region V, and we may also impose boundary conditions on some 

surface S, commonly the edges of V .  

Example 3.3. Find the eigenvalues and corresponding eigenfunctions, which 

vanish outside a region 

O < x < a  

O < y < b  

of the kinetic energy operator. 

We have, 

and we require 

o r  

By separation of variables, le t  



where 

Xlt(x) + kxa X(x) = 0 

and similarly for  Y and Z, and where 

The solution of equation 3. 13 i s  given by 

From the boundary conditions a t  x=O, we have B=O, while from the boundary 

condition a t  x=a we have 

v 
k x = - n  . n = 1,2 , . . . . .  

a x '  x (3.  16) 

If we additionally impose the normalization condition, we have that 

o r  
2 1/2 

A = (;;) 

Note that nx = 0 i s  disallowed by the normalization constraint. 

Collecting these results, we have the eigenfunctions 

where V = abc, and the corresponding eigenvalues 

w h e r e n  n n = 1,2,3 ,.... 
x0 y' z 

Example 3 .4 .  Find the eigenvalues and corresponding eigenfunctions of the 

operator for the component of the angular momentum about 

the z-axis. 

Classically, we have 

L r i f X E  

# and therefore , in f-space 

 his is not a s  casual a s  i t  may look. The c ros s  product brings together com- 

ponents of if and that commute a s  operators (see equation 2.144b) so  that 

we don't have to worry about the order  in which they operate. 



and, transforming to cylindrical coordinates, we have 

The eigenvalue equation i s  then 

Now the appropriate boundary condition, in this case i s  that the eigen- 

function should be periodic, i. e .  

From equation 3 . 2  1 we then have 

while from the periodic boundary condition we have that 

or, C( must  be an integer multiple of h ,  i. e. 

p = m h  ; m=O,+ 1 , 2 2 ,  

and therefore 

within a normalization factor.  

A 

Consider now two of the eigenvalue equations for Q, 

or, equivalently, taking the complex conjugate of the la t ter  we have, 

and therefore 

* 
Now, if Q i s  Hermitian, the left  hand side i s  zero  and consequently 



* 
Therefore we have, if m=n, that X n = X n  or, 

Theorem 6. The eigenvalues of a Hermitian operator a r e  real. 

We also have, if An f Am, that 

/ u: un d3& = 0 , 
v 

Theorem 7. The eigenfunctions of a Hermitian operator corresponding to 

different eigenvalues a r e  orthogonal. 

We may invoke this la t ter  property utilizing a normalized se t  of eigen- 

functions to write 

where 6mn i s  the Kronecker delta, 

1 if m=n 

6mn = { 
0 i f m f n .  

See appendix D. Such a se t  of functions i s  called orthonormal. The similarity 

of these properties and those of eigenvector s and eigenvalues of Hermitian 

matr ices  in linear algebra should not go unnoticed. 

The se t  of eigenvalues of an  operator 6 i s  called the spectrum of 8. 
The spectrum of eigenvalues may be discrete  o r  continuous o r  both. In the 

case  of the continuous spectrum, the orthonormality condition becomes 

i. e. the (discrete) Kronecker delta i s  replaced by the (continuous) Dirac delta 

function. See appendix D. 

Example 3. 5. Find the eigenvalues and eigenfunctions of the momentum 

operator. 

a In 1-D, f) = - i h -  ax . Eigenvalue equation 

f ) u = p u  , o r  i h u l ( x ) + p u ( x ) = O  . .  
We have, 

U(X) = (const. ) e ikx ; -Or, < k <  m , 



where 

p = h k  . 

Note equation 3.25b and the fact that 

See appendix D, equation D. 13 

A 

Theorem 8. If the set  of eigenvalues of a Hermitian operator Q possesses a 

minimum (maximum), then the minimum (maximum) expectation 
1\ 

value of Q i s  given by the smallest (largest) eigenvalue. 

Proof: Wish to minimize (maximize) 

subject to the constraint that 

v 

Consider instead the functional 

We require then that (see appendix A) 

This yields 
a- 

where we have used the fact that 6 i s  Hermitian to write the second term in 

the integrand. Therefore, if this i s  to hold for  any q(x), we must have 

6 $ = W  , (3.29) 

o r  that $ must be an eigenfunction of 6. 
Using this result, we then see that 1, which was introduced a s  a 

Lagrange multiplier, i s  in fact the expectation value under these conditions, 

Therefore 

and the minimum (maximum) is attained when $ i s  the corresponding eigen- 

function. 



I t  should be emphasized that  in the preceding d i scuss ion ,  i n t eg ra l s  ove r  

the  coordinate  vec to r  s p a c e  x w e r e  11.5ed f o r  the pu rposes  of i l l u s t r a t ion  only. - 

Al l  these  r e s u l t s  a r e  independent of this a s s u ~ n p t i o n  and a r e  equally valid if 

the independent va r i ab le s  a r e  wavenuul~ber:i, o r  t ime  o r  f requency o r  anything 

e l s e .  F o r  th is  r e a s o n  i t  i s  advantageous  to in t roduce a notation which i s  

independent of the pa r t i cu la r  s p a c e  i r ~  which the functions a r e  e x p r e s s e d  ( s o r t  

of l ike  v e c t o r  notation which i s  independent of the coordinate  s y s t e m ) .  We will 

denote a function $(z,  t )  a s  follows # 

whlle 11s complex  conjugate 

($1 $ ' ( x , t )  , ~ ' ( k . t )  e t c .  

The  action of a n  ope ra to r  Q on th i s  [unction wi l l  then be wri t ten  a s  

6 q  -. 6 1 q )  , ( 3 . 3 3 )  

whereas ,  11 which Lo denote  the r e s u l t  of t h r s  operdtion, 1 e .  (6$) = cp, we 

wll l  w r i t e  

r p =  ( G q )  . ( 3 .  34)  

1Cquationz 3 73 and 3 .  74 w ~ l l  Ile ~nterchsnge, i i , le  f u r  nic)st pu rposes .  

An ~ n t e p r n l  o v e r  the \ p a t e  of the independent va r l ab le  will be wri t ten  a s  

/ ( ~ " ( G u i a ~ ~  2 i r ~ l B q )  - ( m l d l t )  . ( 3 . 3 5 )  

v 
A 

Clea r ly ,  i f  Q i s  Herml t i an  

< [ ~ l b l q )  = ( v l 6 q )  = ( 6 ~ ( $ )  . (3.  361 

The  expectation value  of Q then becomes  

(a) = ($161$) ( 3 . 3 7 )  

while the or thonormal i ty  of the elgenlunctions of 6 can  be wr i t t en  a s  ( s e e  

equation 3 . 2 5 d )  

( u  m ( u ) = b m n  n . ( 3 . 3 8 )  

3.  L Superposi t ions  of eigenfunctions.  

Given a s e t  of no rma l i zed  eigenfunctlons [u  ] of a Hermi t i an  ope ra to r  n 

Q, subject  to s o m e  I ~ o u n d ~ t r y  condition>, we c u t ~ s t r u c t  a l i n e a r  superposi t ion 

of some  number  of them,  i .  e. 
N 

n= 0 

 his notation i s  due  to P . A .  M. Dirac .  See  r e f e r e n c e  3.2 . 



If we take the scalar  product of this equation with (u  I, where 0 5 m N, we m 

would have N 

or, using the orthogonality of the eigenfunctions (equation 3.38), 

N 

Therefore, we have that the relation of the coefficients, in  a superposition of 

the type expressed by equation 3.39, and f, which represents the sum, i s  

given by 

an expression which has the appealing geometrical interpretation of the 

projection of f on u If we substitute equation 3.41 in 3.39, we have n' 

If) = 1 u n u n f  . 

A 

We can compute the expectation value of the operator Q in the super- 

position of equation 3. 39, as  follows, we have 

N 

A 

Similarly, of course, for any integral power of Q, i. e.  

and any function (resolvable in a power ser ies) ,  i. e. 

' ~ o t e  that if we were working in 2-space this equation would read, 



It  i s  therefore particularly convenient, in computing expectation values of 

operators, o r  functions of operators, i f  we a r e  dealing with a superposition of 

eigenfunctions. 

3.3 Eigenfunction expansions. Completeness. 

The remarkable thing i s  that any function can be represented by an 

infinite superposition of eigenfunctionsfl i. e. ,  given any normalized (I(x), 
there exists a sequence of coefficients cn, such that 

The equality in the limit i s  to be understood in a least squares sense, i.e., 

To prove this property, we will order  the u (x) in a sequence of increasing n -  

absolute values of the corresponding eigenvalues, i. e.  . 

Now, let  @N+1(5) be the difference between the. function $(z) and a 

superposition of the f i rs t  Nt1 of the ordered eigenfunctions 0 r n r N, 

i.e., 

such that d N + l ( ~ )  is orthogonal to [I+, , UL,  . . . , uN). This requirement 

dictates that the coefficients cn be defined by (see problem 3.4) 

Consider now the normalization integral, 

'of a Hermitian operator 



Note that if + 0 a s  N -e -, we have proved the statement. See 

equations 3 . 5 1 ,  3 . 4 9  and 3 . 4 7 .  W e  can use  the a N t  to normalize the 

remainder function. We then have 

where 

Consider now the expectation value of Q~ - ha with the function 

, i .e . ,  

Since we know, however, that qNf l(LT) i s  normalized and orthogonal to the 

f i r s t  Nt1  eigenfunctions, see  equations 3 . 5 4 ,  we must have 

(see  problem 3 . 5 ) .  Using equations 3 . 4 9  and 3 . 5 3 ,  we also  have, however, 

that 

N N 

( t ~ a - h a ) ) N + l  = cnun)'(ba-k: I(#- 2 c n u n ) d 3 ~  , 
n= 0 n= 0 I 

where we have uued that #(x) is normalized, i.e.. 
* 

Therefore,  combining 3.56 and 3.57 we B m m  that 



or ,  since X: - ;ba 2 0, we must have 

Therefore, provided 1 xNflf - m as  N +a, we must have that aNf -b 0 

as N + co, as  was required. 

A set of functions which can serve as  a basis in terms of which we can 

expand any other function, in the sense of equation 3.47, i s  called complete. 

We have therefore proven that 

Theorem 9. If the absolute values of the eigenvalues of a Hermitian 

operator form an unbounded set, the corresponding 

eigenfunctions form a complete set. 

We therefore have, for any $(z) that if un(x) are  the eigenfunctions of 

such an operator, then 

where 

cn = \ U ~ ~ ) O ( Z )  d35 , 

or, in terms of our representation-independent notation, 

All the results of finite superpositions of eigenfnnctions now apply 

(section 3.2) ,  for example, if 

(3.6 Oa) 

(3.60b) 

then 

etc. 



An interesting property of such expansions m a y  be obtained a s  follows. 

F r o m  equation 3.60 we have that 

Comparing the left and right hand side we see that we must have, for a com- 

plete yet 

This IS called the closure relation. Compare this wltn equations 3 .  25a  and 

3 25b .  

Note a l so  that the normallzatron integral,  I.  e 

now becomes 

3. 4 Hermitian operators  and associated observables. 

We have seen that the expected outcome of a se t  of measurements of an 

observable X associated w ~ t h  an operator Q in a system described by a 

function I + )  i s  given by 

with an expected mean square deviation from this expected mean, that would 

be given by 

h a a =  ((6 - <6>ia) = ( $ ] ( 6  - ( C ~ } ) ~ I J . )  ( 3 .  6 6 )  



If we now cons ide r  19) a s  an  expansion in the eigenfunctions of 6, i. e. 

'a 

then we have 
'I) 

and 

where  the X a r e  the etgenvalueu correspondlng to the ( I I  ). Let us now 

a s s u m e  that  w e  have p repa red  o u r  sys t em so  tha t  i t  IS  exactly desc r lbed  by 

one of the eigenfunctions of Q, i. e. if 

We then have c m  = 1 and c = 0 f o r  ndm. Correspondingly  

(6) = x m  
and 

C Q ~  = 0 . 

In o the r  words ,  if the byytem I S  de sc r ibed  by an  eiljenfunctlon of the 

ope ra to r  a s soc t a t ed  with the  observable  af i n t e r e s t ,  a m e a s u r e m e n t  of thdt 

obse rvab le  can  only r e s u l t  tn the correspondlng eigenvalue.  Such a s y s t e m  

wi l l  be desc r lbed  a s  being in a n  eigenutate of 0. The  conve r se  i s  a l s o  t rue ,  

namely  if 

(6 )  n X m  and S Q ~  = 0 

we m u s t  have ( J ' )  = \ u rn> .  See  p rob lem 3.  6. Consis tent ly  wlth this r e su l t ,  

we m a y  now i n t e r p r e t  the coefficient c a s  the probabi l i ty  ampl i tude  tha t  the 

s y s t e m  wi l l  be  detec ted  in the  e igens ta te  l u  ), and the re fo re  l c n l a  is the 

corresponding probabili ty.  In th is  l ight  equation 3 .66  c a n  be  unders tood a s  a 

c l a s s i c a l  computation of the expectation value of a va r i ab l e  X w ~ t h  r e l a t i ve  
I 

probabili ty weights of I c  l a .  T h e  normal iza t ion  

i s  then to  b e  in t e rp re t ed  a s  a s t a t emen t  to the ef fec t  tha t  the s u m  of the 

probabi l i t ies  of detecting the s y s t e m  in  the  e igenvta tes  (u,) m u s t  equal  unity, 

i. e .  t h e r e  a r e  no  o the r  poss ib i l i t ies .  Note, however,  t ha t  we  a r e  not  

saying tha t  the  s y s t e m  in  s t a t e  l u  ) or  /u rn )  o r  whatever  with proba-  

bil i ty IcnIa ,  lcmla  etc.  T h e  s y s t e m  & in & t h e s e  s t a t e s  [in acco rdance  



with the  expansion, 

s imul taneously .  

3 .  5 The  energy ope ra to r .  SchrEdinger ' s  equation. 

We have seen,  f r o m  the d i scuss ion  in chap te r  2 ,  tha t  we can a s s o c i a t e  

a n  energy E r htu, with a s y ~ t e m  cha rac t e r i zed  by a f requency 3 .  We a l s o  

saw that  the app ropr i a t e  corresponding ope ra to r  to the f requency i s  given by 

equation 2. 123,  i. e .  

and that  t h e r e f o r e  the corresponding ene rgy  ope ra to r  i s  given by equahon  

2 .  157, i. e. 

iVe the re fo re  nave, that  the expectation value of the ene rgy  would be  

given by 

J 
( E )  = < # I  ; I # )  a ( + I I + ~ ~ $ >  , ( 3 .  70)  

o r ,  f o r  a yy r t em dericrlbed 111 ( 5 ,  t )  space ,  

I *  a ( E )  = I h # (5 t )  $(s t)dJx . ( 3  7 0 ' )  

We have a l s o  seen,  however,  that  t h e r e  ex1st.s a function of 5 and p, 

whlch in classical physlce when evaluated along the path of the evolutxon of 

the s y s t e m  IS  a lways  equal  to the energy,  namely  the Hamiltonlan H = H ( ~ , E ) .  

We would the re fo re  expect,  s l nce  by the co r r e spondence  pr inc ip le  (sec t ion  

2 .  5  vi)  the e x p e c t a t ~ o n  value of fi = ~(i, i)  m u s t  behave classically, tha t  we 

m u s t  a l s o  have that  the ene rgy  m u s t  be  given by 

E = !*I;!$) , 

o r ,  f o r  a s y s t e m  in  5, t  space  

If we now define a new ope ra to r  21, given by 

we m u s t  have, f r o m  the preceding discuss ion,  tha t  

a ( 2 ' )  = ($!(fi - i h z ) ! + )  a 0 , 

f o r  any admis s ib l e  19). Since we a l s o  r e q u i r e  that  we should neve r  de t ec t  a 



7 we must  a lso  have that 

a a ( A E ' ) ~  = (*/(I? - i h  z) I * )  = 0 ,  

or ,  since 2' i s  Hermitian 

a a 
( A E ' ) ~  = ((A - i n  =) +l(b - i n  = o . 

This i s  only possible if ( J I )  is an eigenstate of the 6' operator,  co r res -  

ponding to an eigenvalue of zero,  i. e. 

a E r ( J I )  = (fi - i h  E)(+) = 0 

or,  i n  (5 t )  space, 

Equation 3. 74, o r  3. 74', i s  the celebrated ~ c h r s d i n ~ e r  equation and serves  a s  

the bas is  of the non-relativistic quantum theory. 

Example 3 .  6. Find the ~ c h r s d i n g e r  equation for the one-dimensional motion 

of a p,irticle in a constant potential. 

F r o m  the corresponding Lagrangian we obtain the c lass ica l  Hamiltonian 

1 
H = Z ; ; ; ~ ; + V ,  ( 3 .  7 5 )  

and the corresponding operator 

and therefore 

We can solve the schrgdinger equation, by separation of variables, by 

substituting 

$42, t) = rb) ~ ( t )  ( 3 .  7 7 )  



to obtain, for each admissible E, 

H XE(?f) = E XE (5) 

and 

a 
i h  5 TE(t) = E TE(t) . 

We then have , 
- iEt/h 

TE(t) = c E 

and therefore 

where the symbol S denotes summation if E is discrete and integration if E 

is continuous. It will be recognized that equation 3. 81 is an expansion of the 
A 

time dependence of $(5, t) in the eigenfunctions of the operator E = iihalat. 

The coefficients cE can be computed from the initial conditions, namely since 

and the 2 (x) are. orthonormal, we have E - 
cE = / Xg (5) ((5, 0)da5 z constants 

v 

We can ask for the expectation value of the energy in a system described 

by equation 3. 81. We have 

Several conclusions can be drawn from this result. One i s  that the 

energy is a constant. This can be seen from the fact that the possible values 

of E a re  the (fixed) eigenvalues of fi and the fact that the coefficients cE are  

independent of time (i. e. equation 3. 83) .  This i s  not surprising, since we 

obtained the schr.ddinger equation by requiring that the expectation value of fi 
be equal to a constant along the path of evolution of the system. Conversly, we 

will not be able to describe dissipation ppeperly, i. e. situations in which the 

energy of a system of interest i s  not conserved. 

-3 
a 

Is there a general method of discovering the constants of the motion, in 

the sense that we found energy to be a constant of the motion? Consider an 



A 

operator Q with an expectation value 

v 
A 

which will, in general, be a function of time. The requirement that Q be a 

constant of the motion, in the sense that we found energy to be a constant of 

the motion, can be written a s  

We see that we have to compute the time derivative of the expectation value 

of 6. From equation 3.85, we have 

i. e. the expectation value nldy vary in time for two reasons, either because the 

A 

wavefunction $(x, t) i s  a function of time, o r  because Q i s  an explicit function 

of time. We can now use the ~chrGdinger  equation to substitute for a+/at, 

in particular since 

i h  2 = QV 

we have, 

2 dt  (6) = : (B+161+) - : ( t lBIA+) + ( ~ I $ I * )  . 
# o r  using the fact that fi i s  Hermitian , we have 

We therefore define an operator 

d 6  i ^ A  a 6  
= 5 ;  C",Ql + , 

where [fr, 61 i s  the commutator of the Hamiltonian and the operator 6, i. e. 

[G,d] 5 A6 - dfi , 

whose expectation value, computed for  systems which obey the schr;dinger 

equation, i s  always equal to the (total) time derivative of the expectation value 

of 6. We therefore have that i f  an operator does not involve time explicitly, 

i. e . ,  if a 6 / a t  = 0, then a necessary and sufficient condition that i t t  be con- 

served, i s  that i t  commutes with the Hamiltonian. The similarity between 

equation 3 .  88 and the Poisson brackets equation 1. 63 in classical  mechanics 

should not g o  unnoticed. 

'see also equations 3 . 3 3  and 3 . 3 4 .  

'its expectation values. 



Let  us use this resul t  now to compute the t ime ra t e  of change of the expectation value of the 

momentum E of a part icle moving in a potential V ( z )  The corresponding Harniltonian i s  

given by 

1 H z -  zrn E'E + V(x) - (3.89) 

F r o m  equation 3. 88 we then have, 

d (g) = (CH,~]) , 

where 

see  problems 2. 7 (iv) and 2 .9 ,  and therefore 

a s  we would expect f rom Newton's law and the requirement f rom the correspondence principle 

that the expectation values behave classically. 

F r o m  the fo rm of the schr;dinger equation and the fac t  that the  total probability of 

detecting the sys tem somewhere i s  conserved, i. e. 

v 

we can derive a local conservation law for  the probability density. As  in every case  where 

the integral  of a density i s  conserved, we seek a conservation law of the fo rm 

a - a at (density) + - . (flux) = 0 , (3.9 1) ax 

i .  e .  the local time derivative of the field density, plus the divergence of the corresponding 

flux must  equal zero.  Equation 3 .91 i s  nothing m o r e  than a statement of the fact that if the 

field i s  conserved, the local  loss  f rom a volume element must  be accountable in t e rms  of the 

flux leaving the volume element. In c lass ica l  fluid flow this leads to the m a s s  continuity 

equation, 

where p i s  the fluid density (gms/cm3)  and ~ ( 5 ,  t) is the local  velocity, i n  electromagnetism 

we have the charge conservation equation 

where p (x t )  i s  the local  charge  density (cb/m3) ,  and &(x,t) is the cur ren t  density 
c -' 

(amperes /ma) .  In quantum mechanics, we would like to identify the local  density with the 



probability density, i. e. 

~ ( 2 5  t) = I *(x, t) I=, 

and the question i s  what i s  the corresponding flux i(2, t), that solves the equation 

* + a . i ( s t )  = o . at ax (3.93) 

We wish to compute 

a a * 
~ ( 5 ,  t )  = C$ (5, t) *(x, t ) l  

or ,  using the Schr;;din&er equ.ition, 

3 = + c(H$)* $ - +*(H$)I 

substituting for H, see equation 3. 89, we have 

We can transform this to conservation form, using a vector identity# to obtain 

and therefore we have for the flux vector 

i h  * a a * i(2, t) = - - 2, Cdr ( 3  t) - $(E, t)  - t) - $ (5, t ) l  , ax 85  

sometimes called the probability current. Note that the definition of i(x, t), in terms of 

equation 3. 94 1s not unique. Any i t (x ,  t) ,  given by 

. , a ~ ( 2 ,  t) = i(5, t )  + - x &(x, t)  (3. 96) ax 

will also satisfy the local conservation equation 3. 93, since the divergence of the cur l  of any 

vector field i s  zero.  

' ~ f  epis a scalar field and 1 i s  a vector field, we have 



Prob lems  

3. 1 Prove  equation 3. 7 

3 . 2  Derive equation 3.14. 

3.3 Derive equation 3 .20 f r o m  3. 19. 

3 . 4  Given any function 1 J.) and the normalized eigenfunctions [ 1 uo ). I u l ) .  . . - , I u,), . . . 3 
of some Hermitian operator  6, show that if cn E (un($)  

i s  orthogonal to 1 q, ) 

is orthogonal to { ) u n ) ]  ; n=1 ,2 , .  . ,N-1.  

.. 
3 .  5 If Xo < X1 < Xa : . . < Xn < . . . a r e  the eigenvalues of a Hermitian operator  Q , show 

that 

(i) if ($, I$, ) = 1 and (u,, 1 ) = 0, then 

min  E(ql [ ( i l q l  ) I  = xl 

(ii) if (qNI qN)  = 1 and (un = 0 fo r  n=O, 1 , .  . . , N- 1, then 

min  E($,l6 ($,)I = AN - 

3 . 6  Show that if I+ )  = 2 I U  n ) c n  

n 

n 
and 

Then 

I $ )  = I.,) 

Hint: (In - im)= 2 0 , lcna 2 0 . 

3 .  7 Show that f o r  a sys tem obeying the ~chrb 'd inger  equation, 

d - 1 
d, (5) = , (2) . 



Problems (continued) 

3 .  8 Define a local  phase field V(x ,  t )  by [p(x, t ) ,  ~ ( 5 ,  t) = r e a l ]  

$45, t)  = CP(X, t ) l  
112 e iv(z ,  t)  

where Jl(s, t )  i s  a solution to the Schrgdinger equation. Compute the probability current 

i ( 2 ,  t) .  Can you identify a velocity field f rom this? Compare with the classical  fluid 

m a s s  continuity equation. 

3 . 9  ( i )  Using the ~ c h r b ' d i n ~ e r  equation, show that 

where H i s  the Hamiltonian for the system 

(ii) If H i s  not a function of time, show that, for a finite time shift T ,  

This allows us to define a time translation operator,  

i 
c. --  r H  
Tt(7) E e 

h 

such that 

3. 10 (i) Using the definition of the momentum operator,  show that 

(ii) Show that for a finite translation in 5 

This allows us to define a space translation operator 

i .. .. 5 . E  
T (a) ' e 

x-  - \ 

such that 



4. QUANTUM BEHAVIOR IN ONE-DIMENSIONAL POTENTIALS. 

In this section we will deal  with one-particle sys tems  described by a Hamiltonian 

where the potential V(5) can be separated into the sum of potentials along each coordinate 

component, e. g. 

V(E) = Vx(x) + v (y) + Vz(z) 
Y 

In such cases  the Hamiltonian itself i s  separable, i .  e.  

where 

1 2  H.(x., p . )  = - 2m pi + Vi(xi) , i= 1.2.3 (4. 3b) 
1 1 1  

Thls c lass  of problems, provided the boundary conditions can also be separated along the 

corresponding coordinate components, can be solved by a fur ther  separation of the space 

variables  # 

Consider the Hamiltonian eigenvalue equationt ( s e e  equation 3.  78) 

Now, i f  the Hamiltonian can be separated a s  a sum of the type of equatlon 4.3 ,  we can con- 

s ider  solutions of the f o r m  

where 

and where 

E x + E  + E z = E .  
Y 

the eigenvalue of the total Hamiltonian. See example 3.3. 

In sys tems  of this type. the behavior along each component of the coordinate is 

'In addition to the separation of space - 5 and time - t, see  equation 3. 77 and related 

discussion. 

t ~ o m e t i m e s  a l so  called the time-independent SchrEdinger equation. 



independent of the others, and the wavefunctions a r e  products of functions of the separate  

coordinates. It should be noted that the essent ial  ingredient for  this behavior i s  the separa-  

bility of the I-Iamiltonian, i .  e .  equation 4. 3 .  

These resul ts  can be generalized in a straight-forward manner  to cover  sys tems  of 

non-interacting subsystems (e. g. part ic les) ,  i .  e.  

where 0 

The total wave function f o r  the sys tem can then be written a s  a product 

where 

where 

Note again that the condition for  this to be posslble i s  that the Hamiltonian be  separable  into 

a sum of separate  Hamlltonians for  each subsystem (particle), which involve only the c o r r e s -  

i# ponding coordinate and momentum variables  . Note a l so  the resulting total probability density 

i s  then expressible  a s  a product 

of probability densities, consistently with our notion of independence in classical  probability 

theory. 

A s  a resul t  of these considerations, we a r e  motivated to study the one-dimensional 

problem, fo r  which the Hamiltonian i s  given by 

realizing that i t  i s  more  broadly applicable than for  motion of a single part ic le  along one 

dimension. 

#actually, in  this case ,  i t  i s  sufficient that the potential have this property, since the kinetic 

energy i s  a lready separable .  



4. 1 Matching conditions. 

In many c a s e s  of interest ,  i t  i s  useful to divide the range of the coordinate into two o r  

m o r e  regions that separate  different analytical expressions f o r  the potential. By way of 

example, let  

V-(x) for  x < xo 
V(x) = 

V+(x) fo r  x > x, 

where V (%) need not be  equal to V+(xo ), e .  g. 

We can then consider dividing the Schrb;dinger equation 

into two regions, i. e.  

and 

where 

u-(x) for  x < +, 
U(X) = 

u+(x) for  x > +, . 

The question is what happens to the wavefunction u(x) at x = xo. F r o m  the ~chrb 'd inger  

equation 4. 13, we have that 

which we can integrate to obtain 



and therefore the difference just a f te r  x, and just before i s  equal to 

Now, provided V(x) i s  finite and has no singularity a t  x = x, ( i t  may have a discontinuity), 

we have 

c-0 h2 
XO - E  

o r  

o r ,  the derivative of the wavefunction i s  continuous a c r o s s  a non-singular discontinuity of 

u. 
What if V(x) had a delta function singularity a t  +, i .  e .  

V - ( x )  fo r  x < x, 

Substituting 4. 18 into 4.16 we have 



o r ,  fo r  a delta function a t  x = &, 

Integrating 4. 19 we a l so  have 

even if V(x) has a delta function singularity a t  x = +. 

4. 2 Motion in a constant potential. F r e e  part ic le  behavior. 

The s implest  problem of this type occurs  if the potential i s  a constant, i. e .  

V(x) = V, = const. 

We then have 

and the Schrijdinger equation becomes, see  example 3 . 6 ,  

separating x and t, we have 

where 

ha - ,m ul ' (x)  + Vo U(X) = E u(x) 

and 

T(t)  = T(0) e 
- i E t / h  

F r o m  equation 4 .24  we then have 

2 m  
ul ' (x)  + - ( E  - V,) U(X) = 0 , 

ha 

whose solution i s  given by 

u(x) = a+ eikx + a-  e - ikx 

where  

k = JZrn (E - V,) , 
ha 

if E > V,, and 

U(X) = b+ eKX + b- e-Kx 



where  

We s e e  that if the energy i s  g r e a t e r  than the potential Vo, we have wave-like solutions, 

(superposition of right-going and left-going waves), whereas if E < V o ,  we have exponentially 

growing o r  decaying amplitudes. The coefficients a+ and b* would be determined by the 

boundary/initial conditions. Note that classically no solutions would exis t  fo r  E < VQ 

Solutions of different energies  can be superimposed to solve the time depenclent 

problems in each case .  See equation 3 .  81 and problem 4. 1. 

4. 2.  1 Scattering by a potential step. 

Consider a source of monoenergetic part ic les  a t  x = -4, of strength J,, (par t ic les/  

cma)/sec,  traveliing f rom left to right on a s tep change in the potential V(x) ,  given by 

0 for  x < 0 

V(x) = 

V, for  x > 0 . 

Such a situation might a r i se ,  fo r  example, i n  an apparatus sketched below. 

 h he solutions of equation 4. 20 a r e  of course  included in equation 4. 19 if the radical is 

interpreted properly. 

update 



In the r e a l  experiment, the transition f r o m  V = 0 to V = V, will, of course,  take place in 

a finite dis tance Ax - e .  The approximation of a s tep change, however, we would expect 

to  be  valid a s  E & - 0, where k, i s  the wave number of the incident par t ic les .  See 

equation 4. 3 1 below. 

In the idealized situation, we then have a s tep change a t  x = 0 a s  depicted below. 

The step change, we might expect, may reflect some part ic les  back and t ransmi t  some 

part ic les  forward. F r o m  the figure above and equation 4. 27 we would expect that (E  > Vo)  

where R and T a r e  the complex reflection and t ransmission amplitudes, and k, and k 

a r e  given by 

The coefficient c, can be computed by matching to the flux of the source.  F r o m  the 

solution for  x < 0, we have ( see  equation 3 .95)  

- ik,x . ikox iko x - i b x  
= - 2 m  [ I c o ~ 2  (e + R  e )(ik,,e - i b R e  

therefore 

j(x < 0) = $  jcola ( 1  - I R ( ~ )  , (4.32) 

which mus t  be equal to the flux of the source,  minus the reflected flux, i. e. 

'cc = complex conjugate. 



Therefore 

I t  should be noted that we have made a n  implicit  assumption in assigning a single 

wavefunction to the total flux of the source,  namely that we a r e  dealing with a coherent  

source of par t ic les .  If the phases between the part ic les  a r e  uncorrelated, we should use 

instead a wavefunction f o r  one part ic le  a t  a time, whose extent (coherence) in  x would be 

B a function of the monochromaticity of the source , and a t  the end superimpose the probabilities 

fo r  each outcome, a s  opposed to the amplitudes a s  we have done in writing down the wave- 

function of equation 4. 30. An analogous situation occurs  in  dealing with polarized light 

(coherent superposition of amplitudes),  ve rsus  unpola rized light (incoherent superposition of 

amplitudes, superposition of probabilities).  In this example, however, the assumption of a 

monoenergetic source, essentially makes the two c a s e s  resul t  in the same outcome. Can 

you show this?  

Going back to the problem, we have two unknowns, R and T, which we can determine 

f r o m  the matching conditions a t  x = 0, namely, 

Dividing the two equations, we have 

o r  

and 

F r o m  these we can a l so  compute the reflected and t ransmit ted fluxes 

and 

k 
J~ = $ 

I T \ "  J,, == J,, . 
(1 + k,? 

We can define the t ransmission coefficient, a s  

'i. e.  a wavepacket for  which Ax Ak - 1 



This  is sketched below 

t 

Note that c lassical ly  there can b e  no reflected part ic les  if E > VQ The s tep change 

represen ts  an impulse which will ref lect  the part ic les  o r  not depending on i t s  strength. The 

simultaneous possibility of reflection and t ransmission i s  a purely quantum mechanical resul t .  

Note also that f o r  k/k, = 1 (no step) the transmitted flux i s  equal to the incident flux (no 

reflection), a s  one might expect. What one might not expect i s  that a s  k/k, inc reases  

beyond unity, i. e .  a negative V,, 

I 

the t ransmission coefficient begins to fal l  again and for  k/k, >> 1 tends to 

4 

which goes to zero, if the potential has an infinite drop. 



It  should be noted that these resul ts  depend, to some extent, on the assumption that the 

potential change occurs  over a range s in  x which i s  small  compared to the wavelength of 

the wavefunction ( i .  e. ek << 1). While this assumption might be valid for  smal l  potential 

s tep changes and low energies, i t  mos t  likely will not be adequate in the limiting c a s e  of an 

infinite potential drop, since the wavenumber fo r  x j. 0 tends to infinity. To t r e a t  that 

problem more  accurately one has to solve the schrSdlnger equation i n  detail  in the vicinity 

of the transition in the potential. 

The solution to such a problem might bes t  be handled numerically. 

4 .2 .2  Scattering by a potential s tep of finite-length. 

Consider the same source of monoenergetic part ic les  incident a potential s tep of finite 

length, centered a t  x = 0, i. e .  



o for  1x1 > a / 2  

V(x) = 
V, for 1x1 < a / z  

Such a situation might a r i se ,  in  a s imi la r  apparatus  to the one of section 4. 2. 1, a s  

follows, 

which we approximate by the rectangular potential of equation 4. 38 

We then have, for  E > V,, 

, x < - a / 2  

, - a/Z < x < a / 2  

; x > a / 2  . 

We now apply the matching conditions a t  x = + a / 2  to obtain: 

'normalized to unit incoming beam amplitude. 



- ikod/2 ik, a / 2  - ika/2 ika/Z 
,I(- $) = "(- c) : e i l< e = A e  + B e  (4. 40a) 

ika /2 -ika/2 ik, a/Z 
+ B e  = T e  

This  i s  a system of four equations and four unknowns, which af ter  a lit t le a lgebra 

yields the reflection and t ransmission amplitude 

-ik,a 
(kf Lka) sin ka. e 

R = -  Zk 

cos ka - i ("5;:) sin ka 

T = e 

c o s  ka - 1 (kiki:') sin ka 

It  i s  noteworthy to observe that if ka = nr,  the reflection amplitude i s  zero,  and the beam 

experiences 100% transrnlssion. Thls i s  a wave mechanical resonance phenomenon that 

occurs  a s  a resu l t  of constructive interference between the t ransmit ted and reflected waves a t  

x = i a /2 .  It should also be pointed out that this solution 15 a l so  valid if E > 0 > V,, i. e. 

a potential well.  



The resul ts  in  sections 4. 2. 1 and 4. 2. 2 may be famil iar  i n  a different context. They 

represen t  wave behavior and have exact counterparts  in o p t l ~ s  and acoust ics ,  fo r  example. 

In section 4.2. 1, the essent ial  f e a t ~ ~ r e  that resu l t s  in  the simultaneous reflection and t rans -  

mission of the wave a t  the s tep i 5  the abrupt  change in the wavelength (wavenumber- ') ,  i. e. 

if E > V, 

This  a l so  occurs  when light ( o r  sound) is incident f r o m  a medium of one index of refraction 

to one of another. The resul ts  a r e  the same.  F r o m  optics, f o r  example, we have that the 

reflection coefficient f o r  normal  incidence is given by 

where nl and % a r e  the indeces in  the two media. 

The ratio of the indeces of refract ion i s  of course  the reciprocal  of the rat io  of the wave- 

numbers  and we recover  the resul t  of equation 4.35a. In optics, the approximation that the 

range of the transition in  the propert ies  of the medium ("potential"), t imes the wavenumber 

i s  much l e s s  than unity i s  a very good one, because the wavelength of visible light i s  of the 

o rder  of severa l  thousand Angstroms (4,000 < A < 7,000 A f o r  visible light; lh = cm),  

whereas the transition length f o r  the index of refract ion i s  of the o rder  of the interatomic 

spacing in a solid ( o r  liquid), which i s  of the o rder  of a few Angstroms (range of interatomic 

potentials). Therefore 

~k - 5 - , 
h 

typically fo r  visible light. Conversly, this i s  why i t  i s  not possible to construct  a (conven- 

tional) reflector f o r  x - rays  (G/A - 1). 

The optical analogy to the potential s tep of finite length is the etalon. This  usually 

consis ts  of piece of g lass  of a cer tain thickness with plane paral le l  opposite faces (see refs .  

4. 1 and 4.2).  



One then exploits the sharp t ransmission resonances a t  

ka = nrr 

o r  

1 
a = - n X  , 2 

i. e. integral number of half wavelengths, f o r  wavelength selection purposes. This device i s  

commonly used to select  a par t icular  longitudinal mode in 1 l a s e r  cavity to fo rce  the l a s e r  to 

operate  single frequency. 

4. 2. 3 Tunneling. 

The expressions f o r  the reflection and t ransmission amplitudes f o r  the finite potential 

step, i. e. equation 4. 41 assume that E - V(x)  2 everywhere. We a l so  have the interesting 

situation, however, of 0 < E < V,, i. e. 

Classically, of course,  this represen ts  a potential b a r r i e r ,  which will necessar i ly  resul t  in  

100% reflection of the incoming beam. Quantum mechanically, however, i t  turns out that we 

again have both reflection and t ransmission.  The wavefunctions in  the th ree  regions now 

become 

+ ~e~~ ; -a/2 < x < a / 2  

; a / 2  < x , 

where, i n  this c a s e  



We may solve this system, the same way a s  before. If we observe,  however, that the sub- 

s titution 

k = i K  (4.44) 

in equation 4. 3 9  yields the new equations 4. 42, we can obtain the resul ts  directly. In par -  

t icular ,  the t ransmission amplitude becomes 

cosh Ka - i (w) sinh 'La ' 

yielding a t ransmission coefficient, 

Now note that since 

we have, for  l a rge  Ka 

1 eKa 
sinh Ka ^ z 

and therefore 

This i s  perhaps an unexpected resu l t  in that even though the incident par t ic les  do not 

have the energy to go over  the potential hill classically, quantum mechanically ,they may make 

i t  to the other side, with some probability that d e c r e a s e s  very rapidly, however, a s  the 

energy deficit  increases.  This phenomenon i s  called tunneling and i s  in  fac t  the way part ic les  

a r e  observed to behave. 

In any pract ical  situation, of course,  potential b a r r i e r s  will not be square. It  i s  

possible, however, to approximate a smooth potential hill  V(x)  by a s e r i e s  of steps, i. e. 



and consider the total transrnissiorl a s  the product of the individual t ransmissions through 

each of the consecutive bar r ie r s ,  i .  e.  

I T ( "  ' ( ~ ~ 1 ' .  I'l'i+lla . . .   IT^-^^^. ( T ~ I " ,  

where Vi i s  the f i r s t  s tep f o r  which V(x) > E and V. is the l a s t  one. If one ignores  the 
J 

much m o r e  slowly varying coefficient of the exponential in  equation 4. 47, we have 

where 

0 r 

where K(x) i s  now a continuous variable, given by 

This  resu l t  i s  a good approximation and can be justified by a m o r e  r igorous treatment. It 

i s  valid when the potential changes smoothly and slowly, in  part icular  i f  

Even though this i s  not quite satisfied near  the points x = a and x = b, where E " V(x)  

and K(x) i s  smal l ,  the bulk of the contribution to the integral  of equation 4. 48 comes f r o m  

the cen t ra l  portion and we may neglect the e r r o r s  in those two regions. 

4. 2. 4 Bound states  of a rectangular potential well. 

Consider now a potential 

V, < 0 fo r  1x1 < a / 2  

V(x) = 

for 1x1 > a12 , 

and a part ic le  with an energy Vo < E < 0. 



Since F: - V(x) < 0 for x < - a/Z and x > a/Z, we will have r e a l  exponential solu- 

tlons in those two rcglons, and r > \ c  l l latory solutions I J I  the rexion - d / L  < x < a /2 ,  I. e .  

where 

and 

Note that we have excluded the e - K X  solution f o r  x < - a / 2  and the e+KX solution for  

x > a / 2 ,  since these two blow up a t  x = * m, and we know that since E < 0, the part ic le  

i s  not llkely to be detected too f a r  f r o m  the well. 

Now, our  expression f o r  the wavefunction, a s  given by equation 4. 52, has four unknowns 

and there a r e  four matching conditions, namely two conditions f rom the requirement  that  the 

wavefunction be continuous a t  x = rt a/2,  and two conditions f r o m  the requirement that the 

derivative of the wavefunction be continuous a t  x = * a / 2 .  These four  conditions can, of 

# course determine these constants . It  i s  useful, however, a t  this point to note that we a r e  

solving a problem with a n  important symmetry.  

The Schr;;dinger equation, lo r  tills problem is given by, 

' ~ c t u a l l y  they do not, because the determinant of the coefficients i s  zero.  W e  have, however, 

one more  condition by requiring that u(x) be normalized. 



Now note that  s ince,  i n  this  c a s e ,  V(x)  = V(- x), i. e .  the potent ial  is s y m m e t r i c ,  if u(x)  

i s  a solution, u(- x )  m u s t  a l s o  be  a solution. T h e r e f o r e  if u(x)  i s  a solution, 

i. e. the even and odd l i n e a r  combinat ions of u(x)  and u(- x) ,  m u s t  a l s o  be  solut ions.  

Evident ly 

w h e r e a s  

Consequently, i t  i s  sufficient,  in  such  c a s e s ,  to l i rn i t  the s e a r c h  to funct ions of even par i ty  

and odd par i ty ,  a s  functions which sa t i s fy  equat ions 4. 55a and 4. 55b, respec t ive ly ,  a r e  

ca l led .  Using this  in format ion  we  now look f o r  wavefunctions of the f o r m  

and 

1 : - A  e f K x  ; x < - a / 2  

u - ( x )  a s i n  k x  ; Ix 1 < a / 2  (4. 56b) 

A e-Kx ; x < a / 2  . 

Now the match ing  condit ions a t  x = * a / 2  a r e  no l o n g e r  independent, and i t  is suf- 

f i c ien t  t o  c o n s i d e r  t h e  p a i r  a t  x = a / 2  s i n c e  o u r  solut ions now have a fixed even o r  odd 

behavior .  Correspondingly,  the n u m b e r  of unknowns i s  now two. 

I t  i s  a l s o  useful  to note, a t  th i s  point that  if both the der iva t ive  of a funct ion j& the 

function a r e  continuous a t  x = G, we have 

+ 
ul(%-) = u ' ( x , )  

and t h e r e f o r e  a l s o  

i. e. the logar i thmic  der iva t ive  m u s t  a l s o  b e  cont inuous.  We then have, at  x = a/2 



ka k c o t  - 2 = x ,  

f o r  t h e  even solut ions,  and 

ka K c o t  - = - - 
2 k ' 

(4. 57b) 

T o  solve equat ions 4. 57a and  4. 57b i t  i s  cor lven~ent  to define d i m e n s i o n l e s s  v a r i < ~ b l e s  

and 

no te  V,, 4 0.  We then have,  f o r  the even solut ions 

qeven(5)  = 5 ; even solut ions 
. d m  

qodd(<)  = - Jd. ; odd solut ions . 5 

It i s  useful  to plot  these  equat ions,  a s  a function of t .  A value of p2 = 3 0  h a s  been  

chosen f o r  this  example .  



S e v e r a l  i m p o r t a n t  f e a t u r e s  of the solut ions c a n  b e  s e e n  d i r e c t l y  f r o m  th i s  g r a p h i c  

solution: 

(i) T h e  prob lem depends on one p a r a m e t e r  only, namely  P, 

(ii) Only spec i f ic  va lues  of 5, cor responding  to d i s c r e t e  negat ive e n e r g y  eigenvalues 

of the bound s t a t e s ,  c a n  s e r v e  a s  solut ions.  T h e  e n e r g i e s  cor responding  to the 

solut ions Tn a r e  then g iven  by ( s e e  equat ions 4. 58a and 4. 53b), 

(iii) F o r  a potent ial  wel l  o f  f ini te  depth, t h e r e  e x i s t  a f ini te  number  of solut ions 

(bound s t a t e s ) ,  which we c a n  s e e  f r o m  the graphic  solut ion,  1s equal  to the 

n u m b e r  of q u a d r a n t s  c o v e r e d  by the ~ n t e r v ~ t l  0 < 5 < P. In o ther  words  we have 

( n  + 1)  solut ions,  w h e r e  

We s e e  that  t h e r e  e x i s t s  a t  l e a s t  one bound s ta te ,  even  f o r  a vanishingly shal low 

# well  (P - 0)  . 

( iv )  The eigenfunction cor responding  to the lowes t  e igenvalue i s  even. T h e  one 

cor responding  to the next  e igenvalue is odd. In g e n e r a l ,  f o r  a s y m m e t r i c  

potential,  the eigenfunctionr a l t e r n a t e  between functions of even and odd p a r i t y  . 

(v )  A s  the well  becomes  d e e p e r  and d e e p e r ,  the l o w e r  solut ions tend to 

f o r  Sn/P << 1. Cor responding ly ,  the e n e r g i e s  tend to 

Equat ions 4. 59 m a y  b e  solved by a n  asympto t ic  expansion of the a r c  cotangent ,  f o r  the  even  

solut ions,  and the a r c  tangent, f o r  the odd solut ions to obtain, f o r  Tn/P << 1 

'This r e s u l t  is only t r u e  f o r  po ten t ia l s  i n  one  d imens ion .  A shal low potent ial  i n  t h r e e  

d i m e n s i o n s  need no t  have any  bound s t a t e s .  

 or a g e n e r a l  potent ial ,  t h e  eigenfunction cor responding  to the l o w e s t  e igenvalue h a s  no 

nodes  ( z e r o s ) .  T h e  nex t  highest  h a s  one, the  following one h a s  two, e tc .  



Alternatively, fo r  Tn/P 6 1, they may be solved numerical ly.  See appendix E. The  numeri-  

ca l  solutions, computed to four  significant f igures,  a r e  compared to the es t imates  of equation 

4. 62 in the table below fo r  4 = = 5. 4772 

It can be seen  that the asymptotic es t imate  for  q n / P  << 1, i. e. equation 4. 64, yields 

very good resul t s  fo r  sma l l  Tn/f3. In fact  i t  i s  only 4% off a t  T/P ' 0 . 9 3 !  

The constants  A+ and A of equations 4. 56 can now be evaluated f o r  each  eigen- 

function, in  par t icu lar ,  f r o m  the continuity of the wavefunctions a t  x = a/2 ,  we have 

and 

Ka/2 ka 
A = e  s in  - . - 2 

The constant  of proportionality, i n  equations 4. 56 can a l so  be computed by requiring that 

the wavefunctions a r e  normalized.  The  wavefunctions corresponding to the four  bound s ta tes  

fo r  the p = potential a r e  sketched below 

'from the numer ica l  computation i n  appendix E. 



Eigenvalues and eigenfunctions for a rectangular potential well of a depth such that 



It  is useful to note that, except f o r  the normalization constant, we could have written 

the matched wavefunctions, f r o m  the beginning. In part icular ,  if we requi re  that \u(x)l  = 1 

a t  x i a/Z, we have, f r o m  equations 4. 56, 

and 

I. sin kx 
u(x) = ; 1x1 < a / 2  (4. 66b) 

sin (3 
K(x - a / 2 )  

; x > a / 2  

which, f o r  k and K that satisfy equations 4. 57, a r e  matched by construction. 

4. 25 The infinite potential well. 

Quite frequently, the fact  that the depth of the well i s  finite has very  litt le effect on the 

problem of interest .  F o r  example, if 1 E )  << Po 1 ,  i. e. if we a r e  dealing with low lying s tates  

f o r  which ( see  equation 4. 64), n/p << 1, and p >> 1, we go to the l imits  of equation 4. 63. 

Note that, in  that limit,  

u*(f a / 2 )  - 0 
since ka/2 tends to a n  odd multiple of a / 2  f o r  the even (cosine) solutions and to a multiple 

of rr fo r  the odd (s ine)  solutions. We have therefore that in  the l imi t  of P - m and 

n/p - 0, the wavefunctions a r e  s t r ic t ly  confined to the region 1x1 < a/2,  i. e. f o r  n even 

cos  x ; 1x1 < a /2  n 
u (x) = n (4. 67a) 

; 1x1 > a / z  , 

whereas  f o r  n odd, 

i n k x  n ; 1x1 < a 1 2  

u (x)  = 
n (4. 67b) 

; 1x1 > a / z  , 
where  

for  a l l  n. The  expressions fo r  the wavefunctions given by equations 4.67, include the 

normalization constant. See equation 3. 17 i n  example 3.3, and problems 4. 5 and 4.6. 

We can  now turn the problem around and recognize that these solutions a r e  the 



eigenfunctions of a f r e e  part icle  confined to a region of extent a ,  since the value of 

V(x) = V, -. - m  is irrelevant ,  i f  we measure  the energies using V, a s  the origin. See 

equation 4. 63 '. These eigenfunctions a r e ,  of course,  the eigenfunctions of the kinetic energy 

operator. See example 3.3. Note that the energy levels, scaled by - "' ha , a r e  the sequence 
2maa 

of the index (plus one) squared, i. e .  

2rnaa 
E = -  (En - V,) = (n t 1)' (4. 6 9 )  

rr2 ha 

The index n i s  often re fe r red  to a s  the guantum number of the state. The f i r s t  three wave- 

functions, offset by the corresponding energy levels, a r e  sketched below. 



4. 3 Density of states. 

4. 3. 1 Motion in one dimension. 

