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I. CLASSICAL MECHANICS

1.1 The principle of stationary action.

Consider a system whose configuration at any time t can be described in

terms of N coordinates
qi(t) where 1 =1,2,3,.,., N.
These can be thought of as the components of an N-dimensional Vector*
qft) = [aa(t), a=(t), ..., gyl , (1. 1)

which is called the configuration of the system. The solution of the equations
of motion for the coordinates qi(t) describes the evolution of the configuration

vector g(t) in time, i.e.

qlt+st) = [qq (t+6t), qa(t+8t), ..., qN(t+6t)]

"

Ly (8) + Gy (8) &6t, ..... s oan(t) gt st) (1.2)

gft) + 4(t) st ,
where

dtt) = Lda (v, dale), ..., du(®)] . (1.3)

It is a remarkable fact that all of classical mechanics is derivable from a

unifying principle, the principle of stationary action (Hamilton's principle). The

principle of stationary action states that it is possible to define a scalar

fu.nction of the configuration vector q{t) and its time derivative _ci(t), i. e,

L = Lig, &t . (1.4)

called the Lagrangian of the system, such that the integral

gl =] Lig4.t)dt (1.5)
t

is an extremum (minimum or maximum), or stationary along the particular
path g{t), in the time interval t; < ¢ < t;, which describes the evolution of
the system. The integral of equation 1.5 is called the action and is a
functional of the path g{t), i.e., it assumes a particular value I{s_} for a
given (vector) function of time g{t) in the interval f, <t < tz. A functional
is richer in content than a function. A function assumed 2 particular value
for a given value (or set of values) of its independent variables. A functional

assumes a particular value for a given function (or set of functions), which

“Vectors will be denoted with underbars in these lectures.



serves as its independent variable.
The condition that the functional 1[3} is stationary along the particular
path g{t) implies that if we alter g{t) by small amount §&g(t) to obtain a

neighboring path, i.e.

gqft) » glt) + &qit) , (1.6a)
which goes through the endpoints of the original path, i.e.

8g(ty) = 8q(ta) = 0, (1. 6b)

:z('t) + Sc‘& )

the functional l{_q} remains unchanged to first order in &g. In other words,
51{g} = 1{q+sq} - 1fg} = 0(sg®) . (1.7

The requirement that the functional I{q}, the action in this case, be
stationary along the path g(t) is, in fact, sufficient to specify the path in the

time interval t; < t < tz, given the initial conditions
alt) = (1.8a)

dt) = & . (1.8b)

The particular path that solves the problem of extremizing the functicnal is

called the extremal.

1.



Example 1.1, The ballistic trajectory

Us

e

The configuration vector for this system is two dimensional, i.e.
gq(t) = [x(t), y(t)] (1.9}

The initial conditions specify

q(0) = {x(0), y(0)] = (0,0) {1.10a)
and
4(0) = [%(0), ¥(0)] = (v, cos&, vqsin8y)-. (1.10b)

The Lagrangian function in this case is given by
L(g,qt) = 5 & +7°) - mgy , (1.11)

where m is the mass of the ballistic object and g is the accelleration of

gravity, and the action integral is therefore given by

1{q} = m7-[§(i2 +y%) - gyldt . (1.12)
0
The end time tp is defined implicitly by the condition

y(ta) = 0. (1.13)

You can convince yourself that the parabolic trajectory
x(t) = (v cosBy)t (1. 14a)
y{t) = (Vo sinfy)t - F gt (1. 14b)

is the extremal of the action integral of equation 1.13. Try a few other

paths!



1.4

Given the Lagrangian function L(g, 4, t), the problem of determining
the extremal, i.e. the particular path g(t) that extremizes the action
integral of equation 1.5, is a topic of the Calculus of Variations. See
Appendix A. In particular, requiring that the variation vanish to first

order, we have

oL, 3L .
61{3}=7<@'63+;°6ﬂ>dt=0' (1.15)
t 3

where

oL _ {3L oL 8L

= ==, =, .... , — 1.16

8q <8q1' 99e an) (1.16)
and

2%;(9.{;, L ,—31'“). (1.17)

ag 8¢  8da 84

We can now integrate the second term in the integrand of equation 1.15 by parts

tz
9L 4 (8L
81 = = < = (=) losg(t) dt . (1.18)
; -[[aﬂ a <3§1>]

Since we now require that the action I{q} is stationary for an arbitrary

to obtain

variation of the path, we must have

al. d AL

8L _ 4 faL\ _ o | (1.19)
F] dt .

2 (Bﬂ>

Equation 1.19 is a vector equation which must hold for each component qi(t)

of the N-dimensional vector g{t}, i.e.,

2L 4 <___8L> =0 ,i=1,N (1.19Y
oq, dt .
i qu

Example 1.2 One-dimensional harmonic oscilator.

P e o O et
Consider a mass m suspended

by a spring with a spring constant

k in a gravitational field with an - k
acceleration g.

et}
x 1 5
J




The Lagrangian for this system is given by

Lix, %, t) =%m}22 —%kxa + mgx

Note that, in this example, the g vector is one-dimensional, i.e.

i

a(t)y = la:(t)] = [x(t)]

and the equation of motion is given by 1,19’

oL d (3L .
= - 5 {—l=mg - kx - mx= 0 ,

or

mx = - kx + mg ,

recognized as Newton's law (F = ma).

Example 1.3 Motion of two bodies subject to mutual gravitational force.

My

The Lagrangian for this system is given by

Gmxnb
P+im [z P +—>2D2 (1.20)
2 Mol I}—:a-fb]

1 .
L = 5 malﬁa

where G is the gravitational constant and m_, m, are the masses of the two

bodies. The g vector in this example is six-dimensional, i.e.,

"

9 ={q, 9, Ga, 9, 95, Gs)

1

(B Yoo 2. Xy, Yy 2} 7 (E %)

and the equations of motion are given by 1.19', for i = 1,6, which can be

written as two 3-vector eguations, i.e.,

3L d oL\ _
b T <—'> =0 (1.21a)
~—a 853

and

1.



oL d L
= - = [==) =0 , (1.21b)
e <a; >
or
. X, " %
mx = -G m_ my ma (1.22a)
and
. Xy - X, .
I‘n.b)_(b = - G mamb -I—Li—b—-z;i . (l.ZZb)

The Lagrangian for non-relativistic systems whose forces are derivable
from a potential U which is a function of g = (qy,qa,.. .,qN) only, and not of
_é, can be expressed as the difference between the kinetic energy K and the
potential energy U, i.e.,

L =K-U . (1.23)

and ‘can usually be written down by inspection. In fact, this is how the ap-

propriate Lagrangian was found for the systermns described in examples 1.1,

1.2 and 1.3.

Example 1,4 Find the frequency of oscillation of a - mass m constrained to

move in one dimension and connected to a rigid boundary by

means of two springs in series, with spring constants k,

and ko,

<——-‘\j.+3 —_— ’<—- XptX —->

Pl s

If we define x and y as the elongations of springs k; and kg respectively,

we have

K =
U =
and therefore

L=—;-m(:'<+ x})a-%(klx"‘ + key?) . (1.24)



The g vector for this system is two-dimensional and given by
gty = [x(t), y(t)] .

The equations of motion are

oL d /oL 4 :
i E(——.—> = - kx - m{x + 3;) = 0 (1.25a)
9x
and
oL d {oL . -
Ti—y_ - d_t<§> = - key - m(x +y)=0 . (1.25b)

Subtracting the two equations we have
kl}{: kg\/ (126)

which if we substitute in 1,25a yields

m(l-f-%)iiﬁ'klx:O

or
mx + kx = 0 (1.27a)
where
k; ka
= b2
k= r e (1.27b)

The system therefore behaves as if the mass was connected by means of
a single spring with a spring constant k given by 1.27b. The frequency of

oscillation is then given by

w = (c/m)t/?
as can easily be verified by substituting x(t) = x(O)e_iu’.t into equation 1,27a.

The form of the equations of motion, i.e., 1,19 suggests that we

should consider the quantity 8]_,/861i as the momentum associated with the

coordinate q;- In particular, since
d oL _ 2L
qu i

and, in the cases where

L(g,§,t) = K(g,t) - Ulg,t), {1.29)
the quantity on the right of 1,28 is identifiable as the force affecting the

coordinate a5, i.e.,

oL a -
== - = U t) = F. t
aqi aqi (g, t) 1(9.» ), (1.30)

and since, from Newton's laws



gd; p; = Filg,t) (1.31)
we have

3L _

g,

The identification of BL/ac}i as the momentum associated with the
coordinate q; survives generalizations of equation 1.28 and we are led to define

as the generalized momentum Py associated with the coordinate g;, as

p. = 2L , (1.32)
1 a'
9
in general.
Example 1.5 Motion of a particle of mass m in a two-dimensional
potential.
g b
2
U (%4
v
'\e
x
Kinetic energy: K = -% m(x® + ¥°)
Potential energy: Uix,v)
Consider now a transformation to polar coordinates
2 =1 cos €
y = r sin §
in terms of which we have
X = rcos 8 - r8 sin 8
y= 1 sin § + rb cos 8
and therefore
Kinetic energy: K = -% m{# + (r8?] (1.33a)
Potential energy: U = U(r cos 8 r sin %) = V(r,8) . (1.33b)

The Lagrangian is then given by

m{#® + (23] - V(r,9) .



1.9

The g vector for this system is two dimensional, i.e.,
a (t) = (t) 9= (t) = 3(t) .

The equations of motion are then

8L d (8L} _ 8L 4 (8L},
8q; dt 84 ar dt 3t

or
d a8 t2
a—;(mr) = - 37 + mr8 (1.34)
and
L 4 far) _aL _a (aL)_
99z dt aéﬁ 9 dt 38
or
L mrdy = - 2Y
I (mzr®8) = - 35 - (1.35)

We see that the guantity mf in equation 1.34 must be associated with the

(linear) momentum along the radial direction, i.e.,

p. = mi=2& .
’ ar
Note that - 8V/8r 1is the proper expression of the radial force, while the

term mr8® properly accounts for the centripetal acceleration (centrifugal

force). Similarly, the quantity - 8V/38 can be identified as the torque

applied to the particle by the potential, since

v (auYax, (aulay L .o . _
- _<- )aa+(.8y>89~ rsmde-frsmSFy-_{xE,

38 x
where
e U 28U ¢ _ 28U
- 9x ox x dy vy

is the (two-dimensional) force derivable as the (two-dimensional) gradient of
the potential. Therefore the quantity

Pg Emraé.-.a—{"
88

of equation 1.35 can now be identified with the angular momentum about the

origin. Note that in this éxample the kinetic enmergy, as given by equation

1.33a in polar coordinates, is a function of both ¢ and g.

Example 1.6 Motion of a charged particle in an electromagnetic field.

!

Recall that the force om a charge q. moving in an electromagnetic field is

given by

#There is a problem with symbols because q is reserved for the generalized

coordinates in the Lagrangian.



F=ql8xt+%x8xt)=Exkt (1.36)

;

where &(x,t) and B(x,t) are the electric and magnetic fields respectively at
(x,t). Note that the electric and magnetic fields are not constituted by six

independent scalar functions (§_,¢é ,8_,8 ,8 B ), since they must satisfy
x'y x'Ty' Tz

ZJ
Maxwell's equations. In particular, we can define a scalar field ¥(x,t) and

a vector field A(x,t), such that

2 a 3
Sx,t) = - Bx Px,t) - 57 Al (1.37a)
and
9
Bt = g2 % A (1.37b)
see, for example, reference l, chapter 21.

The appropriate Lagrangian for this system is given by
1 ) .
Lix,%,t) = 5 m|xf - q lox,0) - 2 A, 0], (1.38)

as can be shown directly. In particular

AL R E S
ai-qc{ o | Bx [z é(z,t)]}

D . 39 : e
a, {"gg"’_’ix [32 Xé(z;,t)] +(§-a§>§_(§,t)}

Using equations 1.37a and 1.37b we then have

it

[}

L . BA . B
EP qc{é(zs,t) txxE st (E 35) f*_(f.;t)} : (1:39)

= mx +q_  Alxt), (1.40)
and therefore

d (3L . 3 . 3
a—t(’;{‘) =mx ¥ q [5;_5_(5,1&)"’ (_Jg‘g) é(gs,t)} . (1.41)

We now have, from the condition for stationary action

and therefore, from equations 1.39 and 1.41, we obtain Newton's law of motion,

corresponding to the Coulomb force, i.e.,

mi = q [8(x,t) + £ x 8(x,1)] (1.42)

T

ﬂrnol:e that
7 (AWl =2 x % x é@] + (a' §—,_c> Alx)



Note now, that the appropriate momenturn associated with the motion of

the charged particle through the electromagnetic field is given by (equation

1.40

p=mx+ q. Alx,t) . (1.43)

This result may seem a little strange, because we usually consider the
momentum of a particle as something intrinsic to the motion of the particle,
i.e., p = mx. Equation .43, however, should be viewed in the same way as
the statement in Newtonian mechanics that the energy of a particle is the sum

of a kinetic and potential part, i.e,,

E =5 m|x]® + Uxn . {1.44)

ol

If the particle moves subject to forces derivable from the potential U{x)
(i.e., conservative), E remains constant even though an exchange may be
taking place between the kinetic part of the energy [i.e., —é— m’}_’zj and the
potential part of the energy [i.e., U(x)]. A picture that may be helpful at
this point is that of a (lossless) pendulum in a gravitational field. The system
(pendulum) moves, continuously exchanging kinetic for potential energy in a

periodic manner,

Note that in the absence of a potential, the energy possesses only a

kinetic part and is equal to E = —%— m]é‘z, We should think of the momentum

P, 28 given by equation 1,43, in much the same manner, as the sum of two

parts, a kinetic and an electromagnetic. In the absence of an electromagnetic
field, the momentum is only kinetic and given by p = mx. In the presence of
an electromagnetic field, however, the momentum is composed of two parts
which must be considered together in describing'the motion. In particular,

by analogy to mechanics where, if the energy is conserved, the sum of the



kinetic and potential parts is a constant, also in the case of the motion of a
charge in an electromagnetic field, if the momentum is conserved, the (vector)
sum of the kinetic and electromagnetic parts is a constant. See problem 1.5,

It should also be noted that in writing the Lagrangian of equation 1.38
we have assumed that the scalar field P(x,t) and vector field A(x,t) are

externally imposed. In particular, we have not taken into account the effect

of the motion of the charged particle itself on ®(x,t) and A(x,t), which you

will recall (reference 1, chapter 21) are given by

1 pc(éx’t!) 3
- t 5
Ol t) = g e &= (1.452)
1
and
3 .(x't")
Alx, 1) = — [ T & (1.45b)
4mey c® =

where pC(J_(, t) and -ic(é‘ t) are the external charge density and current density,

connected through the charge conservation equation
3 3 . 5
FPE Fgred(xt) =0, -~ (1.45¢)

and t' is the time in the past, spaced from the present t by the time it

takes light to travel the distance ]x - _:g’l, i.e.,
Bt -2 x - x| (1.45d)
c '= =1 :

where c¢ is the speed of light, not to be confused (hopefully!) with the sub-

. . . . #
script ¢ in 9 P e which denotes charge.
1.2 Conservation laws. An immediate benefit can be derived by expressing

the equations of motion of the coordinates of the system by means of the

condition of stationary action. In particular, equation 1.19' can be re-written

as
T
ac% BL\ _ 2L, _ |y (1.46)
* \oq, 9

From this equation, we see that if the Lagrangian does not explicitly contain

a particular coordinate g., the corresponding momentum p; = E)L/ac}i

i

fHave you ever wondered why the fields ®{x,t) and A(x,t) must wait for

light (1?) to come from the charges and currents?




is concerned. In other words, if L(g, '&, t) does not explicitly depend

on qj, i.e. if

then

and therefore

It is clear that the discovery of the conserved momenta depends in a
rather crucial way on the coordinate system that is chosen to express the
Lagrangian. A very dramatic illustration of this effect is afforded by our
previous example 1.5 of the pair of gravitating masses. In that case the

Lagrangian (which we rewrite here)

1 2 1 Gmamb

- 2 L 1 : 2

L= dm % |7+ dm l5 |7+ T

X" 2y

depends on all six of the coordinates (xa’ Var Zar Fpr Yy zb) and it
would appear that no momenta are conserved. While it is true that no
momenta associated with any of these six coordinates are conserved, this

Lagrangian in fact conceals six conserved momenta, three linear momenta

and three angular momenta. See problem 1.4.

In the preceding discussion we saw that if the Lagrangian does not
depend on a particular coordinate s, the associated momentum P; is
conserved. We shall now show that if the Lagrangian does not depend
on time, the energy of the system is conserved. Now if the Lagrangian

does not have an explicit time dependence, we must have

9L _
R
and therefore
aL, _ 8L . 8L . "
@& - E g + 35 g . (1.47)

Along the path of stationary action, however, we have that

oL . 4 (3L
g - dt\?3g

and therefore

.13



or
4L _ 4 (.. 2L
& T T \L 35

and finally, combining the two, we have

d /. aL
d—t(ﬂ'@'l‘> = o. ] (1.48)

Consequently, if 8L/8t = 0, we have along the path of stationary action,

g - g%'i— - L = const. (1.49)

Now note that the kinetic energy must always be a quadratic function

of the qi, i.e.

—

K = 3 z 255 (@) 44 (1.50)

i,j

(see for example reference 2, §5), and we must therefore have

4 - == = 2K, (1.51)

where we have assumed that the potential energy does not depend on § ,

i.e. U = U(g) only. With that restriction we also have
L = Kig,4) - Ulg)
and therefore
. 2L N
g - 5-3 - L = Klig,g)+ U(g) - (1.52)

We can now identify the constant of equation 1.49 with the energy E.

Therefore, if 8L/8t = 0, then along the path of stationary action

= const. (1.53)

Lor
mlw
[Tl [
|
I
||
|

Again, as in the case of the generalized momentum aL/aqi, the wvalidity

of equation 1.53 is quite general.
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1.3 The Hamiltonian. The Lagrangian that was used to derive the

equations of motion in the form 1.19 is a function of g, § and t. These

¥

equations are second order differential equations (see examples 1.2 - 1.5)

because K, the kinetic energy, and as a consequence L, the Lagrangian,
are quadratic in the components of §. This is often undesirable and we
are motivated to derive a formalism that yields equations of motion that
are first order differential equations. Alternatively we might like to
express the evolution of the system in terms of the coordinates q; and
and the momenta p, 3 aL/aqi, instead of the coordinates q; and the
velocities é;i which must be specified as initial conditions to solve the
problem. Both of these objectives can be realized by means of a

Legendre transformation from a function of the independent variables

(49, 4, t) to the variables (g, p, t) as follows.
The total differential of the Lagrangian, which is a function of g,

4 and t, can be written as

_ oL AL
b = 2 i B
i i
(1.54)
) OL | 4y 4 2L
= 33 dﬂ + ﬁ dﬂ + 3t

Substituting the momenta p; = E)L/&«';_1 we have

. S C o4y + 2L
dL = n dg, + Zpidqi + SR
i 1

The second term can be re-written as
z pi dqi = d z Piqi - z qi dPi ’
i i i

so that

4 -L+Z ) 2( )dq +z 'qidpi-—g-%—‘dt. (1.55)
- .

1 B 1

We therefore see that this is the total differential of a function, which we

will denote by

I
"

-L o+ z XN (1.56)

i

which is a function of (g, p, t) and which satisfies the equations



oH oL

Ern = -5 (1.57a)
9 aqi

aH _ °

5;1 = q (1.57b)

oH - oL

T = - 3¢ ¢ (1.57¢)

Now note that along the path of stationary action

L a(oL). .
8_qi = at (3'qi) = Py (1.58)

so that the equations for the extremal can be written as

I'Ji = - B—ql {1.59a)
. ~ o0H
a, = 3p. . (1.59b)

The function H = H(g, p, t) is called the Hamiltonian of the system and
can be seen to be a constant of the motion if 98H/8t = -8L/8t = 0. See
equation 1.53 and related discussion.

It should be emphasized that the (Legendre) transformation from a
function of (g, §, t) to a function of (g, p, t), i.e. from the Lagrangian
to the Hamiltonian does not depend on the assumption that q(t) is any
particular path or, for that matter, the path of stationary action. It is
a simultaneous transformation of the dependent and independent variables.
Equations 1.57 were derived without the benefit of Euler's equations
(equations 1.58). Now, if in addition we impose the conditions of Euler's

equations, we obtain equations 1.59, called the canonical equations, for

q(t) and p(t) along the classical path of stationary action. These are
first order equations which we can solve to obtain the system evolution,
given g(o) and p(o), i.e. the coordinates and associated momenta at

an instant in time.

1.4 Poisson brackets and constants of the motion. From the preceding

discussion (section 1.2), we have seen that if the L.agrangian does not

depend explicitly on a particular coordinate q;» then the corresponding
momentum  p, is conserved along the path of stationary action, i.e. is
a constant of the motion. Similarly if the Lagrangian is not an explicit

function of time, then the energy is a constant of the motion. These two

.16



statements provide us with a very powerful means of knowing ahead of
time (without solving for the path of stationary action) whether the momenta
associated with the corresponding coordinates are conserved, and whether
the energy is conserved. They do not allow, however, for an explicit
scheme that would tell us if a particular quantity is conserved. In fact

we have already seen that it may well be that the momenta associated with
an alternative choice of coordinates are conserved, in a manner that might
not be obvious from some original choice of coordinates for the Lagrangian.
We therefore seek a general method for determining whether a particular
quantity is conserved or not.

Gonsider a quantity ¥ = F(g, p, t), which is some function of the

coordinates, the momenta and time. Then
aF S (8E L OF L), 2
a - oq. 4 7 Bp, Pi 3t !
i 1 1

and along the path of stationary action (see equations 1.59), we have

(1.60)

ar _ y(om oor  om er |, sE
dt - ap; 8q_1 qu 3pi t

or, in vector notation

(1.61)

The quantity in the braces is called the Poisson bracket of the quantity

F(g, p, t} and the Hamiltonian, and denoted by

{n,p} = 8H BE _ oH OF

1.62
9p q o4 P ( ’

The total time derivative along the path of stationary action is then given by

dF OF
aE = {H,F} + Bt . (1-63)

This equation provides the means of determining whether F(g, p, t) is a
constant of the motion. In particular, if F is not an explicit function of

time (i.e. 8F/dt = 0) and if the Poisson bracket {[H,F} is zero, F is

a constant of the motion.



1.5 The assumptions of classical mechanics

The preceding formalism provides a means by which the evolution of
any mechanical system can be determined. From the canonical equations,
for example, the coordinate vector g(t} and the associated momentum
vector pft) can be obtained for 2ll times ¢, given their initial values
_q(ti), B(ti) at some time ¢t = ti. The resulting solution describes
a path through the 2N-dimensional g - p space, called phase space,

expressed parametrically in terms of time.

1) 3

Implicit in this description, you will recognize, is that,

(1) it is possible to specify both the coordinates and momenta

of the system at some time t. {or any time for that matter),

(ii) that the concept of a path through phase space, along which

the system evolves, is a wvalid one.#

Interestingly enough, the validity of these assumptions is in fact not
supported by experimental evidence, even though they may appe'ar intuitively
self-evident. Our current views of the workings of nature are consistent
with the notion that the evolution of a system proceeds through a region
in phase space (as opposed to a well-defined trajectory) whose joint

extent (e.,g. root mean square) along each coordinate-momentum conjugate

pair, at any one time, can never be less than a certain minimum. If we

# . . . . .
These two assumptions are evidently not independent, for if we could specify
qlt) and p(t) at the same time then a path would be definable,



were to look closely enough at a portion of the system evolution, in the
part of phase space along, say, a particular conjugate coordinate-

momentum pair, we might see something like the sketch below

A

where Aq Ap, 2 fixed constant.

Classical mechanics is then to be considered as applicable to the
range of phenomena for which the finite extent of the region in phase space
along the evolution of the system is negligible. This is almost always
the case in the macroscopic world, where classical mechanics and the
concept of a path are valid approximations. It is found to be inadequate
in the microscopic world of nuclei, atoms, electrons, photons, etc., for

which we need a different formalism, the formalism of Quantum Mechanics.




1980

June 12,

References

| R.P. Feynman, R.B. Leighton, M. Sands; The Feynman Lectures_in Physics,

volume II, Chapter 19.

1.2 L.D. Landau and E.M. Lifshitz, Mechanics, § 1-5.

e

1.3 H. Goldstein, Classical Mechanics, Chapter 2.




Problems
1.1 Compute the value of the action integral of equation 1.12 for,
a. The parabolic trajectory of equation 1.14.
b. A circular arc that satisfies the initial conditions. Let the
radius be a variable and compute the integral as a function

of the radius of curvature.

c. A half-cycle sine wave, as a function of the period.
d. Use any other curve of your choosing.
e. Choose a particular value for v, and §,, in example 1.1,

plot the four curves and compute the numerical value of the

action in each case.

1.2 Show that the Lagrangian L(g_,j_, t) is not uniquely defined through the
equations of motion and the principle of stationary action. In particular

show that the alternative Lagrangian L'(g,4,t), given by

L'g, 4,8 = a g4 + 5 Glg b,

where a is any constant and G is any function of g and t, yields the

same equations of motion.

1.3 Express the kinetic energy of a single particle, i.e.,

i)

lx
i

m

[ED

N[»—-A

K =

in (i) Cartesian coordinates, i.e.,
x = {x,y,2)

(ii) Cylindrical: coordinates, i.e.,

x = (r,¢,2) ,
where
x = r cosd y = r sind ,

and
(iii) spherical polar coordinates
x = (r,9,8),

where

x=rcosPsin®, y=rsindpsinf, z = rcosé



1.4 Express the Lagrangian of example .3 in terms of the separation

between the two masses

X=X X% .
the position of the center of mass
+
My T M,

X & —————
- xnb+n'1‘_=L

and the total and reduced masses

MMy
my Ty

M=m +ma, m =

b

(i) Show that the three components of the momentum of the center of

mass are conserved, i.e.,

E = M_}‘E = const,

(ii) Express the vector x in terms of spherical polar coordinates
and show that the angular momentum about the z-axis is con-
served. Can you show that the other two components of angular

momentum are also conserved?

1.5 Express the Lagrangian corresponding to the motion of a charged
particle in an electromagnetic field (equation 1.38) in spherical polar

coordinates.

(i) Compute the angular momentum Py corresponding to the

azimuthal angle 4.

(ii) Show that if the scalar potential ¥(x,t) and the vector potential

A(x,t) are azimuthally symmetric, P of part (i) is conserved.

(iii) Discuss the ''paradox' described in reference 1, section 17-4.

1.6 Assuming that
L = K(g,§ - U@

and that K is a quadratic function of é, i.e,,

show that



Derive the Hamiltonian for the motion of a charged particle in a

constant electromagnetic field.

From the defining equation for action (equation 1.5)

dI
a. Compute 3
b. Express the action integral in terms of the Hamiltonian and

its variables.

c. Compute dI as a total differential and from it the partial

derivatives

81 oI
qu ot
d. Show that action is a relativistic invariant (Hint: consider dI) .

Using the definition of the Poisson bracket, show

a.  {f,g} = - {g1}
b. if ¢ = constant {f,c} =0
c. (i + £, g} = fl&, gl +{n,¢g}
a. Hlne) = B, 8 + (1 28)
e. e} =&, ) = -2
3 1
f {q yl = 0, {p, . ) = 0, {p . 3} = 5



. WAVE MECHANICS

2.1 An interference experiment.

Consider a monochromatic light source at the origin (a laser for example),
of wavelength A, whose output is incident on a plate P, at z = 2z, which has
two holes at x = + £/2 and y = 0. Consider also a second plate Py at

z = zp = 73 + L, parallel to P;. See figure 2.1,

1{xy, 22)

Figure 2.1. An interference apparatus.

If we expose a photographic plate placed on P; we will record a com-
plicated pattern I(x,y,zg) arising from the interfefence, at each point (x,y)
on P, between the waves emanating from each of the two orifices on P,
More specifically, the total amplitude (electric field) at a location (x,y) on

P, is given by
E(X.Y, Zg) = E+(X,Y,ZE) + E_(X,Y. Zg) ‘ (2.1)

where E+ and E- are the amplitudes of the wavesv from each of the orifices
at x = + 4/2 and x = - L/2 respectively, The resulting intensity 1,(x,v, zg ),
or for low light levels, the probability of detection P(x,y,zs), is then given
by

I(x,y,23) = P(x,vy, zp) = E*(x, v,ze) E(x,y,23) , T(2.2)

where a superscript * denotes the complex conjugate function.
These results can be derived from Maxwell's equations which also pre-
dict that the shape of IL(x, v, 2zz) is independent of the light intensity; a result

also borne out by experiment. In other words, if we define

_ 1
flx,y,2e) = g l(x,y,22) , (2.3)

where W is the power output of the source, the function f(x,y,z;) is indepen-

dent of W.



2.

Example 2.1

Compute the light interference pattern arising in the apparatus of

figure 2.1.

Both E+(_1_-, t) and E (r,t), for » < z < zg, are spherical waves which,
for distances ||£ —_1_-+! and ll - _{_l much larger than the dimension (say

diameter) of the orifices, can be written as

B e FEN R

and
i(k]x -3_‘- wt)
- e
E_(_E,t) = }:,Oa- lr _ ]
where a, and a_ are complex constants (with units of length) and E; is the

+

amplitude of the electric field at some reference point to the left of P,
[say at (0,0,z7)]. Then the intensity at P, is given by equations 2.1 and
2.2, or

IE(X'Y' zp ) = |E+(x,y, zy) + E (x,7,2 )Ia s

and expanding the square we have

LGy, m) = B (x,y,2) E(xy,2) + E "(x,y,22) E_(x,y,2)

M
+E, (xy,ze) E (x,y,2e) + E_ (x,y,2) E (x,y,2)

The first two terms can be identified as the intensities of the waves from the
x = + £/2 and x = - 4/2 orifices respectively that we would observe separately,
i,e,, for each one as if the other one was plugged up. The cross products

in the third and fourth terms give rise to the interference, i.e.,
Ly, ze) = L(x,y,2e) + 1 (x,y,2a) + L (x,y,22). (2.4a)

Substituting for the expressions of E, and E , we have

E? |a, |
I(x,y,22) = (2. 4b)
* (x - £/2P + y® + L?
)
Esla_f
I(x,y,22) (2.4c)

(x+8/2@ +y® + 1?7

and, for small x/L, y/L, £4/L,

% -ikx(4/L) * ikx(2/1L) -
a a e + a a, e
I, t(X, y,2z2) = an i - —_—
m 12+ (/2P + 2 + 8

(2.4d)



which holds to cubic order in x/L, y/L and £/L. If we now make the sub-

stitutions

ig i@
+ -
a, = |a+|e s a_ = Ia_!e
we have,
2Es |a,|la_| cos [kx(2/L) + (8, - )]
Loy, ze) = p 3 (2.5)
m L2+ (8/2P + ¥ + ¥

Since an is proportional to the source strength W, the linearity of the

interference phenomenon {equation 2.3 and related discussion) can be seen.

This behavior of light is well documented and does not appear surprising
being attributable to the accepted wave nature of light. What is perhaps less
amenable to intuitive explanation is that if we replace the monochromatic light
source with a source of monoenergetic electrons, the result is essentially the
same. A simnilar interference pattern Ie(x, v, za) will appear on a suitable
detector plate, with a possible change in scale depending on the energy of the
electrons and the dimensions £ and I. of the interference apparatus. This
interféerence pattern, properly normalized as we did for light in equation
2.3, remains unchanged as we decrease the intensity (electrons. per second)
of the source, even to the point when at any one time only one electron is in
flight between the source and the detector plate Pz. Of course, as we de-
crease the source electron current we will start detecting individual electrons

arriving at Pg.# Nevertheless, the count rate as a function of x and y would

be proportional to the interference function Ie(x, vy, %z ). The inescapable con-

clusion is that, just like light, a single electron behaves as a wave with an

amplitude V(x,t) such that the probability of detecting an electron at a location

x is given by
Px,t) = ¥ (x,8) ¥(x t) . (2.6)

The interference pattern then arises because, as in the case of light, the
amplitude on the detector plate is a superposition of the amplitudes of the

waves from each of the orifices, i.e.

Vix,y,zp) = ¥, (x,y,2) + V_(x,y,22) . (2.7)

¥The situation is, of course, no different from that of light where, i_f_ we de-
crease the light intensity, we would replace the photographic plate with a

photomultiplier tube and count individual photons.



2.2 Wave packets.
A plane wave of wavelength )\ can be represented by an amplitude
u(x, t) given by

ifk « x - wi)l
u(x, t) = Uk)e {2.8)

where k is the wavevector along the direction of propagation, whose magni-

tude is given by
k= |kl =5, (2.9

and w(k) is the angular frequency associated with the wavenumber k.

Lo

————

planes of constant phase

Figure 2.2, - Plane wave of wavenumber k.

The constant U(k) can be complex and has a modulus whose square is

proportional to the intensity of the wave, i.e.,
Ia Uxk)UKk) = [U®)]Z (2/10)

Using a superposition of waves of this type it is possible to synthesize

any distribution f(x,t;) of wave amplitude in space, at an instant in time

L]
3
fx, to) = ({;) fff s to) e 5% @k (2.11)
-0

where, from the properties of the Fourier transform (see Appendix B) the

#

t = t, i.e.

function F(k, to} is.given by

70
Flk,t) = fff f(x, t) e-i-lé'.i ®x . (2.12)
—“J

¥There is a variety of conventions that different authors use concerning the
(1/2w) factor in the Fourier integrals. The convention adopted here is that
the 2w is used to cancel the "units' of radians in the wavenumber k or the

angular frequency w.



2.5

Moreover, if the frequencies w(k) are known, the evolution in time of the

wave amplitude f(x,t) is now completely described by

- .
Ny ik x - wk)(t-t,)]
f(x, t) = (5;) [ff F(k, to) e Eck . (2.13)
vy

It is noteworthy to observe that even though waves of the type described
by equation 2.8 are uniformly distributed in x,; they can be superimposed to

synthesize distributions that are localized in some region of space

Example 2.2

A wave amplitude at t = 0 is given by (one dimension)

a 12 gor x| < a/2

f(x) = (2.14)

0 for,xl> a/2

Find: the distribution of wavenumbers contributing to that function.

60

L
|

l‘v

—-a /2. a/a

'Using the one dimensional form of equation 2.12, we have

oQ

F(k) = f f(x) e KX gy
- Q0
1/2 24 .
= l e_lkxdx
a
~a/2
or
_1/2 sin(ka/3)
F(k) = a T£.7'2)_l . (2.15)

4

F (k)

—2wfn onja.



Consequently, using the one dimensional form of equation 2.11, we have

that

. ikox
f(x) = —173 7 1 sin 1;—3 e dk @.16)

Ta
-0

- The linear superposition of waves e‘lkx of equation 2.16 interferes

1/2

constructively for |x| < ea/2 to yield a and destructively for |x| > a/2 to

result in complete cancellation outside.

The symmetry in the pair of equations 2.11 and 2.12 should be noted.
It suggests that it is equivalent to think of F(k,t) as the distribution of
wavenuimbers required to synthesize f(x,t), and to think of f(x,t) as the
amplitude distribution in x-space required to synthesize a particular super-

position F(k,t) of wavenumbers k at time t.

Parseval's theorem (normalization). The square of the modulus of

f(x,t) is a measure of the intensity of the wave at (x,t), i.e.,

£ 2
Lix,t) = (x50 i(x,0) = [fx,0)]° . (2.17)

Conversly, the square of the modulus of F(k,t) is a measure of the intensity

of the wave to be associated with the wavenumber k at time t, i.e.,
Lt = F 0 Fl,t) = |Fs,0l° . (2.18)

As a consequence of Parseval's theorem (see Appendix B, §14), we have

[e0] a o0
/ ltx, )17 x = (=) f Pk, 0] &k, (2.19)

=00 =00
which is a plausible statement since the total intensity in x-space must be
equal to the total intensity in k-space. We are talking about the same
wave!
If the integrals in equation 2.19 exist, we can normalize f(x,t) and

F(k, t) such that

- {(x, t)
Tix,t) = Ve (2.20)

lfx, ) P a®x
=00

and

2.6



2.7

(2.21)

where the two denominators are, of course the same. We then have

[~}
f 1Tix, 012a%x = (%;)3 f [Fa e, 0P @k =1 (2.22)
o0

[>9]
(o]

Expectation values. If the distributions f(x,t) and F(k,t) are localized

in x-space and k-space respectively, we can compute the mean position
(center of "mass'" if you will) of a superposition f(x,t) of wave amplitudes by

weighting each coordinate x with the intensity Ix(__:g, t), i.e.,

(x) = 75 I (x,t)d% ©(2.23)
=00
or
. )
(x) = f f*@,t) x f(x; t)d®x (2.23")
Yoo :

which, in general, can be a function of time. The interchange of x and

i * *

f> (x,t) is legal since x f (x,t) = £ (x,t) x. It was done for reasons that will
be apparent in a moment. The wave distribution f(x,t) in equation 2.28 and

2.23' have been normalized such that

S

l£(x, t)|%d®x = 1 .

[}
8

If not, the expectation value of x can be computed by means of

j fx,t) x f(x,t)d°x
{(x)

= =00
7 [f(x, ) ]*d®x
¥ o0

Similarly, we can compute the mean wavenumber of the corresponding

(2.23")

superposition F(k,t) of wave amplitudes, i.e.,

w = (&) 75 L (k, 1) d% (2.24)
oo

or



g
3
(k) = (Z‘—") f Fi,t) k Pk, t)dk , (2.24")
=00

which, in general, can also be a function of time. The interchange of
*
F (k,t) and k is, again, obviously legal. The quantities (x) and (k) are

called expectation values of x and k respectively. In fact, the expectation

values of any function of x or k can be computed in a similar fashion, i.e.,

Q@) = [ £t xt) () dPx (2.25)
oo
and similarly
1V * '
®RED = () [ Fn R© Pooek . (2.26)
) =00

The functions f(x,t) and F(k,t) in equations 2..24, 2,25 and 2.26 are assumed
normalized to unity in the sense of equation 2.22.

An interesting symmetry arises between the expectation values ofAE and
from ' the fact that f(x,t) and F(k,t) are Fourier transform pairs. Consider

equa.tion‘ 2.24', which we re-write below,
o0,
1 ° *® 3 '
W = (3) [ Flet kFEolek . (2.24Y)
=00

The quantity in the brackets can be computed in terms of f(x,t) using the
differentiation property of the Fourier transform (Appendix B, problem B.. 4).

In particular

k F(k, ) = 7 [—i 2 f(x, t)] etk X gay @.27)
- Q0 -
where
8 _a B s @ .a B
-5-3-; =8 I + ey By + e (2.28)

k

denotes the gradient in x-space. Substituting equation 2..27 into 2.24' we have

[> ]
() = f : {(El?r')a 7 Fi, e KX g } [‘i = t)]d3§ .
2 o0

oo
where we have interchanged the order of integration. The quantity in the

*
braces we recognize as f-(x,t) and therefore

3

ox

(k) = f*(g, t) (—i ——a—) f(x,t) &°x . 2.29)

|
8

kY

The quantity -i 8/3x is an operator that operates on the function to its right.

In other words we first compute



2.9

g = -1 @.30a)
Py (2.30b)

g = -i& (2.30c)

and then the expectation values of

[+o]

(kx> = f*(ﬁ,t) gx(ﬁ,t)daﬁ (2.31a)
=00
>4}

= * 3

(ky) = f(x,t) gy(ﬁ, t)d®x (2.31b)
oo
oQ

(k) = [ £ (x, t) g, (x, t)d%x (2.31¢c)
=0

to obtain
(k) =& (k) + %y <ky> e (k). (2.32)

Equation 2,26 is shorthand for equations 2.30a, 2.30b, 2.30c, 2.3la, 2.31b,
2.31c, 2.32.

The result of equation 2.29 can be generalized so that the expectation
value of any function of k can be computed from the distribution of wave
amplitudes in x-space, In particular, the expectation value of equation 2.26

can also be computed in terms of

oo
(Rk)) = f £ (x, t) R(—i 5?);) f(x, t) d°x . (2.33)
A x

Correspoending formulae also apply when computing expectation values
of x using wave amplitudes in k-space. By similar arguments we can show
that if

[*]
Fk, t) = f flr tye KX g3y
=00

then
o
(x) = (L)a Fat (i 2)Fatdx (2.34)
x) = \z= k, ok ) Tk Odk .
2o
and, in general,
a 2]
(L 2 5
(Qx) = (zn) f Fok, t) Q(1 BE) F(k, t)d°k , (2.35)
-0
where
8 . 9 .. D .. 8
;E T Sy oa ey o €. Bk (2.36)
- x v z



denotes the gradient in k-space,

Note that
X-space k-space
& = x =i
= o= - ok .
(2.37)
. 9
S = -igg = k,

where the caret (*) denotes the corresponding operator.

Localizafion. In addition to asking where a wave packet is, in x-space
or k-space, by means of the expectation value of x or k respectively
(equations 2.23, 2.24 or 2.29, 2.34), we can find out something about the

degree of localization of the packet in x-space or k-space by computing the

mean square deviation from (x) or (k) respectively. To simplify the thinking,
we will restrict the discussion to one dimension. The extension to higher

dimensions is straight forward.

Assume that a wave packet has a wave amplitude in position space given

by f(x) at some initial time t = 0, such that

0
(x) = f f*(x) xf(x)dx = xq (2.38a)
=00
and )
(k) = 21? j Fik) k Fll)dk = ko | (2.38b)
)
where
F(k) = j £(x) e TIKX gy (2.39)
=00

and where f(x) has been normalized such that
0 o
f l£001® ax = 2 f |[FoOP dk = 1 . (2. 40)
Yoo Yo

To measure the spread of the wave packet we now compute the mean square

deviations about x, and k, respectively, i.e., (see equations 2.25 and 2.26)

00
(8xfP = {(x - x%P) = f f*(x) {x - x0)° £(x) dx (2. 41a)
00
and
[ o]
(kP = k< kpP) = -217 f F(k) (k - kg)® F(k}dk . (2. 41b)
all* ¢



-+
4
®

o

If we now define (x5 = (x?, ko = (k))

glx - xo) 0% = £(x) 2. 42)
we have (see Appendix B, §10)
Flk) = e K-k P g 1oy (2. 43)
where
. .
G(k) :[ glx) e KX ay | (2. 44)
—m ’
and therefore
o0
(bx)? = =2 |g(x)|? dx (2. 45)
=00
and
[s.¢]
(Ak)? = zl—wf ¥ |G(k)|? dk . (2. 46)
0

Making use of the operator k for x-space, we can also write equation 2. 46 as

[o¢]
2
(Bk)? = - f g () LB gy (2. 47)
dx’

=00

or, integrating by parts assuming that g(zw) = 0, we have [g'(x) = dg/dx]

o
(Ak)? =f lg'(x)‘zdx , (2. 48)
o0



subject to the normalization condition

3

lgtx)|Pdx = 1 . 2.49)

|
8

Suppose we now make the transformation

Elx) = ul/z glax) , (2.50)

where o is a real constant. If a ® 1, the effect of this transformation is to

generate a function E(x) whieh is narrower (more localized) but taller such that

% g
IE(X)F dx = f ig(x)la dx = 1 . . (2.51)
Yoo 00
4
a1 o 5(7:) = N‘/’g(o{x)

" 3 (“)

—= %
The spread of g(x) in x-space is given by
[2 01
052 = | SRR ax=L | 2lawiPax =L ax?
0.2 0.2
< 0 0
and similarly
. cQ
o~ 3
(8K = |§§-(£l| dx = o®(Ak)? |
X
=00
or, equivalently
A% = L ax (2. 52a)
a
MK = o Ak . (2.52b)

Consequently, we can localize a wave packet g(x) to a smaller region in x-xpace,

but only at the expense of localization in k-space. What is interesting,

however, is that the joint spread Ax-Ak remains unaltered by such a transfor-

mation, i.e.,

Ax. Ak = Ax- 0K (2.53)

and is therefore only a function of the shape of g(x).

.12



Example 2..3. Consider the wave packet

0 ; X > -a
g(x) = A (1-§|); Ix] < a
0 ;X > a
g0
A
X
- oL

Find the root mean square deviations in x-space and k-space.

Normalization:
o a .
ga(x)dx = ZAaf(l - x/a)® dx = 22 2 .1
o0 0
and therefore
3 1/2
A = (’2—a'> .
Note that (x) = (k) = 0. Therefore
a
3 , oy
(Ax)® = 52 fxz (1 - Ef‘ [#dx-=:a% /10,
=-a
and
o 3
CINE 4 x = 3/a2
(8k)° = = [dx (1 - al)] dx = 3/a
~a

and consequently, Ax = a/)/10 and Ak = ,/3/a. Note that the joint spread

1/2

Ax - Ak = (3/10) , is indeed independent of a.

Does _there exist a minimum joint spread? In other words, does there

exist a function g(x) such that

P {g(x)} = (Ax)*. (Ak)® = min?

Substituting from equations 1.45 and 1.48, we have

o0 o«
m{gx)} = j xalg(x)l2 dx - [ lg‘(x)!z dx , @2.54)
© Yo

subject to



8

g(w) = 0 and |g(x)|3dx = 1. (2.55)

1
8

Now g(x) is in general a complex function which we can write as
g(x) = u(x) el?(x) . (2.56)

It is easy to see, however, that for any function u(x), the functional
Tfa[u,?} attains its minimum if ¢'(x) = 0, or ¢(x) = ?o = const. The problem

then becomes the minimization of

«Q xQ
T {u, 903 = [ £ (x)dx - f u? (x)dx , (2.57)
=<0 =0
subject to the constraints
oQ,
u(xw) = 0 and WCix)dx = 1, {2.58)
-00 N '
with respect to all real functions u(x). Now, the minimization of TT°{u,§,},

with respect to u(x), subject to the normalization integral, is equivalent to

the minimization of

5, lu} = P {ugo] + 1 [1 -f u®(x) dx] (2.59)

-0

with respect to u(x) and A. This is evidently so, since the condition for a

minimum with respect to :, i.e.,

3 =
B_X JX{u} -0,

is in fact the normalization condition.

This problem can be solved using the methods of the calculus of variations.

See appendix A. We cannot use the Euler equation, however, since our func-
tional does not involve a single integral but rather the product of two integrals.
Nevertheless, the same ideas apply and we seek the solution u(x), such that a
small variation u{x) + emn(x) leads to a second order change in J{u}, i.e.

6T = J{u+ten} - J{ul = 0(e?) .

The function €n(x) must be small, i.e. s{n(x)/u(x)' << 1, and u(x)+em(x). must

also satisfy the boundary conditions at +w, i.e.

n{zw) = 0 . ° (2.60)

The resulting functional J’)‘ is then given by



8

- o0
Pufdx - 7 w®dx + M1 - [ u® dx)
-0

8

[=e} o«

Jl{u+ en}-_-f xz(ua-e'r))zdx- (uu+e,2')‘ dx + 2 {1 - f (\Héq)adxj
- 00 =0
<«

= x
=00 2w
o o
+ 2( j u®dx - jx"u'rzedx + x°u®dx - u'rl’e dx
) 20 20 oo
- A ﬁnedx}+ H,O.T.
Y0

Note that the sum of the first two terms are equal to J)\fu} and that,.

3

Therefore

§J = JX{‘“QI} - J)\{u}

-2 [ {(bxPu(x) + (X - 8k ] u(x)}qmeds + H.O.T.,

hadie o]

where we have substituted

P

(Ax)? 20 (x)dx (2.61a)

v
8

and

(Ak)P = u?(x)dx . (2.61b)

13
a~—s

Since 6J must be zero to first order in e; for all rl(x), we must have
(AxPur(x) + [A - (AkPx*Jux) = 0, (2. 62)
where the boundary conditions on u(x) are given by equation 2.58.

Equation 2. 62 can be simplified by a change of variables

1/

€ = ax and v(g) = o 2u(x) s (2.63)

{note that v°(£)df = u?(x}dx] to yield

2
o® (bxPv(E) + [x - {8kS f]v@) =0.
a

Choosing 12
Ak
a = (E) {2.64)

we have

viE + (B - )v(E)y=0 , (2.65)



with the boundary conditions

v(izw) = 0  and f v (E)dE = 1 , (2. 66)
- 00

and where the substitution was made

A

B =3x7% {2.67)

It is perhaps a trivial point but may be worth mentioning that the transformation

given by equation 2.50 actually describes a different wave packet, whereas the

transformation of equations 2.63 describes the same wave packet by means of

different variables.

Rewriting equation 2. 65 we have
- v(8) + 8 v(8) = B v(B)
whiéh, when we multiply with v(§) and integrate from -o to +w, yields

-jv(g)_v"(zmé + f

[+ o}
g v (2)ag = p f v3(8)dg .
-0 0 a0

The integral on the right hand side is just the normalization integral and equal

to unity. . The integral on the left can be integrated by parts to yield

X0

f_ v3(g)de +

-0

2P (HdE =58>0 . (2. 68)

g——8

The two integrals are given by

o
f v3(E)dE = (Ak)® /fa® = Ax-Ak = TT (2. 6%a)}
[ee]
and
[>9)
2347 (2)dE = o?(8x)® = Ax Ak = T, (2. 69b)
= 00

where we have substituted for o in terms of equation 2.64. Therefore, from

equation 2. 68 we have

g = 2m . (2.70)

It would appear that since 71 = §/2, the lowest value of the joint spread
T = Ax-AK can be obtained by setting B equal to zero. This, however, -is
not so because the problem posed by equation 2.65, combined with the con-

ditions 2.66, is an eigenvalue problem. Perhaps a more recognizable form
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might be
£v(E) = g v(E) , (2. 71a)
where
oo ds " 3
= - g8, (2. 71b}
dg?

with v(tw) = 0 and v(g) norfnalizable. Such problems have solutions for selected
values of the constant g = ﬁn called the gigenvalues of the problem and to each
of these there corresponds a unique function vn(g) which is called the eigen-
function of the n' eigenvalue.

The solution to this particular problem is given by

pn=2n+1 ; n=20,1,... (2.72a)
and
. -g%/2
va®) = A b (e 2. 72b)
where the hn(g) are the Hermite polynomials, defined by
2 .n 3
Bog) s (- D7 et L o8 2.73)
n
d
and An is the normalization constant given by
-1/2
A = '/% 2% 0y 2.74)

(see Appendix C).
From this solution we therefore have that the minimum joint spread is

equal to Bo/2, or, equivalently,

bx-bk 2 1/2 . (2. 75)

The wave packet corresponding to this joint spread is then given by vo(§), or

2
IRRVE I w4

vo(§) = , (2. 76)

(ho(€) = 1] and is seen to be a gaussian. Any other shape will necessarily be

characterized by a larger joint spread.

There is a relatively simple way, using a trick, to prove that
Ax-Ak 2 1/2 and that the wave packet that does it is a gaussian (see problem
2, 6). The method of calculus of variations was used, however, because it is
instructive and lea.ds to results which will be directly related to subsequent

material in quite a different context.



Suppose now that we ask for the superposition of wavenumbers corres-

ponding to v5(8)? Well we have that if

v5<€)=21—“7 Vo) e™Cax

-og

then
o .
Vo (K) = f vo(8)e 5 g
o
o0, 3 A
S Y2 / (8772 +iK8) 4,
=00
2 , #
o 2o /4 K2 e-fé’/z at
-0
or
a3
Vo(k) = (2m) /2 (o1t K129 .77

also a gaussian. Note that for the minimum joint spread wave packet (see

equations 2.69a and 2. 69b) we have

7 22 v?(g)ag = ] v'?(8)dE

=0 =0

What about u(x)? = To transform from § to x (and K to k) we need

a = (A.k/Ax)l/2

, ‘which has units of reciprocal length (see eq. 2.63 and 2.64).
Note, however, that the joint spread IT = Ax.Ak is dimensionless and, as we

in fact showed, can depend only on the shape of u(x), being invariant under a

transformation that scales the x-axis (or the k-axis for that matter). See
equations 2.50, 2.52 and 2.53 and related discussion. Consequently, the
solution to the minimization of II can only determine the wave packet to within

such a transformation. If Ax is given, however, we have (see equation 2.63)

ul/z va (a x)

ug (x)

Ak, Z
- (7
(Ak )1/4 . Ax! 2

TAx
and since 8k = TI/Ax and, corresponding to uy, 7T = 1/2, we have

-1/4 -% /4(bx)?
e .

ug (x) = [2n(8x)*] 2.78)

Similarly (see Appendix B, 48}, we have for the Fourier transform

. a® + R LI
-(ax°+b>.:)--a(x +2x) = ~alx +5=) + I



-1/2

Ug(k) = a Vo (k/a) ,

and therefore

1/2 -k / 4(6k)?

-1/4
e

Ug (k) = (2m) {2n(Ak)?] 2.79)

The symmetry of equations 2.78 and 2. 79 is noteworthy.

Wave packets of definite x or k. What happens to the wave packet as we

let Ax ~ 0? Well it will get narrower, since it will have a smaller second
moment, but it will also get taller since it must remain normalized. See

equation 2.50 and related discussion. The packet in k-space, however, is

getting wider and lower since Ax.Ak = constant. By way of example, compare

the wave packet described by equations 2.78 and 2.79 where the dependence on Ax,
Ak is explicit. As we pass to the limit of Ax = 0+, u‘.‘,a (x) has become in-

finitely tall and infinitely narrow, i.e.

2

© for x = 0
Lim {uoa (x)} = (2. 80a)

ax - oF 0 for x 4 0,

remaining, however, normalized, i.e.,

]
f Lim [%°(x)} dx = 1 . (2.80b)
o Ax - 0+ i

The pair of equations, 2.80a and 2.80b, define a generalized function §(x),

#

which has the properties of these equations, namely

) for x = 0
&(x) = (2.81a)
0 for x # 0
and
0
5(x) dx = 1 . (2.81b)
=0

We can imagine 6§(x) as an infinitely tall, infinitely thin, unit-area spike at the

origin. It is called the Dirac delta function and described in Appendix D.

Corresponding to this limiting u(x), the modulus squared of the original wave

packet f(x) is given by (see equations Z2.42 and 2.56)

[£x)P = 6(x - %) as dx -0' , @.82)

¥

The function §(x) is called a ''generalized function'' because, strictly speaking,
a function that is non-zero at only one point has a measure of zero and must:

therefore have an integral which is zero in conventional analysis.



where

)
Xo = (x) = f f*(x) x f(x) dx , (2.83)
Yo

or, in other words, it is all concentrated at x = (x) = xo.

What happens te an(k) as Ax — 0+? From equation 2.79, we see that

since Ak = 2/Ax, Ak = «» and an(k) - constant.

=z u? (x) - S‘(x')

/u: (lg) - consls

x R

Consequently a_wave packet that is completely localized in x-space is uniformly

spread out in k-space, Conversly, a wave packet with a definite wavenumber

(localized in k-space) is uniformly spread in x-space.

These results are quite general and hold for any shape f(x)} or F(k). To illus-
trate this behavior, study example 2.2 on page 2.5 and problem 2.3 as

a -0 .

Commuting operators and simultaneous localization. Our inability to

localize the wave packet in x and k simultaneously (i.e., T = 4x.4k # 0), is

related in an important way to.the fact that the operators % and & do not

commute. - This can be shown as follows,

Note, first of all, that the expectation values for both kX and k are real

(%) = ff*(x) % £(x) dx = %

and
(&) =[ (%) & f(x) dx = ke

Now because x, is real, we must have

Xo =ff*(3r.f) dx = ff (% f)*dx

and therefore the operator X must satisfy the relation
£ - - *
ff (x) [% £(x)] dx = f[x f(x)] f(x) dx , (2. 84)

for any function f(x). Equation 2.84 is easily verified since in X-space,

" * *
x = x and f x = (xf) . Similarly, because k, is also real, we must have

.

.20



E ~ ~ *
ff (x) [kf(x)] dx = /{kf(x)] f(x) dx (2.85)
for any function f(x). Equation 2.85 can also be directly verified by integration
by parts recalling that ‘in X-space k= -3 —8?; In general, an operator & that’

satisfies the relationship, for any pair of functions f(x) and g(x),

fg*(af) &x = f(ag)* f &°x (2. 86)

is called Hermitian. From the preceding discussion we see that the expectation

values of a Hermitian operator are always real.

Consider now two Hermitian operators a and B.. These two operators

will in general not commute, i.e.,
35 4 83

By way of example, consider the operators X and Ex and the action of the

operator products ?:fcx and RXS': on a wave packet f(x}. In particular
o .. of
X xf(iq) = ~1x-5; ,
whereas
L oA ) a . of
kxx f(x) = —1«5; (xf) = -1f - ix 5=
or
&k, - kX (0 =if(x) . (2.87)

The quantity in parentheses is called the commutator of % and ftx and denoted

by (%, f{x]. For any pair of operators 4 and b we denote

{a,b] =4b - B3 . (2.88)
See problem 2. From equation 2.87 we then see that
[?c,tcx] =i . (2.89)

The commutator for a pair of operators i and b will, in general, be an

operator itself, i.e.

ny

la,bl =40 - 632 =1

(2.90)

where if 3 and B are Hermitian, ¢ is also Hermitian, See problem 2.
We can compute the expectation values of & and B and the mean square

deviations da and Ab corresponding to any wave packet y(x), i.e.

E)

(baf® = <@ - @A) =f\y*(‘a - (3P ydix {2.91)

.21



and
(8b)° = (B - (B)*) =f\y*(6 - (B)Pyaix, (2.92)
or, if we define the operators

a'= 4 - (3a) , B =86 - (B) (2.93)
we have

(ba)? = fq,*a'wc@ ,  (Bb) =[¢*B'3 yd3i . (2.94)

Now if the operators & and B are Hermitian, the operators &' and B' are also

Hermitian and we have

(ba) = f(a'\y‘)*(aw) @Px = f&a-w dx (2. 95a)
and similarly

(Ab)? =fl5'W|° &e®x . (2.95b)
Combining 2.95a and 2.95b we have
(ba)? (8b)* = f]a'ﬂ’ d*x - f|8'\y|3d35 . (2.96)

Now for any two functions f(x) and g(x) we must have (Schwartz inequality)

fiflac@ : flgrdsﬁ > |[<f*g>as_§|= . .97

where the equality holds if f(x) = v-g(x). Substituting f(x) = 'a',‘\y(ﬁ) an&

gi{x) = B'\V(ﬁ) we have
(8a)® (8b)® = |‘f(3.4,)*(5.w a*xP

or, since &' has been assumed Hermitian,

(8a)P(ab) = |fw*<a'5')w3§!3 . 2.98)

Now

™|

FGY @b+ BF) + 5 @B - B

=+ @B+ B3 +_§_ (3,87

[N

Jr—

= 3 (36" + 513 +% 13,87

il

or, substituting from equation 2.90 for the commutator, we have
b =g BB b L2 (2.99)

and therefere, substituting in equation 2,98,

(8a) (b =  [(@'8 + 83)F + 1 (&)

pa-b =3 [ | . (2. 100)




Substituting 4 = % and B = Rx we have
= -3 [?C,Rx]= 1
and ob;:ain the previously established result,
Ax-Akx z —;— .
The equality in equation 2.100 holds if the Schwartz inequality 2.97 is an
equality, i.e., if
@ - @)y =y® - BHy , (2. 101a)
for some constant y, and if
(L@ - @ANB - (B) + (B - (BYE - 3N =0,
or, carrying out the multiplications, if

% (3% + B3> = (Ay(B) . (2. 101b)

Localization in three dimengions. What if the wavepacket extends in three

dimensions, i.e., f = f(x)? It is clear that it is then posgsible to ask more
complicated questions about joint localization. For example, how small can

the following joint spreads be?

Ax - Ay, Ox - bky, Az . Akz, Ak}' . Akz

In each case Aq denotes the root mean square deviation of the variable q from

its expectation value, e.g., in x-space,

" . s . 112
Aq = £ (x) (§ - () f(x)a®x . 2.102)

X

where § is the operator corresponding to the quantity q.

We can use the result of the preceding section to answer these questions

very simply. In particular since

[ii,?:j] =0 ‘ (2.103a)
X = i (2.103b)
[xi, Rj] 16ij
= (2. 103c)
Eki,&j] =0
we have,
(8x;) (ij) 20 (2. 104a)
) . 104b
(8x.) - (Akj) ) 6.1]. 2 )

(Bk;) - (Bky) = 0, {2.104c)

.23



where 5ij is the Kronecker delta. Consequently it is possible to localize a
wave packet in two x-directions, e.g., about (x) and (y), or about two k-

directions, e.g., about (kx> and (kz> and also about one x-direction and one

k-direction, provided they are along different axes, i.e., (4x)- (Aky) can be

zero whereas (Ay)- (Aky) cannot.

Wave packet motion. Phase velocity and group velocity. Let us consider

now a one-dimensional wave packet that can be expressed as a superposition
of plane waves, i.e.,

ifkx - w(k)t]
d

f(x,t) = —ZlTr-fFo(k)e k @.105a)

k

where

-ikx
Folk) = f(x,0)e dx . (2. 105b)

X

From equation 2, 105a we can see that f(x,t) is a superposition of waves with

a phase velocity
v, (k) = o) . (2. 106)

If at t = 0, the wave packet is localized in a region

xo - Oxg S x S x5 + 8% (2. 107a)
and

ko - dkg S k S ky + Akg , (2.107b)
what can we say about the wave packet at a later time?

The ''center of mass' (x) will move, since

(x(t)) f (%, t) x flx, t) dx

R A - ()t
= fFo (e (i-é-l-(->Fo(k)e dk

which, if w(k) is differentiable in the region covered by Fg(k), yields

(x(t)) = 5 f Fo (k) [i Fo'() + Fo(k)w'(it] dk

-%-;f Fo' (k) Fo'(k)dk + [-25; fw'(k)l]:"c(k)la dk] ¢

and therefore

(x(t)) = (x(0)) + {v> t , (2.108)

.24



where<v)is a constant (independent of time) with units of velocity and given by,

(v) = %r.f wi(k) | Fo (k)P dk . {2, 109)

The integral given by equation 2.109 is like the ones we use to compute

the expectation value of a function of k, i.e.,
(v) = (w'(k)) = 7,_1;] w'(k} |Fo (k)P dk . (2.109")

The function w'(k) has units of velocity, which we call the group velocity

S dw
vg(k) =3k (2.110)

associated with the wavenumber k. The translational velocity of the center

of mass is then given by

(v) E%—;[vg(k”l"‘o(k)la dk . (2.111)

We can estimate the integral by noting that the integrand is the product of

w'(k) and |Fy(k)|?, where |F,(k)|® is localized about k.
I

T w ()

| R

{
!
|
|
|
e R

If w'(k) is a smooth function in the vicinity of ks, we have

wik) = wike) + (k - kolw'(kg) + ... (2.112)

and, substituting 2.112 into 2.119, yields

1 0
o) = wi(kg) M(zl") + m"(ko)f(kal;o(k)ls d(%r-) + .

(v) = wiky) = vg(ko) . (2.113)

or

Therefore, the center of mass {x(t)> of the wave packet moves with constant

velocity which is approximately given by the group velocity evaluated at k.

These results are extendable in a straight forward fashion to three dimensions,

where the phase velocity is given by
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w(k)
Y-\P(E) = TE_T_ e-.LE , (2.114)

and where 'ék is a unit vector in the direction of k. The group velocity is
given ‘by
aw(k)
v ) = 5

2.115)

where 3/3k denotes the gradient in k-space (see equation 2.36).
Note that if the wave packet can be described by an equation like 2.105

’

the expectation value of k is a constant, i.e.,

1 -iw(k)t]|?
(k(t)) = Eka Fo(k)e dk
=k [Folo)f ax
and therefore
(k{t)) = (ko)) = ko . (2.116)

Frequency and time. We can sit at a particular location x = x, and
watch (if we had complex eyes!) one of these wave packets go by. This will
give, of course, the time dependence of the wave amplitude at %, i.e.,

f(xy,t). Any function of time, however, can be decomposed into a Fourier

superposition of frequencies w, i.e.,

-imt
fm,t) = 5 fg(:_cl,w)e dw | @.117a)

where F(x, ,w) is given by the inverse Fourier transform, i.e.,

iwt
Flx ,w) =ff(:_:,_,t)e dt . @.117b)

Note that as a result of Parseval's theorem (Appendix B, §14),

[f(xy, )% dt = o= | | F(x,0]|? dw @.118)
2 =

permitting us, if either of the integrals exist, to normalize f(x,t) and F(x,w)
simultaneously, in t and ® respectively, as we did with x and k.

Following the preceding formalism we can ask for the expected time of

arrival {t(x; )} of the wave packet at x = x;, given by

(t(x,)) = ff*(_:_g,t) t fx, ) dt (2.119)

and the mean frequency at x




1

(wig ) = 5=

/‘9*(5;,4)) v Hx ) dw (2. 120)

where we have assumed that f and % have been normalized. Equation 2. 120

can be re-written in terms of a time integral if we note that

3 iwt
wg(x,w):f[iﬁf(x,t)]e dt ,

which we can substitute in equation . 120 to obtain

(0(x)) = ff*(ﬂ,t) (i %)f(ﬁ,t) at (2.121)

Similarly, the expectation value for t can be expressed in terms of an

integral over all the frequencies, i.e.,

(tx ) = _,_l—wfg*(ﬁ,m) (—i g—w> F(x,w) do . (2.122)

The symmetry between t and w reminds us of the properties of the (x, k)
pair. In fact, from the above equations, we see that we can define a time

and a frequency operator given by:

t-space we-space
2 -i 2
t =t -i5
(2.123)
a . 3
w =1 3‘; =W

The similarity between 2.123 and 2.37 should not escape unnoticed.
We can derive the expected mean square deviation of t and w from

(t) and (w) respectively. In particular,

(aty? =ff*(:_c;,t)(t - ) f(g,t) dt (2.124)
and
(M) = Zl—wfg*(x ,udw - (@) Fix, ,w) dw . (2.125)

We now note that', for the same reasons as hold for the (x, kx) pair, a wave

packet cannot be localized in time and frequency simultaneously. Using the

result from noncommuting operators, we then have
1 -~
bt-dw 2 5 |[E,6]]

and since

[t,8] £(t) = i[t & 2 (tf)]

we have that

(2,8 = -1 (2.126)
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and therefore

At-Aw 2 1/2 . (2.127)

This result is familiar to electrical engineers who know that they must
use a detection system with a bandwidth Aw to define the arrival time of a
pulse to within a At of the order of (Aw)'l. Equivalently, if we define the

number of cycles N in the pulse by the ratio

N = {(w) 24t/2n

we have
TN

AT Ty -
and therefore
Al 1
Tﬁ’}' 2 5=, (2.128)

a result well-known in spectral analysis that says that the percentage frequency
spread of an oscillatory wave, whose amplitude is modulated in time to in-
clude a certain number of cycles, is inversly proportional to the number of

cycles.

\ 5l

-F ( 3;,1:) )

A

—] ~2BwW e

— 2 Al ——




2.29

2.3 Energy and Momentum. On December of 1900,' Max Planck announced

that he was able to account for the shape of the black body raaiation spectrum

by assuming that the energy in each mode of frequency v, in a cavity filled

with electromagnetic radiation, was discretized as an integer multiple of a

quantity proportional to v, i.e.,

E(v) = 0, hv, 2hv, 3hv, ..., nhv, ..., (2.129)

where h, the constant of proportionality, was independent of frequency.
With this assumption, he computed the energy spectrum (we will derive

~

this later)

S(v) dv = (

dv

8w‘> hv ' (2. 130)

C3 th /kBT X

where c is the speed of light and kB is the Boltzman constant
(kB = 1.38 x 10-3 J/K). In this formula, h was an undetermined constant
whose value was .selected to provide a good fit to the experimental data. The

data and the resulting fit are shown in figure 2.3. The resulting value of h,

was very close to the presently accepted value of

h=6.63x10"7J.6.

T = 1595°K

A 0% A)

Figure 2.3. Planck's black body spectrum prediction (Tsolid line)
versus the experimental data. = Note that A = c/v.

'(Ref. 1, figure 1-11).
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The idea in Planck's model was that the energy in each mode was the

sum of the energies of little ""bundles' (quanta) each of which had an energy
&€ = hv = Aw , (2.131)

where

# = h/2%w

The total energy was then equal to the number of ''"quanta’' times the energy

of each ''quantum’, i.e.

2

En(v) = nev = nhv = ntw . (2.132)

Not long after (1905), Einstein proposed that an electron ejected from a

metal by shining light of frequency v, would have an energy given by
E = hv - W, , (2.133)

where W,, called the work function, is the minimum energy that must be
supplied to the electron for it to leave the metal. The prediction is that
there exists a minimum frequency

1
\I°=-EW° ,

that is independent of the intensity of light, below which electrons cannot be

ejected from the metal. This proposal was dramatically substantiated by

Millikan when in 1914 he published his results of the voltage required to stop

electrons ejected from a metal by light of frequency V. See figure 2. 4.
Einstein was awarded the 1921 Nobel prize in physics (which he received

in 1922) for his work on the photoelectric effect, and should be credited for the

formulation of the concept of an elementary excitation of electromagnetic radiation

It is remarkable, at first sight, that the spectrum of thermal emission of light and

{ 5]
the ejection of phetotfs from a metal under the influence of light, phenomena so

different, could be explained in terms of the same idea. Given the electronic

#

charge, the slope of the data from Millikan's measurements also gives, of course,

the value of Planck's constant h.

Lewts

1‘[;The term ''photon' was coined by G.N. Lets in 1926, See A. Pais, '"Einstein
and the Quantum Theory', Rev. of Mod. Phys., Oct. 1979, pp. 861-914, esp.

p. 887 (footnote by M. Delbriick).
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As a result of a rather different line of research, Compton in 1923 published his
experimental data of x-ray scattering from graphite, in which he found in addition to a strong
maximum corresponding to light unshifted in wavelength, a second maximum of a longer wave-

length shifted by an amount 4\ which was a function of the scattering angle 8. See figure

2.5.
Primary
=m0
0
»ray . 9 = 45°
source
Incident
Scattered
/L3 L
l l l P Crystal .go
Scatterer—"" \i\Ll ' T £ '
~ l ] - 0= 90°
N ~. \( 0 .
Lead )
collimating Detector b
slits
0
0

Figure 2.5, Compton's scattering experiment and results {taken from Ref, !,

figures 2-5 and 2-6).
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Compton was able to explain his results by assuming that light whose

wavelength is A had to be associated with quanta (photons) whose momentum is

given by
p = h/X\ (2.134)

or, in terms of the wavevector k,
B =tk , (2. 135)

where h is the same constant that was derived from the blackbody theory of
Planck and which had been used to explain the photoelectric effect. The shifted
peak in intensity is to be understood as resulting from photons elastically .
scattered by electrons in the graphite. The momentum lost is then a function
of the scattering angle and taken up by a recoiling electron. The intensity
maximum at the unshifted light wavelength is still the result of electron
scattering but, in this case, the momentum is transfered to the atom as a
whole. Momentum is of course conserved here also. The atom, however,

is so massive (compared to the electron) that the momentum lost to it is
negligible. The scattering that results in the shifted peak, as a result of a

single recoiling electron, is called Compton scattering. The scattering with

the momentumn transfered to a whole atom is called Thomson scattering.

The calculation of the momentum lost to the recoiling electron in
Compton scattering must be carried out relativistically correctly and yields

for the shift

B(8) = 2= (I - cos®) , (2. 136)
e

where h is Planck's constant, m is the rest mass of the electron and c is
the speed of light. The factor in front has units of length and is called the

Compton wavelength,

.. h -13

A = me " 2.43 x 107 m = 0.0243 4 , (2.137)
and can be seen to correspond to the wavelength shift AL at a scattering angle
of 8 = 90°. Note that Compton’s data (figure Z2.5) are in good agreement with

this prediction. Note that since, in general
E2 = p°c® + mgic* , (2.138)

we must have

E = pc (2.139)

for a photon, which has zero rest mass my, and therefore equations 2.131 and
2. 135 are consistent with each other.
The preceding experimental data provide compelling evidence that light in

addition to its obvious wave-like nature, can behave as if it is composed of
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'""objects'" whose energy is given by

E = hw , (2. 140a)

corresponding to light of angular frequency w = 27v, and momentum which is

given by

P =1tk , (2. 140b)

corresponding to a wavevector ll<_| = 2n/\. The relationship between the angular

frequency w and the wavevector |_l£|, i.e.,
w=clk] , . (2.141)

where ¢ is the speed of light, can then be seen to be a re-statement of the

fact that, for a particle of zero rest mass, we must have

E =clpl . » ' (2.142)

Impressed by the ideas of Planck, Einstein and Compton, Louis de Broglie

proposed in 1924 in his Ph.D. thesis that the established dual wave-particle

nature of light was also valid for material particles (non-zero rest mass). In

~

particular, he proposed that a wave should be associated with the motion of a

particle, with a wavenumber k given in terms of the particle momentum by

k=p/t , (2. 143a)

and a frequency @ given in terms of the particle energy by

w=E/t . (2. 143b)

The idea was very attractive having a unifying simplicity, as Einstein was quick
to recognize, but there existed no experimental data to support or refute it,
Two years later, it was pointed out by Elsasser that if matter possessed
wave-like properties it could be proven by a diffraction experiment from a
crystal, as was done in the case of X-rays, This idea was confirmed by
experiments performed by Davisson and Germer in the United States, and by
Thomson in Scotland. See figure 2.6. These results established the relation-
ship between wavelength of "matter waves" and the momentum of the associated
particle that was predicted by de Broglie to a very high degree of accuraéy.
Louis de Broglie received his Nobel prize, as did Davisson and Thomson a few

years later.

The results of section 2.3 on wave packets acquire a very important
significance in the light of the energy-frequency and momentum-wavenumber

association. In particular, the localization relations (equation 2.104 and 2.127)



Figure 2.6.

X-ray (top picture) and electron beam (bottom picture)
diffraction from aluminum powder (reference 3,

figures 9.2b and 9.6).
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now become

(Axi)(ij) =20 (2. 144a)
1

(Bx)(8p) = 3 h5,. @. 144b)

(8p,)(0p;) = © @. 144c)

(At)(AE) = % roL @.1444d)

Equation 2. 144b, in particular, is the tombstone of classical mechanics stating
that we cannot simultaneously specify the position and momentum of a particle
along a particular direction to better than the‘ joint spread given by 2. 144b.
This, of course violates the fundamental assumption of classical mechanics
that both the position and velocity {momentum divided by mass) must be
specified as initial conditions (equation 1.8) for the equation 1.19 of motion to
be solved. In addition, the notion of a path must be discagrded, ‘since the

results of joint localization suggest (when carried over to x,p - space) that

a particle occupies a region in phase space (x,p - space), as it moves, given

by
(xi) - Ax:.l < x; < (xi) + Axi
° (2. 145)

) - Ap. S p. S {(p.) + Ap., ,
<pJ> P; < P; <pJ> P

and

where, at any time t, the joint spread Axi- Apj must satisfy equation 2. 144b.

This is to be contrasted to classical motion given by the Hamilton equations

% = % ' (2. 1462)
and

p=-, (2. 146b)
where B

H=Hpxt , (2. 146c)

is the Hamiltonian of the system. If H is not an explicit function of

time then

dH _ 0H . . 9H .
FraEl P _ 2.147)

and, by virtue of equations 2. 146,

dH

<= =0 .

dt

Thus, along the path described by equations 2. 146, the Hamiltonian is a

constant, i.e.,

H = H(p,x) = E . (2. 148)

The constant E is the energy of the system. The equations 2. 146 of motion

yield a path p(t) and x(t) in phase space which is fixed by specifying the



initial conditions
X =x(0) , po =p(0) . : (2. 149)

See sections 1.3 and 1.5,

We now also understand the significante of the results on wave ‘packet
motion. There we found that for a wave packet composed of a superposition
of plane waves, i.e., equation 2.105, the center of mass of the packet moves

with constant velocity, i.e.,
(x(t)) = (x(0)) + vt - ' (2.150)

where

9
5 (2.151)

v =™

Iw'le

k = (k)
The fact that the packet center of mass moves with constant velocity suggests
that it represents a free particle for which

E=s—p° . (2. 152)

~n

m
Now since E = fw and p = tk, i.e., both E and p are proportional to A, we

must have

v 2 _3E 1, (2.153)

which is equal to the classical velocity of the particle! Note that the expectation

value of x as a function of time that was derived, correctly predicts the velocity
of the particle. Note also that the groﬁp velocity, as given by equation 2,151
is the proper velocity and not, for example, the phase velocity

W s _ E s _ 1
% Tk Tl e zm e

.37
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of the plane waves
' i(p-x - Et)/n

[

that are used in the superposition,

The fact that the expectation value of the wavenumber is constant in tim.
can now be identified with the fact that the expectation of the momentum is

constant, corresponding to a free particle, i.e.,

(p> = 2 (k) = const.
or

-;; (p) = 0. : (2.154)

There is an important parallel to be made between the equations of motion

for a classical free particle and the results for a wave packet as given by
equations 2,153 and 2.154. A particle that is free, i.e., not subject to
forces, moves with constant momentum. From the classical equation of
motion for p (equation 2.146b) we see that this occurs if the Hamiltonian is
not a function of position, i.e., H = H(p). In that case we have

. _ . _ 8H

5—1—3_2— and é:O . (2. 155)

Compare this with the results given by equations 2.153 and the fact that the
energy was a function of momentum only, behaving as the Hamiltonian of

classical mechanics in describing the equations of motion of the expectation

values,

Particular significance can now be attached to the operators & and &

which after multiplication with 2 become the operators for momentumn and

energy, i.e., in (x,t) - space,

-~ . a
P= fl& = ~if —az (2.156)
and
E=ab=ind |. ‘ (2. 157)
' Bt . .

Note that these operators are valid in géneral, having been derived by

integration by parts of the corresponding integrals for the expectation values
(see equations 2.24' and 2.120 and related discussion) without the assumption
that f(x,t) was a superposition of plane waves expli(k-x - w(k)t)]l The only
assumption is that f(x,t), at fixed t, pbssesses a Fourier transform with

respect to x, i.e,,
1y ik - x ’ .
f(x,t) = (Z?) Flk, t) e ®k (2. 156a)
k

%
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where

-ik - x
F(k,t) = | f(x,t)e a*x , (2. 156b)
X

and also that f(x,t), at fixed x possesses a Fourier transform with respect to

t, i.e.,
1 f -iwt
f(x,t) = 30 Fix,w)e dw (2. 159a)
X3
w .
where
iwt .
Fix,w) = fix, t)e dt . (2. 159b)
t

As a matter of interest, note that any function f(x,t) can be expressed as a

superposition in wavenumber and frequency space, i.e.,

1\ i(k-x - wt)
f(x,t) = (EF) jﬂg,m)e d°kdw 2. 160a)
e
where .
~i(k-x - wt)
Fk,w) = f(x, t)e d®xdt . b (2. 160b)

x,t
The plane wave superposition, i.e., equation 2.105, is then the special case

of
Fk, o) = 2r Fk,o0) 6lw - ¢uk)] , (2.161)
as can be shown by direct substitution into 2.160a. The function &#k) is the

plane wave frequency associated with the wavevector k [denoted w(k) previously],

8§ is the Dirac delta function. Consequently, a plane wave superposition is a

special case of the most general superposition (equation 2. 160) in that it

associates a unique frequency (k) with each wavevector k.

2.4 Wave-particle duality ahd the uncertainty principle. It is worth pausing,

perhaps, to reflect on the significance of some of these results and conclusions.
We have seen that light, apparently described quite successfully by Maxwell's
equations as a wave, can behave like a collection of particles of definite
momentum and/or energy. In particular, light of frequency w can never
interact with another object (c;r apparatus) to lose (or gain) energy that is a
fraction of #w. While this behavior i’s easily understood in terms of its
particle-like behavior, it is difﬁculf to reconcile with its wave-like behavior.

Specifically, it is not clear, at this point, how the wave packet (that presum-

“ably represents it) can be distributed in X, at some particular t, as described

by f(x,t), so that the probability that it will interact and be detected as a

whole is given by |f@, t)|’, which is obviously less than unity everywhere,



Moreover, the photon, whose amplitude is spread out according to f(x,t) prior
to being detected, must be thought of as disappearing from everywhere else
once it has been detected at some x = x;. The square of the modulus of the

wave function must be thought of as instantly ''sucked in' at x = %, i.e.,
[before interaction] = |f(5 t)|2

at the moment of

} = b8x - xm)
interaction

These are difficult notions which have actually not been completely
clarified as yet (to the best of my knowledge!). Fortunately, in the cases of
light, the electron,and their interaction, the situation seems to be in good shape
in as much as there exists a formalism that appears to answer most of the
properly posed questions. Many difficulties arise, however, because the

transition from the formalism to a concept is a difficult one. This duality of

character (particle and wave) is a particularly elusive one, the two concepts
being so different. In the words of one of the old masters (reference 4,

pages 10-11):

"The solution of the difficulty is that the two mental pictures
which experiments lead us to form - the one of particles, the
other of waves - are both incomplete and have only the wvalidity
of analogies which are accurate only in limiting cases. It is a
trite saying that '"analogies cannot be pushed too far,' yet they
may be justifiably used to describe things for which our language
has no words. Light and matter are both single entities, and
the apparent duality arises in the limitations of our language.

It is not surprising that our language should be incapable
of describing the processes occurring within the atoms, for,
as has been remarked, it was invented to describe the ex-
periences of daily life, and these consist only of processes
involving exceedingly large numbers of atoms. Furthermore,
it is very difficult to modify our language so that it will be
able to describe these atomic processes, for words can only
describe things of which we can form mental pictures, and
this ability, too, is a result of daily experience. Fortunately,
mathematics is not subject to this limitation, and it has been
possible to invent a mathematical scheme - the guantum theory -
which seems entirely adequate for the treatrment of atomic proc-
esses; for visualization, however, we must content ourselves
with two incomplete analogies - the wave picture and the cor-
puscular picture.",

and perhaps on -a more elemental level,#
“. .. our forms of perception are indeed not learned by the

individual, ... but definitely products of evolution, like any
other aspects of our body and mind."

#Max Delbriuck, "On Einstein'', Physics Coloquium lecture, California Institute

of Technology, December 6, 1979.
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One of the most dramatic manifestations of this duality is the fact that
for objects like the electron, which we classically consider as particles, the
same localization properties (or lack thereof) apply as do for the photon.
Namely that the position and momentum (or velocity) cannot be specified jointly
to better than %/2 along the same direction (i.e., equation 2. 144b), Similarly,
the energy of the state and the instant in time that we must assign to that

state can also not be specified jointly to better than #/2 (i.e., equation 2, 144d).
Now admittedly # is a small number, i.e.,
-34
h=105x10 J'g& , (2.162)

and to the extent that it is, depending on the phenomenon, we can forget about
it. It has no effect on the flight of a baseball, for example. Phenomena on
the atomic scale, however, involve quantities (the corresponding value of the
action to be more exact) that may not be large compared to #. In that case
the quantum description of such systems is imperative. Conceptually, however,

we may have difficulties with the idea that a material particle cannot be local-

ized any better than the limits we have quoted. As Heisenberg says (ref. 4
page 15)

""Any use of the words ‘position' and ’#relocity‘ with an
accuracy exceeding that given by equation 17 is just as meaning-
less as the use of words whose sense is not defined.'

and he continues in a footnote,

""In this connection one should particularly remember that
the human language permits the construction of sentences which
do not involve any consequences and which therefore have no
content at all - in spite of the fact that these sentences pro-
duce some kind of picture in our imagination; e.g., the state-
ment that besides our world there exists another world, with
which any connection is impossible in principle, does not lead
to any experimental consequence, but does produce a kind of
picture in the mind. Obviously such a statement can neither
be proved nor disproved. One should be especially careful
in using the words 'reality,' 'actually,' etc., since these
words very often lead to statements of the type just mentioned. '

It should be clear, at this point, that the "'uncertainty principle', as

equations 2. 144b and 2. 144d are called, represents a property of superpositions,

which can be expressed conveniently in this case in terms of the Fourier

transform. The association of momentum with wavenumber, and energy with

frequency comes after the fact, which is valid quite independently of that

association. In particular, the 'uncertainty principle' has nothing to do with

#

our equation 2. 144b.

June 13, 1980
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measurement, even though it is, of course, possible to argue that you cannot
violate it by means of a measurement, as is popularly done. The main trouble
with such arguments, however, quite apart from drawing attention away from
the actual basis of the "uncertainty principle'’, is that they are classical
arguments and at the end one is left wondering, since thre discrepancy can

apparently be resolved in terms of classical physics, why one needs a quantum

theory at all.

A second point that should be made concerns the probabilistic interpretation

of |f(x,t)|®, i.e., that it represents the probability of detection (interaction

with the apparatus). This has caused an awful lot of trouble in the past (and
still causing it today!). The reason is that the word probability is usually
associated with something that is random, like the throwing of a pair of dice.
The difficulty has been compounded by the use of the word uncertainty to de-
scribe the joint localization properties of superpositions in phase space. There
is nothing uncertain about the evolution in time of the wave function (wave

packet). A single electron 'knows'' that it cannot land on a node of the inter-

ference pattern!

2.5 Summary and conclusions. The correspondence principle.

We have seen that the data on diffraction and interference for both light

and matter (non-zero rest mass) suggest:

(i) The association of a complex amplitude with the motion of an-

object of interest that is, in general, a function of space and

time, i.e., f(x,t).

(i1} This complex amplitude, in order for us to describe the
interference data, must be expressible in terms of a

superpogition of other amplitudes, e.g.,
f(x,t) = Z Cn fn(:_c, t)

where the Cn's are complex coefficients, or, in the most

general case, as a continuous superposition, e.g.,

ik-x
f(ix,t) = Flk,t)e a®k .
k .

June 13, 1980
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(iii) The square of the modulus of f(x, t) must be identified with the

probability of detecting the system at (x,t), i.e.

Fl

Pt = |tz 02

(iv) 1f the superposition is going to be valid, the equations of

motion must be linear and homogeneous, i.e., if f; (x, t)

and f3 (x,t) are solutions,
f(x,t) = c; f(x,t) + ca falx,t)

must also be a solution.

(v) If the equations of motion are expressible as differential

equations, they must be of first order in time, i.e.,

f(x, 0) should be sufficient to specify f(x,t) for all t.
and finally
(vi) For large values of the action, i.e., if % is negligible, the
solution of the equations of motion should coincide with the
classical equation of motion, which we know, in that limit,

are correct.

This latter constraint has been termed the correspondence principle, formulated

by N, Bohr in 1923,

We have also seen that light and matter possess a dual character in that

they simultaneously display the properties of both particles and waves.

(vii) An entity of energy E and momentum p is to be associated
with a wave of angular frequency w and wavevector k

according to the relations

E A w

n

B =2k

and vice versa, where % is Planck’s constant.

(viii) When working in (x,t) - space, the angular frequency and

wavevector can be represented in terms of the operators

June 13, 1980



June 13,

1980

(=23

land

£

3



References

2.1 R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei,

and Particles (John Wiley & Sons, 1974).

2.2 S. Gasiorowicz, Quantum Physics (John Wiley & Sons, 1974).

2.3 W. Blanpied, Modern Physics, An Introduction to its Mathematical Language (Holt,

Rinehart and Winston, Inc.).

2.4 W. Heisenberg, The Physical Principles of the Quantum Theory (Dover 1949, first

published by Chicago Press 1930).

June 13, 1980

. 45



Problems

2.1 . In the light interference experiment (figure 2. 1) assume that the frequency

of the light source is a slowly varying function of time, i.e.,
w(t) = w, + w'(t)

where w'(t) measures. the. excursions of w(t) about a mean value w,. If

w'(t) << w(t) compute the resulting interference pattern on the plate Pg.

2.2. Instead of a single light source which illuminates an orifice plate to
generate two spherical waves, we now use two lasers at x = + £/2
whose frequencies have been matched as well as possible. Nevertheless,

the frequencies of the two lasers drift slightly so that
w,(t) - w_(t) = w'(t)

where u)’/w_"_ << 1 anci w'/w- << 1. Compute the resulting interference
pattern assuming that the measurement always represents an average
over a time T. What happens to the measured interference pattern as
we. reduce the laser\intensity? What happens Qhen the field between
z; and zg contains the energy corresponding to one photon in a given

time? Assume that w'(t) is a sldwlx varying function of time.

2.3 A one-dimensional wave packet at t-=0 is given by (a > 0),

A cos [n(x - x5)/a] eikox s lx-x|<al2
f(x) = A
o] H ‘x— x°‘> afz2 .

(i) Find the distribution of wavenumbers contributing to f(x).

(ii) Find . (x), (), Bx= {W(x ~63)= 2, 8k = {V((k -<BS)* 7, and

the joint spread Ax-Ak.- :

2.4 Prove that ({x - (x))®) = (B~ (x)® in general.

2.5 Prove that the minimum of the joint spread

n{g(x)} = Ax- Ak ,
where the function g(x) is complex and given by
gl(x) = u(x) IP1x) ,

is attained when ®(x) = const.



Problems, continued

2.6

2.8

From the inequality
iz s + axgf 2 0,

prove that

1
Ax'Akz'z,

and that the equality corresponds to a wave packet

3 -}
o) = A &% /40T

where A may be a complex constant.

Prove the following properties of operator commutators
() [&8]+ [b,31=0

(i) [3a) =0

Gif) [8,5+2] = [3,B] + [3,8)
(v) [3+5,8]=[5,8] + [B,¢

(v)  [a,08] = [3,Ble+ B(3,8)
(vi) (36,27 = [3,2]6+ a[6,2)]
iy [5,06,27] + [&.05.89]) + [B.re.2]] = 0.

1f the operators a and b both commute with their commutators,

show that
() (3,87 = n 8271 [4,8]
and

Gi) [a% 8] = n3™ ! (3, 8] .

Prove that

Q)& J = i EdQ(xl‘l .

Compare this result with that of the previous problem if the function

Q(x) can be expanded in a power series.

If & and b are Hermitian operators, prove that E,th‘ft
(3,8] =iz ,

is also a Hermitian operator.



Problems {(continued)

2.1l A monochromatic plane wave with a wavevector k = Exkx is incident on
a plate at x = 0 with a slit of width b. [Estimate the spreading of the

beam that emerges from the slit.

3

SENpaRn}
| L)

2.12 Discuss the momentum transferred to an isolated electron that absorbs a

1.2

photon, i.e.

CPQ(J‘M&
(e;e)

. NTeRACTION

éil

(w; - (E.)_P')
photes dﬁ()’k
=%

2.13 In computing the motion of the center of mass (x(t)} of a one-dimensional
wave packet, we found
(x(t)) = (x(0)) + (v)t, @2.108)

where v is approximately given by

(v) = -ZL fﬁ’i [Fo(k}!? dk = ) {2.109) - (2.113)
T ok ok )
k ko= ko
where
ko = (K) = 3= fk |Fo(k)P dk = constant
k

kS

In comparing the velocity of a free particle with the classical result

we found, however, that

) duw
<v> = v :-r% =-é; =-é§ {0,153)
exactly. Discuss the apparent discrepancy, in view of the fact that

we require the expectation value of the center of mass of the wave

packet to move classically.



Problems (continued)

2.

14

A one-dimensional wave packet of lightv(w = 2nc/\) at t = 0 is given by

the superposition

8

1 ikx
f(x,0) = fo(x) = I Fy(k)e dk |,

v
8

where (k; > 0)

) 2 1/2
(—k—z—j(-;) for kg > k > Kk

Fo(k) =
0 for k > k;, or k <l

Find f(x,t) and describe the resulting evolution in time of ‘f(x, t)lz.

We are given that the wave amplitude at t = 0, for a one-dimensional
wave packet of light (w = 2wc/)\), is given by

f(x,0) = f5(x) ,
where f,(x) is a real function. Find f(x,t) and describe the resulting

evolution in time of If(x, t)}g.

Hint: Careful!

Black body radiation. Compute the number of modes of electromagnetic

radiation .in a rectangular conducting cavity of voelume V, with a frequency
between VvV and V+56v. Assuming that each mode is in thermal equilibrium
with the cavity which is at a temperature T, compute the classical
expectation value of the energy of the radiation in the cavity in the
freqhency interval v < v!' <.v + §v, if the probability that it has an

energy E is given by the Boltzmann factor

p(E)E = & E/KT 45

Compare your result with Planck's formula (2. 130) in the limit of

hw/kT << 1.

Photoelectric effect. Using the data in figure 2.4, compute h/e, the

ratio of Planck's constant to the electronic charge. Compare with the

accepted value of h using the known electronic charge.



Problems (continued)

2.18 Compton scattering. Derive the wavelength shift

for Compton scattering (equation 2. 136). Why

is the relativistic calculation necessary?



3. THE SCHRODINGER EQUATION

3.1 Hermitian Operators. Eigenfunctions and eigenvalues.

We have seen from the preceding discussion that it is possible to associ-
ate with the physical quantities of coordinate, momentum, energy and time, etc.,
operators whose expectation values correspond to the classical values for these

quantities.

Example 3.1. The expectation value of the momentum.

Given a wavepacket V¥(x,t), we can compute the expectation value of the

momentum using the momentum operator p for x-space, i.e,
i »

(Y = [‘V*(L t) B ¥(x, t)d’x

= n (k)

We would like to generalize this idea and assign an operator to every
physical observable of interest. The expected value of the observable would

then be computed for a system described by a wave V¥(x,t) by the integral
b3 ~
Q) = [W (x, )[Q v(x, t)]a%x . 3.1)

Now, if the expectation value {Q) corresponds to a physical quantity,

it must be real, 1i.e.
@)= @, or [ v Onex = fv(éw*d”g . (3.2)

for any V¥(x,t). The latter equation places important restrictions on the

operator ) that satisfies the relation

* A ~ %*
fv (Qo)d®x = [(Qv) ?dx , (3.3)
for any ¥(x,t) and ¥(x,t) is called Hermitian. It therefore proves necessary
to restrict the operators representing physical observables to Hermitian

operators#.

¥Strict1y speaking, we have shown that a Hermitian operator has real expecta-
tion values., Equation 3.3, however, appears more restrictive and whereas

it is clearly sufficient that the operators be Hermitian, we have not shown

that it is necessary.



update

Example 3.2.

Show that the momentum operator is Hermitian.

We have

/ v dn P x

i 0
| >
-
*> \x
<
%
3 ——
L.
)
wie
+ <
e ~—
B =9
o
— I
—
L)
wie
<
SN
=
o
[A
]

a

Given an arbitrary operator A, it is useful to define its adjoint operator

~t

A by the eq

>

uation

/(Afw)* ¥ d®x = ftp*(A y) d°x . (3.4

Evidently Hermitian operators are self-adjoint (their own adjoint).

Several

Theorem 1.

Theorem 2.

Theorem 3,

Theorem 4.

Theorem 5.

important theorems can be proven:

The expectation values of Hermitian operators are real.. This

follows. from equation 3.3 and the previous discussion.
The sum of two Hermitian operators is also Hermitian.

If )\ is a complex number, then . (complex conjugate) is its

adjoint operator.

If A is not Hermitian then

A, = (A +Ah (3.5a)

and

A =ia-ah (3. 5b)

are Hermitian. Therefore any operator can be written as a

linear combination of two Hermitian operators, i.e.

A:%(A +AT)+-2-1I lia - aty (3.6)

If C is the product of two arbitrary operators, i.e.

C=AB

’



then
ct - @amt=58tal. 3.7

The action of an operator o} on a function f(x), will in general yield some

other function g(x), i.e.

Q flx) = gx).
For an important class of functions, corresponding to an operator 6, the action
of the operator QO on the function results in a multiple of the same function,
i.e.

Gy = @, (3.8)
where, in general, \ may be a complex number. Functions \y)\(_;_:_), which for a
given operator 4 satisfy equation 3.8, are called eigenfunctions of Q (8's own
functions, in German), and the constants L are called the corresponding
eigenvalues. More often than not, additional constraints are placed on the
solutions of equation 3.8, for example, we may require that Y(x) be normal-

ized, i.e.

f v @ Ve @x = 1 (3.9)

inside a region V, and we may also impose boundary conditions on some

surface S, commonly the edges of V.

Example 3.3. Find the eigenvalues and corresponding eigenfunctions, which

vanish outside a region

0 <x < a
0<y <b

0<z<¢c¢c,

of the kinetic energy operator.

We have,
- 1 a3 1 s = L (aa & az)
R = L X s M (O L8 0 (3.10)
Zm P 2m 2B 2Zm 9x? aya 923

and we require
K uE(E) = E uE(zc_) (3.11)

or i

3 3

n ( e, )

—_— | = — + = .
5 \ 5 P + 52 ) uE(x, y,z) + E uE(x, y,z) =0

By separation of variables, let

ulx,y,z) = X(x)* Y(y): Z(z) , (3.12)



where
X''(x) + kx” X({x) = 0 (3.13)

and similarly for Y and Z, and where
E=2" k24 Kk2 +k?) (3. 14)
2m x Yy z : .
The solution of equation 3.13 is given by
X(x) = A sin(kxx) + Bcos(kxx) . (3.15)

From the boundary conditions at x=0, we have B=0, while from the boundary

condition at x=a we have

X(Lx) = A sin(kxa) =0

or
k == ; = 1,2 3.16
=30, a_=1,2,..... (3.16)
If we additionally impose the normalization condition, we have that
L L
X x ™Tn_x
/ X%(x) dx = Aaf sin2< ax )dx =1
0 0
or
2 1/2
A = (-5) . (3.17)

Note that n = 0 is disallowed by the normalization constraint.
Collecting these results, we have the eigenfunctions

1/2
- §_ . E . ™ . jut 4
w WY (x,y,2) = () sin(n, —) sm(ny —lb ) sin(n, <) . (3.18a)
where V = abc, and the corresponding eigenvalues

3_ 3 2 2 2 2

#2 [T By w ny nn
By on.n = zm'( Tt ) , ' (3. 18b)
x’ "y’ Tz b c?
where n ,n ,n = 1,2,3,.....
x z

Example 3.4. Find the eigenvalues and corresponding eigenfunctions of the

operator for the component of the angular momentum about

the z-axis.

Classically, we have
L=xxp

and therefore#, in x-space

fr

his is not as casual as it may look. The cross product brings together com-
ponents of x and p that commute as operators (see equation 2.144b) so that

we don't have to worry about the order in which they operate.
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L
z

: 9 3
-ihxgy - Y 5R) (3.19)

and, transforming to cylindrical coordinates, we have

~ . 9
Ly=-it5 - (3.20)
The eigenvalue equation is then
I: [} = & (¢
2 @) = BE )
or
ih ¢ (0 + $ () =0 . 3.21
i M(CD) M “({‘) ( )

Now the appropriate boundary condition, in this case is that the eigen-

function should be periodic, i.e.
$(0) = &(2w) . : (3.22)

From equation 3.21 we then have

igop/t
¢ = e
“(CD) ,
while from the periodic boundary condition we have that
ipen/t

1l = e

or, i must be an integer multiple of #, i.e,

?
g=mht ; m=0,+1,+2, (3.23a)

and therefore

imo

Ea) = e (3. 23b)

within a normalization factor.
Consider now two of the eigenvalue equations for Q,

-~
Qu X ou
n n n

0>

u_ = A_u
m m m

or, equivalently, taking the complex conjugate of the latter we have,

* %
u L
m m m

and therefore
* 3 -~ % 3 - % f * a3
[um(éun)dz- ]un(Qum) Ex= (O -2 ) fu uw dx
v A\ ) v
Now, if Q is Hermitian, the left hand side is zero and consequently

(g - Ao) lu:‘n u dx = 0 . (3.24)
v



3.

*
Therefore we have, if m=n, that Xn=1n or,
Theorem 6. The eigenvalues of a Hermitian operator are real.

We also have, if A_# \__, that
n’ "m

* 3
: u u d°x =0 ,
. m n =
v

or

Theorem 7. The eigenfunctions- of a Hermitian operator corresponding to

different eigenvalues are orthogonal.

We may invoke this latter property utilizing a normalized set of eigen-

functions to write
/ * @Bx = 6 3.2
um(i‘-) un(_:s) X=%mn (3.25a)
A\

where & is the Kronecker delta,
mn —_—

1 if m=n
6 = (3.26)
0 if m#n

See appendix D. Such a set of functions is called orthonormal. The similarity

of these properties and those of eigenvectors and éigenvalues of Hermitian

matrices in linear algebra should not go unnoticed.

The set of eigenvalues of an operator Q is called the spectrum of 0.

The spectrum of eigenvalues may be discrete or continuous or both. In the

case of the continuous spectrum, the orthonormality condition becomes

[u:(z) u,(x) d°x = s - V) , (3.25b)
\4

i.e. the (discrete) Kronecker delta is replaced by the (continuous) Dirac delta

function. ‘See appendix D.

Example 3.5. Find the eigenvalues and eigenfunctions of the momentum

operator.

-~

-In 1-D, p= -ih% . Eigenvalue equation

ﬁuzpur, or itu'(x) +t pulx) =20

We have,

u(x) = (consi:.)e1kx ; -0 <k <o ,



where

p =tk
Note equation 3.25b and the fact that
172 .40 * 1/2 . . .
1 ik'x 1 ikx 1 i(k-k')x
f [(2—."- e ] [(—2—1;) e ] dx = —27[ (] dx = 6(k-k')
Lo o0

See appendix D, equation D.13.

-~

Theorem 8. If the set of eigenvalues of a Hermitian operator Q possesses a
minimum (maximum), then the minimum (maximum) expectation

value of Q is given by the smallest (largest) eigenvalue.

Proof: Wish to minimize (maximize)

¥ oA
Q) = [v Qv , (3.27a)
v
subject to the constraint that
*
vV vydx =1 . (3.27b)
v

Consider instead the functional
* A 3 . ®  a .
JHyl= [ vQna®x + a1 - [y ya®x] . (3.28)
v - v
We require then that (see appendix A)
67 = J{y+n} - J{y} = o(n°)

-

This yields

I @v- 2 + @y - W nlex = 0
v

where we have used the fact that 0 is Hermitian to write the second term in

the integrand. Therefore, if this is to hold for any ?n(x), we must have
Gy =y, (3.29)

or that ¥ must be an eigenfunction of Q.
Using this result, we then see that A, which was introduced as a

Lagrange multiplier, is in fact the expectation value under these conditions,

i.e.

Q) = 2

Therefore
min min }
(mu) (@)} = (max) il o, - . (3.30)
and the minimum (maximum) is attained when ¥ is the corresponding eigen-

function.



upda te

It should be emphasized that in the preceding discussion, integrals over
the coordinate vector space x were used for the purposes of illustration only.
All these results are independent of this assumption and are equally valid if
the independent variables are wavenumbers, or time or frequency or anything
else. For this reason it is advantageous to introduce a notation which is
independent of the particular space in which the functions are expressed (sort
of like vector notation which is independent of the coordinate system). We will

denote a function y(x,t) as follows#
by = vk, v, Wik, b ete. (3.31)
while its complex conjugate

<\1/| W \‘I;Z:(_;E, £) , \l,.:.(}il t) ete. (3 32)

The action of an operator 3 on this function will then be written as

Qy = aly (3.33)
whereas, if which to denote the result of this operation, i.e. (6 ¥) = o, we
will write

cp= @y = Qv . (3.34)

Equations 3.33 and 3.34 will be interchangeable for most purposes.

An integral over the space of the independent variable will be written as
jm“(é\v)dsgg 24p]Q¥) = (0]Q]v) . (3.35)
v

Clearly, if O is Hermitian
@Ay = |G = Qaly) . (3.36)
The expectation value of Q) then becomes
Q) = (¥]Q[¥d (3.37)
while the orthonormality of the eigenfunctions of $3 can be written as (see
equation 3.25a)
(3.38)

<um | un> = mn

3.2 Superpositions of eigenfunctions.

Given a set of normalized eigenfunctions {un} of a Hermitian operator
Q, subject to some boundary conditions, we construct a linear superposition

of some number of them, i.e.

N
lfy = z fu de . (3.39)

n=0

¥

This notation is due to P.A.M. Dirac. See reference 3.2 .



If we take the scalar product of this equation with (uml, where 0 < m < N, we

would have

N
_ ¥

ol =3 @ la)ec? . (3. 40)

n=0
or, using the orthogonality of the eigenfunctions (equation 3.38),

N .

<“m|f> = z 6mn €, =c. -

n=0

Therefore, we bhave that the relation of the coefficients, in a superposition of
the type expressed by equation 3.39, and f, which represents the sum, is

given by
cp = Cu Iy | (3.41)

an expression which has the appealing geometrical interpretation of the
projection of f on u - If we substitute equation 3.41 in 3.39, we have

N
£y = z lu dCu 16> . . (3. 42)

n=0
-~
We can compute the expectation value of the operator Q in the super-

position of equation 3.39, as follows, we have

N
» P £ ~
Q) = (£|Q]f = z € ©n <um|Q|un>
m, n=0
N
b3
= z ‘s €m n (um|un)
m, n=0
N
E'3
= z Xl'.l m n 6l’).'l!‘l
m, n=0
or N N
@ = ale =S Aol o (3. 43)
n=0 n=0

Similarly, of course, for any integral power of 6, i.e.

N
(@™ = 2 AT e I? ' (3. 44)

n=0

and any function (resolvable in a power series), i.e,

#Note that if we were working in x-space this equation would read,

N
[ ufn(,lj) f(x) d°x = z c, [ u:‘n(é) u_(x) d®x
v n=0 v

3.9



N .
(F(Q)) = Z FO) e I* . : (3. 45)

n=0

It is therefore particularly convenient, in computing expectation values of

operators, or functions of operators, if we are dealing with a superposition of

eigenfunctions.

3.3 Eigenfunction expansions. GCompleteness.

The remarkable thing is that any function can be represented by an

infinite superposition of eiggnfunctionsiF i.e., given any normalized Y(x),

there exists a sequence of coefficients e such that

N-sow
n=0.

Lim i cu(x)]—w() (3.46)
.nn_j— E . N °

The equality in the limit is t¢; be understood in a least squares sense, i.e.,

"
[=]
.

N
N 3
e IM(&) - Y @l fx (3.47)
v n=0

To prove this property, we will order the “n(i) in a sequence of increasing

absolute values of the corresponding eigenvalues, i.e.,

Il =] sl s s I sl (3.48)

Now, let leH(gc_) be the difference between the. function ¥Y(x) and a
superposition of the first. N+1 of the ordered eigenfunctions 0 <n s N,
i.e.,

N

b = Bx) - 2 c u (x), (3.49)
n=0

such that le+1(_J_<) is orthogonal to [q), W, ese uN]. This requirement

dictates that the coefficients <, be defined by (see problem 3,4)

= %k 3

c, = /un (x)¥ (x)d°x . (3.50)
v .

Consider now the normalization integral,

*

of a Hermitian operator



al41 /lﬁNfl (x) by (x) °x (3.51)
\r
N N
= [(d’ - z cnun)* W - Z cnun) d3§
v n=0 n=0

or

u

2
AN+l

N
- -]
fw*$d3§ - z le | . (3.52)
v

-n=0

Note that if aZ +0 as N —»®, we have proved the statement. See

N+1
equations 3.51, 3.49 and 3.47. We can use the gy o normalize the
remainder function. We then have
1
Va1 (X) = = Un (%) (3.53)
N+1'= a4 N+1'=

where

f?ﬂwﬁltz)%ﬂ(y@; =1, /ui(z)’ﬁml(ydﬁ =0, O0snsN (3.54)

AV 4
\/ !

Consider now the expectation value of Q7 - % ? with the function

bpp (@) 5 deen,
(Q% " gy =/$Nf_1(_>g) Q- 2,2) By, (%) x . (3.55)

Since we know, however, that INH(;S) is normalized and orthogonal to the

first N+1 eigenfunctions, see equations 3.54, we must have

[wNi‘l(z) Q%07 By (0 x 2 A, - A (3.56)

(see problem 3.5). Using equations 3,49 and 3.53, we also have, however,

that
- N N
(@ Wy, = —5 [w Y e @ S eu e |,
N+ LV a=0 n=0
or
p~ N 2
(@ NPy = =5 |1- D 02-ad) el |, (3.57)
+1 | n=0
where we have used that (x) is normalized, i.e.,
f&*(z)w(_&)daﬂ_c =1 . (3.58)

v
Therefore, combining 3.56 and 3.57 we hawve that
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N
1
= T e el | 2 gy oW

AN+ n=0

or, since A° - )\0 = 0, we must have
A - lo aN < 1 3.59)
(N-H. ) +1 * 3.

Therefore, provided “‘N+11 -0 as N -»0, we must have that a1 -+ 0

as N #» w0, as was required.

A set of functions which can serve as a basis in terms of which we can

expand any other function, in the sense of equation 3.47, is called complete.

"We have therefore proven that

Theorem 9. If the absolute values of the eigenvalues of a Hermitian
operator form an unbounded set, the corresponding

eigenfunctions form a complete set.

We therefore have, for any ¢(x) that if un(;s) are the eigenfunctions of

such an operator, then

-»
$(x) = z cnun(_ig) (3.60a)
n=0
where
e, =/u:(§)w(§)d3§ , (3.60b)

or, in terms of our representation-independent notation,

le) = Z lude, (3.61)
n=0
or
Wy = z ERICH DI (3.611)
n=0

All the results of finite superpositions of eigenfnnctions now apply

{section 3.2), for example, if
Q]un) = anun)

then
wldley = Y alet® o, (3.62)

n

etc.



An interesting property of such expansions may be obtained as follows.

From equation 3.60 we have that

-
Bx) o= Y uln) [ wk(x') B(x') 42 %'
nz0 v

or
-
blx) = / 2 u (x) u (x) | e(x) Sx
v n=0
Comparing the left and right hand side we see that we must have, for a com-

plete set
ax
z \1;‘5_') u {x) = &(x' -~ x} . (3.63)
n=0

This is called the closure relation. Compare this with equations 3.25a and
3.25b.

Note also that the normalization integral, i.e.

now becomes

il & y o .
wly) = Z €ntn (um{un, z € n 6mn

n, m n,m

or

z§CP=1 . (3. 64)

3.4 Hermitian operators and associated observables.

We have seen that the expected outcome of a set of measurements of an

observable A associated with an operator Q in a system described by a
function |¥) is given by

QY = wiajyy , (3. 65)
with an expected mean square deviation from this expected mean, that would
be given by

A% = (0 - (P = G - (DR (3. 66)



. . . . . o .
If we now consider Hf} as an expansion in the eigenfunctions of Q, i.e.

0
=S lade s e = G lv
n=0
then we have
an
- 3
Q) = 2 xn]cn] (3.67)
n=0
and
g
AQR = . (‘\2 . 12 )
2Q z - @72 le P, (3.68)
n=0
where the Xn are the eigenvalues corresponding to the ‘un>‘ [Let us now

assume that we have prepared our system so that it is exactly described by

one of the eigenfunctions of é, i e, if

Py) = Ium) . (3.69a)
We then have € = 1 and ¢, = 0 for n#m. Correspondingly,

Q) = )\m (3.69b)
and

27 = 0 (3.69¢)

In other words, if the system is described by an eigenfunction of the

operator associated with the observable of interest, a measurement of that

observable can only result in the corresponding eigenvalue. Such a system

will be described as being in an eigenstate of 6 The converse is also true,
namely if
(@Y = a and  8Q° = 0
m
we must have |y} = 'um). See problem 3.6. Consistently with this result,

we may now interpret the coefficient ¢, as the probability amplitude that the

system will be detected in the eigenstate fun'), and therefore Icnla ig the

correspaonding probability. In this light equation 3.66. can be understocod as a

classical computation of the expectation value of a variable )‘n with relative
1

probability weights of lcnln. The normalization
wivy = Y fe l® =1
n

is then to be interpreted as a statement to the eifect that the sum of the
probabilities of detecting the system in the eigenstates lun) must equal unity,

i.e. theres are no other possibilities. MNote, however, that we are not

saying that the system is in the state [un) or Qum> or whatever with proba-

bility Icnta, Icmt3 etc. The system is in all these states [in accordance



with the expansion,

vy = z fuYe s e, = Cu ¥

n

sirnultaneously.

3.5 The energy operator. Schrodinger's equation.

We have seen, from the discussion in chapter 2, that we can associate
an energy E = Awn, with a system characterized by a frequency w. We also
saw that the appropriate corresponding operator to the {requency is given by
equation 2.123, i.e.

D= i-a—
at
and that therefore the corresponding energy operator is given by equation
2,157, i.e.
E=in 2

at

We therefore have, that the expectation value of the energy would be
given by
(Ey= GIEN = Glirl (3. 70
or, for a system described in (x,t) space, ~
(EY = in[f@, t) % Yix, 00d% . : (3.709
We have also seen, however, that there exists a function of x and p,
which in classical physics when evaluated along the path of the evolution of
the system is always equal to the energy, namely the Hamiltonian H = Hi(x, p).
‘We would therefore expect, since by the correspondence principle (section
2.5 vi) the expectation value of H = H(% B) must behave classically, that we

must also have that the energy must be given by
E = (y]alyY (3.71)

or, for a system in x,t space

E = [\y*@,:) H(ﬁ-ia%) Vix, t)d%x . (3.71")

-

If we now define a new operator E', given by

AL - inl
E = H-3tm

we must have, from the preceding discussion, that

(E'Y = (y|(A - ia-;—t)]w =0 , (3.72)

for any admissible N). Since we also require that we should never detect a




violation of the conservation of energy, we must also have that

132 - . 3>
QE'P = (W@ - ir £y ¥y =0, (3.73)

ar

or, since E is Hermitian

GEP = (A - irZ)vldi-in Zwd=0 .
This is only possible if |y) is an eigenstate of the E' operator, corres-
ponding to an eigenvalue of zero, i.e.
ENy = i - in 2y =0

or

nE P = in v, (3.74)

or, in (x,t) space,

Hxg, 50 52) ¥l 0 = 10 5 vt (3.74")

Equation 3. 74, or 3.74', is the celebrated Schrodinger equation and serves as

the basis of the non-relativistic quantum theory.

Example 3.6. Find the Schrodinger equation for the one-dimensional motion

of a particle in a constant potential.

From the corresponding Lagrangian we obtain the classical Hamiltonian

H = 5— p® + V, ‘ (3.75)

~ 1
H=gmpet Vo
1 ., 0 . a
= 5= (-in Bx) (-in -a—,z) + Vg
or
~ hQ 83
H = —EI—E 3 + V,
] X
and therefore
a 3
- IR AT (3.76)
ax®

We can solve the Schrodinger equation, by separation of variables, by
substitﬁting
Vix,t) = Xix) Tit) ' ' (3.77)



update

to obtain, for each admissible E,

B X (x = E X @ (3. 78)
and

., 0

in 3t TE(t) = E TE(t) . (3.79)
We then have ,

-iEt/h

TE(t) =cp e (3.80)

and therefore
-iEt/%
et = S ep Xpme , (3.81)

where the symbol s denotes summation if E is discrete and integration if E
is continuous. It will be recognized that equation 3.8l is an expansion of the
time dependence of Y(x,t) in the eigenfunctions of the operator E? = ihd/at.

The coeificients cp can be computed from the initial conditions, namely since

YE0) = D ep FXp (3. 82)
E

and the :z‘E(g are. orthonormal, we have

A
cp = [ xE (x) ¥(x,0)d°x = constants (3. 83)
v

We can ask for the expectation value of the energy in a system described

by equation 3.81. We have

(EY = (y]EIW
* * “ -iE-E")t/%
= z Cpl Cp Xg (x) H xE(ﬁ)daf e
EE v o
or
(E) = z E legf . (3.84)

E

Several conclusions can be drawn from this result. One is that the

energy is a' constant. This can be seen from the fact that the possible values

of E are the (fixed) eigenvalues of H and the fact that the coefficients cp are
independent of time (i.e. equation 3.83). This is not surprising, since we
obtained the Schrodinger equation by requiring that the expectation value of A
be equal to a constant along the path of evolution of the system. Conversly, we
will not be able to describe dissipation preperly, i.e. situations in which the

energy of a system of interest is not conserved.

Is there a general method of discovering the constants of the motion, in

the sense that we found energy to be a constant of the motion? Consider an



operator Q with an expectation value

@ = v[Aly) = /v*(_’g, B Q¥ Hdx (3. 85)

v
which will, in general, be a function of time. The requirement that Q be a

constant of the motion, in the sense that we found energy to be a constant of

the motion, can be written as

d ~
3 (=0 . (3.86)
We see that we have to compute the time derivative of the expectation value

of 6 From equation 3.85, we have
d /Ay 3 1A O 219
& @ = GE1alw + <w|§|w>+ AT S (3.87)

i.e. the expectation value may vary in time forbtwo reasons, either because the
wavefunction ¥(x,t) is a function of time, or because (3 is an explicit function
of time. We can now use the Schrodinger equation to substitute for 8y/9t,

in particular since

in &Y -y

ot
we have,
F @ = @Wldly - § 18l + IR v

or using the fact that fi is Hermitian#, we have

d ~ 3 - A a 3“
3 V181V = 5 (s - SRl + WIS v
We therefore define an cperator

S o)
(H,Q1 + 57 (3.88)

[A4,6] = Ad - 68
whose expectation value, computed for systems which obey the Schrodinger
equation, is always equal to the (total) time derivative of the expectation value
of (3 We therefore have that if an operator does not involve time explicitly,

t

i.e., if 86/31: = 0, then a necessary and sufficient condition that it' be con-
served, is that it commutes with the Hamiltonian, The similabrity between
equation 3. 88 and the Poisson brackets equation 1.63 in classical mechanics

should not go unnoticed.