For  a particle confined to a region 

we found the eigenvalues 

where 

corresponding to the eigenfunctions, 

cos knx ; 1x1 < L/2, n = even 

; 1x1 < L/2, n = odd 

; I x l > L / Z  . 
Note, from equation 4. 72, that the wavenumbers corresponding to the solutions LQX) 

a r e  evenly spaced on the k-axis, i. e. 

by an interval 

The corresponding energies a re  then discrete and fall on the parabola given by equation 4.71. 



We now ask  how many states  there a r e  in  a part icular  energy interval  AE a t  E. We 

can think of this problem a s  the difference 

AN = N(E  + AE) - N(E)  

which we can express  a s  

where 

W e  can compute dE/dk f r o m  equation 4. 71 in part icular  

and therefore 

The second t e r m  AN/Ak, can be seen to be equal to the number of s ta tes  dN in an interval 

dk. Since, however, the s tates  a s  indexed by k a r e  uniformly spaced on the k-axis ,  we 

have, f r o m  equation 4. 74, 

Therefore, fo r  one dimensional motion, 

We can think of the number of s ta tes  N ( E ) ,  in the l imi t  of L - m a s  an integral over  a 

density of s ta tes  n(E), i. e. 

N ( E )  " n ( E ) d E  , 

0 r f 
dN = n ( E ) d E  (4. 79)  

where f r o m  4 .  78 forone-dimensional  motion 



Note that the density of s ta tes  n(E) can be written a s  

where, f rom chapter  2, 

where v (k)  i s  the group velocity a t  k. We therefore have 
g 

1 dN 
n ( E )  = - . - 

h v g (k) dk 

In part icular ,  note that the density of s ta tes  goes to infinity wherever  the group velocity 

v (k) vanishes. 
g 

4. 3 .  2 Periodic  boundary conditions. 

The s e t  of solutions fo r  a part ic le  in a one dimensional box, a s  given by equations 4. 73 

can be seen to be standing waves cos kx and sin kx o r ,  equivalently, superpositions of 

ikx - ikx 
running waves e and e but with equal amplitude. This restr ic t ion of the amplitude 

-ikx of eikx and e , f o r  a given k, a r i s e s  f r o m  the details of the potential V(x) a t  

x = f L/2, which force  the wavefunction to go to ze ro  there. Often t imes,  however, either 

that par t icular  shape of the potential is a n  approximation, o r  the region of in te res t  i s  

localized i n  an interval  away f r o m  the edges x a * L / 2  and therefore the actual  detai ls  of 

the boundary conditions there  a r e  unimportant. What i s  important,  however, is that we 

p r e s e r v e  the proper  accounting of the number of s ta tes  per  unit wavenumber interval and 

therefore a l so  p e r  unit energy interval.  

An al ternate  solution s e t  can be obtained in the region 1x1 < L / 2  by replacing the 

infinite square well by the condition that the wavefunctions a r e  periodic, i. e. 

u(- L /2)  = u(L/2)  (4. 82) 

ikx Then, if we express  the solutions in  t e r m s  of the running waves e , we mus t  have, 

ikL/2 = e-ikL/2 

o r  

eikL = 1 

where L i s  the extent of the region to which the part ic le  i s  confined. 

The solution to equation 4. 83 i s  given by 



Note that, in this representation, the values of k a r e  both positive and negative, 

corresponding to the direction of the running waves, but a r e  now spaced twice a s  f a r  apart .  

Therefore the density of s ta tes  per  unit energy interval  remains the same a s  before. 

4. 3.  3 Density of states  in  th ree  dimensions. 

Consider now a part ic le  of m a s s  m moving in a three dimensional 

where 

m fo r  1x1 > Li/2 

Vi(x) = 

0 for  1x1 > Li/2 , 

representing a rectangular box with s ides b, 4,  L3. F r o m  our previous discussion, we 

have that the time-independent ~ c h r 6 d i n g e r  equation 

spl i ts  into th ree  one-dimensional equations, i .  e.  

where  

and 

4 2 )  = u1 (x) ua (Y) % (z) . 
The energies  a r e  then given by 

where 



and the eigenfunctions 

cos(k. l,n.xi) ; n. = even 
1 

sin(k.  x.) ; n. = odd 
1, n. I 

The total energy i s  then given, fo r  each  admissible  k = (kx,k ,kZ), by 
Y 

f o r  nl,%,n3 5 0, 1,2,. . . . 
We see, a s  before, that these solutions a r e  standing waves confined to the extent of the 

box in each of the th ree  dimensions. To admit  running wave solutions, we consider instead 

the periodic boundary conditions, 

which yield the eigenfunctions 
ik.x. 

u.(xi) = e 1 1  

where 

with the corresponding eigenvalues 

Note that these wavefunctions, i. e. 

a r e  wavefunctions of definite momentum, i. e. 

= " = ( h k ~ , h k a . h k , )  , 

which we can labe l  unambiguously by the wavenumber lc, and denote in  our  representation 

independent notation a s  Ik). Any state  of the sys tem can then be represented a s  a super-  

position of these s tates ,  i. e. 

where the summation runs over  the admissible  values of k = ( k l , b ,  k,), a s  given by equation 



4.93. Note that 

and that therefore, fo r  example, 

Note now that these s tates  occupy a rectangular lattice in wavenumber space, i. e. 

of cel l  s ize  

6% ; (")(")(") ; A 2 L L  , 
L, La & Volume 

alternatively there exists one s tate  per [ ( 2 r ) 3 / ~ o l u m e ]  in k-space. - 

We now wish to compute the number of s tates  in an energy interval 

E < E 1 < E + d E  , 

i. e .  

dN(E) = N(E + dE) - N(E)  . 

To compute N(E) we note that the total number of s tates  with energy 

i s  given by 
(Volume in  %-space with E' < E) 

N(E' < E, = (Volume in k-space per  state) 

o r  
f rk3 (El 

N(E1 < E) = 
/VOI. 



where, 

Therefore. after a little algebra 

Vol (F))/2 E3/2 
N ( E 1  < E) = ---' 

baa 
and therefore 

Consequently, a s  in the one-dimensional case,  we can define the density of states n ( E ) ,  

such that the total number of states N(E)  between 0 and E i s  given by 

where 

update 



4.3. 4 The F e r m i  energy of conduction electrons in  a metal.  

A s  we shal l  s e e  l a t e r  on, e lectrons possess  intr insic  angular momentum called spin, 
1 1 

whose projection along any axis  i s  always found to be + - h o r  - - h, conventionally re fe r red  2 2 

to  a s  "spin up" o r  "spin down". We will  a l so  s e e  that two electrons' that a r e  in the same 

spin s tate  (spin up o r  spin down) may not be  described by the s a m e  spatial wavefunction. In 

other  words, two electrons may not occupy the same state. This  i s  the celebrated 

exclusion principle. 

Consider now conduction electrons which a r e  f r e e  to move around inside a metal.  We 

can model this situation by a three-dimensional potential well whose extent. i s  the piece of 

metal  and whose depth i s  yet  to be determined. 

Now if the metal  i s  a n  alkali (K, Na, etc. ). which yields one electron per  atom, we will 

have Na electrons per  unit volume, 

where p i s  the density of the mate r ia l  and m i s  the m a s s  p e r  atom. An electron, 

however, moving inside the rectangular potential can occupy the wavenumber s tates  

)&) = I kx, ky, kz) of a part ic le  in  a box. 

If we had only one electron, then the lowest energy s tate  of the system would find i t  i n  

the ground state ,  corredponding to the lowest admissible values of kx, ky, kZ ( s e e  equation 

4. 9 3 ) .  Lf we now add a second electron, we could put i t  in the same (spat ial)  s ta te  provided 

i t  had a spin projection that was ant i -paral le l  to that of the f i r s t .  A third electron, however, 

cannot be accommodated in the s a m e  state  and i s  forced to occupy the next highest admissible 

state. In this fashion, we can place two electrons in each (spat ial)  state. It i s  c l e a r  that 

the Paul i  exclusion principle forces the electrons to occupy ever  increasing energy s tates .  

How high up the energy ladder  does this p rocess  go? Well, f r o m  the resu l t s  of the p re -  

ceding discussion, we have that the number of s ta tes  per  unit volume between 0 and E i s  

given by 

'or any part ic les  with half - integral  spin. 



Since we can accommodate two electrons in each of these states,  we must actually reach u p  

to an energy such that 

6na 

This energy is called the F e r m i  energy and i s  given by 

Note that this has the co r rec t  dimensions and that the Fermi  energy, correspond.s to  ,I 

wavenumber . 

kF = ( 3 7 ' ~ ~ ) " ~  . (4. 106) 

The electron energy spectrum i s  then given by equation 4. 102 for  E < c F  and i s  zero  

for  E > CF. , 

Strictly speaking, this i s  only true a t  zero  temperature. Even a t  room temperature,  

however, this i s  a very  good approximation since the smearing of the sharp  cut-off a t  

E = c F  will be of the order  of A - kgT and, for  typical values, 

We can now determine the depth of the effective well since we know that the most  

energetic electrons (i. e. at c ) can be extracted photoelectrically if we deliver to them an F 

energy equal to the work function which can readily be measured.  This situation is depicted 

below. See also problem 4. 11. 

update 



and sketched below. 

A s  can  be seen f r o m  this picture, the electrons can be  extracted f rom the metal  surface 

by tunneling through the potential b a r r i e r .  The field emission cur ren t  i s  then proportional 

to the tunneling t ransmission coefficient (equation 4. 48). 

where 

o r ,  fo r  e lectrons a t  the top of the F e r m i  sea 

where a i s  the location where the energy gain c r o s s e s  the potential, 

We then have, 1 
-nos z / O  (1  - 5 1 " ~  d~ 

j = e  

where the effective tunneling wavenumber i s  scaled by 

and 5 has been defined a s  x /a .  Since 

we have 

o r ,  substituting f o r  K O  and a ,  



Equation 4. 113 i s  known a s  the Fowler-Nordheim formula and provides a qualitatively c o r r e c t  

description f o r  field emission. To  obtain a bet ter  expression, we have to take into account 

severa l  effects we have ignored. The f i r s t  i s  the electrostat ic  a t t ract ion a n  electron feels  

pulling i t  back to the metal,  a consequence of the image charge induced in the metal.  This  

leads to a potential which for  x > 0 and zero  e lec t r ic  field i s  given by 

When we then turn on the electr ic  field, the potential fo r  x > 0 becomes 

ea 1 V(x > 0) = - (-)= - ed'x 
h e 0  

It  can  be seen that this resul ts  in an increase  in the field emission cur ren t  f o r  two reasons: 

(i) The range of integration i s  now slightly reduced, i. e. 

where b i s  defined by 

and, 

(ii) the maximum energy deficit i s  reduced, corresponding to a decrease  of the l a r g e s t  

U(x) in  the integral  , 

given by 



4.3. 7. Paramagnetic behavior of metals. 

It i s  known that classical paramagnetic behavior predicts a magnetization. field, which 

for weak magnetic fields, i s  proportional to the applied field and inversly proportional to 

temperature, i. e. 

See appendix F, section 5. While this seems to describe the paramagnetic behavior of many 

salts,  i t  has long been known that metals have a paramagnetic behavior, which i s  essentially 

independent of temperature.' There i s  no way to account for this discrepancy classically. 

which i s  a consequence of the quantum behavior of the conduction electrons in a metal. This 

can be understood a s  outlined below. 

We have seen that, in the absence of a magnetic field, the conduction electrons occupy 

the available f r e e  particle states in the box, defined by the extent of the metal, in pairs  

(spin up and spin down), up to the Fermi  energy 

When we apply an external uniform magnetic field r BZsZ,  we introduce an additional term 

to the Hamiltonian of each electron, representing the interaction of the electron spin magnetic 

moment p and the external field, i. e. -S  

H = H ,  + H S  , 

where 
HS s - kSa!? 4 

and 

where ge - 2 . 0 0  and 5 is the spin angular momentum. See appendix F, section 5. 

It can be seen that this new te rm does not operate on the space coordinates.' I t  has 

'for non ferromagnetic materials.  

 h here i s  actually an additional t e r m  are have not included, which couples to the orbital 

motion of the electrons. See problem I?. 11. This yields a diamagnetic contribution to the 

magnetization. We will &CUSS this la ter  in the context of angular momentum. 



only two values,  depending on whether the electron spin i s  para l le l  o r  anti-parallel  to the 

magnetic field. Correspondingly, the eigenfunctions a r e  separable  and can be w r ~ t t e n ,  a h  

we have seen before, a s  a product  of functions of the space variables (eigenfunctions of M, ) 

and functions of the spin var iables  (eigenfunctions of H ), i .  e .  s 

We know the eigenfunctions $(x) corresponding to &. They a r e  the f r ee  part lcle s ta tes  In a 

box, corresponding to the admiss ib le  wavenumbers (subject  to the periodic boundary condltlon 

res t r ic t ions)  i.  e .  

I*) = I&) = Ikx,*y.*z) . (4. 125) 

We a lso  know, in turn, the eigenfunctions of the spin var iables  since the electron spln 

(projection) can only be "up" o r  "down", i. e .  

where m = i 1/2,  corresponding to the two possible s ta tes ,  and 

s Z l m s )  = h m s l m s )  

corresponding to a z-projection of the spin angular momentum of * hl.2.' Consequently the 

total eigenfunctions a r e  labeled by four indeces,  i .  e .  

Note that 

and 

and that therefore  the energy of these s ta tes  

i s  given by 

The magnetic field, therefore resul t s  in an energy shift of the spin up electrons with 

respect  to the spin down electrons,  which i s  independent of 5, and given by ( r eca l l  m = i 1/2)  

Consequently, if we now fi l l  up the available s ta tes  with the conduction electrons start ing f rom 

the lowest energy up to the energy required to accommodate the number of electrons per 

unit volume, we have 

'we will study these  eigenfunctions l a t e r  on in the context of angular momentum. 



e 
- - n(c) dc + 

-7' 
electrons p e r  spin-up electrons rY s p k w n  electrons' 
unit volume 

where n (c )  i s  the density of kinetic energy states.  This situation i s  sketched below 

Consequently, the number of spin-up electrons pe r  unit volume i s  ~ i v e n  b y ,  

while the number of spin-down electrons p e r  unit volume i s  given by 

N, - f n ( c ) d ~  + n ( E ) b B z  . (4. 133b) 

0 

and therefore,  E 

Ne = N ,  + N, D 2, n ( c , d ~  (4. 134) 

We s e e  that E a e F ,  the unperturbed F e r m i  energy, to f i r s t  o rde r  in p,,B . See a lso  

problem 4. 13. 

Combining equations 4. 133 for  the spin-up, spin-down electron number density, we have 

fo r  the net magnetization # 

% = (N) - Nt) Cb 

o r ,  since 

we have, f o r  the paramagnetic contribution to the magnetization, 

' ~ o t e  that the electron magnetic moment is opposite the direction of the spin. 



f i r s t  derived by Pauli in 1927.' The orbital electron motion (see  footnote ? on page 4. 3 s )  

results in a diamagnetic contribution of 

a s  we shall see  la ter  on, so  that the total magnetization for  a f ree  electron gas (conduction 

electrons in a metal)  i s  given by 

As a matter of interest ,  note that this result  would be obtained if we replaced the 

temperature T with the Fermi  temperature 

E ' k T  F B F '  
( 4  138 )  

in the classical  formula (equation 4. 120). Could you have argued for this wlthout the benef~t  

of the preceding derivation? 

'W. Pauli, 2 .  Physik (1927). 41, 81 
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Problems  

4. 1 A f r e e  part ic le  i s  described a t  t=O by the wavefunction (k, r e a l  and positive) 

( i )  Find (x), Ax2 = ( (x  - ( x ) ) ~ )  and (px)  a t  t=O. 

(ii) Find $(x, t )  

(ii i)  Find (x) ,   AX^ and (P ) fo r  a l l  t imes.  
X 

Plot  Ax = a s  a function of time. Describe the motion of the f r e e  part ic le  

in  your own words. 

4 . 2  A particular measurement  of the position and velocity of a (classical)  f r e e  part ic le  

moving along a s t raight  line a t  time t=O yielded x(0) = x, and ; (0 )  = vo ,  on the basis  

of wh~ch ,  the resulting trajectory was computed In o rder  to increase  the confidence of 

the prediction, a nlultiple measurement  experiment was undertaken a s  a resul t  of which 

many est imates  of x, attd vo on the same part ic le  were  obtained. The histograms of 

the two se t s  of measurements  (of x, and v,) were fuund to approximate gaussian curves 

with standard deviations Axo and Avo for the % and vo measurements  respectively. 

You may assume,  for  the purposes of this problem, that the experimental accuracy for  

the determination of % and v, was limited by small  slgnal-to-noise ratios resulting 

in  a product mAqAvo severa l  o r d e r s  of magnitude l a r g e r  than h .  On the basis  of 

these data, give a quantitative description of the predicted motion of the particle. 

Discuss the difference between this resul t  and that of problem 4. 1. 

4. 3 Discuss the behavior of the particle beam in sectlon 4. L. 1 f o r  0 < E < Vo. 

4. 4 Prove  the ,~symptot ic  est imate of equation 4.6).. 

4. 5 Compute the normalization constant, in closed form, for  the wavefunctions in equation 

4. 56. 

4. 6 Compute the probability that the particle will be found outside the well for  a rectangular 

well f o r  which 

mv0aa = - j,, , 
2 ha 

fo r  each  o f  the bound states. 



Problems  (continued) 

4. 7 A two-dimensional potential is given by 

A monoenergetic (E  > V,), non-relativistic beam of non interacting part ic les  of m a s s  m 

i s  incident on the x = 0 interface a t  an angle 9 with respect  to the perpendicular.  

See figure. 

(i) Solve the SchrGdinger equation. In part icular ,  compute the angles and coefficients 

of reflection and t ransmission.  

(ii) Solve the problem clasically. 

4. 8 An at t ract ive one-dimensional potential for  a par t ic le  of m a s s  m, is approximated by 

where 6(x) i s  the Dirac delta function. 

a.  Find the eigenfunctions and energies of a l l  the bound states .  

b. A beam of monoenergetic ( E  > 0) non-interacting part ic les  of m a s s  'm travelling 

f r o m  lef t  to right i s  incident on the potential described above. Derive the 

amplitude of the reflected and transmitted beams. 

4. 9 An electron i s  bound in a pa i r  of attractive delta functions spaced by a distance a .  

ha 
V(x) = - - Zmb [ 6 ( x + a / 2 )  + 6 ( x - a / 2 ) ]  . 

Plo t  the energies  of the bound states  a s  a function of the dimensionless separation (a/2b). 



Problems (continued) 

4. 10 Matching the bound state energy of an electron in a delta function potential (problem 4. 8) 

to the ground state energy of the hydrogen atom (Rydberg) 

1 (-) ea 7 1 = - 13.6 eV , - = 5 k c ,  

where a g  i s  the Bohr radius given by 

a B = ' m (+) = 0.53 r c m  , 

express the required delta function potential strength b in t e rms  of 
a B'  

4. 11 F r o m  handbook data, we find that the density of lithium (A.W. = 7) i s  given by 

( i )  Find the conduction electron number density 

Note: m - 1. 67 x lo-'' grams.  
P 

(ii) Find the Fe rmi  energy in electron volts 

Note: me ' 0. 51 MeV 

h c  ' 1 .97  x eV-cm 

(iii) Using the data in figure 2. 4 (p. 2.31) compute the work function for lithium and the 

depth of the potential well for the conduction electrons. 

(iv) Find the speed of an electron with an energy E = eF. Compute the numerical 

value for  lithium. 

4. 12 (i) Prove equation 4. 114. 

(ii) Prove equations 4. 116 and 4. 118. 

(iii) Compute the electric field strength (Volts/meter)  on the surface of the metal, 

required to decrease  max ( ~ ( x ) ]  by 10% for lithium. 

4.13 Show that, there is a second o rde r  decrease  of the F e r m i  energy with BZ, given by 



Problems (continued) 

4. 14 ( i )  Compute the energy of a free particle in a three-dimensional box in thermal 

equilibrium at a temperature T .  

(ii) Compute the particle's heat capacity. 



5. HARMONIC OSCILLATOR SYSTEMS 

In many physical systems,  the potential energy V(q) will have a minimum a t  some 

value of the coordinate q, say q,, which classical ly  would be  the r e s t  position of the system. 

In many c a s e s  of interest ,  where the excitation energy of the system E i s  small  

(measured f r o m  V,), we can approximate the potential in  the vicinity of q, by a Taylor 

expansion 

1 
V(q) - V, + VM(q0 )(q - q0ja + . . . . . 

The Lagrangian f o r  the motion of a part ic le  of m a s s  m i n  this potential then becomes 

where x i s  measured f r o m  qo,  i. e. 

x = q -  90 J 

and where 

W2 E Vu(qO) , 
m 

which we can identify a s  the c lass ica l  frequency (squared)  of oscillation. The constant V, 

i s  not  included in the Lagrangian a s  not affecting the equations of motion, appearing only a s  

a shift in the origin i n  the measurement  of the energy. 

F r o m  the Lagrangian of equation 5. 2 we then define the Hamiltonian 



5. 1. Eigenvalues and eigenfunctions 

The transition to Quantum Mechanics may be made by replacing the conjugate momentum 

p to the coordinate x by 

p=-ifia ax (5. 6 )  

leading to the ( t ime  independent) Schrgdinger equation 

To solve this equation we introduce the natural  dimensionless variables  

in  t e r m s  of which the schrb;dinger equation becomes 

We have encountered this equation before in  the context of the minimum joint spread 

problem in chapter 2. I ts  analytical solution i s  discussed in Appendix C. There  we found 

that the eigenvalues P a r e  d i sc re te  and given by 

so that the energies  E a r e  given by 

E~ = (n  + $) bur . 

The wavefunction, corresponding to the ntn eigenvalue was also found to be given by 

where h ( 5 )  i s  the nth Hermite  polynomial, defined by 
n 

and An i s  the normalization factor, given by 

A n = ( r 1 / 2 ~ n n ! ) -  112 

There  a r e  severa l  noteworthy features  of this solution: 

(i) The lowest energy level  (ground state)  i s  character ized by a non-zero energy, i. e. 

1 
E o = Z h w  , 

a s  expected f o r  a sys tem localized to a region in space, 



(ii) Subsequent excited levels  a r e  spaced uniformly by hw above E,, 

# Recall that f o r  an infinite square well 

E~ - E, a ( n + l ) =  , &En En - En-l = 2n+l . 
( i i i )  The  ground state  wavefunction (a  normalized Gaussian) sat isf ies  the minimum joint 

spread condition a s  was shown in chapter  1. The reason f o r  this is that the 

harmonic osci l la tor  Hamiltonian, whose expectation value i s  minimized by the 

ground state  wavefunction, is in fact  the sum of the mean square deviation i n  p 

and x space respectively. 

5 . 2 .  Ladder operators .  

In discussing the behavior of systems described by a harmonic osci l la tor  Hamiltonian, 

i t  i s  useful to define the Hermit ian adjoint operators  

where 5 i s  defined in equation 5. 8 and K i s  given by 

We then have, by d i rec t  substitution, that the commutator [a,at] i s  given by 

and the Hamiltonian i s  given by 



o r ,  using the commutation relation 5. 15 

t 1  H = hw (a  a + Z) 

We know, however, that H operating on a wavefunction u (x) yields n 

t 
and can therefore identify the operator  product a a a s  the number operator, i. e. 

What i s  the resul t  of operating on an eigenvector with the opera tors  a o r  a t  alone? 

t 
Consider the quantity (a  a )a (n) ,  where In)  denotes the nth normalized eigenvector 

[eigenfunction un(x)]. Then we have # 

o r  since 
t 

(a  a ) \ m )  = m \ m )  , 

the resu l t  of a In) mus t  be  a s imple multiple of the s tate  In - 1) .  We accordingly wri te  

and consider the sca la r  product 

Substituting equation 5. 18, we have 

( n l a , a l n )  = ( n  - I ~ C ; ,  c n l n  - 1 )  = jcnla , 

since (n - I l n  - 1 )  = 1. We can also use the fact,  however, that the operators  a and a t 

a r e  Hermit ian adjolnts of each other to  obtain 

where we again have used that the s tates  In) a r e  normalized. Comparing equations 5.19 

and 5.20 we mus t  then have 

lcnla  = n  = c = n  1 /2 (5. 2 1) 

within a phase factor  which without loss  of general i ty  may be s e t  equal to unity. Conse- 

quently, we have 

t 'note f r o m  equation 5. 15 that a a t  - a a = 1. 



We s e e  that the resu l t  of the operation of a on the s tate  In)  i s  to produce the next 

lowest s ta te  o r ,  equivalently, to annihilate a quantum of energy hru. F o r  this reason we 

ca l l  the operator  a the annihilation operator .  Combining equations 5. 17 and 5.22 we a l so  

s e e  that 

a t / n )  = ( n + l ) 1 / 2 1 n + l )  . (5.23) 

The operator  a T  i s  correspondingly called the creat ion operator .  The opera tors  a and 

a t  a r e  called ladder  operators  because they can  be used to go up and down the ladder  of 

eigenvalues. They a r e  useful in problems posses  sing a uniformly spaced eigenvalue 

spectrum. 

Using these operators ,  we can solve the ~ c h r g d i n ~ e r  equation r a t h e r  effortlessly. In 

part icular ,  the ground state, corresponding to n=O, mus t  be  the solution to the equation 

which we may solve in  our  coordinate representation, if necessary,  by substituting equation 

5. 13a for  the annihilation operator ,  i. e. 

whose d i rec t  solution 

v0(5) = const.  e -  , 

was obtained much m o r e  painfully by solving the second order  differential Schrgdinger 

equation in appendix C. Having the ground state ,  we may obtain a l l  the higher excited 

s tates  by repeated application of the creat ion operator ,  i. e. 

If i t  is necessary  to obtain the eigenfunctions in  the coordinate representation, we 

substitute equation 5. 13b to obtain, fo r  example, 

which i s  c o r r e c t  including the proper  normalization constant Al = 2 -  l i2  Ao.  ' 
7 

' ~ o t e  that h, (5 )  = 25. See appendix C. 



T h e r e  is a one-to-one correspondence between the x space with the eigenfunctions 

u (x) and the sca la r  product a s  defined i n  chapter  1, and the occupation number space with 
n 

eigenvectors In)  and the sca la r  product that was implicitly defined i n  the preceding dis-  

cussion, i. e. 

t 1 u m i ( x l d ( ~ ,  ̂p) un(x) d x  = (mldc;(a . ar. $(at, a)]  In )  (5. 2 6 )  

X 

where, by inverting the defining equations, 

and 

mhw h = i(-j,-) 
1/2  + 

(a  - a) . 

We can think of the sequence of eigenvectors ( n )  a s  forming the bas i s  of an infinite 

Operators  in this space a r e  matr ices .  By way of example 

whereas 



It can easily be verified by d i rec t  substitution that these bas i s  vectors  and m a t r i x  operators  

satisfy the fundamental relations a s  given by equations 5.22 and 5.23. 

5.3. Harmonic osci l la tors  in  thermal  equilibrium. 

Any state  a harmonic oscillator can a s s u m e  can  be represented by a superposition of the  

eigenfunctions un(x), i. e.  

n 

or, equivalently, 

where 

and cn(0) can be determined f r o m  the initial conditions, i. e. , 

The energy of the s tate  i s  then given by 

(E) = ($IHI$) 

Now f o r  a sys tem in thermal  equilibrium with the surroundings a t  a temperature T ,  we 

and therefore 

(E)  = hw 1 

where x = hw/k T. 
B 



Now 

and therefore 

Note that a t  high temperatures ,  i. e . ,  tiw/kgT << 1, 

IE) - k g T ,  

in  agreement  with classical  Maxwell-Boltzmann stat is t ics  and the correspondence 

principle. 

5 .  4 Systems of uncoupled harmonic osci l la tors .  

We can wri te  the Hamiltonian of a sys tem of N uncoupled harmonic 

osci l la tors  a s  a sum 
N 

where 

1 P.2 + - m.w? a H.(p. q . )  = - 
J J J  2m; J 2 J J ~ ~  

J 

and and q a r e  the N-dimensional vec tors  

Note that if the osci l la tors  of the sys tem were coupled, the Hamiltonian 

could not be separated into the sum of such te rms ,  but would involve c r o s s  

t e r m s  between the coordinates. By way of example, if the interaction between 

the various coordinates i s  a p a i r  coupling, the Hamiltonian would be given by 

See problem 5. 8. 

The Schrgdinger equation f o r  the sys tem of the N uncoupled osci l la tors  

i s  given by 

a 
ifi q(9, t j  = H q(9, t )  



Equation 5.39 can be solved by separation of variables ,  and in p a r t i c d a r ,  

by assuming a wavefunction of the f o r m  

q(9, t)  = n +j(qj, t )  , 

where 
j 

a 
ih;i5 4'.(q.,t) = H. $.!q.,t) ; i = l , N  . 

J J  J J J  

The overal l  sys tem i s  in  an eigenstate, i f  every one of the N osci l la tors  

i s  in a harmonic osci l la tor  eigenstate, i. e . ,  

where 

and 

The vector 2 i s  an N dimensional index that labels  t i e  eigenstate of the total 

system, i .  e. , 

n = (n l ,  c2,. . . . . , nN) . - 

Ve can now define, a n  al ternate  s e t  of bas i s  eigenvectors, by analogy 

to the single harmonic oscillator,  in particular,  

Ir,) E lnl,na,. . . . ., nN) (5.45)  

and a l so  annihilation and creat ion opera tors ,  corresponding to each pa i r  of con- 

jugate coordinates pj, qj, i. e . ,  

and 

such that 

1 /2 
a j  1;) = nj  In1, "0,. . . . . , n. - 1,. . . . . ,4) 

J 
and 

atll?) = (n. + 1 ) 1 / 2 / n 1 , % ,  . . . . . , n  + I , . .  . . . , 
j J j n ~ )  

The total Hamiltonian can then be expressed quite simply a s  



Any state  of the sys tem can be  expressed a s  a l inear  superposition of 

the 1") eigenstates, i. e . ,  

n 
where 

or ,  equivalently 

o r ,  using equation 5.40, we have for  uncoupled osci l la tors ,  

cn = IT j u * 4.1 l . (9 . ,  0 )dq .  . 
n j  J J J  1 - j 

The energy of such a s ta te  can then be computed by 

o r ,  since 

we have 



5. 5 Systems of uncoupled harmonic osci l la tors  in  thermal  equilibrium. 

I£ this system of osci l la tors  i s  in thermal  equilibrium a t  some tempera-  

tu re  T, then the probability of finding the jth osci l la tor  a t  a level  n .  would be 
J 

given by a Boltzmann factor  

which, substituting in  equation 5. 54, yields 

We note that each one of the t e r m s  in the summation over  j, i s  equal to the 

energy a t  thermal  equilibrium of an isolated harmonic osci l la tor  and therefore, 

taking the resul t  of equation 5.35, we have, 

The f i r s t  sum i s  the ground s ta te  energy EG of the total system, which i s  

fixed. The  second sum, if the osci l la tors  a r e  many with closely spaced 

frequencies ,u we can approximate by a n  integral  over  w,  i. e . ,  
j' 

00 

where p(w)dw is the number of osci l la tors  whose angular frequency i s  between 

3 and m + dw. 
(3 'U+'id 

I 

Ln any event, the summation can  be  recovered f r o m  the integral  using 



for the density of oscillators. 

The integrand 

i s  called the spectrum of the energy. 

Note that if we substitute for  the density of oscillators ~(uJ), the density of modes of 

electromagnetic radiation in a box, i. a. 

see  problem 2. 16, we obtain the black body spectrum of Planck, i. e. equation 2. 130. This 

result  suggests that the light quanta of Planck behave like the excitation levels of harmonic 

oscillators whose fundamental frequency JJ i s  that of the corresponding photon! Taken a t  

face value i t  i s  a less  than obvious model to assocaate wi th  light, to be sure. At f i r s t  

sight, i t  would be difficult to assign a mass and a spring to a photon whlch is mass less  and 

not bound to any obvious equilibrium position by a quadratic potential! Nevertheless, we will 

show that there exlst a se t  of coordinates for the photon field, in terms of which the 

Hamiltonian is given bv equation 5. 36, o r  equivalently, equation 5. 48. To show that, of 

course, would b e  sufficient and we will then have derived Planck's formula through a rather 

unexpected route. 



5. 6 Quantum mechanics of a fluid. Phonons. 

W e  can always treat a matter as  a continuum when the smallest length scale of interest, 

say a, is  much larger than the (mean) spacing between the constituent particles. In other 

words, we can neglect the atomic nature of gases, liquids and solids if 

where pm is the mass density and m i s  the mass of each particle. This approximation i s  

usually associated with a classical description of matter. It should be noted, however, that 

the limit of equation 5. 61 is quite different from the reasons that dictate a quantum versus a 

classical description of a phenomenon. The latter decision is based on whether the size of h 

(Planck's constant) is  negligible o r  not. For  many systems, especially a t  low temperatures 

where only the lowest energy levels a r e  excited, a quantum mechanical treatment of the 

continuum behavior is  in fact appropriate. This we will do by following the usual procedure 

of deriving the Lagrangian, the conjugate momenta and the Hamiltonian. The transition to 

Quantum Mechanics i s  then made by selecting a representation for the conjugate coordinate- 

momentum pairs such that 

Cqj, pj1 * i * . (5. 6 2 )  

In describing the motion of the medium, consider the displacement q along the x-axis, 

of a medium element which has a res t  position a t  x. 

If we now compare q(x), the displacement of the element from x ,  to q(x+6x), the displace- 

ment of the element from x+6x, we have that the difference in the displacements 6q i s  given 



Now, i f  the density of the medium at  r e s t  i s  given by pd,  we must also have that 

P, 6x = P W  , (5. 64)  

where p i s  the resulting density oi  the medium between x + q  and x +  d x + q +  6q. Combining 

equations 5.63 and 5. 64 we have 

L£ we now consider a more general displacement in three dimensions, of a medium element 

originally a t  r e s t  a t  5, i. a. 

3k) = Cq,(x), qy(x), q,(x)I , 

we can show by similar arguments that 

a where . 3 i s  the divergence of the displacement field. 

Consider now the caae of small  departures of the density from its equilibrium value. 

W e  then have 

or ,  using equation 5. 66, 

To define the Lagrangian, we note that the kinetic energy per unit volume of the medium 

i s  given by 
1 Z p ( 5 t )  I& t)la 

and therefore the total kinetic energy of the madium i s  given by 

or ,  to lowest order  in  the displacement field, 

I S .  6 9 )  

We will now res t r ic t  the discussion to matter that 

(i) posaeases an equilibrium density, independent of container boundaries (i. e. not 

a gar), 

(ii) is isotropic 

and 

(iii) cannot support static shear (i. 4. a fluid). 

These conditionr a r e  mat  by a liquid, for which we can consider the potential energy per 

unit volume a s  possessing a minimum a t  the equilibrium value p a po , a s  sketched below. 



For small deviations from the equilibrium density we can then approximate tho potential energy 

per unit volume by a Taylor expansion about i ts  e q d i b r i u m  value po, i. e. 

1 
Y(p) - Y(po + 7 ( P  - p,Ia V4(P,) 

and therefore 

U--$F'(R,I C P ( ~ ~ ) - P O ] ~ ~ ' E  , 1 X - 
or, using equation 5. 68, 

1 U ~ C ~ ( & , I  { [&.3(3t)la dai . 
X - 

Combining equations 5. 70 and 5.73 we then have for the Lagrangian 

Let us now assume that the displacement field satisfies periodic boundary conditions a t  

the edge planes of a rectangular box of volume V o L L L i. a. x y 2' 

q(- L,/2, Y, 2, t) = 9(Lx/Z.y. 2 ,  t )  (5. 75a) 

q(x, - Ly/2, 2. t) = 9(x. Ly/2, Z, t) (5. 75b) 

and 

q(x, Y, - LZ/2, t) = q(x, y, LJ2, t)  . ( 5 . 7 5 ~ )  

a ff we now assume that the displacemant field i s  irrotational, i. e. - x q n 0 ,  we can ax 
expand the space dependence of q(=, t) into a Fourier series of the form 



where, from the periodic boundary conditions (equation 5. 75), the permissible wavevectors 

a r e  given by 

where 

Note that .the orthogonality relation is  given by 

where V i s  the volume, and 

is the Kronecker delta, and therefore, the Fourier coefficients Qk(t) a r e  given by - 

Note that the Fourier coefficients a r e  complex, i. e. 

1 
Qk = - - iQk 

2 

where 

and 

Using tha Fourier series axpansion for the displacement field, we now have 

and 

where k r I&\. Substituting these in the expression for  the Lagrangian (equarion 5. 74), we 

have 

where 
M = & V  

i s  the total mass of the medium, and 
1 

cs = CiJo~"(po) la  

(5. as) 

i s  a constant with units of velocity. Substituting the real and imaginary parts of Qk, we - 
then have 



where J = 1,2. 

There i s  a slight complication that a r i ses  from the fact that the coordinates 
Q~ j 

and 

Q-L j a r e  not independent. in fact, from the defining equations 5.82a and 5.82b we see that 

Q & ~  a Q - b ~  (5. 89a) 

and 

Qba = - Q-ba (5. 88b) 

consequently, even though the Lagrangian is correctly given by equation 5.88, not ail the 

can be used to form a se t  of orthogonal coordinates. In particular, if we use Q '5, j L j 
as a coordinate, we must exclude Q - k  j. The Lagrangian can be expressed, however, a s  a 

d 

sum over some positive halt space of symbolically sketched below for  two dimensions, 

where the summation over the positive k-(haU) space is denoted by the plus sign prefix of the 

k summation index. - 
Using equation 5.90, we can now define the conjugate momenta P to the coordinates Lj 

Qbj,  i-e. 
aL P =- 

&,j ' 
w,, j 

or,  substituting for the Lagrangian, 

P L j  = M "  hj ' 



Using these momenta, we can now express the Hamiltonian of the system, i. e. 

where 

We see that the fluid, in this continuum approximation, behaves like a system of uncoupled 

harmonic oscillators of maas M and frequency ak = csk, where c can be identified with 

the speed of sound. See problem 5. 14. In other words 

where 

We can now compute the energy of the liquid in thermal equilibrium a t  a temperature 

T using the results  of the preceding section. In particular, using equation 5. 57 we have 

where n(w) is the density of states per angular frequency. 

To compute the density of states, we note that there a r e  two modes for  each wave- 

number & corresponding to j = 1 and j = 2, the real and imaginary par t  of the complex 

Fourier  coefficient Qk of the displacement field. Recall however, that we must include only - 
a halt space of 5 in counting the independent modes. Therefore the number of modes with 

frequency ,ul<ur i s  given by 2 7 sk3(u) 
N(ol<cu) = 2 

( 2 ~ ) ~  /V 

or,  since k = s / c S  

and therefore 

aad therefore 

or, changing to a dimensionless integration variable x = hw/kgT, 



The definite integral i s  a pure number and given by (see  for example F. Reif, Fundamentals 

of Statis tical and Thermal Physics, Appendix 1 1 ) 

The energy i s  then given by 
~ T ' V ( ~ ~ T ) ~  

(E) - EG = 
30(cSh)' 

and we find the heat capacity per  unit mass,  

2ra 

Cv = 
h15(lcs)" 

which i s  seen to be proportional to the cube of the temperature. 

Substituting for the Boltzmann and Planckl s conatants, 

and, for liquid ' ~ e  a t  low temperatures (T 6 0.6"K) 

po = 0. I450 g/cm3 

c = 239 rn/sec 

we have the theoretical prediction for the heat capacity of liquid ' ~ e  a t  low temperatures 

c = (0. 0205 * 0. O O O ~ ) ( T / O K ) ~ ,  ( J / ~ ) " K ~  

where the uncertainty in the theoretical prediction results  from the finite accuracy with which 

the speed of sound is known. The measured heat capacity of liquid 4 ~ e  below 0. b0?S i s  found 

to be [J. Wiebes, C.C. Niels-Hakkenberg and H. C. Kramers  (1957), Physica 23, 625-6321, 

c, = (0.0204 * 0.0004) (TPK)"  ( J / g )  OK-' . 

This expression for the heat capacity fails at temperatures higher than 0. 6 ' ~  for an 

interesting reason: our continuum assumption fails! As the temperature increaser higher 

frequency states become occupied and since 

states with higher and higher wave numbers become occupied. You will recall, however, 

that our original assumption of a continuum, a s  given by equation 5.61, requires that 

since, for a mode of excitation of wavenumber k, the appropriate length scale (wavelength) 

goes like In(. The interesting thing i s  that the model of a system of uncoupled harmonic 

oscillators continues to be valid even beyond that limit.  The effect of the discrete particles 

(helium atoms) comprising the liquid, however, i s  to produce a slightly more  complicated 

dispersion relation [u = m(k)]. The Hamiltonian, as  given by equation 5.92, i s  still correct  

but the dependence of ur on ( & I  i s  a s  sketched below. See problem 5.18. 



Problems  

5. 1 Derive the eigenfunctions and energy levels of a two-dimensional harmonic osci l la tor  

whose potential i s  given by 

1 V(x,y) = 7 k [ x a c o s a a  + yasinaa]  

This  i s  a good model f o r  the vibrations of the central  a tom of a planar  molecule of the 

type sketched below 

5 .2  Show that the operator  f o r  'C, a s  defined by 5. 14, is given by 
A a R=-ix . 

t 
5. 3 Show that the operator  a , a s  defined by equation 5. 13b, i s  the Hermitean adjoint 

of the operator  a. 

5. 4 Show that  
t 

[ a , a l  = 1 , 

where the a and a t  a r e  defined by equation 5. 13. 

5. 5 Prove  that the harmonic osci l la tor  Hamiltonian can be written a s  

t 1  
H =  hw ( a a + ~ )  . 

5. 6 Using the operators  fc and $, expressed in t e r m s  of the ladder  opera tors  (equations 

5. 27),  compute the mat r ix  elements ( m ( z ( n )  and ( m \ $ l n ) .  Compare with the cor -  

responding procedure a s  outlined in problems C. 4 and C. 5 of Appendix C. 

5. 7 Write down the m a t r i x  representation corresponding to the basis  defined by equations 

5.28 f o r  2 and $, the coordinate and momentum operators .  

5. 8 Consider a line of identical m a s s e s  connected to each other  by identical spr ings.  

Le t  q. be the equilibrium position of the ith mass ,  and xi be the departure of the i th 

m a s s  f r o m  i t s  equilibrium position. Derive the Lagrangian and Hamiltonian f o r  this 

system. 



Problems (continued) 

5. 9 Express the Hamiltonian of the preceding problem using the annihilation and creation 

operators defined by equation 5.46. 

t t t t 5. 10 Find the value of the commutators [ai, a.], [ai, a.] ,  [ai, a j  1, where a. and ai a r e  
J J 

the annihilation and creation operators defined by equation 5.46. 

5. 11 Compute and plot the heat capacity of a single harmonic oscillator as a function of 

hm /kgT. 

5. 12 Compute the heat capacity of a system of uncoupled oscillators, if the density of 

oscillators per unit frequency intetpal i s  given by 

8 

~(w)dw = ~g -($I 6Y . 
What a r e  the units of no? 

5. 13 Prove equation 5.66 

5. 14 Equation 5.73 can be written as 

L ddSE 

where 

is  called the Laarangim density. Show that the principle of stationary action, i. e. 

leads to the claesical equations of motion 

where 

Derive the classical equation of motion from the Lagrangian density given by equation 
1 

(ii) and show that )Iz should be identified with the speed of sound. 

5.15 A point mass m is executing harmoaic oscillations described by 

x(t) = x, sia(wt+B) 

(i) Compute the classical momentum p(t). 

(ii) Compute the classical average values of x, 2, p, pa and the energy E. I s  the 

energy a function of time? 

(iii) Compare with the quantum mechanical behavior as  E/hm - ao. 



Problems (continued) 

where X (  l x -  5' 1 )  can be written as 

ca 
P ( [ ~ - ~ ' I )  n 2 6 ( 5 - x 1 )  Po - g ( l ~ - ~ l ( )  , 

where cs is the speed of sourrd, pd i s  the equilibrium density, 6(5-4l) is  the three 

dimensional delta function, and g( lE- f l l )  i s  a function that possassea a peak at the 

mean distance between atoms. Nota that if g ( ) x - x ' )  ) = 0,  we recover the continuum 

model for the liquid as  given by the expression for the potential of equation 5.72 

(i) Derive the Hamiltonian for the system, if the kinetic energy i s  given by 

equation 5. 70 and the potential energy is given by the expression above. 

(ii) Derive the dispersion relation ~ ( k )  for this system. 

(iii) Invert t h i s  relation to exprerr g(r)  as a function of ~ ( k ) ,  where r t I I I - x l l .  
Can you sketch g(r)?  What muat its behavior be a s  r - 0 ,  r - a? 



6 .  ANGULAR MOMENTUM 

We shal l  begin the discussion of angular momentum in quantum mechanics by considering 

a few examples, a l so  of in te res t  i n  their own right, to il1ustrat.e the points. 

6. 1 The two-dimensional harmonic oscillator.  

The Hamiltonian of an isotropic harmonic osci l la tor  i n  two dimensions i s  given by 

H = l  zrn (pax + pay) + mula (xZ + ya)  - 
Classically, the equations of motion a r e  given by 

aH 5 - w a x . ;  j=1 ,2  
Pj = ZF 

J J 
and 

aH 1 2 = -  apj = ; pj ; j=l. 2 . 

These can  be integrated to yield 

and 

y( t )  = yo cos("t - 
6 Y )  

py( t )  = - m y ,  sin(mt - 6y) , 

where x,,, 6x, yo,  6 a r e  constants that depend on the initial conditions. 
Y 

The motion described by equation 6 . 3  i s  a n  el l ipse in the (x, y)-plane. 

Note that when - t r  < (6y - 6x) < 0, the part ic le  moves clockwise along the el l ipse ("left- 

handed" motion), while when 0 < (6 - 6x) < TT, the part ic le  moves counter-clockwise along 
Y 

the ellipse ("right-handed" motion). Note that the energy along the x-axis i s  conserved, i. e. 



a s  well a s  along the y-axis ,  i. e. 

E - -  

and therefore the total energy 

1 E = - ma ($ + y g )  2 

i s  a l so  conserved. Note a l so  that since the corresponding Lagrangian i s  not a function of the 

azimuthal angle '0, the conjugate momentum pg,  equal to the z-component of the angular 

momentum 
pg = L Z  = (2 X E ) ~  = XPy - YPx , 

i s  a l so  conserved and given by 

LZ = [-yo ~ i n ( 6 ~  - 6,)Icu 

It can be seen that LZ i s  positive fo r  right-handed motion (counter-clockwise) and negative 

f o r  left-handed motion (clockwise). 

Quantum mechanically, we would solve the problem by defining annihilation and creat ion 

opera tors  1 /2 - 1/2 (6. 8a)  
J 

in t e r m s  of which we have 

f t H = hu(axax + a a + I )  
Y Y 

with eigenstates 

(2, = [nx,n ) 
Y 

and corresponding energies  

En = hw(n + 1) , 

where n = n + n 
x Y' 

Note that the energy En i s  (n+l)-fold degenerate, i. e . ,  f o r  a given n there  exis t  n+l  

orthogonal eigenstates \nx ,n  ) which have the s a m e  energy, namely 
Y 

By analogy to the c lass ica l  expression f o r  the z-component of the angular momentum, 

we now define an operator  

which we can express  in t e r m s  of the annihilation and creat ion operators ,  i. e. 

Using equation 6 .9  f o r  the Hamiltonian, we can verify by d i rec t  substitution that  L commutes 

with the Hamiltonian, i. e. 

LH, Lzl  = 0 , 

and therefore LZ is a constant of the motion, i n  agreement  with the c lass ica l  resul t .  See 

Equation 3.88 and related discussion. 



# The operators  H and LZ a r e  Hermit ian and they commute. There  exis ts ,  therefore , 

a s e t  of bas i s  s ta tes  (vec tors )  that simul:aneously diagonalize H and LZ. Ln other  words i t  

should be possible to find a common se t  of eigenstates fo r  H and LZ. In part icular ,  con- 

s ider  the opera tors  

and 

I t  can  be readily verified that (a = R,L) 

and that the Hamiltonian, expressed in t e r m s  of the new operators .  is given by 

F r o m  equations 6. 15 and the f o r m  of the Hamiltonian, we s e e  that the operators  

ao, a t  a r e  appropriate  annihilation and creat ion opera tors  ( s e e  discussion i n  section 5 . 2 ) .  

that operate  on a s e t  of bas i s  vectors  (nR,nL) .  It i s  then c l e a r  that both H and iZ a r e  

diagonal in this basis ,  i. e .  

H ( n R , n L )  = hu(n+l)(nR,nL) 

and 

i z l n R ,  nL) = m* nL) , 

where 

n = nR + nL 

s e e  a l so  problem 6.4. 

These resu l t s  motivate the identification of a t 
R, aR a s  the annihilation and creat ion 

opera tors  of "r ight-circular  quanta", and a ? 
L,aL a s  the annihilation and creat ion opera tors  

fo r  " lef t -circular  quanta". The total energy of the sys tem (above the ground state  energy), 

in  a part icular  eigenstate, i s  then equal to hw t imes the total r ight  and left quanta, i. e. 

%e can always simultaneously diagonalize two Hermit ian m a t r i c e s  that commute. 



nR i nL, whereas the angular momentum LZ i s  equal to h t imes the difference ( n  R - n ~ )  

of the number of r ight  and lef t  c i rcu la r  quanta. It  i s  then convenient to re- label  the 

InR, nL)  eigenstates such that 

I n , m )  InR + nL, nR - nL)  , (6.21)  

where n i s  the energy quantum number and m i s  the z-angular momentum quantum 

number. 

Note that if n=O, m=O necessar i ly ,  if n=l ,  we have m = l ,  -1, if n=2, we have 

ms2, 0, -2. In other  words, if n i s  odd, m i s  a positive o r  negative odd integer ,  while i f  

n i s  even, m i s  a positive o r  negative even integer. In both c a s e s  

while, f o r  the same n, two different m ' s  mus t  differ by a multiple of 2. The (n+l)-fold 

degeneracy of an energy eigenstate In, m )  can  now be identified with the (n+l) possible 

values of the angular momentum quantum number m, corresponding to (n+l )  orthogonal 

angular momentum states  of the s a m e  energy. 

What about the wavefunc tions corresponding to the various representat ions ? Well, the 

Inx,n ) basxs s tates  a r e  products of the famil iar  one-dimensional wave functions ( see  
Y 

equation 5. 11 and related discussion) ,  i. e. 

and hn(<)  i s  the nth Hermite  polynomial. 

The ground s ta te  of the sys tem i s  'P,,(x, y) and given by equation 6.23, 

i. e . ,  a two-dimensional Gaussian. 