#see also equations 3.33 and 3.34.

its expectation values.



Let us use this result now to compute the time rate of change of the expectation value of the
momentum p of a particle moving in a potential V(x). The corresponding Hamiltonian is
given by

H=3—pp+Vix . (3. 89)

From equation 3. 88 we then have,

£ = Lmph

where

(0,0 = 3= BB+ V®, B) = [V®,3) = ir & v

see problems 2.7 (iv) and 2.9, and therefore
d ,a oV
T B = -5 . (3.90)

as we would expect from Newton's law and the requirement from the correspondence principle

that the expectation values behave classically.

From the form of the Schrodinger equation and the fact that the total probability of

detecting the system somewhere is conserved, i.e.

[!Wdaz= 1,
v

we can derive a local conservation law for the probability density. As in every case where
the integral of a density is conserved, we seek a conservation law of the form
2 (density) + 2 . (flux) = 0 : (3.91)
a9t ax ?
i.e. the local time derivative of the field density, plus the divergence of the corresponding
flux must equal zero. Eguation 3.91 is nothing more than a statement of the fact that if the
field is conserved, the local loss from a volume element must be accountable in terms of the
flux leaving the volume element. In classical fluid flow this leads to the mass continuity
equation,

e

at Py =0,

i)

where p is the fluid density (gms/cma) and v(x,t) is the local velocity, in electromagnetism

we have the charge conservation equation

where pc(i' t) is the local charge density (Cb/m3®), and -ic(é’ t) is the current density

(amperes/m®). In quantum mechanics, we would like to identify the local density with the



probébili_ty density, i.e.
plx.t) = |vix, )P, (3.92)

and the question is what is the corresponding flux j(x,t), that solves the equation

B 8 . jxp=0 . (3.93)

We wish to compute

2 ot = 2 V0 vx]
L,y
=S vty o

or, using the Schrodinger equation,
3 i e #
52 = FUHY v - v (HY)]

substithting for H, see equation 3.89, we have

2 = it P9 - VW]

S LI
= - g W) - v (TP
or
%o . Ly ety - WPy = 0

ot 2Zm
We can transform this to conservation form, using a vector identity to obtain
¥
IV Y NP LD A A
WV Fgg Lgm 5 - vl =0 (3.949)

and therefore we have for the flux vector

et = - 2w 2 vt - vEn & Vel (3.95)

sometimes called the probability current. Note that the definition of j(x,t), in terms of

equation 3.94 is not unique.. Any j'(x,t), given by

B = D o X Alx, D) ‘ (3.96)

will also satisfy the local conservation equation 3.93, since the divergence of the curl of any

vector field is zero.

t

If ®is a scalar field and v is a vector field, we have

= 2. L
A Y a4 _!35

Pox x

.20



Problems

3.1 Prove equation 3.7.
3.2 Derive equation 3. 14.
3.3 _.Derive equation 3.20 from 3.19.

3.4 Given any function |y) and the normalized eigenfunctions {lugd, lu), ..., Iun), el

of some Hermitian operator é, show that if ¢, = (unl\y)

(i) [vad = [¥) - fupd ey

is orthogonal to luy)
N-1
@y = - Hupe,
n=0

is orthogonal to {‘un)} ; n=1,2,..,N-1.

3.5 If Ag <X <Ay ... < )‘n < ... are the eigenvalues of a Hermitian operator é, show
that '
U i )
if ()= 1 and (ufWh) =0, then

min [{¥, lél‘h)} = N

(ii) if <‘VN""N> = 1 and <un]vN} = 0 for n=0,1,...,N-1, then
min {Chg Qv = Ay -

3.6 ‘Show that if |y) = z lu e

n
(@) = 2 A le 2=
n
and
A® = (D - (A
= AY\3 3 _
g, 0, - @ e 1®=0
Then
> = Ju
Hint: (A -2 )20, [c? =0

3.7 Show that for a system obeying the Schrodinger equation,

£ =2 @



Problems (continued)

3.8 Define a local phase field ®(x,t) by (pix,t), cp(x, t} = real)

172 io(x, t)

Vix, t) = [p(x, t)] ,
where Y(x,t) is a solution to the Schrodinger equation. Compute the probability current
J(x,t). Can you identify a velocity field from this? Compare with the classical fluid

mass continuity equation.

3.9 (i) Using the Schrodinger equation, show that
Y(x, tdt) ~ (1 - 3 dtH) v(x,t)
where H is the Hamiltonian for the system

(ii) If H is not a function of time, show that, for a finite time shift T,

i
Vix, t+7) = e Vix, t)

This allows us to define a time translation operator,

~ - -—hi-TH
Tyr) = e ,

such that

T Wix, 6) = yix, t+1)

3.10 (i) Using the definition of the momentum operator, show that

Vx+dx) ~ (1 +3 dx B) vix)

(ii) "Show that for a finite translation in x

a

a -

a-p
V(ix+a) = e V(x)

*|

This allows us to define a space translation operator

a‘p

»||-u

TE(‘)

such that

>
=

v(x) = y(x+a) .



4. QUANTUM BEHAVIOR IN ONE-DIMENSIONAL POTENTIALS.

In this section we will deal with one-particle systems described by a Hamiltonian

=1 2
H=5—=p" + Vx) , _ (4.1)

where the potential V(x) can be separated into the sum of potentials along each coordinate

component, e.g.

Vix) = V_(x) + Vy(Y) +V lz) . (4. 2)

In such cases the Hamiltonian itself is separable, i.e.

2 S S == (p? 2 2 .
f = V) = (] F B R F V0 4V )+ V),

Zm P
or
f-H +0 +H , (4.3a)
X y z
where
* U S is
H(x,p;) = 5= p5 + Vilx) , i=1,2,3 (4. 3b)

This class of problems, provided the boundary conditions can also be separated along the
corresponding. coordinate components, can be scolved by a further separation of the space

#

variables”.

Consider the Hamiltonian eigenvalue equationT (see equation 3. 78)

H X (x) = E X(x)

Now, if the Hamiltonian can be separated as a sum of the type of equation 4.3, we can con-

sider solutions of the form

Xix) = X(x) Y(z) Z(z) , (4. 4)
where

I:Ix X(x) = E_X(x) (4. 5a)

HY Y(y) = EyY(Y) (4. 5b)

H Z(z) = E Z(z) (4. 5¢)
and where

E +E +E =E , (4. 5d)

x v k4

the eigenvalue of the total Hamiltonian. See example 3.3.

In systems of this type, the behavior along each component of the coordinate is

#I: addition to the separation of space - x and time - t, see equation 3.77 and related
discussion.

1'Sometimes also called the time-independent Schrodinger equation.

.1



independent of the others, and the wavefunctions are products of functions of the separate

coordinates. It should be noted that the essential ingredient for this behavior is the separa-
bility of the Hamiltonian, i.e. equation 4.3.
These results can be generalized in a straight-forward manner to cover systems of

non-interacting subsystems (e.g. particles), i.e.

H(xy , %a, - ..,§N,21,Bz,...,RN) = Z Itl(u)(éu,ga) R ) (4. 6a)
where @
~{a) _ 1 2
H (_)SQ,RQ) = Sma Pot Vu(gf_u) . (4. 6b)

The total wave function for the system can then be written as a product

X, % -, %) =10 _’x:l(ga) , (4.7)
a

where

~la) - . ,

H Iu(_:ga) =E X (x) (4. 8a)
where

Erotal = D Eq - (4. 8b)

a

Note again that the condition for this to be possible is that the Hamiltonian be separable into

a sum of separate Hamiltonians for each subsystem (particle), which involve only the corres-

ponding coordinate and momentum variables#. Note also the resulting total probability density
O, xa, - xy) = XL m, )P (4.9)
is then expressible as a product
| P(x1, %, - - - ’EN) = ](;I@a(ia) ) (4. 10)

of probability densities, consistently with our notion of independence in classical probability
theory.

As a result of these considerations, we are motivated to study the one-dimensional
problem, for which the Hamiltonian is given by A
1 O

mi+v(x)=_-———-—3+v(x) , (4.11)

i:[(x: p) = 2m 5
X

realizing that it is more broadly applicable than for motion of a single particle along one

dimension.

#actually, in this case, it is sufficient that the potential have this property, since the kinetic

energy is already separable.



4,1 Matching conditions.

In many cases of interest, it is useful to divide the range of the coordinate into two or
more regions that separate different analytical expressions for the potential. By way of
example, let

V_(x) for x < Xg

Vix) = (4.12)
V+(x) for X > %g

where V_(xo) need not be equal to V+(xo), e.g.

t
V(x)

D

V. (x)

3
*o
We can then consider dividing the Schrddinger equation
R
- 50 =5 * V@] ulx) = Eulx (4.13)
dx’
into two regions, i.e.
w2 g
£~ e ‘(‘1"; +V (x]) u(x) = Eu_(x), for x < x, (4. 14a)
b
and
P
R = + V0] ulx) = Eudx),  for x> x (4. 14Db)
where

u_(x) for x < Xq
u{x) = (4. 15)
u,(x)  for x> x

The question is what happens to the wavefunction u(x) at x = x. From the Schrodinger

equation 4.13, we have that :
2
a2 - 2R (R - V) ) (4. 15)
h

ax®

which we can integrate to obtain



X X
2 1

= =[ duf:) ax = - 22 f [E - V(x)ux') dx' + ¢
dx h

and therefore the difference just after x, and just before is equal to

Xo t€
du du Zm :
— R -1t = . &2 [E - V(x') dx' . 4,16
(dx>xo +e (dx>xo+e # _[ G uter) e ( )

Now, provided V(x) is finite and has no singularity at x = x, (it may have a discontinuity),

we have
Xote
lim {2—“‘— f [E - Vix)] u(x)dx'} = 0 ,
e~0 #°
X5-€
or
du du
(E;) + " <a‘;> =0 (4.17)
X0 Xe
or, the derivative of the wavefunction is continuous across a non-singular discontinuity of
Vix).

What if V(x) had a delta function singularity at xo, i.e.

vV (x) for x < X4

3
Vix) = { s b(x-xo0) (4.18)
V+(x) for X > x ?

_.t.‘!_. d{x-2
V('t.) amb ( )

/- vi(2) |

V. (x)

2
®e
Substituting 4. 18 into 4.16 we have
Xg e
(%) - (%) = -bl- / B(x' - x0) u{x') dx'
Xo te Xg =€ X3 -¢
*o ke
il [E - V (x")] u(x') dx' - 232 [E - V (x)]u(x")dx' ,
#2 - #2 +

-e



for a delta function at x = xq,
du _ (e =31 u(xg )
dx) +~ \ax) -~ b W%
Xo Xo
Integrating 4. 19 we also have

x
u(x) =[ ig—}:f*—l) dx' + ca

or

and therefore

alxo’) - ulxg’) = 0

even if V(x) has a delta function singularity at x = x,.

4.2  Motion in a constant potential. Free particle behavior.

The simplest problem of this type occurs if the potential is a constant,

V(x) = Vo = const.
We then have
o= L 2 I S i
He=sm Pt Vo T 2m

and the Schrddinger equation becomes, see example 3,6,

IS 2 BS

St 0 ¢ Vovit) = in R
ax

separating x and t, we have

Vix, t) = u(x) T(t)

where
3

2
and

T(t) = T(O)e—iEt/h

From equation 4.24 we then have

2m

u''({x) + == (E - Vpo)u(x) =0

[

whose solution is given by

ulx) = a, e11(::‘: +a o ikx
where
k=22 (E- V) ,
»?

if £ > V,, and

- —ﬁn_l u''(x) + VQ u(x) = Eu(x)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4. 24)

(4.25)

(4. 26)

(4. 27a)

(4. 27b)

(4. 28a)



4.6

where
K = [2m (Vo - E) (4.28b)
ha
if E < vo#.

We see that if the energy is greater than the potential V,, we have wave-like solutions,

itk - Et/#) -i(k + Et/h)
Ve, t) = T(0) la, e ® +a e % 1 (4.29)

(superposition of right-going and left-going waves), whereas if E < V,, we have exponentially

growing or decaying amplitudes. The coefficients a, and bi would be determined by the

boundary/initial conditions. Note that classically no solutions would exist for E < V4.

Solutions of different energies can be superimposed to solve the time dependent

problems in each case. See equation 3.8]1 and problem 4.1,

4.2.1 Scattering by a potential step.

Consider a source of monoenergetic particles at x = -w, of strength J, (particles/

cm?®)/sec, travelling from left to right on a step change in the potential V(x), given by

(¢] for x <0
Vix) = (4.29)
Vo for x > 0

Such a situation might arise, for example, in an apparatus sketched below.

NP N Ras
e E O

A\ \

Vo = 370

v
2

¥,

The solutions of equation 4.20 are of course included in equation 4. 19 if the radical is

interpreted properly.

update



In the real experiment, the transition from V =0 to V = V, will, of course, take place in
a finite distance Ax ~ €. The approximation of a step change, however, we would expect

to be valid as eky — 0, where k, is the wave number of the incident particles. See

equation 4.31 below.

In the idealized situation, we then have a step change at x = 0 as depicted below.

U-R per—————

— Jv
Jo — 4
£
E-Ve

; Ve

PP PR TR °
B %
-
4
4
”
b

o e ’///'//% g

The step change, we might expect, may reflect some particles back and transmit some

particles forward. From the figure above and equation 4.27 we would expect that (E > Vo)

iky x - iky x
(coe + Re ), x <0

ikx
co Te , x>0

(4.30)

u(x) =

where R and T are the complex reflection and transmission amplitudes, and k, and k

are given by

1/2
Ko = _—_2‘;‘E ) k = sz-v . " (4.31)

The coefficient ¢4, can be computed by matching to the flux of the source. From the

golution for x < 0, we have (see equation 3,95)

'()..__if_ *Q_u____du*
e N G dx
. -ikyx s ikex ik x - ike x
=--21—r:'1 [|co|2 (e + R e )(ikoe - ikg Re )-cc#
therefore
- 4
<0y = 2o e P - |RIP) (4. 32)

which must be equal to the flux of the source, minus the reflected flux, i.e.

ix < 0) =Jg - Jo|R|® = Jo(l - |R|?)

cc = complex conjugate.



Therefore
[d
'm_kQ lco‘a = Iy
or
Jeo |2 = 2o (4.33)

It should be noted that we have made an implicit assumption in assigning a single
wavefunction to the total flux of the source, namely that we are dealing with a coherent
source of particles. If the phases between the particles are uncorrelated, we should use
instead a wavefunction for one particle at a time, whose extent (coherence) in x would be
a fun&ion of the monochromaticity of the source#, and at the end superimpose the probabilities
for each outcome, as opposed to the amplitudes as we have done in writing down the wave-
function of equation 4.30. An analogous situation occurs in dealing with polarized light
(coherent superposition of amplitudes), versus unpolarized light (incoherent superposition of
amplitudes, superposition of probabilities). In this example, however, the assumption of a
monoenergetic source, essentially makes the two cases result in the same outcome. Can
you show this?

Going back to the problem, we have two unknowns, R and T, which we can determine

from the matching conditions at x = 0, namely,

w0¥) = w0y = T =1+R (4. 34a)

wi(oh) = u(07) = KT = ik (1 - R) . - (4. 34b)

Dividing the two equations, we have

1 - R _k
1 R ~ ko
or
1 - k/
R = 152 . (4. 35a)
and
2
T = m (4.35b)
From these we can also compute the reflected and transmitted fluxes
R 2+ _ [l - kikgV?
Jp = R[> 3 = (———7—"1 - ko> (4.36a)
and
Ip = % lt)? g, = —4kka) )5 Jo . (4.36b)
(1 + ky)
We can define the transmission coefficient, as
¥

i.e. a wavepacket for which AxAk ~ L.



This is sketched below

0.0 -1-

JpJ cr

Note that classically there can be no reflected particles if E > V,.

6.0 ﬂ‘g(k/hv .

4.9

(4.37)

The step change

represents an impulse which will reflect the particles or not depending on its strength. The

simultaneous possibility of reflection and transmission is a purely quantum mechanical result.

Note also that for k/ky = 1 (no step) the transmitted flux is equal to the incident flux (no

reflection), as one might expect. What one might not expect is that as

beyond unity, i.e. a negative V,,

[

e

Jk P r——————

Jo

E-V,

,»/"
//
—
—
-
=

the transmission coefficient begins to fall again and for k/k, >> 1

4

c ~ —

T~ Kk

which goes to zero, if the potential has an infinite drop.

Va4l 0

tends to

increases



; E
Je
e

g

Tn - ~ E-Va > =
e
-

J. oo .’/ v

It should be noted that these results depend, to some extent, on the assumption that the

potential change occurs over a range € in x which is small compared to the wavelength of

the wavefunction (i.e. ¢k << 1). While this assumption might be valid for small potential

step changes and low energies, it most likely will not be adequate in the limiting case of an

infinite potential drop, since the wavenumber for x > 0 tends to infinity. To treat that

problem more accurately one has to solve the Schrodinger equation in detail in the vicinity

of the transition in the potential.

e { u ()}
e

S

W \ N

AN

AN W W

N\

//‘// Vo <o

The solution to such a problem might best be handled numerically

4,2.2 Scattering by a potential step of finite-length.

Consider the same source of monoenergetic particles incident a potential step of finite
length, centered at x = 0, i,e.

- »



0 for Ix| > as2
Vix) =
V, for Ix| < a/s2

(4.38)

Such a situation might arise, in a similar apparatus to the one of section 4.2.1, as

follows,

—

which we approximate by the rectangular potential of equation 4,38

T

Je

We then have, for E > V,,

e1kc,x " Re-zkx

5 x < - a/f2
# . .
u{x) = A e1kx + B e—lkx ;0 - a2 < x < a/2
T eikox ; x > a2

We now apply the matching conditions at x = % a/2 to obtain:

normalized to unit incoming beam amplitude.

(4.39)

.11



This is a system of four equations and four unknowns,

-ikga/2
> : e + R

ika/2
Ae + B

e

€

ikga/2

-ika/2

o+ ~ikga/2 ikga/2
- ): k0<e - Re )

ika/2 -ika/2
k(A e - Be

yields the reflection and transmission amplitude

o

2 3
~k-%1-(—i—;k—) sin ka e

~ikga

cos ka - i

2k kg

-ikga
€

2 a3
(w) sin ka

cos ka - i<

kE - k°
2k kg

> sin ka

1

-ika/2 ika/2
Ae + Be
ikga/2
T e
-ika/2 ika/2
k<A e - Be )
ikga/2
ko T e

(4. 40a)

(4. 40b)

(4. 40c)

(4. 40d)

which after a little algebra

(4. 41a)

(4. 41b)

It is noteworthy to observe that if ka = nm, the reflection amplitude is zero, and the beam

experiences 100% trans

mission. This is a

wave mechanical resonance phenomenon that

occurs as a result of constructive interference between the transmitted and reflected waves at

x = % a/2. It should also be pointed out that this solution is also valid if E > 0 > V,, i.e.

a potential well.




The results in sections 4.2.1 and 4.2.2 may be familiar in a different context. They
represent wave behavior and have exact counterparts in optics and acoustics, for example.
In section 4.2.1, the essential feature that results in the simultaneous reflection and trans-
mission of the wave at the step is the abrupt change in the wavelength (wavenumber '), i.e.
if E >V,

1
JE JE - Vo

This also occurs when light (or sound) is incident from a2 medium of one index of refraction

Mx < 0) « AMx > 0) «

to one of another. The results are the same. From optics, for example, we have that the

reflection coefficient for normal incidence is given by

- a2 _(1-n/ng\?
on o IR0 (HRA)

where n, and ng are the indeces in the two media.

K

b PR R

- Ty

AN

The ratio of the indeces of refraction is of course the reciprocal of the ratio of the wave-
numbers and we recover the result of equation 4.35a. In optics, the approximation that the
range of the transition in the properties of the medium ("potential'), times the wavenumber
is much less than unity is a very good one, because the wavelength of visible lighrt is of the
order of several thousand Angstroms (4,000 < \ < 7,000 L for visible light; 1k = 1078 cm),

whereas the transition length for the index of refraction is of the order of the interatomic

spacing in a solid (or liquid), which is of the order of a few Angstroms (range of interatomic

potentials). Therefore

£ .. 1072
ek 3 10 R

typically for visible light. Conversly, this is why it is not possible to construct a {conven-

tional) reflector for x-rays (e/\~ 1).
The optical analogy to the potential step of finite length is the etalon. This usually

consists of piece of glass of a certain thickness with plane parallel opposite faces (see refs,

4.1 and 4.2).
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One then exploits the sharp transmission resonances at

ka = nw
or
a = '21" nx »
i.’e. 'integral number of half wavelengths, for wavelength selection purposes. This device is

commonly used to select a particular longitudinal mode in a laser cavity to force the laser to

operate single frequency.

4.2.3 Tunneling.

The expressions for the reflection and transmission amplitudes for the finite potential

step, i.e. equation 4. 41 assume that E - V(x) 2 everywhere. We also have the interesting

situation, however, of 0 < E < V,, i.e.

- — Vo
e
v o E
i
- .
e .
L~
4
—a/2 “afa

Classically, of course, this represents a potential barrier, which will necessarily result in

100% reflection of the incoming beam. Quantum mechanically, however, it turns out that we

again have both reflection and transmission. The wavefunctions in the three regions now

become
J elkox + Re-:lkox ; x < - a/2
ax) = 4 Ae”* 4 Be* i -al2 < x < a/2 (4. 42)

LTelk"x i alz <x

where, in this case



K= [ v k) (4. 43)

vV #

We may solve this system, the same way as before. If we observe, however, that the sub-
stitution

k = ik (4. 44)
in equation 4.39 yields the new equations 4.42, we can obtain the results directly. In par-

ticular, the transmission amplitude becomes

e—ikoa
T = , (4. 45)
(k3 - w”) .
cosh Ka - 1( 3P sinh Xa
yielding a transmission coefficient,
1@ 2 2 ~1
- 3 _ Ky *+ ®7 inh® ¥:
cr T [1 + < ST > sinh® Ka . (4. 46)
Now note that since
&* -X
sinh x = _2 <

we have, for large Ka

and therefore

C

2
T |T|3—>(—-i"—15‘15—> e 22 (4. 47)

K3+ k?

This is perhaps an unexpected result in that even though the incident particles do not
have the energy to go over the potential hill classically, quantum mechanically 'they may make
it to the other side, with some probability that decreases very rapidly, however, as the
energy deficit increases. This phenomenon is called tunneling and is in fact the way particles
are observed to behave.

in any practical situation, of course, potential barriers will not be square., It is

possible, howéver, to approximate a smooth potential hill V{x) by a series of steps, i.e.

V(=)

Jr -

Vi

Je

 J




and consider the total transmission as the product of the individual transmissions through

each of the counsecutive barriers, i.e.
'T|2 - |Ti|z ' |Ti+1'a tt 'Tj_llg - |Tj|37

where Vi is the first step for which V(x) > E and Vj is the last one. If one ignores the

much more slowly varying coefficient of the exponential in equation 4.47, we have

-2K. & 2K, .8 -2K, 6 -2K.5
|T|:a ~ e e L e j-1 e J
where
k=22 (v. - E) ,
1 #3 1
or
b
-2 [ K(x)dx
|TR =~ e a (4. 48)

where K(x) is now a continuous variable, given by

Ko = 22 [Vix) - E) (4. 49)
h

This result is a good approximation and can be justified by a more rigorous treatment. It

is valid when the potential changes smoothly and slowly, in particular if

1 dK(x)
Tc—(—x——) dx << K.‘(x) . (4. 50)

Even though this is not quite satisfied near the points x = a and x = b, where E =~ V(x)
and K(x) is small, the bulk of the contribution to the integral of equation 4.48 comes from

the central portion and we may neglect the errors in those two regions.

4.2.4 Bound states of a rectangular potential well.

Consider now a potential
Vo <0 for |x| < a/2

V(x) = (4. 51)
0 for |x| > a/2

and a particle with an energy Vo, < E < 0.



~a/2 a/z —x

D -z e

— . 5

- -

// /»"

-~ e

— - v,

S

Since E - V(x) < 0 for x < -a/2 and x > a/2, we will have real exponential solu-

tions in those two regions, and oscillatory solutions in the region - a/2 < x < a/2, i.e.
+
Ae Kx s ox < -a/2
u{x) = Belkx + Ce_lkx ; le < a/2 (4.52)
~-K
De % ;x> al/2
where
K = 2Zm{- E) , (4. 53a)
43
and

k:J?’."_’HE_:_y_Q_) ] (4. 53b)

-K
Note that we have excluded the e = solution for x < -a/2 and the eJrKX solution for

x > a/2, since these two blow up at x = % «, and we know that since E < 0, the particle

is not likely to be detected too far from the well.

.17

Now, our expression for the wavefunction, as given by equation 4.52, has four unknowns

and there are four matching conditions, namely two conditions from the requirement that the
wavefunction be continuous at x = * a/2, and two conditions from the requirement that the
derivative of the wavefunction be continuous at x = * a/2. These four conditions can, of
course determine these constants#. It is useful, however, at this point to note that we are
solving a problem with an important symmetry.

The Schrodinger equation, for this problem is given by,

N 3 a3 .
H(x, p} u(x) = [- E’lr; dﬁ.; + Vi(x)] u(x) = E u(x)
%

#Actually they do not, because the determinant of the coefficients is zero, We have, however,

one more condition by requiring that u{x) be normalized.
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Now note that since, in this case, V(x) = V(- x), i.e. the potential is symmetric, if u(x)
is a solution, u(- x) must also be a solution, Therefore if u(x) is a solution,
w, (x) = & [u(x) + u(- x)]
+ T2 -
(4. 54)
1
u_(x) = 5 [u® - u- 0] ,
i.e. the even and odd linear combinations of u(x) and u(- x), must also be solutions.
Evidently
u+(x) = u+(— x) (4. 55a)
whereas
u_(x) = - u_(— x) . (4. 55b)
Consequently, it is sufficient, in such cases,. to limit the search to functions of even parity
and odd parity, as functions which satisfy equations 4.55a and 4. 55b, respectively, are
called. Using this information we now look for wavefunctions of the form
A e+Kx ; x < -a/2
+
u,(x) << cos kx i fx| < as2 (4. 56a)
AL e f¥ ;x> a2, '
and
- A eﬂcx ; x < -a/2
u (x) e sin kx ;x| < ar2 (4. 56b)
A e_Kx ; x < a/2

Now the matching conditions at x = * a/2 are no longer independent, and it is suf-
ficient to consider the pair at x = a/2Z since our solutions now have a fixed even or odd
behavior. Correspondingly, the number of unknowns is now two.

It is also useful to note, ‘at this point that if both the derivative of a function and the

function are continuous at x = x5, we have
- +
u'(xe) = u'(xg)

u(xg) = u(xg)

(E“—)x; - (i:‘—)x;‘ '

and therefore also

or

d
= E;(- ln(u)[ + s
X0

i.e. the logarithmic derivative must also be continuous. We then have, at x = a/2

u
(—i) = - k tan ka/2 = - K ,

u
+ a/2

.18



or
a k
cot > =% (4. 57a)

for the even solutions, and

T al/2
or
ka X
cot > T % (4. 57b)
To solve equations 4.57a and 4. 57b it is convenient to define dimensionless variables
g ke
o= 2 (4. 58&)
n(g€) = cot § (4. 58b)
and v
————rie—
B = 3\/ Zm{- Vo) (4. 58¢)
2\ 2
note V, < 0. We then have, for the even solutions
n (8} S S— ; even solutions
even . i 3
p* - g
. (4. 59)
3 _ g2
Noqq'®) = - 3 ; odd solutions

It is useful to plot these equations, as a function of & A value of §° = 30 has been

chosen for this example.

co‘-s

kg ot & |

’]n vem

aw

Modd




Several important features of the solutions can be seen directly from this graphic

solution:

(i) The problem depends on one parameter only, namely 8,

(ii) Only specific values of &, corresponding to discrete negative energy eigenvalues

of the bound states, can serve as solutions. The energies corresponding to the

solutions §n are then given by (see equations 4.58a and 4. 53b),

E - Vo = (5,/8)°|Vo] (4. 60)

or

E =—IV°I+

n (25 )7 <0 . (4. 61)

2ma

(iii) For a potential well of finite depth, there exist a finite numi)er of sotutions
(bound states), which we can see from the graphic solution, is equal to the
anumber of quadrants covered by the interval 0 < & < 3. In other words we have
{n + 1) solutions, where:

n%<[35(n+l)%. (4. 62)

We see that there exists at least one bound state, even for a vanishingly shallow

well (8 ~ ot

(iv) = The eigenfunction corresponding to the lowest eigenvalue is even. The one
corresponding to the next eigenvalue is odd. In general,‘ for a symmetric

potential, the eigenfunctions alternate between functions of even and odd parityq..

(v} As the well becomes deeper and deeper, the lower solutions tend to

e ~(n+l)% as. B~ w : (4. 63)

’n
for En/ﬁ << 1. Correspondingly, the energies tend to
2 TI'a fla

(En-Vo)—‘(nﬁ»l) —— as Vg, - . (4.63")
2ma®

Equations 4.59 may be solved by an asymptotic expansion of the arc cotangent, for the even

solutions, and the arc tangent, for the odd solutions to obtain, for gn/ﬂ << 1

#’I‘his result is only true for potentials in one dimension. A shallow potential in three

dimensions need not have any bound states.

* . :
For a general potential, the eigenfunction corresponding to the lowest eigenvalue has no

nodes (zeros). The next highest has one, the following one has two, etc.

.20
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.

NTE

n + 1
%E*;—T% , n=20,1,2,3,... (4. 64)

Sa
B
Alternatively, for gn/ﬁ & 1, they may be solved numerically. See appendix E. The numeri-

cal solutions, computed to four significant figures, are compared to the estimates of equation

4. 62 in the table below for B = /30 = 5.4772

T(nt 1) + E:n
n 2B+ g./B TV T
0 0.2425 0.2421 -0.941
1 0. 4850 0.4818 -0. 768
2 0. 7275 0.7149 -0. 489
3 0.9700 0.9294 -0.136

It can be seen that the asymptotic estimate for En/ﬂ << 1, i.e. equation 4. 64, vyields

ver ood results for small € /B. In fact it is only 4% off at £/ = 0.93!
v 8 n Y

The constants A, and A_ of equations 4.56 can now be evaluated for each eigen-

function, in particular, from the continuity of the wavefunctions at x = a/2, we have

Ka/2
ka
A+ = e cos > (4. 65a)
and
Ka/2
A =e sin K2 (4. 65b)

The constant of proportionality, in equations 4.56 can also be computed by requiring that

the wavefunctions are normalized. The wavefunctions corresponding to the four bound states

for the B = 4/ 30 potential are sketched below

#

from the numerical computation in appendix E.
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It is useful to note that, except for the normalization constant, we could have written
the matched wavefunctions, from the beginning. ' In particular, if we require that |u(x)' = 1

at x * a/2, we have, from equations 4. 56,

K(x + a/2)
e ; x < -a/2
ux) o S TE i Ix| < az2 | (4. 66a)
cos (5-)
2
K(x - a/2)
\_e ; x> af2

and

L K(x + af2)
(, e ; x < ~-af2

u(x) « | =B k’; i 1x] < a/2 (4. 66b)
sin (.—2—-) .
K(x - a/2)
e ;x> al/2

which, for k and K that satisfy equations 4.57, are matched by construction.

4.25 The infinite patential well,

Quite frequently, the fact that the depth of the well is finite has very little effect on the
problem of interest. For example, if |E}<< [Vol, i.e. if we are dealing with low lying states
for which (see equation 4.64), n/p << 1, and ‘ B >> 1, we go to the limits of equation 4. 63.
Note that, in that limit,

’ ui(;t a/2) - 0
since ka/2 ‘tends to an odd multiple of w/2 for the even (cosine) solutions and to a multiple
of = for the odd (sine) solutions. = We have therefore that in the limit of B - « and

n/B - 0, the wavefunctions are strictly confined to the region lxl < a/2, i.e. for n even

2 1/2
(-a—) cos knx ; lx' < a/2
un(x) = (4. 67a)
0 i x| > a2,
whereas for n odd, ) 1/2
(-;) sin knx ; lxl < a/2
un(X) = (4. 67b)
0 s |xl > a2z,
where
kna b
" = 3 n+ 1) , (4. 68)

for all n, The expressions for the wavefunctions given by equations 4.67, include the
normalization constant. See equation 3.17 in example 3.3, and problems 4.5 and 4. 6.

We can now turn the problem around and recognize that these solutions are the
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eigenfunctions of a free particle confined to a region of extent a, since the value of

V(x}) = Vo ~ - is irrelevant, if we measure the energies using V, as the origin. See
equation 4.63'. These eigenfunctions are, of course, the eigenfunctions of the kinetic energy
2,2
operator. See example 3.3, Note that the energy levels, scaled by Lol , are the sequence
2ma

of the index (plus one) squared, i.e.

_ 2ma® - n 4 1V2
¢ = o (E, - Vo) = (n + 1) (4. 69)

The index n is often referred to as the quantum number of the state. The first three wave-

functions, offset by the corresponding energy levels, are sketched below.

t £ - 2'mo.'(E _,,*v;)

r e
7 %
Z 7
7 7
Z N
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4.3 Density of states.

4.3, 1 Motion in one dimension.

For a particle confined to a region

L L
- 7 < x < ? (4. 70)
we found the eigenvalues
" 3
E = 3— Kk (4. 71)

where

knL ={n+ 1w |, (4. 72)

corresponding to the eigenfunctions,

cosk x x| < /2, n = even

i

odd (4. 73)

i

uk(x) o« < sin knx H le < L/2, n
0" ;x| > L2
Note, from equation 4. 72, that the wavenumbers corresponding to the solutions ‘uk(x)

are evenly spaced on the k-axis, i.e.

x5
NN
e
-
&
I
5
3
5
3
b4
'

i

ry s
a4
rig

£
(484

=2

=2

by an interval )
8k = "i . (4. 74)

The corresponding energies are then discrete and fall on the parabola given by equation 4. 71.

4

E(k)
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We now ask how many states there are in a particular energy interval AE at E. We

can think of this problem as the difference
AN = N(E + AE) - N(E)

which we can express as

- [AN
AN (Z‘E‘) AR

where

AN _dk AN .
AE T dE T Tk (4.74)

We can compute dE/dk from equation 4.71 in particular

1/2
X =(2_m_ _E) (4. 75)
2
and therefore
1/2
dk _ (2m) 172 (4. 76)

dE 2h

The second term AN/Ak, can be seen to be equal to the number of states dN in an interval
dk. ' Since, however, the states as indexed by k are uniformly spaced on the k-axis, we

have, from equation 4. 74,

AN 1L
i (4.77)
Therefore, for. one dimensional motion,
5 1 1/2
AN ol B 2 g (4. 78)

We can think of the number of states N(E), in the limit of L - « as an integral over a

density of states n(E), i.e, -
N(E) = 7 n(E)dE ,
: 0
or .
dN = n(E)dE (4. 79)

where from 4. 78 for one~dimensional motion

1/2 :
n(E) = %‘; i@—;—)——— g 172 (4. 80)
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Note that the density of states n(E) can be written as

dE ' dN
nE) =g T d@
where, from chapter 2,
dE dw _
ak = hak = v

where vg‘(k) is the group velocity at k. We therefore have

(4. 81)

In particular, note that the density of states goes to infinity wherever the group velocity

vg(k) vanishes.

4.3.2 Periodic boundary conditions.

The set of solutions for a particle in a one dimensional box, as given by equations 4. 73
can be seen to be standing waves cos kx and sinkx or, equivalently, superpositions of

running waves e1kx and e-1kx but with equal amplitude, This restriction of the amplitude

of eikx and e~ikx, for a given k, arises from the details of the potential V(x) at

x = * L/2, which force the wavefunction to go to zero there. Often times, however, either
that particular shape of the potential is an approximation, or the region of interest is
localized in an interval away from the edges x s * L/2 and therefore the actual details of
the boundary conditions there are unimportant. What is important, however, is that we
preserve the proper accounting of the number of states per unit wavenumber interval and
therefore also per unit energy interval,

An alternate solution set can be obtained in the region ]x\ < L/2 by replacing the

infinite square well by the condition that the wavefunctions are periodic, i.e.

u(- L/2) = u(L/2) (4. 82)
Then, if we exéress the solutions in terms of the running waves eikx, we must have,
eikL/Z - e-ikL/Z ) ‘
or
el o . (4.83)

where L is the extent of the region to which the particle is confined.

The solution to equation 4.83 is given by

KL = 2w 2=0,+1,%2,...
or
k= 2T g L= 0,£1,+2 (4. 84)
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- Note that, in this representation, the values of k are both positive and negative,

‘corresponding to the direction of the running waves, but are now spaced twice as far apart.

- /

-+

2 dn n
- t o k

18

Therefore the density of states per unit energy interval remains the same as before.

4.3.3 Density of states in three dimensions.

Consider now a particle of mass m moving in a three dimensional

Vix) = Vi(x) + Vg(y) + Va(z) (4. 85a)
where
w for x| > L,/2
Vi(x) = (4. 85b)
0 for lx! > Li/Z ,
representing a rectangular box with sides 1,, Ly, ILs. From our previous discussion, we

have that the time-independent Schrodinger equation

3
[— zln'{ <§a§ '%) + V(§)] u(x) = E u{x) ,

splits into three one-dimensional equations, i.e.

8 , 2m . _
{‘j e W Vi(xi”} uylx) = 0

where
E=E + E; + E; (4. 86)
and
u(x) = w (x) uvaly) us(z)

The energies are then given by

B, =2 e (4. 87)
i,n ~ 2m i,n :

where
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k. Li = (ni + ), (4. 88)

and the eigenfunctions
cos(k. x.) H n, = even
i,n i
(%) = ! (4. 89)

sin (ki, nixi) ; n, = odd

u.
1,k.1

The total energy is then given, for each admissible k = (kx,ky,kz), by

_ 3 3 2
El(_ = 5 (kx + -kY + kz) (4.90)
or
o +1P . (@ +i)3 (ng + 1)
Ep = Zm- [L*E;—L M P ' (4.91)

for ny,ng,ny = 0,1,2,....
We see, as before, that these solutions are standing waves confined to the extent of the
box in each of the three dimensions. To admit running wave solutions, we consider instead.

the periodic boundary conditions,

(- Li/l) = u(fL,./2)

which yield the eigenfunctions

ikixi :
ui(xi) = e , (4.92)
where
. _ E‘E ) _
ki =T zi H zi = O,il,:tZ,...i (4.93)

with the corresponding eigenvalues

# 3 3 3
m(kz + ke + ka)

E =
. 8,2 2 2 3
=2§rnh—<£’“ +h+h) S by, e, By = 0,%1,42,. .. (4. 94)
12 13 L2

Note that these wavefunctions, i.e.

wE) = 0y 60 g ) gy (=)

are wavefunctions of definite momentum, 1i.e.

P =tk = (i, tke, hks) ,

which we can label unambiguously by the wavenumber k, and denote in our representation
independent notation as ng) Any state of the system can then be represented as a super-
position of these states, i.e.

W= Ko (4.95)
~ k

where the summation runs over the admissible values of k = (ky, kg, ki), as given by equation
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4.93. Note that

- ~ e
HIV = ) Hle, = 2= § o 1) ¢, (4. 96)
k k =
and that therefore, for example,
~ ha
®) = GlHY =35 Y @l )= Y Elel® . (4.97)
k k

Note now that these states occupy a rectangular lattice in wavenumber space, i.e.

‘ka-

£

L
2 1 -+ + + -
' + + = - T
' z 3 4 & h':i
t v e - ’» f
2 -~ “ - 4 e
5 . . B . 2#/.{.,,,
o e /
___1,/ /Z___ QW/L'J

of cell size
Volume

ék = (%)(i—’;)(%) - emP (4.98)

alternatively there exists one state per [(2m)%/Volume] in k-space.

We now wish to compute the number of states in an energy interval

E<E < E + dE ,

dN(E) = N(E + dE) - N(E)
To compute N(E) we note that the total number of states with energy

0 < E'<E

is given by .
(Volume in k-space with E' < E)

1 -
N(E' < E) = {Volume in k-space per state)
or
2 e (k) ‘
N(E' < ) = , (4.99)

(2w)? /Vol.
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e
k
T ke
J
ke,
where,
. 1/2
K = (2mE>
22
Therefore, after a little algebra
3/2 :
N(E' < E) = V—°31— (—%‘-) /2 (4. 100)
6 h
and therefore
3/2
aN = 35 qp - Yol (Z—m) el/? 4E
4n® "2

we can define the density of states n{(E),

Consequently, as in the one-dimensional case,

such that the total number of states N(E). between 0 and E is given by

E
N(E) =[n(E')*dE' . (4.101)
0
where
3/2
dN Vol. /2m 1/2
n(E) = 525 5 ——— [ — E . : (4. 102)
dE 4n° ( n2 )
!
m (€)
~ E',ﬂ-
3-D
E

update
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4.3.4 The Fermi energy of conduction electrons in a metal.

As we shall see later on, electrons possess intrinsic angular momentum called spin,

whose projection along any axis is always found to be + -;—h or - %—h, conventionally referred
to as "'spin up"” or "'spin down". We will also see that two electrons# that are in the same

spin state (spin up or spin down) may not be described by the same spatial wavefunction. In

other words, two_ electrons may not occupy the same state. This is the celebrated Pauli

exclusion principle.

Consider now conduction electrons which are free to move around inside a metal. We
can model this situation by a three-dimensional potential well whose extent is the piece of

metal and whose depth is yet to be determined,

' - V=08
= D

e _—

-

- iy Sa— Vo <o

P ——— " = - p——
Now if the metal is an alkali (K, Na, etc.). which yields one electron per atom, we will
have Ng electrons per unit volume,
Ne = p/ma (4. 103)

where p is the density of the material and m_ is the mass per atom. An electron,
however, moving inside the rectangular potential can occupy the wavenumber states
k) = [k, k. k,) of a particle in a box.

If we had only one electron, then the lowest energy state of the system would find it in
the ground state, corredponding to the lowest admigsible values of kx’ ky‘ kz (see equation
4.93). If we now add a second electron, we could put it in the same (spatial) state provided
it had a spin projection that was anti-parallel to that of the first. A third electron, however,
cannot be accommodated in the same state and is forced to occupy the next highest admissiblé
state. In this fashion, we can place two electrons in each (spatial) state. It is clear that
the Pauli ex;:lusion principle forces the electrons to occupy ever increasing energy states.
How high up the energy ladder does this process go? Well, from the results of the pre-

ceding discussion, we have that the number of states per unit volume between 0 and E is

given by 3/2

-5 5

E
[ B2 4E (4. 104)
0

or

#or any particles with half-integral spin.



update

4.33
. 3/2
NE) _ 1 (Zme) 372
NE)_ 1

6

hz

Since we can accommodate two electrons in each of these states

(4. 104")
i we must actually reach up
to an energy such that
2m 3/2
1 ( e) £3/2
on® 22

1
=7 Ne

This energy is called the Fermi energy and is given by

_ " 2/3
€p = T, (3n"N )

Note that this has the correct dimensions and that the Fermi energy,
wavenumber

(4. 105)
corresponds to a
- 2 2/3 .
kp = (3n°N ) (4. 106)
The electron energy spectrum is then given by equation 4.102 for E < € and is zero
for E > Epe

nte) | "

/////

mv

Strictly speaking,

this is only true at zero ‘temperaturei
however

Even at room temperature
this is a very good approximation since the smearing of the sharp cut-off at
F will be of the order of A ~ k. T and, for typical values
i

> 10* °K
kp

We can now determine the depth of the effective well since we know that the most
energetic electrons (i. e

at eF) can be extracted photoelectrically if we deliver to them an
energy equal to the work function which can readily be measured
below. See also problem 4.11

This situation is depicted
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and sketched below.

As can be seen from this picture, the electrons can be extracted from the metal surface
by tunneling through the potential barrier. -The field emission current is then proportional
to the tunneling transmission coefficient (equation 4, 48),

a
—zf K (x)dx
jx e 0

K(x) = ,-%n—l-[V(x)—E] ; 0 <x<a

or, for electrons at the top of the Fermi sea

where

—_—
Kix) = -Zl:—(w-edx) ;. 0<x<a , (4.109)
h

where a is the location where the energy gain crosses the potential,

a = ;‘g (4. 110)
We then have, 1
a2z f (-9 a
. 0
j=e
where the effective tunneling wavenumber is scaled by
1/2
K, = <-2Lnﬂ) ) (4.111)
22
and & has been defined as x/a. Since
1
[(1 -e)l/%ag= 23
0
we have
-3 Koa
jex e (4.112)
or, substituting for %X, and a, 1/2

3
j= e " (4.113)
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Equation 4.113 is known as the Fowler-Nordheim formula and provides a qualitatively correct
description for field emission. To obtain a better expression, we have to take into account

several effects we have ignored. The first is the electrostatic attraction an electron feels

pulling it back to the metal, a consequence of the image charge induced in the metal. This
leads to a potential which for x > 0 and zero electric field is given by
2
e 1
Vix) = - (41”:0) = - (4. 114)
/////— V(=)
E
7
e e
—
nVd
——
e
- o ./’ V;’
When we then turn on the electric field, the potential for x > 0 becomes
(4.115)

It can be seen that this results in an increase in the field emission current for two reasons:

(i) The range of integration is now slightly reduced, i.e.

1/2
4b .
= ) (4. 116)

3

X - x = a{l -

where b is defined by
3 .
= (4.117)

W = Tre,b

and,

(ii) the maximum energy deficit is reduced, corresponding to a decrease of the largest

K(x) in the integral,

K(x):xol—';—(- H x; < x < xg s

%1

given by
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4.3.7. Paramagnetic behavior of metals.

It is known that classical paramagnetic behavior predicts a magnetization. field, which

for weak magnetic fields, is proportional to the applied field and inversly proportional to

temperature, i.e. 2
(mz)class ~ Ne T(E;T Ez . (4. 120)
See appendix F, section 5. While this seems to describe the paramagnetic behavior of many
salts, it has long been known that metals have a paramagnetic behavior, which is essentially
independent of temperature.# There is no way to account for this discrepancy classically,
which is a consequence of the quantum behavior of the conduction electrons in a metal. This
can be understood as outlined below.

We have seen that, in the absence of a magnetic field, the conduction electrons occupy

the available free particle states in the box, defined by the extent of the metal, in Eairs'

(spin up and spin down), up to the Fermi energy €

E-Y%

When we apply an external uniform magnetic field & = Bz 'éz, we introduce an additional term

to the Hamiltonian of each electron, representing the interaction of the electron spin magnetic

moment bg and the external field, i.e.

H=H, + Hy , (4.121)
where
Hg = - yo- 8, A (4.122)
and
£.)s (4. 123)

#g = - ge(Zm =
e
where g, = 2.00 and S is the spin angular momentum. See appendix F, section 5.

It can be seen that this new term does not operate on the space coordinates. t It has

’for non ferromagnetic materials.
fThere is actually an additional term we have not included, which couples to the orbital

motion of the electrons. See problem F.11. This yields a diamagnetic contribution to the

magnetization. We will discuss this later in the context of angular momentum.



4.39

only two values, depending on whether the electron spin is parallel or anti-parallel to the
magnetic field. Correspondingly, the eigenfunctions are separable and can be written, as
we have seen before, as a product of functions of the space variables (eigenfunctions of H,)

and functions of the spin variables (eigenfunctions of HS), ie.
¥(x,S) = ¥(x) o(S) . (4.124)
We know the eigenfunctions V(x) corresponding to H,, Theyare the free particle states in a
box, corresponding to the admissible wavenumbers (subject to the periodic boundary condition
restrictions) i.e.
[v) = |k) = |kx,ky,kz) . (4. 125)
We also know, in turn, the eigenfunctions of the spin variables since the electron spin

(projection) can only be "up' or 'down', ie.

lo) = |ms) , v (4.126)
where m_ = + 1/2, corresponding to the two possible states, and
S|m Y= tm |m) (4.127)
z' s s s
corresponding to a z-projection of the spin angular momentum of: = #/2. Consequently. the

total eigenfunctions are labeled by four indeces, i.e.

W) = |5>|ms) = Ikx,ky,kz,ms> = |k m) . : : (4.128)
Note that
22 K3
Ho W) = 5— [¥) | (4.129a)
e
and
H W) =g ("—e) 8 m_ W : (4. 129b)
s e Zme, z s :

and that therefore the energy of these states

H¥) = Eh,msl"”
is given by

E S 4.130
k,ms - Zme Ee Zme z s (4. )

The magnetic field, therefore results in an energy shift of the spin up electrons with

respect to the spin down electrons, which is independent of k, and given by (recall m_ = +1/2)

the )
AE = Zuo.@z = ge(Zme) Bz . (4.131)

Consequently, if we now fill up the available states with the conduction electrons starting from
the lowest energy up to the energy required to accommodate the number of electrons per

unit volume, we have

#We will study these eigenfunctions later on in the context of angular momentum.
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E - ﬂoBz - uo@z
Ne = [ n{e) de + n{e)de , (4.132)
0
N J ——— -
electrons i t i t
per spin-up electrons spin-down electrons

unit volume

where n(e) is the density of kinetic energy states. This situation is sketched below.

} ox

P 2#081”'4

—

Consequently, the number of spin-up electrons per unit volume is given by,

E
N, m/ n(e)de = n(E) ol ‘ (4. 133a)
0

while the number of spin-down electrons per unit volume is given by

E
N‘ 3‘/ n(e)de 4 n(E)M‘,Bz . (4. 133b)
) .
and therefore, E
Ne = Nt + N‘ = 2]' n{e)de . (4. 134)
0

We see that E = ¢ the unperturbed Fermi energy, to first order in I-l-oBz- See also

F’
problem 4. 13.

Combining equations 4. 133 for the spin-up, spin-down electron number density, we have

for the net magnetization

m,

(N‘ - Nr)ﬂo

2n (GF)IJ: Bz s

or, since

’

16
2n (ep) = 3 =) , (4. 135)

we have, for the paramagnetic contribution to the magnetization,

N 2
3 [ Neto .
M) para = '2’(-—:1, >Bz " (4.136)

* : .
Note that the electron magnetic moment is opposite the direction of the spin.



first derived by Pauli in 1927'.# The orbital electron motion (see footnote T on page 4.38)

results in a diamagnetic contribution of

m). = 1 (N '
z'dia 2 . z

as we shall see later on, so that the total magnetization for a free electron gas (conduction

electrons in a metal) is given by

Nepg
m = er 5. (4.137)

As a matter of interest, note that this result would be obtained if we replaced the

temperature T with the Fermi tehperatxxre TF“

€. & k (4. 138)

T
F B F 7

in the classical formula (equation 4.120). Could you have argued for this without the benefit.

of the preceding derivation?

#W. Pauli, Z. Physik (1927), 41, Bl

.41
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Problems

4.1

A free particle is described at t=0 by the wavefunction {k, real and positive)

- %% /4a®  ikgx
v(x, 0) = (zna‘*)‘”4 e e

(i) . Find (x), 8x° = {(x - (x))®) and (px> at t=0.
(ii)  Find ¥{x,t)

(iii) Find (x), 4x® and (px) for all times.

Plot Ax = JAax® as a function of time. Describe the motion of the free particle

in your own words.

A particular measurement of the position and velocity of a (classical) free particle
moving along a straight line at time t=0 yielded x(0) = x, and x(0) = v,, on the basis
)
of which, the resulting trajectory was computed. In order to increase the confidence of
the prediction, a multiple measurement experiment was undertaken as é result of which
many. estimates of x5 and v, on the same particle ;Were obtained. The histograms of
the two sets of measurements (of x5 and vy) were fuund to approximate gaussian curves
with standard deviations Ax, and Av, for the x, and v, measurements respectively.
You may assume, for the purposes of this problem, that the experimental accuracy for
the determination of x, and v, was limited by small signal-to-noise ratios resulting
in a product mbxyAv, several orders of magnitude larger than 2. On the ‘basis of
these data, give a quantitative description of the predicted motion of the particle.

Discuss the difference between this result and that of problem 4. 1.
Discuss the behavior of the particle beam in section 4.2.1 for 0 < E < V,.

Prove the asymptotic estimate of equation 4. 64.

Compute the normalization constant, in closed form, for the wavefunctions in equation

4. 56.

Compute the probability that the particle will be found outside the well for a rectangular

well for which

mvgaa = - 30
22

for each of the bound states.



Problems (continued)

4.7

4.9

A two-dimensional potential is given by

Vo R x> 0

Vix,y) =
0 s x <0
v =0 - g .T = —V;
71 P
be o o, k,

A monoenergetic (E > V,), non-relativistic beam of non interacting particles of mass m
is incident on the x = 0 interface at an angle Gi with respect to the perpendicular.

See figure.

(i) Solve the Schrodinger equation. In particular, compiute the angles and coefficients

of reflection and transmission.

(ii) Solve the problem clasically.

An attractive one-dimensional potential for a particle of mass m, is approximated by

#2
Vix) = - 3= 8(x)

where &(x) is the Dirac delta function.

a. Find the eigenfunctions and energies of all the bound states.

b. A beam of monoenergetic {(E > 0) non-interacting particles of mass 'm travelling

from left to right is incident on the potential described above. Derive the

amplitude of the reflected and transmitted beams.

An electron is bound in a pair of attractive delta functions spaced by a distance a.

2
Vix) = - 'ern‘g [6(x+a/2) + 6(x—a/2)]

Plot the energies of the bound states as a function of the dimensionless separation (a/2b).



Problems (continued)

4.10 Matching the bound state energy of an electron im a delta function potential (problem 4. 8)

;

to the ground state energy of the hydrogen atom (Rydberg}

_ 1 € 1
'ER—Z(%GQ)_a-B--_H'éeV )

where ag is the Bohr radius given by

ha

4re -
= — (=228 8
ag (a)=0.53x10 cm |,

e

express the required delta function potential strength b in terms of ag.

4.11 From handbook data, we find that the density of lithium (AW. = 7) is given by

o 3
PLi 0.534 grams/cm

(1) Find the conduction electron number density

Note: m ~ 1.67 x 107 grams.

(ii) Find the Fermi energy in electron volts
Note: m, = 0.51 MeV

#c >~ 1.97 x 107® eV-cm

(iii) Using the data in figure 2.4 (p. 2.31) compute the work function for lithium and the

depth of the potential well for the conduction electrons.
(iv) Find the speed of an electron with an energy E = € Compute the numerical
value for lithium. .
4.12 (i) Prove equation 4.114.
(ii) Prove equations 4.116 and 4.118.

(iii) Compute the electric field strength (Volts/meter) on the surface of the metal,

required to decrease max {K(x)} by 10% for lithium.

4.13 Show that, there is a second order decrease of the Fermi energy with Bz, given by

:
eF(Gz) e 1 #052
eF(O) 4 EF(O)



Problems {continued)
Compute the energy of a free particle in a three-dimensional box in thermal

4.14 (i)

equilibrium at a temperature T.

(ii) Compute the particle's heat capacity.



5. HARMONIC OSCILLATOR SYSTEMS

In many physical systems, the potential energy V(gq) will have 2 minimum at some

value of the coordinate g, say g, which classically would be the rest position of the system.

vlg) |

In many cases of interest, where the excitation energy of the system E is small
(measured from V,), we can approximate the potential in the vicinity of qo by a Taylor
expansion

Vi) ~ Vo + 3 V'iao)a - @ ... (5.1)

The Lagrangian for the motion of a particle of mass m in this potential then becomes

1

Lix % ~ 5 m]x|® - —é— mu? (5.2)

where x is measured from gq,, i.e.

X

g -9 ., (5.3)
and where

\2 =i 1
o® = Vi) (5.4)

which we can identify as the classical frequency (squared) of oscillation. The constant V,
is not included in the Lagrangian as not affecting the equations of motion, appearing only as
a shift in the origin in the measurement of the energy.

From the Lagrangian of equation 5.2 we then define the Hamiltonian
H(x,p) =px - L

or

Hix,p) = 3 B° + 3 mw’ (5.5)



5.1. Eigenvalues and eigenfunctions

The transition to Quantum Mechanics may be made by replacing the conjugate momentum

p to the coordinate x by

: 3
p=-ihe= (5. 6)
leading to the (time independent) Schrodinger equation
e 9 1 3 3 -
(-2—1'1:—1—? +Emwx)u(x)-Eu(x) . (5.7)
9%’
To solve this equation we introduce the natural dimensionless variables
:
_ mw _ 2E PR
g= (59 x, B =5, v(g) = (mw) a(x) (5.8)
in terms of which the Schrddinger equation becomes
42 23
(= +B-)v® =0 . (5.9)

dg
We have encountered this equation before in the context of the minimum joint spread

problem in chapter 2. Its analytical solution is discussed in Appendix C. There we found

that the eigenvalues B are discrete and given by
Bn = 2n + 1
so that the energies E are given by

En = {n + -Zl) hy . (5. 10)

The wavefunction, corresponding to the nm eigenvalue was also found to be given by

3
v (B) = Ah (&) e P/ (5. 11)

where hn(é) is the nth Hermite polynomial, defined by
3 dn " ga

e
dg

n b
h (8) = (- D" e> = .

and A_ is the normalization factor, given by
n

A= wl/2220" 12 (5. 12)

There are several noteworthy features of this solution:
1) The lowest energy level (ground state) is characterized by a non-zero energy, i.e.

B = hw o,

1
2

as expected for a system localized to a region in space,



(i) Subsequent excited levels are spaced uniformly by #w above E,,

mag A }‘ Y2 hw
M= ,/X F ’/zzﬁw

n=2 /I& //l 5/2 hw
mat )})} - I he 3% hw
x j/ /z hw

Recall# that for an infinite square well

E -Ey=(n+1®, AE =E - E « 2o+l
n n n n-1

{iii) The ground state wavefunction {(a normalized Gaussian) satisfies the minimum joint
spread condition as was shown in chapter 1. The reason for this is that the
harmonic oscillator Hamiltonian, whose expectation value is minimized by the
ground state wavefunction, is in fact the sum of the mean square deviation in p

and x space respectively.

5.2. Ladder operators.

In discussing the behavior of systems described by a harmonic oscillator Hamiltonian,

it is useful to define the Hermitian adjoint operators

1

a === (§+ix) (5.13a)
= a

R T I (5. 13b)
JZ

where £ 1is defined in equation 5.8 and ¥ is given by

1
K = = D {5.14)
(mhw)l/z
We then have, by direct substitution, that the commutator [a,a‘r] is given by
1-
[a,a] =1 {5. 15)

and the Hamiltonian is given by

#Section 4.2.5.
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H = % (aaf + a*a)

>

or, using the commutation relation 5.15

H=m @Ta+d) . (5. 16)
We know, however, that H operating on a wavefunction un(x) yvields
Hu = Aw(n+3)u
n 2" "n

and can therefore identify the operator product aTa as the number operator, i.e.

a?a =n . (5.17)

. . t
What is the result of operating on an eigenvector with the operators a or a  alone?

Consider the quantity (aTa)aIn), where In) denotes the nth normalized eigenvector
#

[eigenfunction un(x)]. Then we have

(afa)aln) (aaf - l)a‘n)

= a(a.Ta - 1)|n)

a(n - 1)|n)

(n -~ 1)a|n> R

or since

1-
(a'a){m) = mlm) .,
the result of a‘n) must be a simple multiple of the state \n - 1%, ~ We accordingly write
alny=c |n- 1), (5.18)

and consider the scalar product

n

/Ea un(x)]* la u (x)] dx

(n‘a,a[n)

x
Substituting equation 5,18, we have
* 3
(nla,aln) = ¢(a - llcn_, cnln - 1) = Icnl s (5.19)
since (n - 1|n - 1) = 1. We can also use the fact, however, that the operators a and at

are Hermitian adjoints of each other to obtain
T

(ala,aln) = (nl|,a’aln) = (al,nln) = n , (5.20)
where we again have used that the states [n} are normalized. Comparing equations 5.19
and 5.20 we must then have

2 = =
lepf® = = ¢ =n , (5.21)

within a phase factor which without loss of generality may be set equal to unity. Conse-

quently, we have

al) = n%n -1y . (5.22)

7

note from equation 5.15 that aaf - a.ra = 1.



We see that the result of the operation of a on the state ]n) is to produce the next
lowest state or, equivalently, to annihilate a quantum of energy #w. For this reason we

call the operator a the annihilation operator. Combining equations 5.17 and 5.22 we also

see that

1/2

aMlny = @+ )% a1y . (5.23)

The operator a‘r is correspondingly called the creation operator. The operators a and

a* are called ladder operators because they can be used to go up and down the ladder of
eigenvalues. They are useful in problems possessing a uniformly spaced eigenvalue

spectrum.

Using these operators, we can solve the Schrodinger equation rather effortlessly. In

particular, the ground state, corresponding to n=0, must be the solution to the equation
a[0> =0 , (5.24)

which we may solve in our coordinate representation, if necessary, by substituting equation

5. 13a for the annihilation operator, i.e.

(€ + §%> vel8) = O (5.24")

whose direct solution

. g3
vo(g) = const. e ° /2 ,

was obtained much more painfully by solving the second order differential Schrodinger
equation in appendix C. Having the ground state, we may obtain all the higher excited

states by repeated application of the creation operator, i.e.

1y = a0

|2y = afn =< @Hio

L
JZ

9

ln) = @mn)” Y2 @20y . (5.25)

1f it is necessary to obtain the eigenfunctions in the coordinate representation, we

substitute equation 5. 13b to obtain, for example,

v =27 V2 B v
2
PRV IN € - & .- B2
- . &3
wim =2 V2 a ey e T2

which is correct including the proper normalization constant A, = 2~ 1/2 Ao-#

F

Note that by (8) = 2§. See appendix C.
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There is a one-to-one correspondence between the x space with the eigenfunctions

un(x) and the scalar product as defined in chapter 1, and the occupation number space with
eigenvectors ‘n) and the scalar product that was implicitly defined in the preceding dis-

cussion, i.e.

fum*(x)é(i, B} u (x)dx = (m{é[s‘;(at a), fa(a.f, a)}|nd (5.26)
“ .

where, by inverting the defining equations,

S VR
% = G ' +2) {5.27a)
and
1/2
B (@A Gt Lay (5.27b)

2
We can think of the sequence of eigenvectors ln) as forming the hasis of an infinite

dimensional vector space, i.e.

1 0 0
(o] 1 0
0] 0 .
0 0 :
oy = |7, 1y =1. In) = Jo (5.28)
: . th
; . 1 ~ n slot
0
0
0
Operators in this space are matrices., By way of example
0 1 0 0
0 0 JZ 0
0 0 0 V3
a=]0 . . . . . . . . (5.29%a)
Ve
whereas
0 0 0 .
JT o o
0 JZ o
atzlo o /T oo . . : . : (5.29b)

Update



It can easily be verified by direct substitution that these basis vectors and matrix operators

satisfy the fundamental relations as given by equations 5.22 and 5.23.

5.3. Harmonic oscillators in thermal equilibrium.

Any state a harmonic oscillator can assume can be represented by a superposition of the

eigenfunctions un(x), i.e.

Vix, ) = D e (B) u(x) (5.30)
n
or, equivalently,
vy = 3 s e () (5.31a)
where n
- iE t/%
c (t) = ¢ (0) e B (5.31b)

and cn(O) can be determined from the initial conditions, i.e.,

c,(0) =f un*(x)wx, 0)dx = (nl\mtzo . (5.31c)
The energy of the state is then given by
(E) = (v|H[V
=3 E_le |?
n
(E) =t T (a+g)fe [® . (5.32)

Now for a system in thermal equilibrium with the surroundings at a temperature T, we

have the Boltzmann relation,

] e- En/kBT
lepl® = =7 - (5.33)
e |
m
and therefore Z (n+-%—) e- x(n+)
(E) = #w —=
-X(H+E)
2 e
n
or 1
- x(n+=)
(EY = - u L 4n 3 e I (5.34)

where x = hw/kBT.
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Now

o[ 5]

n

x 'x>
5 - En(l - e

5
e
s ™M
(]
[}
L3
=]
+
ol
| IS |
[

and therefore

1 h
(B) = 3 M0 + —grer— - (5.35)
e BT 1 '

Note that at high temperatures, i.e., ﬁm/kBT < 1,

(EY = kT,
in agreement with classical Maxwell-Boltzmann statistics and the correspondence

principle.

5.4 Systems of uncoupled harmonic oscillators.

We can write the Hamiltonian of a system of N uncoupled harmonic

oscillators as a sum

™M=z

H(p,g) = Hj(pj,qj) (5.362)
j=1
where
H.(p.,4.) = —1- p.a + —l—m.w.zq.s (5.36b)
3T ij j 27575 N =
and p and g are the N-dimensional vectors
P=(PL,Pa, ... . Py (5.37a)
= {1,900 PN (5.37)

a

Note that if the oscillators of the system were coupled, the Hamiltonian
could not be separated into the sum of such terms, but would involve cross
terms between the coordinates. By way of example, if the interaction between

the various coordinates is a pair coupling, the Hamiltonian would be given by

H = H.(p.,q, +z V..p.,psq.,4q.) . B
(2, g) Z 5Py qy) ) 1j(Py» P393, 93 (5.38)
i i)
See problem 5. 8.
The Schrodinger equation for the system of the N uncoupled oscillators

is given by

i & wig, v = H¥ig

(2 HJ.> Vg, t) .

i

(5.39)



Equation 5.39 can be solved by separation of variables, and in particular,
by assuming a wavefunction of the form
Vi@ ® =1 ¥l 0, (5. 40)
J
where

8
A= Yy.(q.,t) = H, V.(q.,t) ; i= .
5t V595 ) j¥5lapt s 1= LN (5.41)

The overall system is in an eigenstate, if every one of the N oscillators
is in a harmonic oscillator eigenstate, i.e.,

-iE_t/h
¥,@.t = Ul@e = 5.42)

where

U,q = Hun.(qj) (5.43)
= R
and

z Z ho.(ny + 5 5. 44)
j

j
The vector n is an N dimensional index that labels the eigenstate of the total
system, i.e.,
n=(n,np,..... , nN) .
We can now define, an alternate set of basis eigenvectors, by analogy
to the single harmonic oscillator, in particular,

ig) = lnhng, ..... , D) (5.45)

and also annihilation and creation operators, corresponding to each pair of con-

jugate coordinates pj, q., i.e.,

]
Lo/2
_ (1 172 172
a; = ('Z—h) [(mj“uj) 3; + 1(ijJ.) pj} (5. 46a)
and
1/2
t_ (1 Nz 12 :
al = (Z.ﬂ) [(mjwj) g - itmp) p).] , (5. 46b)
such that
172
aj|2> = o Iny,ng,..... )0y - 1,..... ,nN> (5. 47a)
and
+ - 1/2
2] In) = (nj + 1) “ny,mg, ..., T 1,..... N (5. 47b)

The total Hamiltonian can then be expressed quite simply as

Z A ( aJa +—) (5. 48)



Any state of the system can be expressed as a linear superposition of
the |n) eigenstates, i.e.,
-iEnt/h
Wit) = z o) c e = . (5. 49)

n
where

e, = {(al¥©O) (5.50)

or, equivalently

< =/f ..... [ U;(g)wq,O)ng (5.51)

or, using equation 5.40, we have for uncoupled oscillators,

[E=]

= *(q.) v.(q.,0)dq, .
c IJ]funj (qJ)wJ(qJ, ) 9 . (5.52)

%

ch. '
] J

The energy of such a state can then be computed by

(E) = (WH|¥) = Z Ealcgla (5.53)
F
= ;1 Z nz <§ En))?‘cnjl

we have

(E) = Z (z |cnj}3 Enj>. (5. 54)



5.5 Systems of uncoupled harmonic oscillators in thermal equilibrium.

If this system of oscillators .is in thermal equilibrium at some tempera-
ture T, then the probability of finding the jth oscillator at a level nj would be

given by a Boltzmann factor
'En./kBT
le 12 = e J
n, -E /k.T
J z e 1 B

n

which, substituting in equation 5,54, yields
-Enj/kBT

En. e
@):% %:T§:T7§F s (5. 55)

n

We note that each one of the terms in the summation over j, is equal to the

energy at thermal equilibrium of an isolated harmonic oscillator and therefore,

taking the result of equation 5.35, we have,

1 fuy .
® =Y Mt Y e (5. 56)
= i'’'B
j e -1

j
The first sum is the ground state energy EG of the total syétem, which is
fixed. The second sum, if the oscillators are many with closely spaced

frequencies w,, we can approximate by an integral over w, i.e.,

0
(E) - E5 = f plw) —m:'mrr— dw (5.57)
0 e B -1

where p(w)dw is the number of oscillators whose angular frequency is between

w and w + dw.
w w+dw

4———‘1(.0 —_—>

In any event, the summation can be recovered from the integral using

plw) = z 8w - wj) (5.58)
j



5.
for the density of oscillators.
The integrand
A
S(w)dw = p(w) Twﬂ{—%—— dw . (5. 59)
B
e -1
is called the spectrum of the energy.
Nots that if we substitute for the density of oscillators p(w), the density of modes of
electromagnetic radiation in a box, i.e.
3
pw)dy = L2 (5. 60)

rc®

see problem 2.16, we obtain the black body spectrum of Planck, i.e. equation 2.130. This
result suggests that the light quanta of Planck behave like the excitation levels of harmonic
oscillators whose fundamental frequency w is that of the corresponding photon! Taken at
face value it is a less than obvious model to associate with light, to be sure, At first
sight, it would be difficult to assign a mass and a spring to a photon which is massless and
not bound to any obvious equilibrium position by a quadratic potential! Nevertheless, we will

show that there exist a set of coordinates for the photon field, in terms of which the

Hamiltonian is given by equation 5.36, or equivalently, equation 5.48. To show that, of

course, would be sufficient and we will then have derived Planck's formula through a rather

unexpected route.



5.13

5,6 Quantumn mechanics of a fluid. Phonoas,

We can always treat a matter as a continuum when the smallest length scale of interest,
say 4, is much larger than the (mean) spacing between the constituent particles. In other

words, we can neglect the atomic nature of gases, liquids and solids if

p_ 173
z(T-n”-‘) > 1, (5.61)

where Pm is the mass density and m is the mass of each particle. This approximation is
usually associated with a classical description of matter. It should be noted, however, that
the limit of equation 5.61 is quite different from the reasons that dictate a quantum versus a
classical description of a phenomenon. The latter decision is based on whether the size of *
(Planck's constant) is negligible or not. ' For many systems, espacia.lly- at low temperatures
where only the lowest energy levels are excited, a quantum mechanical treatment of the
continuum behavior is in fact appropriate. This we will do by following the usual procedure
of deriving the Lagrangian, the conjugats momenta and the Hamiltonian. The transition to

Quantum Mechanics is then rmade by selecting a representation for the conjugate coordinate-

momentum pairs such that
qu, ij = in (5. 62)

In describing the motion of the medium, consider the displacement q along the x-axis,

of a medium element which has a rest position at x.
ndx,

|

!

i |

1

' il

| !

i

|

1 /

| vd

- «g(’) - "" 1(“:‘)

g —

If we now compare q(x), the displacement of the element from x, to q(x+6x), the displace-

ment of the element from x+&x, we have that the difference in the displacements &§q is given

by
6q = &x + g(x+8x) - q(x)

~ §x(l + %i) ) (5. 63)



Now, if the deasity of the medium at rest is given by p,, we must also have that

ps 6x = pbq (5. 64)

where p is the resulting density of the medium between x+q and x+4x+q+8q. Combining
equations 5.63 and 5.64 we have

£ - dg
> 1+ 8. (5. 65)

If we now consider a more general displacement in three dimensions, of a medium element
originally at rest at x, i.e,

q(x) = la (x), q, =), q,(x)] .
we cap show by similar arguments that

+~

9.
F(?,-a = 1 8—_.;_:_ qix, t) (5. 66)

where -aq; »q is the divergence of the displacement field.

Consider now the case of amall departures of the demsity from its equilibrium value.

We then have

88 o e Po 2 1 ™ | o (AzPg
> TP T T e 1= ¢ = ) {5.67)
Po

or, using equation 5. 66,

pix, t) ~ po 3
— ~- =kt - (5. 68)

To define the Lagrangian, we note that the kinetic energy per unit volume of the medium
is given by

3 plxt) ldx 0|

and therefore the total kinetic energy of the medium is given by

K = %—[p(i,t) ‘g'_(i:,t)la $#x , {5.69)

or, to lowest order in the displacement field,

K = %’-[ 4 0l* = . (5. 70)

We will now restrict the discussion to matter that
(i) possesses an equilibrium density, independent of container boundaries (i.e. not
a gas),
{ii) is isotropic
and

(iii) cannot support static shear (i.e. a fluid).

0

These conditions are met by a liquid, for which we can consider the potential energy per

unit volume as possessing a minimum at the equilibrium value p = py, as sketched below.



v(9)

For small deviations from the squilibrium density we can then approximate the potential energy

per unit volume by a Taylor expansion about its equilibrium value po, i.e.

Vo) = Vlpo) + 3 (p = po)® V'(ps) (5.71)
and therefore
U "%7"(%)[ R (5. 72)
x
or, using equation 5. 68,
U = § p3 7(po) f - a(x, :)] Px . (5. 73)
X

Combining equations 5.70 and 5.73 we then have for the Lagrangian
3 ]
L= z o 1dix, 0? po'lf' (po) [—a-;-g(_x_,t)] ex . (5. 74)

Let us now assume that the displacement field satisfies periodic boundary conditions at

the edge planes of a rectangular box of velume V = L L L_, i.e,

<y z’
al- L /2,y,2,t) = g(L_/2,v,z,¢t) (5. 752)
ax, - L /2,2, = a(x, L /2,2,1) (. 75b)
and
al=y.- L,/2,t) = alx,y,L /2,¢) . (5. 75¢)

If we now assume that the displacement field is irrotational, i.e. 'a§£ X g =10, we can

expand the space dependence of g(x,t) into a Fourier series of the form

ik-x
qix,t) = z Qk(t) e 'ék (5. 76)



where, from the periodic boundary conditions (equation 5.75), the permissible wavevectors

are given by

£ A m a 0 A
5’2"<'1..—ex+f'°y*’r.. ez> ) (5.77)
x Yy 2
where
t,mmn=0,%1,£2, .... (5. 78)

Note that the orthogonality relation is given by

i ')+ x
fe d®x = V 61—95, (5. 79)
where V is the volume, and
Lo ke
5 3 (5. 80)
k k'
== 0 if k#k' ,
is the Kronecker delta, and therefore, the Fourier coefficients Qk(t) are given by
1 s -ik-x
Qk(t) =5 /[ekﬂ(ﬁ t)] e d*x . (5. 81)
Note that the Fourier coefficients are complex, i.e.
1 :
Q, = = (Q -iQ ) 5. 82a)
PRy W W (
where
L
Q 2 {e, - t}] cos(k.x)d? {5.82b)
k1 TV ¢ A 8] cosik-x)d x .
and
Pt
Q‘b’ = Tf‘f 'éli-g_(g, t)] sin(k-x) d°x , (5. 82¢)
Using the Fourier series expansion for the displacement field, we now have
. k-x
dxy = D S 0ae g (5. 83)
E £ =
“and
3 k- x
Z-amn =i ) kQ() e , (5. 84)
X - £ .

where k = [5[ Substituting these in the expression for the Lagrangian (equation 5.74), we

have

M .
L = 2 ¥ {QEI‘ . c:kailea} (5. 85)
k
where
M= g,V (5.86)
is the total mass of the medium, and
L
ey, = Lpo¥"(po)]? (5.87)

is a constant with units of velocity, Substituting the real and imaginary parts of Qk‘ we

then have



5.17

1 32 313 ~3

L = = M(Q? . - °k°Q7 . 5.88

Z. (bj ] I_(,J) ( )
ki

where J = 1,2,

There is a slight complication that arises from the fact that the coordinates Qk and
-

i

Q-k are not independent. In fact, from the defining equations 5.82a and 5.82b we see that
L
Q 2 Q 5. 89%a
and
Q a =" Q-k a ¢ (5. 88b)
= ]

consequently, even though the Lagrangian is correctly given by equation 5. 88, not all the

Q can be used to form a set of orthogonal coordinates, In particular, if we use Qk .

X, X
as a coordinate, we must exclude Q-k i The Lagrangian can be expressed, however, as a
-

sum over some positive half space of k, symbolically sketched below for two dimensions,
% !>°
7,

(]

1 12 2.3
L= ¥ = . - ,
= z MO ;- KOy (5.90)
e,

L

k<

i. e,

where the summation over the positive k-(half) space is denoted by the plus sign prefix of the
k summation index.

Using equation 5.90, we can now define the conjugate momenta P, to the coordinates

k,
Qk . d.e.

3
= p =L

k,j 3
B
or, substituting for the Lagrangian,

(5.91)



Using these momenta, we can now express the Hamiltonian of the system, i, e.

__;j aQ R
+K, j X, j
Qr
Sl p M 303
Ha Y [ZMpbj»f i« ”EQLJ’] (5. 92)
+5J_j
where
w; = c’sk° (5.93)

We see that the fluid, in this continuum approximatior, behaves like a system of uncoupled

harmonic oscillators of mass M and frequency o= csk, whers ¢, can be identified with

the speed of sound. See problem 5.14. In other words
Ha= ) B (5. 94a)
+k, j
where

H al—Pz + = 93 Q2

. . . 5.94b
k,J 2M "k,j 2 "k K ( )

We can now compute the energy of the liquid in thermal equilibrium at a temperature

T using the results of the preceding section. In particular, using equation 5.57 we have

)
w7iw)
(E) - EG z A f —nm;-lr—' dw (5.95)
0 e -1

where m(w) is the density of states per angular {requency.

To compute the density of states, we note that there are two modes for each wave-
number k, corresponding to j = 1 and j = 2, the real and imaginary part of the complex
Fourier coefficient Qk of the displacement fisld. Recall however, that we must include only
a half space of k in—cou.nting the independent modes. Therefore the number of modes with
frequency w'<w is given by

£ v ()
Nw'<y) = 2

w)3 /v
or, since k = w/cs

N{w'<g) = UrB3W°V

33
(2n) S,
and therefore
dN \'2 2
nw) = 5= w (5.96)
duw 2%

s
and therefore

e -1

-]
VA w3 dw
(B} - Bg = = / R kT
2n'c B
s "0
or, changing to a dimensionless integration variable x = hw/kBT,

V(. T)* %
(E) - E B f Ldx (5.97)
0

=
G Zwac:ﬂa *

e -1



The definite integral is a pure number and given by (see for example F. Reif, Fundamentals

of Statistical and Thermal Physics, Appendix 11)

* A 4
[ 2dx (5.98)
h -1
The energy is then given by
\ n'aV(kBT)‘
(E) - EG 2 (5.99)
30{(c _n)?
3
and we find the heat capacity per unit mass,
2nkT®
ey = (5. 100)
9515(v\cs)°

which is seen to be proportional to the cube of the temperature.
Substituting for the Boltzmann and Planck’s constants,

kg = 1.3800 x 16™®  J3/°K
"= 1,055 x 107 J sec

and, for liquid *He at low temperatures (T < 0.6°K)
po = 0.1450 g/cm?®
e, = 239 m/sec

we have the theoretical prediction for the heat capacity of liquid *He at low temperatures

¢, = (0.0205 0.0003)(T/°K)®, (J/g)°K™

where the uncertainty in the theoretical prediction results from the finite accuracy with which
the speed of sound is known. The measured heat capacity of liquid *He below 0.6°K is found

to be [J. Wiebes, C.G. Niels-Hakkenberg and H.C. Kramers (1957), Physica 23, 625-632],

€y, = (0.0204 £ 0.0004) (T/°K)P (J/g) °K™

7

This expression for the heat capacity fails at temperatures higher than 0.5°K for an
interesting reason: our continuum assumption failat As the temperature increases higher

frequency states become occupied and since
El‘_ = ME = ﬁcsk B

states with higher and higher wave numbers become occupied. You will recall, however,

that our original assumption of a continuum, as given by equation 5,61, requires that

k << (p/m)}/3

since, for a mode of excitation of wavenumber k, the appropriate length scale (wavelength)
goes like 1/k. The interesting thing is that the model of a system of uncoupled harmoenic
oscillators continues to be valid even beyond that limit. The effect of the discrete particles
{helium atorns) comprising the liquid, however, is to produce a slightly more complicated
dispersion relation [w = w(k)]. The Hamiltonian, as given by equation 5.92, is still correct

but the dependence of w omn llc_l is as sketched below. See problem 5,18,



Problems
5.1 Derive the eigenfunctions and energy levels of a two-dimensional harmonic oscillator
whose potential is given by
Vix,y) = EI k{x®cos®a + y?sinal
This is a good model for the vibrations of the central atom of a planar molecule of the

type sketched below

5.2 Show that the operator for X, as defined by 5.14, is given by

~

. 0
K--l—a-g—

5.3 Show that the operator a*, as defined by equation 5.13b, is the Hermitean adjoint

of the operator a.

5.4 Show that
la,af) =1,

where the a and af are defined by equation 5. 13.

5.5 Prove that the harmonic oscillator Hamiltonian can be written as

H = (afa +%)

5.6 Using the operators % and P, expressed in terms of the ladder operators (equations
5.27), compute the matrix elements {(m|%ln) and (m|pln). Compare with the cor-

responding procedure as outlined in problems C.4 and C.5 of Appendix C.

5.7 Write down the matrix representation corresponding to the basis defined by equations

5.28 for % and D, the coordinate and momentum operators.

5.8 <Consider a line of identical masses connected to each other by identical springs.

%’.-Z ?i-' 1"' 31‘4-0
| « | l
\

{ J J
—_ -—i — i, — '4—-1.; —»’ L-——z

T4l

Let 9 be the equilibrium position of the ith mass, and % be the departure of the ith

mass from its equilibrium position. Derive the Lagrangian and Hamiltonian for this

system,.



Problems (continued)

5.9

Express the Hamiltonian of the preceding problem using the annihilation and creation

operators defined by equation 5. 46.

Find the value of the commutators [ai, aj], [a.i,a.;], [a.:, a.;], where a, and a; are

the annihilation and creation operators defined by equation 5. 46.

Compute and plot the heat capacity of a single harmonic oscillator as a function of

»\w/kBT.

Compute the heat capacity of a system of uncoupled oscillators, if the density of

oscillators per unit frequency interval is given by

w3
7 (w)dw ""o'(f;') d

What are the units of my?
Prove equation 5,66
Equation 5.73 can be written as

L -[ £Ld%x (i)

< 2 ‘é‘ po ldix, t)f? - é— 93?"(99)[%-3@, £)]° (ii)

where

is called the Lagrangian density, Show that the principle of stationary action, i, e.

édetséf‘/td’Edt-O, (iii)
t t x «

leads to the classical equations of motion

4 3 4 3 L :
22 -Tx@E) -0 (i)
: i 7T\
where
)
%, = 3;;; q(x, t) . (v)

Derive the classical equation of motion from the Lagrangian density given by equation

L
(ii) and show that [pa¥'(pe)]? should be identified with the speed of sound.

5.15 A point mass m is executing harmonic oscillations described by

x(t) = x, sin(wt+@)

(i) Compute the classical momentum p(t).
(ii) Compute the classical average values of x, x°, p, p° and the energy E. Is the
energy a function of time?

(iii) Compare with the quantum mechanical behavior as E/Aw -~ .



Problems (continued)

where ©(|x-x'|) can be written as

c?

o(x-x) = =2 &(x-x) - gllx-x'D)
Po

where S ias the speed of sound, p, is the equilibrium density, &(x-x') is the three

dimensional delta function, and S(l!&'i‘.’l) is a function that possesses a peak at the

mean distance between atoms. Note that if g(]f_-_:g_‘]) = 0, we recover the continuum

model for the liquid as given by the expression for the potential of equation 5.72

(1)

(i)

(iii)

Derive the Hamiltonian for the system, if the kinetic energy is givean by
equation S. 70 and the potential energy is given by the expression above.
Derive the dispersion relation w(k) for this system.

Invert this relarion to express g(r) as a function of w(k), where r = |x-x'].

Can you sketch g(r)? What must its behavior be as r =« 0, r = »?



6. ANGULAR MOMENTUM

We shall begin the discussion of angular momentum in quantum mechanics by considering

a few examples, also of interest in their own right, to illustrate the points.

6.1 The two-dimensional harmonic oscillator.

The Hamiltonian of an isotropic harmonic oscillator in two dimensions is given by

1 3
Ho=gm B, tp) + 5 8+ 7). (6. 1)

Classically, the equations of motion are given by

s _ 0H _ 3 L

8 = —ij = - ometx =12 (6. 2a)
and

. oH 1 L

Xj = -a—p-; = ;—n- pj ;=12 . (6.2b)

These can be integrated to yield

x(t) = x5, cos(wt - GX) (6.3a)

px(t) = - mwx, sin(wt - éx) (6.3b)
and

y(t) = yo cos(wt - éy) (6.3c)

py(t) = - mwy, sin(wt - 5y) , (6. 3d)

where x4, Gx‘ Yo 5Y are constants -that depend on the initjal conditions,

The motion described by equation 6.3 is an ellipse in the (x, y)-plane.

3/_%
\_

Note that when -1 < {éy - 5x) < 0, the particle moves clockwise along the ellipse {''left-
handed’ motion}), while when 0 < (6‘/ - 6x) < m, the particle moves counter-clockwise along

the ellipse (‘‘right-handed" motion). Note that the energy along the x-axis is conserved, i.e.



_ 1 a2 m 2.2 _ 1 3.3
B sTm Ptz 9 x =M (6. 42)
as well as along the y-axis, i.e
l_ s . m =23 _ 1 3 2
y S Im Py TT YUY =MV (6. 4b)
and therefore the total energy
E == me? (£ +y3) (6. 5)

2
is also conserved. Note also that since the corresponding Lagrangian is not a function of the
azimuthal angle », the conjugate momentum Py equal to the z-component of the angular

momentum

py =L, =z xp), =xp, -vyp, . (6. 6)
is also conserved and given by
Lz = [mx,vs sin(5y - 6x)]w (6.7)

It can be seen that Lz is positive for right-handed motion (counter-clockwise) and negative

for left-handed motion (clockwise).

Quantum mechanically, we would sclve the problem by defining annihilation and creation

operators 1/2

_ L 1/2 : -1/2
2y = 7 [ (muw) x5+ i(muw) pj] (6. 8a)
1/2
1 172 R -1/2
2; = (ﬂ) [ () x; - i{mw) pj] {6.8b)
in terms of which we have
H = hw(afa + a-ra + 1) (6.9)
x X yy
with eigenstates .
2> = a,n) (6. 10)
and corresponding energies
E’J = fg{n + 1) , (6.11)

where n=n_+ o .
x y
Note that the energy En is {n+1)~fold degenerate, i.e,, for a given n there exist n+l
orthogonal eigenstates ]nx, ny> which have the same energy, namely

10,0 , l1,n-1) ..... la~-1,1) , |a,0) .

By analogy to the classical expression for the z-component of the angular momentum,
we now define an operator
L, =% - ¥, , (6.12)
which we can express in terms of the annihilation and creation operators, i.e.

» . + +
Lz = ih (axay - axay) . (6. 13)

Using equation 6.9 for the Hamiltonian, we can verify by direct substitution that LZ commutes

with the Hamiltonian, i.e.
[H,Lz] =0 , (6.14)

and therefore Lz is a constant of the motion, in agreement with the classical result. See

Equation 3.88 and related discussion.



The operators H and Lz are Hermitian and they commute,
a set of basis states (vectors) that simultaneously diagonalize H and Lz'

should be possible to find a common set of eigenstates for H and Lz.

sider the operators

1

Ay T e

R ﬁ

a};=_1..

JZ

and

R

L Jz

KNS

L JZ

It can be readily verified that (¢ = RyL}

g <A

1-
a

la, -

+ o
(ag, 2]

]

and that the Hamiltonian,

+ +
H = hw(aRaR + a;a; + 1) ,

while Lz is given by
I:z = ﬂ(a*a

(ax - iay)

1
(ax + 1ay)

n

8
g,a’

= 0

-afa)
L"L

2

expressed in terms of the new operators,

6.3

#

’

There exists, therefore

In other words it

In particular, con-

(6. 14a)

(6. 14b)

(6. 14c)

(6. 14d)

(6. 15}

is given by

(6. 16)

(6.17)

From equations 6.15 and the form of the Hamiltonian, we see that the operators

a aT
g’ o

are appropriate annihilation and creation operators {see discussion in section 5.2),

that operate on a set of basis vectors !nR, nL). It is then clear that both H and I:z are

diagonal in this basis, i.e,

H!nR, nL) = hw(n-!-l)[nR,n

and

where

see also problem 6. 4.

These results motivate the identification of a

operators of ''right-circular quanta', and

for "left-circular quanta''.

in a particular eigenstate, is then equal to

]

z‘nR,nL) = mh]nR,nL) s

a1 %L

af
R' R

af as the annihilation and creation operators

(6. 18)

(6.19)

(6.202)

(6.20b)

as the annihilation and creation

The total energy of the system (above the ground state energy),

hy times the total right and left quanta, i.e.

We can always simultaneously diagonalize two Hermitian matrices that commute.



nR + nL,

of the number of right and left circular quanta. It is then convenient to re-label the

whereas the angular momentum Lz is equal to * times the difference (nR - nL)

lnR‘ nL) eigenstates such that
|n,m) = |ag + 0, np -0 ), (6.21)

where n is the energy quantum number and m is the z-angular momentum gquantum

number.
Note that if n=0, m=0 necessarily, if n=1, we have m=1,-1, if n=2, we have
m=2,0,-2. In other words, if n is odd, m is a positive or negative odd integer, while if

n is even, m 1is a positive or negative even integer. In both cases
-n<m+<n , (6.22)

while, for the same n, two different m's must differ by a multiple of 2. The (n+1)-fold
degeneracy of an energy eigenstate }n,m) can now be identified with the (n+1) possible
values of the angular momenturn quantum number m, corresponding to (n+l) orthogonal
angular momentum states of the same energy.

What about the wavefunctions corresponding to the various representations? Well, the

!nx, ny) basis states are products of the farniliar one-dimensional wave functions (see

equation 5,11 and related discussion), i.e.

hnx(ux) hnv(ay) ~a® (£ +y2)/2
q'n ,n (x.r Y) = a notn )7? e (6. 23a)
Xy @2 X Y n.n)
x v
where (see equation 5. 8),
. 1/2
a = (T) s (6.23b)
X th . ;
and h (§) is the n Hermite polynomial.
The ground state of the system is W,,(x,y) and given by equation 6. 23,
a -a®(x® +y3)/2
10,0) = ¥oo(x,y) = 75 e , (6.24)
T

i.e.,, a two-dimensional Gaussian,
To obtain the wavefunctions corresponding to the InR, nL) basis vectors we use the

annihilation and creation operators aR,a; and aL,aL. In particular, since

a; = :/—1_—? (a; + ia.;)
we have
1 .
‘IR'OI_) = 7‘_2: (\1x10y> + 1|0x, 1y>) ' {6.25)

and therefore
a - +v%)/2
¥, o xy) = —775 [hlax) + ik (ay)] e
R’L 2w

or, since hy (%) = 2€ (see Appendix C),

2



update

6.5

o° -a?(x® +y7)/2
‘I’l 0 (x,y) = 75 (xtiy) e . (6. 26)
R'"L T
This function suggests the introduction of polar coordinates, i.e.

= r <cos
X N P

y=r71 sin o
in terms of which
a —aarf/z :
Yo,0lr,0) = 5 e (6.27)
™
and s 3
2 -a°r* /2 iy
¥, 9=z re 5 e (6.28a)
R L b ;
Similarly we then also have
2 3 .
3 -a°r®/2 -iop
Y, (o) =—mr e * e (6. 28b)
R "L b

The identification of a; and aL as the operators that create a right and left circular
(about the z-axis) quantum is now, perhaps, clearer. The wavefunctions of equation 6,28
can be obtained directly from the ground state wavefunction ‘I’o,o(ﬂ.@) by expressing the

annihilation and creation operators in polar coordinates., In particular, from equation 6.28

we have
1 1 8
a, = '—; fox + 2 '5;) {6.29a)
1 13
a, = ﬁ(uy * a3 By (6. 29b)
and therefore
_1 NN SV B 3
2r T 2 la(x-iy) + e GBx -1 By)]
or, in polar coordinates
-1Cp
- 18 i3
RN Ta W (6. 30a)
Similarly, .
ot e? far -+ 2. .1 2, (6.30b)
R 2 L a 31']_ ar, ap ’ :
and
ip
= £ 18 ,i &
ap= Tl Yot W) (6.30c)
1 L
t _ ei® 18 .4 3
ap, = =3 (uri-;'g;:*;;:g’;) . (6.30d)
We see that the result of the operation of ap ona function e F(r_L) is to produce
a function
+ imeo _ ez(mﬂ)cp m 1
ap Le F(r)] = — [(cu‘_L + E_r_:) Fo.= ],
similarly
; i{m-1)p
1 imoe _ e1(rn m 1
a; [e F(r)] = —— {(arL-;;.:)F-;F'] .



6.6

where F' = dF/dr . Consequently, the p-dependence of an eigenfunction ¥ (r ,0)
L np,ny L
is given by i{n -nL)cp
¥, rLp)=e R
“R'L

or in terms of the energy and angular momentum quantum numbers n and m, we have

imep
§n' m(rl,cp) = e - (6.31)
Recall now, that
Lzén’m(rx,cp) = mh Qn,m(r_‘_,cp)
and therefore using 6.31 we must have
-~ _ 3 -a_
L, =-ir o (6.32)

which, of course, we could have shown directly.

Example 6.1 Motion of a charged particle in a uniform magnetic field

Consider a uniform magnetic field along the z-axis

B = 'ézﬂ . (6.33)
We then have for the corresponding Hamiltonian
2
q @ <t
_ 3 c c 3 2
H'Zmp -ZmLz+8m = *+y7) (6.34)

where Lz is the z-component of the angular momentum and q. is the charge of the
particle. See appendix F, section 5 and problem F.1ll. This Hamiltonian can be separated
into a free particle Hamiltonian along the z-axis and a Hamiltonian corresponding to the

motion in the (x, y)-plane, i.e.

H = Hz + H‘L (6.35a)
where
- L2
H, =3m P, {6.35b)
" H——‘—(‘+’)+qiﬁa Wy - O (6.35¢)
L T Zm Px TPy 3m vi-gnt - 7e

Correspondingly, the eigenfunctions are separable and given by
¥(x) = ¥(x,y) Z(z) {6.36)

or, for a free particle along the z-axis,

ipzz/ﬂ
¥i(x) = vix,y) e . (6.36")

We now note that the first two terms of H_L correspond to a two-dimensional harmonic
oscillator in the (x, y)-plane, whose eigenstates would have been the !nx, ny) states of
equation 6.10. These states, however, are not eigenstates of Lz and therefore cannot serve

as the eigenstates of HJ‘. ‘Recall, however, that the states ]nR,nL> were constructed to



diagonalize the two dimensional harmonic oscillator Hamiltonian and the z-component of the

angular momentum simultanecusly, i.e.

S SRRSO I SO
H =35 (P tpy) + 7 mu (= +y ) - w L (6.37)
where ch
W, = 5= (6.38)

is the classical cyclotron frequency, and

H.\.lnR‘nL> = [h[wcl(nR+nL+1) - hwc(nR-nL)]lnR,nL) (6.39)

Note that if q_ > 0, we have w_ > 0 and

E = h‘wc\[nR+nL+l - (ng=n )], (6. 40)

.7

where np and n, are the right and left circularly polarized quanta of the previous section,

so that

E = h‘mc\ (2a, +1) , a_ >0 (6. 412)
and similarly,

E = n}wci (2ap +1) , q <0 . (6. 41b)

The total wavefunctions are then given by
WO = lp.op.np) (6. 42)
with energies

1
oy pi + ﬂlwcl (ZnL +1) , for q. >0
E = (6. 43)

~L .2
o pz+ﬁ|mc] (2ag +1) , for g <0 .

We can combine these two expressions using the n = ap +nL and m = np - B gquantum

numbers. In particular,

1 ;
E=gmpy tre ] (a-msignq) 11, (6. 44)

where
+1, for x>0
sign(x} = (6. 45)
-1, for x<0



6.2 Angular momentum in three dimensions.

In the preceding section we studied the angular momentum along the
z-axis, corresponding to motion restricted to two-dimensions [(x,y)~plane].

The z-component of I,, the angular momentum was then computed to be

L,=&xp, =%, - ypP, . (6. 46a)

For motion in three dimensions, however, the other two components of angular

momentum, namely

L
X

n

(z xpl =vp, - 2zp (6. 46b)

and

L (6. 46¢)

y

L}

zp_ - Xp_ ,

X z

(z x py,

must also be considered. Since quantum mechanically, the quantities in all
the products in equation 6.46 commute, we may replace the linear momenta
v P, by the corresponding components of the momentum operator to

obtain the operator expressions for the component of the angular momentum,

P, P

X

i, e.
L = -in (y%-z%), (6. 47a)
L, = -if (z—gg-xé’;), (6. 47b)
and
L, = -i (x%-y%). (6. 47¢)

The three components of the angular momentum do not commute with each
other, In fact, we ¢an show by direct substitution of the commutation relations

between the components of x and the components of p, that

[Lx, Lyl = inL, (6. 48a)

[Ly,Lz] = itL_ (6. 48b)
and

[Lz,Lx] = ihLY . ‘ (6. 48¢)

The vector angular momentum L is given by

L =L e +L ¢ +L & 6. 49)
= x x vy z z

and has a magnitude squared, given by

1 =L'L=L®%+L%+1L2%2, 6.50)
= = X v k4 : :
It is easy to show that it commutes with the three components Lx’ L L.

In particular,

3 - 3 3 3
e l=rr i+ L2l L2l



The first commutator is zero since Lx commutes with itself and therefore
with its square (see problem 2.7 v). The other two can be computed as

follows,

L®Li={c .l +LfiL,L]d,
Ey,xlﬂy,xly y[yxl

or, using equation 6.48a

L3 L )= -ir(L L +LL).

Y X z \/ ‘/ Z
Similarly

fL®, 1. J=ir(L L +LL),

z X z°y vy z

and therefore

(= [La,Ly_] = [t l=0. ' {6.51)

In the study of the behavior of angular momentum it proves convenient

to define two new operators

L, = Lx + 1LY (6. 5723.)
and
L = Lx - 1LY . (6. 52b)
The three operators I..+, L_ and Lz satisfy the following commutation
relations,
e, L, =n"L, (6. 53a)
[LZ,L_] = - AL (6.53b)
(L,,n =2, (6. 53¢)

as can readily be shown by direct substitution. The operator L? also com-
mutes with L+ and L_, since they are linear combinations of Lx and LY
which, in turn, commute with L2, Inverting equations 6. 52 and substituting

for an and Lyz in equation 6.50 we also have

1

a3 _ 1 3
¥ =5(L, L _+L_LJ+L, (6. 54)

from which we can also show that

L L, =L% - L (L, + #) (&. 55a)
and

L, L =12 -L (L - #. (6. 55b)

6.9



From the commutation relations for the three cartesian components of the
angular momentum (equations 6.48) and the fact that the necessary and suf-
ficient condition for two Hermitean matrices to be diagonalizable by the same

transformation is that they commute, we see that it is not possible to find a

set of the angular momentum, say Lz, which are also eigenstates of any one

of the other two (much less of both). Using the fact, however, that the

modulus squared of the angular momentum, i.e., L?, commutes with any one
component, a transformation exists that simultaneously diagonalizes L? and one

component of L. Consequently there exists a set of simultaneous eigenstates

of L? and one component of the angular momentum which, without loss of

generality, we can choose to be Lz. Equivalently there exist a set of eigen-

functions \y)\ L such that

3 - -
L \yM‘ = XW)\’“ (6. 56a)
and

Lz \yx,“ = #4 \yk,p. . (6. 56b)

Equations 6.56 are the eigenvalue equations for the eigenfunctions v)\ u
These we can find by expressing L% and Lz as differential operators, and
solving the resulting differential equations. If we transform the cartesian

X,¥,% coordinates . in equations 6.47 into spherical coordinates, i.e.
x =1 sin 8 cos ® (6.57a)
y = r sin 8 sin ® (6.57b)

z = r cos 6 , 6.57¢)

A 2

we have, after a little algebra,

L, = ih(sin ® a% + cot 8 cos © -%) ’ 6. 58a)
L = it(- cos ® 2 + cot 8 sin @ ->) . 58b)
y kL) E '

and



L o= -in (6.58¢)

the latter of which we have already encountered in the discussion of angular
momentum in the two-dimensional harmonic oscillator. It can be seen that

angular momentum operates on the angular coordinates 9 and ¥, and does not

operate on the radial coordinate r.

Substituting equations 6.58 inte the expression for 1? and Ly, we also

have
S LS ST S G
L=-2 [sin@ 28 (sin® 39) * sin® 8 Bcpa] (6.59)
and
£ip 3 9
L:‘: = he (:i:sg +.icot9%) . (6. 60)

From equations 6.59 and 6.58c for L*® and L, respectively, we see that

the eigenfunctions \!{X u must be given by

Yo ™ W 80 =8 912 @), 6.61)

B

where, since Lz operates on ©® only (equation 6.58c), we have that

L% (o)y=ud (@ . (6.62)

Substituting for Lz we have
ing ! + ué =0, 6. 63a
ing, @) + i “(CP) ( )
with the boundary condition

Q“(O) = Qu(er) . (6. 63b)

The solution to equation 6. 63a is evidently

ipp /h
@“(cp) = e (6. 64a)

where, from the boundary condition, we have that
B=mt (6. 64b)

where m is any positive or negative integer or zero.

To study the spectrum of L?, we note that L® is a sum of three posi-
tive definite Hermitean operators, i.e., for any state Hl), we have from

equation 6. 50,
WILE) = L 21 + Gl Pl + G2l

But

>

since Lx is a Hermitean operator
Gl ey = b, vy = L e = o .

where ” IX)HE denotes the modulus squared of the state vector ]x). By



gimilar arguments we have that

2
v Flvy= o
and

L2l = o

for any state H/) and therefore also

WlLlyy = 0 (6. 65)

for any H/>. Conseguently the eigenvalues of L? must be non-negative, i.e.
J

A=z0. (6. 66)

It will subsequently prove convenient to define a non-negative real number

£, such that

A= A28+ 1) (6.67)
where #° is chosen for dimensional reasons and £ is the non-negative root of
6.67. It is clear that this does not result in any loss of generality since for
any A there exists a unique non-negative root of equation 6.67. We will hence-

forth label the common eigenstates of L? and L, with the new indeces 1 and

m, in particular, we have

Ale,m) = #2224+ 18, m) (6. 68a)
and

L l4,m) = Amfs,m) , (6. 68b)

where m has been determined to be a positive or negative integer or zero, and
L is a non-negative real number whose behavior is yet to be determined.

We now note, by virtue. of equations 6,55, that

AL +1) - mim+1)]]|s, m)

[[]
H

23
L L |em)=[L%-L (L +n]l4m)

and

A2l +1) - mm-1D3[e,m) .

L,L_|4,m) = (L7 - L,(L, -n] {2, m)

We have, however, that
(4,m|,L L [4m)= 4m|L,, L [4m) =L [e,m)P 20
and similarly
(4,m|,L,L_|£,m) = L_lg,m)® 20,

since L+ and L , like the annihilation and creation operators of the Harmonic

oscillator, are the adjoint of each other. Therefore, we must have

]

£(2+1) - m(m+1) (£-m)(£+m+1) =2 0

and
(L+m){f-m+1) 2 0,

n

2{2+1) - m{(m-~1)

.12



The first inequality requires that
- {L+1)€<m s £
while the second requires that

- 4 <sm<(2+1) .

These latter two inequalities can evidently be simultaneously satisfied if and
only if

-4 €sm< 4. (6. 69)

To proceed further, it proves convenient to study the behavior of the

operators L+ and L_ separately. In particular, we note from the preceding
discussion that

e, fe,m)® = (4,m|L L {2, m)= (2-m)(+m+1) ,

and therefore

L, [s,m) =0, iff m= 4. (6. 70a)

Similarly, we also have

L {a,m) =0, iff mo= -4 . (6. 70b)

If, however, m # £ we have, using the fact that L+ commutes with L7, that
(?, L, Ile,m) =0

or, eguivalently

n

3
L*r,le,md) = L L34, m)

= h’z(z+1)L+lz,m) .
This latter result shows that, if m # £, the state L+|£,m) is also an

eigenstate of L? with the same eigenvalue as |2, m), namely 2%4(8+1).

We now operate on |4, m) with the commutator of equation 6.53a, again
if m# 4,
(o, L lam) = a1 |4, m),

and since

[LZ,L+]|L,m) = LZL+lz,m> - L+Lzlz,m) ,

we have that, if m # 2,
LZL+]z,m) = L+Lz!z,m) + aL_ |4, m)

= am+1L, [2,m .

Consequently, we see that L+]L,rn) is an eigenstate of Lz with eigenvalue

.13



6
#{m+1). Similarly, if m# - £,
LZL_]f,, m) = #(m-1)L_|£,m)
and therefore L_IZ, m) must be an eigenstate of Lz with eigenvalue #(m- 1).
Combining these results, we see that if m # £
L+(z,m> = Cz,m“'m‘r”
where Cz m is a complex constant. If the states ]Z,m) are normalized, we
then have
3
ICy ml? = &mlL, L [2,m) = L ]2, m)|?
and using the results of the preceding discussion,
|Gy ! = #0202+ 1) - mim+D] .
Therefore, if we choose the relative phase of |I.,m) and |l,m+1>, such that
Cz‘m is real and positive, we have
) - 1/2
L. Je,m) = 4le(4+1) - mm+ 11" %2, m+1) , (6. 71a)
and by similar arguments
_ 1/2
L [4,m) = 2(4(2+1) - mim=-131"%le,m-1) . {6.71b)
Note that equations 6,70 are included in equations 6.71.
Consider now a state l!.,m>. The result of operating on this state with
L, is to produce a state proportional to ]z,m+ 1), i.e.,
L+|z,m) = |2, m+1) .
If we operate again with L,, we have
L?[e,m) = L (L le,m) « L |4, m+1) = [£,m+2)
Similarly, we have after m' applications of this procedure,
1
(L)™ [4,m) = |2, m+m")
Clearly, unless this process terminates, we can generate an infinity of states
M,m+m'), corresponding to any integer or zero value for m'. This, however,

is disallowed by equation 6.69 which requires that

m+m' s %

This can only be achieved if £ is an integer, in which case

L+!L, m=4) = 0

.14



6.15

Note that therefore, for a given £, there exist (24+!) simultaneous (orthogonal)
eigenstates [z,m> corresponding to the (24+1) possible values of m permitted

by equation 5.69, i.e.,

[2,-8), Ja,-2+1), ..., |4,0), ..., lg,2-1), [2,2) .

Example 6.2 Rotational spectra of diatomic molecules at low energies.

Consider two atoms of mass my and mg respectively, at an equilibrium

distance r, along the line of centers.

"

Za M2

If we define the position of the center of mass, i.e.,

myx t mexe
X 2 o (6. 72a)

- my + ma
and the relative position, i.e.,
X=Xa - X , (6. 72b)
we can write the total kinetic energy of the system as the kinetic energy of
the center of mass plus the kinetic energy about the center of mass (see, for

example, problem 1.4). The resulting Hamiltonian (in this approximation of

fixed interatomic distance) in the absence of external forces is given by

-l LS R I R o I I
Hesg B v m? = - bex! -3 b=l o
where
M=m + mg (6. 73a)
is the total mass,
=+ oL {6. 73b)

1
—n? my mg
is the reduced mass, and P and p are the conjugate momenta to X and x

respectively. The total wavefunction IQC_,é) is then separable into the product
F(X,x) = ¥X) ¥(x).

The wavefunction ‘1’(_X_) corresponds to a free particle wavefunction



where
1/2
ZME
o . (___c_M>
ﬁa

and E is the kinetic energy of the center of mass of the molecule.

CM
The wavefunction VY(x), can be expressed as a superposition of the eigen-

functions of the Hamiltonian for the relative motion, i.e.

H g Vel® = ey (x)

or
2

2 9 '
["z‘a:‘azi - 6]%‘5“ 0
We can now express the Laplacian

IR N N RS U

in spherical ccordinat:esf’E i.e.

3 _ 1 3B 3 B 1 1 3 a9 1 >
!-é;l ——23; (r ~6—r') +:3- [m‘a—é <sm65§) + —'—] (6.74)

= r sin® 8 atps

and use the fact that, in this approximation, r = r, is held constant and

therefore we have

#? 18 D 1 3 )
{' S [sine 56 (sme a’e> j-riery ] - e} ¥,8,9) = 0.
Q

At this point, however, we observe that the differential operator in the brackets

(times #°) is in fact L2. See equation 6.59. Therefore
_ 1 3 =
(H, . - €)¥,(8,9) -( - L7 - e)we(e,cm =0.
2mrg

Therefore the eigenstates, are the states ]l.,m> with energies

ﬁs
€, = A4 + 1) . (6. 75)
2mr,

Note that successive energy levels are spaced by

hQ

I~ (29 . (6. 76)
mry

¥

See equations 6.57 and appendix G.

.16



)
-]
£=3 4+ 12t
21'n1.‘¢:,3
3
t=2 4+ 6L
Zmro3
3
4=1 4 2-2
Zrnroa
2 =0 -+ [}

In an absorption (or emission) experiment, these are in fact the observable

quantities, since

Ft’aoio-n wolecule molecule
) L+ - Lot
Pa VL W
— e 4 4
————— s _—
be {gcre, after

where, by conservation of energy,

[ﬂw]m = de, + AECM . (6.77)

The subscripted brackets indicate that the photon energy (frequency) has to be
computed in the frame in which the absorption (or emission) takes place
(Doppler shifted). See problems 6.15 and 6. 16.

We will show later that for absorption or emission of light by a2 hetero-
nuclear (unlike atoms) diatomic molecule (HC4, CQ, etc.) we must have a
molecular transition between two states whose angular momenturmn quantum
numbers differ by £1, i.e., 42 = 1. We will also show that homonuclear
diatomic molecules {0y, Nz, etc.) cannot occupy energy levels with odd £ and

therefore, necessarily, do not exhibit radiative transitions with A4 = 1.

.17



6.3 The Spherical Harmonics

What are the eigenfunctions corresponding to the states lz,m)? From equations 6.61,
6. 64 and the related discussion, we see that
imep
\y)\’“(s,cp) = Yz,m(s’m) = lem(e) e - (6. 78)
where £ and m are integers and related to the eigenvalues X and u of L? and LZ
(see equations 6.56) by equations 6,67 and 6.64 respectively.
We can find the function FL Z(B) by a trick that also proved useful in deriving the

harmonic oscillator wavefunctions using ladder operators (see equation 5.24 and related

discussion). In the case of the angular momenturn wavefunctions, we note (from equation
6. 70a) that
L, Yz‘g(e,cp) =0 . (6.79)
Consequently, substituting for the differential operator for L, from equation 6.60, we have
5 . . 2 b4
(-a—e- +1icot® -55) Fz'l(e) e =0
or
d
(35 - £ cot 8) FL, Z(S) =0 . (6. 80)

This is a first order differential equation, which can be integrated directly note that

cot 5d8 = _d_;_in_@_ s
sin 8
to give 3
FJL, 2(9) = cz(sin 8) s (6.81)

where cy is some normalization constant,

.18

We can determine <y by requiring that Yz L(S,cp) be normalized on the surface of the

unit sphere, i.e.

2 T
f J [, 8,0 sin8d8 dp = 1
@¥=0 ©&=0

Substituting for Y, J?l(e,qa), we have

™

1= 20 |, / (sin 8)*% sin 6 48
=0

substituting x = cos §

1
2 e, I? f(l -t ax = 1
2

or

2

We can compute the integral by noting that

1 1
Iz='/‘(1-xa)jzdx:f(l—xa)/a'l(l-xa)dx
21 21

1
=izl



where the second term is obtained by integration by parts. We can now solve Iz in terms of

IL-l to obtain [ 24 .
27 (24+1) “4-1 ¢

which we can solve recursively to obtain

24 2{2-1) 1

£ T Z2¥1 T Z(2-1+T Ci-2

1 = 24 _2(4-1) ., _2(2-2) Io
LT 2E1 T 2(4-1)+1 2(a-2)Fl
or
_2an
L=Gepn o (6. 82)
where the double factorial is defined as
ntt = n(n-2)(n-4) ... 642 ,
and L, is equal to
1
[ dx = 2
-1
Noting that
20+1)0
(23+111Y = i—(Z_L—)'l‘-
we have, from equation 6. 82,
24+1 3
2 2!
L= =z (6. 83)
and therefore
1/2
e, | = = [gzi;-lz!]
270
This determines c, within a phase which we can choose such that
L 1/2
. = (- 1) (24+1)1
1 2 4w
27
by convention. Therefore, substituting these results, we have
)7 1/2 ity
L= 1" [(2e+1) 2
Y, 8,9 = é—l—zL. [4“ } sinf 9 e ) (6. 85)

We can now generate the remainder of the functions Yz L_I(G,Qp) by repeated application

of equation 6. 71b, e.g.

)]1/2

LY, ,8,9) = alas+]) - 2(4-1 Y, (80

or, substituting for L_ from equation 6.60, we have

-9 9 3 PR
Y (8,9) = —2——1rs (- == + icotf—) c,(sin §)” e
2, %=1 (24) 172 a8 a0’ “4
€1 i(s-1)% 8 Y
= - e (== + % cot 9)(sin 9)
n'Z 36
or i(4-1%p

X -1
Yz’z_l(e,CP) = - cz(ZII)l/2 (sin 9)1' cos 8 e . (6. 86)



update

6.20

Similarly, we can generate Yz L_Z(S,cp) and so on to Yz _z(e,:p). We can actually derive

an explicit expression for Yz m(S,Cp) in this manner, i.e. (the algebra is ... uninteresting)
R 11/2 ime 2-m
(£+m)! R -m d FIRY
N4 (e’cp) = c [ . (sin e) e —_— (1 - cos 9)
4,m 2 (L-m)!- d(cos e)z m s (6.87)

where c, is given by equation 6.84. It should be noted that equation &.87 generates the

normalized wavefunctions Yz m(S,tp). The first few of these are:

’1 1/2
Y,0(8,0) = ()

3

_ 3 1/2 E3)
Yy, x(8,0) = F (—8-;) sin 8 e

3 1/2
Y1,0(8,9) = (7)) cos 8
15 1/2 +2itp
Ya,£(8,9) = (337) sin® 9 ¢ (6. 88)
_ sl/2 +ip
Ya, £ (8,9) = + (g7) sin 8 cos § e
1/2

(3 cos® 8 - 1)

The functions Y!, m(S,Cp) are called spherical harmonics and are generally useful in

solving spherically symmetric problems. They are often expressed in terms of the

associated Legendre functions, defined by

m
o2 )m/Z d

PI,,m(x) = (1 - o

Pz(x) R (6. 89a)

where the Pl(x) are the Legendre polynomials, defined in turn by

2
4
P,x) = —o— 4 & - b . (6. 39b)
274y dx
In particular, for m > 0
1 1 ;
5 = imyp
N m (24+1\2 | (4-m)t |2
Yz’m(e,cp) = (= 1) (———-4," ) [(£+m)! Pz’m(cos 8) e s (6.90)
while the functions for m < 0 can be obtained from the complex conjugate relationship
-m *
p) = (- 6.91
Yy &) = (0T Y, (0,0) . (6.91)
The Legendre polynomials can be shown to possess a generating function#, given by
(for p < 1)
;FSee G. F. Carrier, M. Krook and C.E, Pearson, Functions of a Complex Variable

(McGraw-Hill, 1968) pp. 101-103.
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0 .
(1 - 2px + pa)-L/Z = Z pJa Pﬁ(x) . - (6.92)
2=0

which is useful in computing the reciprocal of the distance between two points r and R,

where ‘3‘/‘51 < 1. See problem 6.19. The first few of these are given by,

Polx) = 1
Pi(x) = x
Pglx) = 3 (3% - 1) (6.93)
Pylx) = + (55 - 3x)
Pyx) = 5 (35x* - 305 + 3)
The Lth Legendre polynomial of the cosine of a subtended angle & between two
directions &, = (8;,9;) and & = (83,us), i.e.
& -8 = cosf , (6.94)

can also be expanded as a summation of the products of the spherical harmonics
Y, mif1,0) and Yz,m(e""'w‘ ).