To  obtain the wavefunctions corresponding to the InR,nL) basis  vectors  we use the 

t t 
annihilation and creat ion opera tors  aR, aR and aL, a L  . In part icular ,  since 

we have 

t 1  t a R  = - (at  + i a )  n x  

and therefore 
-aa (xa +," ) /2  

'P C 4  ( a x )  + ihl (ay)l e 
lFtJ OL 

or ,  s ince hl ( 5 )  = 25 ( s e e  Appendix C), 



This function suggests the introduction of polar coordinates, i. e. 

x = r cos cp 

y = rI sin cp 

in terms of which 

and 

cra 
-aar:/2 i r p  

e 

Similarly we then also have 

aa 
-aara/2 -irp 

t t 
The identification of a R  and aL a s  the operators that c rea te  a right and left circular  

(about the z-axis) quantum i s  now, perhaps, clearer .  The wavefunctions of equation 6.28 

can be obtained directly from the ground state wavefunction *o,o(rI,rp) by expressing the 

annihilation and creation operators in polar coordinates. In particular, from equation 6.28 

we have 

and therefore 

1 a aR = - [a(x- iy)  + I  (& - i - ) ]  2 ay 

or,  in polar coordinates 

Similarly, 

and 

t i m  QY 
We see  that the result  of the operation of aR on a function e F(rI) i s  to produce 

a function 

similarly 



where F' = dF/drL.  Consequently, the cp-dependence of a n  eigedunct ion 9 (rL, ?) 
nn , nr 

i s  given by 

o r  in t e r m s  of the energy and angular momentum quantum numbers  n and m, we have 

Recall now, that 

and therefore using 6.31 we m u s t  have 

which, of course,  we could have shown directly. 

Example 6. 1 Motion of a charged part ic le  in  a uniform magnetic field 

Consider a uniform magnetic field along the z-axis 

B = izb . - 
We then have for  the corresponding Hamiltonian 

where LZ i s  the z-component of the angular momentum and q i s  the charge of the 

particle. See appendix F, section 5 and problem F. 11. This  Hamiltonian can be separated 

into a f r e e  part ic le  Hamiltonian $long the z-axis and a Hamiltonian corresponding to the 

motion in the (x, y)-plane, i. e. 

H = HZ + HA (6.35a) 

where 
1 a HZ = - 

2m Pz 

and 

Correspondingly, the eigenfunctions a r e  separable  and given by 

or ,  for  a f r e e  par t i c le  along the z-axis, 

We now note that the f i r s t  two t e r m s  of 
HA correspond to a two-dimensional harmonic 

osci l la tor  in the ( x ,  y)-plane, whose eigenstates would have been the /nx,ny)  s tates  of 

equation 6. 10. These s tates ,  however, a r e  not eigenstates of L and therefore cannot se rve  

a s  the eigenstates of Hi. Recall,  however, that the s tates  \ n W n L )  were constructed to 



diagonalize the two dimensional harmonic osci l la tor  Hamiltonian and the z-component of the 

angular momentum simultaneously, i. e. 

1 1 
HA = (P; + pay) + murz(xa + Q )  - wcLz 

where 
4cR w = -  

c 2 m  ' 

i s  the c lass ica l  cyclotron frequency, and 

Note that if q c  > 0,  we have sc > 0 and 

E~ = h J w c J C n R + n L + l  - ( n R - n L ) l  , 

where nR and nL a r e  the r ight  and lef t  c i rcular ly polarized quanta of the previous section, 

so that 

E~ = hlucl  ( 2 n L + 1 )  , qc > o 

and s imilar ly,  

E~ = h ] w c \  ( 2 n R + l )  , qc < o 

The total wavefunctions a r e  then given by 

I*) = I ~ , , n ~ n ~ )  , 

with energies  

W e  can  combine these two expressions using the n = nR + nL and m = nR - nL quantum 

numbers. In part icular ,  

1 E = -  2m p: + h \ w c  I Cn - rn sign(qc) + 11 , 

where 

+ I .  f o r  x > O  

sign(x) 

- 1 ,  f o r  x < O  . 



6 .  2 Angular momentum in th ree  dimensions. 

Ln the preceding section we studied the angular momentum along the 

z-axis, corresponding to motion res t r i c ted  to two-dimensions [ ( x ,  y)-plane]. 

The z-component of I,, the angular momentum was then computed to be 

F o r  motion in three dimensions, however, the other two components of angular 

momentum, namely 

Lx = (2 x p), = YP, - ZPY 

and 

Ly = (' X 2) 
Y 

= ZPX - XP, > 

must  also be considered. Since quantum mechanically, the quantities in  a l l  

the products in equation 6 .46  commute, we may replace the l inear  momenta 

px, py, pz by the corresponding components of the momentum operator  to 

obtaln the operator  expressions f o r  the component of the angular momentum, 

I. e. 

a a L x =  - i h  ( y z  - z - ) ,  
ay 

(6.47a)  

a L = - i f ,  (2- a 
Y ax - X ~ ) ,  

and 

L = - i n ( x J -  - a 
t ay Y s ) .  

The three components of the angular momentum do not commute wlth each 

other. In fact, we can  show by d i rec t  substitution of the commutation relat ions 

between the components of 5 and the components of 2, that 

and 

The vector  angular momentum i s  given by 

L = ~ ~ ^ e ~  + L ^e + L ~ ; ? ~  - Y Y 

and has a magnitude squared, given by 

It i s  easy  to show that i t  commutes with the th ree  components Lx, Ly, LZ. 

In part icular ,  



The f i r s t  commutator i s  ze ro  since Lx commutes with itself and therefore 

with i t s  square  ( s e e  problem 2. 7 v). The other  two can be  computed a s  

follows, 

CLY 
= ,Lx1  % [L , L ~ I L  + L CL ,Lxl  , 

Y Y Y Y  

o r ,  using equation 6. 48a 

[ L ~ ~ , L ~ I  = - i * ( L  L + L L ) . 
Z Y  Y Z  

Similar ly 

[LZa,Lx] = i h ( L  L + L L ) , 
Z Y  Y =  

and therefore 

[La, LXl = [La, L 1 = C L ~ ,  ~~1 = 0 . (6. 51) 
Y 

In the study of the behavior of angular momentum i t  proves convenient 

to  define two new operators  

L+ = Lx + i L  
Y 

and 

L- = L x -  i L  . 
Y 

(6. 52b) 

The three opera tors  L+, L- and Lz satisfy the following commutation 

relat ions,  

[LZ, L+l = hL+ (6. 53a) 

a s  can readily be shown by d i r e c t  substitution. The operator  L~ a l so  com- 

mutes with L+ and L-, s ince they a r e  l inear  combinations of Lx and L 
Y 

which, in  turn, commute with La. Inverting equations 6. 52 and substituting 

for  Lxa and L a in  equation 6 .50  we a l so  have 
Y 

1 L~ = (L* L_ + L- L+) + L~~ 

f r o m  which we can  a l so  show that 

and 



F r o m  the commutation relations f o r  the three ca r tes ian  components of the 

angular momentum (equations 6.48) and the fact that the necessary  and suf- 

ficient condition for  two Hermitean mat r ices  to be  diagonalizable by the s a m e  

transformation i s  that they commute, we see  that i t  i s  not possible to find a 

s e t  of the angular  momentum, say LZ,  which a r e  also eigenstates of any one 

of the other  two (much l e s s  of both). Using the fact, however, that  the 

modulus squared of the angular momentum, i. e . ,  L2, commutes with any one 

component, a t ransformation exis ts  that simultaneously diagonalizes La and one 

component of L. Consequently there  exis ts  a s e t  of simultaneous eigenstates 

of L~ and one component of the angular momentum which, without l o s s  of 

generality, we can choose to be LI. Equivalently there exis t  a s e t  of eigen- 

functions q such that 
1, P 

and 

Equations 6 .  56 a r e  the eigenvalue equations fo r  the eigenfunctions Jr 
1, Cc' 

These we can find by expressing La and LZ a s  differential operators ,  and 

solving the resulting differential equations. If we t rans form the car tes ian  

x, y, coordinates in equations 6 . 47 into spherical  coordinates, i. e .  

x = r s in 0 cos rp (6.  57a) 

y = r sin 0 sin cp (6. 57b) 

we have, a f te r  a l i t t le  algebra, 

a L = ih(s in cp + cot  0 cos  rp a 
x a 55) 

a L = i h ( -  cos  cp + cot  0 sin cp a 
Y 3)  

and 



the l a t t e r  of which we have already encountered in the discussion of angular 

momentum in the two-dimensional harmonic osci l la tor .  It  can  be  seen that 

angular momentum operates  on the angular coordinates 4 and rp, and does not 

operate  on the radial  coordinate r. 

Substituting equations 6 .  58 into the expression f o r  La and L* we also 

have - - 
L~ = - h a  [A sin 0 L a8 ( s in  8 -gg a + - - 

sina 4 acpa 
and 

F r o m  equations 6. 59 and 6 . 5 8 ~  for  La and L Z  respectively, we s e e  that  

the eigenfunctions $ m u s t  be  given by 
X. P 

where,  since L operates  on Q only (equation 6.58c) ,  we have that 

Substituting for  LZ we have 

with the boundary condition 

The solution to equation 6.63a is evidently 

iw/h 
@ (9) = e 
P 

where, f r o m  the boundary condition, we have that 

where m is any positive o r  negative integer o r  ze ro .  

TO study the spectrum of L a ,  we note that La i s  a s u m  of th ree  posi- 

tive definite Hermitean operators ,  i. e . .  f o r  any s ta te  I$), we have f r o m  

equation 6 .  50, 

But, s ince L is a Hermitean operator  
X 

where 1 )  lx ) ( l a  denotes the modulus squared of the s ta te  vector  IX ). By 



similar arguments we have that 

($lLY2l9) 2 0 

and 

for any state I q )  and therefore also 

($(La 19) 2 0 

for any I$). Consequently the eigenvalues of La must be non-negative, i. e. 

1 2 0 .  (6. 66) 

It will subsequently prove convenient to define a non-negative real number 

a, such that 

A = hadf.t + I )  , (6. 67) 

where ha i s  chosen for dimensional reasons and 4 i s  the non-negahve root of 

6. 67.  It is  clear that this does not result in any loss of generality since for 

any h there exists a unique non-negative root of equation 6. 6 7. We will hence- 

forth label the common eigenstates of La and LZ with the new indeces .t and 

m, in particular, we have 

L~ I,,,) = haa (e  + i ) I . t ,m)  

and 

~ = ] . t , m )  = hm{. t ,m) , 

where m has been determined to be a positive or negative integer or zero, and 

is a non-negative real number whose behavior 1s yet to be determined. 

We now note, by virtue. of equations 6. 55, that 

L - L + ~ L , ~ )  = [ L ~  - ~ ~ ( ~ ~ + h ) l \ . t , m )  = hace(a+ i )  - m ( m + l ) ] l ~ , m )  

and 

L+L- I A ,  m) = [La - L (L - h ) ]  ( a ,  m)  = ha f a ( $ +  1) - m ( m -  l)] [I,, m) . 
z z 

We have, however, that 

( . t , m [ , ~ - L + l a , m )  = ( . t , m l ~ + , ~ + ( . t , m )  = l l ~ + ( e , m ) / l ~  2 0 

and similarly 

since L+ and L-, like the annihilation and creation operators of the Harmonic 

oscillator, a re  the adjoint of each other. Therefore, we must have 

and 

I , ( a+ l )  - m ( m - 1 )  E ( . t + m ) ( A - m + l )  2 0 . 



The first  inequality requires that 

- ( a + l )  s m  s A 

while the second requires that 

- a s m l ( J +  1) . 

These latter two inequalities can evidently be simultaneously satisfied if and 

only if 

- e s m s a .  (6. 69) 

To proceed further, i t  proves convenient to study the behavior of the 

operators L+ and L- separately. In particular, we note from the preceding 

discussion that 

and therefore 

~ + l a , m )  = 0 ,  iff m = a . 

Similarly, we also have 

~ - l a , m )  = o ,  iff m = - a .  (6. 7ob) 

If, however, m f fi we have, using the fact that L+ commutes wi th  La, that 

or, equivalently 

L + I  a, m )  = L + L ~  1 a, m)  

= h a a ( e + i ) ~ + I a , m ) .  

This latter result shows that, if m f A,  the state L+\ 1, m) is also an 

eigenstate of La with the same eigenvalue a s  1 4, m ) ,  namely ha A(i+ I).  

We now operate on 1.4, m)  with the commutator of equation 6.53a. again 

if m f h ,  

CLZ, L+I la, m) = ~ L + I  a, m)  , 

and since 

C ~ ~ , L + l \ . 4 , m )  = L ~ L + \ A , ~ )  - L+L,la,m) , 

we have that, if m f 4 ,  

~ ~ L + l a , m )  = ~ + L ~ l a , m )  + f iL+l i ,m)  

= h ( m + l ) ~ + ( a , m  . 

Consequently, we see that L+] a, m )  is an eigenstate of L with eigenvalue 



h(m+l) .  Similarly, if m f  -A, 

LZL- ]A, m) = h(m - 1)L- 1 A, m) 

and therefore L- 14, m) must be an eigenstate of L with eigenvalue h(m- 1). 

Combining these results, we see that if m f A 

L + I  e ,m)  = c L ,  m [ ~ , m +  I )  

where C is a complex constant. Lf the states ]L,m) are  normalized, we 
a, 

then have 

I c ~ , ~ ~ ~  = ( e , m l ~ + , ~ + l ~ , m )  = I l ~ + l f i , m ) l / ~  

and using the results of the preceding discussion, 

ICa, m l a  = fia CL(a-i.1) - m ( m + l ) ]  . 

Therefore, if we choose the relative phase of 1 L, m) and 1 L, m +  I ) ,  such that 

C is real and positive, we have 
a, m 

and by similar arguments 

~ - ( a , m )  = nCa(J?+l) - r n ( r n - ~ ) ] ~ ' ~ l J ? , r n - l )  . 

Note that equations 6. 70 are  included in equations 6 .  71. 

Consider now a state (b ,m) .  The result of operating on this state with 

L+ i s  to produce a state proportional to 1 J?,  m +  I ) ,  i. e. ,  

~ + I a , m )  cr ( a , m + l )  

If we operate again with L+, we have 

Similarly, we have after m1 applications of this procedure, 

( ~ + ) ~ ' l J ? , r n )  a l . t ,m+rnl) . 

Clearly, unless this process terminates, we can generate an infinity of states 

\ L , m + m l ) ,  corresponding to any integer or zero value for mr .  This, however, 

i s  disallowed by equation 6 .  69 which requires that 

This can only be achieved if  J? i s  an integer, in which case 

~ + ( j , m = b )  = 0 . 



Note that therefore, f o r  a given 1, there exis t  (Za+l) simultaneous (orthogonal) 

eigenstates 11, rn) corresponding to the (Za+l) possible values of m permit ted 

by equation 5. 69, i. e . ,  

Example 6 . 2  Rotational spectra  of diatomtc molecules a t  low energies .  

Consider two atoms of m a s s  ml and q respectively, a t  an equilibrium 

distance ro along the line of centers .  

If we define the position of the center  of mass ,  i. e . ,  

and the relat ive position, i. e. , 

we can wri te  the total kinetic energy of the sys tem a s  the kinetic energy of 

the center  of m a s s  plus the kinetic energy about the center  of m a s s  (see, fo r  

example, problem 1 .4) .  The resulting Hamiltonian (in this approximation of 

fixed interatomic dis tance)  i n  the absence of ex te rna l  fo rces  i s  given by 

where 

M = m l  + m e  

i s  the total mass ,  

i s  the reduced mass ,  and P and 2 a r e  the conjugate momenta to 2 and 5 

respectively. The total  wavefunction z(z,x) is then separable  into the product 

Z(35) = WE) +(z) . 

The wavefunction *(z) corresponds to a f r e e  part ic le  wavefunction 



where 

and ECM i s  the kinetic energy of the center  of m a s s  of the molecule. 

The wavefunction +(x), can be expressed a s  a superposition of the eigen- 

functions of the Hamiltonian f o r  the relat ive motion, i. e. 

We can now express  the Laplacian 

in sphefical  coordinates! i. e. 

and use the fac t  that, in  this approximation, r * ro i s  held constant and 

therefore we have 

At this point, however, we observe that the differential operator  in the brackets  

( t imes ha ) i s  in  fact  L ~ .  See equation 6. 59. Therefore  

Therefore  the eigenstates, a r e  the s ta tes  l i , m )  with energies  

Note that successive energy levels  a r e  spaced by 

AeQ = E~ - ' ha 
-4-1 = - ( 2 4  . 

2mr: 

'See equations 6.57 and appendix G. 



In an absorption (or  emission)  experiment, these a r e  in  fact  the observable 

quantities, since 

where, by conservation of energy, 

[hw], = A E ~  + A E C M  . 

--+ 
after 

The subscripted brackets  indicate that the photon energy (frequency) has  to be  

computed i n  the f r a m e  in which the absorption ( o r  emission)  takes place 

(Doppler shifted). See  problems 6 .  15 and 6 .  16. 

We will show l a t e r  that f o r  absorption o r  emission of light by a hetero-  

nuclear (unlike a toms)  diatomic molecule (HGL, CO, etc .  ) we m u s t  have a 

molecular transition between two states  whose angular momentum quantum 

numbers  differ by 1, i. e . ,  A A  = 1 1 .  We will a l so  show that  homonuclear 

diatomic molecules ( O B I  Na, e tc . )  cannot occupy energy levels  with odd A and 

therefore, necessar i ly ,  do not exhibit radiative transitions with h A  = k1. 



6.3 The Spherical Harmonics 

What a r e  the eigenfunctions corresponding to the s tates  1 I,, m) ? F r o m  equations 6 .  6  1, 

6. 64 and the related discussion, we see  that 

where I, and m a r e  integers  and related to the eigenvalues X and p of L~ and L Z  

( see  equations 6.  5 6 )  by equations 6.  67  and 6.  64 respectively. 

We can find the function F ( 3 )  by a t r ick that a l so  proved useful in  deriving the 
a, a 

harmonic osci l la tor  wavefunctions using ladder  operators  ( s e e  equation 5. 24 and related 

discussion). In the c a s e  of the angular momentum wavefunctions, we note (from equation 

6.  70a) that 

L+ Y,, e ( e , ~ )  = 0 . ( 6 .  7 9 )  

Consequently, substituting for  the differential operator  f o r  L+ f r o m  equation 6 . 6 0 ,  we have 

a a i& (x + i cot  3 q) F,, a(3 )  e = 0 

This  i s  a f i r s t  o rder  differential equation, which can be  integrated directly, note that 

d sin a cot  9 de = - s i n 4  ' 
to give 

where c Q  i s  some normalization constant. 

We can determine c, by requiring that Y (4,cp) be normalized on the surface of the 
6, 

unit sphere,  i. e. 

4 a: I Y,, a(8,rp)la sin 8 dB dep = 1 . 
cp=o 

Substituting f o r  Y,, a(O, cp), we have 

(s in 0)" sin 4 d9 

or ,  substituting x = cos 4 

We can compute the integral  by noting that 



where the second t e r m  i s  obtained by integration by parts .  We can now solve I a  in  t e r m s  of 

Ie- l  to obtain 2 2 I = -  a (ZL+ 1) '2-1 

which we can solve recursively to obtain 

where the double factor ial  i s  defined as 

n!! n(n-2)(n-4) .. . 6 - 4 . 2  , 

and I, i s  equal to 
1 

b d x i 2  . 

Noting that 

we have, f r o m  equation 6.82, 

and therefore 

This  determines ca within a phase which we can choose such that 

by convention. Therefore,  substituting these resul ts ,  we have 

We can now generate  the remainder  of the functions Ye, A-l(O,q) by repeated application 

of equation 6. 71b, e. g. 

112 L - Y e, a 0 , '  a +  - - 1  Y a , A -  l ( e . ~ )  . 
o r ,  substituting for  L- f r o m  equation 6. 60, we have 

- icp a a Y,, 1-1(8,q) = -% (- 3 + i cot  0 - c ( s in  0)' eim 
(2.4) aep) 1 

" i(a-lip ($ + 1 cot  0)(s ia  0) 
2 =-fie 

i(1-1)ep 
Y,, a - I ( ~ , q )  = - c l ( ~ ~ ) 1 ' 2  (s in 91L-l cos 0 e 



Similarly, we can generate  Ye, a-2(8,q) and so on to Ya, -a(8,q) .  We can actually der ive  

an explicit expression f o r  Ye, m(8,q)  in  this manner, i. e. (t-he algebra i s  . . . uninteresting) 

( i+m)!  [ ]'I2 (s in e 
imcp d l - m  

( 1  - cosa9)  
a 

Y4,m(gn') = (1-m)! 
~ ( C O S  B ) ' - ~  , (6.87) 

where c a  i s  given by equation 6.84. I t  should be  noted that equation 6.87 generates  the 

normalized wavefunctions Y ( 9 , ~ ) .  The f i r s t  few of these a re :  
1, m 

1 1 / 2  
Yo,o(O,P) = 

1/2  * irp 
Y ,  ( 8 , )  = (- sin 0  e 8lr 

- 
- 15 * icp 

Y a , h  (8,') = + (8;;) sin 8 cos  8 e 

The functions YQ,m(9,cp) a r e  called spherical  harmonics  and a r e  generally useful in  

solving spherically symmetr ic  problems. They a r e  often expressed in t e r m s  of the 

associated Legendre functions, defined by 

where the Pa(x)  a r e  the Legendre polynomials, defined in turn by 

In particular,  f o r  m 0 

while the functions fo r  m < 0 can  be  obtained f r o m  the complex conjugate relationship 

0 
44 
m 

The Legendre polynomials can be shown to possess  a generating function', given by 
v 

(for p < 1) 

'see G. F. Car r ie r ,  M. Krook and C. E. Pearson,  Functions of a Complex Variable 

(McGraw-Hill, 1968) pp. 101-103. 



which is useful i n  computing the reciprocal  of the distance between two points r and g, 

where k\/\Xl\ < 1. See problem 6 .  19. The  f i r s t  few of these a r e  given by, 

P,(x) = 1 

P,(x) = x 

1 
P,(x) = Z (3xa - 1) 

1 
P,(x) = (5x3 - 3x) 

P,(x) = (35x4 - 30xa + 3 )  . 

The kth Legendre polynomial of the cosine of a subtended angle 0 between two 

directions = (el ,cpl ) and i e  = (9, ,p, ), i. e. 

A e 
el ' e s  = c o s e  , (6.94) 

can a l so  be expanded a s  a summation of the products of the spherical  harmonics  

YQ, m ( e ~  ,a, ) and Yk, m ( O a , ~ a  1. 
# In part icular  , 

known a s  the addition theorem f o r  the Legendre polynomials. See a l so  problem 6. 20. 

Before leaving this section, i t  should be pointed out that c a r e  should be  exercised i n  

consulting re fe rences  on the spherical  harmonics because the various conventions of signs, 

phases, etc.,  a r e ,  unfortunately, not universal. The choices here  were  made  so  a s  to have 

YL,o (0) > 0 a t  e = 0 and a r e  consistent, f o r  example, with A. Messiah, Quantum Mechanics, 

v. I, appendix B. 

'see, f o r  example, C, Cohen-Tannoudji, B. Diu and F.  aloe, Quantum Mechanics (John 

Wiley, 1977), pp. 688-689. 



Problems  

6. 1 Prove  equation 6. 13. 

6.2 Give a reference and/or  outline a proof of the statement that two commuting Hermit ian 

mat r ices  can be simultaneously diagonalized. 

6.3 Prove  equations 6.15. 

6 . 4  Prove equations 6.25 and 6.28b. 

6. 5 Prove  equations 6.30. 

6. 6 Prove equation 6.32 direct ly  f r o m  6. 12. 

6. 7 Show that the n = 2 eigenfunctions snam(rL,cp) of the two dimensional harmonic 

oscillator,  a r e  given by 

6. 8 Express  the Hamiltonian of equation 6. 1 a s  a differential operator  in = and cp, where 

x = r cos cp 

y = rL sin cp 

and show direct ly  that the corresponding time-independent Schrb'dinger equation possesses  

solutions of the f o r m  

6 .9  Compute the mat r ix  elements 

between the eigenstates of a two-dimensional Harmonic oscillator.  

Caution: There  a r e  several  hard ways to do this! 

6. 10 (i) Derive the density of eigenstates p e r  unit volume of a charged part ic le  of m a s s  

m,  charge qc that i s  bound by a two-dimensional potential 

and f r e e  to move along the z-axis 

(ii)  Derive the density of eigenstates f o r  the preceding problem i f ,  i n  addition to the 

two-dimensional harmonic potential, the part ic le  moves in  the presence of a 

uniform magnetic field 

(iii) Discuss  the behavior of the density of s ta tes  in the l imi t  of 

6. 11 Prove  equations 6. 48. 

6, 12 Prove  equations 6. 53. 

6. 13 Prove  equations 6.54 and 6.55. 



Problems (continued) 

6. 14 Substituting the transformation into spherical  coordinates (equation 6. 57) into the ex- 

pression f o r  the three components of angular momentum a s  given by equations 6. 47, 

prove equations 6. 58. 

6. 15 In the absorption spectrum of HCA vapor in  the f a r  infra-red,  the following lines a r e  

observed (wavelenths per  centimeter): 

X-I (cm-l  ) 

(this i s  not a n  exhaustive list).  Compute the dis tances ro between the two atoms. 

Data: G. Herzberg, 3 e c t r a  of Diatomlc Molecules (1950, 2nd Ed. ), table 10. - 
Note: Str ic t ly  speaking, the interatomic distance i s  a function of a, since a t  hagher - 

a ' s  centrifugal fo rces  in  fact  slightly s t re tch  the molecule. This  effect i s  l e s s  

important a t  the lower a ' s ,  which should therefore be  used in estimating the 

interatomic distance. 

6. 16 a. Lf the photons absorbed (or  emitted) by the molecules have an energy h m  in  a fixed 

laboratory f rame,  compute the spectrum of photon energies  encountered ( o r  emitted) 

by a moving molecule of total m a s s  M in thermal  equilibrium a t  a temperature T. 

This phenomenon is called Doppler broadening. 

b. Using the data of the preceding problem f o r  HCL, compute the expected line widths 

AmD 
a s  a resul t  of this phenomenon. 

c. Compute the recoi l  AECM f o r  the emission ( o r  absorption) of the photon by a 

molecule of m a s s  M. 

6 .  17 Compute the m a t r i x  elements 

( a , m l I L x l a , m )  

and 

(a ,  m 1  ILy I A,  m)  . 
6 .  18 (i) Using equation 6.89 show that the associated Legendre functions a r e  given by the 

product of (1 - xa)m'2 with an even o r  odd polynomial depending on whether (a  - m )  

i s  even o r  odd respectively, and consequently 



Problems  (continued) 

(ii) Show that  inversion, i. e. -- 

X ' - X  - 
i s  equivalent to the transformation in spherical  coordinates. 

8 - n - 8  

e p - r + c p  . 
(iii)  Show that 

I 
Y,,m(r - 8, " + cp) = ( -  1) Y i , m ( e , ~ ~ )  . 

In other  words, eigenstates with odd 1 have odd pari ty  (ant i -symmetr ic) ,  where a s  

eigenstates with even A have even pari ty  ( symmetr ic  under inversion). 

6 .  19 Using the generating function f o r  the Legendre polynomials, show that 

where t = k[. R = Is( , r / R  < 1, P A  is the ith Legendre polynomial, and 

x i s  the angle subtended between 5 and &. 

6 . 2 0  Using the resu l t s  of the preceding problem, show a l so  that 

where $ = (8,cp) and ^eR = (@,@). - - 



7. MOTION IN A CENTRAL POTENTIAL 

We have seen that the motion of a pa i r  of par t ic les  subject to a mutual 

potential that i s  a function of their  separat ion only can  be reduced to the f r e e  

motion of the cen te r  of m a s s  and the motion about the cen te r  of mass .  In 

part icular ,  if the potential i s  given by the function U(r) ,  where r = -3 ( 

i s  the separation of the two part ic les  located a t  3 and 3 respectively, the 

total Hamiltonian of the sys tem would be  given by 

where 2 i s  the conjugate momentum to the coordinate of the center  of m a s s  

(equation 6 .  72a), 2 i s  the conjugate momentum to the relat ive coordinate 

(equation 6. 72b), M i s  the total m a s s  (equation 6.73a) and m r  is the reduced 

m a s s  (equation 6. 73b). A s  in  example 6 . 2 ,  the total eigenfunctions @ (5,~) 

a r e  separable  into the product 

while the total  energy ET i s  given by the sum of the kinetic energy of the 

center  of m a s s  ECM and the energy of the relative motion about the center  

of m a s s  E, i. e. 

ET = ECM + E . ( 7 . 3 )  

Substituting 7.2 into the Schrb'dinger equation we have 

- - ZM " (-?- ax - a) a s  .(z) = E,,Y(SI 

and 

The wavefunction \lr(s) corresponds to f r e e  part ic le  solutions ( s e e  example 

6 . 2 ) .  Equation 7 . 4  can  be expressed in spherical  coordinates to yield ( s e e  

equation 6.74 and 6.59)  

where L~ i s  the angular momentum (squared)  operator .  

Equation 7. 5 i s  separable, in  part icular  if 

g(r .  9 , ~ )  = RE, e ( r )  Ya,m(O,cP) , 

then, since 

L~ Y ( 9 , ~ )  = h a i ( t + l )  Y ( 0 , ~ )  . 
2, m A ,  m 

we have f o r  the radial  function RE, e(r) ,  



We now note that if we make the substitution 

1 
RE, A(r)  = y XE, i ( r)  , 

the equation simplifies to 

This la t te r  equation i s  equivalent to one dimensional motion in an effective 

potential (that includes the centrifugal forces )  

with the restr ict ion,  however, that only positive values of r a r e  allowed. 



Lf the wavefunction i s  to remain  finite and square integrable we mus t  

have 

~ ( 0 )  = ~ ( m )  = 0 . (7.12) 

Equations 7. 10 and 7. 11 define the eigenvalue problem. Note that the radial  

function R ( r )  i s  a function of both E and A ,  i n  a s  much a s  both of these 

quantities enter  a s  p a r a m e t e r s  in the (reduced) radial  equation 7. 10. 

One can study the radial  behavior of the eigenfunctions near  the origin a s  

a function of the angular momentum quantum number i. In part icular ,  if the 

potential i s  such that 

l i m  { r a ~ ( r ) ]  = 0 , 
r-0 

then if 

we have f r o m  equation 7 . 8  

and therefore 

s = f i  o r  s = -  (a+l) 

The la t t e r  solution 1s unacceptable because i t  i s  infinite a t  r = 0, and therefore 

R ( r )  --ri a s  r - 0  . 
c ,  4 

(7. 14) 

It can be  seen that the wavefunctions a r e  pushed fur ther  and fur ther  away 

f r o m  the origin a s  the angular momentum quantum number A increases,  con- 

sistently with our notion of a n  increasing centrifugal tendency with increasing 

angular momentum, 

If the potential i s  localized, i. e.,  if 

l i m  ( ~ ( r ) ?  = 0 , 
r- m 

we can a l so  study the behavior of these solutions away f r o m  the origin. In 

part icular ,  f o r  a bound state  (E < 0)  we would have 



and therefore 

where 

K ;  (- , 

representing a spatially confined solution around the origin. 

Lf the radial  potential U(r)  sat isf ies  both conditions, i. e., equation 7. 13 

a t  r + 0 and equation 7.15 a t  r -. m, i t  i s  often convenient to remove the 

behavior a t  r - 0 ,  ar f r o m  the solutions and to define a new function w(p) such 

that 

a+i 
XE, ~ ( r )  = P e q P  W(P) 3 (7 .  19) 

where p i s  the dimensionless radius 

See equations 7. 9 , 7.14 and 7. 1 7 .  The equation f o r  w(p) then becomes 

7. 1 Motion in a constant potential. F r e e  part ic le  motion in spherical  

coordinates. 

The U(r)  = 0 ( o r  a constant) i s ,  of course,  a special c a s e  of a cen t ra l  

potential. Consequently, i t  i s  possible to seek wavefunction solutions that a r e  

seperable  in spherical  coordinates. We have already discussed f r e e  part ic le  

behavior in  th ree  dimensions (sections 4. 2 ,  4. 3 .  3 ) ,  where we found that irn- 

posing periodic boundary conditions on the wavefunctions resul ts  in  eigenfunctions 

of definite l inear  momentum (see  equation 4.92 and related discussion). The 

discussion of f r e e  part ic le  motion in the present  context of spherical  coordinates 

i s  important  because i t  yields eigenfunctions of definite angular momentum. I t  

goes without saying that the two representat ions a r e  ent i rely equivalent, both 

formulations yielding a complete s e t  of eigenstates in  t e r m s  of which any 

part icular  solution can be expressed. The la t t e r  s e t  of solutions a r e  generally 

usefull in  studying scattering problems f a r  f r o m  the immediate  vicinity of a 

localized scat ter ing potential, where the part ic les  a r e  essentially f ree .  

Setting U(r)  = 0, we have f o r  the Schrb'dinger equation in spherical  



coordinates, f r o m  equation 7. 5, 

which is separable, a s  in equation 7.6, to yield a radial  equation 

where 2mrE 
ka = -  . (7. 24) 

ha 

The solution of equation 7. 23 i s  given in t e r m s  of the spherical  Besse l  functions, 

j4 (kr )  and ne(kr),  which have a n  asymptotic behavior f o r  smal l  k r ,  

and 

o r ,  alternatively, the spherical  Hankel functions, defined by 

(+I  ha ( k r )  = na(kr )  jA(kr)  , 

which have a n  asymptotic behavior f o r  l a rge  k r ,  given by 

* ikr  
h F ' ( k r )  - e , k r - m  . 

See appendix H. Consequently, f o r  solutions in  regions including the origin, we mus t  have 

fk, = j a (kr )  , (7.28)  

within a normalization factor ,  since the other  solution i s  infinite a t  r = 0. 

The transition f r o m  plane travelling waves of definite l inear  momentum to a superposition 

of rad ia l  functions can be realized using the important  identity 

ikz 
e = ii(2.4+l) j a (kr )  PL(cos  B) , 

where Pa(cos  8) i s  the ith Lep;endre equal to  the corresponding m=O associated 

Legendre function ( see  pages  6.20 - 21) 

P,(x) = P (x) =- - (2 - ij  , 'J' 2'1! dx a 

o r ,  i n  t e r m s  of the m=O spherical  harmonics, 

3 

This  i s  useful in par t i a l  wave analysis  of scattering problems.  See f o r  example re fe rence  
9 

7. 1, section 16-3, and reference 7.2, section 11.5 and 11.6. 



coordinates, f r o m  equation 7. 5, 

which i s  separable, a s  in  equation 7. 6, to yield a radial  equation 

where 

The solution of equation 7. 23 i s  given in t e r m s  of the spherical  Bessel  functions, 

j 4 ( k r )  and na(kr) ,  which have a n  asymptotic behavior f o r  smal l  k r ,  

and 

o r ,  alternatively, the spherical  Hankel functions, defined by 

which have a n  asymptotic behavior f o r  l a rge  k r ,  given by 

i i k r  
h\')(kr) - - k r  , k r - s ,  . 

See appendix H. Consequently, fo r  solutions in  regions including the origin, we mus t  have 

fk, &( r )  = j l (kr)  , (7. 28) 

within a normalization factor ,  since the other  solution i s  infinite a t  r = 0. 

The transition f r o m  plane travelling waves of definite l inear  momentum to a superposition 

of radial  functions can be realized using the important  identity 

ikz a 
e = i (2J+l )  j a (kr )  Pe(cos 8 )  , 

where Pa(cos  3 )  i s  the ith Legendre polymonial, equal to the corresponding m=O associated 

Legendre function (equation 6.89) 

P,(x) = P (x)  =- l - (2 - 1; , 
a s o  ,J,! ,a 

o r ,  i n  t e r m s  of the m=O spherical  harmonics, 

This  i s  useful in part ia l  wave analysis  of scat ter ing problems.  See f o r  example reference 

7. 1, section 16-3, and reference 7.2, section 11. 5 and 11.6. 



7. 2 Bound states  of a spherical  potential well. 

Consider the radial  potential 

V o < O  , f o r  r < a  

U(r )  = 
, f o r  r > a . 

F r o m  the genera l  resu l t s  f o r  motion in a radial  potential, we have that the wavefunctions 

a r e  given by 

$(r,  9.a) = R ( I )  Ye, m(8 ,a )  E, 1 
(7.33)  

where 
d a (a+i )  [$& (r2 Z) + ka - R E j a ( r )  = 0 , f o r  r < a  (7.34) 

d 
RE, a ( r )  = 0 , fo r  r > a , 

rz I 
and where ( reca l l  V,, < E < 0) 

2mr ka = - ( E - V , )  , i(a = - 2mr ( -  E) 
ha ha 

The solutions to these equations can be expressed in t e r m s  of the f r e e  part ic le  solutions of 

the preceding section. Ln part icular ,  within a normalization constant, 

where the choice f o r  r < a i s  dictated by matching the behavior a t  r -. 0 ( s e e  equations 

7. 14 and 7.25a), and f o r  r > a by matching the behavior a t  r - co ( s e e  equations 7. 17 

and 7.27). The energy eigenvalues a r e  then obtained by matching the derivative of 

R ,  r a t  a , = a  = , a by construction]. 



I t  should be noted that the ze ro  angular momentum solutions ( k 0 )  of the corresponding 

one dimensional equation of 

a r e  the same a s  the &3 solutions of the one dimensional rectangular potential well discussed 

i n  section 4.2.4 (why odd? ). 

To examine the behavior of solutions with angular momentum, we will consider instead 

the mathematically s impler  infinite spherical  well 

0 , f o r  r < a  

U(r )  = 
co , fo r  r > a , 

fo r  which f ( r )  = 0 f o r  r 2 a. We then have 

where, if E i s  measured  f r o m  the bottom of the well, 

and such that 

Equation 7.41 i s  the eigenvalue equation f o r  this problem in that the admissible  values 

of k correspond to the roots  of the ath spherical  Bessel  function. If we denote the n th 

root  of the lth Bessel  function by pn, a, i. e. 

we have 

The f i r s t  few of these, i n  increasing order ,  a r e  tabulated below. 



The energy eigenvalues a r e  then given by 

and a r e  sketched below. 

40 -. 
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Note that the n=l  states, corresponding to the f i r s t  root of jQ(p) a t  p = ka, have 

no nodes (in the inter ior  of the well). The  n=2 states  have one node, the n=3 have two 

nodes, etc. In general,  f o r  a given angular momentum quantum number 4, the energy i s  

monotonic with the number of radial  nodes. A s imi la r  resu l t  was found f o r  the eigenvalues 

of the one-dimensional potential well [page 4. 20, a r t i c le  (iv) and second footnote]. This i s  a 

general  property of the differential ~chrb 'd inger  equation, which i s  a Sturm-Louisville problem. 

See f o r  example reference 3,  section 6.3, pages 719-725. 

It should a l so  be noted that the energy eigenvalues E a r e  (ZQ+l)-fold degenerate, 
n, 1 

corresponding to the 2Q+1 orthogonal eigenstates 

qn, ,, m(rr 8.v) = R ( r )  YQ,m(@,rp) * In, Q, m )  
n, 1 

(7 .  45) 

with different m ' s ,  the z-angular momentum quantum numbers .  The degeneracy of each 

(n, 1) eigenvalue i s  indicated in parentheses in the sketch above. 

7.3 Motion in an at t ract ive Coulomb potential. Hydrogenic wavefunctions. 

An important special  c a s e  of motion in a cen t ra l  potential i s  the motion of 

two oppositely charged part ic les  about each other  subject to their  mutual e lectro-  

static forces.  In that case ,  we have 

U ( r )  = - y l r  . 

Note that fo r  the motion of a single electron around a nucleus of atomic number 

Z we have 

where e i s  the charge of a n  electron 

Since this potential sat isf ies  equation 7. 13 a t  the origin and equation 

7. 15 a t  infinity, we can make the substitution of equation 7. 19 and solve for  

the function w(p). Note that in this c a s e  

where 

Therefore equation 7 . 2 1  becomes 



Substituting a power s e r i e s  

we find the recurs ion  relation 

Note that 

so that, unless the s e r i e s  terminates, 

w(p) - e2p . 

Consequently, we mus t  have that fo r  some k, say k = K , 

where k 0 ,  1 , 2 , .  . . and K=0, 1 , 2 , .  . . . Alternatively, if n i s  an integer, 

such that 

n = K+k+l  = 1 ,2 ,3 , .  . . (7.55) 

we mus t  have 

po = 2n . 

Substituting f o r  po, we recover  f o r  the energies  of the bound states ,  i. e. 

F o r  the motion of an electron around a nucleus of charge Ze, y is given by 

equation 7. 4 7  and the energy levels  a r e  given by 

Substituting in  the expression for  K (equation 7. 18) we have 

K = Z/nao 

where * ha = 0. 529 x lo-' crn 
ao = ( e a  ) m r  

is the Bohr radius of the hydrogen a tom of the old quantum theory. In t e r m s  

of a, the energy c a n  then be expressed a s  



Alternatively, we can  multiply and divide equation 7. 58 by the square  of the 

speed of light to obtain 

where a is a dimensionless constant 

a eea 1 
4rc0 h C  137 ' 

called the fine s t ruc ture  constant. 

Setting Z = 1 and n = 1, we obtain the ground state  (binding) energy of the 

hydrogen atom 

E~ = - -  ( )  - = -  13.6.V.  

This quantity i s  called the Rydberq. Successive energy levels  a r e  given by 

the sequence 

and represen t  the Balmer s e r i e s  of hydrogen. 

Note that the integer  n, called the pr inc ipa l  quantum number, i s  given by 

equation 7 . 5 5 ,  where K i s  the degree  of the polynomial represent ing the 

function w(p). Note a l so  that since 

f o r  a given n, A can take the values 

F o r  a given n, however, the corresponding eigenfunctions 

to each value of L s h a r e  the s a m e  energy En. On the other  hand, f o r  a given 

n 4 A we can  have (2$+1) orthogonal eigeristates corresponding to the (21+1) 

possible values of m, the eigenvalues of LZ/h. Consequently, the degeneracy 

of a part icular  energy leve l  E i s  given by n 

It  should be pointed out that the (21+1)  degeneracy f o r  a given value of L i s  a conse- 

quence of the isotropy (spherical  symmetry)  of the potential (and therefore a l so  the 

Hamiltonian). The remaining degeneracy, however, i s  a coincidence of the eigenvalues, i. e. 



the energy i s  a function of the radial  quantum number n , not of n & I , a s  would 

be natural  f o r  this type of problem. This  i s  peculiar to the Coulomb potential (and the 

spherically symmetr ic  harmonic osci l la tor  potential) and i s  not t rue  f o r  any other  potential. 

Recall,  f o r  example, the spherical  potential well (section 7.2), whose energy eigenvalues a r e  

a function of both n and 4. 

In spectroscopic vernacular ,  a n  I = 0 state  i s  called a n  "s" state, a n  

a = 1 state  i s  called a "p" state, the sequence i s  given by 

a s ta te  

} alphabetical . 

A state  (n, a )  i s  then given a number corresponding to n and a l e t t e r  c o r r e s -  

ponding to A ,  e .  g . ,  3p i s  a n = 3 and 4 = 1 state. 

It  i s  i l lustrat ive to make a n  energy d i a g r a m  of the various states. The 

spectroscopic designation is indicated to the lef t  of every  s ta te  and the degener- 

acy is indicated i n  parentheses on top. In fact  the degeneracy is twice that if 

the spin, which represen ts  another degree  of freedom, is taken into account 

a s  we shal l  see  la ter .  

The functions wn, 4(p) a r e  proportional to the associated Laguer re  polynomials. In 

part icular ,  within a normalization factor ,  

where 
m e  

L (x) = ( -  1) Ln+m(x) , 
n, m dx 

and Ln(x), the Laguer re  polynomial, i s  defined by, 

Since the spherical  harmonics a r e  a l ready  normalized, i t  is s d f i c i e n t  to normalize the radial  

function, i. e. 



CI 1 A> 2s - Zp- 

Coulomb Potential Bound State 

Ener~y Levels 

Using the definite integral  

we can  compute the normalization constants and wri te  the normalized wave- 

functions as 



The radial functions R (r )  of the f irst  few of these are  listed .below 
n, 

and 

where the sulstitution K = Z/(n%) has been made. These functions are  

plotted below. The figures are  from R. Leighton, Principles of Modern Physics. 
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7. 4 Vibrational-Rotational spectra  of diatomic molecules. 

The genera l  f o r m  of the diatomic molecule potential i s  a repulsive region a t  c lose 

dis tances followed by a n  at t ract ive region a t  l a r g e r  distances. Such a potential will  have a 

minimum a t  some value of r = r ~ ,  which i n  the low energy approximation in example 6.2 

of a rigid rotator  we took to be equal to the interatomic separation. A typical diatomic 

molecule potential i s  sketched below. 

We can  approximate the potential in  the vicinity of r, by a Taylor s e r i e s  (V, < 0) 

Keeping second o r d e r  t e rms ,  we can then use this expansion a s  the radial  potential U(r)  i n  

equations 7.5 and 7. 10 to yield the effective potential 

where the substitution 

mrw: = V"(r,) , (7. 77) 

has  been made. 

The molecule wi l l  rotate  and execute vibrations about the minimum rL of the effective 

potential UQ(r). TO find this minimum, we compute the root  of the f i r s t  der ivat ive of 

UL(r) ,  i. e. 

U;(rL) = mrw:(r4 - r,)  - 2B04(L+1) = 0 , (7. 78) 

where 

and therefore, we compute the stretching of the molecule in  a rotational level  4, 

r 4  - r, - r ,  (7 .  80) 



(The f igure  above i s  taken f r o m  R. Leighton, Pr inciples  of Modern 

Physics .  ) 

where the  assumption (a lmost  always valid) has  been made that 

We can  now expand the effective potential U,,(r) about i t s  minimum a t  

r = rL, i.e. 

1 U,(r) " UL(rL)  + ~ ( r  - rL)'UW L L  ( r  ) 

o r  

1 
UL(r)  ' VL + - mrwla ( r  - rL)' , 2 

where 

V, v,, + B, [ i  - (2; t( . t+l)]  L(L+ 1) , 
and 

3 7 0  a 
W L  - "" 11 + z (3) hs, L(L+l)] , 



Vibrational-rotational absorption transitions of a diatomic molecule. 

The solutions of the resulting time-independent Schrb'dinger equation are 

then of the form 

where (5 = r - re )  , 

Zmr I a a xp, &(<I + - [ E ~ , &  - V& - 7 " 4 ~ ~  S 1xV,,(5)  = 0 . 
ha 

Equation 7.85 i s  the Schrb'dinger equation for a one-dimensional harmonic 

oscillator, whose solution yields ( s ee  section 5. 1 )  



and 

1 E - Vo = ~ W , ( V + Z )  + 
v, 1 

where v = 0, 1 , 2 , 3 ,  . . . i s  called the vibrational quantum number. 

Several important conclusions can be drawn from these results. In this 

approximation: 

(i) The molecule executes harmonic vibrations about an equilibrium inter- 

atomic separation which increases with the orbital quantum number in 

accordance with equation 7.80. 

(ii) For a given vibrational level v, the molecule rotates with a moment of 

inertia that increases with the rotational quantum number (reciprocal of 

quantity in the brackets of equation 7. 87. 

(iii) For a given rotational level a, the molecule occupies energy levels that 

are  equally spaced by an amount Awe, where wa  i s  given by equation 

7. 83c. This last  conclusion is an artifact of the quadratic expansion of 

the effective potential Ui(r) about r =r1. A better treatment will be 

described below. 

Radiative transitions allow these levels to be observed directly through 

absorption and/or emission of light. One then observes that the transitions 

can only occur between states which differ from each other by one unit in the 

rotational quantum number a #  In particular, i f  

we have 

( + 1 (absorption) 

Aa = afinal - a. . ulltial- - - 1 (emission) 

and we obtain the rotational spectrum of the molecule (see for example problem 

5. 15). If the transition involves ditferent vibrational levels, we have 

 he reason for this. a s  we shall see later, i s  that a photon carries one unit 

of angular momentum. 



( + 1 (absorption) 

AV = vfinal - v initial - 
- 1 (emission) 

and 

which yield the vibrational-rotational spectrum of the molecule. Note that for  

the P-branch (A' = - 1) 1 lower = 0 i s  not possible. 

Within the quadratic approximation of the effective potential, transitions 

between states  which differ by more  than one vibrational quantum number a r e  

not allowed. This  conclusion, however, i s  a l so  an  ar t i fact  of this approxima- 

tion and in practice, even though transitions between states  with a lbvl > 1 

a r e  found to be weak (occur with a small  transition probability), they a r e  

observed nevertheless. 

It  i s  possible to give a bet ter  description of the diatomic molecule that 

would remove these discrepancies by including more  t e rms  in  the Taylor ex- 

pansion of the effective potential U ( r )  about i t s  minimum. The convergence a 
of such an expansion, however, i s  slow and the analysis cumbersome. Alterna- 

tively, a better analytical functional representation of the interatomic potential 

V(r )  could be used that possesses  the proper  features.  Such a n  analytical 

expression was proposed in 1929 by P. M. Morse (Phys. Rev. 34, 57), and i s  

given by 

1 ~ ( r )  = v0 + 7 mrwOa# [ I  - e-"- rO)/a l a  , 

where w o ,  a and ro a r e  selected to f i t  the part icular  diatomic molecllle. 

The Morse potential gives very accurate  resul ts  for  nearly al l  molecules 

and yields energy levels given by 

where a. and p, a r e  (small)  positive constants that can be computed f rom the 

parameters  of the potential (see, fo r  example, L. Pauling and E. B. Wilson, 

Introduction to Quantum Mechanics, 43 5d). 

Equation 7.90 fo r  the vibrational-rotational spectrum predicts  correct ly 

the decrease  of the spacing between successive vibrational levels, and the 

increase in  the moment of inert ia  of the molecule (reciprocal  of B, and the 

square brackets)  with increasing vibrational and rotational quantum number. 

This can be understood f rom the asymmetry of the potential about i t s  minimum 

( increase  with v)  and the stretching of the molecule with A. 



no. 60. Potratkl Carve of the HI Ground Stat. with Vibtionrl kveh  .ob Contiouoor Term 
Spectrum. Tha full m i. dmwn according to Rydberg's d.ta (610). The broken curve t a 
M o m  m e .  The continuour term spectrum, ahove o = 14. in indicated by verticd hatch in^. 
The vibmtiond I d  ue dmwn up to the potential E w e ,  t b t  u, their end poinu carmapond to the 
c l d c d  turning poinw of the vibration. It must I= remembered that in quantum theory them 
rhvp turning points are replaced by broul muims of the probability amplitude $. 