In particular#,

£
X
Pycost) = 5305 30 Y, n(r, %) Y, o (8e,0a) (6.95)
m=-4

known as the addition theorem for the Legendre polynomials. See also problem 6. 20.

Before leaving this section, it should be pointed out that care should be exercised. in
consulting references on the spherical harmonics because the various conventions of signs,
phases, etc., are, unfortunately, not universal. The choices here were made so as to have

YLO(G) >0 at 8 = 0 and are consistent, for example, with A. Messiah, Quantum Mechanics,

v. I, appendix B,

#

See, for example, C. Cohen-Tannoudji, B. Diu and F. Laloe, Quantum Mechanics (John

Wiley, 1977), pp. 688-689.



Problems

6.1 Prove equation 6. 13,

o
o

Give a reference and/or outline a proof of the statement that two comrmuting Hermitian
matrices can be simultaneously diagonalized.

6.3 Prove equations 6. 15.

6.4 Prove equations 6.25 and 6.28b.

6.5 Prove equations 6.30.

6.6 Prove equation 6.32 directly from 6. 12.

6.7 Show that the n = 2 eigenfunctions Qn, m(rL,cp) of the two dimensional harmonic

oscillator, are given by
o . -lar /2 #2ip
Qa,;{-_a(rj_,@) = -—-—7—(2")1 5 (ar ) e e

a R -(a.r.L)3 /2
8, o(r,®) = iz ({ar ) - 1] e
6.8 [Express the Hamiltonian of equation 6.1 as a differential operator in r, and @, where
x =1 cos @
y =1, sin ®
and show directly that the corresponding time-independent Schrddinger equation possesses
solutions of the form

imep

v (r.9) = F (r) e

n, m n, m
6.9 Compute the matrix elements
(n’,m'lrf[n,m) )
between the eigenstates of a two-dimensional Harmonic oscillator.

Caution: There are several hard ways to do this!

6,10 (i) Derive the density of eigenstates per-unit volume of a charged particle of mass
m, charge q. that is bound by a two-dimensional potential

V=-é-mwg(x3+ya) ”

and free to move along the z-axis.

(ii) Derive the density of eigenstates for the preceding problem if, in addition to the
two-dimensional harmonic potential, the particle moves in the presence of a
uniform magnetic field

B=p8%
= z
(ii1) Discuss the behavior of the density of states in the limit of
T%_T -0
w
c
6.11 Prove equations 6. 48.
6. 12 Prove equations 6. 53.

6.13 Prove equations 6.54 and 6.55.



Problems (continued)

6. 14 Substituting the transformation into spherical coordinates {equation 6.57) into the ex-
pression for the three components of angular momentum as given by equations 6, 47,

prove equations 6.58.

6.15 In the absorption spectrum of HC!{ vapor in the far infra-red, the following lines are

observed (wavelenths per centimeter):

At (em™)

83.03
104. 1
124.30
145.03
165,51
185. 86
206.38
226.50

(this is not an exhaustive list). Compute the distances r, between the two atoms.

Data: G. Herzberg, Spectra of Diatomic Moleécules (1950, 2nd Ed.), table 10.

Note: Strictly speaking, the interatomic distance is a function of £, since at higher
L's centrifugal forces in fact slightly stretch the molecule. - This effect is less
important at the lower &'s, which should therefore be used in estimating the

interatomic distance.

6.16 a. If the photons absorbed (or emitted) by the molecules have an energy #w. in a fixed
laboratory frame, compute the spectrum of photon energies encountered {or emitted)
by a moving molecule of total mass M in thermal equilibrium at a temperature T,

This phenomenon is called Doppler broadening.

b. Using the data of the preceding problem for HCZ/, compute the expected line widths

A as a result of this phenomenon.

D
¢. Compute the recoil AECM for the emission (or absorption) of the photon by a

molecule of mass M.

6.17 Compute the matrix elements
)
{4, m le]z,m>
and
(l,m‘lLylz,m)

6.18 (i) Using equation 6.89 show that the associated Legendre functions are given by the

m/2

product of (1 - %) with an even or od& polynomial depending on whether (£ - m)

is even or odd respectively, and consequently

Pyl ® = 0P R, )

L, m



Problems (continued)

(ii) Show that inversion, i.e.

is equivalent to the transformation in spherical coordinates.
§ - w -9
S B
(iii) Show that
L
Y- 8w o) = (DT Y, (8,0)

In other words, eigenstates with odd £ have odd parity (anti-symmetric), where: as

eigenstates with even 4 have even parity (symmetric under inversion).

6.19 Using the generating function for the Legendre polynomials, show that

0

4

1 1 r

TESTT "R & ® Pyleosy .
2=0

where r = |z}, R = |§_[ , /R <1, P, is the zth Legendre polynomial, and

X is the angle subtended between r and R.

A 2

2\
\Jx

6.20 Using the results of the preceding problem, show also that

w0 2
4
1 4r (r/R) *
R-z[ " ® > X Yy, m®® Y, (8.9,
1=0 m=-1
where e£ = (6,9) and e_11 = (8,8).

update



7. MOTION IN A CENTRAL POTENTIAL

We have seen that the motion of a pair of particles subject to a mutual
potential that is a function of their separation only can be reduced to the free
motion of the center of mass and the motion about the center of mass. In
particular, if the potential is given by the function U(r), where r = '1_:;; -_)51[
is the separation of the two particles located at x; and x; respectively, the

total Hamiltonian of the system would be given by

1 1
He=gm P fzm P * U, (7. 1)

where P is the conjugate momentum to the coordinate of the center of mass
{equation 6, 72a), p is the conjugate momentumn to the relative coordinate
(equation 6, 72b), M is the total mass {equation 6.73a) and m_ ig the reduced
mass (equation 6.73b). As in example 6.2, the total eigenfunctions d (X, x)

are separable into the product
Q(X,x) = ¥(X) ¥z (7.2)

while the total energy E,. is given by the sum of the kinetic energy of the

T

center of mass E and the energy of the relative motion about the center

CM
of mass E, i.e.
Ep = ECM + E . (7.3)

Substituting 7.2 into the Schrodinger equation we have

S 3

i (-é-z . '52) (X)) = ECM‘I’Q{_) (7. 4a2)
and
3
[— Z_hn-; (36; '%) + U(l§_!)] ¥ix) = E¥(x) . (7. 4b)

The wavefunction ¥(X) corresponds to free particle solutions (see example
6.2). Equation 7.4 can be expressed in spherical coordinates to yield (see

equation 6. 74 and 6.59)

hQ

[_ - 3-53-1—_(:3-2—)+;—1—L3 +U(r)_z] ¥(r,8,9) = 0 , (7.5)
m.r m T

r r

where 17 is the angular momentum (squared) operator.
Equation 7.5 is separable, in particular if

¥(r,8,9) = Ry ,(x) ¥, (8,9), (7.6)
then, since

L2y, (8,0) = A%L4(4+1) Y, (8,0), (7.7

we have for the radial function RE 1,(1')'

.1



2m
1 d ,sd L(4+1) r .
{'g TCE Tt B U‘r”}RE, ) =0 (7.8)

We now note that if we make the substitution

1
RE' 7)== Xg, 20 (7.9)
the equation simplifies to
2m
Y T L{4+1) _
o Xg, o) +{ " (E - U@)] - = }XE) S =0 (7.10)

This latter equation is equivalent to one dimensional motion in an effective

potential (that includes the centrifugal forces)

~ 2 2(2+1)
U, (x) = Ux) + <-2r—n:> AL (7.11)

with the restriction, however, that only positivé values of r are allowed.

!,
)
L 4 =1 1=2 =3
3 \\‘\ .‘l“')
} 2w
—err
< r
g
N
e u P t
N
by
3
19
g
Y
3
¢
| ]

7.2



If the wavefunction is to remain finite and square integrable we must

have

%(0) = x(0) = O . (7. 12)

Equations 7.10 and 7.11 define the eigenvalue problem. Note that the radial

function R(r) is a function of both E and £, in as much as both of these
quantities enter as parameters in the (reduced) radial equation 7.10.

One can study the radial behavior of the eigenfunctions near the origin as
a function of the angular momentum quantum number £. In particular, if the

potential is such that

lim {PU()} =0, (7.13)
r~0
then if

RE,E(r) - r® as r-20,

we have from equation 7.8

d , ade® s _
e (r Tr_) - 4(4+1)xr” = 0 ,

or
s(s+1) = 2{L+1)

and therefore
s = 1 or s = - (4+1) .,

The latter solution 1s unacceptable because it is infinite at r = 0, and therefore

&
Re,!,(r) -r as r—~0. (7. 14)

)
421 (,) \'\‘{,’ =0

\\4 — )_11

Q=2 123

—

It can be seen that the wavefunctions are pushed further and further away
from the origin as the angular momenturmn quantum number £ increases, con-
sistently with our notion of an increasing centrifugal tendency with increasing

angular momentum.

If the potential is localized, i.e., if

1im {U(x)} = 0 , (7.15)
r—eo

we can also study the behavior of these solutions away from the origin. In

particular, for a bound state {(E < 0) we would have




7.4

ZmrE
X, gF) * =5 Xg, () =0 as r e, (7. 16)
and therefore
-
Xg g(¥) — e Tlas r-w, (7.17)
where
ZmrE 1/2
K= |- s (7.18)
ha

representing a spatially confined solution around the origin.

If the radial potential U(r) satisfies both conditions, i.e., equation 7.13
at r -~ 0 and equation 7.15 at r — «, it is often convenient to remove the
behavior at r = 0, from the solutions and to define a new function wi{p) such
that

xg, o(m) = o &P wie) (7.19)

where p is the dimensionless radius
p = Kr . (7.20)

See equations 7.9 , 7.14 and 7.17. The equation for w{p) then becomes

witp) + 2 (5L - Dwitp) + (B L BB ) 2 0 (7.21)

7.1 Motion in a constant potential. Free particle motion in spherical

coordinates.

The U(r) = 0 (or a constant) is, of course, a special case of a central
potential. Consequently, it is possible to seek wavefunction solutions that are
seperable in spherical coordinates. - We have already discussed free particlé
behavior in three dimensions (sections 4.2, 4.3.3), where we found that im-
posing periodic boundary conditions on the wavefunctions results in eigenfunctions

of definite linear momentum (see equation 4.92 and related discussion). The

discussion of free particle motion in the present context of spherical coordinates

is important because it yields eigenfunctions of definite angular momentum. It

goes without saying that the two representations are entirely equivalent, both
formulations yielding a complete set of eigenstates in terms of which any
particular solution can be expressed. The latter set of solutions are generally
usefull in studying scattering problems far from the immediate vicinity of a
localized scattering potential, where the particles are essentially free.

Setting U(r) = 0, we have for the Schrodinger equation in spherical



coordinates, from equation 7.5,

3 -
- ey — 7 - E| w8 =0 (7.22)
2m_r° 2m_r?
r r
which is separable, as in equation 7.6, to yield a radial equation
1l 4 =24 a _ Z§L+1'! _

[3 s (r dr) + K > ] Ek’l(r) =0 , (7.23)

r r

where 2m E
I . (7.24)

K® =
»

The solution of equation 7.23 is given in terms of the spherical Bessel functions,

j,(kr) and n,(kr), which have an asymptotic behavior for small kr,
) )

. 2
jylex) ~ (—ZLTII)T—! k)t , kr-o (7. 25a)
and
L fzerpn ~(4+1) -
nz(kr) G (kr) , kr -0 (7.25b)
or, alternatively, the spherical Hankel functions, defined by
2 kr) = n,(kr) = j, (k) (7. 26)
2 ) ) : '
which have an asymptotic behavior for large kr, given by
+ikr
(7.27)

hf)(kr) ~ El-; e , kr - o .

Consequently, for solutions in regions including the origin, we must have

See appendix H.
&’k, o(t) = jylkr) (7.28)
within a normalization factor, since the other solution is infinite at r = O.

The transition from plane travelling waves of definite linear mornentum to a superposition
of radial functions can be realized using the important identity

ikz © P
e = E i7(24+1) j,(kr) P (cos 8) (7.29)

£=0

where Pz(cos 8) is the Lth Legendre polymonial, equal to the corresponding m=0 associated

Legendre function (see pages 6.20 - 21)

.1 dt A 3
Pz(x) = pz,o(x) =—Z-L—l,! :1? { - 1) R (7.30)

m=0 spherical harmonics,
/2
(7.31)

or, in terms of the
21 !
Pz(cos B) = 5571 Yz,o(e,w)

This is useful in partial wave analysis of scattering problems. See for example reference

update

7.1, section 16-3, and reference 7.2, section 11.5 and 11.6.



coordinates, from equation 7.5,

3
G 3 Bt SRS 1 I TE R I (7. 22)
2m_r? °F or 2m_r®
r r
which is separable, as in equation 7.6, to yield a radial equation
L4 oy, e Y .
[ T ar (r dr) + k¥ - : Ek,!,(r) =0 , (7.23)
T T
where 2m E
K = I (7.24)
hB

The solution of equation 7.23 is given in terms of the spherical Bessel functions,

jz(kr) and nz(kr), which have an asymptotic behavior for small kr,

jyliex) ~ -(-m—-ll)!—!- &r)t , kr-o (7. 25a)
and
n,(kr) ~ %%21’)—' k)" e S0 (7. 25b)

or, alternatively, the spherical Hankel functions, defined by

)

hff)(kr) = n,(kr) * j,(kr) (7.26)

which have an asymptotic behavior for large kr, given by

(=) 1 +ikr
h[ (kr) ~ 35 e , kr - o . (7.27)

See appendix H. Consequently, for solutions in regions including the origin, we must have

R

K, o) = Jylkr) (7.28)

within a normalization factor, since the other solution is infinite at r = 0,
The transition from plane travelling waves of definite linear momentum to a superposition

of radial functions can be realized using the important identity

ikz .y

e = Z i7(24+1) j,(kr) P (cos 8) , (7.29)
L=0

where Pl(cos 8) is the l.th Legendre polymonial, equal to the corresponding m=0 associated

Legendre function (equation 6. 89)

1 dz 3 2
P,(x) =P, (x}) 8—7pm—r — ¥ - 1) , (7.30)
L 2,0 P axd

or, in terms of the m=0 spherical harmonics,

2r 172
P lcos 8) = (3507) Y, ,(8,9) . {1.31)

This is useful in partial wave analysis of scattering problems. See for example reference

7. 1, section 16-3, and reference 7.2, section 11.5 and 11.6.



7.

2 Bound states of a spherical potential well.

Consider the radial potential

Vo <0 , for r<a

U(r) = (7.32)

0 , for r > a

uge) |

T T e et ™ r

\\\\\\ \\\\ 8

&

P S

From the general results for motion in a radial potential, we have that the wavefunctions

are given by

Y(r,8,9) = R, (r) Y (8,@) (7.33)
E, 2 L, m
where
1 d =2 d 3 L(4+1) -
[re i (r dr) + k° - -—ra } EE'L(r) =0 , for r<a (7.34)
2{4+
[J;S—r = L) -—L—-"a”]f?E StV =0 , for r>a,
r T ’
and where (recall V, < E < 0)
Zrnr Zmr
K® = v (E - Vo) , X2 = = (- E) (7.35)

The solutions to these equations can be expressed in terms of the free particle solutions of

In particular, within a normalization constant,
jylkr)
2 <

the preceding section.

'?k, z(r) = (7.36)
nt) (ixr)
-Tq——- r > a
hz (ika)

where the choice for r < a is dictated by matching the behavior at r = 0 (see equations

7.14 and 7.25a), and for r > a by matching the behavior at r - «© (see equations 7.17

and 7.27). The energy eigenvalues are then obtained by matching the derivative of
- + .
:?k’ 1,l(r) at r=a [Rk,z(r=a ) = Rk, JAr=a’) by construction].



It should be noted that the zero angular momentum solutions (£=0) of the corresponding
one dimensional equation of

XE,o(r) = rf?Elo(r) (7.37)

are the same as the odd solutions of the one dimensional rectangular potential well discussed
in section 4.2.4 (why odd?).
To examine the behavior of solutions with angular momentum, we will consider instead

the mathematically simpler infinite spherical well

U(r) = (7.38)

A od
1 -
e
P
ue) ?
7
e
g
"
L
#
L .
Vo o P v
a.

for which R(r) = 0 for r = a., We then have
?E,I(r) = j‘z(kr) (7.39)

where, if E is measured from the bottom of the well,

2m_E
T

= > (7. 40)

and such that

jz(ka) =0 . (7.41)

Equation 7.41 is the eigenvalue equation for this problem in that the admissible values

of k correspond to the roots of the zth spherical Bessel function. If we denote the nth

th

root of the Bessel function by pn‘ 2 i.e.
jz(pn,£)=0 ; n=1,2,.... (7. 42)
we have
Ko g =% Pas (7.43)

The first few of these, in increasing order, are tabulated below.
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» 4 pn, 2 pnll,
1 0 3.142 = «w 9.872
1 1 4,493 20.187
1 2 5.763 33,212
2 0 6.283 = 2r 39,476
1 3 6.988 48, 832
2 1 7.725 59.676
The energy eigenvalues are then given by
" 3
E = p , (7. 44)
n, £ 2m_a® n, 4
r
and are sketched below.
A (3)
'2P —en.
20"'_ E,n,g 0.1
_hz
1}( (7)
do 4 25 SV /e
.'IJ (5)

@)

20 -

~

15_(&._.777-

d=0 Ly L2 4=3



Note that the n=} states, corresponding to the first root of jl(p) at p = ka, have
no nodes (in the interior of the well), The n=2 states have one node, the n=3 have two
nodes, etc. In general, for a given angular momentum quantum number £, the energy is
monotonic with the number of radial nodes. A similar result was found for the eigenvalues
of the one-dimensional potential well [page 4.20, article (iv) and second footnote]. This is a
general property of the differential Schrodinger equation, which is a Sturm-Louisville problem.
See for example reference 3, section 6.3, pages 719-725,

It should also be noted that the energy eigenvalues En,z are (24+1)-fold degenerate,

corresponding to the 2£+1 orthogonal eigenstates

v

2, mT 8P = R (@) ¥, (8,9) = |n, £,m) (7. 45)

with different m's, the z-angular momentum quantum numbers. The degeneracy of each

(n, 2) eigenvalue is indicated in parentheses in the sketch above.

7.3 Motion in an attractive Coulomb potential, Hydrogenic wavefunctions.

An important special case of motion in a central potential is the motion of
two oppositely charged particles about each other subject to their mutual electro-

static forces. In that case, we have
U(r) = -y/r . (7. 46)

Note that for the motion of a single electron around a nucleus of atomic number

Z we have
ze? —
= £&. 7. 47
Y = Gmen ¢ { )
where e is the charge of an electron

e=1.6 x 107° Cb . (7. 48)

Since this potential satisfies equation 7.13 at the origin and equation
7.15 at infinity, we can make the substitution of equation 7.19 and solve for

the function wi{p). Note that in this case

Ulp/®) _ _¥% _ Po (7. 49)
E (- E)p P
where 2 1/2
ba ( mr) (7. 50)
Po =3 \TE : ’

Therefore equation 7.21 becomes

pw'(p) + 2(&+1-p)wi(p) + [po - 2(2+1)I w(p} = 0 . {7.51)



Substituting a power series
0

wlp) = 3 Ceot (7. 52)
k=0

we find the recursion relation

_ 2(k+e+l) -
Cre1 = TrD)(&F26+2) k ° (7.53)
Note that
Sl L2 L k-
Ck k
so that, unless the series terminates,
w(p) — 2F
Consequently, we must have that for some k, say k = K,
po = 2(K+4+1) (7. 54)
where £=0,1,2,... and K=0,1,2,... . Alternatively, if n is an integer,
such that
n = K+i+1l = 1,2,3,... (7.55)
we must have
po = 21 . (7.56)

Substituting for po,, we recover for the energies of the bound states, i.e.

3
m
iy

2#%n®

E = -
n

(7.57)

For the motion of an electron around a nucleus of charge Ze, ¥ is given by

equation 7.47 and the energy levels are given by

2
Ze? b
E = -|7— —— .
n (41”-:0) 243 03 (7. 38)

Substituting in the expression for X (equation 7.18) we have

K = Z/nae (7.59)
where
2
2 = (2ZEa ) A - 0.529 x 10 cm (7. 60)
ea mr

is the Bohr radius of the hydrogen atom of the old quantum theory. In terms

of a, the energy can then be expressed as

_ 1 2% &?
En = - § (4’:\'6039) (7.61)

.10



update

Alternatively, we can multiply and divide equation 7.58 by the square of the

speed of light to obtain

E =-—-(?°‘1-) m_c (7.62)

where a is a dimensionless constant

a
= a1
¢ = Tneghe 137 (7.63)

called the fine structure constant.

Setting Z = 1 and n = 1, we obtain the ground state (binding) energy of the

hydrogen atom

1 &
ST T (U D 7.
E, 5 (4Tr€° ) 13.6eV , (7. 64)

This quantity is called the Rydberg. Successive energy levels are given by

the sequence

E .
E =—;, n=1,2,.... (7. 65)
o ;

and represent the Balmer series of hydrogen.

Note that the integer n, called the principal gquantum number, is given by

equation 7.55, where K is the degree of the polynomial representing the

function w(p). Note also that since
£=n-K-1,
for a giv‘en n, 4 can take the values
L=0,1,... , n-1. (7. 66)
For a given n, however, the corresponding eigenfunctions

¥ (r,8,9) = Rn,z(r)Yz‘m(S,w)

n, 4, m

to each value of £ share the same energy E-n. On the other hand, for a given
n and & we can have (24+1) orthogonal eigenstates corresponding to the {(22+1)
possible values of m, the eigenvalues of Lz/ﬂ. Consequently, the degeneracy
of a particular energy level En is given by

n-1

(24+1) = n(n-1) + n = n° . (7.67)
2=0
It should be pointed out that the (24+1) degeneracy for a given value of £ 1is a conse-

quence of the isotropy (spherical symmetry) of the potential {and therefore also the

Hamiltonian). The remaining degeneracy, however, is a coincidence of the eigenvalues, i.e.



the energy is a function of the radial quantum number n , not of n and £, as would

be natural for this type of problem. This is peculiar to the Coulomb potential (and the
sphericallf symmetric harmonic oscillator potential) and is not true for any other potential.
Recall, for example, the spherical potential well (section 7.2), whose energy eigenvalues are

a function of both n and 4.

In spectroscopic vernacular, an L = 0 state is called an ''s" state, an

L = 1 state is called a ''p" state, the sequence is given by

£ state
0 s
1 P
2 d
3 f
4 g
5 h

alphabetical

A state (n, 1) is then given a number corresponding to n and a letter corres-
ponding to £, e.g., 3p is a n =' 3 and £ = 1 state.
It is illustrative to make an energy diagram of the various states. The
spectroscopic designation is indicated to the left of every state and the degener-
acy is indicated in parentheses on top. In fact the degeneracy is twice that if
the spin, which represents another degree of freedom, is taken into account
as we shall see later.
The functions wn, 1,’(p) are proportional to the associated Laguerre polynomials. In

particular, within-'a normalization factor,

¥a, 4P) = Lo gy, 204120 (7. 68)

where I
Ln'm(x) =07 = Lo, (7. 69)

dx

and Ln(x), the Laguerre polynomial, is defined by,
L(x) 2 eX 4o (B o°% 7.70
L(x) Se = (X e ) . (7.70)
dx’

Since the spherical harmonics are already normalized, it is sufficient to normalize the radial

function, i.e.

o o018
_ 7.71
0
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2 2nl(n+2)1]°3
-x _2{4+1 - _
je S e TP L oy s (7.72)
0

we can compute the normalization constants and write the normalized wave-

functions as

’ 1/2 3/2
-2-1)1 2% L -kt
Vo 4 mir8.9) = [(n = ] [(nﬂ)!:} @kr)"e L,y 20412600, (6,9 (7. 73)

2 %



The radial functions Rn L(r) of the first few of these are listed -below

32 -(%5)

i Ri,elr) = (%) ze V20
Re,o(r) = ((,_Zao)”z 2(1 - %)e(%—:—o)
Rg,1(r) = (ZZ—‘,Q‘O)”2 72_?(%);(22‘55)
ot = (2 [ - o22) a2y ]
3/2 Zr

‘Rsoi (r) =‘ (‘3%_0')

and

Rs.a(r)

n
—~
B~

o
i
Wi
P
win
N,
P
WINg
')

P g L]
N
[

-

where the substitution K = Z/(na,) has been made. These functions are

plotted below. The figures are from R. Leighton, Principles of Modern Physics.

ag(rR)*/2Z

(7. 74)
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7.4 Vibrational-Rotational spectra of diatomic molecules.,

The general form of the diatomic molecule potential is a repulsive region at close
distances followed by an attractive region at larger distances. Such a potential will have a
minimum at some value of r = rs, which in the low energy approximation in example 6,2
of a rigid rotator we took to be equal to the interatomic separation. A typical diatomic
molecule potential is sketched below.

b

v{r)

We can approximate the potential in the vicinity of r, by a Taylor series (Vo < 0)

V(r) = Vo +%(r - 1o Vi(rg) + % (r = o) V' (xo) + ... . (7. 75)

Keeping second order terms, we can then use this expansion as the radial potential U(r) in

equations 7.5 and 7.10 to yield the effective potential

- 1 2 a M2, A1)
Uydr) = Vo + 5 mumg(r - 1,)° + 7, e (7.76)

where the substitution
m wg = V'(r,) (7.77)

has been made.

.16

The molecule will rotate and execute vibrations about the minimum r, of the effective

potential Uz(r). To find this minimum, we compute the root of the first derivative of

Uj(r), i.e.
3
= 3 - - Io .
Uk(rz) = mrwo(rz Ty ) 2 By £(4+1) " o, (7.78)
where o
ha
By = , (7.79)
2m rg
r

and therefore, we compute the stretching of the molecule in a rotational level &£,

r

’

2Bg >
g " To T To (GpR) A(2+1) (7. 80)
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Fi16. 0-7. The effective-potential curves for the diatomic molecule HgH. [After
Villars and Condon, Phys. Rev., 38, 1028 (1030).]

(The figure above is taken from R. Leighton, Principles of Modern

Physics. )

where the assumption (almost always valid) has been made that

2B, ?
Gag) << 1. (7. 81)

We can now expand the effective potential Uz(r) about its minimum at

r =7, i. e,

l i3]
U,(r) = Uy(r,) + 5(r-7, U (r) (7.82)
or
- 1 a 2
U, (r) Vytgmuw, (r-r,), (7.83a)
where
V, = Vs + B [i 2By 4] e '
L= Vo + Boli - (5 , (7.83b)
and
3 2B,
w, > w [1 +'g(~,:u-f-) L(2+1)] , (7. 83¢)
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v =2

U=y

U0

Vibrational-rotational absorption transitions of a diatomic molecule.

The solutions of the resulting time-independent Schrddinger equation are

then of the form

1
Yy gl 80 = X, T )T, (6,9,

where (€ = r—rz) ,
2m

r 1
Xy, (& ¥ (E, - Vy-3zm

hz

Equation 7.85 is the Schrddinger equation for a one-dimensional harmonic

oscillator, whose solution yields (see Vsection 5.1)

Xy, g7y = ( 0

1/4
mw, l'
) A h |
vV L

)

1/2

(r-rz)] e

rwf%a]xv o(8) = 0.

2

1 (mr“’z
7

(7. 84)

(7.85)

(7.86)
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and
i : 1
Ev,z - Vo = ﬁwo(v+-2-) +
(7.87)
2B 1 2B, ?
oo § =) - =0 +
+ By L1 +3 (ﬂwo)(V+2) (hwc)f:(l 1)] 2(2+1) .

where v = 0,1,2,3, ... 1is called the vibrational quantum number,

Several important conclusions can be drawn from these results. In this
approximation:

(i) The molecule executes harmonic vibrations about an equilibrium inter-
atomic separation which increases with the orbital quantum number in
accordance with equation 7. 80.

(ii) For a given vibrational level v, the molecule rotates with a moment of
inertia that increases with the rotational quantum number (reciprocal of
quantity in the brackets of equation 7.87.

(iii) For a given rotational level £, the molecule occupies energy.levels that
are equally spaced by an amount ﬁwz, where w, is given by equation
7.83c. This last conclusion is an artifact of the quadratic expansion of
the effective potential Uz(r) about r “rz. A better treatment will be
described below.

Radiative transitions allow these levels to be observed directly through
absorption and/or emission of light. One then observes that the transitions
can only occur between states which differ from each other by one unit in the
rotational quantum number Z.# In particular, if

5 = Veinal * Vinitial = 0
we have
+1 (absorption)
AL = L1 - 4 (7. 88a)

initial.
-1 (emission)
and we obtain the rotational spectrum of the molecule (see for example problem

5.15). If the transition involves different vibrational levels, we have

¥

The reason for this, as we shall see later, is that a photon carries one unit

of angular momentum,



+ 1 (absorption)

AY = Veinal © Vinitial
- 1 (emission)

and

I+l (R-branch)
84 = Leinat ~ Ynital l

-1 (P-branch)

which yield the vibrational-rotational spectrum of the molecule. Note that for

the P-branch (44 = - 1) £ = 0 is not possible.

lower

Within the quadratic approximation of the effective potential, transitions
between states which differ by more than one vibrational quantum number are
not allowed. This conclusion, however, is also an artifact of this approxima-
tion and in practice, even though transitions between states with a IAv| > 1
are found to be weak (occur with a small transition probability), they are
observed nevertheless,

It is possible to give a better description of the diatomic molecule that
would remove these discrepancies by including more terms in the Taylor ex-
pansion of the effective potential Ul,(r) about its minimum. The convergence
of such an expansion, however, is slow and the analysis cumbersome. Alterna-
tively, a better analytical functional representation of the interatomic potential
V(r) could be used that possesses the proper features. Such an analytical
expression was proposed in 1929 by P.M. Morse (Phys. Rev. 34, 57), and is
given by

V(r) = Vo + % mrwozca {1 - e"(l'-ro)/o]B ,

where w,, o and r, are selected to fit the particular diatomic molecule.
The Morse potential gives very accurate results for nearly all molecules

and yields energy levels given by

E = hw (v+_1.)-B(£n.)a(v+_l_)3 +
v, 4 ° 2 °lg 2

Boll - a0 (v +3) - Bo 4(4+D)] £(4+1) ,

where ay and B, are (small) positive constants that can be computed from the
parameters of the potential (see, for example, L. Pauling and E.B. Wilson,

Introduction to Quantum Mechanics, §35d).

Equation 7.90 for the vibrational-rotational spectrum predicts correctly
the decrease of the spacing between successive vibrational levels, and the
increase in the moment of inertia of the molecule (reciprocal of B, and the
square brackets) with increasing vibrational and rotational quantum number.

This can be understood from the asymmetry of the potential about its minimum

(increase with v) and the stretching of the molecule with 4.

7.20

(7. 88b)

(7. 89)

(7. 90)
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F16. 80. Potential Curve of the Hy Ground State with Vibrational Levels and Continuous Term
Spectrum. The full curve is drawn according to Rydberg’'s data (610). The broken curve is a
Morse curve. The continuous term spectrum, ahove v = 14, is indicated by wvertical hatching.
The vibrational levels are drawn up to the potential curve, that is, their end points correspond to the
classical turning points of the vibration. It must he remembered that in quantum theory these
sharp turning points are replaced by brosd maxima of the probability amplitude .

(Figure taken from G. Herzberg, Spectra of Diatomic Mulecules.)

By fitting spectroscopic data of the rotational-vibrational spectrum all the
parameters of the Morse potential can be deduced (see problems 6.15, 7.4
7. lS). A short table of r,, the minimum of V(r), of muy, the vibrational
quantum [V"(r,)/mr] and B, the rotational quantum is given below.

A more extensive listing can be found in G. Herzberg, Spectra of

Diatomic_Molecules, table 39. To use that table note that the present dis-

cussion concerns jtself with the electronic pround state of the molecule, i.e,

when the two atoms comprising the molecule are in their respective (electronic)
ground state (this will be recognized in the table by the state prefix X ).

Note also that the units in table 39 (and traditionally in spectroscopy) are given



7.22

in terms of reciprocal wavelengths (in units of reciprocal centimeters) and that

Ephoton = (Wls_r‘:x)' eV (7.91)
or
Ephoton = 1.24 x 107* (C)\—m) ev . (7.92)
Molecule ro /A° hwe /eV By /eV
Hy 0.74 5.45 x 107% 7.56 Xx io‘a
HD 0.74 4,73 x 107? 5.69 x 1072
Da 0.74 3.87 x 107t 3.79 x 107
Li, 2.67 4.35 x 1073 8.39 x 10°°
Np 1.09 1.03 x 1072 2.48 x 107%
03 1.21 1.96 x 107* 1.78 x 107*
LiH 1. 60 1.74 x 107 9.27 x 107*
HCL® 1.27 3.71 x 107t 1.32 x 1073
NaC* 2.51 4.71 x 1073 2.36 x 1078
KCi® 2.79 3.47 x 1073 1.43 x 107°
KBr™ 2.94 2.86 x 1072 9.1 x l07®
HBr™ 1.41 3.29 x 107 1.06 x 1073
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7.4.1. Diatomic molecules in thermal equilibrium.

Any state of a diatomic molecule (not electronically excited) can be de-

scribed as a superposition of the eigenstates of the Hamiltonian, i.e.

N) = Z CPcM:v,Z,m 1-13CM’V’ L,m) , (7.93)
P v,4,m ’
ZeMeYs H
where -E—)CM is the (linear) momentum of the center of mass, v is the vibra-

tional quantum number, £ is the orbital angular momentum quantum number and
m is the eigenvalue of Lz/h. If the diatomic molecule is in thermal equilibrium
with an environment at a temperature T, we have that the modulus squared of the

probability amplitude is given by the Boltzmann factor, i.e.

1 e- (ECM+E)/kBT

v,z,m(a = Z , (7.94)

|c
Eem

where E is the energy of the relative motion about the center of mass, and

where, ZT is called the (total) partition function and given by

-(E +E)/k,T
= CM B
Zp = Y e , (7.95)
ECM,V,A,m
since, of necessity,

‘ 2 2., (7.96)

C
Eomr V. bom Eome v 4m

Using these results we could compute the total energy of the diatomic

molecule in thermal equilibrium at a temperature T, i.e.,

(B, +EVk, T
(Ep) s 9= Y (Eqp + e M B (7.97)
T Boyp v tm

or

(Ep> = (Egy + (E) (7. 98a)
where
-E. /& T
(Egpy = -Z—l— z Egye OB (7. 98b)
cM
=cM
and
~E/k,T
®=2 > Ee B, (7. 98c)
v,i,m
where

Zo = Zoy 2 (7.99a)

and

-E_ . J/k,T
cM’'TB
Zem = Z e (7.99b)
P



- E/kBT

Z = z e
v,i,m

From the results of a single particle in a box in thermal equilibrium at a

temperature T, we have (see problem 4, 13)

w

(ECM) =5 kBT .

To compute (E)} we note that the energy of the relative motion about the center

of mass is not a function of m and therefore we can perform the summation

over m to obtain

-E_,/k,T
1 v,4 "B
(E) = = z @UHDE, , e ,
v, %
where
-E_ ,/k,T
Z = z (2¢+41)e Vo4 B
v, 1

Neglecting, higher order corrections, we have from equation 7.90,

1
- [hwg (v+) + Bg £(4+1)]/k T
zZ = z (28+1) e e ° B

v, 2

1
-(v+5)8 /T - 4(4+1)8_/T
2 e 2V E (24+1) e r

v 2

and 1 /
-(v+3)8 /T
(B = 2 Y wrre 20
\A

vib

- A(2+1)8_/T
+-Z—BJ=— z (28+1) £(4+1) e r
rot
)
= <Evib> t <E):oi) ’

where ev is the characteristic vibrational temperature,
=
ev hiwg /kB

and Gr is the characteristic rotational temperature,

8, = Bo/ky

From the data on page 7,22 we see that BV/T is usually small at room tem-

L

45 ¢V) or lower. Therefore, for T <300°K

perature (ky° 300°K =~

7.24
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(7. 104)

(7. 105a)

(7. 105h)



- 2(2+1)8 /T
ES = B r
(EY <E>rot = ?:;—t- E (2L+1)L(2+1) e
£

At low temperatures, i. e., if (Sr/T) >> 1, we need only consider the %=1

term, i.e., for heteronuclear molecules

-2 By /kgT

(E) ~ 6By e

rot

At high temperatures, we can approximate the sums by integrals to obtain

-4(2+1)8_/T
(24+1) 4(2+]) e T o4

(E__.) ~ By

rot og

- L{(4+1)8 /T
f(21,+l)e Fooag
o)

-x8 /T
X e dx

= By

o«
/
f -x8 /T .
0

or

(Erot) ~kgT .

Most molecules are in this regime at room temperature and consequently

=~ 0_ 2
€, = 37 EBom’ * 37 (Erot)

3

= - +
3 kg " kg

or,
5

cv =7 kB» 3

as is well known, derived here from first principles. For intermediate tem-

peratures, (Erot) can be computed numerically as a function of Br/T.

Sv. L
k, ,
AN - '
i i
! i
1 [}
% o T

General form for the heat capacity of diatomic molecules as a function of temperature.
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(7. 106)

(7.107)

(7.108)

(7.109)
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At higher temperatures, of course, the vibrational modes can also be excited and will
contribute to the heat capacity, This can be computed from (Evib), which is the energy at
thermal equilibrium of a one-dimensional harmonic oscillator at a frequency w = w, (see

equation 5.35), by differentiation with respect to temperature.



7.4.2 Radiative transitions of diatomic molecules in thermal equilibrium,

Using the intensity distribution of the absorption or emission spectrum of
a diatomic molecule in thermal equilibrium at a temperature T, it is possible
to measure the temperature of the molecule directly. In particular, the in-
tensity of an absorption or emission line will be proportional to the sum of the
transition rates for all possible initial and final states at the same frequency,

times the probability that the initial state is occupied. For absorption

t a2t !
b v,L m
(P W

] " n

ﬁw: Eu:g ‘Eu-)‘n U',,‘. :M‘

we then have (at line center)
- -E [k, T
Uabs =< z [(v',Z',m'lVTlv”, f‘n‘mn>‘3 e v, A TB ,

m'', m'

while for emission
’
vt m ————
ey tm): EU',L’ - EU”,!.‘

L4 n
v’ L55m

. . “Egu g /kgT
g I n I 1 H 1 ,
em = 2 I(v,l,leT]v,L,m)l e .
m'', m!

7.27

(7.110)

(7.111)

The quantities %.be and Oem 2F¢ the absorption and emission cross-sections,

respectively. These are proportional to the sum over all possible initial and values of Lz

of the molecule, of the matrix element for the transition (we will derive this later) times

the probability of finding the molecule in the initial state, given by the corresponding

Boltzmann factor.

Strictly speaking these results are for induced emission and absorption.

~
The square of the matrix elements of the operator VT that induces the transi-

tion, is in fact the Einstein coefficient Bn“ at (see for example R.P. Feynman,
2=

R.B. Leighton and M. Sands, The Feynman Lectures on Physics, v. I, ch.

42-5). Spontaneous emission has been ignored in equation 7.111. We will
show later on that '

z [(v',z',m'l‘?T!v",z”,m“)P = (£'+L11+1)

m'', m'

(7. 112)
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and therefore

- AN y
( 1) B, /kBT

Oabsl V", ") = (v!'+1,4")] = (L'441+1)e (7. 113a)
and
~4'(4'+1) By /kBT
cem[(v', L) = (v'-1,£")] = (L'+L%+]) e {7.113b)
Note that for an R-transition (Af4=4'-L"=1)
- 47(gv+1)8_/T
©,,4) = (2442) e T, (7. 114a)
R
whereas for a P-transition (Af=4'-4""'=-1)
- (e +1)8 /T
ro, (7. 114b)

(aabs)P « 24" e

For absorption, the R-transitions are always more intense than the P-transitions.

e~

- 2l

3.6 35 34 33 :

Au)
¥16. 9-13. The absorption spectrum of HCI vapor in the near infrured. [After Imes,
Astrophys. J., §0, 251 (1919).] :

[Figure taken from R. Leighton, Principles of Modern Physics, (v=0) - {v=1) absorption

spectrum. ]

For emission, however,

- L'(l.'+l)9r/T

24" e {R-~transition) (7. 115)

em
-L'(£'+1)8_/T
(2042) e r

(P-transition) .
This is why a diatomic molecule gas laser op;erating on a vibrational~rotational line will first
lase on a P-transition near or at threshold, and, at pumping rates above threshold, the

P-lines are stronger.
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FIGURE 5-4 The first overtone band of HCl taken on a Cary model 14 spectrometer. The strong set of lines
is from HCI®S; the weak set is from HCI>'. The unequal spacings between lines show the effects of vibration-
rotation coupling. Each division on the wavelength scale equals 100 A :
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Problems

Derive equation 7.21 for the function w(p) of equation 7.19.

Explain why only the odd solutions of the rectangular potential well are acceptable

£ = 0 solutions of the spherical potential well of equations 7.32.

(i) Sketch the effective potential, as given by equation 7.11, for £ =0, 1, 2,
corresponding to the spherical well potential of equation 7.36.
(ii) Estimate the minimum depth of a spherical well possessing one bound state. See

footnote # on page 4,20. Express your answer in dimensionless form.

Derive equation 7.21.

Compute the bound state energies of an electron in an infinitely deep spherical potential
well in the presence of a weak, uniform magnetic field. Ignore the effects of electron

spin.

Derive the recursion relation, given by equation 7.53, for the coefficients of the power

series expansion of equation 7.52 for the function wp).

Compute the energies of the bound states of a hydrogen atom in a weak uniform magnetic

field, ignoring the spin of the electron.

The radius of the proton is of the order of

r ~ 1.2 x 107 ¢m
p
Compute the fraction of the time that the hydrogen atom electron in the ground state

will be found inside the proton.

The solutions for a Coulomb potential were obtained assuming a point particle of charge
Ze. A nucleus, however, is found to have a finite radius (approximately given by

r = r°A1/3. 1071® cm, where 1.2 S 1, S 1.5 and A is the atomic mass number).

n
Compute the potential that an electron would move in, assuming that the nucleus is
spherical and

(i) all the charge resides on the surface,

(ii) the charge is uniformly distributed throughout the nuclear volume.

Estimate the correction to the ground state binding energy of the hydrogen atom for the

two cases examined in problem 7.9.



Problems (continued)

7.14

Prove equations 7,83,

Show that the absorption spectrum corresponding to the vibrational tran-
sition v = v+1, can be represented by a parabola

+ D k + e K

4 vy, v+l v,vtl

Ev,k = Cv,v+1
where k = 1,2,3, ... for an R-branch transition and k = -1,-2,-3, ...
for P-branch transition. Compute Sy, v+l dv,v+1 and ev,v+l in terms of the

Morse energy level formula (equation 7.90).

Show that the coefficient ¢ in the spectrum parabola (see previous problem)

v, v+l

can be represented by another parabola

CV,V+1 =z av - bv°

where v = 1,2,3, ... . Compute a and b in terms of the Morse energy

level formula.

The following absorption lines for HC%® at 3,46 4 are found to corres-

pond to the (v=0) - (v=1) transitions.

X (em™)

3085. 62
72. 76
59.07
44, 88
29.96
14.29

2997.78
80.90
63.24
44. 89
25,78
06.25

2865.09
43,56
21.49

2798, 78
75. 79
52.03
27.75
03,06

2677.73
51.97
25. 74

2599.00

Compute the gpectrum parabola coefficients (see problem 7.12).
Hint: Generate a finite difference table, or, if you have access to a calculator or
computer do a least squares parabolic fit. Note that k=0 is

missing.
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Problems (continued)

7.15 The coefficients co ., are found experimentally for HCL® to be equal to

v S Jlem™)
1 2885.9
2 5668. 1
3 8347.0
4 10923, 1
5 13396. 6

Using the results of the last problem and the data above, compute the

relevant parameters of the corresponding Morse potential.

7. 16 In table 39 of G. Hertzberg, Spectra of Diatomic Molecules, the

following spectroscopic data are given for I3*%7.

Ay = 214,57 cm™V

n

B, 0.03735 ecm™*

Compute the heat capacity of [; at room temperature,

Hint: ... Careful!

7.17 Using the data in the figure on page 7.28, estimate the temperature

in Dr. Ime's laboratory.

7.18 ~Using the plane wave expansion of equation 7.29, show that
ik.x © 4
== L * .
e =4n Qi NI ¥, me P Yy (9
1=0 m=-4

in general, where

EE = (SE:CP}S) ’ eX = (G,CD)



8. METHODS OF APPROXIMATION

As with every field of physics, so in Quantum Mechanics, the number of
problems which can be solved exactly is very small indeed. In fact, it is
probably fair to say that there is no problem in nature which can be solved
exactly, The art and the science of the physicist concerns itself in selecting,
on the one hand, a model which in some way offers a fair description of the
phenomenon he wishes to investigate and on the other hand finding a way of
solving this model. In this sense, the whole of Quantum Mechanics, as is
discussed in these lectures, is also in turn a model in which we make certain
approximations so as to be able to solve the particular problems of interest.

By way of example, in the preceding section we discussed the Schrdodinger
equation solution corresponding to the problem of two point charges moving about
each other subject to a mutual electrostatic attraction. That is in many ways

a far cry from the solution of, say, thé hydrogen atom, a problem considerably
more complicated than the one discussed. In particular, the following effects,
of varying importance, were ignored in that discussion (this is by no means an

exhaustive list!):

(i} The electron, as we shall see, possesses intrinsic angular momentum
(spin), so that in addition to the Coulomb attractive force with the proton,
we also have an interaction between the electron magnetic moment and
the magnetic field the electron generates as it is orbiting around the
nucleus, This is actually a rela.tivistic‘effect that is called spin-orbit

coupling.

(ii) - The proton also possesses intrinsic angular momentum and has an
associated magnetic moment which interacts with the magnetic field
generated by the electron's orbital motion, on the one hand, as well

as the electron's magnetic moment on the other.

(iii) The proton is not a point charge, but possesses a finite radius, so that
the resulting Coulomb field is not proportional to 1/r all the way to

r = 0. See problems 7.8, 7.9 and 7.10,

(iv}] The electron in an excited state can interact with the electromagnetic

field to emit a photon. That means that the excited states are not in

fact stationary states, which we have assumed to be when we identified

them with the eigenstates of the Coulomb potential hamiltonian.



8.2

(v) We have ignored relativistic effects.

Nevertheless, it is still true that the effect of the electrostatic Coulomb
forces between the proton and the electron is the most important one and it is
possible to use the preceding discussion as a starting point and compute these

#

other effects as corrections to that solution. There exists a formalism for
computing these corrections, which we will now discuss, called perturbation
theory. To be precise, we will assume that the Hamiltonian of interest can

be expressed as a sum

H=H +H, 8. 1)
where H, leads to a Schrddinger equation
Holn,md = E Vln,m) , 8. 2)

where the energy eigenvalues En(O) and the associated eigenstates In,m)o are
known. The second index (m) in the eigenstates is included here to allow for
labeling of orthogonal eigenstates of energy eigenvalues which may be degenerate.

The perturbation Hamiltonian H' is assumed small in some sense, which we

will quantify later.

We can imagine that the perturbation H' is proportional to a dimensionless

perturbation parameter %; << 1, such that

H' = A,V . (8.3)

The total Hamiltonian can then be thought as a function of this perturbation
.parameter, i.e.,

Hy (M) = H +2AV, (8. 4)
which we can imagine as an independent variable which gauges the strength of
the perturbation. For each value of A we have a new Hamiltonian with its

eigenvalues and associated eigenfunctions, while at A = \; we obtain the

original Hamiltonian of interest, i.e.

H=H((}).

#Better yet, we can start with an equation which is relativistically correct,

i.e., the Dirac equation, so that we have to make fewer corrections.



-
| ’3:Q>
’/'g’t7
E, !
I
|
4__,_1.——,2)2)
E‘ — 12,12
|
£ i
+ T 14,17
L
3 3

Eigenvalue variation with \.

‘Pn,m (= ',2) a

Eigenfunction variation with .

Example 8.1 Charged particle in a harmonic potential exposed to a uniform

electric field.
The total Hamiltonian is given by

H =__1_Pa I e qcci,_x s

2m 2
or
3 3
H=-—h—-—d—-— + 1ot -qctﬂlx,

2m ax? 2

where q, is the particle charge and &, is the electric field.

8.3



Assuming that the electric field is not too strong, we can consider the

kinetic energy plus the harmonic potential as comprising Hy, i.e.

- » g 1 2.3
Ho=-gm 5 rzmx,

and the electrostatic energy as the perturbation, i.e.
H = - qczﬁx .
In the discussion of the Harmonic oscillator (see section 5.1), the
. A 1/2
O Amw '

emerged as a characteristic length scale (see equation 5.8). This we can use

quantity

to construct the perturbation parameter 1;, i.e.

q 313.
H' = - g 8x = - £ - muw® (ax)
mu® a®
or
H' = MV
where
N = qc51 - ch"
mu’a (hmu):-;)l/2
and
Vv = - mw(ax) = - (hmwa)l/zx

This problem can, of course, be solved exactly by completing the square. -

In the subsequent discussions we shall consider the solution to the

perturbation problem for various types of H, and H',



8.1 Time-independent perturbation of non-degenerate states.

In this case the perturbation Hamiltonian is not a function of time,

H' 4 H'(t)

while the eigenfunctions of the unperturbed Hamiltonian are non-degenerate, i.e.

Holn)o = E_“[n) . (8.5)
Consider now the eigenvalues and eigenstates of the parametrized
Hamiltonian Hy (}), i.e.
H )k = Ek(x)lkm , {8.6)
and note that since H,(0) = H,,
[x:0) = lk)q . (8.7)
Note also that if Ek and Ik) are the eigenstates of H, i.e.

Hlk) = Ek]k) {(8.8)

we must have, since H = H,; (},)

E, = E (M) and k) = Jxsn ) . (8.9)

We can now expand the eigenfunctions !k;)\) of the parametrized

Hamiltonian H; (A} in the complete set {1n)°} of basis states of Hy, i.e.
lk)) = z [8% C (M) (8. 10a)
n

where

CocM) = o{nlkA) . (8. 10b)

Substituting this expansion in the eigenvalue equation 8.6 we have

(Ho + ALY |nk Gy = BT Iad ol
n n
or

3 % B ) - EXT o = & T Vinda Sy
n n

If we now multiply both sides of this equation with c(ml, we obtain a set of

equations

[E, () - Efg)] C_ M = A zvmcnk(x) (8. 11a)
n

where V is the matrix element.
mn

Vem = o{m|Vindy . (8. 11b)

Equations 8.11 are the eigenvalue equations that would arise in the

problem of the diagonalization of the original Hamiltonian

8.5



[H1(M]mn s Ex(;)émn AV

expressed in the basis vectors of H,, a problem, of course, no easier to solve.
Here, however, we can make use of the fact that \ is a small quantity and

expand the eigenvalues Ek(x) and the coefficients C'nk()‘) in a power series of

X, i.e.
g, = B + gD 4356 4 (8. 12a)
and
()] (1) ()
C M = cn; + xcnlk + )ﬁcnzk + ... (8. 12b)

Note that we have, in fact, also expanded the state |k;\), which depends

parametrically on ), in a power series in \ through the expansion of an()\), i.e.

[2) = Y I )
n

z Inde z 2 Cﬁg{)
n q

z xq[z [nYs cii) ]
q n

or
k) = qumq s (8.13)
q
where
[y, = Z [n)e cfi) ; (8. 14)
n

From equation 8,13 and 8. 14 we see that
k05 = g = Y Indo €l ,
n

and therefore

C(o)

k= 6 - (8.15)

We now substitute the power series expansion of the eigenvalues Ek(k)
and the coefficients C“k()\) in equation 8,11, This yields a matrix equation

in k and m,

(o) (o) (v (2) @) 3 ~(3) .
[Ek" -Ex; + B +x2Ek + 10 HAC ) X cn‘:k+ PR
=1 zv s +XC(1) + )\SC(S) + ]
= mn" nk nk nk
n

This equality must hold as the value of the perturbation parameter \ changes

from X = 0 to L = Ay to give us the Hamiltonian of interest. Consequently,



we must have, collecting terms of equal powers of A, for the diagonal elements

k= m

At Eg) = Vi 8. 16a)

A% g+ g cl) = Sy ) @®. 16b)
o ®

and for the off-diagonal elements k # m,

A: (El(? - Ei;))cr(;)k =V, @.17a)

¥:oE® - Eghel s etel) - Sy e @8.17b)

n

Equations 8.16 and 8. 17 contain the desired results. In particular,

to first order in A, a particular eigenvalue Ek(M is given by

R Y I {1) 2
E () = Ek" FAED +007)

or, substituting from equation 8. i6a,

(o)
Ek(x) ~ Ek + AWV

and, at A= A\, E, = Ek(xl) and therefore

k
E, ~ E9 + m (8. 1%a)
k k kk * .
where Hllck = Xka, or
Hy, = SkIH' K . (8. 13b)

Similarly, to first order in ), the expansion coefficients C“k(k) are given

by
_ Q) 3
Col™ = 8, +ACh +000°)

where, substituting from equation 8. 17a,
8 el g - TEE (1-8a) 8.17)
nk = “kk “nk ) () ’ 8-
E,) - Elt

where Cl(:lz is yet to be determined.

From equation 8.11, we have, to first order in },

Bsa) = |kY + AKYy + 0003) (8. 18)

or, using equation 8. 14,



lsa) ~ [K)g + 2 z la} c&)
' n

or, substituting for CS‘IZ from 8.19,

‘k;)\> ~ ‘k>o[1 +7\C1(<IIZ] - Xz ‘n)o gy ey S (8.20)
n¥k n ~ Ek

To compute C‘L(:IZ‘ we now use the fact that the states lk;)\) must be normalized.

Vnk
E(

Consequently, the scalar products (k;A|k;\), using the states |k;\) correct to
first order, must be equal to unity plus an error which may be second order

or higher. This leads to the condition that

G) * (1)
Cx Tl =0

1)

or, in other words, that Ckk must be purely imaginary, say

(8.21)

Q) _ .
Crk = 7

where Yk is real. Note now that

iNy
Leacl) 21y = e v on?),

'

so that a non-zero C1(<11>< results only in a phase-shift of the perturbed wave-
functions |k;>\), correct to first order. Since, however, we may arbitrarily

select the phase of each eigenstate, we may set
@ .
Ckk = 0. (8.22)

Consequently

v
. nk
fesnd ~ fide - )‘2 InY m , (8.23)
n#k n k

or, since |k) = |k;k1 ), we have to first order in the perturbation H',

H'nk
1KY ~ |k)y - Z Ind m . (8.24a)
n#k n Ek
where
H o= o (afH k) . (8. 24b)

Equation 8.24 allows us to quantify the size of the perturbation Hamiltonian,
for the perturbation procedure in terms of a power series in A to be valid.
In particular, we require that the perturbation expansion is an asymptotic

expansion,i. e. the magnitude of the (m—l)St term in the expansion should be



of the same order as the error after n terms.# This will be the case if the

correction to the wavefunctions is small, or if

lH | << Q) - gl (8.25)

i.e. the matrix elements of the perturbation must be small compared to the
energy difference of the corresponding unperturbed energy levels. Equation

8.25 also illustrates where the assumption of non-degenerate states comes in.

Let us pause to see what the results of the first order corrections tell us.
For the energy (equation 8.18), we see that to first order the eigenvalues are
computed as the expectation values (diagonal matrix elements) of the perturbed

Hamiltonian, using the unperturbed wavefunctions, i.e.

B~ EX ¢ nvy = gkl + 4K, . 8.26)

o~
The reason for this is that the expectation values that could be computed using
the corrected wavefunctions to first order would contain second order terms
(cross terms between the perturbation AV and the first order corrections
X]k}l to the unperturbed wavefunctions).

The effect of the perturbation on the wavefunctions, however, is more
complicated. We see from equations 8.23 or 8.24 that unless the perturbation
is diagonal, i.e. if Vnk # kaénk (in which case we are done, since the eigen-
states |k), of Hy would also be eigenstates of H = Hy + N V), a perturbed

eigenstate is a mixture of the original eigenstates,

]
-~ ™
{R+3), T Cuus, T lResd
tRe2), + Craz, e T lee2>
lhely, - "cu..,u——-\\ +  lket>
lh). + i I~ (h)
=13y + Cimrie / T k-
1 1
-
an
ﬁs‘;’—e’:’

#

Note that such an expansion does not necessarily converge and that the best
approximation may be realized after a finite number of terms (see for example

E.T. Copson, Asymptotic Expansions, Section 7).

8.9



= S Ias oy (8.27)
n

where, to first order, the matrix of coefficients is given by (see equations
8.15, 8,19 and 8.22),

H
nk
an ~ énk - (1~ énk) m . (8.28)
k

n

In other words, a state that originally was an eigenstate of the unperturbed
Hamiltonian H,, is no longer an eigenstate of the system under the action of

the perturbation H', unless H' is diagonal in the original basis.

Quite frequently, the first order corrections to the eigenvalues
are not adequate. This wusually occurs if the matrix elements Hy
happen to be zero identically. In that case we must go to the second order
corrections. From equation 8. 14b we have for the second order correction

(recall that C(l) = 0),

kk
@ _ )
Ek - zvkncnk
n#k
or, substituting for Cg'lz , we have
v al?
el o z —nk (8.29)
k 20 _ gl
n#¥k “n k

*
where we have used that an = vn.k' Consequently, to second order in the

perturbation (equation 8. 12a),

E =£2° 4+ m - !an' 3 (8.30)
k © Tk kk £©) _ g ’ ’
n#k n k ’

The second order corrections to the wavefunctions are very seldom used.
The algebra to obtain them is straightforward but tedious, The second order
corrections to the coefficients are derived from equation 8.17b and, with the

normalization condition, yield the eigenstates correct to second order,
1< |Hy
Y= fxdo [1 -3 9 —B

(8.31)



In practice, one usually computes the eigenstates to first order (equation 8.24)
and the eigenvalues to second order (equation 8.30), If the diagonal elements
of H' are zero, these are the lowest order perturbation corrections to the
eigenstates respectively.

These results, which were derived for discrete eigenvalues, can be
generalized to continuous eigenvalues. By way of example, if part of the
eigenvalue spectrum is discrete and the rest is continuous, the first order

correction to an eigenstate in the discrete part of the spectrum would be given

by,
Ky = = D Ind ——-—yvnk - [MO —gr———-v"k dv (8.32)
néa ES) - El(: v EPv) - E{:)

Example 8,2 Polarizability of a harmonically bound charge.

Consider a particle of mass m and charge q. bound by an isotropic

harmonic potential, i.e.