(Figure m e n  f r o m  G. Herzberg, Spectra  of Diatomic Molecules.) 

By fitting spectroscopic data  of the rotational-vibrational spectrum al l  the 

p r a m e t e r r  of the Morse poteneal  can  be  deduced (see problems 6. IS, 7.14 

7, IS). A short  table of ro, the minimum of V(r), of -, the vibrational 

quantum [VW(q)/m,] and E)o the rotational quantum is given below. 

A more  extensive listing can be found i n  G. Herzberg, Spectra of 

Diatomic Molecules, table 39. To use that table note that the p resen t  dis- 

cusaion concerns itself with the electronic ground state of the molecule, i. e. 

when the two atoms comprising the molecule a r e  in their respective (electronic) 

ground state  (this w i l l  be recognized in the table by the s tate  prefix X 1. 

Note also that the units in table 39 (and traditionally in spectroscopy) a r e  given 



in  t e r m s  of rec iproca l  wavelengths (in units of reciprocal  cen t imete rs )  and that  

Molecule 

HB 

HD 

Da 

Li, 

Na 

Oa 

LiH 

H C I ~  

N ~ C A "  

 KC^* 

K B ~ ~ '  

H B ~ ~ '  

hw, lev 
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7.4 .  1. Diatomic molecules in thermal equilibrium. 

Any state of a diatomic molecule (not electronically excited) can be de- 

scribed as  a superposition of the eigenstates of the Hamiltonian, i. e. 

where _PCM i s  the (linear) momentum of the center of mass, v i s  the vibra- 

tional quantum number, A i s  the orbital angular momentum quantum number and 

m i s  the eigenvalue of L / h .  If the diatomic molecule i s  in thermal equilibrium Z 

with an environment a t  a temperature T, we have that the modulus squared of the 

probability amplitude is given by the Boltzmann factor, i. e. 

where E is the energy of the relative motion about the center of mass, and 

where, ZT is  called the (total) partition function and given by 

since, of necessity, 

Using these results we could compute the total energy of the diatomic 

molecule in thermal equilibrium at a temperature T, i. e., 

where 

and 

where 

and 



From the results of a single particle in a box in thermal equilibrium a t  a 

temperature T, we have (see problem 4. 13) 

To compute (E)  we note that the energy of the relative motion about the center 

of mass is  not a function of m and therefore we can perform the summation 

over m to obtain 

where 

Neglecting, higher order corrections, we have from equation 7.90, 

where 0 is the characteristic vibrational temperature, 
v 

B V  hm, /kg 

and O r  is  the characteristic rotational temperature, 

From the data on page 7.22 we see that 0 /T is  usually small at room tem- 
v 

1 perature (k .300°K ' g e V) or lower. Therefore, for T ~ 3 0 0 ~ ~  B 



- A(A+l)B,/T 
(E) = (E)rOt = 2 (2A+l).eIfi+I) e 

'rot A 

At low temperatures, i. e., if (Br/T) >> 1, we need only consider the A =  1 

term, i. e., for heteronuclear molecules 

At high temperatures, we can approximate the sums by integrals to obtain 

Most molecules a re  in this regime at room temperature and consequently 

a s  i s  well known, derived here from first  principles. For intermediate tem- 

peratures, (Erot) can be computed numerically ae a function of 8 /T. 

General form for the heat capacity of diatomic molecules a s  afunction of temperature. 



At higher temperatures, of course, the vibrational modes can also be excited and will 

contribute to the heat capacity. This can be computed from (Evib), which i s  the energy a t  

thermal equilibrium of a one-dimensional harmonic oscillator a t  a frequency w = wo (see 

equation 5 . 3  5). by differentiation with respect to temperature. 



7.4.2 Radiative transitions of diatomic molecules in thermal equilibrium. 

Using the intensity distribution of the absorption or  emission spectrum of 

a diatomic molecule in thermal equilibrium a t  a temperature T, i t  i s  possible 

to measure the temperature of the molecule directly. In particular, the in- 

tensity of an absorption or emission line will be proportional to the sum of the 

transition rates for all possible initial and final states at the same frequency, 

times the probability that the initial state i s  occupied. For absorption 

we then have (at  line center) 

while for emission 

The quantities uabs and uem a re  the absorption and emission cross-sections, 

respectively. These a re  proportional to the sum over all possible initial and values of 
LZ 

of the molecule, of the matrix element for the transition (we will derive this later) times 

the probability of finding the molecule in the initial state, given by the corresponding 

Boltzmann factor. 

Strictly speaking these results a re  for induced emission and absorption. 
h 

The square of the matrix elements of the operator VT that induces the transi- 

tion, i s  in fact the Einstein coefficient Bn,, (see for example R. P. Feynman, - ,Et 
R. B. Leighton and M. Sands, The Feynman Lectures on Physics, v. I, ch. 

42- 5). Spontaneous emission has been ignored in equation 7.11 1. We will 

show later on that 

1 1 ( v t ,  i1f ,mit}\ '  a (i l+h"+l) 

m", m' 



and therefore 

and 
-L1(I'+l) Bo /kgT 

~ ( ~ 1 ,  4') -. (vf-1, I")] a (L'+I"+l) e 
'ern 

Note that for an R-transition ( A I = I ' -  I"= 1) 

whereas for a P-transition ( A I = I t - I f r =  -1) 

- 1"(I"+1)Or/T 

For absorption, the R-transitions a r e  always more intense than the P-transitions. 

A(&) 
Yici. 9-13. The ahsctrption spectrum of HCl v:tpor in tho rlur~r i11fr;~red. [After Iniea, 
Islrophys. J.,  60, 351 (I!)L'J).J 

[Figure taken from R. Leighton, Principles of Modern Physics, (v-0) -* (v=l)  absorption 

spectrum. ] 

For emission, however, 

- I1(L'+l)Or/T 
(P- transition) . 

This i s  why a diatomic molecule gas laser operating on a vibrational-rotational line will f i rs t  

lase on a P-transition near o r  a t  threshold, and, a t  pumping rates above threshold, the 

P-lines a r e  stronger. 



FIGURE 5-4 The first overtone band of HCI taken on a Cary model 14 spectrometer. The strong set of Iines 
is from HC13s; the weak set is from HCI". The unequal spacings between Iines show the effects of vibration- 
rotation coupling. Eoch division on the waocle,,gth scale equals 100 A. 

Hanna, Melvin W. (1969) Quantum Mechanics In Chemistry, Second 
Edition, W . A .  Benjamin, Inc., Publishers. 

(v=O) -+ (v=2) Transition Spectrum. 



Problems  

7. 1 Derive equation 7.21 f o r  the function w(p) of equation 7 .  19. 

7 . 2  Explain why only the odd solutions of the rectangular potential well a r e  acceptable 

1 = 0 solutions of the spherical  potential well of equations 7 .  32.  

7. 3  (i) Sketch the effective potential, a s  given by equation 7. 11, fo r  !. = 0,  1, 2, 

corresponding to the spherical  well potential of equation 7.36. 

(ii) Est imate the minimum depth of a spherical  well possessing one bound state. See 

footnote # on page 4.20. Express  your answer in  dimensionless form. 

7. 4 Derive equation 7 . 2  1. 

7. 5 Compute the bound s ta te  energies  of a n  electron in a n  infinitely deep spherical  potential 

well in the presence of a weak, uniform magnetic field. Ignore the effects of e lectron 

spin. 

7. 6 Derive the recursion relation, given by equation 7. 53 ,  fo r  the coefficients of the power 

s e r i e s  expansion of equation 7. 52 for  the function w(p). 

7. 7 Compute the energies  of the bound states  of a hydrogen a tom in a weak uniform magnetic 

field, ignoring the spin of the electron. 

7. 8 The radius of the proton i s  of the o rder  of 

r - 1 .2  x c m  . 
P 

Compute the fract ion of the time that the hydrogen atom electron in the ground s ta te  

will be found inside the proton. 

7. 9 The solutions f o r  a Coulomb potential were obtained assuming a point par t ic le  of charge 

Ze. A nucleus, however, i s  found to have a finite radius (approximately given by 

r a r o ~ l I 3 .  c m ,  where 1.2 6 ro 6 1. 5 and A i s  the atomic m a s s  number).  n 

Compute the potential that an electron would move in, assuming that the nucleus i s  

spherical  and 

(i) a l l  the charge res ides  on the surface, 

(ii) the charge i s  uniformly distributed throughout the nuclear volume. 

7. 10 Estimate the correct ion to the ground state  binding energy of the hydrogen atom f o r  the 

two c a s e s  examined in problem 7.9. 



Problems (continued) 

7.11 Prove equations 7.83. 

7. 12 Show that the absorption spectrum corresponding to the vibrational tran- 

sition v + v+l, can be represented by a parabola 

AEv,k = 'v,v+l + D ~ , v + l  + e ~ , v + l  
ka 

where k = 1 , 2 , 3 ,  . . . for an R-branch transition and k = - 1,  -2, -3 ,  . . . 
for P-branch transition. Compute cv, v+l, dv, v+l and ev, in terms of the 

Morse energy level formula (equation 7.90). 

7.13 Show that the coefficient c ~ , ~ + ~  in the spectrum parabola (see previous problem) 

can be represented by another parabola 

where v = 1 , 2 , 3 ,  . . . . Compute a and b in te rms of the Morse energy 

level formula. 

7.14 The following absorption lines for HC~~' a t  3 . 4 6  p a r e  found to corres-  

pond to the (v=O) - (v=l)  transitions. 

Compute the spectrum parabola ccsefficients (see problem 7. 12). 

Hint: Generate a finite difference table, or ,  if you have access to a calculator or  

computer do a least  squares parabolic f i t .  Note that k=O is 



Problems  (continued) 

7.15 The coefficients c o a v  a r e  found experimentally f o r  ~ c . 4 ~  to be  equal to 

Using the resu l t s  of the l a s t  problem and the data  above, compute the 

relevant  parameters  of the corresponding Morse  potential. 

7.  16 In table  39 of G. Hertzberg,  Spectra of Diatomic Molecules, the 

following spectroscopic data a r e  given f o r  bla7. 

hm, = 214. 57 cm-L 

Compute the heat  capacity of Ia a t  room temperature.  

Hint: . . . Careful! 

7. 17 Using the data i n  the figure on page 7.28, est imate the t empera ture  

in  Dr.  I m e ' s  laboratory. 

7. 18 , Using the plane wave expansion of equation 7.29, show that 

in general,  where 

i, = (ek,ep,) , ^e = ( 6 , ~ )  - - X 



8. METHODS O F  APPROXLMATION 

As with every field of physics, so in Quantum Mechanics, the number of 

problems which can be solved exactly i s  very small indeed. In fact, i t  i s  

probably fair to say that there is  no problem in nature which can be solved 

exactly. The a r t  and the science of the physicist concerns itself in selecting, 

on the one hand, a model which in some way offers a fair description of the 

phenomenon he wishes to investigate and on the other hand finding a way of 

solving this model. In this sense, the whole of Quantum Mechanics, as  i s  

discussed in these lectures, i s  also in turn a model in which we make certain 

approximations so as  to be able to solve the particular problems of interest. 

By way of example, in the preceding section we discussed the Schriidinger 

equation solution corresponding to the problem of two point charges moving about 

each other subject to a mutual electrostatic attraction. That is  in many ways 

a far cry from the solution of, say, the hydrogen atom, a problem considerably 

more complicated than the one discussed. In particular, the following effects, 

of varying importance, were ignored in that discussion (this i s  by no means an 

exhaustive list! ): 

(i) The electron, as we shall see, possesses intrinsic angular momentum 

(spin), so that in addition to the Coulomb attractive force with the proton, 

we also have an interaction between the electron magnetic moment and 

the magnetic field the electron generates a s  i t  i s  orbiting around the 

nucleus. This i s  actually a relativistic effect that i s  called spin-orbit 

coupling. 

(ii) The proton also possesses intrinsic angular momentum and has an 

associated magnetic moment which interacts with the magnetic field 

generated by the electron's orbital motion, on the one hand, a s  well 

as  the electron's magnetic moment on the other. 

(iii) The proton is not a point charge, but possesses a Iinite radius, so that 

the resulting Coulomb field is  not proportional to I / r  all the way to 

r = 0 .  See problems 7.8, 7.9 and 7. 10. 

(iv) The electron in an excited state can interact with the electromagnetic 

field to emit a photon. That means that the excited states a re  not in 

fact stationary states, which we have assumed to be when we identified 

them with the eigenstates of the Coulomb potential hamiltonian. 



(v) We have ignored relativistic effects. 

Nevertheless, i t  i s  still true that the effect of the electrostatic Coulomb 

forces between the proton and the electron i s  the most important one and i t  i s  

possible to use the preceding discussion a s  a starting point and compute these 

other effects as  corrections to that solution.' There exists a formalism for 

computing these corrections, which we will now discuss, called perturbation 

theory. To be precise, we will assume that the Hamiltonian of interest can 

be expressed as  a sum 

where H, leads to a SchrGdinger equation 

where the energy eigenvaiues E ~ ( O )  and the associated eigenstates In,m), a r e  

known. The second index (m) in the eigenstates i s  included here to allow for 

labeling of orthogonal eigenstates of energy eigenvalues which may be degenerate. 

The perturbation Hamiltonian H' is  assumed small in some sense, which we 

will quantify later. 

We can imagine that the perturbation H' is  proportional to a dimensionless 

perturbation parameter XI << 1, such that 

H1 = XIV . (8.3) 

The total Hamiltonian can then be thought as  a function of this perturbation 

.parameter, i. e. ,  

which we can imagine as  an independent variable which gauges the strength of 

the perturbation. For each value of X we have a new Hamiltonian with its 

eigenvalues and associated eigenfuactions, while at X = XI we obtain the 

original Hamiltonian of interest, i. e. 

' ~ e t t e r  yet, we can start  with an equation which i s  relativistically correct, 

i. e. ,  the Dirac equation, so that we have to make fewer corrections. 



Eigenvalue variation with A .  

Eigenfunction variation with X. 

Example 8 .  1 Charged particle in a harmonic potential exposed to a uniform 

electric field. 

The total Hamiltonian is  given by 

where qc i s  the particle charge and 8i is the electric field. 



Assuming that the electric field is  not too strong, we can consider the 

kinetic energy plus the harmonic potential a s  comprising Ho, i. e. 

and the electrostatic energy as  the perturbation, i. e. 

In the discussion of the Harmonic oscillator (see section 5. I ) ,  the 

auantitv 

emerged as  a characteristic length scale (see equation 5.8). This we can use 

to construct the perturbation parameter XI, i. e. 

or 

where 

and 

This problem can, of course, be solved exactly by completing the square. 

In the subsequent discussions we shall consider the solution to the 

perturbation problem for various types of H, and Hi.  



8, 1 Time-independent perturbation of non-degenerate states. 

In th i s  c a s e  the perturbat ion Hamiltonian is not a function of time, 

H' f H1( t )  

while the eigenfunctions of the unperturbed Hamiltonian a r e  non-degenerate, i. e. 

q 1 n), = ~ ~ ( " 1  n), . (8.5)  

Consider now the eigenvalues and eigenstates of the parametr ized 

Hamiltonian HI ( A ) ,  i. e. 

and note that since HI (0) a %, 

Note a l so  that if Ek and Ik) a r e  the eigenstates of H, i. e. 

we must  have, since H = HI (XI  ) 

Ek = Ek(Xl ) and I k) = Ik;kz ) . (8 .9 )  

We can now expand the eigenfunctions Ik;\) of the parametr ized 

Hamiltonian HI (X) i n  the complete s e t  In), 3 of bas i s  s ta tes  of Ho, i. e. 

where 

Substituting this expansion in the eigenvalue equation 8 .6  we have 

If we now multiply both s ides of this equation with ,(rnl,  we obtain a s e t  of 

equations 

[Ek(h) - E ~ ) I  Cmk(h) = \ 2 V_C*(h) 
n 

where Vmn i s  the m a t r i x  element. 

Equations 8. 11 a r e  the eigenvalue equations that would a r i s e  in the 

problem of the diagonalization of the original Hamiltonian 



expressed in the basis vectors of %, a problem, of course, no easier to solve. 

Here, however, we can make use of the fact that X is  a small quantity and 

expand the eigenvalues Ek(X) and the coefficients Cnb(X) in a power series of 

A, i. e. 

d o '  + X E ~  + X a ~ p  + . . . . Ek(X) = k (8 .  12a) 

and 

(1) a ( a )  C,(X) = c&) + AC* + A Cnk + . . . . (8 .  1Zb) 

Note that we have, in fact, also expanded the state l k ; ~ ) ,  which depends 

parametrically on h, in a power series in X through the expansion of C*(h), i. e. 

where 

From equation 8. 13 and 8. 14 we see that 

I ~ ; o )  = C), = 1 In). CE , 
n 

and therefore 

We now substitute the power series expansion of the eigenvalues Ek(X) 

and the coefficients Cmk(X) in equation 8 .  11. This yields a matrix equation 

in k and m, 

[E:) - E: + XE;' + h a ~ f )  + . . .][6* + + ia~kk + . . . ]  = 

This equality must hold as  the value of the perturbation parameter X changes 

from X = 0 to X = XI to give us the Hamiltonian of interest. Consequently, 



we mus t  have, collecting t e r m s  of equal powers  of A, f o r  the diagonal elements 

k = m  

and for  the off-diagonal elements k # m, 

Equations 8. 16 and 8. 17 contain the des i red  resul ts .  In part icular ,  

to f i r s t  o rder  i n  A ,  a part icular  eigenvalue Ek(X) is given by 

E ~ ( A )  = E;) i AE~; ' )  + o ( l a )  

o r ,  substituting f r o m  equation 8. 16a, 

Ek(" - E;' + XVkk 

and, a t  X = XI, Ek = Ek(X1) and therefore 

Ek " .f) + HLk , 

where Hik  = XVkk, o r  

Hid, E o ( k l ~ ' l k ) o  . (8. 18b) 

Similarly, to  f i r s t  o r d e r  i n  A, the expansion coefficients Cqk(X) a r e  given 

by 

cnk(X) = 6 nk + X C ~ :  + O ( x a )  , 

where, substituting f r o m  equation 8. l?a, 

where CZ i s  yet  to be determined. 

F r o m  equation 8 .  11, we have, to f i r s t  o rder  i n  A, 

or,  using equation 8 14, 



or, substituting f o r  c:; f r o m  8. 19, 

To compute c we now use the fact  that the s tates  I )  must  be normalized. 

Consequently, the sca la r  products (k;Xlk;I), using the s tates  1k;I) c o r r e c t  to 

f i r s t  o rder ,  mus t  be  equal to unity plus a n  e r r o r  which may b e  second o r d e r  

o r  higher. This  leads to the condition that 

or. in  other  words, that c:: m u s t  be purely imaginary, say 

where yk i s  real.  Note now that 

so that a non-zero cL$ resul ts  only in  a phase-shift  of the perturbed wave- 

functions l k ; ~ ) ,  c o r r e c t  to f i r s t  order .  Since, however, we may a rb i t ra r i ly  

select  the phase of each eigenstate, we may s e t  

Consequently 

Ik;h) - I*). - a 1 I n)o 
'nk 

nfk  

or, since Ik) = Ik;h, ), we have to f i r s t  o rder  in the perturbation H', 

where 

HInk = o ( n l ~ '  (k)o . (8.24b) 

Equation 8.24 allows us to quantify the s ize  of the perturbation Hamiltonian, 

f o r  the perturbation procedure in t e r m s  of a power s e r i e s  in  X to be valid. 

Ln part icular ,  we requi re  that  the perturbation expansion i s  an  asymptotic 

expansion,i. e. the magnitude of the (n+llst t e r m  in the expansion should be 



of the s a m e  order  a s  the e r r o r  a f te r  n terms. '  This  will  be the c a s e  if the 

correct ion to the wavefunctions i s  small,  o r  if 

I H ; ~ ~  << IE!' - E~;"'I , (8.25)  

i. e. the mat r ix  elements of the perturbation mus t  be smal l  compared to the 

energy difference of the corresponding unperturbed energy levels.  Equation 

8. 25 also i l lustrates  where the assumption of non-degenerate s tates  comes in. 

L e t  us  pause to s e e  what the resu l t s  of the f i r s t  o rder  correct ions te l l  us. 

F o r  the energy (equation 8. 18), we s e e  that to f i r s t  o r d e r  the eigenvalues a r e  

computed a s  the expectation values (diagonal mat r ix  elements)  of the per tu rbed  

Hamiltonian, using the unperturbed wavefunctions, i. e. 

The reason f o r  this i s  that the expectation values that could be  computed using 

the cor rec ted  wavefunctions to first order  would contain second o r d e r  t e r m s  
A 

( c r o s s  t e r m s  between the perturbation XV and the f i r s t  o r d e r  cor rec t ions  

X k), to the unperturbed wavefunctions). 

The effect of the perturbation on the wavefunctions, however, is m o r e  

complicated. We see  f r o m  equations 8 . 2 3  o r  8.24 that unless the perturbation 

i s  diagonal, i. e. if Vnk f Vkk6nk (in which c a s e  we a r e  done, s ince the eigen- 

s tates  (k)o of H., would a l so  be  eigenstates of H r He + XIV), a perturbed 

eigenstate is a mix ture  of the original eigenstates, 

' ~ o t e  that such a n  expansion does not necessarily converge and that the bes t  

approximation may b e  realized a f te r  a finite number of t e r m s  ( s e e  fo r  example 

E. T.  Copson, Asymptotic Expansions, Section 7). 



where, to f i r s t  order ,  the mat r ix  of coefficients i s  given by ( s e e  equations 

8. 15, 8. 19 and 8. 22), 

In other  words, a s ta te  that  originally was a n  eigenstate of the unperturbed 

Hamiltonian H,, i s  no longer a n  eigenstate of the sys tem under the action of 

the perturbation H', unless  H' i s  diagonal i n  the original basis .  

Quite frequently, the f i r s t  o rder  cor rec t ions  to the eigenvalues 

a r e  not adequate. This  usually occurs  if the mat r ix  elements H i k  

happen to be ze ro  identically. In that c a s e  we mus t  go to the second o r d e r  

correct ions.  F r o m  equation 8. 14b we have f o r  the second o r d e r  correct ion 

( reca l l  that c:; = O), 

or ,  substituting f o r  c , we have 

where we have used that vk; = V*. Consequently, to second order  in the 

perturbation (equation 8. 12a), 

The second order  correct ions to the wavefunctions a r e  v e r y  seldom used. 

The algebra to obtain them i s  straightforward but tedious. The second order  

correct ions to the coefficients a r e  derived f r o m  equation 8 .  17b and, with the 

normalization condition, yield the eigenstates c o r r e c t  to second order ,  

HhmH'mk 
- 1 Eloi - Ek) 

nfk n m f k  m 



In practice, one usually computes the eigenstates to f i r s t  o r d e r  (equation 8 .  24) 

and the eigenvalues to second o r d e r  (equation 8.30). If the diagonal e lements  

of H' a r e  zero, these a r e  the lowest o r d e r  perturbation correct ions to the 

eigenstates respectively. 

These resul ts ,  which were  derived f o r  d i sc re te  eigenvalues, can be  

generalized to continuous eigenvalues. By way of example, if p a r t  of the 

eigenvalue spectrum i s  d i sc re te  and the r e s t  i s  continuous, the f i r s t  o r d e r  

correct ion to a n  eigenstate in  the d i sc re te  p a r t  of the spec t rum would be  given 

nfk  n v 

Example 8 . 2  Polarizability of a harmonically bound charge.  

Consider a part ic le  of m a s s  m and charge qc bound by a n  isotropic 

harmonic potential, i. e. 

1 
H,=- 2m p2 + 7 I m d r 2  , (8.33)  

where ra = xa + ya + za .  In the presence  of a weak e lec t r ic  field 

d t BZ*ez , - 

the Hamiltonian becomes 

1 H z -  1 2m pa + 2 mw:ra - q 8 z , 
C Z 

with a perturbation Hamiltonian 

H1 = - q  6 z 
C Z 

( s e e  example 8 .  1). 

The unperturbed eigenstates a r e  then given by, in  the occupation number 

representation, 

In), = Inx, ny' nz)0 

with energy levels 

3 E = (n + n + nZ + .Z-) ha, . 
x Y 

(8.36) 

The Hamiltonian i s  separable  to the sum of three Hamiltonians corresponding 

to motion along each of the th ree  coordinates, i. e. 

where 

1 A a + A - , a x a  H, = - 2 m P x  2 



so  that the unperturbed eigenstates a r e  separable  into the product 

( see  section 5 . 4 ) .  I t  can be seen that the perturbation does not affect the 

eigenstates fo r  the motion along the x and y axes so  that the perturbed eigen- 

s tates  will be expressible  as products of the f o r m  

This ,  of course ,  can be immediately deduced f r o m  the f o r m  of the Hamiltonian 

a s  given by equation 8 . 3 7 .  It  i s  therefore sufficient to study the solutions to 

the Hamiltonian corresponding to the motion along the z-axis. 

We then have, to f i r s t  o rder  in  the perturbation, the correct ion to the 

energies, 

where  

Using the annihilation and creat ion operators  (equation 5.27a and related 

discussion), we have 

and therefore 
1 /2 

But 

and therefore 

so  that the correct ion to the energy levels to f i r s t  o r d e r  i s  zero. 

F o r  the eigenstates we then have 

where 



and therefore 

so that, to f i r s t  o rder  in the eigenstates we have for  the corrected ground state  

while for  n 2 1 

Note that the coefficient in front  of the brackets  i s  in fact  the perturbation 

parameter  f o r  the problem a s  derived in example 8.  1. 

The dipole moment of a charge distribution p (x) i s  given by ( s ee  
C - 

appendix F, section 4) the expectation value of the vector 3 i. e. 

where, evidently, 2- 0 if p (x)  i s  spherically symmetric .  Quantum mechanically, 
C - 

we identify the charge density with the square of the modulus of the wave- 

function ( t imes the charge q ), i. e. 

pC(x) = qc I ~ ( 5 )  l a =  q , . ~  +(x).~(x) (a. 46) 

so that 

II. = qc .I ( 2 ) ~  .I&) d3if I *  (8 . 47)  

or ,  equivalently 

d = qc (9lifI.I) . - 
For  a harmonic oscillator in  the ground s ta te ,  we have 

and therefore in the absence of a perturbing electr ic  field, 

If we turn on the electr ic  field, however, we find that,  - a s  a resu l t  of the 

perturbation, a dipole moment i s  induced along the z-axis, i. e. 

d = q - 



Using the eigenstates, corrected to f i r s t  order (equation 8. 44a), we then have 

dZ = 4c(0zlz10z) 

where XI = q d ( h m :  )-'/'. Substituting for % in te rms of the annihilation 
C z 

and creation operators, we have 

and therefore 

or ,  substituting for XI , 

Classically, we define the polarizability a a s  the constant of proportionality 

between the induced dipole moment 2 and the applied electric field . (see  

appendix F, section 4), i. e. 

d c o a E  , - (8.  50) 
# where, in general, a is a tensor ( 3 x 3  matrix) . For an isotropically bound 

charge in the ground state of a harmonic potential we therefore have that the 

polarizability i s  a scalar  and given by 

Strictly speaking, we have computed the static polarizability. We would 

expect, however, this result to hold for a sinusoidally varying electric field. 

provided the frequency w i s  much l e s s  than the harmonic oscillator frequency 

w,, i. e. if w << up . 

'See Feynman, Leighton and Sands, The Feynman Lectures on Physics, 

volume 11, chapter 31. 



The evaluation of the sums  that occur  in  the higher o rder  correct ions,  

e. g.  equation 8. 30; i s  very  often a very  difficult proposition. I t  i s  sometimes 

possible, however, to per form the calculation by the use of special  techniques. 

By way of example, consider a sum of the type 

nfk n 

that occurs  in the computation of the second o r d e r  correct ion to the perturbed 

energy of a non-degenerate s ta te  \k). L e t  us  a s s u m e  that i t  is possible to 

find an operator  Q such that 

We then have 

= (E:) - ~ t ) ) ~ ( n l Q l k &  , 

and therefore 

We now note that since the s tates  [In& 1 f o r m  a complete set,  any s ta te  [q) 

can be resolved in a superposition 

Consequently, the s ta te  ~ ( k ) ,  can  be written a s  

and therefore,  substituting into equation 8 .  53 , the infinite sum collapses to 

It  goes without saying that the utility of this technique r e s t s  on finding the 

operator  Q. 

Example 8. 3 Polarizability of a hydrogen atom in the ground state. 

The sys tem i s  isotropic in  this c a s e  so  that the polarizability is a scalar .  

F o r  a n  electr ic  field along the z-axis we then have ( see  problem 8. 7)  

where the subscript  ze ro  denotes the ground state. 



It can be shown ( s e e  Appendix I), that the auxiliary operator  Q f o r  

this problem ( s e e  equation 8. 52 and related discussion)  

m a0 a = - &  (a, + $ 1  z , 
ha 

where a. i s  the Bohr radius (equation 7. 601, sat isf ies  the equation. 

zlo),  = (QH, - r b ~ ) l o l ,  , (8 .57b)  

where (0)b i s  the unperturbed hydrogen atom ground s ta te  and H, i s  the un- 

perturbed hydrogen atom Hamiltonian. Consequently, by vir tue of the preceding 

discussion, we have f r o m  equation 8. 55 

since , (0lzl0& = 0 by symmetry.  Note a l so  

and therefore 

1 
, ( ~ ( z ~ f ( r ) I ~ ) ~  = 7. O ( ~ I r a f ( r ) I ~ ) ,  . 

Consequently, we have 

o r  since 

we have 

and substituting for  the Bohr radius (qc= -e = electron charge) ,  we finally obtain 

the resul t ,  

9 
a. =z(4rr<) . (8. 60) 

Reference: E. Merzbacher, Quantum Mechanics, chapter 17, section 4. 



An improved perturbation expansion, that  may be useful when a degeneracy 

i s  lifted to f i r s t  o r d e r  by the perturbation, can  be obtained a s  follows. L e t  the 

eigenstates, fo r  a finite value of the perturbation parameter  A, be expressed 

a s  a superposition of the unperturbed eigenstates a s  follows 

where N ( X )  i s  the normalization constant, der ived f r o m  the condition that 
k 

n f k  

Substituting the s ta tes  ( k ; ~ ) ,  a s  given by equation 8. 61, into the eigenvalue 

equation we have 

Taking the sca la r  product of equation 8. 62 with the s ta te  o(k 1, we have 

where 

Vkn o ( k l v 1 n h  . 
We can a l so  take the s c a l a r  product of 8 .  62 with a s ta te  o(ml,  where 

mdk, to obtain 

- vmk + [E* -(EL) + Av-I] Cd - h 1 V- Cnk = 0 , (8. 64) 

n fk  

o r ,  provided Ek I! E L )  + hVmm, 



Note that equations 8 .  63 and 8 .  65 a r e  exact. We can  solve them approxi- 

mately by an i terat ive procedure a s  follows. To lowest o rder ,  l e t  C* = 0 

f o r  n+k, i n  equation 8.65, which yields 

a s  was obtained previously. To the next higher o r d e r ,  we can use 8 .  66 to 

evaluate the Cmk, a s  given by 8. 65 by ignoring the higher o rder  summation 

in the numerator ,  i. e. 

and therefore,  f r o m  8. 63, 

I t  can be seen that this  expansion procedure requ i res  that 

which may be satisfied when the l e s s  stringent inequality, a s  given by equation 

8 .  25, i s  not. 

Higher o rder  correct ions may be obtained by substituting equations 8. 67 

and 8. 68 into the r ight  hand side of 8.65 to obtain the coefficients Cmk, c o r r e c t  

to the next higher o rder ,  which can i n  turn b e  substituted into 8.  63 to obtain 

a bet ter  est imate of the eigenvalues, and so on and so forth. It  can be seen 

that the calculations get  v e r y  complicated v e r y  quickly, if a n  explicit expression 

for  Ek and Cnk i s  desired.  Alternatively, a numerical  scheme may be at- 

tempted. The m a t r i x  elements  V a r e  f i r s t  computed. If only relatively few nm 

elements a r e  significant, a numerical  i terat ive solution of equations 8. 63 and 

8 .  64 may be attempted (with an accelerated scheme like Newton's method), to 

obtain solutions to the problem. 

A different method yet  may be employed, based on a forward marching 

scheme starting f r o m  A = 0 and ending a t  A = X I ,  that i s  useful even when 

the Hamiltonian does not depend l inearly on the perturbation parameter  A. See  

problems 8. 8 and 8. 9 .  



8. 2 Perturbat ion of nearly degenerate  states. 

The preceding perturbation procedures general ly  fai l  when the perturbed 

s tate  i s  degenerate, o r  has  an energy that i s  c lose  to some neighboring state. # 

See equations 8 . 2 5  and 8.69 and related discussion. In such a case,  the con- 

tribution f rom the s tates  with the  s a m e  o r  a lmos t  the s a m e  energy i s  going to 

be  l a r g e  and the or iginal  idea of a n  asymptotic expansion in s m a l l  correct ions 

mus t  be  modified. To i l lustrate  the method we will  assume that the sys tem of 

in te res t  possesses  two states ,  say I and I Z ) ~ ,  whose energies  &) and EP) 
a r e  close to each other, but f a r  from the remaining eigenvalues. I t  can  be seen  that 

the application of the preceding perturbation procedure will produce a l a r g e  

correct ion to the s ta te  ] l), coming f r o m  the s ta te  12)p and vice versa .  In 

the preceding formal i sm,  cia and c a  will be large.  In anticipation of this 

resul t ,  i t  i s  then reasonable to look f o r  solutions, a t  the outset,  of the f o r m  

where 

and 

Substituting 8. 70 into 8 .  71, we have 

whose determinant  of the coefficients mus t  be  zero.  This  yields two eigenvalues 

E+ 2 E- given by 

1 E+ = - 1 a 1/2 , ( Y x  + H P ~ ) ~ z C ( H ~ ~  + 4 I ~ x a I  I , - (8. 73) 

where the square  root  is always computed a s  a positive quantity. 

If the usual perturbation expansion were valid we would requ i re  that ( s e e  

equation 8. 69) 

l ~ ~ a l  << IHXI - &a 1 , (8. 74) 

which substituted into equation 8. 73, yields 

'unless, of course,  i t  so  happens that the mat r ix  element  of H' with the 

neighboring o r  degenerate s ta te  is identically zero. 



and therefore 

and conversely for E-, i .  e .  

consistently with the results of the improved perturbation expansion. See 

equation 8 .  6 8  and related discussion. 

Conversely, however, if 

I Hz1 - H, I << I HI, , 

then, from equation 8. 73 we have, 

The eigenvalues E+ and El are sketched below, for a fixed value of 

( H , ~  ( a s  a function of the difference of the diagonal elements c = Hll - Hoa 



It can be  seen that, provided Hlo f 0, the effect of the perturbation i s  to lift  

the degeneracy by keeping the two levels  a p a r t  a s  the energy difference, in the  

absence of the perturbation, approaches zero.  

It  i s  a lso interesting to study the resulting eigenstates a s  a function of 

E = HI, - and HI#. In part icular ,  f r o m  equation 8.72, we have 

where the m a t r i x  element  Hla will in  genera l  be  complex, i. e.  

We now define a n  angle f3 such that 

where 0 < p < rr, in  t e r m s  of which we have 

and therefore 

\ (8.82) 

I -) = ( I), ~ i n ( ~ / ~ ) e - ' ' / ~  - ( 2 ~  c o s ( ~ / t ) e ' / ~  . J 
Note that we may se lec t  rp = 0 without l o s s  of generality' and that 

whereas 

 here i s  an a r b i t r a r y  phase difference between the unperturbed s tates  ( I ) ,  

and \2)o which can be  chosen such that o(llH12& = Hla is real.  



while 

We can now use the s tates  

I-) ,  I+),  1 3 ) ~ ~  1 4 ) ~ ~  .... 

instead of the or iginal  s e t  { In& 3 a s  a bas i s  in which to per form the perturba-  

tion calculation. The l a r g e  correct ions involving the smal l  energy differences 

(El - El) i n  the denominator will now not occur  since, f o r  those te rms ,  the 

numera tor  ( 1 1 ~ 1 2 )  i s  z e r o  by construction. 

The situation described above may in fac t  occur  a s  a resu l t  of a per turba-  

tion. Consider, f o r  example, a spectrum of eigenstates that i s  initially d i sc re te  

and non-degenerate. It i s  conceivable that the perturbation correct ions to a pa i r  of 

eigenvalues will have opposite signs so that a s  the value of the perturbat ion parameter  

increases ,  the eigenvalues approach each other  o r  even c r o s s  over. This situation 

i s  depicted below. 

t 

The behavior of the s tates  I I )  and 12) in the vicinity of the c r i t i ca l  value of ' 

the perturbation parameter  X A indicated above can  only be properly described 

along the l ines  of the preceding discussion. 



8.3 Perturbation of degenerate states. 

We can generalize the results of the preceding discussion to the case 

where one or more energy levels a re  multiply degenerate. Again, a s  before, 

the difficulty with the ordinary perturhation theory in this case i s  that correc- 

tions become large and the usual perturbation procedure is invalid. Consider, 

for example, the effect on the degenerate states (k,m)o of an (unperturbed) 

( energy E:), i. e. 

of a perturbation H1  = hl V. Following the same reasoning a s  in section 8.2, 

we seek an appropriate alternative basis for the states sharing the eigenvalue 

formed as  a linear superposition of the states Ik. m b ,  which also diagonal- 

izes HI. In other words, we seek the transformation 

such that 

H I  k, i) = (H, + HI) Ik, i) = Ek, (k, i) , 

where 

Ek, = (k, i 1 ( H ~  + H I )  Ik, i )  = E:) + <, , 

and 

E * , ~  = ( k , i ( ~ ' I k , i )  . 

Note that, i f  this transformation can be found, equation 8.87b actually gives 

the energies of the levels Ik, i )  correct to f i rs t  order in the perturbation since 

they are the expectation values of the perturbed Hamiltonian computed with the 

unperturbed eigenstates. See equations 8.26 and 8.66 and related discussions. 

Example 8 . 4  The linear Stark effect. Perturbation of the n = 2 levels of - 
the hydrogen atom by an electric field. 

There is  a four-fold degeneracy of the n = 2 energy, corresponding to the 

2s state and the three 2p states (see figure on page 7.13 and related discussion). 

The four \n, , t ,m) states are: 

I2,0,0), I ,  (2 ,1 ,0)  and \ 2 , 1 ,  -1) 

The perturbation H' is  given by 



where q = - e  i s  the charge of the electron. Note that  the perturbation does 

not involve the azimuthal coordinate, i. e. 

and therefore only the s tates  I2,0,0)  and 12,1,0) a r e  mixed by the perturba-  

tion, since 

( 2 , . t , m l ~ ' 1 2 , 1 , 1 )  = 0 ,  f o r  k 0 , l  and m=0,+1 (8.90a) 

and 

( 2 , . t , r n t 1 ~ ' 1 2 , 1 , - 1 )  = 0 ,  f o r  .t=0,1 and m1=O,+l . (8.90b) 

It  i s  therefore sufficient to consider  the l inear  combinations of 12,0,0) and 

12,1,O) that diagonalize HI. This  leads to the equation 

and since 

( 2 , 0 , 0 ( ~ ~ 1 2 , 0 , 0 )  j I Y ~ ~ ~ ~ C O S ~  dco.8 = 0 

we have that, to f i r s t  order ,  

o r ,  substituting ( s e e  equations 5.88 and 5. 137) 

1/2 3 /2  -r/2a0 1 .  
$s,1,0 = (-1 ($)e 

2% 
cos  e 

we have 

(2,0,01($) c o s 8 ( 2 , 1 , 0 )  = - 3  

and therefore 

E; = i 3eSZa, , - 
corresponding to the s tates  



Consequently, to f i r s t  o r d e r  i n  the perturbation, the energy levels  of the 

four  n = 2 hydrogen a tom states  spl i t  into th ree  energies  (part ia l  lifting of the 

degeneracy), 

whose separat ion i s  linear i n  the magnitude of the electr ic  field ( l inear  Stark 

effect), a s  opposed to the energy shift  of the ground state  a s  a function of the 

electr ic  field, i. e. 

1 AE,, = - Z  Coaad; 

( s e e  example 8 . 3  and problem 8.4), which i s  quadrat ic  in  the electr ic  field 

(quadratic Stark effect). 

The s tates  (k, i) which diagonalize the submatr ix of HI corresponding to 

iY the eigenvalue E k )  ( s e e  equations 8.85, 8. 86 and 8.  87) can now b e  used along 

with the s tates  /k' ,%),,  fo r  k' f k, a s  a zeroth order  bas i s  on which the 

perturbation may be computed. The previously derived resul ts  now apply s ince 

the singularities have been removed. By way of example, we have f o r  the 

energies  Ek, c o r r e c t  to second order  ( s e e  equation 8 .30 )  

' ~ o t e  that they already diagonalize Ii,, and therefore a l so  H = H, + H'. 



8 . 4  Time-dependent perturbation theory. 

Ln the preceding sections we have considered the c a s e  where the perturba-  

tion V i s  not a function of time. If, however, V = V(t), we m u s t  use  an al- 

ternative scheme since the previously obtained resu l t s  were  derived on the bas i s  

of the time-independent Schrzdinger equation. 

Recall that if H f H(t) then the genera l  solution ]$, t) can  always be  ex- 

p ressed  a s  a l inear  superposition 

where 

and the coefficients cn a r e  constants that c a n  be  evaluated f r o m  the initial 

conditions, i. e. 

and therefore, since ( m l n )  = 6-, 

Consider now a Hamiltonian composed of a "large" Ho that  is t ime  inde- 

pendent and a "small" V that m a y  be  a function of time, i. e. 

We can use the fact  that the eigenstates of H, f o r m  a complete s e t  to express  

the solutions of the Hamiltonian H a s  a l inear  superposition, in  which the co- 

efficients may  now be functions of time, i. e. 

where 

To find the coefficients cn( t )  we now substitute 8.99 into the t ime dependent 

~ c h r g d i n g e r  equation 

which yields 



Taking the sca la r  product with (rnl, we then have 

where 

Equation 8. 100 is ,  of course, exact  and i t s  solution i s ,  the solution of the 

original problem, via equation 8.99, given the initial s ta te  19,O). I t  i s  a l so  a 

s e t  of l inear  homogeneous equations, i. e. 

d ih ; i ~  2 - w2 = 0, (a. 100') 

where 5 i s  the vector  ( c l ,  co,. . . ,cm,. . . . ) and i s  the mat r ix  (v-), and 

therefore possesses  a solution of the f o r m  

or ,  equivalently 

~ ( t )  = r ( t ,  t i ) ~ ( t i )  , - 

where t. i s  some initial time. Note that 

i s  the t ransi t ion probability to a f inal  s ta te  Im) a t  t ime t, f r o m  a n  initial 

s ta te  In) a t  t ime t = ti. 

We can integrate equation 8. 100 to obtain a n  integral  equation f o r  the 

coefficients cm(t),  i. e. 
t 

c (t) = cm(ti) - 7 m 
1 

which we can solve by a n  i terat ive scheme a s  follows. Assuming that the v- 

a r e  small,  we have to a zeroth approximation that 

i. e. no change. If we now substitute this in the integral  equation we obtain 

and therefore, to f i r s t  o rder  i n  the perturbation, 



called the f i r s t  Born approximation. 

Example 8.5 Impulsive s tar t  of a constant potential. 

for t > ti 

V(t) = 
t < t i .  

Fo r  tf > t. and mfn 

I.. 

Therefore the transition probability i s  given by 

Note that if I (ml  Va 1 n)l >> I Em - E I the transition probability i s  small. Note n 

also that if Em = En 

for small tf - ti (where have we made this assumption?) 

It i s  possible to ar r ive  a t  a direct equation for the transition amplitude 

matrix ym(tf, ti) by substituting equation 6 .  101 into the integral equation 8 .  103, 

or, since this equation must hold for any set  of initial conditions, we must have, 

for all m and n, 



We can solve equation 8. 108 by an i terat ive scheme, a s  before. In p a r -  

ticular,  to zeroth order  (equivalent to no perturbation), we have 

To  f i r s t  o rder ,  we can substitute the zeroth o r d e r  solution in the lef t  hand s ide 

to obtain equation 8. 105 directly, i. e. 

This can i n  turn be  substituted to yield a n  es t imate  c o r r e c t  to  second order ,  

where the integration i s  over  a triangular- region i n  the t, , h plane, i. e. 

Second o r d e r  range of integration variables. 

and so forth. This  yields an infinite s e r i e s  

ym(tf, ti) - ykL(tf ,  ti) + 7% (ti. ti) + . . . + y g ( t f ,  ti) . . . , (8. 109) 



where 

( o )  (t t.) - Y- f 1 - 6mn 

t, 

where the notation in the general term implies that the various factors in the 

integrand a re  to be evaluated a t  an array of points in time that are  ordered 

a s  indicated (see for example previous two terms). 

This perturbation expansion suggests a picture for the transition amplitude 

form a state In) to a state Im), say for mfn, namely a superposition of the 

following possibilities: 

(1) The system starts in the state In) at time ti and remains there until 

a time when the perturbation potential acts and knocks the system 

into the final state Im). This situation is depicted below: 

The transition amplitude y(l' (t , t.), corresponding to this particular 
m n f  1 

sequence of events, i s  given by the sum (integral) over all possible 

intermediate times 4, such that ti < < tf. 



( 2 )  The system starts in the state In) at  time ti, remains there until 

a time $ when the perturbation acts to scatter i t  to a state (kl ), 

where i t  remains until a time when the perturbation acts again to 

scatter i t  into the final state lm). 

t * I nn> 

The transition amplitude y(a )  (t , t.), a s  a result of this particular m n f  1 

sequence of events is, 

(i) the integral over all possible interaction times 4 ,  such that 

t i < B < t o ,  

(ii) the sum over all possible intermediate states \kl ), 

and 

(iii) The integral over all possible interaction times ta, such that 

t, < b  <tf. 



The total transition amplitude i s  then given by the s u m  in equation 6. 109 

over  the transition amplitudes y ( r ) ( t ,  t.) represent ing each of the (indistinguish- 
rnn f 1 

able) possibilities descr ibed above. The supersc r ip t  r in  each of the t e r m s  

counts the number of t imes the potential has  acted in  the interval  (ti, tf). 

Note that the exact equation 8. 108 f o r  y-(tf, ti) can  a l so  be interpreted along 

the s a m e  l ines .  Namely, by some means o r  other, the sys tem has  made  a 

t ransi t ion f r o m  the initial s ta te  In), a t  a t i m e  t., to an intermediate  s ta te  

Ik) by the t ime t, when the perturbation ac t s  f o r  the l a s t  t ime to knock it 

into the final s ta te  Im) where we find i t  a t  t f '  

The integral  equation i s  then a s tatement  of the fact  that the probability ampli- 

tude to come to the s tate  Ik) by the t ime t, f r o m  the s tate  In) a t  t ime ti, 

mus t  be  given by the s a m e  function appropriately evaluated. 

In pract ical  applications, one obtains a calculation formula by truncating 

the perturbation s e r i e s  of equation 8 .  109 a f te r  a finite number of t e rms .  

8. 4. 1. Unitarity and the conservation of probability. 

The fact  that the modulus squared of the elements ymn(t, t.) r epresen t .  

transition probabilities,  i. e. equation 8. 102, imposes a very substantial res t r i c -  

tion on the operator  r ( t , t i ) .  In particular,  we s e e  that if we sum the modulus 

squared of Ym(t, ti) over a l l  m,  we have 



In other words, the sum of the t ransi t ion probabilities f r o m  the s ta te  In)  to 

a l l  s ta tes  (including In))  mus t  be equal to unity, since we have covered a l l  the 

possibilities.  

Equation 8.111 can be shown direct ly  f r o m  the defining equation 8.101 f o r  

the ymn(t,ti) a s  follows. We mus t  have 

f o r  a l l  t imes t. Consequently, f r o m  equation 8.101, we have 

where we have defined the adjoint mat r ix  

a s  the complex conjugate, t ranspose of the original matr ix.  It  i s  c lear ,  however, 

that equation 8 .  113 can only be valid independently of the initial conditions if 

fo r  a l l  t imes t, o r  in mat r ix  notation, 

where I i s  the identity matr ix.  A matr ix  that sat isf ies  equation 8. 115 i s  called 

unitary. 

8. 4. 2 Transi t ions a s  a resu l t  of perturbations localized in time. The S-matrix. 

Often t imes the perturbation potential V(t) i s  localized in time, as i n  the 

sketch below. 



Such a situation can occur  i n  a (near)  collision f o r  example. In such a c a s e  

one i s  usually interested in  the response of a system, in  a known state  a t  

t = -m, to the perturbat ion and, i n  part icular ,  in the final s ta te  a t  t = m. 

F r o m  the preceding discussion, we then have 

The mat r ix  r, evaluated for  ti r -m and tf = +m i s  of par t icular  significance 

and i s  called the S-matr ix 

S P r(m, -m) . (8. 116) 

It  i s  c lear ,  f r o m  the preceding discussion, that the S-matr ix i s  unitary. 

Substituting f r o m  equation 8. 109; we have to f i r s t  o rder  i n  the perturbation, 

or,  substituting f o r  v-(t) f r o m  equation 8.  100b, 

where 

In other words, the off-diagonal e lements  of the S-matr ix a r e  proportional to 

the ( temporal)  Four ie r  t rans form of the correspondinp mat r ix  elements of the 

perturbing potential, evaluated a t  the corresponding Bohr frequency (equation 

8. 117b). Note, f r o m  equation 8 .  116, that the transition probability to a s tate  

Im) # In) i s  given by 

Example 8. 6 Response of a ground state  charged part ic le  harmonic osci l la tor  

to a Gaussian impulse electr ic  field. 

Consider a harmonic osci l la tor  in  the ground state  10) a t  t = -m and 

a uniform electr ic  field impulse 



The perturbation potential i s  given by V(t)  = - qcdx and the transition proba- 

bi l i t ies  f r o m  the ground state  a r e  given by (equation 8. 118), 

Now, we have 

and 
-ata +ipt  1/2 - (pa /4a)  - (wo 7/2)' 

d t  r 
(:) 

e = e 

Consequently, to f i r s t  order ,  the only non-zero transition probability is to the 

f i r s t  excited s ta te  f o r  which we  have 

where 

i s  the c lass ica l  momentum t rans fe r red  to the osci l la tor  by the electr ic  field. 

Note that  if T >> 1/m,, i. e. if the charac te r i s t i c  t ime i s  much longer 

than the c lass ica l  period, the t ransi t ion probability i s  very small. Conversely, 

if T << 1/w0 the transition probability i s  essentially independent of t ime and 

given by the rat io  of the kinetic energy imparted to the oscillator,  to the energy 

quantum hwo, i. e. 

Note also that f o r  the perturbation procedure to be  valid BOd1 << I and that 

therefore the excitation of the harmonic osci l la tor  i s  a purely quantum mechan- 

i ca l  effect, s ince the classical ly  computed energy $ / 2 m  received by the 

osci l la tor  i s  insufficient to allow the t ransi t ion to occur. The difficulty, however, 

i s  not r e a l  because quantum mechanically $ / 2 m  i s  not the energy the osci l la-  

to r  gains f r o m  the field. 



8. 4 . 3  Transi t ions a s  a resu l t  of harmonic perturbations. 

In the p resen t  discussion we will assume that the perturbation potential 

H1(t) i s  of the part icular  f o r m  

~ ' ( t )  = vt eiLut + v e-iwt , (8.121) 

where V i s  not a function of t ime and Vt i s  the adjoint operator  to V. Note 

that H1(t)  i s  Hermitean by construction. 

A s  a resu l t  of such a perturbation, the t ransi t ion amplitude mat r ix  would 

be given by, f o r  m # n, 

to f i r s t  order ,  o r  substituting f r o m  equation 6. 121 we have, 

where 

- ( m l v l n )  dC . Vmn - 

Carrying out the integration, we obtain 

I t  can b e  seen that  the transition amplitude i s  composed of two parts ,  one of 

which i s  l a r g e  when w ' - wmn while the other  i s  l a r g e  when m * m mn. The 

two c a s e s  correspond to the following situations ( reca l l  equation 8 .  117b f o r  

IJI 1 
IN1 

induced de-excitation induced excitation . 

Consider now the c a s e  w  ' w mn. Then, provided 

I w - w  mn I << l w - 1 ,  (8. 124) 

%ate that 



we have 
i(w- - w)tf i(w- - ")ti - e 

ym(tf, ti;*) l - $ V- i ( w m  - UI) 

with a resulting transition probability, 

The function multiplying the mat r ix  element  squared (over h a )  has  an appreciable  

magnitude only f o r  \urn- w 1 6 Aw , 

with a width AW - 2rr / ( t  - t.) and a height given by (tf - ti)a . Note a l so  that 
f l  

and therefore, f o r  l a r g e  tf - t., we have 

where b(w- - w )  i s  the Dirac delta function ( see  Appendix D). Consequently, f o r  

l a r g e  t ime  intervals  

2a 
Qnem (tf, ti;w) -. - 1 Vmn 1 a 6(wmn - ' (tf - ti) , 

ha 

which allows us to define a probability r a t e  (probability p e r  unit t ime) f o r  the 

process ,  given by 

o r  in  t e r m s  of the energies  # 

' ~ o t e  6(x/a) = l a  lb(x),  see  Appendix I). 



2n 
Wndrn(w) - 7;- ] vmn l a  6(Em - En - hw) 

This very important result i s  known as  Fermi's  golden rule. Note that a 

harmonic perturbation of frequency w acts a s  if i t  possesses an energy of hw. 

Equation 8. 127 is useful in transitions to (or from) a cluster of states of 

energy E Em, or  transitions to (or from) a continuum. In particular, con- 

sider the case where we are  interested in the transition rate to a group of 

neighboring states Im). 

The overall transition rate is  then given by 

or, if the final states are  closely spaced, we can replace the summation over 

the final state index with an integral over the final density of states, i. e. 

These results can also be extended to the case where w = 0. In particular, 

if H1(t) = H' (not a function of time), then 

2n I 
Wn+* - 7 1 ~ ~ 1 ~  6(Em- En) ; m = 0 . (8. 129) 

See example 8. 5. 



8 . 4 . 4  The differential scattering cross-sect ion i n  the Born Approximation. # 

Consider a beam of part ic les  with a well defined initial momentum 

p, = h b ,  incident on a t a rge t  of the origin. The part ic les  will be deflected, 

a s  a resu l t  of the potential V(r) between the b e a m  part ic les  and the  ta rge t  

par t ic les ,  to emerge  with a new momentum 2 = hk. We would l ike to compute 

the number of par t ic les  deflected into a solid angle d s  p e r  second. F o r  the 

purposes of calculation, consider  the incident par t ic les  i n  a n  initial s ta te  of 

definite momentum, in  a box of volume L3, then 

whereas the emerging par t i c les  a r e  i n  a f inal  s ta te  

Consequently, the relevant mat r ix  element  i s  given by 

where v ( k )  i s  the spat ial  Four ie r  t rans form of V(r) .  Substituting this resu l t  

into equation 8 .  129, we have f o r  a transition & - k 

To compute now the probability p e r  second of scattering into a part icular  solid 

angle d2 ,  we integrate  equation 8 .  132 over  the density of final s ta tes  k in the 

region included in the aolid angle d 2 .  The density of f inal  s ta tes ,  labeled by  

k, i s  given by ( s e e  section 4 . 3 . 3 )  - 

1 .  R. P. Feynman, ILAdvanced Quantum Mechanics" (Ph205 l ec ture  notes, 

Oct. 1966). 

2. See a l so  Merzbacher ,  Quantum Mechanics (2nd Ed. ), section 19. 4. 



so  that 

To express  this resul t  independently of the normalization volume we use the 

notion of a cross-sect ion denoted by do. This  i s  defined a s  the a r e a  in  the 

incident beam through which the flux of part ic les  (part ic les  per  second) i s  

equal to the number of par t ic les  p e r  second scat tered into dc. 

i s  the speed of the part ic les  (note t!!at (kl = I& 1 a s  required by the delta 

function), we then have that  in  the t ime interval  6t 

i s  the probability that a part ic le  will be scat tered into a solid angle dg along 

the direct ion (0  ,rp). Equation 8 .  136 assumes  that the  part ic les  in the initial 

s ta te  I&o) a r e  uniformly distributed i n  the volume L ~ ,  an assumption consistent 

with a state  of definite momentum (see  paragraph i n  localization, section 1 .3)  

and the assumed wavefunctions a s  given by equation 8 .  130. 

Substituting 8. 135 into 8 .  136 and dividing by bt we then have 

which we can equate with 8. 134 to obtain 

independently of the normalization volume. 

Note that the scattering described above mus t  be  elastic,  i. e. 

(kinetic energy). = (kinetic energy) i n  out ' 

since the scattering potential was assumed to be a fixed function of space, with 

no internal  degrees of f reedom that  might  have allowed inelast ic  scattering 

through an energy exchange between the sys tem responsible fo r  the potential and 

the incident par t ic les .  



Example 8 .  7 Coulomb scattering. 

The scattering potential in  this c a s e  is given by 

Str ic t ly  speaking, the function l / r  does not possess  a Four ie r  t rans form since 

the integrals  diverge a t  infinity. In a pract ical  situation, however, the Coulomb 

potential of, say, a scattering nucleus i s  sc reened  by some negative charge  which 

l i m i t s  the range. In any event, we will calculate the Four ie r  t rans form of 

+ 
and then take the l imi t  a s  n 4 0  . We then have 

- i k r  c o s  0 
s in0  d8-dr , 

0 0 

~ ( k )  = 7 r f ( r )  s i n k r  d r  . 
0 

- K r  
Substituting f ( r )  = e / r  we then have 

m 

h F(k) = e / e - l r  sin k r  d r  = - 
0 

ka + Ka 

+ 
Taking the l imi t  a s  K d  0 , we then have 

z Z e a  h I - I  = 2 - 
k-!9 r 

o r  s ince = Ib 1, we have 

where 0 i s  the angle subtended between k and (scat ter ing angle), and 

therefore 

Substituting into the differential scattering c r o s s -  section (equation 8 .  138), then 

yields 

= i [ sin-& 2 2 a 



where 

i s  the kinetic energy of the scattering part ic le .  This  i s  a g r e a t  coincidence. 

The f i r s t  o rder  r e s u l t  f o r  the scattering cross-sect ion f o r  a Coulomb potential 

(Born approximation) not only agrees  with the famous Rutheford formula,  derived 

classical ly  f o r  a-part ic le  scattering by atomic nuclei ( s e e  for  example H. 

Goldstein, Classical  Mechanics, section 3 - 7 ) ,  but also with the exact quantum 

mechanical t reatment  ( see  f o r  example Merzbacher, Quantum Mechanics, 2nd 

ad. ,  section 11. 8 ) .  

8. 5 Trrrnsitions and the superposition of pure energy states. 

iVe have seen that the presence of an perturbation H' has several  effects on a 

state of the original Hamiltonian. In part icular ,  

(I) ~t causes  a snift  of the unperturbed energy E ( o ) ,  by  an amount n 

AE = En - E ( ~  ) 
n '  (8. 145) 

which we can compute to second order ,  f o r  example, with the aid of equation 8 .  30. 

(ii) i t  resul ts  in a mixture (superposition) of the original eigenstates (lm),], 

required to represen t  the eigenstate corresponding to the new elgenvalue E 
n' 

i. e.  

m . . n m f n  

where N:" i s  some appropriate normalization factor  (see,  f o r  example, 

equation 8. 61 and related discussion), and the coefficients c a r e  given by 
mn 

(to f i r s t  o rder  in  the perturbation) equation 8.28.  

and finally, a s  we have seen, 

(iii) i t  induces transitions in  and out of the s tate  In),  whose r a t e  can be de te r -  

mined, to lowest o rder  in  the perturbation, f o r  a harmonic H1( t), i. e. 

by the aid of the equation 



and for  a perturbation H' which i s  not an explicit function of time, by 

2a 
Wndm - 7 \ H k n I a  &(Ern - En) . (8. 148) 

See equations 8. 127  and 8. 129 and related discussion. 

Now, both the original s e t  of unperturbed eigenstates 1, and the s e t  of perturbed 

s tates  rln)] f o r m  a complete set,  and i t  i s  therefore possible to expand any s ta te  \$ ( t ) )  

a s  a superposition of projections along the unperturbed se t  ( I n &  1, o r  the shifted se t  

We should realize, however, that in  the presence of the perturbation, the amplitudes 

do not represen t  projections along t rue elgenstates of the system. The s tates  ( l n ) ] , '  a r e  

no longer stztionary s tates ,  slnce transitions In and out of these s tates  a r e  now possible in  

the presence of tne perturbation. Consequently, the modulus squared of the probability 

amplitudes ( n l $ ( t ) ) ,  represent ing the probability of detecting the sys tem i n  the s ta te  In ) ,  

may now be functions of timeQ, i. e. 

I ( n l ~ ( t ) )  l 2  = (cn( t ) Ia  = Qn(t) . 

This probability may be computed, a t  l eas t  in  principle, using the transition amplitude 

mat r ix  ynm(t, t.), since f r o m  equation 8. 101 we have 

and therefore 

In practice, unfortunately, such sums  a r e  usually intractable and we again have to r e s o r t  

to methods of approximation. 

We can use the transition ra te  resul t  of equation 8. 148 (or  8. 147 f o r  a harmonic 

perturbation), to compute the probability that the sys tem will make a transition f r o m  the 

s tate  In )  to the s tate  I m )  i n  a smal l  t ime St .  In part icular  

'or the unperturbed s tates  ( ln) , ]  

'compare with equation 3 .  83 and related discussion. 



6 QnAm = Bn+m 6t = Icn(t) la  Wndm 6t , 

which i s  the product of the probability that the sys tem i s  found & In)  a t  the time t, 

t imes the probability that i t  undergoes the (n-m) t ransi t ion i n  the t ime interval  (t ,  t +  bt ) .  

Cancelling the bt' s we then have 

Gn+m = I cn(t)la Wndm - (8. 152) 

This p rocess  resu l t s  in  a loss to \ cn( t ) l a ,  represent ing a transition probability out of the 

s tate  In )  ( in  a time 6t), and a ga& to 1 cm( t ) Ia ,  representing the transition probability 

to the s tate  (m).  On balance, we then have - 

m f n  

o r ,  substituting 8. 152 for  the transition probabilities, 

d 
l cn( t ) l a  = - (C  w ~ - ~ )  Icn(t)Ia + c wmMn 1cm(t)la , 

mi'n m f n  

which can  be wri t ten a s  

d 1 
Icn(t)Ia + n \ c n ( t ) l a  = C wmdn \cm(t)la 

rnfn 

where the reciprocal  of the charac te r i s t i c  t ime T i s  defined by 
n 

Consider now a situation in which the sys tem i s  in  some other  s ta te  f o r  t < 0, and 

a s  a resu l t  of the perturbat ion H', o r  some other  external influence, it i s  scat tered into the 

s tate  In)  a t  t = 0, i. e. 

+ 
cn(O ) = 1 , cm(O+) = 0 for m f n . (8. 156) 

If we substitute these initial conditions in  equation 8. 154, we have f o r  t ime 0 < t 6 Tn  that 

whose solution i s  a decaying time exponential, i. e. 

F o r  longer  times, this expression underest imates  the modulus of the probability amplitude, 

2 since, a s  the other  s tates  begin to f i l l  up, they will eventually s t a r t  feeding back to the s ta te  
rd 
a 

In), slowing down the r a t e  of decrease  of the probability lcn(t)I2, f o r  the sys tem to remain  

,,' in the s tate  In). 



Equation 8. 158, along with the initial conditions, define the probability amplitude 

wrulin a phase factor, i. e. 
+ -t/2Tn -t/2Tn 

I c,(t) 1 = I cn(0 ) I  e = e 

and therefore, within a constant phase factor, ( s e e  equations 8. 99 and 8. 149) 

(nlJl(t)) a 
- t /2 rn  -iEnt/h 

e , fo r  t ) O  

where En can be computed with the aid of equation 8 .30  (or  8.96 for  degenerate unperturbed 

s tates) ,  f o r  a calculation c o r r e c t  to second order  in  the perturbation. 

I t  can be seen that this probability amplitude does not correspond to a pure energy 

state, being the superposition of a continuum of energies  (frequencies),  i. e. 

where the contribution f (a) f r o m  the frequency w is given by the inverse  t ransform, i. e. n 

or ,  substituting f r o m  8. 160, 
1 -[- - i(w - wn)]t 

f n (w)  = J e  "n dt = I I - 
0 - i(uJ - !fin) 

If we substitute equation 8. 161 in the original expansion of I$(t)) into projections along the 

s tates  In) (equation 8. 149), we obtain 



or ,  interchanging the summation and integration, we have 

This allows us to interpret  f , ( ~ )  a s  the probability amplitude, of the component of i ~ ( t ) )  

along the s tate  In), a t  the frequency m. Conversly, if Cn(% - ,a n ) i s  the probability density, 

fo r  the component of I $ ( t ) )  along In)  to have a definite frequency m (energy E = hw),  

we have 

G,(w - ,YJ ) = A \ f n ( U J ) l a  
J n n 

where A, i s  a normalization factor  determined by the requirement  that 

which leads to 

This curve i s  known a s  a Lorentzian and i s  seen to have a frequency width koln - 1/7,, 

corresponding to a n  energy width &En - h / T n .  This  l a s t  re lat ion i s  of course  consistent with 

the energy- time uncertainty principle ( see  equation 2. 127 and related discussion), i. e. 

Tn AEn - " (8. 165) 

which tel ls  us  that the finite lifetime of the s tate  does not allow a bet ter  definition of i t s  energy 

than allowed by the uncertainty principle. 

Note also that in  the l imi t  of infinite lifetimes the probability density becomes a Dirac 

delta function, i. e. 

1 l i m  {- Gn(w - mn)] = 6(w - un) 2rr 
(8. 166) 

T -00 n 



and we recover  the famil iar  stationary s tate  single frequency (unique energy) behavior. 

Before leaving this section, we should mention that the approximation of ignoring the 

feedback to the s tate  In)  f r o m  other  s tates ,  i. e. ignoring the r ight  hand side of equation 

8. 154 to obtain 8. 157, i s  quite often a v e r y  good one. Notable examples a r e  phenomena like 

radioactive decay, o r  spontaneous photon emission (in a n  infinite cavity) where because of the 

very  la rge  density of final s ta tes  Im) ,  the probability Icm(t)12 to be in  any one i s  v e r y  

small.  Alternatively, when the uranium nucleus emits  an a-particle, i t  i s  not very likely . . . 
i t s  going to get i t  back, and we find that in pract ice no correct ions a r e  necessary  to the well 

known exponential radioactive decay formula. Similarly, when an excited atom spontaneously 

emits  a photon in empty space, which . . . i s  not about to turn around to be  re-absorbed, we 

need not worry about the r e v e r s e  p rocess  fo r  a long t ime and can safely use  equation 8. 157 

instead of 8. 154. On the other  hand, we should a l so  point out that i t  i s  the r e v e r s e  p rocesses ,  

in  each case,  that allow the sys tem to reach  equilibrium, a t  which tlme 

d 1 
5 Icn(t)12 = - - ,. lcnla  + C Wm_n(cm(t)12 = 0 . 

n 
m f n  

8. 6 An improved transition r a t e  calculation. 

We a r e  now in a position to address  an unanswered question implicit  i n  our previous 

derivation of the transition ra te  (equations 8. 147, 8. 148). The Dirac delta function, multiplying 

the transition r a t e  was justified in  anticipation of a n  integration over some density of s ta tes .  

The problem remained, however, of evaluating the ra te  fo r  transitions between d i sc re te  

s tates  not descr ibable in t e r m s  of a density of s ta tes  in  an obvious manner. This  difficulty, 

we now recognize, was an ar t i fact  of having ignored the distribution around the energy 

"eigenvalue" ( spec t rum)  of the d i sc re te  state, itself a consequence of the transitions. An 

improved calculation of the transition ra te  can now be done a s  follows. 

The sys tem i s  initially in  the s tate  In), descr ibed by a spectrum of pure energy s tates  

given by 
1 (h/2rn)  d ~ '  

Gn(c' - E n )dcl  = - 
((E-E,)~ + ' 

and makes a transition to a final s ta te  Im),  descr ibed by a corresponding spec t rum of pure 

energy states, given by 
, (h/27,) de" 

The transition rate ,  a s  was computed previously, i s  to b e  understood a s  a transition 

f r o m  E '  to el', i.e. 



which must  now be integrated over the range of c '  and c" in the initial and final s ta tes  

This situation i s  sketched below. 

If we now per form the integration over the delta function, we obtain f o r  the total transition 

r a t e  00 

27l wndm = 7 \ ~ k ~ \ ~  / Gn(cl - En) Gm(cl  - Em) d c t  

- cn 
Substituting f r o m  equations 8. 168 for  the energy distributions, we obtain ( s e e  problem 8. 18) 

where i s  equal to the sum of the two transition rates, i. e. 

Note that 

1 
l i m  (; (A) 1 = 6(x) , 
E-0 xa + ca 

and we recover  the previous resu l t  in  the l imi t  of 7 + w .  mn 

F r o m  equation 8. 171 we see  that transitions between two states  of "energy" En and 

E a r e  possible even though E i s  not exactly equal to 
m m En. No se r ious  degradation of the 



transition ra te  would be observed f o r  energy differences AEmn = Em - En such that 

We recognize, of course ,  that this does not represen t  a violation of the conservation of 

energy, but ra ther  an expression of the fact  that the energy of the initial and final s ta tes  i s  

only defined within a interval  

AEn - ~ / Z T ~  , &Em - h/2Tm , 

in accordance wi th  the energy-time uncertainty relation. 

ijw t -iwt 
Note that for  a harmonic perturbation H' = V '  e + V e , the transition r a t e  

should be modified to 



Problems  

8. 1 (i) Prove  that the perturbed eigenstates, c o r r e c t  to f i r s t  o r d e r  i n  the 

perturbation H' (equation 8.24) ,  f o r m  an orthonormal  set, to second 

o r d e r  in  the perturbation parameter ,  i. e. 

(ii)  Some times, i t  i s  necessary  to have the eigenstates exactly normalized 

to a l l  o rders ,  i. e. 

(klk) = 1 fo r  all k .  

Normalize the eigenstates, a s  given by equation 6 .  24, so that this 

i s  the case.  

8 . 2  Prove  that the second o r d e r  correct ion to the energy of the ground s ta te  

is always negative. 

8.3 Derive the correct ion to the energies  of the A=0 eigenstates of a diatomic 

molecule, whose potential i s  given by 

using perturbation theory. Derive a n  appropriate  expression f o r  the 

perturbation parameter  X. Compare your resu l t  with the exact solution 

for  the M o r s e  potential f i t  to  the interatomic potential. 

8 .  4 Compute the energies  to second o r d e r  of an isotropic harmonic oscillator 

in a uniform electr ic  field. Compare the ground state  energy correct ion 

with the c lass ica l  value. 

Hint: Show that c lassical ly  

6E = -5.64 

so that 

1 1 AE = - - 8 . d  - - -  co ada . 
2 - - -  2 

8 .  5 Compute the polarizability tensor  fo r  a charge bound anisotropically by a 

by a harmonic potential 

1 v :. Zm(cu;xa + ura y2 + w:za) . 
Y 

A 

8 . 6  The mat r ix  elements of a n  operator  Q i n  the bas i s  of the eigenstates of 

H, , a r e  given by o(m 16 1 n& . Compute the mat r ix  elements  ( m  16 1 n) ,  

c o r r e c t  to f i r s t  o rder  i n  the perturbation HI, if the s tates  ( n )  a r e  the 

eigenstates of H = & + H' . 



Answer: 

where 

Qij = o ( i ] ~ ] j &  , H!. 11 = o ( i ] ~ l \ j &  
- - - 

8. 7 Show that the dipole moment of a bound charge  qc in  a non-degenerate 

s tate  ( k b  exposed to a uniform electr ic  field <, i s  given by (to f i r s t  

o rder  in  the perturbation) 

(d a 1 [ S n z n k  + %k%n 
G k =  & + f C  E(o) - E;) 

nfk  n 

where d+('), the permanent  dipole moment  of the unperturbed s ta te  ( k & ,  

i s  given by 

and x i s  the mat r ix  element  
-nm 

o(nlxlm>d . 

Note that the polarizability of the sys tem found in the s tate  k is a tensor, i. e. 

8 . 8  Hellmann-Feynman theorem. Show that if the Hamiltonian depends on a 

parameter  X, i. e. 

H = H(X) 

and Ek(XI ) , I k;X1 ) a r e  the eigenvalues and eigenstates corresponding to 

a part icular  value of X = X I ,  then 

8.  9 Show that if H = II(X), then 

The resu l t s  of problems 8 .8  and 8 .9  may be used to provide a forward 

0 
Y 

marching scheme to compute the energies  and eigenstates fo r  l a r g e  
d 
a 
9 values of the perturbation parameter ,  provided the denominators in  the 

expression above do not become z e r o  along the way. 



Problems  (continued) 

8. 10 Consider a part ic le  of m a s s  m and charge qc in  a one-dimensional potential ( see  

section 4.2. 5)  

m f o r  ) z ]  > L/2  

U(z) = 
0 fo r  l z l  < L/2 . 

(i) Compute the dipole moment of the eigenstates of the system. 

( i i )  Compute the induced dipole moment  of the eigenstates in  response to a weak 

uniform electr ic  field = BZ*eZ. 

(ii i)  Compute the energy correct ions a s  a resu l t  of the perturbation. 

. 8. 11 Show that equation 8.81 i s  valid f o r  both positive and negative HI1 - Hap. 

8. 12 Compute the effect of a perturbing uniform electr ic  field on the n = 3 states  of a 

hydrogen atom. 

Variational methods. It  i s  possible to use the fact  that the ground s ta te  energy i s  the 

lowest eigenvalue of the Hamiltonian to obtain a n  approximate value f o r  i t  even if the 

wavefunctions cannot be solved for  exactly, i. e. 

8. 13 Est imate the binding energy of the electron in a hydrogen atom using the t r i a l  function 

A(l - r / a )  ; r < a 

R ( r )  = 
0 ; r > a  , 

where a is a n  adjustable parameter .  

8. 14 Prove  the s tatement  of equation 8. 102. 

8. 15 Show that the operator  r(t, ti) sat isf ies  the differential equation 

8. 16 F o r  rhe problem described i n  example 8. 6 ,  compute the transition probability d0-2 

to lowest order .  

8. 17 Derive the corresponding expression f o r  F e r m i ' s  Golden Rule (equation 8. 127), f o r  the 

c a s e  w a - w (induced de-excitation). 
rnl-l 



Problems  (continued) 

8. 18 Compute the integral  in  equation 8. 170 using complex integration. Close the contour 

on the upper half plane, noting that the integrand has two simple poles inside the 

contour a t  EI and E a ,  where 

a s  sketched below. 

9. 19 Derive equation 8. 173. 

8. 2 0  Find the spectrum# of a (classical)  p rocess  x( t)  descr ibed by 

m - ( t  - tn)/27, 
x(t) = a x  U(t -  t,) e siniu, ( t  - t ) n 

where U(t) i s  the unit s tep function and the t imes {t,] , n=l ,  m a r e  random. 

 he spectrum i s  defined a s  the Four ie r  t ransform of the autocorrelation function, which i s  

defined in turn, a s  a function of the t ime delay T ,  a s  the average value of the product 

x ( t )  x ( t  + T ) ,  i. e. 

7 iu17 
S ( w ) "  R ( r ) e  d~ , R ( T ) ~ ( x ( ~ ) x ( ~ + T ) )  

- m 

Note that R(T)  = R(- T ) .  



Problems  (continued) 

8. 21  Find the spectrum of a (classical)  periodic p rocess  

x( t )  = a sin(w,t + 6 )  , 

whose phase 6 is interrupted and changes a t  random times (tn3 , n=l ,  co , by 

a random ( la rge)  amount, i. e. 

etc. 

Assume that the t ime intervals  ( t  - ) a r e  Po isson  distributed with a mean of 
n tn-l 



9. THE ELECTROMAGNETIC FIELD 

9.  1 The Hamiltonian 

F r o m  c lass ica l  electromagnetism, we have that the energy of an electro-  

magnetic field filling a volume V, containing no charges and cur ren ts ,  is given 

by ( see  f o r  example R.P.  Feynman, R. B. Leighton and M. Sands, The 
Feynman Lec tures  on Physics, v. 11, chapter  27). 

E = %/ c I=, t ) p  + C~IE(E,  t )  la 1d35  (9.1) 

where g(x, t )  and a(x, t )  a r e  the electr ic  and magnetic fields respectively and 

c i s  the speed of light. W e  can simplify this expression by the introduction 

of the sca la r  and vector  potentials, 9 ( ~ ,  t )  and A(5, t )  respectively, i n  t e r m s  

of which we have 

a -- a 
~ ( x S  t) = - - WE, t) - 5 &(x, t)  a5 

and 

a 
(3 t )  = - X A(if, t )  . ax 

(See appendix F). You will note that the f i e id t  cp and A a r e  not uniquely 

b t a r m i n e d .  In fact,  the (gauge) transformation 

resul ts  in  a new sca la r  and vector  field 5 and ' which yield the s a m e  and 

B fields, a s  can be verified by d i rec t  substitution. I t  will prove convenient - 
in  the subsequent discussion, to t rans form the potentials cp and & in  such a 

way a s  to have a divergence-free vector  potential, i. e. ,  

a s  well a s  ze ro  s c a l a r  potential, i. e . ,  

This c a n  always be done ( see  Appendix J )  and resu l t s  in  a choice of gauge 

for  the electromagnetic potentials that i s  called the radiation gauge. 

In this gauge, the energy of the sys tem can then be expressed in t e r m s  

of the vector  potential alone, i. e . ,  



We now assume that the vector potential sat isf ies  periodic boundary conditions 

a t  the edges of the volume V, i. e . ,  

and expand into the Four ie r  componenta f a r  each of the admissible wavevectors 
( see  problem F. l) ,  i. e. 

where 

and where *ek and *ek a r e  the two orthogonal unit vectors  to the wave- 
-C -2 

vector  k. See f igure below. 

Note that the expansion of &k, t), a s  given by equation 9. 6 , is divergence 

free.  

We now compute 



where since 

^e x ^ e  kc1 b 2 = e &  

we have 

and 

where k = and ^ek = k/k .  We a l so  adopt the convention - 
^e = ( -  s k. 1 -k, a (9.11) 

so  a s  to keep both ("e ^e ) and (^e-k, ^e 5 =k, I' k,2 k ,  1 i -k, 2  ) right handed. - - 
See figure below. 

Substituting 9. 8 and 9.  9 into 9. 4 we then have 

We now decompose the vector  potential Four ie r  components , 

where 

and 
21 /2  

Q,, ,, = V/[$, a .  Blx, t ) l s i n Q . x ) d 3 z  . - (9. 13c) 

Note that, a s  a consequence of the r ight  handed coordinate convention 



and also 

Note also that, a s  in the case of the liquid (see section 5. 6). not all Q d 
S j 

a re  independent and we must restrict. the cummation over some half-space of 

k, i. e. - 

where 

and where +k denote: that the summation runs over some selected half space 

In an analogous manner, we can now define conjugate momenta ' 

to each coordinate Qk, j, - 

which we can use to write the energy as  the classical Hamiltonian of 

the system in terms of its proper coordinates, i. e. 

where 

M = EOV 

We see that the system possesses a Hamiltonian corresponding to a 

system of uncoupled harmonic oscillators of "mass" M = eOV and frequency 

UJ, = ~1.1. - 

We can see that the canonical equations derived from this Hamiltonian yield the 

classical equations of motion, which in this case reduce to the (source-free)wave equation 

H for the vector potential , i. e. 

See appendix F, equations F. 15 and F. 16 and related discussion. If we express the vector 
0 

potential in terms of its Fourier expansion (equation 9. 6), we have 
a 
a 

'no changes and currents, gauge ep = 0, - .  a A = O .  ax - 



o r  since this mus t  hold fo r  every 5 we have 

fo r  every k and .!, = 1,2. 

Since the coefficients a r e  complex ( see  equations 9. 13), equation 9.23 mus t  
1 

hold for  the r e a l  and imaginary pa r t s  separately, in  other words 

for  a l l  k and j = 1,2 ,3 ,4 .  These equations a r e  then Maxwell's equations, i n  Four ie r  

space, for  the vector  potential. 

Consider now the canonical equations f rom the Hamiltonian of equation 9. 19, o r  

(consistently with our definition of Pk j), and 
d 

Differentiating 9. 25a with respect  to  time, we have 

which substituted in 9.25b yields the required relation (equation 9. 24; reca l l  ru; = caka)  - 

9. 2 Transition to Quantum Mechanics. 

Armed with the proper  Hamiltonian, we now make the transition to Quantum Mechanics 

in our usual way, namely by selecting a pair  of variables  (operators)  for  the conjugate 

coordinates of the system j* ',, j). such that the standard commutation relations a r e  

obeyed. Ln particular, we mus t  have 

P) 
u r n k l ,  j ~ s  n L j l  0 , (9.  2 7 ~ )  
d - 
a 
a ' f o r  k in  the selected half-space of the admissible wavenumbers and j  = 1,2,3,  4. 

The mos t  convenient way of achieving this f o r  a sys tem of harmonic osci l lators  i s ,  



a s  we have seen, to define ladder operators for each independent oscillator, in particular, 

and. 

See equations 5.46 and related discussion. These operators obey the commutations relations 

Cbkl,jl, bkaj l  = 0 - - 

and can be used to express the Hamiltonian for the system, i. e. 

which we recoqnize a s  the Hamiltonian for a system of uncoupled oscillators expressed in 

te rms of the corresponding ladder operators. See equation 5.48 and related discussion. 

The eigenstates of the system can be specified in the occupation (quantum) number 

representation of the harmonic oscillators for each mode (+ & j), i. e. 

analogously to equation 5.45. The result of the operation on the state (m) with the 

annihilation o r  creation operation operators bt of one mode (+ lc, j) i s  then given 
bk,ja k , j  

by a s  before (equations 5.47), 

and 

The energy of the eigenstates Im) can be computed in the usual manner, namely 

as  the expectation value of the Hamiltonian, o r  

where 



9 . 3  The Quantum Mechanical vector  potential operator. 

We can invert  the defining equations 9.28 to express  'L, j and nk_, in  t e r m s  of the 

annihilation and creat ion opera tors  f o r  the corresponding mode. This  yields ( see  a l so  

equations 5.2 7), 

and 

where, it  should be noted, that the (bk j, b: j) a r e  only defined f o r  k > 0 ( in  the 
4 -* 

selected positive half-space). We can use these operator  equations to express  the vector  

potential Four ie r  coordinates AL a and their  t ime derivat ives 
Ak, a' In part icular ,  f r o m  - 

the defining equations 9. 12 we have 

in which we can substitute 9.35a to obtain f o r  k > 0 

We can now use equations 9. 15 to extend Ak_, 1 
to the negative half space of k. In 

part icular ,  we have 

1 
% , A  = (qb2L-1 - i?k,2L) - 

You will note that the r ight  hand s ide is expressed i n  t e r m s  of the field sine and 

cosine Four ie r  components fo r  the positive half space of &. This  allows us  to use the 

ladder  operators  b t  again, which yield f o r  k > 0 'k-js k,j 

Note that operator  equations 9.36a and 9.36b f o r  the Four ie r  components of the vector  

potential, satisfy equation 9. 14. 

Equations 9 .36  suggest a new s e t  of ladder  operators .  In part icular ,  f o r  k > 0, 

1 a = -  k.1 P ( b s 2 ~ - ~  - $ 2 ~ )  (9.37a) 



(which can be seen to be Hermitean adjoints of each other)  and a l so  

These expressions allow f o r  the definition of the new operators  and t "k,, % a  
throughout k-space.  It  can  be verified directly, that the vector  potential F o u r i e r  com- 

ponent along Ic, I, i s  cor rec t ly  given by, f o r  a l l  lc, 

which substituted i n  the Four ie r  expansion f o r  &(x, t), yields the Quantum Mechanical 

operator  f o r  the vector  potential, i. e. 

and 

Using a s imi la r  procedure we a l so  have, f o r  k > 0, 

1 

Substituting 9. 3 5b and the defining equations f o r  , a d  a (equations 9.37 and 9.38). k, a 
then yields the operator  f o r  Ak, a, i. e. - 

and therefore a l so  the operator  f o r  &(x, t), i. e. 

Note that this i s  the operator  f o r  (minus)  the electr ic  field, since = - A i n  this gauge. - 

What a r e  the new operators  and t ak_, ah a ?  Well, we can  show by d i rec t  substi- 

tution i n  the commutation relations f o r  b and bk, j, a s  given by equation 9.29, that &, j 
they a r e  a l so  suitable ladder  operators ,  valid f o r  a l l  of k-space, i. e. 



We can invert equations 9.37 to obtain 

and also equations 9.38 to obtain 

and use these expressions in the Hamiltonian (equation 9.30), 

to obtain 

If we now allow the summation to run over both half spaces of k, we finally have 

It can be seen that this Hamiltonian i s  of the same type a s  the one obtained previously 

(equation 9.30) but in this representation involves a summation of uncoupled harmonic 

oscillators corresponding to al l  wavenumbers k (both half-spaces) and to two polarizations 

p e r  wavenumber.' This i s  a much more  satisfactory state of affairs, which oversteps the 

artificial partition of wavenumber space into two halves. 

'AS opposed to half the wavenumbers, but four modes per wavenumber [(two phases per 

polarization) x (two polarizations)]. The total number of modes i s  of course the same. 



The eigenstates corresponding to the new Hamiltonian a re  now expressible in terms of 

an alternate set of orthonormal basis vectors 

....... %,a ) , ..... 

S U C ~  that (n'ln) = 6,r,za and 

t ...... a = ( % a  + I I ' ' ~ ~  + 1, ..... ) . Is,. a -a 

with corresponding eigenvalues, 

En = C fiwk (%, a + 3 . - - 
Is,, a 

At this point we will open a parenthesis by noting that the energy of the ground state, 

is  infinite. This i s  a consequence of the fact (among other things) that we a re  assuming 

that this formalism i s  valid in the limit of infinite wavevectors. We have seen this situation 

before, when analyzing the quantum behavior of a fluid a t  low temperatures (section 5 . 6 ) .  

There we also had a Harniltonian composed of uncoupled harmonic oscillators extending to 

wavenumbers of infinite magnitude. In computing the expected value of the energy a t  thermal 

equilibrium, we subtracted the (infinite) ground state energy (equation 5.95), which is a 

constant anyway and does not affect the heat capacity calculation. In any event, i t  was 

possible in that case to see f i rs t  of all why the Hamiltonian representing uncoupled harmonic 

oscillators, as  well as  the extension to infinite wavevectors was an approximation. On the 

one hand, we kept only terms of second order when expanding both the kinetic energy of the 

fluid (equations 5. 69 and 5. 70) and the potential energy (equations 5. 71 and 5. 72), and on 

the other, we assumed that our continuum approximation i s  valid to infinite wavevectors, in 

obvious violation of our original requirement of large length scales (equation 5.61). See also 

discussion a t  the bottom of page 5. 19 and 5.20 as  well a s  problem 5. 18. In the case of the 

electromagnetic field, however, i t  is  not quite so obvious what i s  the nature of the difficulty 

that results in this infinity. The Hamiltonian was derived from the energy in the field, a s  

given by equation 9. 1, this time with no approximations. 

Even if we assume, for the moment, that the framework of our formalismiY; is not where 

'i. e. replacing the conjugate (q,p) pairs in the classical Hamiltonian by the appropriate 

quantum operators. 



the problem lies, i t  i s  not necessary to wander too far from where we a re  at this point, to 

stray into unchartered territory. It is  clear, for example, that viewing the behavior of the 

electromagnetic field on a stage where charges and currents plan no role, removes from the 

Hamiltonian, as  derived from our field energy equation 9. 1, an entire set of degrees of 

freedom (coordinates), dissallowing charges and currents to appear, if initially absent. Yet 

we know from experiment that radiation of sufficiently short wavelength (y-rays) can create 

an elec tron-position pair, as indicated below. 

This process not only allows charges and currents to appear, even if absent a t  some point 

in time, but also provides a mechanism for coupling electromagnetic modes of different 

wavevectors k. Both of these observations render the exactness of our Hamiltonian suspect 

and underscore the need for a description of the electromagnetic field in a manner that 

includes charges, currents, and creation and annihilation of elementary particles from the 

start. This, however, i s  beyond the scope of these lectures if not beyond the honest reach 

of present day science. H 

Nevertheless, if we restrict ourselves to small wavenumbers, i. e. 

hck << meca 0 . 5  MeV , 

a limitation quite acceptable to the discussion of atomic phenomena (energies of a few eV) 

and the accompanying interactions with the electromagnetic field, we would expect an adequate 

description of processes that a re  consistent with these limitations. The analogy with the 

quantum description of a fluid a t  low temperatures i s  useful. The infinity of the energy of 

the ground state, even though disquieting in itself, actually poses no problems in a theory 

valid in the non-relativistic limit in which energy can only be defined within an arbitrary 

additive constant or, equivalently, be measured from an arbitrary origin. In our case, we 

will take the non-relativistic limit to be expressed by inequality 9 . 5 2 ,  and we will close the 

parenthesis by measuring field energies using the energy of the ground state a s  the origin. 

This i s  equivalent to using a Hamiltonian with the ground state energy subtracted from it, 

or, in operator form, 

 or a discussion along the lines of the evolution of these ideas see the preface to the book 

by J. Schwinger, on Selected Papers on Quantum Electrodynamics, (Dover 1958). 



9.4 The Electromagnetic field in thermal equilibrium. Black body radiation. 

Let us now assume that the electromagnetic fieM in the volume V i s  in 

thermal equilibrium with the surroundings which a re  a t  a temperature T. We 

can compute the expected energy of the whole system using the results of section 

5. 5 of a system of uncoupled harmonic oscillators in thermal equilibrium. In 

particular, from equation 5 . 5 6 ,  

where, in this case, p ( w )  i s  the number of modes (&, A )  of the electromagnetic 

field with frequencies between w and u + dw. In particular, since the total 

number of modes whose frequency w '  is  less than w i s  given by 

where the factor of 2 in front arises from the fact that there a re  two modes 

( a  = 1 , 2 )  per & wavevector. Therefore, since 

we have 

Substituting into equation 9.54, we have 

and therefore we have a spectral energy density [energy in (w,w + dw) per unit 

volume] of 



It can be readily verified, that we have derived the Black Body spectrum of 

Planck (equation 2. 130). The total energy density can then be computed from 

9. 56, i. e., 
m 

or, substituting for the integral from equation 5.98, we have 

We can also compute the energy & (Watts per unit area) radiated out of a 

small opening in a cavity 

which, for an isotropic gas of photons all travelling with speed c ,  i s  given by 

where 

i s  the Stefan-Boltzmann constant that had been determined empirically to be 

equal to 

o = 5.67 x l ~ - ~ ( ~ a t t s / m ~ ) / ~ ~ '  , 

computed here from f i rs t  principles. 



9. 5 The eigenstates of the electromagnetic field. 

If 10) i s  the ground s ta te  of the whole system, what kind of s ta te  is represented 

the f i r s t  excited s ta te  of the mode (k, A ) ?  Alternatively, what i s  the resu l t  of the action 

of the creat ion operator  a t  on the ground s ta te?  k, 
We know that this s ta te  is a n  eigenstate of the Hamiltonian and therefore has a n  energy 

o r  substituting for  H - Eo i n  t e r m s  of the annihilation and creat ion opera tors  (equation 

9. 53), we have 

W e  s e e  that the resu l t  of the operation of a o n t h e g r o u n d s t a t e i s  t o c r e a t e a n  k, 4 
excitation of energy hwk, where wk = c l k l .  - - 

How c a n  we re la te  such a s ta te  with a t ime varying electr ic  and magnetic field? We 

will i l lustrate  this through a n  example. 

Example 9. 1 Compute the expectation values of the electr ic  and magnetic fields 

corresponding to the quantum s ta te  of the field which a t  t = 0 is given by 

1 
I W ) )  = - [ l o )  + lo, .  . . . . , o ,  1, ,, 0,. . . ) I  . 

A T  2 

Note that this s ta te  can  be written a s  

and has  a time dependence given by 

where we have factored out the phase factor  corresponding to the energy of the ground state. 

We f i r s t  compute the (time-dependent) Four ie r  components Ak,, l , ( t )  of the vector  - 
potential. These  a r e  given in t e r m s  of the expectation value of the corresponding operator  

(equation 9.39). In particular,  we have 



Now 

and therefore we have, 

W e  can compute the second matrix element by noting that a t a, i s  the hermitean - 
adjoint of a -kl, 41, i .  e -  - 

and therefore, from the previous calculation, 

Consequently, we have for the expectation value of 
Ak', - a' 

and therefore, substituting for the vector potential &(3 t), we have 

C :k-is 
( A ( 3  t))  = {Ak', a') lekl, 41 - - 

k', el - 

[note that ^e = (-1)j Ok,L], or -k. a - 



Using the vector  potential, we can now compute the expectation value of the electr ic  

field, i. e. 

- Ir. a 

and the magnetic field 

a 
(A_(&, t ) )  = - x (A(% t ) )  = - s i n ( & - 5 - u k t )  *ek x ^e 

35  - - & l a  ' 

We can see  that this i s  a propagating wave, with a speed c (= luk/(lcl), i n  the - 
direct ion of the wavevector k, of polarization - ?= and of uniform amph-tlnde 

k, a' - 
throughout the volume V. 

Without repeating the algebra, can you see  what the resulting (g) and ( would 

have been if the quantum state  was given by 

1 
1$1(0)) = - [ l o )  + 10 , . . . . . ,  0,2 k , a ,  0 , . . . . .  >I , 

f l  - 
as  compared to 

In other  words, what i s  the difference between a quantum state  involving the second excited 

level  of the mode (k, A ) ,  a s  compared to the f i r s t  excited s tate  of the mode ( 2 L  a ) ?  Both 

have the same energy, and a s  we shall see, the s a m e  momentum. 

9.  6 The electromagnetic field momentum. 

F r o m  Maxwell's equations, we have that the total momentum of the electromagnetic 

field 1s given by  # 

(9. 65) 

v 

I t  should be emphasized that the integral of equation 9. 65 represen ts  the ( l inear)  momentum 

of the electromagnetic field and should not be confused with the (generalized) momenta 

conjugate to the vector potentlal Four ie r  components nL j~ Q~ -r J .. 
Expressing 2 and A_ i n  t e r m s  of the vector potential, we have 

and substituting the Four ie r  expansion of equation 9. 6, we have 

'see, f o r  example, Feynman, Leighton and Sands, v. II, ch. 2 7 .  



where we have used that fo r  the admissible  wavenumbers (periodic boundary conditions a t  

the edges of the volume V), we have 

and a l so  that 

If we now substitute the operator  expressions f o r  A k, a and A-b a f r o m  equations 9.39 

and 9 .  42, we have 

t t 
6 = f C &(ah, a a&, a - a a-$ a - - 1 )  

Is, e 

I t  can be seen that the second sum i s  identically zero,  since the factor  in  the 

parentheses does not change sign a s  - - & whereas h k does. By the s a m e  token the 

- 1 in the parentheses of the f i r s t  s e r i e s  does not contribute to the s u m  ei ther  and we have 

or ,  equivalently 

This i s  a v e r y  appealling result.  We find that the field momentum associated with the 

mode (lc, a) i s  equal to h k t imes the occupation number operator  f o r  that mode, i. e. 

We can use the number o ~ j e r a t o r  to express  both the field Hamiltonian and the field 

momentum. In part icular ,  



and 

9 . 7  The photon. 

We have already seen  that the operator  t a& c r e a t e s  a n  excitation of energy hwk. - 
We can now use the field momentum operator  of equation 9. 68 to find i t s  momentum. In 

part icular ,  since t ak a ( 0 )  i s  an eigenstate of the number operator  * nk, a1 with a n  eigen- 

value of unity, we have that the momentum of the field in  the f i r s t  excited s ta te  of the mode 

(5 a )  i s  given by 

(note the use of the annihilation operator  - Hermitean adjoint - fo r  the b r a  vector) .  

I t  i s  now c l e a r  that the operator  a c r e a t e s  a n  exc~ta t ion  of energy hwk, 
LA - 

momentum h k, and (plane) polarization along *e This  excitation we may now identify &, La. 

with the corresponding photon, which served a s  the conceptial basis  f o r  P lanck ' s  black body 

spectrum theory, Einstein 's  photoelectric theory and Compton's scattering theory. We can 

a l so  show that this excitation has z e r o  r e s t  m a s s  a s  follows. We can define a four-vector  

momentum 

1 
P, = (, E,E) , (9 .  7 3 )  

where E i s  the energy and 2 i s  the 3-vector l inear  momentum, and a quantum operator  

corresponding to the relat ivis t ic  4-momentum, which for  the excitations of the field would 

then be given by 

1 - 
P~ 
* = [$-I - ~ ~ 1 ~ 2 1  (9. 78) 

(note that since we a r e  interested i n  the excitation energy, we have removed the ground 

state  energy f r o m  the Harniltonian). We can  now compute the expectation value of this 

operator  in  the s tate  0 ,  i .0.  

or ,  combining the resul ts  of the previous calculations f o r  a field in  the s tate  a t  1 o), we II, a 
have 



It  can  be seen that this corresponds to ze ro  r e s t  mass ,  since 

I t  i s  perhaps interesting that the ground s ta te  of the field looks like a n  object of 

infinite r e s t  m a s s  (and no momentum). 

Note that a field eigenstate with % photons in  the mode (b a )  is represented by 
,a 

setting the corresponding harmonic osci l la tor  to the th excitation level,  i. e. 
% a  

{n (& a)-photons) =, I . .  . . . , ...... ) . 
Lf no other  photons a r e  present,  this s ta te  can be  constructed f r o m  the ground state  by 

repeated application of the a operator ,  Is. a 

In a s imi la r  fashion, we can represen t  any eigenstate of the electromagnetic field by 

repeated application of the corresponding creat ion opera tors  on the field ground state, i. e. 

Note also that the vector potential 

expressed a s  a quantum mechanical operator  (equation 9.39). 

ik. 5 
has a n  interesting operator  interpretation. The function e , which we recognize a s  a 

space wavefunction of momentum hlc, multiplies the sum [a + ( -  1)' a t  ] of operators. k, -kt 1 

The f i r s t  one annihilates a photon of momentum hk, while the second one c r e a t e s  a photon 

of momentum - Rk. In both cases ,  the momentum of the sys tem i s  decreased by 

6~ = h l c ,  which i s  offset by the momentum h k  of eik'?f. The net  effect i s  no change i n  

momentum and we can read  equation 9.39 a s  a superposition of a l l  the possible ways of 

a l ter ing the field leaving the momentum unchanged. 

t Note a l so  that the f i r s t  s e t  of ladder  operators  bb j, which also generate  excitations 

of energy Auk, c r e a t e  s tates  which we recognize to be standing wave s tates  of ze ro  - 
momentum. See problem 9. 5. The operators  bt a l so  generate  a complete s e t  of k ,  j 
orthogonal eigenstates, and i t  i s  of course  possible, even though not v e r y  practical,  to 

express  everything i n  t e r m s  of those states. See problem 9.6. 



9. 8 Photons and wave-particle duality. 

We have come a long way and in the p rocess  we have resolved, I 

believe, a t  l e a s t  in  one case,  the riddle of wave-particle duality. The 

quantization of the electromagnetic field, the m o s t  manifestly wave-like phenomenon i n  

nature, affords us  a n  understanding of how i t  i s  possible f o r  a wave-like entity to behave 

a s  a n  object, o r  a superposition of objects,  of d i s c r e t e  energy and momentum. A s  we will 

see  l a t e r  on, the electromagnetic field when interacting with m a t t e r  (charged par t i c les )  can  

only make transitions up o r  down the ladder  of harmonic osci l la tor  levels  corresponding to 

each normal  mode. This  always resu l t s  i n  a l o s s  o r  a gain by the field of d i sc re te  energy 

and momentum i n  units of hwk and h k respectively. There  is no contradiction in  - 
accepting this "dual" picture, which the fo rmal i sm of the quantization of the field descr ibes  

in an explicit manner. It i s  perhaps interesting that our f i r s t  success  a t  explaining this 

riddle c a m e  f r o m  a theory that was relativistically cor rec t ,  since the field energy a s  given 

by equation 9. 1, was derived f r o m  Maxwell's equations which a r e  relativistically cor rec t ,  

# remaining invariant under a Lorentz t ransformation . Our resulting quantum theory, having 

been derived f r o m  the relativistically c o r r e c t  Hamiltonian, is of course  a l so  relativistically 

cor rec t .  

9. 9 The angular momentum of the photon. 