1 1
Hy = 5= 2 +2-xnw§r2 , {8.33)

where r° = & + v o+ z2. In the presence of a weak electric field

Q:@% ,

z z
the Hamiltonian becomes

2

_ 1 1 3. 3
H=5—=p +5 mugr -qc5ZZ, (8.34)

with a perturbation Hamiltonian
H' = -qcszz
(see example 8. 1).

The unperturbed eigenstates are then given by, in the occupation number

representation,

[nd = |n,, o, n 0 (8.35)

with energy levels

3
E = (nx+ny+nz+f)hw° . (8.36)

The Hamiltonian is separable to the sum of three Hamiltonians corresponding

to motion along each of the three coordinates, i.e.
= +
H Hx + Hy Hz (8.37a)
where

1 a2 1 2 .2
Hx = 5P +zmw°x (8.37b)



H = mu)gya (8.37c¢)

y

~
NIH

H =

Z

5~ 51~

D%+ = mud® - a.8,2 . (8.37d)

N
[T

so that the unperturbed eigenstates are separable into the product
ok = lnd In k% In)% (8.38)

(see section 5.4). It can be seen that the perturbation does not affect the

eigenstates for the motion along the x and y axes so that the perturbed eigen-

states will be expressible as products of the form
n) = lnx)o Iny>° Inz) . (8.39)

Thig, of course, can be immediately deduced from the form of the Hamiltonian
as given by equation 8.37. It is therefore sufficient to study the solutions to
the Hamiltonian corresponding to the rmotion along the z-axis.

We then have, to first order in the perturbation, the correction to the

energies,
E, = EY +4a [H]n )
) z z
where
o(nz[H"nz>c = -q8, o(nz!z|nz), . (8. 40)

Using the annihilation and creation operators (equation 5.27a and related

discussion), we have

N 1/2 +
z = (mec) (az + az) (8.41)
and therefore
4 1/2 +
s lzln s = G o e, +a))ln)
But
(a: +a)ln k= [n, + 1% (nz’”l)l/2 + [n,-1% nzllz (8.42)

and therefore
ofn, |H In % = -q.8, £n,lz|n % = 0,

so that the correction to the energy levels to first order is zero.

For the eigenstates we then have

(m_|H'|n_%

inz} ~ ‘nz>° B z |mz>° °—_(?JSZL_—('o)i-
m_#n Em -En
z oz z z

where

H' lnz)o

N lnz)° e dzz

1/2
)

t ®
- et az)!nz>° .94, (mee

it

1/2
"9 z(Z—n’TTo—) ['nz+1>° (nz+1)1/2 * 'nz'1)° nzl/z:l

.12



and therefore

1/2
1/2 1/2
) [(nzﬂ') ®m ,n_+1 * %z ®m ,n —1] (8.43)
2’z z’ "z

h
ofm,, lH'lnz>" = 'q'cdz(Zrnwo

so that, to first order in the eigenstates we have for the corrected ground state

q é 1/2
c Z i
oy ~ 10 + 11,0 322 o),
or
0.y ~fo %+ 11 2%, (8. 44a)
-~ o} = z .
ez z v, 2% (mhwg)mz

. while for n, = 1

qé
1
>~ In) + = —ﬁ—(m:w;)l > [lnz+l)°(nz+l)l/2 - ln_-1% nzl/z] (8. 44b)

Note that the coefficient in front of the brackets is in fact the perturbation

parameter for the problem as derived in example 8. 1.

The dipole moment of a charge distribution (x) is given by (see
g pox y

appendix F, section 4) the expectation value of the vector x, i.e.

d E[E P lx)d%x (8. 45)

where, evidently, d=0 if pc(ﬁ) is spherically symmetric. Quantum mechanically,
we identify the charge density with the square of the modulus of the wave-

function (times the charge gq_ ), i.e.
c

pl® = a_ ¥ = a v @y 8. 46)
so that

4= qcfw*(g:_: iz d°x 8. 47)
or, equivalently

d =q_ Gzl . 8. 48)

For a harmonic oscillator in the ground state, we have
> = lo,00,0.5 = Joo) lo) fod

and therefore in the absence of a perturbing electric field,
d =q <0x, oy, oz[gox, oy, oz) =0 .

If we turn on the electric field, however, we find that - ag arresult of the

perturbation, a dipole moment is induced along the z-axis, i.e,

d

qc[o(ox]xlox>° ‘éx + o<oy|Y!0y.>o 'éy + (Ozlzloz) ‘éz]

a, (0z|z‘oz)ez .

.13



8. 14

Using the eigenstates, corrected to first order (equation 8.44a), we then have

4, = q.(0_[z]0,)
= a (g0 | + 24 11500 ) + 2 (1))
ez \/zo z z° vz 2 '
where Ay, = qccfz(hmwg)-l/z. Substituting for % in terms of the annihilation

and creation operators, we have

s0l0 % + 201 )1 = ——”-)1/2 Pra]o % v %]
2Ly V3 z>° . (meo (az 32 z \/? z

N 1/2 N
= (meo) [Ilz): T M |Zz>o +\/7|oz>°]

and therefore

1/2
4 = qc(fnzj,:) {«0, 1 +V%'°<IZH[|IZ>° + m 2,k +$-;-‘°z>o]

N 1/2
qc(m V2 n o,

or, substituting for 1}, ,

d = —5— & . (8. 49)

Classically, we define the polarizability a as the constant of proportionality
between the induced dipole moment d and the applied electric field $, (see
appendix F, section 4), i.e.

d=cad , (8. 50)
where, in general, a is a temsor {3x3 matrix)#. For an isotropically bound
charge in the ground state of a harmonic potential we therefore have that the
polarizability is a scalar and given by

3

q
q,:——-—c-— . (851)

[5F) mUJg

Strictly speaking, we have computed the static polarizability. We would

expect, however, this result to hold for a sinusoidally varying electric field.

£z(t) = é‘z(O) cos wt ,

provided the frequency w is much less thap the harmonic oscillator frequency

We, i.e. if w << wg.

#

See Feynman, Leighton and Sands, The Feynman Lectures on Physics,

volume II, chapter 31.



The evaluation of the sums that occur in the higher order corrections,
e.g. equation 8.30; is very often a very difficult proposition. It is sometimes
possible, however, to perform the calculation by the use of special techniques.

By way of example, consider a sum of the type

la_, 1? G, G
nk B z kn “nk
Eioj . gl 7 gl) _ glo)
n¥k “'n k n#k " n k

that occurs in the computation of the second order correction to the perturbed
energy of a non-degenerate state \k}. Let us assume that it is possible to

find an operator Q such that
Glkk = (QH, - HoQ)|k} . (8. 52)
We then have

«n]QHy [k) - ofn|HoQlKk),

G = o«nlGlkd

= (E{f) - Ef_:’))o(n(Q|k), ,

and therefore

) z Coen Gnx z LklGInYy £nlQlk) . (8.53)
n#k B - B n#k ’

We now note that since the states {|n)°] form a complete set, any state l\y)

can be resolved in a superposition
> => Iak alv)
n

Consequently, the state Qlk), can be written as

Qlkk = z Ink onlQfxy | (8. 54)

n
and therefore, substituting into equation 8,53 , the infinite sum collapses to
[ = ofk|GQIK) (klGlxd Lk|Qlkd 8. 55)

It goes without saying that the utility of this technique rests on finding the

operator Q.

Example 8,3 Polarizability of a hydrogen atom in the ground state.

The system is isotropic in this case so that the polarizability is a sgcalar.

For an electric field along the z-axis we then have (see problem 8.7)

anc s‘ I 210 IS

a < S (8.56)
° €0 1::0 E;O) N Ego)

where the subscript zero denotes the ground state.



It can be shown (see Appendix I), that the auxiliary operator Q for
this problem (see equation 8,52 and related discussion)

m_a,

r
Q= - 5 (a3 + 3) 2, (8.572)

where a, is the Bohr radius (equation 7.60), satisfies the equation.
z[0% = (QH, - HoQ)|{0) , (8.57b)

where 10)0 is the unperturbed hydrogen atom ground state and H, is the un-
perturbed hydrogen atom Hamiltonian. Consequently, by virtue of the preceding
discussion, we have from equation 8,55
3
<~ e m_ag
D g = = 0l + 51?0y (8.58)
glo) _ glo »?

n#0 “n 0]

since &0]z]{0)% = 0 by symmetry. Note also

L0122 f(r)[0% = (Ol f(r)|0% = O0]y?f(r)]O)
and therefore

02 fx)|0Y = 5 0[5 (x)]0), .

Consequently, we have

Zqurao r. o2
g = ———— e(ol(ao + E‘)r ‘0>o
3go #®
2 qzmra°4 r.? 1,r2
=3 = o(ol[(;;) + 5 (;;') 1jo% ,
€o
or since
n n .2r/aq
o(o\(-_f-) 0% = 4 7(;1:-) e r?dr .
0 a2 ]
¢ -0
o0 (8.59)
1 n+2 -p _ {(n+2)t
= el fP e dp =TT
2 5 2
we have

9 qacmrag'
a = F ———
o h®

and substituting for the Bohr radius (qc= -e = electron charge), we finally obtain

the result,

o = 2 (4nad) . (8. 60)

Reference: E. Merzbacher, Quantum Mechanics, chapter 17, section 4.




update

An improved perturbation expansion, that may be useful when a degeneracy
is lifted to first order by the perturbation, can be obtained as follows. Let the
eigenstates, for a finite value of the perturbation parameter )\, be expressed

as a superposition of the unperturbed eigenstates as follows

iand = DT 20, + A S ke (8. 61a)
n#£k

where Nk()\) is the normalization constant, derived from the condition that
. . - - -1 E] 3
Grlkind = 1= INOOT 1+ 00 ) [e 17T,
n

or

N ) = 1+ 22 z le, 12 (8. 61b)
n#k

Substituting the states Ik;x), as given by equation 8.61, into the eigenvalue

equation we have

(Ho + AV [d) = E o)

or
(Ho +A7)[ kY + xz In% 1 = B [lxYy + xz la) €]
n#k n#k
or
(£, (B + a1k} + xZ[Ek ~ERL AN |a) = 0 8. 62)
n#k
Taking the scalar product of equation 8. 62 with the state o(k‘, we have
(d 3 .
E - (B +Avy,) - X Z VinCox = ©
n#¥k
or
= glo 2
E = EQ +av, + A z Via Cak » 8. 63a)
n#k
where
Vin = olk|Vny . (8. 63b)

We can also take the scalar product of 8.62 with a state o(m|, where
m#k, to obtain

(o)
-Vt (B <(ER +av_ y1C_ - A Zk vV C,=0, 8. 64)
In:

or, provided E # Ei;) AV

mG A ; V.mn an
ngk
C = - . 8.65)
mk EQ+av_ - E
m mm k




Note that equations 8.63 and §.65 are exact. We can solve them approxi-

mately by an iterative procedure as follows. To lowest order, let an =0

for n#k, in equation 8.65, which yields

~ rlo) _ wlo) .
E Ek° +Xka_Ek° +H, L (8. 66)

k

as was obtained previously. To the next higher order, we can use 8.66 to
evaluate the ka, as given by 8.65 by ignoring the higher order summation
in the numerator, i.e.

-V
c -~ mk (8.67)

k (o) ) (o) '
- (Er; * Hmm) - (Eko M H'kk)

and therefore, from 8.63,

E = g0 4 m Z [ 7 (8. 68)
k k kk ~ (o) (o) : )
n#k (En * H:’n.n) - (Ek * Hllck)

It can be seen that this expansion procedure requires that
(o) o p ]
e | << WEY +m ) - (B2 + ol (8. 69)

which may be satisfied when the less stringent inequality, as given by equation
8.25, is not.

Higher order corrections may be obtained by substituting equations 8.67
and 8. 68 into the right hand side of 8.65 to obtain the coefficients ka, correct
to the next higher order, which can in turn be substituted into 8. 63 to obtain
a better estimate of the eigenvalues, and so on and so forth. It can be seen
that the calculations get very complicated very quickly, if an explicit expression
for Ek and an is desired. Alternatively, a numerical scheme may be at-
tempted. The matrix elements Vnm are first computed. If only relatively few
elements are significant, a numerical iterative solution of equations 8.63 and

8.64 may be attempted (with an accelerated scheme like Newton's method), to

obtain solutions to the problem.

A different method yet may be employed, based on a forward marching
scheme starting from A = 0 and ending at X\ = ), that is useful even when
the Hamiltonian does not depend linearly on the perturbation parameter \. See

problems §.8 and §.9.



8,2 Perturbation of nearly degenerate states.

The preceding perturbation procedures generally fail when the perturbed
state is degenerate, or has an energy that is close to some neighboring state.#
See equations 8.25 and 8.69 and related discussion. In such a case, the con-
tribution from the states with the same or almost the same energy is going to
be large and the original idea of an asymptotic expansion in small corrections
must be modified. To illustrate the method we will assume that the system of
interest possesses two states, say |l), and |2),, whose energies E,fo) and E;(,O)
are close to each other, but far from the remaining eigenvalues. It can be seen that
the application of the preceding perturbation procedure will produce a large
correction to the state |13 coming from the state |2% and vice versa. In
the preceding formalism, ¢33 and c¢s will be large. In anticipation of this

result, it is then reasonable to look for solutions, at the outset, of the form

fv) = al1y + bl2) , (8. 70)
where
H - By =0 (8.71)
and
H=H, + H .

Substituting 8. 70 into 8. 71, we have

(Hll - E)a + H1ab = 0
(8.72)

Hyppa + (Hg - E)b = 0,
whose determinant of the coefficients must be zero. This yields two eigenvalues
E, = E_ given by

E, = 3 (Hy +He) + 3 [(Hy - He)® + 4[H, 12112 (8.73)

where the square root is always computed as a positive quantity.

If the usual perturbation expansion were valid we would require that (see

equation 8. 69)
Il << | - Hal, (8.74)

which substituted into equation 8. 73, yields

#unless of course, it so happens that the matrix element of H' with the

neighboring or degenerate state is identically zero.
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1/2
1 _AlHg[®
E, = 3(Hy +Hg) + 3 |Hy - Hy| [1 + —2E

+

~1 1 :
3 (Hn +Haa) + 5 [Hy - Hal & =

and therefore

Hy; + H = EI(O) + H:f1 -

Hy, - Hes i He - Hy >0

£ = (8. 752)

Hy, |? _ olo) ’ 2T -
Ho Tty - 2 el - g e - <0

and conversely for E , i.e.

Hpl? ), 4 {8,512 s
Haa + Hll — Ha = En + Hgg - Hn _ I'IN ’ if Hﬂ - H11 >0
E = (8. 75b)

Hy, |® _ rdo) ’ Ha, |2 . ,
Hy + ot = B +nu, -—s-—ﬂ-i—Ha_Hn,lfHa-Hu<o

consistently with the results of the improved perturbation expansion. See
equation 8.68 and related discussion.

Conversely, however, if

[Hy - He | << |Hia (8.76)

then, from equation 8.73 we have,

3
E, = %(Hn +Hm) + |Hgl |1 4 (g - FHea ) 1 (8.77)
8|Ha |®

The eigenvalues E,_ and E, are sketched below, for a fixed value of

!Hm! as a function of the difference of the diagonal elements ¢ = Hj;; - Hga-

|2>, —
\—. E, o
-
\\\ e - u"

E, = -21- <Hu * Hn)

1, 7
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It can be seen that, provided H,s # 0, the effect of the perturbation is to lift
the degeneracy by keeping the two levels apart as the energy difference, in the
absence of the perturbation, approaches zero.

It is also interesting to study the resulting eigenstates as a function of

€ = Hyy - Hes and Hy;. In particular, from equation 8,72, we have

2y o . _ths 8. 78
®, % - mrE - (8. 78)

where the matrix element H;» will in general be complex, i.e.
-
H1= = \ng‘ e ? . (8- 79)

We now define an angle B8 such that

tan 5 = __Z.l.liﬁ.l_ (8. 80)

Hyy - Hg ’

f

w5

'Hﬂ - Hll

P

where 0 < § < m, in terms of which we have

a, _ _ ..sinf -i®p
(b)+ = Tosp g1 e > (8.81)

and therefore
[+y= (1% cos(p/2)e /2 4 (2% sin(p/2)e®/2 ‘L
(8.82)
= 1) sin@r21e ™2 - (2 contprare®? . )
Note that we may select © = 0 without loss of Eenerality# and that
‘+> - 11)0 H,, -
2 T (8.83a)

- = -2

whereas

1"LThere is an arbitrary phase difference between the unperturbed states |1)°

and |2)% which can be chosen such that 1}H|2), = Hjp is real.
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+ - |1
| |,>° as Buy_- - -, (8.83b)
Hia
1 =~ |2y
while
1
+y - = {1y + |2
[+) vz‘“ %+ [2%] .
as a2 - 0. 8.84)

1
Y= [l1) - i2%]
REF D
We can now use the states

|O>O: l-); l+): |3>O: I4>O'

instead of the original set {|n)} as a basis in which to perform the perturba-
tion calculation, The large corrections involving the small energy differences
(Ey - Ez) in the denominator will now not occur since, for these terms, the

numerator (1]|H|2) is zero by construction.

The situation described above rmay in fact occur as_a result of a perturba-
tion. Consider, for example, a spectrum of eigenstates that is initially discrete
and non-degenerate, It is conceivable that the perturbation corrections to a pair of
eigenvalues will have opposite signs so that as the value of the perturbation parameter
increases, the eigenvalues approach each other or even cross over. This situation

is depicted below.

T

5%

i
12>, 1—.\1/

165 -

10%,

¥

i

|

|

|

H
‘;\

]

T
A

The behavior of the states |1} and |2% in the vicinity of the critical value of
the perturbation parameter ) = )‘c indicated above can only be properly described

along the lines of the preceding discussion,



8.3 Perturbation of degenerate states.

We can generalize the results of the preceding discussion to the case
where one or more energy levels are multiply degenerate. Again, as before,
the difficulty with the ordinary perturbation theory in this case is that correc-
tions become large and the usual perturbation procedure is invalid, Consider,
for example, the effect on the degenerate states !k, m), of an {unperturbed)

energy El(:), i. e.

k,mY ; m=12,...,N (8. 85)

_ lo)
Holk:m)) 'Eko k’

of a perturbation H' = AV, Following the same reasoning as in section 8.2,

we seek an appropriate alternative basis for the states sharing the eigenvalue

§1(<O)‘ formed as a linear superposition of the states |k, m}, which also diagonal-

izes H'. In other words, we seek the transformation

lx,i) = 2 e, m% €y 8. 86)

m

such that

H|k,i) = (H, + H')]k,i) = Ek'ilk,i) \ (8.87a)
where

Ey s = (il + HO[K D) = E{:)+E;<‘i , (8. 87b)
and

Ellc’i = (kilH K, 1) . (. 87¢)

Note that, if this transformation can be found, equation 8.87b actually gives
the energies of the levels Ik,i) correct to first order in the perturbation since
they are the expectation values of the perturbed Hamiltonian computed with the

unperturbed eigenstates. See equations 8.26 and 8.66 and related discussions.

Example 8.4 The linear Stark effect. Perturbation of the n = 2 levels of

the hydrogen atom by an electric field.

There is a four-fold degeneracy of the n = 2 energy, corresponding to the
2s state and the three 2p states (see figure on page 7.13 and related discussion).

The four |n, 2, m) states are:
|2,0,0%, {2,1,1%, |2,1,0) and {2,1,-1) .
The perturbation H' is given by

H' = -qc(ﬂzz = e:ﬂzz , (8.88)
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where q, = -e is the charge of the electron. Note that the perturbation does

not involve the azimuthal coordinate, i.e.

T 4 /2 T
2 = ag (;) cosf = (3—) 3, (:o") Yi,0 (8,9) 8.89)

and therefore only the states IZ,0,0) and IZ, 1,0) are mixed by the perturba-
tion, since

{2,2,m|H'|2,1,1) = 0, for £=0,1 and m=0,+1 (8. 90a)
and

(2,¢,m'|H'|2,1,-1) = 0, for 4£=0,1 and m'=0,+1 . (8. 90b)

It is therefore sufficient to consider the linear combinations of ‘2,0,0) and

|2,1,0) that diagonalize H'. This leads to the equation

{2,0,0|H'|2,0,0) - E' {2,0,0{H)2,1,0)
=0, (8.91)
(2,1,0l1'}2,0,0) 2,1,0{8'12,1,0) - E
and since
T
(2,0,0|H'l2,0,0) = / | Yoo | cos® dcos® = 0©
and 0
T
(2,1,0]H'|2,1,0) = [leo’a cos® dcosb® = O
0
we have that, to first order,
H
E.t =+ ed, {2,0,0]z)2,1,0}
(8.92)
r
= + ec?zao (2,0,0[(;—;) cos6|2, 1,0)
or, substituting (see equations 5.88 and 5.137)
L M2 372 .. -T/2a3
Vasose = fg) G (2 -3)e
1 172 1 3/2 -r/2a,
Va,1,0 = {730 (-_Zag, (j;;‘)e cos @
we have
<2,o,o|(i) c0s8l2,1,0) = -3 (8.93)
and therefore
i -
E;"_ =+ 3edza° , (8.94)
corresponding to the states
1
2,+) = = []z2,0,0% + [2,1,0)]
l = l i
(8.95)
L

lz,-) = [l2,0,0) - |2,1,0%] .

vz
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Consequently, to first order in the perturbation, the energy levels of the
four n = 2 hydrogén atom states split into three energies (partial lifting of the

degeneracy),

whose separation is linear in the magnitude of the electric field (linear Stark
effect), as opposed to the energy shift of the ground state as a function of the

electric field, i.e.

A, = --;- Goaga;

(see example 8.3 and problem 8.4), which is guadratic in the electric field

(quadratic Stark effect).

The states 'k,i} which diagonalize the submatrix of H' corresponding to
the eigenvalue El((o) {see equations 8.85, 8.86 and 8.87)# can now be used along
with the states Ik',m}'c)o, for k' # k, as a zeroth order basis on which the
perturbation may be computed. The previously derived results now apply since

the singularities have been removed. By way of example, we have for the

energies E, . correct to second order (see equation 8,30)

Ek,i"‘ El(f)wt- (x,ilH'|k, i) - z -ETG)I—-;;_) z [0<k':m1'<|H'|k,i>|2 .
k'#k "k’ rn.l" (8.96)

%(Note that they already diagonalize H, and therefore alsoc H = Hy + H'.



8.4 Time-dependent perturbation theory.

In the preceding sections we have considered the case where the perturba-
tion V is not a function of time. If, however, V = V{(t), we must use an al-
ternative scheme since the previously obtained results were derived on the basis
of the time-independent Schrddinger equatian.

Recall that if H # H(t) then the general solution H/, t) can always be ex-
pressed as a linear superposition

-iE t/n
ly, £ = z |n) c e n
n

(8.972)
where
Hin) = Enln) (8.97b)

and the coefficients ¢, are constants that can be evaluated from the initial

conditions, i.e.

z |n)en = W,O)

and therefore, since (mln) =8,
mn

€ = (ml‘}',O) . (8.97¢)

Consider now a Hamiltonian composed of a ”la;:ge” H, that is time inde-

pendent and a '"small" V that may be a function of time, i.e.

H = Hy + V(t) . {8.98)

We can use the fact that the eigenstates of H, form a complete set to express
the solutions of the Hamiltonian H as a linear superposition, in which the co-

efficients may now be functions of time, i.e.

-iE _t/#
ey = > ayeme 7, (8.992)
n

where

Hyln} = E |0} . (8. 99b)
To find the coefficients cn(t) we now substitute 8.99 into the time dependent
Schrodinger equation

N
it 52 [v,ty = Hiy, ),

or

E, -iEnt/h -iEnt/h
it z In)E_ -i52 c)e = (Hy + V(t)] Z Inyec_e ,
n n
which yields
-iE_t/# -iE _t/h

it z‘n)éne a = EV(t)in)cne o
n . n

8.26
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Taking the scalar product with {(m|, we then have

ne (1) = z v (e (b) "(8. 100a)
n
where
YE_ -E )t/»
Von(t) = (m|vt)|n)e ™ B . (8. 100b)

Equation 8. 100 is, of course, exact and its solution is, the solution of the
original problem, via equation 8.99, given the initial state H/,O). It is also a

set of linear homogeneous equations, i.e.

i, d
it ¢ -VUe = o, (8. 100Y)
where ¢ is the vector (c;,cs,...,c_,....) and ¥V is the matrix (v___), and
= m mn

therefore possesses a solution of the form

c(t) = Zym(t,ti) e (t) . (8.101)
! n
or, equivalently
s(t) = Tt t)elt) (g.101")
where ti is some initial time. Note that

C?n.‘m = |Ymnlt )1 (8. 102)

is the transition probability to a final state |m) at time t, from an initial
state |n) at time t = ti'
We can integrate equation 8. 100 to obtain an integral equation for the

coefficients ¢ (t), i.e.
m

-
i
cm(t) = cm(ti) -3 z [ Vm_n(ts. )Cn(tx )dt (8. 103)
n Tt
which we can solve by an iterative scheme as follows, Assuming that the v _

are small, we have to a zeroth approximation that

clt) e (t),
i.e. no change. If we now substitute this in the integral equation we obtain
t
. - —i
e = (t) -4 Y f ASCRLS IESCAR (8. 104)
nt t

and therefore, to first order in the perturbation,

t
Yen(tp ) = 8 - —;—f v oat)dt (8. 105)
t

"

mn mn

i




8.28

called the first Born approximation.

Example 8.5 Impulsive start of a constant potential,

V, for t>t RV A —

Vit) =

w.y

0 for t <t . ry

For t:f > t, and m#¥n
i

b

Yemnltp t) = - l;f v alt)d
t
1

t
. HE_-E )t /*
= - -;-JJ (m|Vylnde ™ 7 ’ dt,
t.
i
t
, W(E_-E_)t, /A
= -% (m}Voln)f e ™ 1 dty
. t

i

or

{E_-E )t ./ i(E_-E )t /*
(tfati)a"%']y_"lg'n—)[e m “n’f s e m nl]
m ~n

Ymn
Therefore the transition probability is given by

sin® UE_, - E Nt - t)/24]

UE,, - E)/2]?

{8.106)

Zpn—~m = ‘an(tf’ ti)‘a ~ [(m| vy [a)]?

Note that if ](m]V°|n)! >> lEm-EnI the transition probability is small., Note
also that if E_ = E .
m n
1
Pom® glmlVe [t - )%, (8. 107)

for small tf - ti (where have we made this assumption?)

It is possible to arrive at a direct equation for the transition amplitude

matrix ‘ymn(tf, ti) by substituting equation 6, 101 into the integral equation 8.103,

i. e,
t
i
zvmnuf. tleyle) = e t) -3 > f Vo8 Vien(t ) At | e (t)
n k,n ti

or, since this equation must hold for any set of initial conditions, we must have,

for all m and n,



t
i
Ymn(tf’ ti) = 6m.n -3 Zf vmk(t) 'ykn(t, ti)dt (8.108)
k7t,
i

We can solve equation 8, 108 by an iterative scheme, as before. In par-

ticular, to zeroth order (equivalent to no perturbation), we have

7rnn(tf’ ti) ~ %mn

To first order, we can substitute the zeroth order solution in the left hand side

to obtain equation 8. 105 directly, i.e.

t
i
Ymnlte t) ~ 8n - le Vmnlti)dt .
t.
i
This can in turn be substituted to yield an estimate correct to second order,

i, e.

te
i
7mn(tf" ti) ~ 6mn - Wf vmn(tl)db"
t.
i

t

Second order range of integration variables.

and so forth. This yields an infinite series

enaltes ) ~ Pt + 98 e e (8.109)
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where
(o) (t t) mn
. tf
71(';1)11“1" t) = - 'lif Vimn(t) 4t
i
ba
Y& (1) = & 2[1 k(tn Yy alta) d dtg
ka7t & (8.110)
t3 t
Y e = G Y jl mk,“e’f kkm)f Vi, oltr) db dto dtg
k1 , ka ti ti i
t, ot
Ygl))(tf, ti) = ('Tl r z JJ . r vmkr-l(tr). " Vigky (tg)vkln(?:,, )at; dte . . . dtr s

RN

{te Dt ).t ot

where the notation in the general term implies that the various factors in the
integrand are to be evaluated at an array of points in time that are ordered
as indicated (see for example previous two terms).

This perturbation expansion suggests a picture for the transition amplitude
form a state |n> to a state Im), say for m#n, namely a superposition of the

following possibilities:

(1) The system starts in the state |n) at time ti and remains there until
a time t when the perturbation potential acts and knocks the system

into the final state Im). This situation is depicted below:

ty -~

The transition amplitude y&‘)n(tf, ti)’ corresponding to this particular
sequence of events, is given by the sum (integral) over all possible

intermediate times t;, such that ti <t < tp



2)

(3)

The system starts in the state ‘n) at time ti' remains there until
a time t; when the perturbation acts to scatter it to a state |k1),
where it remains until a time tg when the perturbation acts again to

scatter it into the final state |m).

+ jmd

@)
Y vam (.*4 7'&4)

The transition amplitude y(a) (tf, ti.)’ as a result of this particular

mn

sequence of events is,
(i) the integral over all possible interaction times & , such that
b <t < te,
{ii) the sum over all possible intermediate states lkl Y,

and

(iii) The integral over all possible interaction times t3, such that

t <ta <t

/ 3o eats)




The total transition amplitude is then given by the sum in equation 6. 109
over the transition amplitudes 'yr(rg(tf, ti) representing each of the (indistinguish-
able) possibilities described above. The superscript r in each of the terms
counts the number of times the potential has acted in the interval (ti’ tf).

Note that the exact equation 8. 108 for 'ymn(tf, ti) can also be interpreted along
the same lines. Namely, by some means or other, the system has made a
transition from the initial state [n), at a time ti' to an intermediate state

|k} by the time t, when the perturbation acts for the last time to knock it

into the final state |m) where we find it at t.

Youu (Ees )

imy

The integral equation is then a statement of the fact that the probability ampli-
tude to come to the state lk) by the time t, from the state [n) at time ti'

must be given by the same function appropriately evaluated.

In practical applications, one obtains a calculation formula by truncating

the perturbation series of equation §.109 after a finite number of terms.

8.4.1. Unitarity and the conservation of probability.

The fact that the modulus squared of the elements 7mn(t, ti) represent.
transition probabilities, i.e. equation 8. 102, imposes a very substantial restric-
tion on the operator I'(t, ti). In particular, we see that if we sum the modulus

squared of ‘}‘m(t, ti) over all m, we have

z 1Y alt t)]% = zgn_‘m =1. (8.111)
m m



In other words, the sum of the transition probabilities from the state ‘n) to
all states (including ’n)) must be equal to unity, since we have covered all the
possibilities.

Equation 8.111 can be shown directly from the defining equation g8.101 for

the y_ (t,t.) as follows. We must have

mn' i

leg®? =5 cnttre 1) =1 (8.112)
m m m ’ )
m m
for all times t. Consequently, from equation 8.101, we have
3 # *
2. fe (017 = 2. Y milt 8) Yoa(t ) e (E) e (8)
m m,k,n

or

Slen®l = Yyt me)ertie ) (8. 113)
m

m,k,n

where we have defined the adjoint matrix

+ _ *

as the complex conjugate, transpose of the original matrix. It is clear, however,

that equation 8,113 can only be wvalid independently of the initial conditions if
S
D Vet t) Yenplts ) = 81y (8. 115)
m
for all times t, or in matrix notation,
t .
r (t,ti)l"(t,ti) =1, (8.115")

where I is the identity matrix. A matrix that satisfies equation 8.115 is called

unitary.

8.4.2 Transitions as a result of perturbations localized in time. The S-matrix.

Often times the perturbation potential V(t) is localized in time, as in the

sketch below.

Vi) P

oy
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Such a situation can occur in a {(near) collision for example. In such a case
one is usually interested in the response of a system, in a known state at
t = -, to the perturbation and, in particular, in the final state at t = w.

From the preceding discussion, we then have

2 (00, -0} = l‘y (o0, -cao)‘3 .

n-m mn

The matrix T, evaluated for ti = =~ and t = +w is of particular significance

and is called the S-matrix
S = I'{w, =) . (8.116)

It is clear, from the preceding discussion, that the S-matrix is unitary.

Substituting from equation 8, 109; we have to first order in the perturbation,

[>o]
S~ --‘-fv (t)dt
mn mn n mn
- Q0

or, substituting for vmn(t) from equation &.100b,

co .
. iw t
S ™~ Spma " F f (m|v(t){nde ™ 4t , (8.117a)
- 00
where
W on S (Em - En)/h . (8.117b)

In other words, the off-diagonal elements of the S-matrix are proportional to

the (temporal) Fourier transform of the corresponding matrix elements of the

perturbing potential, evaluated at the corresponding Bohr frequency (equation

8.117b). Note, from equation 8.116, that the transition probability to a state
Im) # 'n) is given by

3

3 1 ¥ imrnnt
@ = |s_ | =F f(le(t)|n>e at| . (8.118)
- o0

mn

Example 8.6 Response of a ground state charged particle harmonic oscillator

to a Gaussian impulse electric field.

Consider a harmonic oscillator in the ground state |0) at t = -» and

a uniform electric field impulse

A - &/
&(t) =?7§':*e . (8.119)



The perturbation potential is given by V{(t) = - qccﬂx and the transition proba-
bilities from the ground state are given by (equation 8, 118),
2

A /TP riw

1 9c mo

90—*m = —ha - 1 (mlx{O / dt )
™ ‘T ?

Now, we have

1/2

)

, /2 +
(mlx]0) = =) (mfa +a)[0) = ) 5,

and

(E) e =T Te

©  -at® +ipt 1/2 - (8% /4a) - (weT/2)°
/ e at T 1/2 2
0

Consequently, to first order, the only non-zero transition probability is to the

first excited state for which we have

p? '%(woﬂa 4
00_.1 = m e R {8.120a)
where
B
P = 9. f $(t)dt = ch (8. 120b)
-

is the classical momentum transferred to the oscillator by the electric field.
Note that if T >> 1/®,, i.e. if the characteristic time is much longer

than the classical period, the transition probability is very small. Conversely,

if T << 1/wy the transition probability is essentially independent of time and

given by the ratio of the kinetic energy imparted to the oscillator, to the energy

quantum Rwe, i.e,

P?/2m
1i 0 =
71_1.18 t 1} AW,

Note also that for the perturbation procedure to be valid 90_‘1 << 1 and that
therefore the excitation of the harmonic oscillator is a purely quantum mechan-
ical effect, since the classically computed energy P°?/2m received by the
oscillator is insufficient to allow the transition to occur. The difficulty, however,
is not real because quantum mechanically P®?/2m is not the energy the oscilla-

tor gains from the field.



8.4.3 Transitions as a result of harmonic perturbations.

In the present discussion we will assume that the perturbation potential

H'(t) is of the particular form

T imt ~iwg

H'(t) = V e + Ve

(8.121)

s

where V is not a function of time and Vf is the adjoint operator to V. Note

that H'(t) is Hermitean by construction.

As a result of such a perturbation,

be given by, for m # n,

ymn

1

the transition amplitude matrix would

t
i f iwmnt
(b t) ~ -3 (m‘H‘(t)‘n) e dt
t.

to first order, or substituting from equation 6.121 we have,

t

t
£ s .
; * l(wmn +w)t 1(an_m -wit
Ymnltp tp @) ~ - 3 [Vnmf e dt + an e dat |,
t.
i

where

5 (g. 122a)

V__ = {m|V]|n) t. (8. 122b)
Carrying out the integration, we obtain
. . e1(m -4-us)*l:f ) ex(w +u:)’ci
{t,, t.;w) ~ - = v -
Ymn'e i ) nm i(w +w)
mn
. - . - 8.123)
l(mmn w)tf 1(u>mn m)i:i
e - e
+ Vv - .
mn i{w -w)
mn

It can be seen that the transition amplitude is composed of two parts, one of

which is large when w > ~won while the other is large when w =w_ . The

mn

two cases correspond to the following situations (recall equation 8.117b for

mrnn)
—— I}
W =y w
mn
> l
{m)?
induced de-excitation
Consider now the case w = .
mn
!UJ-LU l << lUJ I B
mn mn
#Note that

(m]|v'|n) = f vy ax = f (VY )"y, dx

}m)

= wmn T
AN ND

—b—— [n)

induced excitation
Then, provided

(8.124)

= [‘[\y:(V\ym)dx]* = (a|v]m)®
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we have

o i(w -Lu)tf i(w -w)ti
t ;LU) PO 1_ v e - e
e ] %2 ‘mn i{w -w)
mn

',an( tf

with a resulting transition probability,
.3
" sin [(wmn-w)(tf-ti)/zj

(8. 125)
ma o, -w)/2]?

@ (t

) = L
n-m f"ti’w) 22 lV

The function multiplying the matrix element squared (over #°) has an appreciable

magnitude only for !u)mn—ml < Aw,

[
2
(éf - f’) o Aw ~ 27’/’/{“ -f,')
W E

with a width Aw ~ Z'n-/(tf-ti) and a height given by (tf—iti)a. Note also that

Q, P R o

sin® ((w ~w)(t, - t.)/2] .3
[ teth fa 2 dw = 2(t;-t,) 5“‘2" dx = 2m(t,-t)
J . [(wmn-m)/zj Jo X

and therefore, for large e - ti’ we have
;.3
sin® [(w ~w)(t,-t.)/2]
mn f i
- Zv(tf-ti)é(wmn-w) , {8.126)

lw,, , -w)/2]?

where S(wm-w) is the Dirac delta function (see Appendix D). Consequently, for

large time intervals

o) 2T 2 .
0n—~m(tf’ ti'w) ) 'anl 6(mrtmmw) (tf-ti) ’

which allows us to define a probability rate (probability per unit time) for the

process, given by

W =

4 ~ 2T a
n~m dt n-m 2 Ivmnl S n =),

or in terms of the energies#

¥Note §(x/a) = [alé(x), see Appendix D.
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2
Wom@ ~ 51V, P8E_-E_ - . (8.127)

This very important result is known as Fermi's golden rule. Note that a

harmonic perturbation of frequency w acts as if it possesses an energy of hw.

Equation 8,127 is useful in transitions to {or from) a cluster of states of

energy E = Em, or transitions to (or from) a continuum. In particular, con-

sider the case where we are interested in the transition rate to a group of

neighboring states |m).

t =

%’} [ D

?(Em

—_—t m)

The overall transition rate is then giveh by

2w a
Wp~ D W~ S v PRE-E - )
m m
or, if the final states are closely spaced, we can replace the summation over
the final state index with an integral over the final density of states, i.e.

2m 2
Wo o~ 55 [Ile 8(E_ -E_ - p(E_)dE

or

27 2 -
W~ 5 IV IPeE =E +a). (8. 128)

These results can also be extended to the case where w = 0, In particular,

if H'(t) = H' (not a function of time), then

27 ! 2 . =
Wn—~m~ h len[ 6(Em-En) powe=0. (8. 129)

See example 8. 5.
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#

8.,4.4 The differential scattering cross-section in the Born Approximation.

Consider a beam of particles with a well defined initial momentum
Po = hky, incident on a target of the origin. The particles will be deflected,
as a result of the potential V(r) between the beam particles and the target

particles, to emerge with a new momentum p = tk. We would like to compute

k
™

b, ’\,L‘_z

the number of particles deflected into a solid angle d{} per second. For the
purposes of calculation, consider the incident particles in an initial state of

definite momentum, in a box of volume 12, then

ik, ' x ’
liy = 2 ®x (8.130a)

e
1,373
whereas the emergihg particles are in a final state
ik .

X
£y = - e~ = . (8. 130b)
L3R

Consequently, the relevant matrix element is given by

“ilk-ko) -z
¢lvliy = L [V(r)e @r =L Vik-k 1), (8.131)
L3 L

where W(E) is the spatial Fourier transform of V(r). Substituting this result

into equation §.129, we have for a transition ko — k

2423 3413
Wi"f~% [Dk-ko DI s & - 2Xa) (8. 132)

To compute now the probability per second of scattering into a particular solid
angle d, we integrate equation 8.132 over the density of final states k in the
region included in the solid angle d{l. The density of final states, labeled by
k, is given by (see section 4.3.3)
d*k L®
' = K¥dkdQ , (8.133)
(2m)®  (27w)®

pl)d% = L°

%&1- R.P. Feynman, "Advanced Quantum Mechanics'" (Ph205 lecture notes,
Oct. 1966).

2. See also Merzbacher, Quantum Mechanics (2nd Ed.), section 19.4.




so that

W, ~ ¥ - ko)fzf ——kﬂ)dk ag

= gy hLa

ik~ k) F

(2w)* a3 18

Wig ™

kem dQ . (8.134)

To express this result independently of the normalization volume we use the
notion of a cross-section denoted by d¢. This is defined as the area in the
incident beam through which the flux of particles (particles per second) is
equal to the number of particles per second scattered into dQ.
If
v = _aE = IT(nQ @8.135)

is the speed of the particles (note that |l<_i = |_1_<_o! as required by the delta

function), we then have that in the time interval &t

do(Q)-v- 5t

w (8.136)

-'dﬂ 5t =

L3
is the probability that a particle will be scattered into a solid angle 40 along
the direction (8,9). Eguation 8.136 assumes that the particles in the initial
state ll‘_o> are uniformly distributed in the volume L®, an assumption consistent

with a state of definite momentum (see paragraph in localization, section 1.3}

and the assumed wavefunctions as given by equation 8.130.

Substituting 8. 135 into 8,136 and dividing by &t we then have

w

g L qo(n) 2o (8.137)

L m
which we can equate with 8.134 to obtain

a .
L2 PY-k)l? (8.138)
(2m)* #
independently of the normalization volume,

Note that the scattering described above rust be elastic, i.e.

(kinetic energy)in = (kinetic energy)out )

since the scattering potential was assumed to be a fixed function of space, with
no internal degrees of freedom that might have allowed inelastic scattering
through an energy exchange between the system responsible for the potential and.

the incident particles.

¥
[f(k)étg(k)l dk = flkg)/|g'tke)| 3 glke) = 0 ., See Appendix D.

. 40



Example 8.7 Coulomb scattering,

The scattering potential in this case is given by

2, Zae®
2
Vi(r) = + —L—eor ) (8.139)

Strictly speaking, the function 1/r does not possess a Fourier transform since
the integrals diverge at infinity. In a practical situation, however, the Coulomb
potential of, say, a scattering nucleus is screened by some negative charge which

limits the range. In any event, we will calculate the Fourier transform of

-Kr
f(t) = €

r

and then take the limit as x—~0+. We then have

_‘1_}5.1
F(k) = [f(r) e &z

w0 ™
-ikrcos 8
=z 27w ® £(r) j e sin§ d468-dr ,
0

0
or
)
4 .
F(k) = e [ r f(r) sinkr dr . (8. 140)
0

Substituting f(r) = e-xr/r we then have

< .
F(k) = %ﬂ— f e T sinkr dr = —E— | (8.141)
K+
Q
Taking the limit as K- 0+, we then have
Zge® :
Vik-ko|) = + GrRas) ST (8. 142)
° -kl
or since |k| = ™ |, we have

|k-ky|? = @ +k3 - 2kk, cos8 = 2k3(1-cos8) = 4k° sin®8/2 ,
where 8 is the angle subtended between k and ko (scattering angle), and

therefore

Z, Zz€° s
8) = + + ——
W(ko 3 ) -~ ( 4,"50 ) ka sinz

(8.143)

] o

Substituting into the differential scattering cross-section (equation 8.138), then

yields :
.
ErZge sin™* -g- . (8. 144a)



update

where

- 1 B

B =3 Pe = 33 oA (8. 144b)
is the kinetic energy of the scattering particle. This is a great coincidence.

The first order result for the scattering cross-section for a Coulomb potential
(Born approximation) not only agrees with the famous Rutheford formula, derived
classically for a-particle scattering by atomic nuclei (see for example H.

Goldstein, Classical Mechanics, section 3-7), but also with the exact quantum

mechanical treatment (see for example Merzbacher, Quanturmn Mechanics, 2nd

ed., section 11.8).

8.5 Transitions and the superposition of pure energy states.

We have seen that the presence of an perturbation H' has several effects on a

state |n)o of the original Hamiltonian. In particular,

(o)

n by an amount

(i) it causes a shift of the unperturbed energy E

pAE = E - gl) (8. 145)

which we can compute to second order, for example, with the aid of equation &.30.

(i1) it results in a mixture (superposition) of the original eigenstates {|m) 3,

required to represent the eigenstate corresponding to the new eigenvalue En’

i.e.

|n) = Z |rn>° o(mln) =—NWIE [‘n)o - Z |m):, cmn] s (8, 146)
m n m#n
1/2

where Nn is some appropriate normalization factor (see, for example,
equation 8.61 and related discussion), and the coefficients €an 2Te given by

(to first order in the perturbation) equation 8.28.

and finally, as we have seen,

(iii) it induces transitions in and out of the state {n), whose rate can be deter-
mined, to lowest order in the perturbation, for a harmonic H'(t), i.e,

+ iws t -iwg t
H'(t) = Ve + Ve (8. 147a)

by the aid of the equation

27 F]
wo_ o~ lvmnl §(E, - E *+ hwg) , (8. 147b)



and for a perturbation H' which is not an explicit function of time, by

8.43

W ~ = |m f® SE_, - E) . (8. 148)

See equations 8.127 and 8.129 and related discussion.

Now, both the original set of unperturbed eigenstates [In)o}, and the set of perturbed

states {|{n)} form a complete set, and it is therefore possible to expand any state Jy(t))

as a superposition of projections along the unperturbed set Hn)o}, or the shifted set

{|a)1, i.e.

Jye)) = Zln}, oflnly(t)) = Z]n) (al¥(t)) . (8. 149)
n n

We should realize, however, that in the presence of the perturbation, the amplitudes

-iE t/#
(alw(e)) = c () e 7

(8.150)

do not represent projections along true eigenstates of the system. The states [in)},# are

no longer stationary states, since transitions in and out of these states are now possible in

the presence of the perturbation. Consequently, the modulus squared of the probability

amplitudes {(n|¥(t)), representing the probability of detecting the system in the state Iny,

#

may now be functions of time”, i.e.

[alven|? = fe 07 = 20

This probability may be computed, at least in principle, using the transition amplitude

matrix ‘ynm(t, ti)" since from equation 8. 101 we have

cl®) = D0 Yt t) e (8)
m

and therefore

ERCIEEY o (6 t) Y ol &) c:;,(ti) e (k) . (8. 151)

n
m, m'

In practice, unfortunately, such sums are usually intractable and we again have to resort

to methods of approximation.

We can use the transition rate result of equation 8. 148 (or 8. 147 for a harmonic
perturbation), to compute the probability that the system will make a transition from the
state |n) to the state |m) in a small time 6&t. In particular

+

or the unperturbed states {|n),}

1"Cornpare with equation 3,83 and related discussion,
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8. 44

5@ =& st = e ()] W st
n n—m

which is the product of the probability that the system is found in [n) at the time t,
times the probability that it undergoes the (n-~m) transition in the time interval (t,t+&t).
Cancelling the §t's we then have

& = le @F w_ . (8.152)

This process results in a loss to lcn(t)“", representing a transition probability out of the
state ]n) (in a time 6t), and a gain to Icm(t)!z, representing the transition probability

fo the state lm). On balance, we then have

S 1eg®P = T Grn - o) (8.153)
m¥n

or, substituting 8.152 for the transition probabilities,
d s 3 3
gt leg®l® = - (30w ) fe ] + Z W len®1®
m#n m#n

which can be written as

Lole @+ e @ = 3T w__ e (8. 154)
n m#n

where the reciprocal of the characteristic time Tn is defined by

1
= = Z W (8. 155)
n m#n

Consider now a situation in which the system is in some other state for t < 0, and
as a result of the perturbation H', or some other external influence, it is scattered into the
state |n) at t =0, i.e.

cn(0+) =1, ¢ (0)=0 for mdn . (8. 156)

If we substitute these initial conditions in equation 8. 154, we have for time 0 < t < Tn that

% le0]® + ‘1-1: le 012 =0 , (8. 157)

whose solution is a decaying time exponential, i.e.

-t/T
1:/n

le B = | (07)]% e (8. 158)

For longer times, this expression underestimates the modulus of the probability amplitude,
since, as the other states begin to fill up, they will eventually start feeding back to the state
]n), slowing down the rate of decrease of the probability ]cn(t)'a, for the system to remain

in the state [n)



k] 4l>]

L2
-~ lC"'(t>,
-~ —t/7y

2
- . . lC“.\ui-)\ a

Equation 8. 158, along with the initial conditions, define the probability amplitude

wiutin a phase factor, i.e.
+ -t/27 -t/27
e (0] = le_(07)] e T-e no (8. 159}
n n

and therefore, within a constant phase factor, (see equations 8.99 and §. 149)

0 , for t <0

(n]y(t)y = (8. 160)

-t/ZTn -iEnt/ﬁ
e e

’

for t> 0

where En can be computed with the aid of equation 8.30 (or 8.96 for degenerate unperturbed

states), for a calculation correct to second order in the perturbation,

It can be seen that this probability amplitude does not correspond to a pure energy

state, being the superposition of a continuum of energies (frequencies), i.e.
L .
-iwt

<nW(t)>=~il; [fn(w)e dw (8.161)

-0

where the contribution f (w) from the frequency w 1is given by the inverse transform, i.e.

B

iwt

1
G vy e at

£ lw) =

g8

or, substituting from 8, 160,

o, -[3-.‘1.— - ilw - wn)]t
£ () = fe n dt = ! . (8.162)

- - w)
0 ZTn n

If we substitute equation 8.161 in the original expansion of Hf(t)) into projections along the

states |n} (equation 8, 149), we obtain
)

-imt
W)y = }: [nYy (al¥()) = > in) El; /fn(w) e dw
1

n -0



or, interchanging the summation and integration, we have

“ -iwt
Joie)) = 31; [ dw {Z [n) £ ()} e . (8. 163)
-0, n

This allows us to interpret fn(;u) as the probability amplitude, of the component of l[\11(1:))

along the state [n), at the frequency w. Conversly, if Gn(u) - wn) is the probability density,

for the component of N(t)) along |n) to have a definite frequency w (energy E = hw),

we have
¢ -1 = 3
Gl - w ) = A ff w)l®

where A, is a normalization factor determined by the requirement that
*
L G {w - w )dw = 1
2w n n ’
-0

which leads to
(8. 164)

(1/2v,
=G - w )= )

]
an BT (wewe)t (1727 )

_Aw,..,'c.:. ~Tu

A4

{ A
o) ¥4 ol

£ 20— S wy = £/

This curve is known as a Lorentzian and is seen to have a frequency width Awn ~ l/Tn,
corresponding to an energy width AEn ~ ﬁ/Tn. This last relation is of course consistent with

the energy-time uncertainty principle (see equation 2.127 and related discussion), i.e.

TAE ~ 1, (8. 165)

which tells us that the finite lifetime of the state does not allow a better definition of its energy

than allowed by the uncertainty principle.

Note also that in the limit of infinite lifetimes the probability density becomes a Dirac

delta function, i.e.

lim {—21;- Gl - w )} = 8w - w) (8. 166)

—o0
n



and we recover the familiar stationary state single frequency (unique energy) behavior.

Before leaving this section, we should mention that the approximation of ignoring the
feedback to the state ‘n) from other states, i.e, ignoring the right hand side of equation
8.154 to obtain 8. 157, is quite often a very good one. Notable examples are phenomena like
radioactive decay, or spontaneous photon emission (in an infinite cavity) where because of the
very large demnsity of final states lm), the probability lcm(t)|3 to be in any one is very
small. Alternatively, when the uranium nucleus emits an a-particle, it is not very likely ...
its going to get it back, and we find that in practice no corrections are necessary to the well
known exponential radioactive decay formula. Similarly, when an excited atom spontaneously
emits a photon in empty space, which ... is not about to turn around to be re-absorbed, we
need not worry about the reverse process for a long time and can safely use equation &, 157
instead of 8.154. ~ On the other hand, we should also point out that it is the reverse processes,

in each case, that allow the system to reach equilibrium, at which time

Ll @ =-F e Ps T ow__le_w]F =0 . (8. 167)
n m#n

8.6 An improved transition rate calculation.

We are now in a position to address an unanswered question implicit in our previous
derivation of the transition rate (equations 8.147, 8.148), The Dirac delta function, multiplying
the transition rate was justified in anticipation of an integration over some density of states,
The problem remained, however, of evaluating the rate for transitions between discrete
states not describable in terms of a density of states in an obvious manner. This difficulty,
we now recognize, was an artifact of having ignored the distribution around the energy
"eigenvalue' (spectrum) of the discrete state, itself a consequence of the transitions. An
improved calculation of the transition rate can now be done as follows.

The system is initially in the state ‘n), described by a spectrum of pure energy states

given by
1 (h/ZTn) de!
G (e - E )e' = — , (8. 168a)
™ (ev_En)2 + (h/ZTn)a

and makes a transition to a final state ‘m), described by a corresponding spectrum of pure

energy states, given by
1 (h/27,) de"
G (e - E )de" = = . (8. 163b)
m T (e"-E_F + (n/27 )
m m

The transition rate, as was computed previously, is to be understood as a transition

from €' to €', i.e.
r]



= _2_1T. ' 3 o 1" o
Women =5 HL 17 8" = e, (8. 169)
which must now be integrated over the range of &' and <" in the initial and final states

X
W =[/G(«-:'-E)W,,,G(e"-E)de"de'
n—m n n' e'—e m m
-
or

[v o)
W = 2T g |2 G (¢! = E) 6(e" - ¢') G_(e" - E_) de"de!
n-m h mn n n m m
-

This situation is sketched below.

{ > a

t

3
\

- >

 Gu(c-Fa)

"'11\
_.ﬁ

G (8~ 5...)

If we now perform the integration over the delta function, we obtain for the total transition
rate

o0

L 2m ! 2 - - '

W =5 tE [ G e' - E )G (' - E_)de' . (8. 170)
=

Substituting from equations 8. 168 for the energy distributions, we obtain (see problem 8, 18)

(h/2wT )
w_ =2 |m |® mn (8.171a)
o (E_-E P + (n/27__P
m “n mn
where 1/‘r‘mn is equal to the sum of the two transition rates, i.e,
1 = 1 1
- =+ 3 : (8. 171b)
mn mn mn
Note that
lim (2 (—=—)} = 5(x) , (8. 172)
e=0 T X + &2

and we recover the previous result in the limit of Tmn_) e,

From equation 8.171 we see that transitions between two states of ''energy" En and

E , are possible even though Em is not exactly equal to En. No serious degradation of the
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transition rate would be observed for energy differences AEmn = Em - En such that
h
!AEmn‘ s 2T
mn

We recognize, of course, that this does not represent a vioclation of the conservation of
energy, but rather aan expression of the fact that the energy of the initial and final states is

only defined within a interval

AE  ~ h/2T , AE_ ~ hnj2T ,
n n m m

in accordance with the energy-time uncertainty relation.

iwt ~iwt
Note that for a harmonic perturbation H' = V' e + Ve , the transition rate
should be modified to s
(A/2xT___}
w_ o= 2T | mn ) (8.173)

‘ 1
pemo R Tmal e g s+ (a/2r )
m n mn



Problems

8.1 (i) Prove that the perturbed eigenstates, correct to first order in the
perturbation H' (equation 8.24), form an orthonormal set, to second

order in the perturbation parameter, i.e.

(k') = 8, + 0(4%)

k

(ii) Some times, it is necessary to have the eigenstates exactly normalized

to all orders, i.e.
(klk) = 1 for all k .

Normalize the eigenstates, as given by equation 6.24, so that this

is ‘the case.

8.2 Prove that the second order correction to the energy of the ground state

is always negative.

8.3 Derive the correction to the energies of the 2=0 eigenstates of a diatomic

molecule, whose potential is given by

V(r) = Vo + %mrwog (r-ry) +%y(r-ro)3 ,

using perturbation theory. Derive an appropriate expression for the
perturbation parameter X. Compare your result with the exact solution

for the Morse potential fit to the interatomic potential.

8.4 Compute the energies to second order of an isotropic harmonic oscillator
in a uniform electric field. Compare the ground state energy correction

with the classical value.
Hint: Show that classically

6E = -4-8d

8.5 Compute the polarizability tensor for a charge bound anisotropically by a
by a harmonic potential

1 3 3 3 2 3 3
=3 ! Yy .
\% 2rn(‘t)x + W + w® z%)

8.6 The matrix elements of an operator Q in the basis of the eigenstates of
H,, are given by m|@|n). Compute the matrix elements (m|Q{n),
correct to first order in the perturbation H', if the states ‘n) are the

eigenstates of H = Hy + H'.



update

Answer: o Q ka Hllx
n

mk! “k'n
(ml|Q]n) = Qun - Z Eio') - glo) - ZAEI(:) . g}
k'#m m k#n n

where

Q= oGlalid L Hy = GlH iy

Show that the dipole moment of a bound charge 9. in a non-degenerate
state |k)° exposed to a uniform electric field &, is given by (to first

order in the perturbation)

]

+ x

_ 3 EenZnk T EnkEen |,

ii-k - g-k * 9. z [ E(o)_ E(o) $
n¥k n k

where gk(O), the permanent dipole moment of the unperturbed state k),
is given by
o =g gkxliy |
and x is the matrix element
“nm
c(n‘j_‘lm)o .

Note that the polarizability of the system found in the state k is a tensor, i.e.

W

3
v =l z HenZnk " EneXeq |
*k ° glo) _ glo)

n#¥k n k

Hellmann- Feynman theorem. Show that if the Hamiltonian depends on a

parameter X, i.e.

H = H())
and Ek(kl), |kin, ) are the eigenvalues and eigenstates corresponding to
a particular value of A = };, then

4E, ()
—— = (kih |—8P;—;\)"—) la Y .

Show that if H = H()\), then

(ns\ I%&)‘L’- fng )

Cang JHOO mh ) - Godg [HOW [Kihg Y

di)\' ki Y = - z RS

The results of problems 8,8 and 8.9 may be used to provide a forward
marching scheme to compute the energies and eigenstates for large
values of the perturbation parameter, provided the denominators in the

expression above do not become zero along the way.



Problems (continued)

8. 10 Consider a particle of mass m and charge q. in a one-dimensional potential (see

8.11

8.12

section 4.2.5)
o for }z} > L/2
U(z) =
0 for |z| < L/2

(i) Compute the dipole moment of the eigenstates of the system.

(i1) Compute the induced dipole moment of the eigenstates in response to a weak

uniform electric field & = Gz%z.

(iii) Compute the energy corrections as a result of the perturbation.