If we explicitly write out the t e r m s  in the Hamiltonian corresponding to the two 

polarizations &=I ,  2 fo r  each k, we have f r o m  equation 9 .47  

t H = C - (4, 1 a&, 1 + a*, 2 a?, 2 + 11 , 
k 

- - 
where, you recal l ,  f o r  each wavevector 3 the l adder  opera tors  a c rea te  excita- 

k, a* a - 
tions polarized along and s, 2, f o r  .t=1,2. The unit vector  geometry i s  sketched k, 1 
below 

'see f o r  example Feynrnan, Leighton and Sands, u, ch. 2 6 .  



It  can be  seen that the Hamiltonian a s  given by equation 9. 83 corresponds to a sys tem of 

uncoupled, two-dimensional, harmonic osci l la tors ,  one for  each wavevector c. See the 

Hamiltonian of equation 6 .  9, in  section 6 .  1 on the two-dimensional harmonic oscillator.  Note 

that, fo r  each wavector lc, we have that the direct ion lek ac t s  a s  the z-axis whereas the - 
polarization direct ion and a c t  like the x and y axes respectively, i. e. k, 1 k, 2 

What about angular momentum? The  c lass ica l  angular momentum of the field i s  

given by 

Lf we substitute fo r  and i n  t e r m s  of the vector  potential 4 we find that the total 

angular momentum can be split  into two par t s ,  i. e. ' 

where the ith component of & is given by 

and 

We can now show that 4 i s  t ransverse  (ze ro  Four ie r  components along lc) while 

S i s  longitudinal. In part icular ,  - 

where, substituting the field operators  f o r  & and (equations 9 .  40 and 9. 43), we have 

Comparing Sk w i t h  the z-component of the two-dimensional Harmonic osci l la tor  - 
angular momentum (equation 6 .  13),  we s e e  that the analogy i s  complete. We a l so  see, a s  

in  the c a s e  of the two-dimensional harmonic oscillator,  that s ta tes  of definite excitation level 

along A and *e a r e  not s ta tes  of definite angular momentum along ^ek (not eigen- ek. 1 k, 2 - 
A 

states  of Sk). Since, however, H and 5 commute, i. e. 
- 

'comparing with equation 9. 6 5  fo r  the total angular momentum P i n  the field, we s e e  that 

this i s  the integral  of x E p e r  unit volume. 

t ~ h i s  i s  a non-trivial calculation. F o r  a n  outline of the derivation see  A. Messia, Quantum 

Mechanics, chapter  21, 5 23 and 4 28, note that A = 1 and cgs  units a r e  used. 



we a r e  motivated to seek simultaneous eigenstates of both H and 3. 
We have already solved this problem in the c a s e  of the two-dimensional harmonic 

oscillator.  In a n  analogous fashion, we define new ladder  operators  f o r  each wavevector 

mode lc, 
1 

and 

1 
a&, L = 1 + i a k  2 2)  ( 9 . 9 0 ~ )  

I t  a t  = - t 
L L  F ( a k , l  - i a&2)  . (9.90d) 

These a r e  p roper  ladder  operators ,  which obey the commutation relations (a = R,L) 

Cak',o" ak = 0 - (9.91a) 
4 

t 
c a k r , 0 1 8  - ak,ol ' 6k1,k 6 ~ 1 ,  a (9.91b) 

t t 
[ a k l ,  ak,uI  = 0 ( 9 . 9 1 ~ )  - - 

(See equations 6. 15. The algebra i s  identical) and can  be used to express  the Hamiltonian, 

l inear  momentum and 5-angular  momentum operators ,  i. e. 

and 

This  Hamiltonian has a new set of eigenvectors 

In) = I%,, g,.. .... . ka. .... ) . 
which a r e  a l so  eigenvectors of 2 and 2. Note that 

t 
ak,a  a k , o  = $,a ; a = R ~ L  (9.96) 

i s  the corresponding number operator  fo r  the excitation number in  the (c i rcu la r )  

polarization (k, a). 

A field eigenstate with 
nk -, R, nk_, excitations, i. e. 



has a n  excitation energy, 

a l inear  momentum 

(E)k = ( $ k l ~ l $ k )  = - - - 
and a component of angular momentum along given by 

We see that the component of the angular momentum along k, the direction of propaga- 

tion, i s  quantized in units of h.  The energy s tate  % = %, + \ = 1 (one photon of - - -, 
wavevector &) can  have values of angular momentum along k of + h  o r  - h  but not zero,  

corresponding to, 

The energy s tate  1, = %,R + nk_, = 2 (two photons of wavenumber &) can have &-angular 

momentum components of + 2 h ,  0, - 2 h  corresponding to 

It  i s  c lea r  f r o m  these pictures  that this behavior can be explained completely by assuming 

that a photon has a n  intr insic  angular momentum of h  which is always either para l le l  o r  

anti-parallel to i t s  wavevector k. Note a l so  that the quantum mechanical description of a two- 
C) 

dimensional harmonic osci l la tor  explains completely why a single photon (nk = 1)  cannot have 
F? - + 

a projection of i t s  angular momentum, along i t s  wavevector &, which i s  ze ro  (mIc = 0). - 



It should be mentioned that a single photon can  have a component of i t s  total angular 

momentum along a part icular  axis,  which i s  any multiple of h (including zero) .  The pre -  

ceeding discussion re fe rs  to the intr insic  angular momentum, which we will subsequently 

identify with the spin of the photon. The total angular momentum, however, a s  given by 

equations 9. 86, i s  composed of two parts ,  the orbital angular momentum & and the spin 

par t  S. As we will see  i n  the discussion of the interaction of radiation with matter ,  e lectr ic  

dipole transitions change charged part ic le  angular momentum by one unit of h, which i s  ca r r ied  

away by the photon. Electr ic  quadrupole t ransi t ions,  however, changes the charged part ic le  

angular momentum by two units of h ,  o r  leaves i t  unchanged, emitting o r  absorbing a photon 

of one unit of orbital angular momentum, resulting i n  a total angular momentum of ze ro  o r  

two units of h.' Transi t ions corresponding to higher moments  can resu l t  in (s ingle)  photons 

of yet l a r g e r  total angular momentum. These higher angular momentum single photon s tates  

can  be obtained by considering the e ik ' r  plane waves i n  our  original expansion of the vector 

potential (equation 9. 6), a s  a superposition of definite angular momentum wavefunctions. This  

resu l t s  in a different labeling of the normal  modes, f r o m  (k k , K ~ ; u ) ,  corresponding to the 

ik . x 
x' Y 

e - - spatial functions, to (k, X ,  p ; ~ ) ,  corresponding to the spatial functions of definite angular 

momentum 

where jh i s  the ith spherical  Bessel  function and Y a r e  the ( i ,p )  spherical  harmonics. 
1, c1 

See problem 7. 18. 

9. 10 The vector  potential in  t e r m s  of the c i rcu la r  polarization operators .  

We can  invert  equations 9.90 to express  the l inear  polarization operators  i n  t e r m s  of 

the c i rcu la r  polarization operators .  This  yields, 

0 Y 

d 
a 

'j = a - s = 0, o r  j = a + s = 2. See discussion on addition of angular momentum, 

section 10. 2 



if we substitute these into the operator  expression f o r  &(z, t ) ,  a s  given by equation 9. 40, 

we have, 

where the unit vec tors  *e ( O  = R, L )  a r e  defined by 
S O  

and 

a s  required by the algebra. 

The new complex unit vectors, corresponding to a wavevector lc, can  be seen to be 

orthonormal, i. e. A 

ek, - ur  ' 'Ic,u = 6 ~ f , ~  

and have the propert ies  

and a l so  

or ,  combining 9. 102 and 9. 103, we have 

W e  recognize then to be the (c lass ica l )  complex unit vec tors  f o r  right and left c i rcu la r  

polarization, and could have been used f o r  the Four ie r  decomposition of the vector  potential 

a t  the outset, i. e. 

where, using the orthonormality of the gS 0, we have the inversion formula, i. e. 

Note that, a s  opposed to the plane polarization unit vectors ,  both the c i rcu la r  polariza- 

tion unit vectors  behave the s a m e  way a s  k-+-k. This  property i s  a l so  shared by the two 
Q ." 

c i rcu la r  polarization &-components of &(3 t), i. e. 
a 



Note a l so  that, a s  a resul t ,  the annoying factor  of (- 1) '  i n  the operator  expression for  

i A(x, t )  has disappeared . The necessi ty  f o r  i t  was dictated by the requirement  to keep the -- 
coordinate sys tem right handed a s  15 - - k ( see  equation 9 .  11 and related discussion. 

Nevertheless, since the choice of which direct ion to cal l  
êL 

(which then gave A e b 2 )  was 

a rb i t ra ry ,  i t  seemed unsymmetr ical  to make b ant isymmetr ic  under a n  inversion of k k, 1 

(5 - - k), leaving A symmetr ic .  This  asymmetry ,  of course,  does not plague the R_, 2 
c i rcu la r  polarization unit vec tors  and a l l  the resulting formulae. Things always look bet ter  

in  their  natural  coordinates! 

9. 11 Photon modes. 

It should be c lea r  by now that there i s  no such thing a s  the photon. We have been 

able  to decompose the vector potential into a variety of normal  modes: 

(i) plane polarization, sine and cosine standing plane wave spat ial  modes 

, cos(k .x) ]  ^e ; (k > 0,  &=I ,  2 )  , k, 

(ii) plane polarization, travelling plane wave modes 

(iii)  c i rcu la r  polarization, travelling plane wave modes 

ik. x - A 

e (all  & o=R, L)  , ek, a ' 

and finally, 

( iv )  c i rcu la r  polarization, radial  wave modes 

jX(kr)y,, ptOk,~k)YX, - - p ( @ , c p )  b L a  . (a l l  k, U=R, L) 

This  i s  of course  by no means an exhaustive l is t ,  since the energy (Hamiltonian) i s  always 

separable  into any se t  of appropriate  normal  modes, in t e r m s  of which we should always 

recover  our  fami l ia r  uncoupled harmonic osci l la tors .  h any such set,  "the photon" of a 

par t icular  mode is to b e  understood a s  representing one unit of excitation of the corresponding 

harmonic oscillator.  The choice of the s e t  of modes (basis  s ta tes)  i s  of course  a rb i t ra ry ,  

and one which might a s  well be made to suit the special  propert ies  of the part icular  problem 
* 
4 

4 

'compare equations 9.40 and 9.99. 



of interest.  Plane wave modes a r e  best suited in  describing phenomena with well-defined 

(eigenstates of) photon l inear  momentum. Circular  polarization modes a r e  the natural  choice 

in describing phenomena involving well-defined photon t;pin (component of photon angular 

momentum along l inear  momentum). Radial wave modes correspond to photon s tates  of well- 

defined angular momentum, etc. Finally, these decompositions should be  regarded a s  choices 

of convenience, since they a l l  correspond to complete s e t s  of spat ial  and polarization functions, 

excitations (photons) in  any one s e t  being expressible  a s  l inear  combinations of excitations 

(photons) in  any other. 



Problems  

9. 1 Derive equation 9. 42 f o r  the t ime r a t e  of change of the vector  potential Four ie r  

component along the mode (k, A). 

9 . 2  Compute the expectation values of 

da(lf, t)  = g(5, t)  g(11. t )  , '5= (5 t) = g(5, t)  ' g(5, t)  

for  an electromagnetic field i n  the s tate  19) of example 9. 1. 

9 . 3  Using the resu l t s  of the preceding problem compute the c lass ica l  energy i n  the field 

using equation 9. 1. Compare with the quantum mechanical result.  

9. 4 Compute (g(5, t ) ) ,  (a(x, t)), (da (x, t ) )  and (d (5, t ) )  f o r  a n  electromagnetic field 

in  the s ta te  

Discuss  the resul ts .  

9 . 5  Find the energy and momentum of the s tate  of the electromagnetic field given by 

9. 6 Using the expansions of the running wave mode ladder  operators  
t 

ak, A, ak_, i n  t e r m s  
t 

- 
of the standing wave mode ladder  operators  

bL j, b 
., express  the s ta tes  k, J 

a s  a superposition of the standing wave mode eigenstates of the Harniltonian of equation 

9.30. 

9. 7 Prove  equation 9.88 by substituting equations 9.40 and 9.43 in equation 9 . 8 6 ~ .  

9. 8 Prove  equation 9. 89. 



10. SPIN 

In our discussion of Quantum Mechanics thus far,  we have described p a r -  

t ic les  in t e r m s  of their  position coordinates 

x = ( x , y , z )  - (10. l a )  

and associated momenta 

2 = (P,, Py> P,) . (10. l h )  

The wavefunctions could then be expressed in t e r m s  of x, i. e. 

the two being equivalent through the Four ie r  t rdnsform ( s e e  chapter 2). It  should 

b e  realized that equation 10. 2 tacltly assumes  that the particles can 11e completely 

described in t e r m s  of the three coordinate variables  and, in partlculdr, pas* 

no additional degrees  of freedom. Thls i s  a lmost  always an invalid assumptton 

and i t  i s  remarkable,  in a sense, that so many c o r r e c t  conclusions can he 

derived without consideration of the additional degrees of freedom that have been 

ignored. The reason for  our success  thus fa r  (apar t  f r o m  the careful  selection 

of topics!) i s  that oftentimes the energles  available In the interactions a r e  smal l  

enough, o r  the types of interactions a r e  such so  that the Internal degrees of 

f reedom do not participate in  the phenomena of interest .  A notable example along 

these lines i s  our  discussion of diatomic molecules in which the two atoms were 

t reated a s  point particles. It  i s  c l e a r  that thls i s  an approximation, which 

however i s  justified if the energies  of in te res t  a r e  not l a rge  enough to a l t e r  the 

electronic configuration of the participant atoms. How an increase  i n  the energy 

would engage such degrees  of f reedom i s  illustrated by the behavior of a diatomic 

molecule a s  a function of temperature (section 7.4. 1 )  where, 

(i) if the temperature i s  below the character is t ic  rotational temperature 

er ,  the whole molecule ac t s  l ike a point par t ic le  with eigenstates ex- 

p ressed  in t e r m s  of the wavevectors (momenta) of the center  of mass,  

i. e. 

I$) = ( K ~ . K ~ , K ~ )  f o r  T << er 

and a resulting heat  capacity given by (3/2)klT, 

(ii) if the temperature is above the roI8thxnl  b m p r a t u r e  Br  but below 

the vibrational t a m p r a t u r e  BV, tho nwleculo a c t s  Wu r rigid rotator  



and the eigenfunctions now require  two more  quantum nr?ml,erc, namely 

the eigenvalues of L~ and LZ, i .  e. 

19 ) = \ K ~ ,  K ~ ,  K ~ ,  a, m )  f o r  a r  < T c< e 

and a resulting heat capacitv given by (5/2)kRT, 

(iii) if the temperature i s  above the vibrational temperature but below a 

i+ 
character is t ic  electronic temperature R e  , t :~e  rnoleriile will ibow dlso 

engage the vibrational degree of f reedom and the eigenstates now need 

s ix  quantum numbers  to be specified, i. e. 

I $ )  = I K ~ , K ~ , K ~ , V ,  a,  m )  for 8 < I' << 0 

and a resulting heat capacity ol (7/Z)k,< l. 

'Th15 process ,  of course,  does not end here. At higher eneryles  yet we would 

have to consider the internal  degrees of f reedom of each of the atom:, (electronic e x c i t a t i ~ ' ~ )  

with a l l  the complications. 

In a s imi la r  vein, we have igri,re,: any ln te r~ la l  degrees 01 i reedom In the 

a-part ic les ,  which a r e  tound to obey the Coulomb scattering law (Rutlieford 

formula)  of example 8. 7, when we treated them a s  point par t ic les  describable 

by the plane wave s tates  of equations 8.  130. A notable exceptior~ to these 

simplifications was our discussion of the electromagnetic field where we found 

that each mode i s  c h a r a c t e r i ~ , e d ,  in addition to the three w;~vevector coordinate:;, 

by an additional degree of f reedom  lamely the two p ~ h : ~ i b l e  s tates  oi ~ i r c u l s r  

polarination (paral le l  o r  ant i -paral le l  to the respective wavevector). In that 

case,  3 part icular  mode requi res  variables  to be specified, i .  e. 

where o = - + 1 fo r  right and lef t  c i r t  ular l ,  polarizetl light respectively. This 

description i s  exactt and no additional degrees of kreedom a r e  found necesb~try 

to render  the description of photoqs complete. Iriterebtir~gly enough, mos t  p a r -  

t ic les  that a r e  considered elementary also possess  a degree of freedom in addi- 

tion to the th ree  position Loordinates ( o r  conjugate momenta). In much the same 

way a s  the photon , they a r e  found to possess  p t r i n s i c  angular momentum of 

'say, O e  - ER/kB fo r  a hydrogen molecule. 

'. .. provided, of course, that the energieq a r e  not 50 high a s  to allow proce 

such a s  pa i r  productiun 



of fixed magnitude,called spin. The additional degree of f reedom i s  then associa-  

ted with the projection of the spin dngular momentum along a part icular  axis of 

quantization, say, the z-axis. The spin angular momentum S must  then be con- 

s idered along with the orbi tal  angular momentum & in describing the total 

angular momentum J, given by the vector sum 

10.1 The total 3rgular  momentum operator. 

The total angular momentum operator i s  a lso a vector and a s  such can be 

resolved along three orthogonal directions, i. e. 

The th ree  components J J J a lso obey the angular momentum commutdtion 
x> yJ z 

relations 

[J  , J ]  = i h J  (10. 5a)  
x Y 

and 

which were demived f o r  orbital angnlar momentum, i. e. equation 6 .  4F, f r o m  the 

defining equation 6 .  46 fo r  &, on the basis of the commutation relations of 5 

and 2. They a r e ,  however, more  fundamental and survive generalizations of 

angular momentum to include spin. T hev can be shown to be a d i rec t  consequence of 

the association of the angular momeritum operator  J / h  a s  the generator  of ro-  

tations. In particular,  the bperator  

per forms  a rotation of angle a = la) about an axis along 2 



If R(%) represen ts  such a rotation, the operator  J must  obey the commutation 

# relations of equation 10. 5 which can be abbreviated by the "vector" equation. 

J x J =  i h J .  - (10. 7) 

Most of the resu l t s  derived for  the orbi tal  angular momentum & were 

derived f r o m  the commutation relations .~tld so also apply to the total angular 

momentum J .  In particular,  the magnitude squared of J, i. e.  

J" = J; + J" + J", 
Y 

commutes with each of the three components 01 J, o r  

[J~ ,J ]  = 0 (10.9) 

( see  equation 6. 51 and related discussion). 

We can also define raising and lowering operators ,  in  complete analogy to 

the orbital angular momentum case,  i .  e. 

which satisfy the commutation relations 

and 

i n  t e r m s  of which we can a l so  express  J ~ ,  i. e .  

J~ c J+J- + J Z ( J Z -  h) = J J +  + J Z ( J Z +  h )  . ( 1 0 . 1 2 )  

We now select  the operators  .Ja and J Z ,  a s  in the case  of orbital angular 

momentum, and seek eigenstates and eigenvalues such that 

~ ~ I j , m ~ )  = h a j ( j + l ) ( j , r n . )  J 

and 

~ ~ ( j ,  m j )  = hm.1 J J  j, m.) . 

Again, a s  in the c a s e  of orbi tal  angular momentum we find that we must  have 

- j  5 m .  S j 
J 

( see  equation 6 .  69 and related discussion), and that 

i. e. operation with J+ on a s tate  ( j , m . ) ,  generates  a s tate  proportional to 
J 

I j, rnj + 1). while operation with J on a >late  I j, n ~ . ) ,  generates  a s tate  
J 

'Note that  no ordinary vector obeys this equation. 



proportional to ( j , m .  - 1).  Therefore I,y repeated applicdtion we have 
J 

( J + ) ~ '  1 j, m j )  - 1 j, m.  + m t )  
J 

(10. 164)  

while 

(J im" I j , m j )  a 1 j . m . - m M )  , 
J 

(10. 16b) 

where m '  and m" a r e  i:,tegers. LI o rder  to satisfy equation 10.14, however, 

the two sequences mus t  terminate  and that will only I~appen ( s e e  equation 10. 15) 

if, f o r  some m '  and m",  

and 

Climinatirlg m f r o m  these equations, we then have 
j 

m '  + m" = 2j , 

which admits  both integral  and half-integral solutions fo r  i. Consequently, j 

can take on the values 

with correspondingly integer o r  half-integer values for m.. The total angular 
J 

momentum eigenstates ( j, m.)  a r e  then, 
J 

m .  --------+ 
J \ 0 , 0 )  

11/2, -112) [ 1 / 2 , 1 / 2 )  

l j 11,-1) l 1 , 0 )  I 1 , l )  

\ 3 / ~ ,  -3/2)  ) 3 / 2 ,  -1 /2)  ) 3 / 2 , 1 / 2 )  

12, -2)  12, -1 )  l 2 , 0 )  

etc. 

Note that this derivation for  the possible values of the angular momentum 

quantum number j i s  identical up to equation 1 0 . e  with the corresponding 

analysis  f o r  the orbi tal  angular momentum quantum numter  1. T l ~ e  difference 

there, however, was that since L- = - i h  5 we knew, ahead of t ime tlidt the 
&' 

eigenvalues of L had to be integer multuples of h .  

10.2 Addition of angular momenta. Clsbsch-Gordan coefficients. 

Consider now a system composed of two part.9 represented by independent 

coordinates dnd possessing a n  angular m o m e ~ ~ t u m  3 , Jz respectively. Note 

that  the independence of the coordinates oi sys tems  111 and ( 2 3  requires  that 

[Jl k,  J= = 0 f o r  k, 1 = 1,2,3 . (10.20) 



The total angular momentum of the sys tem i s  then given by the vector sum 

J" I j, m )  = h" j ( j  + I ) !  j, m )  

and 

~ ~ 1 j . m )  = h m l j , m )  . 

We a lso  have, however, that since the system i s  composed of two independent 

sys tems ,  with corresponding angular m o m e ~ t a ,  the eigenstates 

which f o r m  a complete s e t  f o r  the c o m l i ~ i ~ i t l u n  of the two subs; ' temz,  can 

se rve  a s  a basis  f o r  Ja and JZ.  We now note that, since 

J , I j l , j a ; m ~ , m a )  = ( J I Z  + J a Z ) ! . i l , m l ) l j 2 , m d )  

= h(ml + m ~ ) l j ~ , n ~ ~ ) l j - , m ~ )  , 

the s tates  I jl , jp ;ml, m? ) must  be eigenstates o f  z ,  correspo~~din; :  to ti2e 

eigenvalue 

m = m1 + ma . (10. L 4 )  

Note also that the operator  

.la = $ + + 2 3  .& = J: + J: + 2(JlxJex + J lyJay  + J l z J a z )  

commutes with the operators  J: and and can therefore be  specified a t  the 

s a m e  tima -as the aquare of the angular momentum of each subsystem. The 

s tates  ( j l  , jz ;ml,  rn), however, a r e  not eigenstates of J", since the sca la r  

product ..& involves the x and y components of J, and Je which a r e  not 

diagonal in this basis.  Using the fact,  however, that j, j l ,  je may ' e simul- 

taneously specified, we seek l inear  combinations of the s tates  1 jl , ja ;ml , m2 ), 

which a r e  eigenstates of Ja (and t1,erefore a1-o of J ). In part i r r~l i l r  we  want 

to find the coefficients (jl , ja;ml , m e  I j, m )  of the eigenstates 

B T h e o G o n  i s  unfortu7:ately confusing. The ronventioa adopted here i s  that a 

s ta te  vector  with a semi-colon separating the f i r s t  pa i r  f r o m  the second pa i r  

of indeces r e f e r s  to the ( tensor)  product s ta tes  of equation 10.23, whereas a 

s tate  vector  without a semi-colon r e f e r s  to the eigenstates of .Ja and 

JZ resulting f r o m  the l inear  superposition of a given jl, ja pair .  



These coefficients a r e  called vector  addition coefficients o r  Clebsch-Zordan co- 

ef iciei~ts .  

These coefficients mus t  be ze ro  unless m = ml + m2 (equation 10.24) and 

therefore the summa ti or^ i s  actually over .i single index, i. e. 

I j l , j ~ . j , m )  = 1 l j l . j a ; m - m a , m a )  ( j ~ , j , . r n - m , m , l j , r n )  . j lo .26)  

ma 

It a l so  follows that t' e maximum v-1 le cf m 1 ,  K l v e  , 1, 

and therefore also 

m a x ( j )  = jl + j, . 

The next lowest value of m i s  therefore jl t j2 - 1, whlch i s  expressible a s  

the l inear  combination of the s tates  

I - ,  and I j , , ~ ~ ; j ~ , j ~ - l ) .  

I t  can be verified t f a t  the two orthor ( ~ r n - 1  c umuit ~ t i ( , n s  of Llle. e twc, . t ~ t e z  c o r -  

respond to the two values f o r  J, 

j = j l  + j a  and J =  j l +  Ja - 1 .  

The next lower value f o r  m i s  given by jl + j;, - 2 ,  which must  b e  a l inear  

combination of a l l  the s tates  which satisfy m r ml t mg o r  

l j l , h ; j 1 - 2 , j a ) ,  l j l , j ~ ; j l - l , j a - 1 )  and l j l , ~ n ; j l , j a - 2 )  

It  can again be verified that the three orthogonal l inear  combinations of these 

s tates  correspond to three values f o r  j, i. e. 

I a ,  1 a - 1 and j, + ja - 2 

This p rocess  can he represented pictorially a s  follows. CG i t i , ier the p l<ne  

m l ,  ma .  Each point on this plane corresponding to integer values of the co- 

ordinates represen ts  a s tate  of a g lve i~  rn. A, ,  example f o r  which jl = 3 and 

j, = 1 i s  sketched below. 



A line of constant m i s  evidently a line a t  - 45n given by  ma = m - ml. 

The l a r g e s t  (and smallest)  m has a degeneracy g .  (m)  of unity (occcrs  only 
JI* JD 

1, + j2. 1't.e once) and corresponds to the s tate  with an angular r n o m e n t ~ ~ m  i = . 

xext lvwe..; m (jl I j2 - 1 )  has a degeneracy rjf  two and mus t  thereiore involve 

an additional (orthogonal) s ta te  corresponding to j = jl + ja - 1 which possesses  

such a z-projection. The next lowest m has a value jl t j. - 2 and (in the 

example sketched above) a degener7 .c~  of 3, involving tlierehy a th ird  vL~l'ie for 

j. This p rocess  ends when mi = - jl o r  m2 = - j, .tt wtrich t ime I 1: . idditiu~lal 

increase  in  d e g e n e r ~ c y  i s  observed, 

Consequently, the lowest value of ; required t y thib sequenLe 1 s  

mlnIJ1 = 111 - 3a  I . (10.20)  

C o m ~ i n i n g  equations 7. 27 and 7. 28 we a r r i v e  a t  the t r iangular  inequa l ih  

ljl - J~ 1 j JI + , (10 .29)  

since the possible vdlues of J  orr respond to a l l  possible integer  solutions for  

the length of the third s ides of triangles whose other two sides & r e  given by 

the integers  j1 and j2. 

Note that the degeneracy of an e i g e ~ v a l u e  j i s  gi .~en ' j (2j  + 1 ) .  corresponding 

to the (2j  + I )  possible vdlurs of m, .ind that 



consis tent ly  with the  number  of independent s t a t e s  given by equation 10.23. 

F r o m  the  preceding discussiori ,  we s e e  that  

App1yi:~g J+ and J to  equation 10.25 we a l so  find t h e  r ecur s ion  re l a t ions  

. F r o m  theseequat ions ,  we can  genera te  the r equ i red  coefficients.  By way of 

example, if ml = jl and m'  = j in the l e f t  hand s ide  of 10. 32, then (only the 

top s ign su rv ives )  and we have 

( 2 j ) 1 ' 2 ( j ~ , j ~ ; j ~ , j - j l  - ~ \ j , j - l )  = 

= [(ja - j + j l  + l ) ( j ~  + j - j d l l ' ' ( j l , j e ; j ,  , j - j l  \ j , j )  , 

where we have used equation 10.3 1, i. e. 

m = m l -  1 = m l + m 2  -a m a = m l - m l  - I = j -  jl - 1 . 

Consequently, ( j l ,  jz;jl, j - jl - 11 j, j - 1 )  c a n  be computed i f  ( j l  , ja ; j l ,  j - jl 1 j ,  j! 

i s  known. Setting ml = jl and m' = j - 1, the lower  sign of 10.32 yields a 

re la t ionship  between 

which, combined with 10.33, yields one m o r e  coefficient i n  t e r m s  of 

(j,, jz ; j l ,  j - j, ) j, j), and s o  on and so  for th .  Finally,  the p r o c e s s  i s  c.losed 

by the r equ i rement  that  the s t a t e s  a r e  riormalized and that the  Clebsch-Gordan 

# coefficients a r e  r e a l  n u m b e r s  . 'The orthogonality and normal izat ion conditions 

r e q u i r e  tha t  

1 (j1,jz~m~,m~~j~,j2,j,m)(j~,j~;m~,m2~j~,j~,j~,rn~) = brnm,6..  33'  

m1, mz 

and  

'Evidently, if one of them i s  r ea l ,  the r e s t  of them a r e  a l s o  r e a l  by v i r tue  

of equation 10.32. 



These relationships express  the fact  that the mat r ix  of the coefficients, f o r m  a 

ur i tary matrix, which (s ince i t  i s  rea l )  a l so  per forms  the inverse transformation, 

i. e. 

15 , ja ;ml , m a  ) = 2 l j l  , j a ,  j, m )  (jl , j2  ; m l ,  m a  1 jl , ja , j>  m )  (10.35) 

j, m 

The Clebsch-Gordan coefficients f o r  the common c a s e s  of ja = 1 / 2  and ja = 1 

a r e  listed below. 

Table LO. la Clebsch-Gordan coefficients fo r  ja = 1/2, jl 2 ja 

Table 10. lb  Clebsch-Gordan coefficients fo r  ja = 1, j, 2 j a  

The Clebsch-Gordan coefficients a r e  also useful in expressing products of the spherical  
0 
4J harmonics. In part icular ,  we have 

a, 

where 1 = (8,cp) and m = ml + mn, which can be used i n  turn to evaluate integrals  of 



products of three spherical  harmonics, i. e. 

where d c  = sinOdPdu, which we can compute f r o m  equation 10.36a and a r e  given by # 

These integrals  occur  quite frequently ir pert;~rSa:ion calculations. See, f o r  

example, equations 8. 89 and 8.92 of example 8.4. 

I t  should also be noted, before leaving this section, that since orbi tal  

angular momentum contributes integer quantum numbers, of necessi ty  ( s e e  

equations 10.24 and 10.29), the half-integer values mus t  be contributed by the spin 

angular momentum. 

10.3 The spin of the electron.  

In 1922 Stern and ~ e r l a c h ~  in a s e t  of experiments with striking resu l t s  

measured the possible values of the magnetic moment of s i lver  a toms by send- 

ing a beam &rough a magnetic field with a strong gradient.  If the atoms possess  

a magnetic moment g, there i s  an energy associated with their  orientation in  a 

magnetic field given by ( see  Appendix F) 

(energy i s  lowest when g and R a r e  paral le l) .  li the magnetic field i s  non- 

N 

#, 'see fo r  example C. Claude-Tannoudji, B. Diu and F. Lalo;, Quantum Mechanics 
u 
m 

(1977), volume 11, complement Cx. 
2. * 

' s e e  R. Eisberg and R. Resnick, Quantum Physics ,  section 8-3 fo r  a his tor ical  



uniform there  1.- 1 i.et force acting on such .t dipole given by 

(for a magnetic iield along a fixed particu1,ir Lire,.tiu;l). 1: i t  i. : ,) r r a  

thet the gr-dient of R i s  perpendicular to the beam, the vert ical  deilection 

measures  the magnitude of the fo rce  and, by extension, the projectivn o t  t l ~ e  

magnetic moment on the direction of the may:netic- field, o r  p ~ o s  p .  'I llis a~:al- 

ysis  would predict  a range of displacements corresponding to a l l  possible r e l a -  

tive orientations, subtended angles p, i. e. 

- p  I; pcosp  < p 

in marked contradiction to the experimentdl resrllt>, which vielded two well-defll e d .  

symmetr ic  (about ze ro  deflection) displd<.ements, corresponding to - + p, with no 

intermediate values. These re:.l;lts may be take], , ts ill support uf the quanti- 

zation of the z-component of angular momentum, since the orui tal  motion of a 

charge q in a magnetic field gives r i s e  to a n  interaction 

( see  example 6.1 and problems 7. 5, 7.  7 )  o r  i f  = B^e we have for  an electron 

where 

i s  the Pohr magneton ( 9 . 2 7  X erg /gauss  in c .g .  s )  and m Q  i s  the z -  

component orbi tal  angular momentum quantum number. Even thot~gh, however, 

this i s  in qualitative agreement, the quantitative description of the behavior, a s  

given by equation 10. 40, does not agree  with the experimental resul ts .  The 

situation, in the c a s e  of the s i lver  a toms i s  actually quite complicated because 

there  a r e  severa l  e lectrons involved. It  becomes c l e a r e r  i f  hydrogen a toms  in 

their  ground state  a r e  used in the Stern-Gerlach apparatus (Phipps and Taylor, 

# 1927) , fo r  which equation 10, 40 predicts  no effect since, for the ground state, 

a =  m, r 0. The ground state  hydrogen atoms,  however, a l so  yielded two distinct spots 

leaving no doubt that  a magnetic moment can a r i s e  for  reasons other than can 

be accounted for  by orbi tal  angular momentum. 

These difficulties (and numerous o thers )  were removed by the proposal put  

' ~ o t a b l ~ ,  af ter  the proposal hy Uhlenbeck and Goudsmit that  the eler-tron posser;ses 



for th uy Zhlenbeck arid Goudsmit in 1925 (interestini:ly enouyli, on the basis  of 

spectroscopic data, quite independently of the Stern-Cerldc:h experiments which 

were  not immediately appreciated)  that the  electron posses "es intrinsic. an)! r ~ l a r  

momentum (spin) whose magnitude squared i s  given by 

and whose z-component i s  given by 

corresporxling, of course,  to an a = 1/2 and an m = + 1/2. 
s - 

Associated with this spin, an electron also possesses  a magnetic moment 

proportional to S_, i. e. 

where FB i s  the Bohr magneton. The constant of proportiur~ality g 1s called 

the s p i r ~  g-factor and found to be equ .~ l  tu # 

ge - 2 . 0 0  . (10.43)  

Note, incidentally that any projection of &(') will h v r :  the v , ~ l ~ e : ,  

since S, = 2 "2 . 
Other elementary part ic les  also possess  spin and magnetic moments. In 

part icular ,  the proton and the neutron a r e  a l so  spin 1/2 part ic les  with c o r r e s -  

ponding magnetic moments 

and 

where pN i s  the nuclear magneton, 

The fact  that the constant of proportionality g (,>part f r o m  the dimensional 

fac tors )  differs f r o m  unity should not be surprising. Even classical ly ,  the spin 

 his resu l t  can be derived f r o m  the relativistic Dirac theory (e. g. Merzbacher, 

Quantum Mechanics, 2nd ed.,  chapter 24.2). P r e c i s e  spectroscopic data (Lamb) 

yield a value g = 2. 00232 in complete agreement  with the theoretical resu l t  

ge E 2(1 + a / 2 ~ ) ,  when radiative correct ions a r e  included (a - 1/137 = fine 

s t ructure constant). 



angular momentum i s  related to the distribution of m a s s  of the spinninr: body, 

whereas the magnetic moment of a spinning charge depends on the c k ~ a r ~ e  J i s -  

tribution withil: the body. I t  i s  interesting that cl,~hnically ;I uniformly dense 

sphere,  with a l l  the charge residing on the surface, would also have a g of 5 / 3 .  

See appendix F, problem F. 15. 

It  should be noted that the theoret ical  justification f o r  the magnetic moments 

of the proton and especially the neutron a r e  in considerably worse shape. 

10.4 Spin 1/2. 

10. 4. 1 Spinors and the Pauli spin m a t r i ~ e b  

If the eigenstates of sa and SZ a r e  given by Is, m s ) ,  i. e .  

S" Is,  m s )  = ha s ( s  + I ) \  s, ms)  

then in the subspace s = 1/2 there a r e  only two states  

which a r e  often denoted (+ )  ant1 I - )  fo r  short,  corresponding to "spin up" o r  

"spin down". A wavefunction for  spin 112 part ic le ,  i s  then a two-dimensional 

vector, i. e 

I * }  = 11/2,1/2)  ~ + ( x , Y ,  2) + I l/Z, - 112) $-*(x, Y, A )  

or,  equivalently 

The s tates  represented by equations 10.47 a r e  called -spinor$. They a r e  the 

natural  wavefunctions in the relativistic Diwac. equirtion, but mus t  be introduced 

in an ad hoc way in the Schrb'dinger equation, wilich was derived on the basis 

of a sca la r  Hamiltonian. 

'The three components of 5 

being components of a n  angular momentum operator ,  a l so  satisfy the commuta- 

tion relations of equation 10. 5. In addition, however, l o r  the special c a s e  of 



s = 112 we a l so  have 

and a l so  

sa+ = sa_ = 0 

f r o m  which we deduce, since 

that 

S S  + S S  = o  
X Y  Y X  

o r  that the operators  Sx, S S anticommute. 
Y' z 

The operators  Sx, S and SZ a r e  conveniently expressed in t e r m s  of the 
Y 

Paul i  matr ices ,  defined by (for spin 1/2)  

and given explicitly by 

Their  propert ies  a r e  summarized below: 

0 0  x - 0 0  = i o  e t  cycl. (10 .  541~) 
Y Y X  L 

O O U  = i  (10.  54c) 
x y z  

Tr(ox)  = Tr(o  ) = Tr(oZ)  = 0 # (10 .  54d) 
Y 

and 

Note a l so  that the th ree  Paul i  matr ices ,  augmented by the identity mat r ix  

(2  x 2) 

f o r m  a complete bas i s  in  which any 2 x 2 matr ix can be expressed. In other  

words, if G i s  any 2 X 2 mat r ix  

'Tr = T r a c e  = s u m  of diagonal elements. 



where 

10. 4.2 Rotation of spin 1/2 s tates .  

Note that, using equation 10. 6 for  the rotation operator, we have for  a 

system in an f ie0 s tate  

- i a . S / h  
R(%) = e 

or, using the Pauli mat r ices  f o r  a spin 1/2 system, 

Since any component of 0 has the property 

we can compute t&e rotation operator  of equation 10. 59 in closed form. '7: 1 

, ield 

Rl,2(E) = Lob(s) I - i ~I~I(:)o 2 - a '  
( 1 0 .  i l a )  

where I 1s the identity mat r lx  and u 15  the p ro jec t lc ,~~  of - u along the directioq 

of the rotation vector a, i. e. 

Note that, therefore, for  spin 1/2 part ic les# a rotation of 27 about any ax15 

changes the sign of the wavefunction, I. e .  

R I I Z ( L ~ )  = - 1  (10. 6 2 )  

This  may appear  s t range s ince a rotation of 360" sliould ret~vrn the s,, ,  tern i,. i t s  

original atate. The minus sign, however, i s  only n phase factor  which will not 

enter  in computing expectation values of operators  corresponding to physical 

observables. 

'or half-integer In general,  in fact.  
- - .- 



F r o m  the  p-eceding disctis51ion we s a w  that  the  wavefunctions of sp in  1 /2  

p a r t i c l e s  a r e  not  s c a l a r s ,  but cart be r e p r e s e n t e d  a s  two-dimensional  ve t . tors  

( s p i n o r s ) .  We c a n  e x p r e s s  t h e s e  e i f .enf~:oct ions  in the b a s i s  of the s imu l t aneous  

e igens t a t e s  of L' and Lz,  and ,Sa and S Z .  I n  pa r t i (  (*l:+r, trsii:g the re:;nlt c'- 

t he  addit ion of  angu la r  m o m e n t u m  we have,  f o r  & = & and $ TI, S, f o r  a 

p a r t i c l e  of spin 1 /2  i n  a to ta l  angu la r  m o m e n t u m  s t a t e  ( i ,  n ~ ) ,  we have 

1 4 , 1 / 2 , j , m )  = I a , l / L ; r n - 1 / L , I / L ? ( L , 1 / 2 ; m - 1 / ~ , 1 / ~ l j , t n )  

( I  0. (14) 

+ l a ,  1 / 2 ; m + -  1 /2 ,  - 1 / 2 )  (A, I / 2 ; m  t l / L ,  - 1 / ~ l j ,  m )  

( s e e  equation 10. 26). T h e  m a t r i x  e l e m e n t s  m u l t i p l , i ~  ,, tlie two k e t  v t : ~ t o r s ,  on 

the  r i g h t  hand s ide  of the  equation,  a r e  the  co r r e spond ing  Clebs,  h-Gordan co-  

ef f ic ients  tabulated in Tab le  10. ld f o r  the  ( a 5 e  jd = I / ? .  F r o m  the  r e ~ t r i c t i u ?  

on the  r e su l t i ng  angu la r  m o m e n t u m  >urn, we s e e  tha t  t h e r e  a r e  only two p o ~ s i L l e  

values  f o r  j ( s e e  equation LO. 29),  . ~ d m e l ,  

j = A +  l / ~ ,  ( l o .  6 5 )  

Therefore ,  we have f o r  the  to ta l  angu la r  momer~tr lm waveri t ' I  , ( i s ,  1 . 1  t1.e 

c o o d i n a t e  r ep re sen ta t ion ,  

q ( 8 , ~ )  = (o,cp(a, 1/2,  a + i l L ,  m)  

= (e,rp(a,  I / L , m -  I/L),  l / ~ . ) ( a ,  l /L ;m - 1/L, 1 / ~ l a , 1 / 2 , m )  (10.66)  

+ ( o , q \ a ,  1 / 2 ; m +  112, -1/L)(A, I / 2 ; m + l / L ,  1/?.)~!.1/2,m) 

o r ,  subs t i tu t ing  the  s p h e r i c a l  h a r m o n i c s  and the  co r r e spond ing  Clelisch-tiordan 

coefficients,  

T h e s e  s t a t e s  a r e  des ignated  in  spec t roscop ic  notation by t l ~ e  cor~vent ion  

w h e r e  



Q l e t t e r  # 

1 
By way of example, a 'pglZ s b t e  represen ts  s = 1 ,  E = 1 and 

j = E+1/2 = 3/2, a 3 ~ 1  state  represents  an s = 1 (possible in a two electron 

configuration), E = 2 and j = 1. 

10. 5 .  The spinning electron in a Coulomb field. Spin-Orbit interactions. 

In our discussion of the hydrogenic wavefunctions (section 7.3), we solved 

the Schrb'dinger equation with a Hamiltonian consirtlng oh the kinetic energy (in 

the center  of m a s s  coordinate system) and the electrostatic Coulomb dt t rac tiori 

between the nucleus of charge Ze and the electron of charge - e, i. e.  

1 H, = -  z ea 
Z m  p a - -  h e , r  ' (10. 6 8 )  

r 

While this i s  appropriate  fo r  a description of a spinless electron, additional 

t e r m s  mus t  be taken into account if the spin (and resulti..~; magnetic moment) 

a r e  included. 

Strictly speaking, equation 10.68 i s  not c o r r e c t  relativistically because, in 

writing the potential energy in t e r m s  of the (s tat ic)  Coulomb potential, we have 

&nored the f a c t  that the ,electron i s  moving,. In a f r a m e  moving with the electron, 

a magnetic field will appear, resulting f r o m  the relativistic transformation of the 

electr ic  field generated by the (- stationary)nucleus. F r o m  the transformation 

t 
equations of the E & M  field , we have (for the component of the magnetic field 

perpendicular to the velocity between the two f r a m e s )  fo r  ( v / c ) ~  << 1 classically 

'The Q = 0 states  were always Sharp  (non-degenerate), the E = 1 states  were 

found to contribute the Pr inc ipa l  (s t rongest)  lines iil the spectrum ( A E  = 1 fo r  

strong transitions to the Q = 0 ground state) ,  the Q = 2 s tates  gave Diffuse 

transitions (high degeneracy, low instrument  resolution in ear ly days). "E" 

was omitted ( rese rved  for  energy) and the r e s t  a r e  alphabetical. 

T s e e  f p r  example, The Feynrnan Lectures  on Physics, 11, ch. 26. 



and 

we have 

where g is the electr ic  field in  the stationary (nucleus) f rame,  i s  the velocity 

between the two f r a m e s  (electron-proton relat ive velocity) and i s  the magnetic 

field in the f r a m e  of the electron. Making the srlbstitutions 

1 v = 2' - 

where V(r )  i s  the Coulomb potential and 4 = r x p i s  the orbi tal  angular 

momentun. Consequently there i s  an Interaction [between the magnetic moment 

and this magnetic field which, i s  the electron r e s t  f rame,  1 5  jiiven tly 

( 5 ) .  
(cLSIe,  " - C( @Ie1 , 

or,  substituting for  the magnetic moment (eq~lation 10.42), 

The transformation of the (L_,S) coupling energy back to the nuclear r e s t  

f r a m e  requi res  some c a r e  because the two f r a m e s  a r e  not mere ly  moving with 

respec t  to each other  but a l so  in relative acceleration, by vir tue of the c i rcu la r  

motion. This  contributes a kinematic effect, a s  a resu l t  of the way velocities 

t rans form relativistically, called the Thomas precession. I£ two f r a m e s  a r e  in 

a s tate  of relat ive translation with a velocity and a relat ive acceleration 

of magnitude 5, then the two coordinate system- appear  to he  precessing rela-  

tive to each other a t  a r a t e  given by the vector angular velocity vector # 

which can be evaluated i n  the nuclear r e s t  f r a m e  to give 

Now a classical  magnetic moment & p r e c e s s e s  about a constant magnetic 

field i n  such a way .=is to maintain a constant subtended angle p ( see  sketch 

on page 10. 11) so  that, i n  a non-dissipative environment U = -gag i s  constant. 

This precession frequency i s  called the L a r m o r  precession and given by setting 

the torque equal to the t ime r a t e  of change of the a ~ : ~ t i l a r  momentum, i. e. 

'see, f o r  example, R. Eisherg and R. Resnick, Quantum Physics, appendix J. 



so  that 

Comparison of this frequency with the Thomas precession frequency shows that 

i t  i s  exactly twice a s  large,  so  that we have to reduce the energy by 
e l  

a factor  of two to bring i t  to the nuclear  r e s t  f rame.  Conseqriently, the appropri-  

a te  interaction Hamiltonian i s  given by 

where - ER i s  the hydrogen atom ground state  binding energy (equation 7. 64). 

The mos t  important  effect of this t e r m ,  i s  to c'e=troy the conservation of 

orbi tal  angular momentum. In part icular ,  

d 
L~ = [H, + =: C H ~ ~ , L ~ I  f 0 ,  

whereas the total angular momentum 2: conserved, i. e. 

Note, that J ~ ,  La and sa a r e  a l l  conserved, i. e. the magnitudesof the vectors  

121, I & (  and (31 a r e  constant. The projection of L and 5 on a part icular  

ax i s  (say, the z-axis),  however, a r e  not constant, whereas the projection of J 

on the z-axis is constant. It  i s  easy to see that L .2  = L~ + L.5 '  and 

S - J  = Sa + 5.k a r e  a l so  constant. This suggests the following picture that i s  - 
consistent with the above. The total angular momentum J p r e c e s s e s  about 

the z-axis a t  a fixad inclination. The orbi tal  angular momentum and the 

spin angular momentum 3 p r e c e s s  about the total angular momentum J, hoth 

a t  fixed angles. This  situation i s  sketched below. 



We can compute the effects of H;, using: perturbation theory, since the 

magnitude of this interaction scales  with the rat io  E /mc2 and i s  therefore small.  R 

In part icular ,  the f i r s t  o r d e r  correction, 1s given by 

The radial  integral i s  tabulated in  Pauling and VJil u' , kt roduc t io r  to G~lliqtum 

~ e c h a n i c s '  f o r  various power5 of r (see table 7.2 below). To evaluate the (L.2) 

matr ix  element, we note that 

ha 
for j = 1 + I/,? 

( ~ ' 2 )  (10. 77) 

for j = Q - I/',  a + o  



TABLE 10.. 2 Hydrogenic radial  integral>. 

Combining the two expectation values, we then have from equation 10. 76 

The constant a i s  a dimensionless constant called the fine s t ructure constant 

and given by Fsee a l so  equation 7 .  63 and related discussion), 

10. 6 Relativistic oorrect ions to the kinetic energx. 

Before leaving this a rea ,  i t  should be pointed out that i t  would be incon- 

s is tent  to include the spin-orbit coupling a s  a perturbation t e r m  and omit the 

relativistic correct ion to the kinetic energy, to the same order .  In particular,  

since 

K = + mac4+" - mca 

we should include a second correct ion t e r m  



so that 

H = H, + H ; ~  + Hiel . 

The energy levels then, corrected to f i r s t  o rder  a r e  given by 

AE = ( ~ 1 ~ ) ~  + ( ~ i ~ ~ &  . 

Note that 

1 = - -  ( H ~ ~  - ZII,V + va ) 
2mca 

so  that 

1 
( ~ ; ~ ~ h  = - - [ ~ i p )  - L do) (Y t ( v a  ),I 

2mca 

The mat r ix  elements (VA and (va), can be computed by dlrec t  integration, 

and using the resul ts  of Table 7. 2, yield 

Combining this resu l t  with the spin-orbit calculations to the same order  we 

for both j = ,4 + l / 2  and j = 1 - 1/2. By way of comparison, the e, ergy levels,  

a s  given by the relativistic Di ra r  equation, are' 

# ~ e r z b a c h e r ,  Quantum Mechanics, (2nd Ed. ) ch. 24. 4. 



11. INTERACTION O F  RADIATION WITH MATTER. EMISSION AND ABSORPTION. 

11. 1 The Hamiltonian. 

We have seen that the Hamiltonian of a single charged par t i c le  moving i n  the p resence  

of a potential U(x) i s  given by 

1 
Hparticle = E.E + ' (5 )  (11. 1) 

We have a l so  seen  that  i n  the p resence  of a n  externally imposed electromagnetic field, this 

Hamiltonian mus t  be  a l t e red  through the change in the momentum, i. e. # 

E'E- q c A  8 (11.2) 

and the addition of the interact ion with the external  e lectrostat ic  field, i. e. 

u(5) -. U(5)  + qccP ( 5 , t )  , (11.3) 

where A(z, t )  and r p ( 3  t) a r e  the external  vector  and s c a l a r  potentials respectively. The 

resulting Hamiltonian can  then be written, a s  we have seen, 

H = l  ,, (2 - 4&). @ - 9&) + u(5)  + qcCP . (11.4) 

This  i s  in  fact  the Harniltonian we used to solve a variety of problemst  in  which we ignored 

the effect of the charge on the electromagnetic field. 

On the other  hand, i n  the absence of charges (and currents) ,  we have seen that, 

s tar t ing f r o m  the c lass ica l  energy of the electromagnetic field ( see  equation 9.4)  

we were  able to define a Harniltonian corresponding to a sys tem of uncoupled harmonic 

osci l la tors  i n  each of the wavenumber and polarization modes, which i s  given, i n  t e r m s  of 

the corresponding ladder  operators ,  by # 

'see equation 1. 43 and related discussion. 

'see example 6. 1 on the motion of a charged part ic le  i n  a uniform magnetic field 

1 [A = - z ( 5  X g), cp = 01, and the discussion of the hydrogenic wavefunctions 

'or, i n  t e r m s  of the c i rcu la r  polarizations 



If we now combine 'he Hamiltonian of equation 11. 4 f o r  a charged part ic le  in the 

presence of a n  electromagnetic field, with the Hamiltonian of equation 11. 6 ,  we have 

In writing equation 11. 7, we have included the electrostat ic  field energy of q co(5, t)  into 

U(5). You will r eca l l  that the Hamiltonian of equation 11.6 was derived f r o m  the energy 

a of the field, a s  given by equation 11. 5, assuming that cp = 0 and - . A  = 0 (radiation a 5  - 
gauge), a s  i s  always possible through a gauge transformation in the absence of charges and 

cur ren ts  (appendix J). This ,  of course,  does not disallow a n  electrostat ic  field, which can  

always be superimposed on the electromagnetic field described by  the radiation gauge. It 

i s  only that that p a r t  of the field i s  not descr ibed by the Hamiltonian of equation 11. 6 .  It 

should a l so  be noted, that the vector  potential &(s t), a s  i t  appears  i n  equation 11. 7, i s  

to be  understood a s  an operator  in the sense  of equation 9.40 ( o r  equation 9.98). and was 

not written in  that f o r m  i n  the in te res t  of brevity. 

If we now expand the f i r s t  t e r m  of L5e Hamiltonian of equation 11. 7, we have 

1 - 1 q c  zm (2 - q C 4 ) . ( 2  - q&) ' -i;;; pa - (2.A + A.2) + - 2 m  

Note that 

A ' E  - = 2 . A  + C4.2 - E.AI * 

o r  

a and substituting f o r  2 = - i h (- -3 , we have ax 
a A-'E s E ' A  + i h  (%.A) . - (11.9) 

But in the radiation gauge, the vector  potential i s  divergence f r e e  and therefore 

o r  A and 2 commute a d  therefore, 

Substituting this expression i n  o u r  Hamiltonian, we s e e  that i t  b reaks  into three parts ,  

where 

H = H  part ic le  + Hfield + Hinteraction (11. 12) 

i s  the Hamiltonian of the part ic le  alone, 

i s  the Hamiltonian of the electromagnetic field, i n  the absence of charges  and currents ,  and 



is the interaction Hamiltonian. 

The problem posed by this total Harniltonian is quite intractable i n  the general  case ,  

and one which, a s  a consequence, we will tackle through the machinery of per turbat ion 

theory. 

11. 2 The unperturbed Hamiltonian and eigenstates. 

Of the total Hamiltonian of equation 11. 12 we will consider  a s  our  unperturbed 

Hamiltonian &, i n  the sense  of the discussion of equation 8. 1, a s  given by 

This  Hamiltonian includes the coordinates and momenta (opera tors )  f o r  both the par t i c le  

motion and the dynamics of the (charge-free)  electromagnetic field, i. e. 

possessing a l l  the degrees  of f reedom f o r  the descript ion of the combined system. The 

unperturbed eigenstates of this Hamiltonian a r e  then ( tensor )  products of the unperturbed 

eigenstates of each subsystem (particle, field) separately, s ince Ho is the sum of the two , 

part ia l  Hamiltonians (no c r o s s  t e r m s  !, which descr ibes  uncoupled subsystems ( s e e  equation 

4.6 and related discussion). We therefore have 

where $(z) i s  the wavefunction corresponding to the (unperturbed) part ic le  motion and 

In) i s  the field eigenstate (i. e. equation 9.48). 

In the absence of a coupling between the part ic le  (atomic) Hamiltonian and the field 

Hamiltonian, these s tates  would be  stationary s ta tes  of the combined system. In part icular ,  

the atomic subsystem, i f  initially in  a n  excited s tate  would always remain there, that being 

an eigenstate of the system. I t  i s  therefore, only through the unavoidable action of the 

interact ion Hamiltonian that a n  atom i n  a n  excited s tate  can  transition to the ground s ta te  

emitting a photon or ,  conversly, be ra i sed  to a n  excited s tate  through the absorption of a 

photon. Alternatively, the s tates  I@), of equation 11. 16 may b e  eigenstates of &, but 

not of the total Hamiltonian 

= Ha + Hinteraction (11. 17) 

and a r e  not therefore (exact) eigenstates of the combined particle-field system. We will find 

that the p resence  of the electromagnetic field induces transitions between the atomic (quasi-) 

eigenstates. In fact, i t  i s  not even necessary  f o r  the electromagnetic field to have any 



excitations (even though . . . they help) f o r  such transitions to occur. Even in the "absence" 

of an external  field (read: electromagnetic field i n  the ground state) ,  the atomic s y s t e m  i n  

a n  excited s ta te  can  exchange energy with the field, ra is ing one ( o r  m o r e  of its modes to an 

excited s tate ,  a s  the charged part ic le  transitions down to a lower atomic state. This  i s  the 

phenomenon of spontaneous emission, recognized by Einstein a s  necessary  f o r  the t reatment  

of the problem of thermal  equilibrium between electromagnetic radiation and the walls of 

a surrounding cavity, ' which cannot be understood unless both the atom and the radiation 

field a r e  t reated a s  interacting quantum systems.  

11.3 Radiation transitions in  the weak field approximation. 

The eigenstates  of the unperturbed Hamiltonian f o r m  a complete se t  of bas i s  s ta tes  of 

the combined system, and i t  i s  of course  possible to express  any s tate  of the total 

Hamiltonian a s  a l inear  combination of those s tates .  

In what follows, we will t r ea t  the c a s e  of transitions of the total sys tem (part ic le  + 

field),  f r o m  some initial total s ta te  1 )  to a final s ta te  1 ~ ~ ) ~ .  Such transitions include 

emission of radiation, where 

1 initial sys  tem excited atomic 
s tate  ) = l sys tem state  ) 1" field s ta te )  

and 

l f inal  sys tem)  = , lower atomic n + m photon 
s tate  sys tem s t a t e )  I ~ e l d  s tate  ) 

and absorption, 

1 inltial sys tem lower atomic 
s tate  ) - =  l s y s t e r n s t a t e  ) (I! field s ta te )  

and 

I fin:a;gstem excited atomic n - m photon > = l sys tem s ta te  ) l ~ e l d  s tate  > .  

We can compute the transition r a t e  of such events, using the resul ts  of t ime dependent 

perturbation theory, in  part icular ,  if we can ignore the finite energy spread in the initial 

4 and final s ta tes  , we have to lowest o rder ,  

where the delta function is to be understood in the sense of a subsequent integration over 

some density of states. 
4i= 

PI 
Y 

To stay consistent with the order  of the perturbation calculation, we should exclude the 

'see, for  example Feynman, Leighton, Sands, The Feynman Lec tures  on Phys ics  , v. I, 

section 42-5. 

' The subscripts  denoting eigenstates of the unperturbed Hamiltonian a r e  implied. 

'see sections 8.5 and 8.6. 



second t e r m  in the interaction Hamiltonian of equation 11. 13c since i t  i s  higher o rder  in  

the vector potential! We therefore have, 

which substituted in  equation 11. 17 yields 

277 q 
Wi-f = 7;. 1 -  2 (Jlflp.&Ivi) l a  6 ( ~ ~  - E ~ )  

We s e e  that the transition mat r ix  i s  proportional to the mat r ix  element  of the com- 

ponent of the part ic le  momentum in the direct ion of polarization of the local  value of the 

vector  potential. 

Using the commutation relations of the coordinate 5 of the atomic part ic le  with the 

part ic le  Hamiltonian, i. e. 

i h 
CX' Hpartl = X Hpart - Hpart X = ;;; E 3 

we can re-wri te  the mat r ix  element  in  a way that is m o r e  useful when doing computations 

when using atomic wavefunctions in  the coordinate representat ion,  In part icular  

4 iqc 
- 2 (*f le .al+i)  = - ( * f l ( l ~ p  - H ~ ~ I . A I I Y ~ )  

or ,  since H operates  on the (unperturbed) atomic sys tem eigenstate only, 
P 

where e and ef a r e  the initial and final s ta te  energies  of the atomic subsystem. If 
i 

we now define the Bohr frequency of the transition, i. e. 

- 1 
W f i  = T; (ef - ci) , 

we have 

qc - 7;; ( * f l ~ - ~ l * i )  = i w f i  9, Wf lflX.~IqiLi) 

or ,  using the electr ic  dipole moment operator  

d = q  I - c- ' 

we have 

q c - -;;; ( q f l ~ . ~ I * i )  = iwfi (*fld.~l@iCli) . 
Substituting into our  original expression we then have for  the transition r a t e  

'TYS (weak field) approximation i s  valid a s  long a s  qc << l e i .  



To compute the transition mat r ix  element, we now need to substitute the quantum 

operator  expression f o r  the vector potential8. Using plane polarization modes, this yields 

We can now separate  the mat r ix  element into a product of a mat r ix  element ( integral)  

of operators  over  the part ic le  coordinates and a mat r ix  element  of operators  over  the field 

coordinates, i. e. 

par t ic le  

The f i r s t  mat r ix  element, 

field 
(11.26) 

4. 

we recognize a s  the (spat ial)  Four ie r  t ransform of the quantity ), evaluated a t  -kt 
f i 

( s e e  appendix B, equation B. 2). 

The second mat r ix  element, can  be seen  to connect an initial field s tate  IEi) to a 

final field s tate  1 )  through the annihilation o r  creat ion of a single excitation. Consequently, 

the mat r ix  element i s  ze ro  (and therefore the transition r a t e  also)  unless the final field s tate  

has one more  o r  one l e s s  photon, in some mode (k, a) ,  than the initial field s tate ,  with the 

number of photons in a l l  other modes the same,  i. e .  we mus t  have: 

( f )  c a s e  a: = i i )  + 1 & , , = , f o r  (gr, a f t )  i (k, I) k> a nk_, 1 - 

c a s e b :  ( f )  - (i) ( f )  %, 1 - a, - 1 & 4.1, - = $!, L,, f o r  (ktf, + (k, 1) 

- 
[Unfortunately, i t  i s  difficult to a r r e s t  the proliferation of mode indeces i n  this 

calculation; they really a r e  three: 

(i) The mode (k, 1) denotes the one mode whose occupation index (number of photons) 

changes by one, up o r  down, between the initial and final field s tates .  

1 
al 
Y 

id 
( i i )  The mode index (&I, a ' )  denotes a (dummy) summation index over the Four ie r  

-2 
a components of the vector  potential operator .  

'i. e. equation 9.40 for  plane polarization modes, o r  equation 9.99 for  c i rcu la r  polarization 

modes. 



(iii) The mode index (&",L1') denotes a running index over the modes of the initial 

and final field s ta tes . ]  

A res t r i c t ive  condition of the type expressed by equation 11.28 i s  known a s  a selection 

rule. This  part icular  one te l ls  us  that t ransi t ions described by equation 11. 24 can  only - 
involve the emission (case  a )  o r  absorption (case  b) of a single photon.' Or, i n  o ther  words, 

not only mus t  the final field state, i n  a part icular  mode (lc, a) ,  have exactly one m o r e  o r  one 

l e s s  photon, but that that can  occur  f o r  exactly one mode. 

The summation of equation 11.25, over the vector  potential Four ie r  components along 

the field modes (kt, a ' )  now mercifully col lapses to a single t e rm,  f o r  initial and final field 

s tates  obeying the selection ru le  of equation 11.28, o r  i s  identically equal to zero, i. e. 

( i )  $ , + 1 , ( , c a s e  a (emission)  

( lh fk .&\q i )  = (- (-k) , c a s e  b (absorption) (11.29) 

'I' i 
I 0 

, otherwise 

Note also, that since the final s ta te  has one m o r e  o r  one l e s s  photon in the mode 

(k, a ) ,  the energy difference between the sys tem (part ic le  + field) initial and final s ta tes  i s  

given by, 
(ef + hwk) - ci , emission 

Ef - Ei = (cf - ei) * hulk = 

ef - (ci + hwk) , absorption . 

 his i s  not to say that rnultiphoton transitions a r e  dissallowed. They do occur  but a s  a 

q c 
consequence of higher o rder  t e r m s  of the perturbation - - p,&, o r  a s  a col~sequence of m 

q", the second order  t e r m  (in the field) - A -4. 

b o t e  that, f o r  plane polarization, t = (-1)' h' 



1 1. 4 The long wavelength approximation. 

-- 
When computing transitions between atomic system states, the order  of magnitude of 

various quantities involved, allow another approximation to be made which great ly simplifies 

the calculations. In particular, in  computing the matr ix element 

we s ee  that the exponential i s  multiplied by the square of the atomic wavefunctions which 

diminish very rapidly outside the region of the extent of the atom, of the order  of the Bohr 

radius (equation 7. 60), i. e. 

On the other hand, the photon wavevectors involved a r e  of the order  of 

where ER i s  the hydrogen atom binding energy (Rydberg; see  equation 7.64). Therefore 

where a i s  the fine s t ruc ture  constant (a * 1/137). Therefore the phase factor in the 

exponential i s  l e s s  than o r  of the order  of 

and actually more  like lom4 - for  transitions in  the infrared, visible and near  

ultra-violet. We a r e  therefore justified in  expanding the exponential in  a Taylor s e r i e s  

about 5 = 0 and keeping the leading terms,  i. e. 

which substituted in  the blfi mat r ix  element yields 

I t  can be seen that the f i r s t  mat r ix  element i s  the (vector) electr ic  dipole mat r ix  element 

ifi = qc (9, lsl qi) 3 (11.33a) 

which contributes to the mode (s A )  to the extent of i t s  projection on the polarization unit 

vector ^e of the mode (k, A ) ,  i. e. k, 1 

The second mat r ix  element is the (rank 2 tensor)  electr ic  quadrupole mat r ix  element, 



which contributes to the mode (k, a )  to the extent of i t s  projection on the wavevector k 
and the mode polarization unit vector k, a. i. e. - 

-i&.x 
Higher omitted t e r m s  i n  the expansion of e contribute projections of higher moments 

of the spatial function $(x)$.(x).  Since each successive t e r m  is dimensionally of the o rder  f -  1- 

of ka, - a/Z ,  this expansion can  be seen  to be a multipole expansion', lg 

powers  of the fine s t ruc ture  constant. 

The leading term i n  this expansion i s  the electr ic  dipole t e rm,  which yields f o r  the 

mat r ix  element, 

Transi t ions which resu l t  f r o m  the contribution of this m a t r i x  element a r e  called e lec t r ic  

dipole transitions. Transi t ions due to the next t e r m  would be electr ic  quadrupole transitions, 

etc. Unless the electr ic  dipole contributions vanish identically, they generally dominate 

a l l  other  radiative modes by a fac tor  of the o rder  (kag)-' ? Z/a - 250. This  sequence 

i s  denoted by 61, 82 ,  . . . etc. In spectroscopic notation, where the (6n)th transition r a t e  

i s  proportional to the square  of the nth moment of the part ic le  wavefunction product 

($:qi), i. e. .. . 

n-factors 

11. 5 Spontaneous lifetime of a charged part ic le  in  a n  excited state. 

Consider now a charged part ic le  in an excited s tate  i n  the absence of any external  

illumination. A s  hinted previously, however, even in the absence of any external  fields, 

the excited par t i c le  may st i l l  in te rac t  with the ground s ta te  of the field to emit  radiation, 

In the context of our previous discussion, we would like to compute the transition probability 

f r o m  an excited atomic s tate  and a n  electromagnetic field ground state, to a lower atomic 

s tate  and an electromagnetic field excited state. 

'See appendix D, equation D. 25 and related discussion. 



0 photons 1 photon 

-- v w 
field part ic le  par t i c le  field 

I f i )  spontaneous 

before af ter  

emission 

=3 

Using the resu l t s  of the preceding discussion, we may wri te  the transition mat r ix  

element  (equation 11.29; emission), 

- hvJ = E i  = €f 

(note that , = 0 Substituting in  equation 11.24 f o r  the transition probability, then yields 

v 
I +f? 4 

To obtain a numerical  value, we now need to integrate  over the density of final s ta tes  

of the system. Since the part ic le  i s  going to a single lower s tate ,  the sys tem density of 

final s ta tes  i s  dominated by the density of f inal  s ta tes  of the emitted photon, which is given by 

where i s  the solid angle differential e lement  around the wavevector k of the emitted 

photon. 



(where dfi  = sin OdOd0), which yields 

final s tates  

o r  [recal l  &(ax) = 6 (x ) / l a l ]  integrating over  the final photon frequencies, we have 

Now, if 8 i s  the angle between the wavevector k and the z-axis, which we may select  

to be in  the plane formed by & and *ek, a, we have # 
- 

and therefore 

where, k = w/c and h = 2nh. Note that the part icle  coordinate system z-axis was chosen 

to l i e  in the photon polarization plane (lc, ^ek &). 
J 

t If the part icle  system i s  isotropic , we find that Iklfi(&)la will not be a function of 

orientation, and therefore we have 

which yields f o r  the spontaneous transition rate, 

f o r  an  isotropic system. 

'note that k and *e a r e  orthogonal. 
a k, A 

'and only if. This may not be t rue  in the presence of a magnetic field, o r  in an  anisotropic 

crystal ,  fo r  example. 



These resu l t s  can be simplified in the c a s e  of e lectr ic  dipole radiation (long wavelength 

approximation), where . . 

gfi(k)  'g f i (0 )  = qc (4ff1514fi) qc Zfi = ifi . 
so that we may wri te  the transition r a t e  (for an electron, i n  part icular ;  q = - e )  as ,  

which, f o r  a n  isotropic system, reduces to, 

where a i s  the fine s t ruc ture  constant, 

We should point out that this transition r a t e  i s  in  fac t  the As coefficient of spontaneous 

emission i n  the radiation theory of Einstein ( s e e  f i r s t  footnote a t  the bottom of page 11 .4  and 

related discussion), explicitly computed h e r e  f r o m  f i r s t  principles. 

It  i s  convenient to express  the final resul t  a s  a character is t ic  reciprocal  time f o r  

e lectr ic  dipole radiation, t imes remaining dimensionless quantities. In part icular ,  f o r  e lectr ic  

dipole radiation of an isotropic sys tem (equation 11. 44), we have 

where ER i s  the Rydberg (hydrogen aton binding energy; ER/hc = a/2ag) ,  a i s  the fine 

s t ruc ture  constant, and a g  i s  the Bohr radius. 

The charac te r i s t i c  t ime that emerges  f o r  e lectr ic  dipole radiation i s  then equal to 

a~ -4 
T~~ = 6(c) a = 0.3735 x lo-' sec , (11. 45) 

in  t e r m s  of which, the electr ic  dipole spontaneous emission r a t e  f r o m  a n  excited isotropic  

sys tem becomes 



where 

7-1 = 2. 677  x 10' sec-I . 
6 1  

Example 11. 1 Rate of spontaneous emission from an excited hydrogen atom in the 

2p state. 

We need to compute the matrix elements for mf = 0, i 1, i. e. 

where (see section 7 . 3 ) ,  

In, a,m) = R n, YQ, m ( e , ( ~ )  

a re  the hydrogen atom eigenstates. 

The radial integral i s  given by 

where (see equations 7. 74) ,  

and therefore 
m 

-3p/2 2 6 

dp* = 4 ! = 1.290 . 
f i  

(11.47) 

The integral over the spherical harmonics can be evaluated by noting that Yo,o(8,~p) = 

( 4 ~ ) - ' / '  is  a constant and that x / r  can be expressed in terms of the Q = 1 spherical 

harmonics, i. e. 



so that 

Y o  I ~ / r ) Y ~ , ~ ~ d f i  = I [I 1 
f i  f l  

(Y1, -1 - Yl,, )* Y,,ml df i  ;ix 
n - 

& 

[note that ( ~ / r )  = (x/r)r] and therefore, using the orthonormality of the spherical  harmonics, 

Consequently, we have, independently of m' (why?). 

Combining equations 11. 47 and 11. 50, we then compute the (dimensionless) mat r ix  element  

of XI 

I ( l ~ \ ~ / a ~ l  Zp) l a  = 1. 290a /3 = 0.5549 . (11. 51) 

We a l so  need to compute the photon energy (in units of the Rydberg), i. e. 

Substituting these two resul ts  into the electr ic  dipole spontaneous emission equation (1 1.47). 

we finally have 

3 - 1  1 
(wzp41s) = 0. 5549 (,) Tdl = 0.234l  7i1 

8 1 

and, using the value of the charac te r i s t i c  time f o r  e lectr ic  dipole emission, we obtain 

corresponding to a lifetime with respec t  to spontaneous enijssion of 
r j' 

(Ts) E w;?~ = 1. 596 nsec ; ( Z p l s )  
th  

$ The experimentallyY determined value for  this quantity i s  equal to 
TJ 

'w.s. Bickel and A.S .  Goodman (1966), Phys. Rev. 148, page 1. 



( T ~ )  = (1. 600 2 0.004) nsec ; (2pdls) . 
exP 

11.6 Induced absorption and emission. 

L e t  us  consider a charged part ic le  in  a cavity filled with electromagnetic radiation. 

The charged par t i c le  can undergo transitions both up and down, absorbing o r  emitting photons 

respectively. Consider f i r s t  the c a s e  of absorption by the charged part ic le  subsystem. 

The initial and final sys tem states  a r e  then given by: 

taking the part ic le  to a higher energy s ta te  f r o m  a t  the l o s s  of one photon in 

the mode (& L) by the field. The transition m a t r i x  element is now given by  equation 11.29 

(case  b) ,  o r  * 1/2 
(@fIi*&I#i) % (- 1 1 . Mfi(-lS)l J %, (i) a , 

which, substituted in  equation 11.24 for  the t ransi t ion rate, yields 



In the c a s e  of emission,  

the initial and final s ta tes  a r e  given by 

where i s  now a lower energy part ic le  state, with the field gaining a photon in the mode 

(k, a ) .  The transition mat r ix  element, in  this c a s e  i s  given by (equation 11.29, c a s e  b), 

resulting in a transition r a t e  given by 

F o r  both absorpt ion and emission, i t  i s  difficult to derive genera l  formulae, since the 

final resu l t  depends in  a n  explicit  way on the detai ls  of each part icular  problem. I t  i s  

preferable  to compute the transition r a t e  i n  each case,  s tar t ing f r o m  equations 11. 57 and 

11.59, which hold i n  general! fo r  absorption and emission respectively. Their  use will be 

i l lustrated through examples in the discussion below. 

Example 11. 2 P a r t i c l e  t ransi t ioni  a s  a resu l t  of diffuse cavity radiation. 

6) 
42 

6 
a Consider absorpt ion f i r s t .  This  represen ts  a t ransi t ion from a c lus te r  of s ta tes  f o r  the 
a ' 

absorbed photon. The total transition r a t e  i s  then given by equation 11. 56, integrated over  

the spread in cf and c .  can be ignored. See sections 8. 5 and 8.6.  



the absorbed photon density of states, which for an electromagnetic field in a cavity of 
- - 

volume V, i s  given by, 

and therefore 

where wk = wfi  = w and k x w/c. 

Now if the electromagnetic field i s  isotropic, i. e. 

or ,  the modes for a given frequency w and polarization l a r e  uniformly occupied with 

respect to the direction of the corresponding wavevectors k = %. êk, we have 
c -  

- whlch, in the case of an isotropic particle system, can be written a s  (see equation 11.41 and 

related discussion) 

[ w ~ + ~ I  =A (g) , 
€0 

(11.64a) 
abs 

where 

i s  the total number of photons (both polarizations) of frequency w. In the case of electric 

dipole transitions, this simplifies further to 

4w3 wid] = (-) Izfila n ( i ) ( ~ )  , 
61 abs 3 ca 

where a i s  the fine structure constant. 

To compute the emission rate, note that this represents a transition & a cluster of 



s ta tes  available f o r  the emitted photon, which in the c a s e  of a diffuse' excitation field i s  given 

by equation 11.60. Integrating the transition r a t e  to a single s t a t e  (equation 11. 59) over the 

density of final s ta tes ,  we then have ( s e e  equation 11.61 and related discussion), 

which under the assumptions of isotropy of both the field and the part ic le  system, reduces,  i n  

a manner  s imi la r  to the c a s e  of absorption ( s e e  equation 11. 64 and related discussion) ,  to 

and i n  the c a s e  of e lectr ic  dipole radiation, 

There a r e  severa l  noteworthy features  of those solutions: 

1. The probability p e r  unit t ime for  the part ic le  to absorb  a photon is proportional to the 

available number of photons to be absorbed. 

2. The probability per  unit t ime f o r  the part ic le  to emi t  a photon i s  proportional to the 

number of photons, of the right frequency. inducing i t  to make the transition,plus one. 

Y there a r e  no photons initially in  the right modes ~ n ( ~ ' ( w )  = 01, we recover  the 

spontaneous emission formula. 

3 .  The difference of one photon between the two ra tes  i s  essent ial  f o r  detailed balance of 

the ra tes  of the two processes  (emission and absorption), a s  required f o r  the combined 

Cparticle + field] sys tem to be able  to at ta in equilibrium. Consider a n  initial field 

s ta te  with n photons of the proper  frequency and the part ic le  in  some lower state. 

One photon i s  now absorbed, rais ing the part ic le  to a higher state, and leaving the 

field with (n - 1) photons. The  r a t e  for this p r o c e s s  i s  n / ~ ~ ,  where T s  i s  the 

spontaneous lifetime corresponding to the r e v e r s e  transition. The part ic le  now i s  i n  the 

higher s tate  and may come back to the lower s tate  emitting a photon. The r a t e  f o r  this 

p rocess  i s  now the number of photons i n  the field (n - l), plus  one, divided by the 

spontaneous lifetime, i. e. [(n - 1) + I ] / r s  = n/Ts, equal, i n  other  words, to the 

r e v e r s e  process ,  a s  required by the equilibrium condition. I t  was this reasoning that 

'as opposed to a laser, fo r  example which may have coherent  spatial and frequency modes, 

to be discussed la te r .  



led Einstein to conclude that the mecnanism of spontaneous emission was required 

for  equilibrium to be possible. s 

1 1. 7 Electr ic  multipole radiative transition selection rules .  

?Ve have already seen that, in  the weak field approximation ( f i r s t  o r d e r  in the vector  

potential), the propert ies  of the mat r ix  element  between the initial and final field states ,  

t 
r e s t r i c t  the transitions to the emission and absorption of a single photon . See equations 

11. 28  and related discussion. It  i s  possible to deduce general  conclusions about the par t i c le  

s tates  that can be connected radiative t r a ~ s i t i o n s  (within the weak field approximation), f r o m  

the mat r ix  element hffi(&) over the corresponding part ic le  s tates .  See equation 11. 26, 

section 11. 4 and related discussions. In part icular ,  fo r  e lectr ic  dipole transitions, i. e .  

we have to compute the mat r ix  element of 

s e e  equation 11.  48), o r  using the right and left c i rcu la r  unit vectors  

1 ~ ~ = l ( $ ~ + i g )  , z = -  ( g x - i S )  , 
n Y f i  Y 

we a l so  have 
f 

47 l3 x = r(-) (Yl,-l SR - YlJ1 SL + - 3 Y1,o *ez) # 

between the initial and f inal  par t ic le  s tates ,  which can  be expressed a s  products of radial  and 

angular parts 'm, i. e. [c = ( 9 , ~ ) ]  

* 
This  resu l t s  in a mat r ix  element which i s  a product of radial  and angular par t s ,  i. e. 

F See Eisberg and Resnick, Quantum Physics  of Atoms, Molecules, Solids, Ruclei and Par t i c les  

(John Wiley, 1974), pp. 426-429. 

'second order  in  the vector potential involves two photons, third o rder  three, etc. See 

sketches on pages 8 . 3 0  and 8 . 3  1. 

'note how the c i rcu la r  unit vectors  a r e  selected in  a natural  way, even though we star ted 

with ca r tes ian  unit vectors .  See a l so  section 9. 10. 
m 
i-) 

g 

% o r  l inear  superpositions of products of radial  and angular par t s .  
3 



It can be seen that the angular integral  r e s t r i c t s  the possible values of (a", m u )  of 

the final state. In part icular ,  we mus t  have i! 

and 

o r  since m = 0, i 1, 

mu = m '  o r m" = m '  5 1 . (11. 73b) 

The change f r o m  A' to 6' * 1, corresponding to a change of one unit of h in  the 

angular momentum of the charged particle, i s  ca r r ied  away by the photon, which has  a spin 

angular momentum of i h along i t s  direction of propagation (wavevector k),  and i s  therefore 

emitted in  a s tate  of ze ro  orbi tal  momentum. See discussion on photon angular momentum. 

The next higher o rder  transitionst a r e  electr ic  quadrupole (82) transitions, involving 

the quadrupole ( t ensor )  moment (equation 11.34a) 

Q . (qf , s f 1  

involving elements like 

F r o m  the expression of 2 in  t e r m s  of the spherical  harmonics, we see  that the quadrupole 

mat r ix  involves mat r ix  elements of products of p a i r s  of the !, = 1 spherical  harmonics, i. e. 

These products can in turn be expressed a s  l inear  combinations of single spherical  harmonics 

( see  equation 10. 36a), and we deduce the corresponding selection ru les  f o r  e lectr ic  quadrupole 

radiation, i. e. 

and 

'see equation 10.36 and related discussion on addition of angular momenta, section 10.2. 

twhich become important  if e lectr ic  dipole transitions a r e  forbidden by the previously established 

selection rules ,  



where and lqf)  a r e  given by equations 11. 71. 

Consequently, e lectr ic  quadrupole photons can change the angular momentum of the 

charged part ic le  b y  two units of h ,  o r  leave i t  unchanged [but ( L 1 = O )  f (A"=O) ] .  They con- 

sequently correspond to excitations of photon modes of higher angular momentum. See 

discussion of photon angular momentum. 

11.8 Magnetic radiative transitions. 

In discussing radiative transitions, we have so f a r  ignored the possible of the 

charged part ic le ,  in  the presence of which the interaction Hamiltonian mus t  be augmented to 

include the associated spin magnetic moment coupling to the magnetic field, i. e. # 

where i s  the spin magnetic moment of the part ic le ,  o r ,  in  t e r m s  of the vector potential 

t It can be seen that this t e r m  a l so  contributes to f i r s t  o r d e r  in  the vector potential , which 

mus t  therefore a l so  be considered when computing f i r s t  o rder  (single photon) t r a n s ~ t i o n s  in  

the weak field approximation. In part icular ,  

Hint = Hr + H" + 0 ( A a )  (11. 78) 

where H' i s  proportional to the charge q (equation 11. 18) and leads to the electr ic  dipole, 

quadrupole, e tc . ,  transitions we have already discussed, and 

i s  ~) ropor t iona l  to the spin magnetic moment &(') and i s  responsible f o r  magnetic radiative 

transitions. $ In part icular ,  substituting for  the spin magnetic moment, 

where g i s  the spin g-factor, m i s  the m a s s  of the part ic le  and is the par t i c le  spin 

angular momentum, we have 

'see equations 10.42, 10.44 and related discussion, and appendix F, equation F. 46 and related 

discussion. 

'even though a s  we will see  leads to considerably weaker transitions, 

'note that a neutron which i s  neutral  but possesses  a spin magnetic moment (equation 10.44b) 

may participate i n  such transitions. 



9 
H" = - a s ( 2 )  2. (G X A' - 

(note 4, = - e f o r  an electron). 

Transitions caused by  this interaction a r e  then character ized by a r a t e  

The transition mat r ix  element can now be expressed using the vector  potential quantum 

operator  (equation 9. 99), i. e. # 

which can be separated, a s  before, into a product of a mat r ix  element over the part ic le  

coordinates and a mat r ix  element over the iield coordinates, i. e. 

par t ic le  field 

The mat r ix  element over the field coordinates i s  s imi la r  to the corresponding mat r ix  

element f o r  the (pa&) interactions ( s e e  equations 11.26 and 11.28, and related discussion). 

The mat r ix  element over the part ic le  coordinates can be factored fur ther  into a product of a 

mat r ix  element over the part ic le  position coordinates and a mat r ix  element involving the 

part ic le  spin s tates ,  i. e. if 

1 qi) = 1 n' ,  a* ,  m 1  a ; m l  ) 

we have. 

'note that (a = R, L) 

ik x = k sign(u)  Zk , k.0 2 

where s ign(R)  1 and sign (L) f - 1. 

twe had not included the part ic le  spin s tates  in  the previous calculations, since they a r e  un- 

affected by the (2.A) interactions. 



# It can be seen that in the long wavelength approximation , corresponding to magnetic 

dipole (ml) transitions, the position state of the particle i s  unaffected, i. e. we must have, 

for a non-zero matrix element, 

n" = n1 , 1" = 1' , m i  = m i  , (11. 87) 

while from the matrix element over the spin states we have, from the matrix elements of 
sz* 

m" = m' 
s s ' (11. 88a) 

or, from the matrix elements of Sx and S 
Y' 

m" = m1 + 1 . (11.88b) 

It can be seen, however, that these matrix elements can only result in transitions in the 

presence of perturbations that can lift the energy degeneracy between different spin states 

sharing the same spatial wavefunctions (no energy left for the photon!). This may be the 

consequence of coupling to additional degrees of freedom, e. g. nuclear spin [nuclear magnetic 

resonance (NMR) spectroscopy], or any external influences that lift the spin degeneracy, e. g. 

Zeeman splitting of different spin states of a charged particle in a magnetic field, or internal 

perturbations, e. g. spin-orbit coupling, relativistic corrections, etc. 

Magnetic dipole transitions a re  generally even weaker than electric quadrupole transitions 

and in practice need only be considered when both electric dipole and electric quadrupole matrix 

elements vanish identically. From a simple scaling analysis, the ratio of magnetic dipole to 

electric dipole transition rate i s  of the order of 

which, for electron transitions (mca 0. 5 MeV) in the visible (hm - ZeV) i s  of the order 

of lo-=. 

Before leaving this section, i t  should be noted that all these results and selection rules 

we have discussed so far  should not be considered a s  absolute rigid rules. Particle motion 

perturbations, such as  spin-orbit coupling (section 10. 5), other relativistic effects (e. g. 

section 10.6), coupling between the electron magnetic moment with the nuclear magnetic 

moment, as  well as electron-electron interactions in multi-electron systems, introduce suf- 

ficient complexity into the analysis of real life radiative transition problems to suggest a 



cer ta in  degree of caution in using these resul ts .  They nevertheless  remain  a v e r y  useful 

starting point f o r  fu r ther  refinements and can  always be rel ied on to provide a v e r y  powerful 

s e t  of guidelines. F o r  a m o r e  detailed treatment, the interested r e a d e r  should consult 

specialized texts i n  spectroscopy. # 

0 
ca 
OI - 

'Alan Corney, Atomic and L a s e r  Spectroscopy (OAord University P r e s s ,  1977), f o r  example, 
N 
I-( 

a s  well a s  the texts by Gerhard  Herzberg on molecular  spectroscopy, published by  Van Nostrand, 

9 
h to name a few. 



A P P E K D I X  A: Calculus of Variations. 

Given a sca la r  function 

the problem of determining the (vector)  path q ( t )  on which the integral  

has  an extremum i s  a problem in the Calculus of Variations. 

To simplify the thinking, consider f i r s t  a function of x and y(x) of the 

f o r m  

F = FCY(X),Y~(X),XI , 
where 

d 
y ' (x)  = y(x) . 

W e  wish to find the curve y(x) that  extremizes (minimizes o r  maximizes)  the 

definite integral,  

J I Y I  =[: F:y(x), yl(x),x: dx . 

.What does  i t  mean to extremize the integral  J with respect  to the curve y(x)? 

Well, l e t  us recal l  what i t  means to minimize ( o r  maximize)  any function f (x)  

with respec t  to a variable, x in  this case .  if we have 

i. e . ,  if the minimum i s  attained for  x = %, then a small  variation x -  x, + E 

leaves t5e function fix) unchanged to f i r s t  o rder  in  c .  

In other  words, if min [ f (x ) )  = f(+) ,  then 

We can general ize t h i s  idea to fin6 the extremum of ~ ( ~ 1 .  Assume that 

the extremum i s  attained on a par t icular  paih y0(x).  In that case ,  if we 

consider a neighboring path 



Y(X)  = YO (XI + n(x)  , (A. 6) 

such that the function E ~ ( x )  i s  smal l  (i. e . ,  c n(x)/y(x)  << 1 everywhere in 

xi < x < xa) and vanishes a t  the endpoints X I ,  *, i. e. 

= n(x2) = 0 , (A. 7 )  

we require  that 

o r ,  since 
.u, 

1(y0 + cd = 6 F C Y ~  (x)  + sqix), yb (x) + cvl(x) ,  XI dx (A. 9 )  

8 

we can p e r f o r m  a Taylor expansion of F(yo +cn, yo + c q l , x )  about yS to obtain 

Substituting in  equation A. 9, we obtain 

Integration of the second t e r m  i n  the integrand by p a r t s  yields 

The f i r s t  t e r m  vanishes by vir tue of the imposed condition (equation A. 7 )  on the 

possible choices of ~ ( x ) ,  and therefore we nave 

Consequently, if J [ ~ ]  possesses  an extremum a t  y(x) = yc(x), then equation 

A. 8 mus t  be satisfied for  any ~ ( x )  that vanishes a t  the endpoints and therefore 

y,(x) mus t  be the solutior. to the differential equation, known a s  Eule r ' s  

equation, 

(A. 10) 

The difference b e b e e n  the two types cf derivatives thzt appear  in equation A. 10 



should be emphasized. The ~ a r t i a l  derivatives a F / a y  and a F / a y l  a r o s e  in  the 

Taylor e.xpansion of F considered a s  a function F(y,  y ' ,  x)  of three variables .  

The total derivative d(aF/ay l ) /dx  a r i s e s  f r o m  the integration by p a r t s  with - 
respect  to x and i s  therefore a derivative with respec t  to x of the function 

FC~(X),  y1(x),x] considered a s  a function of a single variable  x. 

Example A. 1  Shortest  distance between two points 

The distance is  given by the integral  of the a r c  length s ,  i. e. 

The function F in  this c a s e  i s  given by 

(A. 11) 

Therefore, Eule r ' s  equation becomes 

Differentiating A.  12 with respec t  to y ' ,  we have 

ca 1 / 2  

Y = ( )  = const > 

i. e . ,  a s t raight  line. 

The extension to paths of higher dimensions i s  straight-forward. Lf, f o r  

example, the integrand i s  a function of a vector function 

we then consider smal l  variations about the extremal  f i ( x ) ,  of the f o r m  



where q(x) i s  a vector  function - 
V ( X )  = CVI (x), Va (x), . . . . . , qN(x)I  - 

that vanishes a t  the end-points, i. e. 

n(x,) = = 0 . - 
Following the procedure in  the one dimensional case,  we Taylor expand about 

yo (x) to obtain 

~ ( b + + g y i ~ ~ h + c 9 ~ , ~ )  - - = F ( ~ , Y A , x )  + 

which we can substitute and integrate by par t s ,  a s  before, to obtain 

and therefore f o r  an extremum the vector  path mus t  satisfy the N differential 

equations, 

The problem of selecting the vector  path of the configuration vector  

q ( t )  i n  the action integral  of equation A.  2 i s  a problem of this type and 

therefore the Euler equations become 

Example A.2 The ballistic t ra jectory ( see  example 1. 1). 

The Lagrangian i s  given by 

~ @ , i , t )  = mC+(;ca+fa) - gy] . 

We therefore have two Euler  equations, since 

namely 

(A. 13) 

(A. 14) 

(A. 15a) 

(A. 15b) 

Therefore 



which together with the boundary conditions yield the parabolic t rajectory of 

equation 1. 14. 
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Problems 

A. 1 Find the equation of the curve y(x) for which the functional 

has .n extremum subject to the constraints 

Hint: Consider the functional 

A. 2 Find the equation of a long heavy chain I"  
of length I strung between the two points I . 

(0 ,b)  and (a,O). 



APPENDIX B: The Fourier  Transform. 

If a function f(x) can be expressed a s  

then the function F(k) i s  given by  

~ ( k )  = f(x) e-ikx dx , I (B. 2 )  

- 00 
and called the Fourier  transform of f(x). Both f(x) and F(k) can be complex. 

In particular if 

f(x) = fR(x) + i fI(x) 

and 

we have (eikx = cos kx + i sin kx), 

I?.(.) = 1 IfR(.) cos kx + f I (XI sin kx] dx (B .5a )  

= - 1 [fR(x) sin kx + fI(x) cos kx] dx (B .5b) 

and also 

f R (x) = & 1 k R ( k )  cos kx - FI(k) sin kx] dk @ ..a) 

fI(x) = &  IF^(^) sin kx +- C O B  kx] dk . (8 . bb) 

- m 

The pair of functions f(x) and F(k) a r e  called a Fourier  transform pair, and 

have the following properties : 

6 1 .  If f(x) is real ,  then ~ " ( k )  = F(-kl. 

Proof: If f (x) = 0 then 
I 

F R (k) = 1 f(x) cos kx dx 

Fi.1 = - 2 f(x) sin kx dx 

and 

(B. 7a) 

(B. 7b) 

and therefore FR(k) = FR(-k) and F (k) = - FI(-k), which proves the theorem. 
I 

52. If f(x) i s  purely imaginary, ~ * ( k )  = - F(-k). 



$ 3 .  If f(x) i s  even then F(k) i s  also even. 

Proof: If f(x) = f(-x), then 

r ( k )  = J f(x) .-Ikx dx = 1 u x )  cos kx dx 

- 8 

and, in fact 

F(k) = 2 f(x) cos kx dx , S 
and therefore F(k) = F(-k). 

94. If f(x) i s  reab and even, F(k) i s  rea l  and even. 

$5. Even-odd decomposition. A function f(x) can always be decomposed into 

an even function plus an odd function. In particular if 

1 
fe(x) = T Cf(x) + f(-x)l  

and 

1 
f (x) = 2 Cf(x) - f ( -x) l  , 

then 

f(x) = f (XI  f fob) , 

(B. 8a) 

(B. 8h) 

(B. 8c) 

where fe(x) = fe(-x) and fo(x) = - fo(x). Then if we decompose F(k), 

the Fourier transform of f(x), in a similar  fashion into an even function 

Fe(k) and an odd function Fo(k), we have 

fe(x) = cos kx dk 

fo(xl = i J Fo(k) sin kx dk 

and correspondingly 

Fe(k) = 2 If.(-) cos kx dx (B. lOa) 

(B. lob) 

Note that if f(x) i s  real  then Fe(k) = FR(k) and Fo(k) = iFI(k), where 

F(k) = F (k) + i F (k), the real  and imaginary parts  of F(k). R I 



$6 .  Linearity: If F, (k) and Fa(k) a re  the Fourier transforms of fl(x) and 

fa(x) then F(k) = a, F, (k) + an Fa(k) is  the Fourier transform of f(x) = 

97. Symmetry: If F(k) i s  the Fourier transform of f(x), then 2a f(-k) is  the 

Fourier transform of F(x). 

98. Scaling: If F(k) is  the Fourier transform of f(x) then the Fourier trans- 

form of f(ax) i s  given by lal-I F(k/a), where a i s  a real constant. 

Proof: If a > 0, 

If a 4  0 the reversal in the order of integration changes the sign and the 

theorem i s  proven. 

59.  Complex conjugate: If F(k) is  the Fourier transform of f(x), then 
'i 

F ' ( -k )  is  the Fourier transform of f ' (x ) .  

$10. Cordinate shift: If F(k) i s  the Fourier transform of f(x), then 

~ ( k ) e - ~ ~ %  1s . the Fourier transform of f(x - xo) 

Proof: 

Similarly F(k - b) is  the Fourier transform of eikox f(x). 

$11. Differentiation: If F(k) i s  the Fourier transform of f(x), then ( i k ) n ~ ( k )  

is  the Fourier transform of dnf(x)/dxn. Similarly, dn~(k) /dkn  i s  the 

n 
Fourier transform of (-ix) f(x). 

$ 12. Moments: If F(k) i s  the Fourier transform of f(x), then dnI?(o)/dxn i s  

equal to the Fourier transform of 



where the integral i s  the nth moment of f(x). Also, using a Taylor 

expansion about k = 0 

$13. Convolution: If F(k) and G(k) a r e  the Fourier  transforms of f(x) and 

g(x) respectively, then F(k) . G(k) i s  the Fourier  transform of u(x), 

i s  the controlution of f(x)  and g(x). Conversly, the Fourier  transform 

of f(x).g(x) i s  given by V(k), where 

$14. Parseval 's  theorems: If F(k) and G(k) a r e  the Fourier  transforms of 

f(x) and g(x) respectively, then 

(B. 11) 

a s  a special case  

(B. 12) 

Proof: From the result of $ 1 3  we have 

Setting k = 0 we obtain equation B. 11. Equation B. 12 follows if we choose 

g(x) = f*(x) and also use the results of 59. 

The function f(x) may be discontinuous, 



i. e . ,  f(%-) ?C f(%'). In that case,  a t  % the Four ie r  integral  of equation B.  1 

assumes  the mean value of f(%-) and f(+'), i. e. , if 

then l F(k)eik" dk = $ i".) + ..+)I . 

Similar ly f o r  discontinuous F(k) .  

These resu l t s  can be generalized to m o r e  dimensions in  a straightforward 

manner. In part icular ,  for  two dimensions we have that if 

then 4 

-i(kxx + k y) 
F(kx, ky) = dxdy 

and if 
m 

then 
m 

where = ( x , y , z )  a n d 4  = (kx,k .kZ) . 
Y 

(B. 13) 

(B. 15) 

(B. 16) 

References 

1. A. Papoulis, The Four ie r  Integral and i t s  Applications (McGraw-Hill, 

1962). 



Problems 

B. 1 Prove  that if f(x) i s  imaginary and 

* 
then F (k) = - F( -k )  

B.2 Prove  the complex conjugate property (99).  

B. 3 Prove  the differentiation propert ies  ($11). 

Hint: assuming that f(n)(* LO) = F(")(* m) z 0, integrate by par t s  

repeatedly. 

Notation: 

B. 4 Extend the differentiation properly (6 11) to th ree  dimensions by proving 

that if F(k)  i s  the Four ie r  t ransform of f(z) ,  then i k  F(&) i s  the 

Four ie r  t ransform of the gradient of f ( s ) ,  i .  e.  , 

Notation: 

L . ;  a + $  a a ax x a x  ~ F + ' ~ z .  

B. 5 Find the Four ie r  t ransform of U(x) ,  the unit s tep function, defined by 



APPENDIX C: The minimum joint hl,rr.~cl w.lve p.ra.kct. l l c rmi te  p c * l y n o r n i o L ~ .  

We have to solve the equation (p > 0)  

" " ( 5 )  + (p - v($)  = 0 

subject  to the boundary conditions 

v ( i m )  = 0 and 

(C. 1) 

F r o m  the different ial  equation for  v(!), we note that 

We therefore need a function whose asymptotic behavior for  l a r g e  151 

sa t i s f ies  the condition C. 2. Noting that 

h a s  the r ight  behavior l o r  any finite b, w e  t ry  a solution of the f o r m  

v({) = A h(:)e-:a'2 , ( C  3 )  

where the negative exponent was selected to satisfy the boundary condition 

a t  f m, and the constant A may be required for  normalization. Substltutrng 

in the or iginal  equahon, we obtain an equation for  h ( 6 ) ,  which i s  given b y  

We now t r y  a power s e r i e s  expanslon for  h(?) ,  i. e . ,  

b15) = 1 a,,, sm+' , 

where  ae # 0.  We then have 

and there fore  

and a l s o  

+ rn + s + 2 )  + s + 1)  a smt: (C. 8) m+2 



Substituting equations C. 5, C. 7 and C. 8 into C. 4 we obtain 

Equation C.9 can only be satisfied if 

( l + s ) s  a, r 0 (C.  lob) 

and 

( m + s + Z ) ( m + s + l )  am+2 = ( 2 m + 2 s + l  - @ ) a m  ; m = 0 ,1 ,2 , . .  (C. 1 0 ~ )  

Fro- equation C. iOa we see that snO or  8x1 a r e  acceptable values for  s .  

F r o m  equation C. lob we see  that either s = 0 o r  a, = 0 (o r  both). Then, 

f rom equation C. 10c we get am from ao, a, from am etc.,  a, from a , ,  

as from as ,  etc. We now note that 

'm+2 2 - -  a s  m - m ,  
m m 

therefore, for  la rge  5 ,  the s e r i e s  tends to 5' eSa where v i s  a finite number 

and consequently v(<),  aa  glven by equation C.3, cannot satisfy the boundary 

conditions a t  *a. The only possibility i s  if the s e r i e s  terminates to y ~ e l d  a 

polynomial for  h(5). That will happen if the coefficient of am in equation 

(C. 10c) i s  zero  for  some m, which will occur if the constant P i s  equal to 

p a 2(m + S )  + 1 (C. 11) 

where m r 0,1,2,. . . and s x 0 o r  1. Since this must  happen for  even m 

(the recursiori relation C. 10c relates am+2 to am and a, f 0)  we must  choose 

a, = 0. Consequently we have an  even o r  odd power polynomial depending 

on whether s = 0 o r  1 respectively. i3 must  then be of the form 

p = Z n + l  ; n r 0,1,2,  ... (C. 12) 

to yield in  an  even o r  odd polynomial h (51, depending on whether n ie even n 

o r  odd. The relrulting polynomial# a r e  called Hermi* uolynomials. The f i r s t  

few of these a r e  l is ted below: 

(C. 13) 



and solve the equation 

where we have substituted C. 12 into C. 4. 

The study of the p roper t i es  of the Hermi te  polynomials i s  facilitated by 

the generat ing function, defined by 

and equal to 

9 ( s , S )  = e 
- s a + 2 s 5  

We now differentiate 9 ( s ,  5)  with respec t  to  s to g e t  

where the l a s t  s e r i e s  was obtained by different lahng the defining s e r i e s  

direct ly .  Equating the coefficients of equal powers  of r we obtain 

25hn(:) = hn+! (5)  + 2n hn , , (? )  . (C. 17) 

Similar ly,  differentiating with respec t  to 5 we have 

hh(C) = 2n hn,,(5) . (C. 18) 

It i s  easy to show that the sequence of functions which a r e  related by 

equation6 C. 17 and C. 18 a r e  solutions to equatlon C. 14, proving thereby that 

the generating function given by equation C. 16 i s  indeed the c o r r e c t  one. 