Show that equation 8,81 is valid for both positive and negative H;; =~ Haa.

Compute the effect of a perturbing uniform electric field on the n = 3 states of a

hydrogen atom.

Variational methods, It is possible to use the fact that the ground state energy is the

lowest eigenvalue of the Hamiltonian to obtain an approximate value for it even if the

wavefunctions cannot be solved for exactly, i.e.

min  [(V]H|¥Y)] , where (¥lv) =1 .
¥

E =
ground all

Estimate the binding energy of the electron in a hydrogen atom using the ‘trial function
A(l - r/a) ; r < a
R(r) =
0 ; r>a

where 'a is an adjustable parameter.
Prove the statement of equation 8, 102.

Show that the operator TI'(t, ti) satisfies the differential equation
5 iHgt ~iHgt
in T)T:r(t’ ti) = e Vi(t) e T(t, ti)

For the problem described in example 8.6, compute the transition probability 90_‘2

to lowest order.

Derive the corresponding expression for Fermi's Golden Rule (equation 8.127), for the

case W™ -~ W (induced de-excitation).
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Problems {continued)

8.18 Compute the integral in equation 8, 170 using complex integration. Close the contour
on the upper half plane, noting that the integrand has two simple poles inside the

contour at ¢, and <5, where

as sketched below,

. Refe}

3.19 Derive equation 8.173,

8.20 Find the spectrum# of a (classical) process x(t) described by

°° - (t-t /27,
x(t) = az U(t-tn) e sinmo(t-tn)
n=1
where U(t) is the unit step function and the times {tn} , n=l,0 are random,

=(2)

~

#The spectrum is defined as the Fourier transform of the autocorrelation function, which is

defined in turn, as a function of the time delay T, as the average value of the product

x(t) x(t+7T), i.e,

m

7 iwT
S(w) j R(T) e ar , R(T) = (x(t) x(t+T)) .
“©

Note that R(T) = R{(- T).



Problems (continued)

8,21 Find the spectrum of a (classical) periodic process

x{t) = a sin(wat + &) ,

whose phase & 1is interrupted and changes at random times [tn} , n=l,ew , by

a random (large) amount, i.e.
(0 <t < t) = a sinfwgt + &)

x(ty <t < tz) = a sin(ugt + 6z)

x(t

= in(t -+
. <t < tn) a sin{wgt Bn)

etc,

Assume that the time intervals (tn - tn_l) are Poisson distributed with a mean of

T, i.e.
-t/7
é’{(tn- tn_1)>t}=
x[t) ]
AN AMAAAAMANAADN nnnnnuuuu
HHHHV!!V!V!! V'Hnnnvnvv %
.'fn-g_' -é,,_, *n tes 'ton-z



9. THE ELECTROMAGNETIC FIELD

9.1 The Hamiltonian

From classical electromagnetism, we have that the energy of an electro-
magnetic field filling a volume V, containing no charges and currents, is given
by (see for example R.P. Feynman, R.B. Leighton and M. Sands, The

Feynman Lectures on Physics, v. II, chapter 27).

E = Ezlfuﬁ(f't”' + A8 ]2 1a°x 9. 1)

where 4§(x,t) and B(x,t) are the electric and magnetic fields respectively and
c is the speed of light. We can simplify this expression by the introduction
of the scalar and vector potentials, ®(x,t) and A(x,t) respectively, in terms

of which we have
3_ . )
8{x,t) = " ox Plx,t) - 57 Alxt)
and

Bt = = x Alx,t) .

(See appendix F). . You will note that the fields ¢ and ‘A are not uniquely

determijined. In fact, the (gauge) transformation

Bt = Al D + 2 x(xt) 9. 2a)
Bl t) = Dzt - o x(x 0 : (9.2b)

results in a new. scalar and vector field § and 5 which yield the same & and
B fields, as can be verified by direct substitution. It will prove convenient
in the subsequent discussion, to transform the potentials ©® and A in such a

way as to have a divergence-free vector potential, i.e.,

-a% Alx,t) = 0, (9.3a)

as well as zero scalar potential, i.e.,

®(x,t) = 0 . (9.3b)

This can always be done (see Appendix J) and results in a choice of gauge

for the electromagnetic potentials that is called the radiation gauge.

In this gauge, the energy of the system can then be expressed in terms

of the vector potential alone, i.e.,

E =529-[{lé(5,t)|"’ +c"‘|-§§ XA(zc,t)I"}dass- ©.4)

.1
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We now assume that the vector potential satisfies periodic boundary conditions

at the edges of the volume V, i.e.,

é(-Lx/Z,y,z,t) = é(Lx/Z,y,z,t) (9. 5a)
Alx, - Ly/Z,z,t) = Alx, Ly/Z,z,t) (9. 5b)
Alx, Y;'LZ/Z; t) = Ax, v, Lz/Z, t) (9. 5¢c)

and expand into the Fourier components for.each of the admissible wavevectors

(see problem F.1), i.e.
. x

ik
A(x, t) = Z Akze'“ékz (9. 6)
k,2=1,2 ~ -

where

1 " -ik-x a )
A}E’L(t) = Vf[eg,z'é@' t)]e °x . -7

and where & and & are the two orthogonal unit vectors to the wave-
k, 1 K, 2
vector k. See figure below.

&=

>
w?

Note that the expansion of A(x,t), as given by equation 9.6 , is divergence

free.
We now compute
. . ik x
Alx, t) = Z A.li"t e el_c‘,!, (9. 8)
k, 2
and
3 ik-x .
% XA = iy Agge | Exd (9.9)

.2



where since

& x& ,=¢8 (9. 10a)

we have

k x EE:I = k %5:2 (9. 10b)
and

k X 35,2 = -k 'ék’l (9. 10¢)
where k = |_l_<_| and 'é’k = k/k. We also adopt the convention

Gp= (VPR (9. 11)

~

.so as to keep both (ek, eE’ 10 e}i,z) and (e_E, e‘.‘.‘.’l' e_h’z) right handed.

See figure below.

(9. 12)
We now decompose the vector potential Fourier components )
A =L (Q - iQ ) (9. 13a)
k, 2 V3 k,24-1 k, 2L/,
where
1/2 .
Q =2 |2 -Alx, t)] cos(k - x)d%x 9. 13b
k,22-1 v k, L =% Lrx)dx (9. 13b)
and
1/2
Q =2 [ra *Ax, t)]sin(k - x)d®x (9. 13¢)
k,22 ~ V¥ k, b == S Xdx . . 13¢

Note that, as a consequence of the right handed coordinate convention

A
A= CEDTA L, (9. 14)

- ot
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and also
Q = (-nla Q ,, = -n'la
k,22-1 -k, 28-1* K, 28 © -k, 28 ° (9. 15)
Note also that, as in the case of the liquid (see section 5, 6), not all Qk ; ¢
- —

are independent and we must restrict the summation over some half-spaces of

k, ie.
E =1V Z (é’ +0?Q? ) (9.16) -
2 ki kkj SR
+_1_(Jj=1'4
where
wi = W (9. 175"

and where +k denotes that the summation runs over some selected half space
of k.
In an analogous manner, we can now define conjugate momenta. >~
0 .= (e V)C.) s s ]
k, i (o %, j (9. 18)
to each coordinate Qk i
whiéh we can use to write the energy as the classical Hamiltonian of

the system in terms of its proper coordinates, i.e.

- 1l q= L v? of
H-Z EZMHLJ+2MwB_Ql<..J'] s (9. 19)
+k
where

M= gV . (9.20)

We see that the system possesses a Hamiltonian éorresponding to a

system of uncoupled harmonic oscillators of "mass’’ M = ¢,V and frequency

W = clkl.

We can see that the canonical equations derived from this Hamiltonian yield the
classical equations of motion, which in this case reduce to the (source-free)wave equation

#

for the vector potential”, i.e.

8 2 1 8
- (e —— o — = . .
(335 3§)A " ataA 0 (9.21)

See appendix F, equations F.15 and F.16 and related discussion. If we express the vector

potential in terms of its Fourier expansion (equation 9.6), we have

# 2

no chagges and currents, gauge o = 0, i A =0,

"

.4



update # 2

] 1 — a _
Z (A v A e 0= 0 - (9. 22)
)

I

or since this must hold for every x, we have

+ L =0 , (9.23)
c2
for every k and £ = 1,2.

Since the coefficients Ak g are complex (see equations 9.13), equation 9.23 must

hold for the real and imaginary parts separately, in other words

1
k'+_an,j-

kj s Tk

¥ Q o , (9. 24)

for all k and j = 1,2,3,4, These equations are then Maxwell's equations, in Fourier
space, for the vector potential.

Consider now the canonical equations from the Hamiltonian of equation 9.19, or

9H 1 n
s B3R = = : .2
dlﬁ.:.] Onkj M k,j (9.252)
-

(consistently with our definition of Pk ), and

—
2 9H 2
1 .=- = - Mol Q . (9.25b)
ko7 k "k j
Differentiating 9.25a with respect to time, we have
i, .= M3 (9.26)
ki ki’ )

which substituted in 9.25b yields the required relation (equation 9.24; recall w? = cak_a).
a k

9.2 Transition to Quantum Mechanics.

Armed with the proper Hamiltonian, we now make the transition to Quantum Mechanics
in our usual way, namely by selecting a pair of variables (operators) for the conjugate

coordinates of the system (Qk i I, .), such that the standard commutation relations are
-

k)j
obeyed. In particular, we must have

[Ql(_x‘ju QI_SJJ] =0 (9.273)

[QE'J“ T J.] = ih 6_15'_15 aj.j (9.27b)
and

[nk‘,J" Hbj] =0 , (9.27¢)

for k in the selected half-space of the admissible wavenumbers and j = 1,2,3,4.

The most convenient way of achieving this for a system of harmonic oscillators is,



update

as we have seen, to define ladder operators for each independent oscillator, in particular,
1/2

= 1 1/2 . -1/2
B, j = G [(E:QVwE) Q, j + ileoVuy) nbi] (9. 28a)
and
1/2
L 1/2 . -1/2
By, j =GR [(EOVNE) Q, j - ifeo Vay) nbi] (9. 28b)

See equations 5.46 and related discussion. These operators obey the commutations relations

[b-}g,jn b}S’ J:] =

-r
(o g P30 = B O (9.29)

t t
EbEl)j” bk'-]] =0 ’

and can be used to express the Hamiltonian for the system, i.e.

t
= . + = .
H Z My By 5B v g (9.30)
*k, j
which we recognize as the Hamiltonian for a system of uncoupled oscillators expressed in
terms of the corresponding ladder operators. See equation 5.48 and related discussion.
The eigenstates of the system can be specified in the occupation (quantum) number

representation of the harmonic oscillators for each mode (+ k,j), i.e.

|E>= lm_lsl,l‘ PR , mk’j, ..... ‘) ’ (9.31)

analogously to equation 5.45. The result of the operation on the state |_r2) with the

annihilation or creation operation operators bk i b;: ; of one mode (+ k,j) is then given
'] )

by as before (equations 5. 47),

1/2
bE'jILn_) = ] lovens m g m 1. e Y (9.32a)
and .
+ - 1/2
bl{_'j|2)-(mlsj+l) | my gl Yo (9.32b)

The energy of the eigenstates |E> can be computed in the usual manner, namely

as the expectation value of the Hamiltonian, or

E,, - (m|H|m) ='Z By ; (9. 33a)
k,J
where
- 1 :
Eyj = M my 3 (9. 33b)
or
- 1
Eg, - Z hy (5 g) (9.34)
+E)J
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9.3 The Quantum Mechanical vector potential operator.

We can invert the defining equations 9.28 to express Qk ; and I'Ik j in terms of the
annihilation and creation operators for the corresponding mode. This yields (see also

equations 5.27),

N 1/2 t
Q= (7eve) Byt oy (9. 3%2)
and - . ,
1 . GovﬂU)k)l/Z +
.= {egV)Q, . =i b, .-b . , 9.35b
5= (e By g = (5 Pre,j ™ P, ) (9. 350)
where, it should be noted, that the (bk 5 b; J.) are only defined for k > 0 (in the
— —
selected positive half-space). We can use these operator equations to express the vector
potential Fourier coordinates Ak P and their time derivatives Ak e In particular, from
_ et ]

the defining equations 9.12 we have

1 ,
Pt T 7 Cizeer 7 P20

in which we can substitute 9.35a to obtain for k > 0

A (ot VP Lot -int )+ Lo -ib, ,,) (9. 36a)
k, L7 \Zeo Vi 7T k2t-1 Pk, 21 7T k2-l 1Pk, 2 : ke

We can now use equations 9. 15 to extend Ak P to the negative half space of k. In

particular, we have

1 .
M0 7 CQgaeer T %20
-1 4 a
= L g +i ) .
7z Gz k, 24

You will note that the right hand side is expressed in terms of the field sine and
cosine Fourier components for the positive half space of k. This allows us to use the

ladder operators bkj' b;,j again, which yield fgr k>0

A L= (-1)F V" Lot +ibl )+ -1 + b, )
M, 0= (- eV 77 Pk2ae) k2t T T P20 T P2

(9. 36b)

Note that operator equations 9.36a and 9.36b for the Fourier components of the vector

potential, satisfy equation 9. 14,

Equations 9.36 suggest a new set of ladder operators. In particular, for k>0,

. .
2k, 4 = ﬂ—“’bzz-l ib 2y (9.37a)
t 1 .t ot N
R =R S TR I N Y (9.38a)
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(which can be seen to be Hermitean adjoints of each other) and also

2
S .
"t T Pr2eer t P20 (9. 37b)
2
t =t e ot
7 S e T (9. 38b)

These expressions allow for the definition of the new operators a and a.l 7
- =

throughout k-space. It can be verified directly, that the vector potential Fourier com-

ponent along k,2% is correctly given by, for all Kk,

1/2
A Lt
A0 T <z“_—e°wk) Loy, p + D72 4T (9.39)

which substituted in the Fourier expansion for A(x,t), yields the Quantum Mechanical

operator for the vector potential, i.e.

1/2 ik-x
A _ ot } : e= = 1 .t -
N = zz1:2 N S e T I 9. 40)

Using a2 similar procedure we also have, for k > 0,

: 1 .
(8oV) Ay 4 = J_E' (ng,zz-l - i TH_('“) (9. 41a)
and
. Y
(V) Ay 4 = L;.I-L (11.5’21_1 + in_k_,“) . : (9. 41b) -

Substituting 9.35b and the defining equations for a4 and al': 2 {equations 9.37 and 9.38),
-— —

then yields the operator for Ak 2 i.e.

P o R \1/2 4t
Ak PR (-Z-EO—V) [ali,fa - (=1) 3-_5’ LJ B (9. 42)

-t

and therefore also the operator for _e:_(l:_, t), i.e.

03 a 1/2 1/2 _ik-x 1 0t
Ao = - udp D w/? = el iy, o em
k 2=1,2
Note that this is the operator for (minus) the electric field, since & = - é in this gauge.

What are the new operators a and 31: Jl? Well, we can show by direct substi-
-— -

tution in the commutation relations for bk i and b; y as given by equation 9,29, that

- ——

they are also suitable ladder operators, valid for all of k-space, i.e.

=0 (9. 44a)

[aEIIL“ Z]

a.
k,
-r

2y (9. 44b)

[a5|-v g L] = &, E



9.9

ot
[a}bz,, abz] =0 . (9. 44c)

We can invert equations 9,37 to obtain

b. (9. 45a)

1
== _[a_, + (-1)
%k, 241 >k, 4

a

-k, z]
b, L, == -¢nta 7 (9. 45b)
k207 = 3k, 2 k80 0 .
and also equations 9.38 to obtain

+ Lt
+ (-1)" a ] (9. 46a)
k241 = T Bk, -k, &

+ -i -t 4t ‘
b. = —— - (=1)" a , 9. 56b
20 T g m D ey ] (9. 568)

f
H = z My (B j B j +3)

"
&>
£
1=
o
talke d
N
=
]
—
o
k)
n
=
'
—
+
o
"
(%]
o
]
1
o
it
~
™
-+
-

to obtain

+

L+a_5za_bz+l)

ey

]

>

&
~

N
-
=

[
~

+k, 4

if we now allow the summation to run over both half spaces of k, we finally have

/

= f 1
H = Z Py (B g 2 g D) |- (9. 47)
K, L

It can be seen that this Hamiltonian is of the same type as the one obtained previously
(equation 9.30) but in this representation involves a summation of uncoupled harmonic

oscillators corresponding to all wavenumbers k (both half-spaces) and to two polarizations

per wavenumber.# This is a much more satisfactory state of affairs, which oversteps the

artificial partition of wavenumber space into two halves,

#As opposed to half the wavenumbers, but four modes per wavenumber [(two phases per

polarization) X (two_polarizations)]. The total number of modes is of course the same.




The eigenstates corresponding to the new Hamiltonian are now expressible in terms of

an alternate set of orthonormal basis vectors

= P < . 48
e i 948
such that (n'|n) = 5§_, , and
- a,n
1/2
ak,l,l£>= ,El ..... ’nk,!,-l’ veeee ) (9. 49a)
1-
ay zlg):(nkz+1)1/2| ceaie, PELIR FERTURIE BN (9. 49b)
with corresponding eigenvalues,
= 1
£, _Z (gt (9. 50)

At this point we will open a parenthesis by noting that the energy. of the ground state,

E =3 Z h = Z oy, (9.51)

A

k,
is infinite. This is a consequence of the fact (among other things) that we are assuming
that this formalism is valid in the limit of infinite wavevectors. We have seen this situation
before, when analyzing the quantum behavior of a fluid at low temperatures (section 5. 6).
There we also had a Hamiltonian composed of uncoupled harmonic oscillators extending to
wavenumbers of infinite magnitude. In computing the expected value of the energy at thermal
equilibrium, we subtracted the (infinite) ground state energy (equation 5.95), which is a
constant anyway and does not affect the heat capacity calculation. In any event, it was
' possible in that case to see first of all why the Hamiltonian representing uncoupled harmonic
oscillators, as well as the extension to infinite wavevectors was an approximation. On the
one hand, we kept only terms of second order when expanding both the kinetic energy of the
fluid (equations 5.69 and 5.70) and the potential energy (equations 5.71 and 5.72), and on
the other, we assumed that our continuum approximation is valid to infinite wavevectors, in
obvious violation of our original requirement of large length scales (equation 5.61). See also
discussion at the bottom of page 5.19 and 5.20 as well as problem 5.18. In the case of the
electromagnetic field, however, it is not quite so obvious what is the nature of the difficulty
that results in this infinity. The Hamiltonian was derived from the energy in the field, as
given by equation 9.1, this time with no approximations.

Even if we assume, for the moment, that the framework of our formalism# is not where

#i.e. replacing the conjugate (q,p) pairs in the classical Harniltonian by the appropriate

quantum operators.



the problem lies, it is not necessary to wander too far from where we are at this point, to
stray into unchartered territory. It is clear, for example, that viewing the behavior of the
electromagnetic field on a stage where charges and currents plan no role, removes from the
Hamiltonian, as derived from our field energy equation 9.1, an entire set of degrees of
freedom (coordinates), dissallowing charges and currents to appear, if initially absent. Yet
we know from experiment that radiation of sufficiently short wavelength (y-rays) can create

an electron-position pair, as indicated below.

This process not only allows charges and currents to appear, even if absent at some point
in time, but also provides a mechanism for coupling electromagnetic modes of different
wavevectors k. Both of these observations render the exactness of our Hamiltonian suspect
and underscore the need for a description of the electromagnetic field in a manner that
includes charges, currents, and creation and annihilation of elementary particles from the
start. This, however, is beyond the scope of these lectures if not beyond the honest reach
of present day science.

Nevertheless, if we restrict ourselves to small wavenumbers, i.e.

ack << m_c® = 0.5 MeV (9.52)

a limitation quite acceptable to the discussion of atomic phenomena (energies of a few eV)
and the accompanying interactions with the electromagnetic field, we would expect an adequate
description of processes that are consistent with these limitations. The analogy with the
quantum descr{ption of a fluid at low temperatures is useful. The infinity of the energy of
the ground state, even though disquieting in itself, actually poses no problems in a theory
valid in the non-relativistic limit in which energy can only be defined within an arbitrary
additive constant or, equivalently, be measured from an arbitrary origin. In our case, we
will take the non-relativistic limit to be expressed by inequality 9.52, and we will close the
parenthesis by measuring field energies using the energy of the ground state as the origin.
This is equivalent to using a Hamiltonian with the ground state energy subtracted from it,

or, in operator form,

#For a discussion along the lines of the evolution of these ideas see the preface to the book

by J. Schwinger, on Selected Papers on Quantum Electrodynamics, (Dover 1958).




*
H-(H-Eo)=z no Ay %

9.4 The Electromagnetic field in thermal equilibrium. Black body radiation.

Let us now assume that the electromagnetic field in the volume V is in

thermal equilibriumn with the surroundings which are at a temperature T. We
can compute the expected energy of the whole system using the results of section

5.5 of a system of uncoupled harmonic oscillators in thermal equilibrium. In

particular, from equation 5,56,

[>9]
(H - Eo)=f = ]:‘”T olw) du,
Teg
0 e -1

where, in this case, p{w) is the number of modes (k, #) of the electromagnetic
field with frequencies between w and w + dw. In particular, since the total
number of modes whose frequency w' is less than w is given by

3 mi ()
N{w! < w)

(2m)®/v

-f- ww?
2V s
(2we)®

where the factor of 2 in front arises from the fact that there are two modes

(£ =1,2) per k wavevector. Therefore, since

=4 .
plw) = = N' <w),
we have
3
pw) = S
e c®

Substituting into equation 9,54, we have

0,
Vi w?
<H'EO)=33‘[ ﬂW/FT dm:
T c o B

e -1

and therefore we have a spectral energy density [energy in (w,w + dw) per unit

volume] of

S(w) dw = ( L ) o® dw
- 2
Trzca hw/kBT

(9.53)

(9. 54)

{9.55)

(9.56)

(9.57)
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It can be readily verified, that we have derived the Black Body spectrum of

Planck (equation 2.130). The total energy density can then be computed from

9.56, i.e.,
@ 3
=1 . . _h o dw
=y H E°>'33[ Ty
T C B
0 e -1
% Q0
- (kg T) xdx
72 (he)® -1’

or, substituting for the integral from equation 5.98, we have

2 (kBT)"

15(he)?
We can also compute the energy flux (Watts per unit area) radiated out of a

small opening in a cavity -

o ///////////

/ /

7 /

7 7 >
/A /

/ 549_

L

4

7/

7/

e
\
SN

s

N
N
\q
O
A

v

which, for an isotropic gas of photons all travelling with speed ¢, is given by

1
ﬂ = Z ce
or
=01 ,
where RS
g = —B
60 232

is the Stefan-Boltzmann constant that had been determined empirically to be

equal to
= 5,67 x 107%(Watts/m®)/°K* ,

computed here from first principles.

9.13

(9. 58)

(9.59)

(9. 60)

(9. 61)



9.5 The eigenstates of the electromagnetic field.

If lO) is the ground state of the whole system, what kind of state is represented
by
*
lo, ....,0,1 g20s s >=ah.2‘0> s (9. 62)

the first excited state of the mode (k,£)? Alternatively, what is the result of the action
of the creation operator a; g on the ground state?
We know that this state is an eigenstate of the Hamiltonian and therefore has an energy

El given by
k, £
= Yoloy= e, (@l oy
(H - E,)a = a )
) e

or substituting for H - E, in terms of the annihilation and creation operators {equation
9.53), we have
(H - Ep)a) ,]0) = tw (al ,]0Y (9. 63)
k, o ik, £ '
or

€ = Ay . (9. 64)
oo ook

We see that the result of the operation of a’l: g o8 the ground state is to create an
)

excitation of energy hwk, where W, = c]_k_]

How can we relate such a state with a time varying electric and magnetic field? We

will illustrate this through an example.

Example 9.1 Compute the expectation values of the electric and magnetic fields

corresponding to the guantum state of the field which at- t = 0 is given by

Loy +]0,.ennn,0,1, ,,0,... )]

0 =
lvon Ve K,

Note that this state can be written as

1-
0 = + 0)
lv(0)) a, o) |

L
NE
and has a time dependence given by

JWt))y = A/—l? i+ e-m,sa"t alt.: l,)\()) e- ot/ ,
where we have factored out the phase factor corresponding to the energy of the ground state.
We first compute the (time-dependent) Fourier components AE‘,I;’(t) of the vector
potential. These are given in terms of the expectation value of the corresponding operator

(equation 9.39). In particular, we have



N 1/2 ot
(B golt)) = T vay) WOflay, 4+ D7 a2, dlve)

1/2 '
ey me%wkm»+uﬂ MMJ&FNMH

Now
-, ,t -iEyt/h
21 k, £ t °
aks z«l\y> = JZ__ (akl,zl t e nd aEn, A ak,ﬂ)!()) e
i -iE t/h
1 1wk’zt 1hy
=— e =%]0) 6k',k 840 4 @
JZ =
and therefore we have,
iEqt/h - iw t -iEq t/n
1 ° 1 k, 4
<‘Ha’-151’5|“"> = :/E_ e <0|(1 + aktl').j—?'e aad lO) 5511_1& azﬁ'z e
1 Tl gt
=5e = 6_1_‘.':1‘ éz,’z

We can compute the second matrix element by noting that a Y is the hermitean
. i)

adjoint of a-k',l" i.e.

whal ol = a4l

<‘l’| ;3_5|' ylw)*

and therefore, from the previous calculation,

. ) .
t [ )
<‘y|a_5l’zll\y> = 7 e = 5_5,’5 54,' 2

we have for the expectation value of Ak’ Y
2

Consequently,
t

1/2 - iw t e iw
U ke, 4 £ M, g
(AE',LJ =3 (ZEZcVUJk,) [e ! 65115 T (=1)" e ? S'E'JE] 6!'"!’

substituting for the vector potential A(x,t), we have

2
e <Akl' Z|> ekl’tl

and therefore,

(Alx, t)) =
k', &'
_l( \ )1/2 ei(k'i-wht) . -i(_lg-lc_-wht) .
=2z va, i, 2

- L A
[note that e-k,ﬁ = (-1) BE:‘]' or



& 1/2 .
(Alx, t)) = (m”—;) cos(}S’i"wEf) )

Using the vector potential, we can now compute the expectation value of the electric

field, 1i.e.
1/2
2 (*'”5 , 5
8(x,t)) = - T (A(x,t)) = - e sin(k _;g—wkt) eE;f'
and the magnetic field
1/2

(Blx, )Y = = x (A(x, 1)) = 1(“1—‘-) in(k - H e x&
=t = 55 X At =-2\gy)  sinkrz-ot) g X &y
We can see that this is a propagating wave, with a speed c¢ (= wk/'k!), in the

direction of the wavevector k, of polarization - & and of uniform amplitude

k&
throughout the volume V.
Without repeating the algebra, can you see what the resulting (8) and (&) would

have been if the quantum state was given by

< oy + Jo,..... ,0,2, ,,0,..... 1,

ves N

1vs (00
as compared to

L 1oy + 1o,..... ,0,1 Oyunnn. S

ﬁ 2k, &

In other words, what is the difference between a quantum state involving the second excited

| ya (O

level of the mode (k, 1), as compared to the first excited state of the mode {2k, 2)? BRBoth

have the same energy, and as we shall see, the same momentum.

9.6 The electromagnetic field momentum,

From Maxwell's equations, we have that the total momentum of the electromagnetic

field is given by#

P = g4 f@ x 3) d° . (9. 65)
v

It should be emphasized that the integral of equation 9.65 represents the (linear) momentum

of the electromagnetic field and should not be confused with the (generalized) mormenta

1, ., conjugate to the vector potential Fourier components Q, ..

L3 k,

Expressing & and Z in terms of the vector potential, we have

P:-eofé'x(%xg\_)dagg, (9. 66)
J %

and substituting the Fourier expansion of equation 9.6, we have

*

See, for example, Feynman, Leighton and Sands, v. II, ch, 27.
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P= - i(eov)z Gt kA LA, (9.67)

=

where we have used that for the admissible wavenumbers (periodic boundary conditions at

the edges of the volume V), we have

i(k'+k) - %
e a®

v

1%
1]
<
[a.]

and also that
eEJ' X(kxekz)—kéL, 4

If we now substitute the operator expressions for Ak ) and A k 2 from equations 9.39
] =

and 9.42, we have

A n ) gt Lt
Ba-2D enfrtay , - Dhal ) fa ¢ 0bal
" ) + ot
"EZ 0%k fa o goa g =3 2y
i 2
t R
PN ey gagy m DT g ey ]
or
A1 t t
2..-2- ﬁ_}g(ahlzak’ll a-E,lza-E,Z - 1)
e 4
+l (l)zhk(a - a a )
2 K, 4 2ok, 4 T Pk, 4 2ok, 8
k, 4

It can be seen that the second sum is identically zero, since the factor in the
parentheses does not change sign as k = - k, whereas %k does. By the same token the

-1 in the parentheses of the first series does not contribute to the sum either and we have

I'U*

-l-z: T a -a* a )
'Zk h k, 4 -k, 4 -k, 20

or, equivalently

1-
hk aE aE’
k, 2
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This is a very appealling result. We find that the field momentum associated with the

mode (k,4) is equal to 4k times the occupation number operator for that mode, i.e.

- t
= a a . 9. 69
W R T . 69)

We can use the number operator to express both the field Hamiltonian and the field

momentum. In particular,



H-E = E iy ﬁk,l (9. 70)
k4
and
B o= rki (9.71)
k, 2
9.7 The photon:
We have already seen that the operator al: 4 Creates an excitation of energy flwk.
-7 —_
We can now use the field momentum operator of equation 9. 68 to find its momentum. In

particular, since t ZIO) is an eigenstate of the number operator ﬁk 2 with an eigen-
£ —_

%k

value of unity,

(k, 4) is given by

(9.72)

(note the use of the annihilation operator - Hermitean adjoint - for the bra vector).

a‘l‘
k

Xk, 2
momentum _ # k, and (plane) polarization along %k Ir
=0

It is now clear that the operator

creates an excitation of energy ﬂwk,

This excitation we may now identify

with the corresponding photon, which served as the conceptial basis for Planck's black body
spectrum theory, Einstein's photoelectric theory and Compton's scattering theory. We can

also show that this excitation has zero rest mass as follows. We can define a four-vector

momentum

Py = ¢ Ep (9. 73)

where E is the energy and p is the 3-vector linear momentum, and a quantum operator
corresponding to the relativistic 4-momentum, which for the excitations of the field would
then be given by
- | e 2
b, = [TH - K),E] (9. 78)
(note that since we are interested in the excitation energy, we have removed the ground

state energy from the Hamiltonian). We can now compute the expectation value of this

operator in the state a.; 2\0), i. e.
-—

a

B>

by

&

1 -~
( =[Z<H-Eo>lkl

Pt

£

or, combining the results of the previous calculations for a field in the state a:; 1[]0), we
_

have

= (% Ay, (9.79)

-~ [
@, EERE JUWES)
k, 2
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we have that the momentum of the field in the first excited state of the mode



It can be seen that this corresponds to zero rest mass, since
1 - 2
wf == IB) I* =) - F¥y=0 . (9. 80)
c u’lk 2 ct =

It is perhaps interesting that the ground state of the field looks like an object of

infinite rest mass (and no momentum).

Note that a field eigenstate with photons in the mode (k,4) 1is represented by
"k, 4 =

setting the corresponding harmonic oscillator to the n.;hl excitation level, i.e.
-—

{n (k, £)-photons} = l,n.k PIERERE Yy .

If no other photons are present, this state can be constructed from the ground state by

repeated application of the az g operator,

ety

-1/2  t )“g,zm

(ak_, 4 (9. 81)

|0,....,0,n5,£,0,....) = (n}s:l!)

In a similar fashion, we can represent any eigenstate of the electromagnetic field by

repeated application of the corresponding creation operators on the field ground state, i.e.

-1/2,t Pk, 2
= = t
) = oy pomg pueeeam goeees) EI:IL A N GG LY (9. 82)
Note also that the vector potential
ik.x
A(x,t) = A &
Am =3 e k4 kL
k¢
expressed as a quantum mechanical operator (equation 9.39),
- 1/2 ik« x
_ -1/2 == Z d ot -
At = G Dol T D oy v ental e,
k 1=1,2
. ik.x
has an interesting operator interpretation. The function e , which we recognize as a

space wavefunction of momenturn #k, multiplies the sum [ak P + (-I)L aj

The first one annihilates a photon of momentum #k, while the second one creates a photon

of momentum - #k. In both cases, the momentum of the system is decreased by

&p = tk, which is offset by the momentum #k of elh'f. The net effect is no change in

momentum and we can read equation 9.39 as a superposition of all the possible ways of
altering the field leaving the momentum unchanged.
Note also that the first set of ladder operators b;) 5 which also generate excitations
of energy hwk , create states which we recognize to be standing wave states of zero
= t

momentum. See problem 9.5. The operators bk ; also generate a complete set of

orthogonal eigenstates, and it is of course possible, even though not very practical, to

express everything in terms of those states. See problem 9.6.

.19
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9.8 Photons and wave-particle duality.

We have come a long way and in the processwe have resolved, I
believe, at least in one case, the riddle of wave-particle duality. The
quantization of the electromagnetic field, the most manifestly wave-like phenomenon in
nature, affords us an understanding of how it is possible for a wave-like entity to behave
as an object, or a superposition of objects, of discrete energy and momentumn. As we will
see later on, the electromagnetic field when interacting with matter (charged particles) can
only make transitions up or down the ladder of harmonic oscillator levels corresponding to
each normal mode. This always results in a loss or a gain by the field of discrete energy

and momentum in units of hosy and %k respectively. There is no contradiction in

accepting this '"dual” picture, which the formalism of the gquantization of the field describes
in an explicit manner. It is perhaps interesting that our first success at explaining this
riddle came from a theory that was relativistically correct, since the field energy as given
by equation 9,1, was derived from Maxwell's equations which are relativistically correct,
remaining invariant under a Lorentz transformation#. Qur resulting quantum theory, having
been derived from the relativistically correct Hamiltonian, is of course also relativistically

correct,

9.9 The angular momentum of the photon.

If we explicitly write out the terms in the Hamiltonian corresponding to the two
polarizations 4=1,2 for each k, we have from equation 9.47
H:'E M (al a, o tal a4 1) (9. 83)
kR, 1 Tk, 1 k,2 “k,2 4 :

" =

where, you recall, for each wavevector X, the ladder operators a4 a; 4 Ccreate excita-
_ -

tions polarized along 'ék 1 and Ek 2 for  1=1,2. The unit vector geometry is sketched
-— -t
below
a3
A
——————— e
/ =
"
€t

#See for example Feynman, Leighton and Sands, v, II, ch. 26,
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It can be seen that the Hamiltonian as given by equation 9.83 corresponds to a system of

uncoupled, two-dimensional, harmonic oscillators, one for each wavevector k. See the

Hamiltonian of equation 6.9, in section 6.1 on the two-dimensional harmonic oscillator. Note

that, for each wavector k, we have that the direction 'ék acts as the z-axis whereas the

polarization direction ‘ékl and Ek 2 act like the x and y axes respectively, i.e.

&8 - el—(‘, 1 eY - eE-Z‘ e, - e_IE . (9. 84)

What about angular momentum? The classical angular momentum of the field is

given by
I=¢ fzs x @ x8 &xF.
v
If we substitute for & and £ in terms of the vector potential A, we find that the total
angular momentum can be split into two parts, i.e. t
i=L~+Ss , ~ (9. 86a)
.th : .
where the i” component of L is given by
3
= - : o a i =
Li' €°ZfAj (Exa&‘.)i AJ.dg:_ ) i=1,2,3 (9. 86b)
j=1 v
and
S = e f@;_ x &) &x . (9. 86¢)
v

We can now show that L is transverse (zero Fourier components along k) while

8 is longitudinal. In particular,
§=Z S, & (9. 87)
= = =

where, substituting the field operators for A and _é_ (equations 9.40 and 9. 43), we have

. t t
Sk=1h(a_1§,la_1§,2'aklak 2) . (9. 88)

Comparing S, with the z-component of the two-dimensional Harmonic oscillator

angular momentum {equation 6, 13), we see that the analogy is complete. We also see, as
in the case of the two-dimensional harmonic oscillator, that states of definite excitation level

along and are not states of definite angular momentum along & (not eigen-

k, *k, 2

1 k
states of §). Since, however, H and E commute, i.e.

;FComparing with equation 9.65 for the total angular momentum P in the field, we see that

this is the integral of x X p per unit volume.

1-'J'.‘his is a non-trivial calculation. For an outline of the derivation see A, Messia, Quantum

Mechanics, chapter 21, § 23 and § 28, note that %=1 and ‘cgs units are used.
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(H,8] =0 , (9. 89)

we are motivated to seek simultaneous eigenstates of both H and §
We have already solved this problem in the case of the two-dimensional harmeonic

oscillator, In an analogous fashion, we define new ladder operators for each wavevector

mode k,
1 R
ak,R = J——E-_ (abl - 1ak,2) (9. 90a)
too_ 1t
a}S'R = = (aE"1 + iay 2) (9. 90b)
and
1 :
aE’L = A/—_Z_ (a.}i,1 + 131(-’ 2) (9. 90c)
+ 1 t .ot
a = = (a - ia ) . (9.90d)
k, L ﬁ k, 1 k,2
These are proper ladder operators, which obey the commutation relations (¢ = R, L)
[a}:_',d” al(.) 0'] =0 (9-913)
(a Y 1=26,,6 (9.91b)
K, aE,O k', k Yo', 0 .
T t
Lo, o 2k,0 =0 (9.91c)

(See equations 6.15. The algebra is identical) and can be used to express the Hamiltonian,

linear momentum and S-angular momentum operators, i.e.

T 1
M=) Moo o T2 .92
. k0
P=Z: hk af a (9.93)
- = k,0 k,0
k0o
and
S = Z # (af a - af a ) (9. 94)
=7 & kR *k,R T %, L %, L
This Hamiltonian has a new set of eigenvectors
n) = . Y eees PR S 9.95)
2 = g e P, "0 (
which are also eigenvectors of P and S. Note that
t ~ .
g = R,L (9.96)

a. =
3,0 %k,0 " ko ° :

is the corresponding number operator for the excitation number oo in the (circular)

polarization (k,0).

A field eigenstate with noRe Pep excitations, i.e.



update

H'k> = ‘0*""'0’“k,R’nk Ly ) (9.97a)
has an excitation energy,
(H-Eo) = (W [(H-Eo)lw) = au(n o +m 1), (9.97b)

a linear momentum

<g>E = w&igiq@ = nkim g+ “E,L) , {9.97¢)
and a component of angular momentum along k given by

(8) = - ). 9.97d

Sh=MmgRr T L 9.974)

We see that the component of the angular momentum along k, the direction of pi‘opag&-

tion, is quantized in units of #. The energy state n = o p + n oy o= 1 (cone photon of

wavevector E) can have values of angular momentum along k of +h or -# but not zero,

corresponding to,

- Sk
[ mym
Pob

kR

=1 n£’R=O

e

L
o

gLt

The energy state = + = 2 (two photons of wavenumber k) can have k-angular
"k TRk L = =

momentum components of +2#, 0, -2# corresponding to

LA

It is clear from these pictures that this behavior can be explained completely by assuming

mk=n_15,R‘nkL=+2‘ 0, -2.

-_ -—

>
=
——

fn
»

" Ty <2

that a photon has an intrinsic angular momentum of # which is always either parallel or

anti-parallel to its wavevector k. Note also that the quantum mechanical description of a two-

dimensional harmonic oscillator explains completely why a single photon (nk = 1) cannot have

a projection of its angular momentum, along its wavevector k, which is zero (mK = 0),




update
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It should be mentioned that a single photon can have a component of its total angular
momentum along a particular axis, which is any multiple of # (including zero), The pre-
ceeding discussion refers to the intrinsic angular momentum, which we will subsequently
identify with the spin of the photon. The total angular momentumn, however, as given by
equations 9.86, is composed of two parts, the orbital angular momentum L and the spin
part S. As we will see in the discussion of the interaction of radiation with matter, electric
dipole transitions change charged particle angular momentum by one unit of #, which is carried

away by the photon. Electric quadrupole transitions, however, changes the charged particle

angular momentum by two units of #, or leaves it unchanged, emitting or absorbing a photon
of one unit of orbital angular momentum, resulting in a total angular momentum of zero or

two units of h.# Transitions corresponding to higher moments can result in (single) photons
of yet larger total angular momentum. These higher angular momentum single photon states
can be obtained by considering the ei-li'-’E plane waves in our original expansion of the vector
potential (equation 9.6), as a superposition of definite angular momentum wavefunctions. This
results in a different labeling of the normal modes, from (kx' ky’ kZ;G), corresponding to the

PR spatial functions, to (k,\,u;0), corresponding to the spatial functions of definite angular

momentum

k) Yy 0w Yy 0.0) & = (o) . & = (8,9)

I th . . . .
where 3y is the X spherical Bessel function and Y)\ u are the (\,u) spherical harmonics,

See problem 7.18.

9,10 The vector potential in terms of the circular polarization operators.

We can invert equations 9.90 to express the linear polarization operators in terms of

the circular polarization operators. This yields,

o1t :}l—i‘(a‘_&R +ayy) (9.98a)

’k,1 7 ?Lf (alt,R * ""LL) (9. 98b)

k2 T 7;-'- (@ r = 1) (9.98¢)

aéz = (a;R - o ) (9. 984)
;Fj = 4-s=0, or j=14+ s =2, See discussion on addition of angular momentum,

section 10,2
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if we substitute these into the operator expression for A(x,t), as given by equation 9. 40,

we have,
1/2 ik . x
A Z e1/2 2T E t .
Alx,t) = (ZEOV) mk e (ak,q - abc) e_ls)cI . (9.99)
k o=R, L
where the unit vectors 'ék (0 = R,L) are defined by
k,0

8, =L@  +id ) (9. 100a)

LR Ukl I, 2 .
and

s, . =-L (@ (9. 100b)

as required by the algebra.
The new complex unit vectors, corresponding to a wavevector k, can be seen to be

orthonormal, i, e.
a

q,00 " B0 = g (9. 101)
and have the properties
AE,R =qL o E;,L =% R (9. 102)
and also
%-E.R 5T EE.L ’ %-E,L = éE,R , (9. 103)

or, combining 9.102 and 9. 103, we have

~

k0" 7 %k0 (9. 104)

We recognize then to be the (classical) complex unit vectors for right and left circular
polarization, and could have been used for the Fourier decomposition of the vector potential

at the outset, i.e.
i x
Alx,t) = E e A (t) & ) (9. 105)
T K, 0 Lo ke

where, using the orthonormality of the 'ék g0 e have the inversion formula, i.e,
-
-ik-x

= = a* . - 3
Ao =V l BBy o &zt e *x . (9. 106)

Note that, as opposed to the plane polarization unit vectors, both the circular polariza-
tion unit vectors behave the same way as k —--k. This property is also shared by the two

circular polarization k-components of A(x, t), i.e.

A -

ko= Age » T RL. (9.107)
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Note also that, as a result, the annoying factor of (- 1)1’ in the operator expression for

Alx,t) has disappeared#. The necessity for it was dictated by the requirement to keep the
coordinate system right handed as k - - k (see equation 9.11 and related discussion.
) was

Nevertheless, since the choice of which direction to call %k (which then gave

8
k, 1 k,2
arbitrary, it seemed unsymmetrical to make 'ék 1 antisymmetric under an inversion of k
—
(k =+ - k), leaving 'ék 2 symmetric. This asymmetry, of course, does not plague the
—8
circular polarization unit vectors and all the resulting formulae. Things always look better

in their natural coordinates!

9.11 Photon modes,

It should be clear by now that there is no such thing as the photon. We have been

able to decompose the vector potential into a variety of normal modes:

(i} plane polarization, sine and cosine standing plane wave spatial modes

[sin(k-x) , cos(k - x}] 'ék 3 (k > 0, #=1,2) , . (9. 108a)

(ii) plane polarization, travelling plane wave modes

X 8 {all k, £=1,2) , (9. 108b)

(iii) circular polarization, travelling plane wave modes

e e ;0 {all k, o=R,L) , (9. 108¢)

and finally,

(iv) circular polarization, radial wave modes

j)\(kr)Y;‘H(BE,QOE)Y)\’”(G,CQ) Y, - (U k o=RL) (9. 108d)
This is of course by no means an exhaustive list, since the energy (Hamiltonian) is always
separable into any set of appropriate normal modes, in terms of which we should always
recover our familiar uncoupled harmonic oscillators. In any such set, ''the photon” of a
particular mode is to be understood as representing one unit of excitation of the corresponding
harmonic oscillator. The choice of the set of modes (basis states) is of course arbitrary,

and one which might as well be made to suit the special properties of the particular problem

#Compare equations 9.40 and 9.99.
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of interest, Plane wave modes are best suited in describing phenomena with well-defined

(eigenstates of) photon linear momentum. Circular polarization modes are the natural choice

in describing phenomena involving well-defined photon spin (component of photon angular
momentum along linear momentum). Radial wave modes correspond to photon states of well-

defined angular momentum, etc. Finally, these decompositions should be regarded as choices

of convenience, since they all correspond to complete sets of spatial and polarization functions,
excitations {photons) in any one set being expressible as linear combinations of excitations

{photons) in any other.



Problems

9.1

9.7

9.8

Derive equation 9.42 for the time rate of change of the vector potential Fourier

component along the mode (k, £).

Compute the expectation values of
Bx, t) = 8(x,t)- Six, 1), B (x,t) = Bx,t)- B(x,t)

for an electromagnetic field in the state |y) of example 9.1.

Using the results of the preceding problem compute the classical energy in the field

using equation 9.1, Compare with the quantum mechanical result.

Compute (8(x,t)), (8(x,1t)), (ﬁa(i,t)) and (& (x,t})) for an electromagnetic field
in the state

lO,.....,O,lk’z,O,.....>- foy .

Discuss the results,

Find the energy and momentum of the state of the electromagnetic field given by

*
By, 5 19

Using the expansions of the running wave mode ladder operators 2 4 a; P in terms
-_— _—3
of the standing wave mode ladder operators bk 3 b; 3 express the states
- -

ak,l |0> f ?(alt,l)a‘0>

as a superposition of the standing wave mode eigenstates of the Hamiltonian of equation

9.30.
Prove equation 9,88 by substituting equations 9.40 and 9.43 in equation 9. 86c.

Prove equation 9. 89,
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10. SPIN
In our discussion of Quantum Mechanics thus far, we have descrihed par-
ticles in terms of their position.coordinates
x = (xy,2) (10. 1a) .
and associated momenta

2= ({p,pP.P,) . (10. 1b)

The wavefunctions could then be expressed in terms of x, i.e.
Vo= ¥ix,y, zt) (10.2a)
or p, i.e.

¥ = ¥lp,.p,p b, (10.2b)

‘the two being equivalent through the Fourier transform (see chapter 2). It should

be realized that equation 10.2 tacitly assumes that the particles can be completely

described in terms of the three coordinate variables and, in particular, possess

no additional degrees of freedom. This is almost always an invalid assumption

and it is remarkable, in a sense, that so many correct éonclusions can be
derived without consideration of the additional degrees of freedom that have been
ignored. The reason for our success thus far (apart from the careful selection
of topics!) is that oftentimes the energies available in the iqteractions are small
enough, or the types of interactions are such so that the internal deprees of

freedom do not participate in the phenomena of interest. A notable example along

these lines is our discussion of diatomic molecules in which the two atoms were

treated as point particles. It is clear that this is an approximation, which

however is justified if the energies of interest are not large enough to alter the
electronic configuration of the participant atoms. How an increase in the energy
would engage such degrees of freedom is illustrated by the behavior of a diatomic

molecule as a function of temperature (section 7.4.1) where,

(i) . if the temperature is below the characteristic rotational temperature
Gr, the whole molecule acts like a point particle with eigenstates ex-~
pressed in terms of the wavevectors (momenta} of the center of mass,
i.e.

lv) = IKX,Ky,Kz) for T << 8_

and a resulting heat capacity given by (S/Z)le,

(ii) if the temperature is above the rotational temperature Br but below

the vibrational temperature Ov, the melecule acts like a rigid rotator



and the eigenfunctions now require two more quantum numbers, namely

the eigenvalues of L3 and Lz' i.e.

A
-
A
A
[ev)

N’> = lKX'KY" Kz’ z,m) for 2]

and a resulting heat capacity given by (S/Z)kBT‘

(iii) if the temperature is above the vibrational temperature but below a
characteristic electronic temperature Qe , the molecule will now also
engage the vibrational degree of freedom and the eigenstates now need

six quantum numbers to be specified, i.e.

v = IKx,Ky,Kz,v, £,m) for & < T << 9
and a resulting heat capacity of (7/2)1(8'1‘.
\
This process, of course, does not end here. At higher energies yeL we would
have to consider the internal degrees of freedom of each of the atoms (electronic excitaticn)
with all the complications.

In a simila.r vein, we have igrored any internal degrees of freedom in the
u—particleé, which are found to obey the Coulomb scattering law (Rutheford
formula) of example 8.7, when we treated them as point particles describahle
by the plane wave states of equations 8.130. A notable excieption to these
simplifications was our discussion of the electromagnetic field where we found
that each mode is characterized, in addition to the three wavevector coordinates,
by an additional degree of freedom namely the two possible states ofb circular
polarigation (parallel or anti-parallel to the respective wavevector). In that

case, a particular mode requires foux variables to be specified, i.e.

(kT k ,0)

where o = + 1 for right and left circularly; polarized light respectively. This
description is exactf and no additional degrees of freedom are found necessary
to render the description of photons complete. Interestingly enough, most par-
ticles that are considered elementary also possess a degree of freedom in addi-
tion to the three position coordinates (or conjugate momenta). In much the same

way as the photon , they are found to possess intrinsic angular momentum of

# o~ .
Say, Ge -ER/kB for a hydrogen molecule.

*

... provided, of course, that the energies are not so high as to allow proce-:.es

such as pair production.



of fixed magnitude,é called spin. The additional degree of freedom is then associa-

ted with the projection of the spin angular momentum along a particular axis of
quantization, say, the z-axis. The spin angular momentum S must then be con-
sidered along with the orbital angular momentum L in describing the total

angular momentum J, given by the vector sum

J=L+S8 . (10.3)

1001 The total argular momentum operator.

The total angular momentum operator is also a vector and as such can be

resolved along three orthogonal directions, i.e..

J=J8& +J8& +J3& . (10.4)

The three components Jx" J, Jz also obey the angular momentum commutation

relations
[Jx,Jy] = irJ ' (10. 5a)
[Jy, 31 = I : (10. 5%
and
(5,51 = in T, _ (10.5&)

which were dexrived for orbital angular momentum, i.e. equation 6. 48, from the
defining equation 6.46 for L, on the basis of the commutation relations of x

and p. They are, however, more fundamental and survive generalizations of
angular momentunr to include spin. Thev can be shown to be a direct consequence of
the association of the angular momentum operator J/h as the‘genberator of ro-

tations. In particular, the bperator

_jg.i/’h
Ra) = e (10.6)

performs a rotation of angle a = l_g._l about an axis along a.

10, :



If R(a) represents such a rotation, the operator J must obey the commutation

#

relations of equation 10.5 which can be abbreviated by the "vector" equation’

IxJ=ind . » (10.7)

Most of the results derived for the orbital angular momentum L were
derived from the commutation relations and so also apply to the total angular

momentum J. In particular, the magnitude squared of J, i.e.

P =3 4+ J‘; + 2 (10. 8)

X z

commutes with each of the three components of J, or
(5,31 =0 (10-9)

(see equation 6,51 and related discussion).

We can also define raising and lowering operators, in complete analogy to

the orbital angular momentum case, i.e.

Ji‘z inxJY R (10. 10)
which satisfy the commutation relations
[.]'Z,Ji] = i—_hJi (10. 11a)
and
(I.11=2807 , (10. 11b)
in terms of which we can also express J°, i.e.
2 = + -n = +
J JJ JZ(Jz mHo=JJ, Jz(Jz+fz) . .(10.12)

We now select the operators J° and Jz’ as in the case of orbital angular
momentum, and seek eigenstates and eigenvalues such that
P l,m = #25G+ Dlj m) (10.13a)
and

lej,mj) = hmj‘j,mj) . {10, 13b)

Again, as in the case of orbital angular momentum we find that we must have

-j < my s (10.14)

(see equation 6,69 and related discussion), and that

J+|j,mj) = m/j(j+l) - mj(mj_tl)._ Ij,mjil) , (10. 15)

i.e. operation with J+ on a state lj,mj), generates a state proportional to

|j,1"nj+1), while operation with J on a state |j,mj), generates a state

—#Note that no ordinary vector obeys this equation.



proportional to |j,mj— 1). Therefore by repeated application we have

(J )m| 1j,mj> L \j,mj+m‘> : (10. 16a)

+

while

@ g m) = g m-mt) (10. 16b)

where m' and m' are integers. In order to satisfy equation 10.14, however,
the two sequences must terminate and that will only happen (see equation 10.15)

if, for some m' and m",
m, +m' o= ] ' (10. 17a)

and
m., - m' = ~j. ) (10. 17%)
Eliminating mj from these equations, we then have

m' + m'' = ZJ , ' (1018)

which admits both integral and half-integral solutions for j. Consequently, j

can take on the wvalues
j=0,%,1,2,2, .... (10.19)

with correspondingly integer or half-integer values for mj. The total angular

momentum éigenstates |j,mj) are then,

m, > lo,0)
1/2,-1/2) |1/2,1/2)
j I,-» 11,0) 1,0
i3/2,-3/2) I3/2,-1/2) 13/2,1/2) |13/2,3/2)
l2,-2) l2,-1) |2,0) HERS 12,2)
etc.

Note that this derivation for the possible values of the angular momentum

quantum number j is identical up_to egquation 10. 17a with the corresponding

analysis for the orbital angular momentum gquantum number £. The difference
there, however, was that since LZ = ~ih-§c—5 we knew , ahead of time thuat the

eigenvalues of L had to be integer multuples of 4.

10.2 Addition of angular momenta. Clebsch-Gordan coefficients,

Consider now a system composed of two parts represented by independent
coordinates and possessing an angular momeutum J;, Jo respectively. Note
that the independence of the coordinates of systems {1} and {2} requires that

[J1k,Jal] =0 for k,2=12,3 . (10.20)

10.



The total angular momentum of the system is then given by the vector sum
IJ=7J +J, (10, 21)
with corresponding eigenstates |j,m} such that

i, m)

5

w7 i+ )5, my (10. 22a)
and
J_li,m) = am|j,m) . (10.22b)

We also have, howe§er, that since the system is composed of two independent
systems, with corresponding angular momenta, the eigenstates

I3, desmy, me) = |5y, my)]je, m) , (10.23)
which form a complete set for the combination of the two subsystems, can
serve as a basis for J° and Jz. We now note that, since

Jz‘jl,jn;mhma) = (le + Juz)|j1,m1)'ja,mu>

a(m, + mﬂ)lji,“ﬁ)‘jn,mg) ,

the states |j;,js;my, my) must be eigenstates of Jz corresponding to the

eigenvélue

m=m + mg . . (10. 24)
Note also that the operator

P o= g 43R r2y o Jp = B+ IR+ 2(Jy Ja_ + leng + 0y, Ta )

commutes with the operators J; and Ji and can therefore be specified at t}.ie
same time.-as the square of the angular momentum of each subsystem. The
states |j1,jz;m1,ma), however, are not eigenstates of J?, since the scalar
product J; - Jp involves the x and y components of J, and J; which are not
diagonal in this basis. Using the fact, however, that j, j;, je may he simul-
tanecusly specified, -we seek linear combinations of the states |j1,jg;m1 ,ma),-
which are eigenstates of J? (and tlerefore also of JZ). In particular we want

to find the coefficients {j;,jeimy,my|j, m) of the eigenstates

linds.gomd = Y Lh, desmame ) Gy dosemy ,ma |, ) ~ (10.25)
m;,ma
#The rotation is unfortunately confusing. The convention adopted kere is that a

state vector with a semi-colon separating the first pair from the second pair
of indeces refers to the (tensor) product states of equaﬁon 10. 23, whereas a
state vector without a semi-colon refers to the eigenstates of J° and

Jz resulting from the linear superposition of a given j;, js pair.
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10.

These coefficients are called vector addition coefficients or Clebsch-Gordan co-

eficieunts.

These coefficients must be zero unless m = m; + mg (equation 10.24) and
therefore the summation is actually over a single index, i.e.

ljr,je,d,m) = z lj1, jesm - ma, ma ) (jr, jasm-my, mg |j, m) . (10.26)

mg

It also follows that ¢' e maximum value of m i3 gives L.

max{m} = max{my, + my) = j; 1 js
and therefore also

max{j} = j; + ja . (10.27)

The next lowest value of m is therefore j + jg - 1, which is expressible as
the linear combination of the states - ‘

[3,5esh - L,dad  and |, jesh, e - 1) .
It can be verified that the two orthorcrmal combiraetions of thece two states cor-
respond to the two values for j,

ij=j1+J‘B and  j= j + jp -1

The next lower value for m is given by j + js - 2, which must be a linear

combination of all the states which satisfy m = m; + my or
b desh -2,58) . lhodesis -1 Je - 1) and |, deshde -2)
It can again be verified that the three orthogonal linear combinations of these
states correspond to three values for j, i.e.
i tja, o tie -1 and j + jg - 2
This process can he represented pictorially as follows. Cousider the plane
my, mg. Each point on this plane corresponding to integer values of the co-

ordinates represents a state of a given m. A: example for which j, = 3 and

ju = 1 is sketched below.




A line of constant m is evidently a line at -45° given by my = m - my.

The largest (and smallest) m has a degeneracy gj{jn(m) of unity (occurs only
once) and corresponds to the state with an angular momertum i = i; + J. The
next lewent m (j; + j» - 1) has a degeneracy of two and must therefvre involve
an additional (orthogonal) state corresponding to j = j; + jo - 1 which possesses
such a z-projection. The next lowest m has a value j; + jp - 2 and {in the
example sketched above) a degeneracy of 3, involving thereby a thirvd value for
j. This process ends when m; = -j; or mg = -jy at which time 1. additignal

increase in degeneracy is observed,

} g6m)

Consequéntly, the lowest value of ; required by this sequence is
“min{j} = i - el - (10.25)

Combining equations 7.27 and 7.28 we arrive at the triangular inequality

by - el <ish+h, (10.29)
since the possible values of j correspond to all possible integer solutions for

the length of the third sides of triangles whose other two sides are given by
the integers j; and js.

e, fas2 o
i *
4=s
i

Note that the degeneracy of an eigervalue 'j is piven T, (2j+1), corresponding

to the (2j+ 1) possible values of rh, and that



h tie
(2j+1) = (2 +1)2j + 1), {10.30)
j=!ir-jal

consistently with the number of independent states given by equation 10.23,

From the preceding discussion, we see that
(i, jesmy ,mg |j,m) = 0 if  m#m; +my . (10.31)
Applying J, and J to equation 10. 25 we also find the recursion relations
T 1/2,. . LT
Wim ) (jrm'+ 11" (g, Jesmy , mg |, m'#1) =
- . 1/2,. . L L
= [ fmy )Gy +tmy + 1T (Jx,Jn;mxil,mle,m Y (10.32)
L3 . /2,. . S
+ [(jg trmg)(jptmg +1)] (s jaim ,maillJ,m ).