Using the fac t  that f o r  any function f(s), we have 

where  

and consequently 
n 



Noting that  

- s a  + 2sq = e<a - 
$3(s ,S )  ' e 

w e  have 

and t h e r e f o r e  

a m u c h  s i m p l e r  way of gene ra t ing  the  H e r m i t e  polynomials .  

Lntegrals  of H e r m i t e  polynomials. T h e  gene ra t ing  function a l s o  ne lps  In 

evaluat ing the no rma l i za t ion  i n t e g r a l  c o r r c ~ p o n d i n ~  to the  wave funct;c,ns 

( s e e  equat ion C .  3 ) .  In p a r t i c u l a r ,  c o n s i d e r  the i n t e g r a l  

T o  g e n e r a t e  the  i n t e g r a l s  of the  c r o s s  p roduc t s  we i n t e g r a t e  the  p r o d u c t s  

of two gene ra t ing  funct ions ,  i. e . ,  

but,  in tegra t ing the  p r o d u c t  of the  two s e r i e s  c c ~ r r e s p o n d ~ n y  to  9 ( s , .  ' I and 

9 ( s a ,  S )  we a l s o  have  

Equat ing t e r m s ,  w e  then see tha t  



where  bn, i s  the Kronecker de l ta  ( s e e  Appendix 0) and given by 

1 , i f n = r n  

6nm = [ 
0 , i f n f m  . 

Using equation C. 2 1  i t  i s  easy  to s e e  that the p roper  normalizat ion constant  

An f o r  the vn(<)  in  equation C. 2 0  i s  given by 

Consequently, the sequence of functions 

f o r m s  an orthonormak set ,  i. e .  , 

(C. 22 )  

( C .  23)  

since the v n l s  have been normalized and a r e  orthogonal to each other  

(solutions to a S t u r m - L i o u v i U e  problem).  



P r o b l e m s  

C. 1 Genera te  the f i r s t  four  Hermi te  polynomials using the recursion relat ion 

C. l0c.  

C. 2 P r o v e  equations C .  17 and C. I8 and show that the sequence of functions 

h ( 5 )  that sa t i s f ies  them i s  a solution to equation C. 14. n 

C. 3 Genera te  the f i r s t  four Hermi te  polynomials using equation C. 19. 

C. 4 Using equations C. 17, C. 23 and C. 24,  compute the mat r ix  e lement  

C. 5 If K is the conjugate coordinate  to, 5 and IC = - ia/a: i s  the corresponding 

opera tor  in  <-apace,  compute the mat r lx  element  

v,(<) K vn(:)d: 

- m 

using equation C. 18. 



APPENDIX The Kronecker and Dirac del ta  functions. 

Consider  the problem of the s c a l a r  product of two vec tors  

and 

where  the gi a r e  the b a s i s  vectors .  We then have 

In the important  special  caee  where the ;. a r e  o r thonormal  i. e.. orthogonal unit 

vec tors ,  we have / 1 if i=j  

. * cis* = 6. 
j i j  

(D. 5 1  

Substituting rquatian D. 5 in equation D. 3 we have (for or thonormal  basis v e c t o r s )  

It ia convenient to define a function 6 . .  that h a s  th i s  property. i .  e.. 
1J 

It can be seen  that the role  of the function 6. .  i s  to  se lec t  one of the t e r m s  of a 
1J 

summation. i. e.. 

6 . .  = , 
11 

- 

v.6.. = v. 
j J ' J  1 

1 if i=j 

(D. 4 )  

0 tf ifj 
I 

F r o m  the defining equation D. 4. we c a n  s e e  that  6. .  is real ly  a m a t r i x  
1J 

known a s  the Kronecker delta. Evidently i f  a s e t  of a. f o n n  an or thonormal  h a s i s  

then 

( t e n r o t  of rank two) and is in fact the identity m a t r i x  

I.. = 6. 
11 ~j 



To introduce the Dirac delta function, it ia convenient to define the unit atep 

function 10 for x c o 

With it we can exprerr  any integral over finite l h i t r  a r  an integral over 

the whole x-win,  i. e.. 

Conrider now the integral 

where h i s  a small length. This we can write in terms of the mean value of the 

function f(x) 

where 

Taking the limit a s  h + 0 

if f(xf ie continuous at  x = 0. 



We can  now define 

which ie the Dirac delta function. 

Using this  definition, we can show the following proper t i es  of b(x). 

(iii)  

I 0 f o r x f O  

6(x) = 
c for x = 0 

(D. 9) 

(D. 10) 

(D. 1 1 )  

(iv) 6 ( x )  = 6 ( - X )  (D. 12) 

Proof:  - 
We esrent ial ly  wish to show that the F o u r i e r  t r a n s f o r m  of b(x) i s  unity. 

F r o m  the definition. 

We now take the inverse  t rans form to get 

f rom which the des i red  resu l t  follows by  taking the limit. 

where  g(xi) = 0. 



It i s  this  property that is the c la im to fame of 6(x). Some important  

spec ia l  c a s e s  a r e  

(D. 17) 

The s imi la r i ty  of 6(x -a) and 6 . .  is apparent  f rom the above r e l a t ~ o n s .  We 
'J . 

s e e  that it i s  a property of 6(x -a) to  se lec t  the value of f (x )  a t  x = a by in tegra t ing  

over  x. i. e..  

In turn, 6 sa lec t s  the  value of f .  a t  i = j by s u m m i n g  over  j. i. e . .  
lj J 

The two a r e  ent i rely equivalent. Indeed kt i s  possible  to define 6(x - a )  in  

t e r m s  of 6.. by talung the l imi t  of infinitesimally spaced iadeces in  the summation. 
1J 

We can now make the extension to t h r e e  dimensions as follows. W e  would 

like a property of the s o r t  

f ( r ) 6 ( a ) d . ;  = f(0)  1 (D. 1 S) 

v 
or.  equivalently 

v 

We c a n  s e e  now how to wr i te  6(5  - a _ )  if we e x p r e s s  the integral  in  

Car tes ian  coordinates. 

i. e.. s ince 



i t  i s  c l e a r  that the function that does the job i s  

(vii) 

We can define the darivative of the delta function a s  follows. Since, a t  

l eas t  formally. 

we have 

or. by repeated application of integration by pa r t s  

We can get an  intuitive feeling for what b'(x) and 6"(x) look l ike by trying 

to draw them . F r o m  the definition and the definition of the derivat ive of a 

function we can nee that 

d 
b ( x )  -c , u (x) (D. 22) 

Let us  now imagine that U(x) had slightly rounded co rne r s  over  a n  interval  e, 

since the delta function i s  the derivative of the above, we can  get it  by plotting 

the slope of the rounded U(x). 



We differentiate that in a s imilar manner to get 

(lim a s  c + 0) 

and 

(lim a s  c + 0 )  

These we can use to express  any function that satisf ies  relatively weak 

conditions that need not concern us here,as a ser ies  of derivatives of the delta 

function. i. r. . 

where 



m 

fn =I_ xnf (x) dx (D. 2 4 )  

are  the various moments of f(x) about x = 0.  We can make a plausibility 

argument at this point a s  to the validity of this expansion a s  a representation of 

f(x). If we multiply both sides of the equation by xm and integrate over the 

x - axis we get 

but 

where bmn is  the Kronecker delta. Therefore we must have 

which is how we defined fm. We have therefore reduced the problem to showing 

that two functions (subject to ce,rtain restrictions) a r e  equal if all their moments 

a re  equal. which is a plausible statement. As an additional llproof", compare 

the Fourier tranrform of both sides of cquation D. 23 and 012 of Appendix A.  

That, in fact. is  the easiest way to see whether it i s  possible to represent a 

function f(x) in terms of an expansion of the type given by equation D. 23.  in 

particular. if the Fourier transform of f(x) can be represented a s  a series of 

integral powers of k. 

To those familiar in multipole expansions. this is exactly what we have 

done. A glance at the picture of bl(x) showo that it i s  dipole, whereas f, is the 

dipole moment of f(x) about the origin. etc. 

The extension to higher dimensions i s  straight forward. In particular a 

function f(x_), localized about x = 0 can be expanded in a ser ies  

(D. 2 5 )  



where 

a re  the various moments of f(5) about the o r i g i n ' h n g  each diredmn. 

To demonmtrate how this machinery can be very useful. let us consider 

a specific problem. Let us consider an f(x) which is localized about the origin 

and bounded by a constant. 

f(x) = 0 for 1x1 > a  

f(x) < X 

Let us suppose we wish to calculate the integral 

where G ( x )  has a strong maximum at xo. 

It is  very easy to see that such a thing cannot be calculated in the general case. 

We can approximate the answer. however. in the following way. Substituting our 

delta function expansion for f(x) we get 

therefore 

where 



i s  the nth derivative of G(x) evaluated at  the origin. 

Let us now make the assumption that G(x) goes to zero for large distances 

from i ts  maximum like 

Cb 
C(x) - - for large Ix-xo I; r z 1 

l x - 3  I r  
then 

and 

We can also make an upper bound estimate for f a s  follows. n 

That means that the t e n n s  in the ser ies  go like 

and the seriem converges since i t  ie bounded term by t e n n  by 

provided 

which we a r e  assuming for the purposes of this discussion. 

Taking the f i rs t  few terms. we get (let r = 1: the worst case)  

I = ~ G ( o )  + ~ , c ~ ( o )  ~ ~ . G W ( O )  O ( ~ L  13 
Jb 

If x, i s  a few times a we can see  that we have a very good estimate for the inte - 
gral. (If x, = 10a, the e r r o r  after  three t e n n s  i s  of the order of 0.01%). ~n 



atldition wc. Rrc. that the exact dctailn of f (x )  do not affect the. n~,lution t n ~ l  .trr 

not needed. Indeed we can  often es t imate  o r  m e a s u r e  the moments  of a function 

without knowing i t s  exact  form. In part icular .  if f(x) is a n  even f u n c t ~ f ~ n  of x. 

i.e.. if 

f(x) = f(-x) 

a l l  the odd moments  vanish identically and we have 

(-  0.001% if x, = 10a. not bad f o r  just two t e r m s !  ) 

Problems  

D. 1 P r o v e  equation D. 14. Hint: prove D. 17 f i rs t .  

D. 2 Prove  the Four ie r  t rans form formula. i. e.. if 

then 

by d i rec t  substitution, Hint: Careful with integration variables!  

D. 3 P r o v e  Parseval 'rr theorems  (equations A. 11 and A. 12) by d i rec t  substrtution. 

D. 4 F r o m  Maxwell 's equations we have that. f o r  a s ta t ionary charge density 

where  #(:) is the e lec t ros ta t i c  potential. If the charge density is confined to a 

region 151 < a and in addition has no net charge. i. e.. 



but has a dipole moment along the z - axis  given by 

with a l l  other moments equal to zero. i. e. 

for (k. I, m) # (0, 0. 1). find the potential b(1) for > a. 

D. 5 Find the behavior of #(f) in the previous problem if I d a /  ccl, and 

but 



APPENDIX E: Newton's  method. 

Cons ider  a r o o t  x = % of the  equation 

f ( x ) = O  , 

w h e r e  f (x )  i s  wel l-behaved i n  the  vicini ty  of x = +. 

If we expand f ( x )  i n  the vicini ty  of the root ,  we have 

f ( + , )  = f (x )  + (+, - X) f l ( x )  + o[(% - x)= f l ' (x ) ]  

o r ,  s i n c e  f(%) = 0, we  have 

provided f ' ( x )  f 0. Consequently, i n  the vicini ty  of x = x, we have, 

% - X -  r(x) 
f ' ( x )  ' 

Equation E. 2 can  s e r v e  a s  the b a s i s  of a v e r y  eff ic ient  i t e r a t i v e  s c h e m e ,  1. e .  

w h e r e  f(") = f[x(")] and f"") = f ' [ ~ ( ~ ) ] ,  known a s  Newton's method. Using equation E. 3 

and a n  in i t i a l  g u e s s  x ( O ) ,  we obtain x(' ). F r o m  x(' ) we obtain J C ( ~ ) ,  e tc .  T h i s  sequence  

usual ly c o n v e r g e s  e x t r e m e l y  rapidly to the r o o t  %. 

Example  E. 1. S q u a r e  r o o t  a lgor i thm.  

W e  have 

T h e r e f o r e  



F o r  a = 2, and a n  ini t ial  guess  of X ( O )  = 1 we have 

X ( 0 )  = 1 . 0  

x(' ) = 1. 50 

x ( ~ )  = 1. 4167 

x ( ~ )  = 1.414216 

x ( ~ )  = 1.41421356 , 

which i s  equal to f i  to a s  many places.  

Quite frequently, i t  may be advantageous to avoid having to evaluate both f (x)  and 

f l ( x )  a t  every  i terat ion of equation E. 3 ,  by using two success ive  es t imates  of f(x) to obtain 

an  es t imate  for  f ' (x) ,  i. e. 

Substituting E. 4 in E. 3, we then have, 

The i te ra t ive  algori thm based on E. 5 i s  usually r e f e r r ed  to a s  the chord method. Note, 

that  i t  requi res  two guesses ,  x(') and x") to s t a r t .  

Example E. 2.  Energy leve ls  of a rectangular  potential well. 

We must  solve equations 4. 59 

cot  5 = 5 
4 n  

; even pari ty 

tan 5 = ; odd par i ty  . 
4- 

Useful to sca le  5 = px. This  yields 

f (XI  = (1 - xa) l"  cos  px - x sin px = o (E.  6a) 



fo(*) = (1 - xa)'" s i n p x  + x c o s  px = o , 

where we have multiplied by the denominators to avoid infinities. 

We f i r s t  solve for the lowest eigenvalue 5, = p+, for  p = = 5.4772. 

and a s  a second guess,  using 4. 62 

We then i terate,  fo r  the lowest eigenvalue 

F o r  the next even eigenvalue, we have 

and a s  a second guess,  

= 0. 7275 5,  = 2(p + 1) 

We then i tera te  to obtain 

F o r  the lowest odd eigenvalue, we have 

fl = x p )  = = 0.5736 . 
B 

F o r  the next est imate,  we have 

- 0.4850 . 

E . 3  

(E. 6b) 

We now i t e ra t e  for XI, 



F o r  the next  h igher  odd eigenvalue, we have 

c3 a 2n 3 do) " = 1. 1471 . P 

Thi s  value, however,  i s  g r e a t e r  than unity and the rad ica l  in equation E. 6b will be negative. 

So, we wil l  use  &) = 0.99  and J&' = 0. 95 just  to  s t a r t  the i t e ra t ion .  We then have, 

This  work  i s  g r ea t l y  faci l i ta ted if a p rog ramab le  ca lcu la tor  ( o r  a computer )  i s  avai lable.  



Appendix F: Electromagnetic fields. 

F. 1. The electr ic  and magnetic fields. 

The electromagnetic field is described by s ix  sca la r  fields, the th ree  components of the 

electr ic  field 

= (dx. dy, dz)  - 
and the th ree  components of the magnetic field 

B = (Bx, By, Bz) . - 

These fields e x e r t  a fo rce  on a moving charge qc, given by 

F = q c ( g + 2 X g )  , - 
(Coulomb force)  where & i s  the charge velocity. 

In the MKSA system of units, the fo rce  i s  measured In Newtons, 

[F] = Newton - 1 k g .  mete r / seca  

= lob dynes 

(= weight 01 0.  102 by) , 

the electr ic  field in  Volts per  meter ,  

['I = Volts /meter  , 

the magnetic field in  Webers per  square mete r ,  

[B] = weber /mete ra  1 Newton/ampere . m e t e r  

= lo4 gauss , 

(note that a Weber i s  a unit of magnetic flux), the charge In Coulombs 

f q  ] = Coulomb Newton. meter /Volt  , 

and the cur ren t  in amperes  

[lc] = ampere  Coulomb/sec . 

Charge i s  conserved, and a s  a consequence, charge dens&y 

pc = pc(z, t) Coulombs/m3 , 

and cur ren t  density 

Jc = ic(x, t )  amperes /mete ra  , 

obey a local conservation equation, 

a 5 pc(5,t) + +- X c -  (x.t) = 0 . - 

F. 2. Maxwell 's equations. 

(F. l a )  

(F.  l b )  

(F .  2) 

( F .  3a)  

(F. 3b) 

(F. 3c)  

(F. 3d) 

(F. 3e)  

(F. 4a) 

(F. 4b) 

The electr ic  and magnetic fields a r e  related to the charge and cur ren t  density by means  

of Maxwell's equations, 



a - .  1 s = r  ax - 0 Pc  

a - x  q = -  a 
ax z - a  
- a a = o  ax ' - 

a 
ca 

where ca i s  the square of the speed of light, 

c = 2.998 x lo8 m / s e c  

and eo i s  the permittivity of vacuum and equal to 

# eo = 8. 854 x 10-la F a r a d / m e t e r  , 

4 ~ r s , c ~  e lo7 F a r a d .  mete rs / seca  . 
such that, 

(E'. 6a) 

( F .  6b) 

(F. 6c) 

(F. 6d) 

I t  may seem strange that equation F.9  i s  written a s  a definition. T h e r e  exis ts  an a rb i t ra r i -  

ness ,  however, in the scale  of the units in which we measure  electromagnetic qualities which 

i s  removed by equation F. 9. This  constant of proportionality r e l a t e 9  electromagnetic quantities 

and mechanical forces. F o r  example, the force between two point charges ql, qp spaced by a 

distance r ,  i s  given by 

(F. 10) 

t in  much the same way a s  we have another a rb i t ra ry  constant G to relate  our  units of m a s s  

to our units of force,  i. e.  f o r  two point m a s s e s  m l ,  ma 

(F. 11) 

If the units of fo rce  and charge a r e  chosen independently, then we have no choice about 

1 / 4 ~ & ~ ,  just a s  if the units of force and m a s s  a r e  chosen independently, we have no choice 

about the gravitational constant. To  claim that we have no r ight  to assign a r b i t r a r y  units to  

charge, i. e. Coulombs, a s  i s  done in the c .g .  s.  (Gaussian) electromagnetic units since they 

a r e  related by the Coulomb force,  i s  equivalent to claiming that we have no business in  

assigning a r b i t r a r y  units to mass since it i s  related to fo rce  and distance through the 

gravitational force. 

'A Farad  i s  the unit of capacitance given by 

1 Farad  = 1 Goulomb/Volt 

'G = 6. 673 x 10-l1 Nt .  metersa/kga 



F. 3 .  The electromagnetic potentials. 

The electr ic  and magnetic fields can be solved in t e r m s  of the charge and cur ren t  

density through the use of the electromagnetic potentials. More specifically, we define a 

s c a l a r  potential 

rp = v(2, t) Volts , 

and a vector  potential 

4 = & (2, t )  Weberslmeter  , 

in  t e r m s  of which, 

& = - a  - a A a x c p - T i  - ( F .  12a) 

and 

,Y= =a - a x X A  . (I?. 12b) 

It should be noted that equations F .  12a and F. 1Lb deflne a unique and Q f rom a 

given cp and A. Interestingly enough the converse i s  not true. In part icular ,  the t ransfor-  

mation of cp and into a new c p '  and A' glven by 

a 
q ' = C p - ~ x  ( F .  13a) 

and 
a A 1 = A + - X  , - - (F. 13b) 
ax 

f o r  any sca la r  function ~ ( 5 ,  t ) ,  leaves and 13 unchanged. T r y  it! Such a transformation 

i s  called a gauge transformation. 

We can now solve for  rp and A, in t e r m s  of pc and &, using the Maxwell equations. 

In part icular ,  f rom the divergence of equation, we have, 

(F. 14a) 

The c u r l  and divergence a equations a r e  identically satisfied, and the c u r l  A3 yields 

We can  express  the lef t  hand side using the vector  identity ( see  Appendix G )  

to obtain 

(F. 14b) 

We now note that the degree of f reedom afforded to us by our choice of gauge (through the 



# gauge transformation equations F. 13) allows us  to s e t  

See  problem F. 4. Substituting F. 15 i n  F. 1% and F. 14b then yields 

and 

( F .  15) 

(F. 16a) 

(F. 16b) 

In other  words the fields rp and & obey wave equations with source  s t rengths p /co and 

&/e, ca. These c a n  be solved using a Green ' s  function solution to yield 

and 

where t '  i s  the retarded t ime 

1  t ' =  t - -  . I -  x - x '  - 1 .  

(F. 17a) 

(F. 17b) 

(F. 1 7 c )  

F. 4. Electr ic  fields in  mat te r .  

Consider a neutral  a tom sitting a t  the origin. 

I t s  total charge (Z r atomic number),  

i s  of course  z e r o  (neutral  atom). If the electrons a r e  symmetr ical ly  distributed around the 

nucleus, i t s  dipole moment 

( F .  1 8 )  

i s  a l so  zero, since pc(z) = pc(- 2). 

Imagine now that we turn on a n  electr ic  field along, say, the z-direction. This will 

 quati ti on F. 15 is called the Lorentz gauge. 



resu l t  i n  a tendency f o r  the nucleus (positively charged) to move along g, and i n  a tendency 

f o r  the electrons to move along the opposite direct ions 

resulting in  a n  asymmetr ic  distribution p '  (x) of e lectrons about the nucleus. Now the dipole 
C - 

moment i s  no longer  zero.  In part icular ,  we will have a non-zero component along the 

z-direction (direction of g), 

where, to compute the integral,  we have shifted the origin to the new position of the nucleus. 

To lowest o rder  in  the electr ic  field strength, one finds that the induced dipole moment 

i s  proport ional  to the magnitude of g and, f o r  a n  originally symmetr ic  distribution of charge, 

a l so  along the direction of g. We can  express  this a s  a vector  proportionality equation 

d = e 0 a g ,  - (F. 1 9 )  

where o i s  a constant, with dimensions of volume, called the polariaability of the atom. 

The dipole moment 2 has units of charge t imes displacement (distance) and we can wri te  

i t  a s  

d = q 6  . - c- (F. 20) 

If qc = Ze, the magnitude of the positive ( o r  negative) charge, we see  that -&  i s  the 

average net  displacement of the electrons f r o m  the nucleus. 

Consider now a piece of mate r ia l  which need not be homogeneous and i s  exposed to a n  

electr ic  field which may not be uniform. Then the induced dipole moment will va ry  f rom one 

location to another. We may think of the local  dipole moment  p e r  unit volume a s  a vector  

field, called the polarization field and given by 

c =  N d =  Nq 6 c- ' (F. 2 1) 

where  N i s  equal to the number of atoms p e r  unit volume. 

Consider next a paral le l  plate  capacitor formed by two conducting plates  charged to a 

surface charge of T u Coulombs p e r  unit a r e a  on the top and bottom plate respectively. 



This  resul ts  in  an electr ic  field inside the capacitor,  given by 

If we now introduce a s lab of mate r ia l  in between the two plates, i t  will be polarized in 

response to the electr ic  field. This  will r esu l t  in a net  displacement b of the positive 

charges f r o m  the negative charges leaving a net  positive charge on the upper surface and a 

net  negative charge on the lower surface. This  i s  sketched below. 

The induced surface charges on the mate r ia l  a r e  called polarization charges which we will 

denote by u pol. It can be seen that the electr ic  field inside the mate r ia l  i s  now decreased 

and given by 
0 

f r e e  - Opal 
'inside = E o ( F .  2 2 )  

where the subscript  ' f ree '  i s  used to separate  the t w ~  types of charge. 

The polarization charge i s  now given by the total displaced charge per  unit volume, 

t imes the displacement thickness 6, i. e. 

opal = (Nqc) 6 , 

this, however, we recognize a s  the magnitude of the polarization field on the surface of the 

mater ial ,  i. e. 

= ("surface 

F o r  a homogeneous mater ial ,  however, the polarization field will be uniform and we can wr i te  

0 = B .  
pol 

Substituting in  equation F. 22, we then have 

'free - B 

'inside = E o (F.  23) 

Equation F. 23 motivates the definition of a new field, called the displacement field 8, 



defined by 

& " " j + g _  . - 

Evidently, the displacement field inside the dielectr ic  i s  given by 

'inside = 'free * 

In other  words, the magnitude of the displacement field i s  equal to the e lec t r ic  field we 

would have had ( t imes e o )  if the dielectr ic  was not there.  

Using Gauss '  theorem, one can show that the divergence of the displacement field i s  

equal to the ( f ree )  charge density, i .  e .  

- .  a ,= 
ax . 

(F. 25) 

Now since the induced local  dipole moment i s  proportional to g, we mus t  a l so  have that 

the polarization field i s  a l so  proportional to the local  cS and that we should be  able to wri te  

a local  proportionality equation, 

(F. 26) 

The constant xE i s  dimensionless and i s  called the electr ic  susceptibility. 

It would appear  that we could combine equations F. 19, F. 21 and F. 26 to compute x E .  
The situation, however, i s  a bit  m o r e  complicated because the local  e lectr ic  field i s  

a l tered by the neighboring polarization charges.  The situation i s  even m o r e  complicated by 

the fac t  that in a c rys ta l ,  fo r  example, which i s  not isotropic, B_ and g will not even be  

parallel,  i. e. xE i s  a tensor .  In a gas, however, where we can neglect a l l  these effects, 

we have 

(xE) - N a  , (F. 27) 
gas  

whereas in  isotropic condensed mat te r  (condensed noble gases  f o r  example) we have # 

so  that, 

known a s  the Clausius-Mossoti equation, which reduces to F. 27 f o r  Na << 1. 

We can  combine equations F. 24  and F. 26 to obtain 

4 = co(1 + xE) g 
o r ,  combining the constants,  

' = E g  - 
where the constant 

E s ~ o ( l  f x E )  , 

(F. 28) 

(F. 29) 

(F. 30) 



i s  called the permit ivi ty .  The rat io  

R = c =  1 i - x  
€0 E 

is called the dielectr ic  constant and is the quantity frequently tabulated f o r  dielectr ics .  

Before leaving this section, we should note that a t ime  varying polarization field yields 

a cur ren t  density given by ( see  equation) 

a 
ipol = 5 8- = N q c 6  , (F. 32)  

called polar izat ion current .  

F. 5. Magnetic f ie lds  in  matter .  

The interaction of a magnetic field with a n  atom i s  m o r e  complicated than that of the 

electr ic  field because i t  i s  the resu l t  of three mechanisms: 

( i )  interaction with the magnetic moment  ) J ~  associated with the orbital motion of 

the electrons,  

(ii) interaction with the magnetic moment yS associated with the electron spin, 

and 

(iii)  interaction with the nuclear  magnetic moment  & 
N ' 

In a part icular  situation these interactions may  oppose each other  so that a macroscopic 

sample may tend to ei ther  weaken o r  strengthen a n  external field depending on the mate r ia l  

and i t s  state. 

The interact ion of the orbi tal  angular momentum of the electrons with an external mag- 

netic field can be understood a s  follows. If we assume that the external  magnetic field i s  

uniform over the extent of the atom, we can approximate the vector  potential by 

1 
A(lf,t) " - 2  (x xg) . (F. 33)  

See problem F. 10. F r o m  the Hamiltonian for  a charged par t i c le  i n  an electromagnetic field 

(problem 1. 7), we have 

H = 1 2m (2 - qc&) - (p - qc&) qCCP - (F. 34) 

If we now choose the z-axis  to l i e  along c ,  we have, in  cylindrical coordinates ( see  appendix 

and the Hamiltonian becomes 

(F. 35) 

( F .  36) 



p* and p a r e  the conjugate momenta to =, 9 .inti e, classically g i v e n  by where p 
Z 

p, = m i  (F. 37a) 

1 pep = rn ra+ -t - q ra R 
L 2 C L Z  ( F .  37b) 

p z = m b  . (F. 37c) 

There  i s  a magnetic (dipole) moment associated with the orbital motion of the charge 

qc, given by the circulating c u r r e n t  t imes the orb i t  a rea ,  which i s  normal  to the orbit, i. e 

p, = c u r r e n t .  a r e a  = q A . nra c 2n I 

1 a *  r ,  = q c r / ? J  . 

Substituting f o r  r: f r o m  F. 37b, we then have 

(F. 38) 

( F .  39) 

Now since H # H(q),  we have that 

o r  p+ i s  a constant of the motion. Therefore a s  we increase  the magnetic field f rom zero 

to a final value BZ, the magnetic moment decreases  by an amount 

9: - 6 p z  = - 4m r1" Bz 
(F. 40) 

since p = constant.' Note that the change in p i s  in the opposite direction to the change 
9 

in BZ f o r  both positive and negative charges.  

Now for  a spherically symmetr ic  atom, 

therefore we expect that f o r  each (spherically symmetr ic)  bound orbiting electron 

(F. 41) 

where qc = - e i s  the charge and m = m is the m a s s  of the electron. 

If we now define a magnetization field equal to the local magnetic dipole moment 

per  unit volume, i. e. 

& = N E ,  (F. 42) 

where N i s  the number of magnetic dipoles per  unit volumc, we see  that, a s  a resu l t  oT this 

effect, an external  magnetic field will r esu l t  in  a change in the local  magnetization in the 

opposite direction to a.  This  behavior i s  called diamagnetism. 

'note that p = Lz = (5 x p), = z-component of angular momentum. See a l so  problem 1. 5. 
9 

update 



The spin angular momentum 5 of the electron i s  associated with a magnetic dipole 

moment 
,!is = - ge(+ e 2 . (F. 41) 

where g is called the electron spin g-factor and found to be equal to ( see  problem F. 15) 

ge - 2.00 , (F. 44) 

and S i s  the spin angular momentum. The projection of 3 however, along a part icular  axls 

(say the z-axis) is res t r i c ted  f o r  an electron to the values 

1 S z = * - h  , 
2 ( F .  45) 

where h i s  Planck 's  constant divided by 21r. 

If we ignore the possible finite s ize  of the electron, this spin magnetic moment has a 

Hamiltonian in a magnetic field _a given by 

H s = -  &a!! ( F .  46) 

Compare this with the Hamiltonian of problem F. 13 and the discussion in problem F. 15. 

Consider now NS magnetic spin dipoles per  unit volume in thermal  equilibrium a t  a 

temperature T .  If we ignore mutual interaction effects and t rea t  them independently, we 

mus t  have that the probability of finding one paral le l  to (spin up) mus t  be proportional to 

+C(OBZlkBT 
prob ( t )  a e ( F .  47a) 

where C(, = I C c Z I ,  whereas fo r  spin down 

- &BZ/kBT 
prob (0 a e ( F .  47b) 

Combining these two, we have that the fraction per unit volume in the spin up s tate  mus t  be 

given by 

N t  
 lo BZ lkBT 

e 
- 2  (F. 48a) 

N~ e 
b B z / k B T  + e - lBz IkBT ' 

whereas the fraction per  unit volume i n  the spin down state, # 

(F. 48b) 

Correspondingly, the magnetic dipole moment per  unit volume (magnetization field) i s  given by 

' ~ o t e  that we have used the quantum mechanical resu l t  that f o r  an electron these a r e  the only 

two possibilities.  A purely c lass ica l  calculation would have to allow f o r  a random dipole 

orientation. 



where, for  an electron ( s e e  equation F. 13) 

( F .  50) k Z g ( L  e 2me) Z 

since SZ = f h/2.  

We recognize the temperature dependent par t  of equation F. 49 as the hyperbolic tangent, 

(F .  51) 

Now f o r  weak magnetic fields, &,Rz << k T ( see  problem F. 17) we have tanh x - x, so that B 

( F .  52) 

It can be seen that the direction of the magnetization i s  along Bz, i. e. strengthens the 

magnetic field. This  behavior of mat te r  i s  called paramagnet ism. '  Note that a s  B 

increases,  o r  T decreases ,  we reach  a saturation magnetization (tanh x - 1)  given by 

(nz)sat a NSPo . (F. 53) 

The quantity k ,  the absolute value of the electron spin moment projection i s  very  

nearly equal to the Bohr magneton 

- eh 
P B = T =  9 . 2 7  X a m p e r e .  metera . (F. 54) 

Matter displays both kinds of behavior and i s  found to be diamagnetic o r  paramagnetic 

depending on which of the two effects i s  s t ronger .  One should also mention that some 

mater ia l s  display a l a rge  scale  magnetization whose behavior i s  called ferromagnetic. In 

these mater ials ,  the spin dipole moments can align each other  and we end up with l a rge  

scale  net magnetization fields that extend to domain boundaries. In that case  we a r e  not 

aligning a single electron spin moment when we turn on a n  external magnetic field, but the 

magnetization field of a region in the mater ial .  The net effect i s  a response that can be 

severa l  thousand t imes s t ronger  than paramagnetism. 

In an analogous fashion to the c a s e  of dielectr ics  in  electr ic  fields one defines a n  

auxiliary field 

Rc E _ a -  2 - 2 1 .  (F. 55) 
C, ca 

Note that the c u r l  of the magnetization field i s  a cur ren t  density, i. e. 

a 
X g = J m a g ,  (F. 56) 

which can be identified a s  the c u r r e n t  density that would be required in  the magnetic dipoles 

'Mnemonic rule: paramagnet ism 3 spins para l le l  to B. 



to produce the magnetization field 3. Correspondingly we can separa te  the total current 

i n  a ma te r i a l  into three types: 

AOnd = externally introduced conduction cu r ren t  

- a 
L a g  

= - x & = magnetization cu r ren t  ax 
i p o l  e = polarization cu r ren t  

and correspondingly consider the total cu r ren t  a s  the sum, i. e. 

If we introduce these quantities into Maxwell 's equations we have 

(F. 57) 

(F. 5Ha) 

- a a x g = - - B  
at  - (F. 58b) ax 

(F. 58c) 

(F. 58d) 

or ,  substituting the 4 and ( fields, 

a - ax ' 8  = Pfree (F. 59a) 

(F. 59b) 

(F. 59c) 

(F. 59d) 

which may look s impler  but has of course  swept the difficulty of the mater ia l  response in 

the auxiliary fields 4 and &'. 



PF. I 

Prob lems  

F. 1 Assume that the electr ic  and magnetic fields obey periodic boundary conditions a t  the 

edges of a box 

1x1 < L x / 2 ,  I Y l  < L y / 2 .  Izl  . 
i. e. 

8(- Lx/2, y, 2) = 9 L x / 2 ,  y. 2 )  - 

K(x,Y. - LZ/2)  = ~ ( x , Y . L ~ / ~ )  

and s imilar ly f o r  g. Show that both fields can be expressed a s  Four ie r  s e r i e s  of 

the f o r m  2 

I ik .x 
5 ( t )  6 k, fi k, a 

and 

where b i s  a unit vector along the wavenumber k and ^e a r e  the two k ,o  k.1' k,n 
perpendicular unit vectors  such that 

^e x b = '6 (along k) k, 1 k, a k, 0 

and where 

and 



Problems  (continued) -- 

Hint: Show that f o r  k and k' whose components I..., k! a r e  given by 
1 1  

ki, ki = ni (2) ; ni = O ,  * I ,  * 2 , .  . . 

d3x - = (Volume) 6 k, k '  
- - 

Volume 

F . 2  Assuming that the charge and cur ren t  densi t ies  a l so  obey periodic boundary conditions 

a t  the edges of the same box, show that 

P = 1 pk(t) - eik.f  

k 
and 

- 

and that the equation of charge conservation becomes 

p' + ik j = 0 , for a l l  admissible k 
k - - k, 0 

where k2 = ka + k2 + k2 .  Note the form uf the divergence in this representation 
x y  z 

and the fact  that the charge conservation equation does not r e s t r i c t  the two t ransverse  

components 
j&, 1 jk, a 

F. 3 Show that the Maxwell equations fo r  the Four ie r  components of & and R reduce to 

algebraic equations, given by 

1 
i k d  = - p  , 1 k R  = O  k , ~  €0 k - k, 0 

- ik 6 = %,a , =kc2 8 = - , + ;  k,1 €0 J&,a &,a 

ik 6 = 1 .  - lkca B = - 
A,@ , &,a Eo Jk#l 

Note that these a r e  s i x  independent equations fo r  & unknowns, not e&@ a s  the vector 

f o r m  of the Maxwell equations i n  (5, t )  space might lead you to believe. 

F. 4 Assume that a particular choice rp' and A' yielded 

We now transform these using equations F. 13. Show that 

-L& + A . * = o  
a a t  8 5  - 



Problems  (continued) 

if we chose x such that  

[Note that this  is a wave equation f o r  x with a source  +, whose solution is given by 

where 

You don' t  have to show this! ] 

F. 5 If we separa te  the local  charge density into externally introduced f r e e  charges and 

polarized bound charges, i. e. 

show that the divergence of the polarization field i s  given by, 

in  general  

A dipole can be idealized a s  a pa i r  of charges f qc, separated by a vector  

5 = d/qc,  directed f r o m  the negative charge to the positive charge,  in  the l imit  of 

5 + 0, keeping d constant. 

F. 6 Show that a n  idealized stationary dipole generates  a n  electrostat ic  potential given by 

where rpo i s  the electrostat ic  potential generated by a unit charge, i. e .  

1 
T" = q r  

and that therefore 



F. 7 Using the Lagrangian f o r  charged part ic les  in  a constant electromagnetic field (equation 

1.38), show that the Lagrangian f o r  a n  idealized dipole i n  a constant electromagnetic 

field i s  given by 

1 
~ ( ~ j $ $ ; t )  = Z m [ f  l a  - d .  - a rp + & A + & . ( ~ . - - ) A  a - ax ax - 

and compute the conjugate momenta 

Note that we a r e  neglecting the effect of the dipole on cp and A. - 

F. 8 Show that, in this approximation, the Hamiltonian for  the dipole i s  given by 

1 H I -  a a 
12 - (2. & ) & l a  + d .  5 ep  , - 

that the energy of a stationary dipole (&PO) i s  given by 

E =  - d . d  - , 

and that i t  feels  a torque given by 

T = d X g  - - 

F. 9 If & = 0, derive the equations of motion f o r  the cen te r  of m a s s  of the dipole, i. e 

and show that i t  feels  a force given by 

a 
F = (d.$2 - 

a a a a a 
Hint: 3 (2.1) 2 x (- x 1) + x (- x 2) + ( X . - - ) V  + (x.-) ax ax ax - ax 2 . 

F. 10 Show that the vector  potential of equation F. 33 yields the c o r r e c t  magnetic field, if 

B - 
a a a a a Hint: - X ( 2  X 1) u(- - v) - ~ ( z  ' 2) + (x. z ) ~  - (2- $1 . 
ax ax - - 

F. 11 Show that the Hamiltonian of equation F.34 can be written, f o r  a uniform magnetic field 

where 

L - x x p  - 
is the (orbital) angular momentum. 



F. 12 F r o m  the definition of the orbi tal  magnetic dipole moment (equation F. 39)  show that, 

in general ,  

r5.5 - (x.gB)21 2 

where = 5 x E i s  the (orbi tal)  angular momentum, and gB i s  a unit vector  in the 

direct ion of E. 

Hint: Show that p+ = L = z-component of angular momentum in equation F .  39. 

F. 13 Show that  if we increase  a uniform magnetic field f r o m  zero  to some final value R, 
the change in the Hamiltonian, a s  a resu l t  of the orbi tal  motion of a charge qc, i s  

given by 

H I = - y  
qa 

B - 2  [ ( x . x ) B  - ( x E ) ~ ]  . L'- 8 m  

F .  14 A magnetic dipole 14 can be idealized a s  the product of the c u r r e n t  in a small  loop 

t imes the a r e a  of the loop, in the l imi t  of ze ro  a r e a  keeping the product constant. 

Show that the vector  potential generated by such a idealized dipole i s  given by 

F. 15 Electron spin magnetic moment. It  should not be surpris ing that there  i s  a need f o r  a 

proportionality constant g to relate  the dipole moment to the angular momentum. 

The magnetic dipole moment  i s  related to the distribution of cur ren t  density, whereas 

the angular momentum i s  a function of the distribution of m a s s .  F o r  example compute 

the g-factor fo r  the magnetic moment  p 

of a uniformly dense  sphere  of m a s s  m whose charge, a s  a r e s u l t  of e lectrostat ic  

repulsive forces, res ides  uniformly on the surface.  
@a 

Answer: g = 5/3. 



Problems  (continued) 

F. 16 Derive the resul t  of equation ,F. 40 using Maxwell's equations. Consider a n  orbiting 

charge a t  ze ro  magnetic field and allow the field to r i s e  to i t s  final value. Integrate 

the resulting torque f r o m  the induced electr ic  field a s  a consequence of the c u r l  (g) 
equation. 

F. 17  Compute the magnetic field strength (give your answer in gauss )  such that 

a t  room temperature,  where pB i s  the Bohr magneton (equation F. 54). 



b p e n d i x  G: Useful vec to r  r e l a t ions  

G. 1. Vector  ident i t ies  

a G. 2. Different ia l  ident i t ies  $- = % + g L + gz =) ax a x  y ay 

Note a l s o  
a - . x  3 3 a - x x e o  

- a 1  
ax - ax 

(G. 10) 

(G. 11) 

(G. 12) 

(G. 13) 

(G. 14)  

G .  4. In teg ra l  ident i t ies  

0 
a 
rd If d 3 ~  i s  the  volume element ,  d S  i s  the  unit  outward n o r m a l  to the s u r f a c e  e l ement  
a ' and d 4  is the  counter-c lockwise  tangent  to the contour  C bounding the  s u r f a c e  5 we have; 



Dive rgence  theo rem:  

v S 

G r e e n ' s  1 s t  identi ty:  / d 3 z  (cp & + 2) r 
v 3 

G r e e n ' s  theorem:  /d3 f (go&.2  . &.%)  ax ax r 

v S 

S t o k e s ' s  t heo rem:  

S C 

(G. 15)  

(C. 16)  

(G. 17) 

(G. 18)  

(G. 19 )  

(G. 20) 

(G. 21) 



G. 4. Cartesian coordinate system 

Examples: 

a & + * e  & + g  & grad ( J , )  = 
J, = *ex ax Y B Y  z a z  

"x + 5 + 5 div (A) I -?- . A - ax - a x  ay az 



G .  5 .  Cylindrical coordinate s y s t e m  

d t = i d  
rP r p  

dB = - i d r  
rp L L 

d " e  0 

x = ^ e  r + ^ e  z - L L  Z 

d x = ^ e  r + i  r d r p + * e  d z  
L L  r p l  

a a = a + ;  L a + ;  - ax ~ a r ~  cprL arp a a z  

Examples: 

a - + = B  3+^e % + ;  3 
ax X ~ X  y a y  z a z  

a 1 a a A 
ax - aA Z - - A  = - [- (rA AL) + $1 + - 

r~ '5  a z 



C. 6 .  Spherical coordinate system 

Examples: 

a - x A = -  d e t ( &  a - a 
ax r2 sin 8 a9 

update 



Appendix H. The spherical  Bessel  functions. 

where 

The spherical  Bessel  functions provide the non-trivial solutioas to the equation 

9, f d p )  = f,(p) (H. l a )  

(H. lb )  

(H. l c )  

We can  eliminate the f i r s t  derivative t e r m  by a transformation of the dependent variable. 

Making the substitution 

F o r  4 = 0, we recognize the two solutions a s  the s ine and cosine of p, and therefore 

since f,, = go / p ,  we have 

- sin p 

- cos  p . 

These two solutions a r e  called respectively the fi = 0 regu la r  spherical  Bessel  function 

(finite a t  the origin), 
1 jo(x) = - sin p , (H. 5a) 
P 

and the .t = 0 i r regu la r  spherical  Besse l  function, o r  spherical  Neuman function (infinite 

a t  the origin), 
1 

% ( x )  = - cos p . (H. 5b) 
P 

To solve the equation for  A # 0, we note that the operator  Bfi can  be  factored into 

the product of two operators ,  i. e. 

This  motivates the definition of two differential operators  

+ d + a  
F . 8 = - -  

~ - " d  + A  . 
fi dp P 

(H. 7 )  
dp P ' 

We then have, f r o m  equations H. 6 and H. 7, the identity 

+ 
8,  FjS1 =;+I . 

-k 
If we now compute the r e v e r s e  product F;+~ we find by d i rec t  substitution that 



Consider now the fact  that 

+ 
and operate on both s ides of the equation with 

FA,1. This yields 

Using equation H. 8, we have, however, that 

+ + 
$1 ( F a - l  fa-1)  = (Fa-1 f a - I )  

+ and therefore we see  that if f Q - l  i s  an eigenfunction of BL, then FQ-l fl,l i s  a n  eigen- 

function of BQ. In other  words, 

+ 
=t-1  fQ-l = f Q  8 

0 r 

F; f t  = f A + l  , 

within a constant. Using equations H. 9 and H. 10 we then a l so  have, 

(H. 10) 

F i + l  F;-1 f k - l  = f g - l  

=;+I f a  = fa -1  . (H. 11) 

Using equation H. 10 and the solutions f o r  L=O we can now generate  a l l  the other  

solutions, in  part icular  

j a + ~  ( P )  = F; ja(p) (H, 12a) 

and 
f 

" Q + l ( ~ )  = Fa nQ(p) . 
The f i r s t  few of these a r e  given by 

(H. 12b) 

1 
jl(p) = 1- sin p - - cos  , 

Pa P 
(H. 13a) 

3 1 3 
j d ~ )  = (- - -) s i n p  - - =os 

p3 pa 
(H. 13b) 

and 

nl (p) = 1 cos  p + -1. sin p , P (H. 14a) 
pa 

The functions jQ(p) and nt(p)  can a l so  be expressed i n  t e r m s  of the cylindrical 

Bessel  functions of half-integer order ,  through the equations 

7r 
1 /2 112 

P = ( )  J L + I 1 2 ( ~ )  , ntlp) = (- 1)  (I) J - ( ~ + ~ / 2 ) ( p )  - (H. 15) 
2~ 



They possess  a n  asymptotic behavior in  the vicinity of the origin, given by (p G 4) 

(H. lba)  

(H. 16b) 

and become osci l la tory f o r  l a rge  p. In part icular ,  f o r  p 2 L(1+1), 

(H. 17) 

F o r  problems involving radial  travelling wave solutions, i t  i s  often convenient to intro- 

duce the spherical  Hankel functions, defined by 

(H. 18a) 

and 

h(-) = nI - i j  a a ' (H. l ab)  

which, of course, a r e  a l so  solutions of the original equation. T h e  f i r s t  few of these a r e  

given by 

1 
F r o m  the defining equations, i t  can be seen that 

1 
= - P (pa COS p - q a  sin p) (H. 20a) 

and 
1 

j, = - P (qa cos p + p a sin P )  , (H. 20b) 

where pa and qa a r e  polynomials of even o r  odd powers i n  p - l ,  of degree L and 

a- 1 respectively. Substitution of these expressions in  equation H. 18 then yields 

(H. 21)  

It  can  be  seen  that fo r  r e a l  p, ja(p) and na(p)  a r e  real ,  whereas 

(H. 22) 

The asymptotic behavior of the spherical  Hankel functions, f o r  l a r g e  p i s  given by 

i i ( p - i r / 2 )  

hf '(p) - [1 * i L(a+l), e (H. 23) 
Z P  P 

I t  should a l so  be mentioned that these functions a l so  solve the eigenvalue equation 

H. l a  with the opposite sign, if we replace p with ip in  the solutions, i. e. 

19 a f a ( ip)  = - fa( ip)  (H. 24) 



(H. 24') 

A word of caution! The various a r b i t r a r y  signs and phases f o r  the spherical  Bessel  

functions a r e  not universal.  The choices in  these lec tures  were  motivated by the goal of 

making Me analogy between the solutions of the one dimensional problem [sin,cos & eiikx] 

and the radial  problem [ je ,ne & h(*)] a s  explicit a s  possible. In mos t  references,  the 
I 

spherical  Neumann function na(p) i s  defined with the opposite sign, while the spherical  

Hankel functions of the f i r s t  and second kind a r e  related to the h f )  through the equations 

h(') = - i h y )  , a (H. 25) 

Other useful relations 

1 
n,, j,+l - j, = - 

pa 

1 jd n; - n,, j; = - 
pa 

(H. 26a) 

(H. 26b) 

(H. 26c) 

(H. 26d) 

(H. 26e) 

(H. 26f) 

(H. 26g) 

(H. 26h) 

(H. 26i) 



APPENDIX I. The auxiliary operator  Q in the hydrogen polarizability calcu- 

lation. 

Substituting 

we have . if Q = Q(x) only, 

ha 
QH, - & Q  [a,%] = - -  

2mr 
ca,val . 

Substituting i n  equation 8 .  58, we s e e  that the operator  Q must  satisfy the dif- 

ferent ial  equation 

ha - -  2m CQvago - 9 (Q$~)I  = 290 , ( I .  1) 
r 

where i s  the ground state  hydrogen a t o m  wavefunction. By dimensional 

analysis  we m u s t  have 

m a3, 
Q =' g ,  

ha 

where g i s  a dimensionless function. Substituting I. 2 into I .  1 we then have 

Now 

so  that I. 3 can be written a s  

1 
a ;C(vg) - (v~ . , )  + Z  h,vagl = (:)cose$o . 

Substituting 
- r / a o  

$0 loac e 

we have 
- r / %  A 

vqa a - 1 e 
a, 

and therefore 

By separation of variables  o r  otherwise, we can  s e e  that 

g = ~ ( P ) C O S  

where p = r /ao and 

where a p r ime  denotes differentiation with respec t  to p, o r  



The solution of equation 1. 6 which .leaves I. 1 finite a s  p - 0 and p -. m i s  given by 

so that 

a s  required by equation 8. 57. 

Reference: Landau and Lif shitz, Quantum Mechanics, section 76, problem 4. 



APPENDIX J: The Radiation Gauge. 

Using the t ransformation equations, 

and the choice 
t 

we have 

and 

cp1(2,t) = 0 . 

W e  now t rans form the fields again, using 

This  resu l t s  in a new vector  potential given by 

a 
A1'(2,  t )  = &'(E, t )  + ~ ' ( 5 ,  t)  . - 

whose divergence is zero,  s ince 

and 

( J .  l a )  

( J .  l b )  

s ince equation 5.4 i s  the solution of equation J,. 6 (inhomogeneous Laplace 's  

equation) by construction. 

The new s c a l a r  potential 

a ~" (2 ,  t )  = - - a b X ' ( ~ >  t )  

is a l so  ze ro  since, f r o m  Gauss '  l aw 

we have that ~ ' ( 5 ,  t )  i s  not, i n  fac t  a function of time, i. e . ,  



and therefore cp"(5 t)  r 0. 

Reference: J. D. Bjorken and S. D. Drell,  Relativistic Quantum Fields  (McGraw 

Hill, 1965), $14. 2. 



Lnd ex 
Page 1 
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