:From these equations, we can generate the required coefficients. By way of
example, if my; = j; and m' = j in the left hand side of 10.32, then (only the

top sign survives) and we have

172, . . . . .
@2 Gy desin,i- i - 115,5- 1) =

(10.33)
= Tl -+ * D +J- 3012 G desia, 5- 32 13,1
where we have used equation 10.31, i.e.
m=m'-1 = m+mg = m=m-m -1=j-j -1

Consequently, {j1,je:j1,j-j ~1lj,j-1) can be computed if iy, jasr, -l
is known. Setting my = j; and m' = j - 1, the lower sign of 10.32 yields a

relationship between
Grydash,i-dulii) and Gudash - Li-h 1 i=1, Cadesi,i-d - 105,5-1,

which, combined with 10.33, yields one more coefficient in terms of
Gy, desin.i-h lj,j), and so on and so forth, Finally, the process is closed

by the requirement that the states are normalized and that the .Clebsch-Gordan

#

coefficients are real numbers”. The orthogonality and normalization counditions
require that

Z G s desmy ,maliy, je, 3, mY Gy, jasmy, ma |Gy, e, §', m') = 6mm'6jj'
my, Mg
and
D s mali s, i mY G deimdmg L e dom) = 6 e

jlm

#Evidently, if one of them is real, the rest of them are also real by virtue

of equation 10.32.
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update

These relationships express the fact that the matrix of the coefficients, form a

unitary matrix, which (since it is real) also performs the inverse transformation,

i.e.
[, jasmy , mg) = Z [iv, 2, §, mYCh L Jasmy, ma G, da, §, m) (10. 35)
j,m
The Clebsch-Gordan coefficients for the common cases of j; = 1/2 and j3 = 1

are listed below,

Table 10.1la Clebsch-Gordan coefficients for jz = 1/2, j; = ja.

my = -1/2 mg = 1/2

. 1/2 . 1/2
R [btm+1/2 ji-m+1/2
J=ho-2 <’h—2‘ji_+"1—> ( 5+ >
. o me1/2\1/2 o eme1/2\72
7Eh 2y T 1 2y 71

Table 10.1b Clebsch-Gordan coefficients for js = 1, j; 2 ja.

mp = -1 mg = 0 mg = 1
Con o \/(jl +m+1)(j; +m) _\/(jl -m)(j; +m) (G -m)(jy ~m+1)
J=h Zi (25 + 1) ERGNER)) Zih (21 + 1)
\/(jl-mml +m+1) —m _\/(jl +m)(j, -m+1)
i= i Zhih + 1) Wk TD Zh G + 1)
Co e [Gy =m)y -m+1) \[(jl-m+1)(j;+m+1) [y +m)( +m+1)
3= h (23, +1)(2}, +2) (25, + D, t1) N 25 +1){(2j, +2)

10.10

The Clebsch-Gordan coefficients are also useful in expressing products of the spherical

harmonics. In particular, we have

R TP

k _ La+1)(28, +1)

Yy me® Y, (@) = [ 1
£=[;Zg-!,1 ‘

where = (8,0) and m = m, + my, which can be used in turn to evaluate integrals of

1/2
__‘l.wm_] (ts, 2,30,0] 4,05 (24, I.l;mg,mlljl,m>Yz’m(Q)

(10. 36a)



update #2

products of three spherical harmonics, i.e.

1, s | 42, maidy , my ) = fY}; @ Yy @Y, ) 40
D het .

10,11

(10.36b)

where d{ = sin®d€dy, which we can compute from equation 10.36a and are given byf'L

1/2
I(fy, my | ta, mgidy ,my) = [(ZZZ:{IZ)JS—H;—UJ (2, 2130,0)25,0)Cta, £y 3mma, my | 45, ma)

These integrals occur quite frequently in perturbation calculations. See, for
example, equations 8.89 and 8.92 of example 8. 4.

It should also be noted, before leaving this section, that since orbital
angular momentumn contributes integer quantum numbers, of necessity (see

equations 10.24 and 10.29), the half-integer values must be contributed by the spin

angular momentum.

10,3 The spin of the electron.

In 1922 Stern and GerlachT in a set of experiments with striking results
measured the possible values of the magnetic moment of silver atoms by send-

ing a beam through a magnetic field with a strong gradient. If the atoms possess

a magnetic moment )y, there is an energy associated with their orientation in a

magnetic field given by (see Appendix F)

B
e - ™
\\\ - 7
p
\ t
U= -u-8=-pbcosP (10.37)

(energy is lowest when g and B are parallel). If the magnetic field is non-

#

See for example C. Claude-Tannoudji, B, Diu and F. Lalo€, Quantum Mechanics

(1977), volume II, complement Cx'

see R. Eisberg and R. Resnick, Quantum Physics, section 8-3 for a historical

account.

(10. 36c)
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uniform there is u net force acting on such a dipole given by

F=-9VU = pcosp v8 (10. 3%)
(for a magnetic rfield along a fixed particular directioa). I+ it 15 .0 (rranged
that the gradient of B is perpendicular to the beam, the vertical dellection
measures the magnitude of the force and, by extension, the projection of the
magnetic moment on the direction of the magnetic field, or pcosp.. This anal-
ysis would predict a range of displacements corresponding to all possible rela-

tive orientations, subtended angles g, i.e.
-l S pcosfB <y

in marked contradiction to the experimental'results, which yielded two well-defired,

symmetric (about zero deflection)displacements, corresponding to + U, with no -

intermediate values. These results may be takei as in support of the quanti-

zation of the z-component of angular momentum, since the oruital motion of a

charge q. in a magnetic field £ gives rise to an interaction

. 9. ' )
H' = - < 5.1 (10.39)

(see example 6.1 and problems 7.5, 7.7) or if B = B'éy we have for an electron

(@, = -e)

H = s>~ BLZ = [.LBBm

3 . (10. 40a)

g
where
eh

Bg =5 = 9.27 x 107" amp-m® v (10. 40%)

is the Bohr magneton (9.27 X 1072 erg/gauss in c¢,g.s) and m, is the z-
component orbital angular momentum quantum number. Even though, however,
this is in qualitative agreement, the quantitative description of the behavior, as
given by equation 10. 40, does not agree with the experimental results. The
situation, in the case of the silver atoms is actually quite complicated because

there are several electrons involved. It becomes clearer if hydrogen atoms in

their ground state are used in the Stern-Gerlach apparatus (Phipps and Taylor,

1927)#J for which equation 10, 40 predicts no effect since, for the ground state,
&= m, = 0. The ground state hydrogen atoms, however, also yielded two distinct spots
leaving no doubt that a magnetic moment can arise for reasons other than can

be accounted for by orbital angular momentum.

These difficulties (aind numerous others) were removed by the proposal put

*rNotably, after the proposal by Uhlenbeck and Goudsmit that the electron possesses

spin.

12



forth vy Uhlenbeck and Goudsmit in 1925 (interestingly enough, on the basis of
spectroscopic data, quite independently of the Stern-Gerlach experiments which

were not immediately appreciated) that the electron possesses intrinsic anpular

momentum (spin) whose magnitude squared is given by

(s°) 2 (10. 41a)

1"
ST

and whose z-component is given by
(S )=+ , (10. 41b)
z -2
corresponding, of course, to an 8 = 1/2 and an m_ = + 1/2.
Associated with this spin, an electron also possesses a magnetic rmmoment

proportional to S, i.e.

M _ -
e =g 6B s, (10-42)

where Ky is the Bohr magneton. The constant of propertionality g is called

the spin g-factor and found to be equal tu#

g >=2.00 . (10-43)
Note, incidentally that any projection of Egs) will have the values
(s) o 44
pl - 4y (10.44)
7
since Sz =+ #/2
Other elementary particles also possess spin and magnetic moments. In

particular, the proton and the neutron are also spin 1/2 particles with corres-

ponding magnetic moments

B K
* gp(—ﬁl—\l—)g = + 5.59 (~—,I,-\i)§ (10. 44a)

B,

and

"
+3.83 () S (10. 44b)

i
n

b=t (}%IE)§

where BN is the nuclear magneton,

= 0,505 x 107% A.m% (10. 45)

s Y Y
p

The fact that the constant of proportionality g (apart from the dimensional

factors) differs from unity should not be surprising. Even classically, the spin

#This result can be derived from the relativistic Diwac theory (e.g. Merzbacher,

Quantum Mechanica),an ed., chapter 24.2). Precise spectroscopic data (Lamb)

yield a value ge = 2.00232 in complete agreement with the theoretical result

ge = 2(1 + a/2w), when radiative corrections are included (a = 1/137 = fine

structure constant).
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10.

angular momentum is related to the distribution of mass of the spinning body,

whereas the magnetic moment of a spinning charge depends on the charge dis-

tribution withii: the body. It is interesting that (lassically a uniformly dense

sphere, with all the charge residing on the surface, would alsc have a g of 5/3.
" See appendix F, problem F,15,

It should be noted that the theoretical justification for the magnetic moments

of the proton and especially the neutron are in considerably worse shape.

10.4 Spin 1/2.

10.4.1 Spinors and the Pauli spin matrices

If the eigenstates of S and SZ are given by ‘bms) i, e.
$°ls,m ) = #%s(s+ )]s, m) _ (10, 46a)
Syls.m) = am [s,m) , (10, 46b)

then in the subspace s = 1/2 there are only two states

1
{172, 1/2) =
0
1
|172,-1/2) = R
0
which are often denoted |+) and |-) for short, corresponding to 'spin up" or
"spin down''., A wavefunction for spin 1/2 particle, is then a two-dimensional
vector, i.e.
WY = |1/2,1/2) v (x,y,2) + |1/2,-1/2) ¥ (x,y,2) ©(10.47a)
or, equivalently
v, (x,y,2)
¥ = . (10. 47b)
Vv_(x,v,2)

The states represented by equations 10.47 are called spinors. They are the

natural wavefunctions in the relativistic Divac equation, but must be introduced

in an ad hoc way in the Schrodinger equation, wiich was derived on the basis

of a scalar Hamiltonian,

The three components of S
§=8S5 & +85 & +S5 ¢ , (10.48)

being components of an angular momentum operator, also satisfy the commuta-

tion relations of equation 10.5, In addition, however, for the special case of

14



s = 1/2 we also have

Sitzsirzsi:%}-ha (10. 49)
and also
=8 =0 {10.50)

from which we deduce, since
o .
& = (s_+ isy)" =/;§j{//§;77+ “S,;Sy + sysx) =0,
that

+ =
sty S S 0 (10.51)

y x
or that the operators Sx’ Sy' SZ anticommute.
The operators Sx, Sy and Sz are conveniently expressed in terms of the

Pauli matrices, defined by (for spin 1/2)
s=21 0.52)
2=350 : (10.

and given explicitly by

o = , o = s o= ] ]+ {10.53)

ol = 0’; =02 =1 (10 . 54a)
0.0 = -0 0 = 1i0 et cycl. (10. 54Db)
X vy y X Z
o 0o =i {10-. 54c¢)
Xy 2z
Tr(oc ) = Tr(o ) = Tr(o ) =of ' (10.54d)
x y z : ’
and
det(ox) = det(cy) = det(oz) = -1 . (10 . 54e)

Note also that the three Pauli matrices, augmented by the identity matrix

{2 x 2)

1= = Og ., (10.55)

form a complete basis in which any 2 x 2 matrix can be expressed. In other

words, if C is any 2 X 2 matrix

4
C = ce0p + c 0+ 9, + ¢co = z c.o (10 . 56)

fr

r = Trace = sum of diagonal elements.

lu. 15



where

C = (10.57)

10. 4.2 Rotation of spin 1/2 states.

Note that, using equation 10.6 for the rotation operator, we have for a
system in an £=0 state

-ia.8/k
Rla) = e . (10. 58)

or, using the Pauli matrices for a spin 1/2 system,

-ia-g/2
Ry ppla) = e . (10.59)

Since any component of 0 has the property

2n 2n+l .

04 =1 = oi =z oi s i=1,2,3 (10. 60)
we can compute the rotation operator of equation 10.59 in closed form. Tli
yield:

= . (2 - i sinte ' 10, 414

Ry ple) = vosG) 1 - isingzlo (10, 61a)

where 1 is the identity matrix and o is the projection of o alony the direction

of the rotation vector a, i.e.

¢ =-1<(0 a
a p. &

+0a +0a). (10.61b)
a yy z Z

X

Note that, therefore, for spin 1/2 particles# a_rotation of 27 about any axis

changes the sign of the wavefunction, i.e.

Ry jpf2m) = -1 (10.62)
. or

/¥, (x) ¥, (x)
(10.63)

I
1

Ry ja(2m) lw) = &, ,,(2m)
v_(x) V_(x)
This may appear strange since a rotation of 360" should return the sv- tem i its
original state. The minus sign, however, is only a phase factor which will not
enter in computing expectation values of operators corresponding to physical

observables.

#

or half-integer in general, in fact.
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10. 17

10, 4.3 Spin 1/2 wavefunctious

From the preceding discussion we saw that the wavefunctions of spin 1/2
particles are not scalars, but can be represented as two-dimensional vectors
(spinors). We can express these eipenfunctions in the basis of the simultaneous
eigenstates of 1% and Lz’ and S° and Sz‘ In particelar, using the result. of
the acidition of angular momentum we have, for J, = L and Jp = S, for a

particle of spin 1/2 in a total angular momentum state (i, m), we have

l2,1/2,5,m) = |8,1/2;m=-1/2,1/2) {8, 1/2;m - 1/2,1/2};, m)
{(10. 64)
+ ]2, 1/25m+1/2,-1/2) {8, 1/2;m + 1/2,-1/2]j, m)

(see equation 10.26). The matrix elements multiplvirg the two ket vectors, on
the right hand side of the equation, are the corresponding Clebsch-Gordan co-
efficients tabulated in Table 10.la for the case j; = 1/2. From the restriction
on the resulting angular momentum sum, we see that there are only two possitle

values for j (see equation 10,29}, namely

= 4t 1/2 (10.65)

’

Therefore, we have for the total angular momentum wavef{t .« *iuns, in the

coordinate representation,
¥ (6,0 = (8,9[L,1/2,211/2,m)

(8,0l8, 1/2sm - 172, 1/2)(8, 1/2;m~1/2,1/2|2+1/2, m) (10, 66)

+

(8,0]2,1/2;m+1/2,-1/2)(%, 1/2;m+1/2,1/2|£+1/2,m}

or, substituting the spherical harmonics and the corresponding Clebsch-Gordan

coefficients,
; Sd/2,
b (4tm+1/2) 1£,m“1/2(9,w)
. 1
9,9|2,1/2,2+1/2,m) = 551 _ (10.67)
- S/2.,
T T (L+m+1/2) 1L’m+l/2(e,rp)
s

These states are designated in spectroscopic notation by the convention
2s+1
£y,
J

where
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£ letter

W NN e O
QO "o ®»

alphabetical

By way of example, a ZP3/2 state represents s = 1/2, £ = 1 and
3
j=4+1/2 =3/2, a D1 state represents an s = 1 (possible in a two electron

configuration), £ = 2 and j = 1.

10, 5 The spinning electron in a Coulomb field. Spin-Orbit interactions.

In our discussion of the hydrogenic wavefunctions (section 7.3), we solved
the Schrodinger equation with a Hamiltonian consisting of the kinetic energy (in
the center of mass coordinate system) and the electrostatic Coulomb atiraction

between the nucleus of charge Ze and the electron of charge -e, i.e.

1 3 Ze®
Hy = P° - Tt (10. 68)

While this is appropriate for a description of a spinless electron, additional
terms must be taken into account if the spin (and resulting magnetic moment)

are included.

Strictly speaking, equation 10.68 is not correct relativistically because, in
writing the potential energy in terms of the (static) Coulomb potential,” we have

ignored the fact that the electron is moving. In a frame moving with the electron,

a magneﬁc field will appear, resulting from thé relativistic transformation of the
electric field generated by the (~ stationary)nucleus. From the transformation
equations of the E&M field.r, we have (for the component of the magnetic field

perpendicular to the velocity between the two frames) for (v/c)® << 1 classically

Bly=- = vx (8 (10. 69)

JF’I‘he £ = 0 states were always Sharp (non-degenerate), the £ = 1 states were
found to contribute the Principal (strongest) lines in the spectrum (44 = 1 for
strong transitions to the £ = 0 ground state), the £ = 2 states gave Diffuse

LA )

transitions (high degeneracy, low instrument resolution in early days).

was omitted (reserved for energy) and the rest are alphabetical.

fsee for example, The Feynman Lectures on Physics, II, ch. 26.
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where 8 is the electric field in the stationary (nucleus) frame, v is the velocity
between the two frames (electron-proton relative velocity) and A' is- the magnetic

field in the frame of the electron. Making the substitutions

1 ..
v=2p

and
x

g lp_ 1oV X

- e -~ e 9dr r
we have

_ 1 1 8v(r)
8l = - T 5 L (10.70)
emc

where V(r) is the Coulomb potential and L = r X p is the orbital angular
momentun, Consequently there is an interaction between the magnetic moment

and this magnetic field which, is the electron rest frame, is given by

. - ,(s)
{LLS}el - "u M {Q}el .
or, substituting for the magnetic moment (equation 10.42),

Be 1y,

- -s (10, 71)

(5.3 = J
LS e1 2P e
The transformation of the (L,S) coupling energy back to the nuclear rest
frame requires some care because the two frames are not merely moving with
respect to each other but also in relative acceleration, by virtue of the circular

motion, This contributes a kinematic effect, as a result of the way velocities

transform relativistically, called the Thomas precession. If two frames are in

a state of relative translation with a velocity v and a relative acceleration

of magnitude 2, then the two coordinate gystems appear to be precessing rela-

tive to each other at a rate given by the vector anpgular velocity vectér#

0] =———1-—vxa , (10.22)
T 2¢® T T
which can be evaluated in the nuclear rest frame to give
1 1 e
Wp = - To ¥Xa=- 21)(_11::— zy‘Xé. (10. 73)
2¢ Zmc 2mc

Now a classical magnetic moment Y precesses about a constant magnetic
field @ in such a way as to maintain a constant subtended angle B (see sketch
on page 10, 11) so that, in a non-dissipative environment U = -g@-8 is constant.
This precession frequency is called the Larmor precession and given hy setting

the torque equal to the time rate of change of the anzular momentum, i.e.

ﬂee, for example, R. Eisberg and R. Resnick, Quantum Physics, appendix J.




ds
E.Xg..:&' =—L X5
so that
1 1 9V ;
9= =z Fal & (10.74)
m°c

Comparison of this fl;equency with the Thomas precession frequency shows that

it is exactly twice as large, so that we have to reduce the energy {ELS}el by

a factor of twé to bring it to the nuclear rest frame. Conséquently, the appropri-
ate interaction Hamiltonian is given by

gez(_ I.‘AR)ao

Hys

(10.75)
2m®c®

where -ER is the hydrogen atom ground state binding energy (equation 7. 64).

The most important effect of this term, is to destroy the conservation of

orbital angular momentum. In particular,

i i
L,=%[H +H gL l=5HgLT#0,

z

&l

whereas the total angular momentum is conserved, i.e.

d
$ 9, < L8731 =1(LJ]15+L(8J]

1"

(L,L1's+L(ss,)

' r
(L, L,Js,_+ (L, L s +L.0s.,s 1+ L ts..s,]
= 0

Note, that J°, L? and 5* are all conserved, i.e. the magnitudesof the vectors
|_{|, l_I:' and |_§| are constant. The projection of L and § on a particular
axis (say, the z-axis), however, are not constant, whereas the projection of J
on the z-axis is constant. It is easy to see that L-J = L2+ L-s’ and

5.7 = 8% + S-L are also constant. This suggests the following picture that is
cénsisten_t with the above. The total angular momentum J precesses ‘about

the z-axis at a fixed inclination, The orbital angular momentum L anti the
spin angular momentum S precess about the total angular momentum J, both

at fixed angles, This situation is sketched below.
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We .can compute the effects of HILS using perturbation theory, since the

magnitude of this interaction scales with the ratio ER/mcz and is therefore small.

In particular, the first order correction, is given by

AE o = (ni4, s, j, m|H'|niL, s, j, m)

(10. 76)
g Z(- & )ac
= R s, 0)a, 5, 5, m|L 8]0, s, §, m) .
2m® c® rt

The radial integral is tabulated in Pauling and Wil.or, Introductior to Quantum

Mechanics# for various powers of r (see table 7.2 below). To evaluate the (Eﬁ)

matrix element, we note that

Les=2(P - L* - &)

hz
5 LiG+1) - #a+1) - 3/4]

or
ha
= 7.@ , for j =2+ 1/2
(L-8) . (10. 77)
= - L, for j=4& - 1/2, £ 40

#pages 144-145.



TABLE 10. 2 Hvydrogenic radial integrals.

() = 280 {1 +3q - AED o 1B ”3]]

ZZ

o

z

n

(r) = 22 [H%[l--‘ﬂf—l—)]}

) = £
T apn®
3
Ay = __3__._2_'__._._
r? asn®(4 + 1/2)
el
Ay = Z

r® adn® (L4 +1/2)(2+1)

Ly = z403 - aL+1)/n°]
r* 2a0n® 4(2+3/2)(4+1)(2° - 1/4)

Combining the two expectation values, we then have from equation 10.76

ZalEn[a3 1
- = .(ZL+])(Z+I) [ BT 1/2
AE (10. 78)
LS ZB'En|<13 .
= - = .l(22+1) o j= L - 172, 240 .

The constant a is a dimensionless constant called the fine structure constant

and given by {see also equation 7.63 and related discussion),

e 1

PO
& = Zmeghc ~ 137.0377 137

(10.79)

10. 6 Relativistic corrections to the kinetic energy.

Before leaving this area, it should be pointed out that it would be incon-
sistent to include the spin-orbit coupling as a perturbation term and omit the

relativistic correction to the kinetic energy, to the same order. In particular,

since
K = (p°c® + mzc4)l/2 = me?
R (10. 80)
~ 22 LI 5l
2m ; Gm) e
2me?

we should include a second correction term

10.22
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I S i
Hie1 = - 3 (Zm) (10.81)
2me
so that
1 1
Ho= Hy + Hpg+ H_ g - (10. 82)

The energy levels then, corrected to first order are given by

BE = (Hpgl + (H gk .

Note that
t 1 2 2
H = - —— K° = - (Hy, - V)
rel 2mc? 2mc®
— (HE - 2H,V + V@)
2mc?
so that

' _ 1 (o) {0)
(Hogd = - — (e’ - 287 (Vh + (v, ]

The matrix elements (V) and (V®), can be computed by direct integration,

and using the results of Table 7.2, yield

4n )
L+1/2

rel®

Al !Enlaa

AE, = (H 3 - (10 83)

4n®

Combining this result with the spin-orbit calculations to. the same order we

have
z® [Enlaa 4n
AE = AELS + AErel = T 3 - T 'E) (10, 84)

for both j = £+ 1/2 and j = £~ 1/2. By way of comparison, the eiergy levels,
#

as given by the relativistic Dirac equation, are

: -1/2
E_ . |1+ (Zaf _ . (10.85)
me? OlG+1/2P - (ZaP + (n-j-1/2)]

#Merzbacher, Quantum Mechanics, (2nd Ed.) ch. 24.4.
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11. INTERACTION OF RADIATION WITH MATTER., EMISSION AND ABSORPTION.

11.1 The Hamiltonian.

We have seen that the Hamiltonian of a single charged particle moving in the presence
of a potential U(x) 1is given by

1 ‘
Hparticle = 3 R°2 + Ul®) . (11.1)

We have also seen that in the presence of an externally imposed electromagnetic field, this

#

Hamiltonian must be altered through the change in the momentum, i.e.
B R~-9A , (11.2)

and the addition of the interaction with the external electrostatic field, i.e.
Ux) ~ Ulx) + q 2 (x,t) , (11.3)

where A(x,t) and ®(x,t) are the external vector and scalar potentials respectively. The

resulting Hamiltonian can then be written, as we have seen,
1
H=3=1(p-qA)@-qA+Ux+q9 . (11. 4)

This is in fact the Hamiltonian we used to solve a variety of problems* in which we ignored
the effect of the charge on the electromagnetic field.

On the other hand, in the absence of charges {and currents), we have seen that,

starting from the classical energy of the electromagnetic field (see equation 9. 4)

E=feo [UAP + 1L xal1 e, (11.5)
v

we were able to definé a Hamiltonian corresponding to a system of uncoupled harmonic

oscillators in each of the wavenumber and polarization modes, which is given, in terms of

the corresponding ladder operators, by#
Hpog = 2 My (an 4y , +3) (11.6)
field k'k Lk, 8 27 7 :
k, £

¥

See equation 1.43 and related discussion,

+ ;
'See example 6.1 on the motion of a charged particle in a uniform magnetic field
[é = - %(5 xB), v = 0], and the discussion of the hydrogenic wavefunctions

e
[é =0, 9= 41re°r]'

or, in terms of the circular polarizations

- t 1
Hyola _Z N I (11. 6"
k,o



If we now combine the Hamiltonian of equation 1l.4 for a charged particle in the
presence of an electromagnetic field, with the Hamiltonian of equation 11.6, we have

H = 71;; (B-9.A) (R-q.A) + Ulx) + Z huy (a; PP —é—) (11.7)

. & Kk K, K,

In writing equation 11,7, we have included the electrostatic field energy of qccp(ic_, t) into
U(x). You will recall that the Hamiltonian of equation 11.6 was derived from the energy
of the field, as given by equation 11.5, assuming that ¢ = 0 and 'aaE A = 0 (radiation
gauge), as is always possible through a gauge transformation in the a;sence of charges and
currents (appendix J). This, of course, does not disallow an electrostatic field, which can
always be superimposed on the electromagnetic field described by the radiation gauge. It
is only that that part of the field is not described by the Hamiltonian of equation 11.6. It
should also be noted, that the vector potential Alx,t), as it appears in equation 1l1.7, is
to be understood as an operator in the sense of equation 9,40 (or equation 9.98), and was
not written in that form in the interest of brevity.

If we now expand the first term of the Hamiltonian of equation 11.7, we have
3

1 =1 a2 A e .2
Tm B -9A)R-qA) =55 p -5 (RrA AP tF AT L (11. 8)
Note that
Ap=sp-a+{A-p-p-Al ,
or

Ap=pa+y [a,p]
i

and substituting for p = - iﬂ(% -A) ,. we have

A-p =p-A + i (%'_é) . ) (11.9)
But in the radiation gauge, the vector potential is divergence free and therefore
A-p=p-A, (11. 10)

or A and p commute &nd therefore,

1 1
E(B'qcé)'(R'qci)=i-n;pa-—r§E'é+ 2m A% (11.11)

Substituting this expression in our Hamiltonian, we see that it breaks into three parts,

H= Hparticle * Hyeld ¥ Hinteraction (11.12)
where
PR S
Hparticle =3m P T Ux (11. 13a)
is the Hamiltonian of the particle alone,
H = mw, @l a L+ (11. 13b)
field k Yk, 2 °k, 24 272 :

k2

is the Hamiltonian of the electromagnetic field, in the absence of charges and currents, and



11.

2
a, L %
Hiteraction = " m R'& T35 A4 (11, 13¢c)

is the interaction Hamiltonian.

The problem posed by this total Hamiltonian is quite intractable in the general case,
and one which, as a consequence, we will tackle through the machinery of perturbation

theory.

11.2 The unperturbed Hamiltonian and eigenstates.

Qf the total Hamiltonian of equation 11,12 we will consider as our unperturbed

Hamiltonian H,, in the sense of the discussion of equation 8.1, as given by

Ho = Ho rticle * Hpjela - (11. 14)

This Hamiltonian includes the coordinates and momenta (operators) for both the particle

motion and the dynamics of the (charge-free) electromagnetic field, i.e,

*
= Holx,ps [a ;.3 ,] P, (11.15)
o B e % o)

possessing all the degrees of freedom for the description of the combined system. The
unperturbed eigenstates of this Hamiltonian are then (tensor) products of the unperturbed
eigenstates of each subsystem (particle, field) separately, since H, is the sum of the two
partial Hamiltonians (no cross terms), which describes uncoupled subsystems (see equation

4,6 and related discussion). We therefore have
[¢% = [wz)klak = [vix)iak ' (11. 16)

where V(x) 1is the wavefunction corresponding to the (unperturbed) particle motion and
13) is the field eigenstate (i.e. equation 9, 48).

In the absence of a coupling between the particle (atomic) Hamiltonian and the field
Hamiltonian, these states would be stationary states of the combined system. In particular,

the atomic subsystem, if initially in an excited state would always remain there, that being

an eigenstate of the system. It is therefore, only through the unavoidable action of the
interaction Hamiltonian that an atom in an excited state can transition to the ground state
emitting a photon or, conversly, be raised to an excited state through the absorption of a

photon. Alternatively, the states Y)Y of equation 11.16 may be eigenstates of H,, but

not of the total Hamiltonian

Ha=H +H (11.17)

interaction

and are not therefore (exact) eigenstates of the combined particle-field system. We will find

that the presence of the electromagnetic field induces transitions between the atomic (quasi-)

eigenstates, In fact, it is not even necessary for the electromagnetic field to have any
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excitations (even though ... they help) for such transitions to occur. Even in the '"absence'
of an external field (read: electromagnetic field in the ground state), the atomic system in
an excited state can exchange energy with the field, raising one (or more of its modes to an
excited state, as the charged particle transitions down to a lower atomic state. This is the

phenomenon of spontaneous emission, recognized by Einstein as necessary for the treatment

of the problem of thermal equilibrium between electromagnetic radiation and the walls of

a surrounding cavity,  which cannot be understood unless both the atom and the radiation

field are treated as interacting quantum systems.

11.3 Radiation transitions in the weak field approximation.

The eigenstates of the unperturbed Hamiltonian form a complete set of basis states of
the combined system, and it is of course possible to express any state of the total
Hamiltonian as a linear combination of those states.

In what follows, we will treat the case of transitions of the total system (particle +
field), from some initial total state !Cﬂi) to a final state ‘wf>1-. Such transitions include

emission of radiation, where

[initial system> excited atomic>

state = Isystem state |n field state)

and
lfinal systern> _ ‘lower atomic> lg + m photon y
state system state field state

and absorption,

initial system, __ lower atomiic .
I state ) |system sta\te> |_r_1_ field state)
and
lfinal systern> _ |excited ai:om;'u:> Ig_ - m photon y
state system state field state

We can compute the transition rate of such events, using the results of time dependent
perturbation theory, in particular, if we can ignore the finite energy spread in the initial

¥

and final states , we have to lowest order,

W= Zn f e l? e, - &) , (11.17)

where the delta function is to be understood in the sense of a subsequent integration over
some density of states.

To stay consistent with the order of the perturbation calculation, we should exclude the

#See, for example Feynman, Leighton, Sands, The Feynman Lectures on Physics

, v I,

section 42-5.

TThe subscripts o denoting eigenstates of the unperturbed Hamiltonian are implied.

*See sections 8,5 and 8.6,
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second term in the interaction Hamiltonian of equation 11.13c since it is higher order in

the vector potential#f We therefore have,

q
b oo C a
B -m b

[

(11.18)

which substituted in equation 11,17 yields

q
i = 1 = Wl ALY IE aE - £y (11.19)

We see that the transition matrix is proportional to the matrix element of the com-
ponent of the particle momentum in the direction of polarization of the local value of the
vector potential,

Using the commutation relations of the coordinate x of the atomic particle with the

particle Hamiltonian, i.e.

in
£ Hpart - Hpa.rt E*m B o

] = (11.20)

[5’ Hpart

we can re-write the matrix element in a way that is more useful when doing computations

when using atomic wavefunctions in the coordinate representation, In particular
. v ig w |
- = Klpeal) = - = (= Hy - Hpgc_)-fx_lwi>

or, since Hp operates on the (unperturbed) atomic systermn eigenstate only,

>

q
c i
- = WlprAl) = 5 a e - e (Wlxealw)
where € and e, are the initial and final state energies of the atomic subsystem. If
we now define the Bohr frequency of the transition, i.e.
e+

we have
q
- = Wlp- AW = iug a WlxeAlW) (11.21)

or, using the electric dipole moment operator

d=q.% , (11.22)
we have
q
[+ . . .
- WelprAld) = dw Wld-aly) . (11,23)
Substituting into our original expression we then have for the transition rate
wa?i 5
o = 7 L Wld-Aled P sE; - B , (11.24)

#This (weak field) approximation is valid as long as a. l_f}_] << LEI
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To compute the transition matrix element, we now need to substitute the quantum

operator expression for the vector potential#. Using plane polarization modes, this yields

1/2 ik’
Wla-ale) = hp D el P ylae
El,zl N

x ot ) .
Eakr 2 +(-1) a_kv’ z:] Wi>‘ek. Iz
(1t.25)

We can now separate the matrix element into a product of a matrix element (integral)

of operators over the particle coordinates and a matrix element of operators over the field

coordinates, i. e,
.

k'-x e T k' -x ot

Wlde™ T lag g r D a0 p 1) = Gelde™ Tl allay, o0+ (D7 4T18)

v

particle field
(11.26)

The first matrix element,
ik'.x ik'ex

d®x (11.27)

M-k = q (Wlxe™ Tly) = g [[Wf(}_) x V(] e
v

we recognize as the (spatial) Fourier transform of the quantity (_;Eq/;\yi), evaluated at -k’

(see appendix B, equation B.2).

The second matrix element, can be seen to connect an initial field state '£i> to a

final field state i_gf) through the annihilation or creation of a single excitation, Consequently,

the matrix element is zero (and therefore the transition rate also) unless the final field state

has one more or one less photon, in some mode (k, 4), _than the initial field state, with the

number of photons in all other modes the same, i.e. we must have:

case a: nl(f)/& = nS)I, +1 & “1(5? P nf;)u o for (k',2") # (k, )
- (11.28)

case b: ng)z = HS)L -1 & ﬂl(j? gt = n-}(:.? g for (k",2") # (k, £)

[ Unfortunately, it is difficult to arrest the proliferation of mode indeces in this

calculation; they really are three:

(i) The mode (k, #) denotes the one mode whose occupation index (number of photons)

changes by one, up or down, between the initial and final field states,

(ii) The mode index (k', 4') denotes a (dummy) summation index over the Fourier

components of the vector potential operator.

#i.e. equation 9.40 for plane polarization modes, or equation 9.99 for circular polarization

modes.
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(iii) The mode index (k'',4') denotes a running index over the modes of the initial

and final field states. ]

A restrictive condition of the type expressed by equation 11.28 is known as a selection

rule. This particular one tells us that transitions described by equation 11.24 can oniy

involve the emission (case a) or absorption (case b) of a single photon.# Or, in other words,

not only must the final field state, in a particular mode (k, £), have exactly one more or one

less photon, but that that can occur for exactly one mode.

The summation of equation 11.25, over the vector potential Foufier components along
the field modes (k', ') now mercifully collapses to a single term, for initial and final field

states obeying the selection rule of equation 11.28, or is identically equal to zero, i.e.

(n_g')!l + 1)1/2 ‘ébz-_lv_iﬁ(}_c_)* , case a {(emission)
<t¢'@-A!w>-(—1——)1/Z P )12 2 .M (-k), case b (absorption)
f22IV7 T 2V, P, 8 ®k, 4 HgglnS) . cBS absorption (11.29)

0 , otherwise

Note also, that since the final state has one more or one less photon in the mode
(k, £), the energy difference between the system (particle + field) initial and final states is

given by,
+ - issi
(e[ hmk) €, , emission

g - (ai + hwk) , absorption

#’I‘his is not to say that multiphoton transitions are dissallowed. They do occur but as a
q
consequence of higher order terms of the perturbation - Ec p*A, or as a cousequence of
a
the second order term {in the field) Er% A-A,
*note that, for plane polarization, & = (-l)z 3
> s .151!’ 'EJI‘
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11.4 The long wavelength approximation.

When computing transitions between atomic system states, the order of magnitude of
various quantities involved, allow another approximation to be made which greatly simplifies

the calculations. In particular, in computing the matrix element

-ik -x

&fi (k) = qC[(Vf*E“/i)e - da_’.‘. )

we see that the exponential is multiplied by the square of the atomic wavefunctions which
diminish very rapidly outside the region of the extent of the atom, of the order of the Bohr

radius (equation 7,60), i.e.

dne,, A2 -8
o (ZO20) —
!5' SaB ( = ) o = 0.529 x 10 cm .

On the other hand, the photon wavevectors involved are of the order of

e la Bl
T e he  ?
where ER is the hydrogen atom binding energy (Rydberg; see equation 7.64). Therefore
kslle._.l(eah)__l_:.L
c 2 ‘4mwegfc ag ZaB

where a is the fine structure constant (a = 1/137). Therefore the phase factor in the

exponential is less than or of the order of

lk-x| < kap % 5 ~4x 1072 (11.31)

wle

and actually more like 10™* - 1073 for transitions in the infrared, visible and near
ultra-violet., We are therefore justified in expanding the exponential in a Taylor series

about x = 0 and keeping the leading terms, i.e.

which substituted in the Mﬁ matrix element yields
M) ~aq D lxlv)d =ik (yelx vy +...0 1 . (11.32)

It can be seen that the first matrix element is the (vector) electric dipole matrix element

4 = 9. (el (11.33a)

which contributes to the mode (k, £) to the extent of its projection on the polarization unit

vector 'ék P of the mode (k, 1), i.e.

~

Gyt f = W Ll B v vl G-y
(11.33b)
+yglalv) @, )]

The second matrix element is the (rank 2 temnsor) electric quadrupole matrix element,




Qg = ez xlv) (11.34a)
which contributes to the mode (k, £) to the extent of its projection on the wavevector k

and the mode polarization unit vector %k Py i.e.
—

3
E-gﬁ.e&z = q, Z km(\vf{xm xnlwi> (en'e_lg,z) . {11.34b)
m,n=1
-ik - x
Higher omitted terms in the expansion of e contribute projections of higher moments

of the spatial function \L;;(E) \yi(ic_). Since each successive term is dimensionally of the order

of kaB ~ a/2, this expansion can be seen to be a multipole exgansion#, in

powers of the fine structure constant.

The leading term in this expansion is the electric dipole term, which yields for the
matrix element,

M )~ g elxfv) (11.35)

Transitions which result from the contribution of this matrix element are called electric

dipole transitions. Transitions due to the next term would be electric quadrupole transitions,

etc. Unless the electric dipole contributions vanish identically, they generally dominate
all other radiative modes by a factor of the order '(kaB)-l ? 2/a ~ 250. This sequence
is denoted by &1, 82, ... etc. in spectroscopic notation, where the (5:1)th transition rate

is proportional to the square of the nth moment of the particle wavefunction product

W), e . e B
(W._.) “'(‘VIEx...xw,)a
fan £ _I i I

1 =

n-factors

11.5 Spontaneous lifetime of a charged particle in an excited state.

Consider now a charged particle in an excited state in the absence of any external
illamination. As hinted previously, however, even in the absence of any external fields,
the excited particle may still interact with the ground state of the field to emit radiation,
In the context of our previous discussion, we would like to compute the transition probability
from an excited atomic state and an electromagnetic field ground state, to a lower atornic

state and an electromagnetic field excited state.

#See appendix D, equation D,25 and related discussion.
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0 photons 1 photon
—_——— ! \yi> spontaneous ———
. emission )
ﬁ - P~y -hw = ei = ef

— ) — & —

&\(_——J

field particle particle field
before after

Using the results of the preceding discussion, we may write the transition matrix

element (equation 11.29; emission),

V-3
Weld-alw) = (m) 8 MW (11.36)

I, 4 =S

(note that “1(:)1, = 0). Substituting in equation 11.24 for the transition probability, then yields
W, .= -ﬂ‘— 18, ,-M.(x)1® §(E, - E) (11.37)
i-f eoVwk k, 4 —fi'—= £ i * :

To obtain a numerical value, we now need to integrate over the density of final states
of the system. Since the particle is going to a single lower state, the system density of
final states is dominated by the density of final states of the emitted photon, which is given by

k®dk
(2m)®

p(Ep) 4B = p(k) dk = V aaq (11.38)

where d({1 is the solid angle differential element around the wavevector k of the emitted

photon.

>
(1.
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Now since k = u:k/c, we have

wi duwy g :
p(Ef) dEf = V= dQ (11.38")
(2nc)®
(where dQ = sin 8d6df@), which yields
2
d)fi [ I.. )Ig [ ( ] Q
W, = w |& - M.(k)]|?6(aw, +o )lde, 40 ,
imf (4meg J2me® k'K, 4 —fi fi k k

final states

6(x)/]<1|] integrating over the final photon frequencies, we have

or [recall &(ax)

e = lugl =)
wa f - 3
W, = ——— 18, , M. (k{7 40 . (11.39)
it (4meg )2mhc® a k, £ fi
Now, if 8 is the angle between the wavevector k and the z-axis, which we may select

to be in the plane formed by k and 'ék g we have?

B, g M () = (M. (k)|sin® ,

and therefore

o1 k* a _. 3
LAPES edlla f IM.(0)|? sinedg {11. 40)
Q

where, k = w/¢c and h = 2rh. Note that the particle coordinate system z-axis was chosen

to lie in the photon polarization plane (k, 'ék 1,)'
- 2

1f the particle system is isotropic*, we find that lel_fi(lj_)]a will not be a function of

orientation, and therefore we have

flA/I_ﬁ(k,)l‘ sin®8dQ = M (k)F f sin®9d0 = 3T (M. (0], (11.41)
h

1o

which yields for the spontaneous transition rate,

. 4K3 2
Wi = Tn Gr) (Mgl : (11.42)

for an isotropic system.

#

note that k and ‘ék ; are orthogonal.

1‘and only if. This may not be true in the presence of a magnetic field, or in an anisotropic

crystal, for example.
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These results can be simplified in the case of electric dipole radiation (long wavelength

approximation), where - : --
M) ~My(0) = q (Velxlv) =a 25 =d

so that we may write the transition rate (for an electron, in particular; q. = - e) as,

3
Wi_,f)‘s1 = a (2'UU . _/‘l_nghl2 sin®6dQ s (11. 43)
LN

which, for an isotropic system, reduces to,

(11.44)

where a is the fine structure constant,

We should point out that this transition rate is in fact the A.1f coefficient of spontaneous

emission in the radiation theory of Einstein (see first footnote at the bottom of page 11l.4 and

related discussion), explicitly computed here from first principles.

It is convenient to express the final result as a characteristic reciprocal time for
electric dipole radiation, times remaining dimensionless quantities. In particular, for electric
dipole radiation of an isotropic system (equation 11.44), we have

I il 2
Witlgy =2 5 2,

4ac (..ﬁ) |.E..:§
3 Yhe! 1A¢ i

AR
ER

4 3
a’ c a ,hw
bag ‘—xﬁ/aB‘ (EF) .

where ER is the Rydberg (hydrogen aton binding energy; ER/ﬂc = u./ZaB), a is the fine

structure constant, and ap is the Bohr radius.

The characteristic time that emerges for electric dipole radiation is then equal to

T, = 6(—)a"* = 0.3735 x 107° sec , (11. 45)

in terms of which, the electric dipole spontaneous emission rate from an excited isotropic

system becomes
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2 3 L1 '
(Wl_‘f) [éﬁ/aB| (ho/Ep)® 5 s (11. 46a)
where
T4 = 2677 X 10° sec™® (11. 46b)
Example 11.1 Rate of spontaneous emission from an excited hydrogen atom in the
2p state.
We need to compute the matrix elements for m' = 0, = 1, i. e,

-}ﬁfi/aB = {n" "":m"'i/aBln' L4, m')

[}

<1: 0: o l_’s/aBlzllr'"'>

0
* *
;L fR;,o (rR?,l) radr * /Yu,o (E/r) Yi,m.dg 2
B a

where (see section 7.3},

In, £,m) = R, ,(2) Y, (6,0)

are the hydrogen atom eigenstates.

The radial integral is given by
1
”g[R* o(rRy ) r 2dr = _/.R”(p) Re, 1 (p) p°dp
0

where (see equations 7.74),

-p/2 -p

p = r/aB > R.g’l(p) = p e s R.]_‘o(p) = 2e

1
2/6
and therefore

=]

[+
-3p/2
L | R R ) rPdr = ==, [ o* e dof <L & 41 = 1.290 . (11.47)
a 1 J- 3
0

By Je

The integral over the spherical harmonics can be evaluated by noting that Yo’o(e,cp) =

(411)-1/2 is a constant and that x/r can be expressed in terms of the % = 1 spherical

harmonics, i.e.
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x/r = 8ind(cos®p & + siny & ) + cosh &
x/ (cosp & ® 8y * cosb B,

or
20 i :
x/r = (57) —— Y1, - Yi1) @ == (YVy 4 * V)8 Yy, & s
3 J= X B R = (11.48)
so that
* 1 1 * -
Y (/7)Y wdQ = — [—[(YL o - Y1) Yy d @
! IV 2 Bm! L By
i % .
* -
* [ Yi,0 Yy,m' 48 ez] ,
{note that (x/r) = (§_/r)*] and therefore, using the orthonormality of the spherical harmonics,

* 1 1 N i -~ -
!YO,DE/I) B mdd = };— [—ﬁ(ﬁm‘,z U oy - -A/'z—'(sm',-} *omia )ey *¥mie el

= (11. 49)

Consequently, we have, independently of m' (why?).

* 1 1
'fYa,o(es/r)Yz,m-dQ.l’ =3 (Gm‘,-1+ Smt o *éma) = § (11.50)
a
Combining equations 11.47 and 11.50, we then compute the (dimensionless) matrix element

of x,

|(1slx/agl2p)|® = 1.290%/3 = 0.5549 . (11.51)

We also need to compute the photon energy (in units of the Rydberg), i.e.

_ﬁ_(ll_fé_g__-__e:__l_s____l__+1_z
ER— ER N 4 T4

Substituting these two results into the electric dipole spontaneous emission equation (11.47),

we finally have

33 -1 -1
(W ) = 0.5549 (3) Ty = 0.2341 T (11.52)

2p=ls’y, 81

and, using the value of the characteristic time for electric dipole emission, we obtain

- s -1
(WZP*IS)‘“ = 0,6267 x 107 sec ,

corresponding to a lifetime with respect to spontanecus emjssion of
oy

(t) = W3 = 1.596 nsec ; (2p~ls) ‘ (11. 53)
L i-f
#

The experimentally” determined value for this quantity is equal to

#W.S. Bickel and A.S. Goodman (1966), Phys. Rev. 148, page 1.
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(* ) = (1.600 + 0,004) nsec ; (2p~1s) . (11.54)
S exp _ .

11.6 Induced absorption and emission.

Let us consider a charged particle in a cavity filled with electromagnetic radiation.
The charged particle can undergo transitions both up and down, absorbing or emitting photons

respectively. Consider first the case of absorption by the charged particle subsystem.

N pkoéwo N-1 p‘w"‘m
D At -
PSS - ——— e et e wadsaiw BW T &g - &4
N M Py et
: ; absorphion .
v . N
.-.o\,....} L )
R S N s b e Nt
{ redd par‘h‘r_le. par bele EJJ
la:> P> [dy> [Dg>
N e e e e N g

Se SD'PQ, a-{-“vf

The initial and final system states are then given by:

_ (1) (i)
CARNIAIL VRIS oA e )
(11.558)
o = lyolal Lo, @,
¢ 2 OB TREEERTIN S T

taking the particle to a higher energy state Nf) from H'i), at the loss of one photon in
the mode (k, %) by the field, The transition matrix element is now given by equation 11.29
(case b), or

1/2 .
. z (o=t P (i)
Weld-alw) = Tevey e Mgt Vml,

-

which, substituted in equation 11.24 for the transition rate, yields
/

2
‘1"l'f.!)fi .)

i - SO k)2 ol -, -
Wit = S5y, 18y, g - MpCR® o)) 8ley - 6p - duy) | (11.56)
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In the case of emission,

A ;;:«m!!' 5wy Jed photonn
N ——— — RO N Y
N ——— e
W\/\v) ‘ RS Y
! : S asion
) . ! P 4o
i g = T 2 S -3y
A - g
Ao ¢ St )
gy ey sy P
O A~
P B S— s e ssrmrmar)
1 LA £ vt Kedn P"‘t“tg {'ielJ
~. J— S >
{ﬂv_.;’""'b A, "-"i??,’('
the initial and final states are given by
(1) (i)
[y = |yl y e, s eaeen ) .
g 1,1 "k 4 (11.57)
= (i) (1)
) = Wf)’"}g,l’ ..... P I TRPS Y,

where 1\Vf> is now a lower energy particle state, with the field gaining a photon in the mode

(k, £). The transition matrix element, in this case is gi\ien by (equation 11.29, case b),
(Yla-ale) = ot w01 al? + 1
(1S =S vy 1, 4 s Pk, 4 :

resulting in a transition rate given by

2
w5,
fi

RN + S PN . 2 (i)
LA 7o Vo |e5’z M. (k)] (g + 1) 8leg = o + u) | (11.59)

For both absorption and emission, it is difficult to derive general formulae, since the
final result depends in an explicit way on the details of each particular problem. It is
preferable to compute the transition rate in each case, starting from equations 11.57 and
11.59, which hold in general,# for absorption and emission respectively. Their use will be

illustrated through examples in the discussion below.

. Example 11,2 Particle transitions as a result of diffuse cavity radiation.

Consider absorption first. This represents a transition from a cluster of states for the

absorbed photon, The total transition rate is then given by equation 11,56, integrated over

E

provided the spread in ¢, and €, can be ignored. See sections 8.5 and 8. 6.

£
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the absorhed photon density of states, which for an electromagnetic field in a cavity of

volume V, is given by,

@®k = —— KPdkdQ =
(2n)? (2w)® 2we)®

aQ |, (11. 60)

- e
plk) dk = w2 dw,

and therefore

2
™., .
g 1 1 1) g4 . 3 - -
Wil | =5V .5; _{;wk e gl MR alep - op -huy) o) dis
wg
o1 fi (i) 14 . RWNE ~
S Tne, o) ) {mknlc,i‘e_k_,z My B slrty - w)law, 48
1
or
S T (i) (2 . a
Ewi—of]abs = T G 2 f“bzle_lg,z My-m)|® ag (11.61)
P
where Wy T W =W and k = w/c.

Now if the electromagnetic field is isotropic, i.e.

nz(ci)z = n(;) () (11. 62)
—

or, the modes for a given frequency ® and polarization 2 are uniformly occupied with

respect to the direction of the corresponding wavevectors k = % 'ék, we have

B S (i) )
[Wi“f]abs = T R Z n, (w)fy_ﬁ(-g_)l" sin? 0,da , (11.63)

£ Q

- which, in the case of an isotropic particle system, can be written as (see equation 11,4l and

related discussion)

1

a <
W, L, " T & IM00° oY), : (11.64a)
absg

1

where

n(i)(w) = n@(w) + néi)(w) (11. 64b)

is the total number of photons (both polarizations) of frequency . In the case of electric

dipole transitions; this simplifies further to

402 3 (i)
i, = a (=) |x. n‘w) 11.65)
it 81 abs 3c° ' ﬁ! (

where a 1is the fine structure constant,

To compute the emission rate, note that this represents a transition to a cluster of
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states available for the emitted photon, which in the case of a diffuse# excitation field is given
by equation 11.60. Integrating the transition rate to a2 single ~state (equation 11.59) over the

density of final states, we then have (see equation 11.61 and related discussion),

1 K® 1 -
SPNEE - KO LR YT i (11. 66
L Q

which under the assumptions of isotropy of both the field and the particle system,reduces, in

a manner similar to the case of absorption (see equation 11,64 and related discussion), to

a s
W = ) Myl P+ 1), (11.67)
em

and in the case of electric dipole radiation,

[w.

= 4° (i)
‘"‘fjmem =a (;;_‘) 12, ° (aPw) + 17 . (11. 68)

There are several notewarthy features of those solutions:

1. The probability per unit time for the particle to absorb a photon is proportional to the

available number of photons to be absorbed.

2. The probability per unit time for the particle to ernit a photon is proportional to the
number of photons, of the right frequency, inducing it to make the transition’ plus one,
If there are no photons initially in the right modes [n(l)(m) = 0], we recover the

spontaneous emission formula.

3. ';'he difference of one photon between the two rates is essential for detailed balance of
the rates of the two processes (emission and absorption), as required for the combined
[particle + field] system to be able to attain equilibrium. Consider an initial field
state with n photons of the proper frequency and the particle in some lower state.
One photon is now absorbed, raising the particle to a higher state, and leaving the
field with (n - 1) photons. The rate for this process is n/‘Ts, where T is the
spontaneous lifetime corresponding to the reverse transition. The particle now is in the
higher state and may come back to the lower state emitting a photon, The rate for this
process is now the number of photons in the field (n - 1), plus one, divided by the
spontaneous lifetime, i.e. [(n - 1) + 1]/'!'s = n/‘l's, equal, in other words, to the

reverse process, as required by the equilibrium condition. It was this reasoning that

#as opposed to a laser, for example which may have coherent spatial and frequency modes,

to be discussed later.
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ied Einstein to conclude that the mechanism of spontanecus emission was required

for equilibrium to be possible.#

11.7 Electric multipole radiative transition selection rules.

We have already seen that, in the weak field approximation (first order in the vector
potential), the properties of the matrix element between the initial and final field states,
restrict the transitions to the emission and absorption of a single photont. See equations
11.28 and related discussion. It is possible to deduce general conclusions about the particle
states that can be connected radiative transitions (within the weak field approximation), from
the matrix element Mfi(k) over the corresponding particle states, See equation 11.26,

section 11.4 and related discussions. In particular, for electric dipole transitions, i.e.

M), = a, plzlv)

we have to compute the matrix element of

4 1/3 1 ~ i ~ -
x = rix7) [_; (Y3, -T2 ) e * '—2‘ (Yy,-a T Y1) °y * Y1 ez] .

see equation 1J.48), or using the right and left circular unit vectors

& +18) , e = g -id ) , (11.69)

1
L ﬁ(x %

4w 1/3 a - w
x = r(-3-) (Y1'-1 e - Y1'1 &L + YIJCJ ez) , (11, 70)

between the initial and final particle states, which can be expressed as products of radial and

angular parts*, ie. [0 = (8,0]

l\yl) = Rnly(r) YLv,m|(ﬂ) s {\Vf> = Rnuzu(r) qulmu(g) (11.71)

*
This results in a matrix element which is a product of radial and angular parts, i.e.

TSee Eisberg and Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles

(John Wiley, 1974), pp. 426-429.

T .

Second order in the vector potential involves two photons, third order three, etc. See
sketches on pages 8,30 and 8.31.

*note how the circular unit vectors are selected in a natural way, even though we started

with cartesian unit vectors. See also section 9.10.

“or linear superpositions of products of radial and angular parts.
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&
* 3 3
M =[ Rign(t) Ry, (5) « dr-] Vg @ Yy (@ Y, Q) 42 . (11.72)
0 Q

It can be seen that the angular integral restricts the possible values of (4", m'') of

the final state. In particular, we must have#

J AN A | , (11733.)

and

m' = m' +m |,

or since m = 0,%1,

m' = m' or m' =m' =1 . (11. 73b)

The change from 4' to 4' £ 1, corresponding to a change of one unit of # in the

angular momentum of the charged particle, is carried away by the photon, which has a spin

angular momentum of * # along its direction of propagation (wavevector k), and is therefore

emitted in a state of zero orbital momentum. See discussion on photon angular momentum.

The next higher order transitionsf are electric guadrupole (82) transitions, involving

the quadrupole {tensor) moment {equation 11.34a)

Qy = Uhlx xhv)

involving elements like

Q) = L) L @y = udwyly) L Q) = lvaly) et
XX Yz

=fi =
xy

From the expression of x in terms of the spherical harmonics, we see that the quadrupole

matrix involves matrix elements of products of pairs of the £ = 1 spherical harmonics, i.e.
Q) = > le,m:a(\llf‘r ) Yl,mgH’i> . (11.74)
my , Mg

These products can in turn be expressed as linear combinations of single spherical harmonics

(see equation 10,36a), and we deduce the corresponding selection rules for electric quadrupole

T

adiation, i.e.
£ or lerx2] , if 240
= j (11.75a)
2, if £ =0

and

m'=m', m'£1l, m'#%2, (11, 75b)

#see equation 10,36 and related discussion on addition of angular momenta, section 10.2.

+

which become important if electric dipole transitions are forbidden by the previously established

selection rules,
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where ]\l/i) and ]wf) are given by equations 11.71.

Consequently, electric quadrupole photons can change the angular momentum of the
charged particle by two units of #, or leave it unchanged (but (£'=0) 4 (4"=0)]. They con-
sequently correspond to excitations of photon modes of higher angular momentum. See

discuyssion of photon angular momentum.

11.8 Magnetic radiative transitions.

In discussing radiative transitions, we have so far ignored the possible spin of the

charged particle, in the presence of which the interaction Hamiltonian must be augmented to

include the associated spin magnetic moment coupling to the magnetic field, i.e.#
2
q q
= - S 5. ~£ A (s),
Hoe® " mRA+tsmAA-p -8, (11.76)

{s)

where u is the spin magnetic moment of the particle, or, in terms of the vector potential
2
q 9
; 9
Ho =-=<pa+ssaa-40 & xa . (11.77)

It can be seen that this term also contributes to first order in the vector potentialf, which
must therefore also be considered when computing first order (single photon) transitions in

the weak field approximation. In particular,

Hyp = H o+ H' + 0(A%) (11.78)

where H' 1is proportional to the charge q (equation 11.18) and leads to the electric dipole,

quadrupole, etc., transitions we have already discussed, and

H' = - E(S)' % X é) ) (11.79)

is proportional to the spin magnetic moment E(s) and is responsible for magnetic radiative

transitions.$ In particular, substituting for the spin magnetic morment,

{s) _ e .
B =) S (11.80)

where g is the spin g-factor, m 1is the mass of the particle and § is the particle spin

angular momentum, we have

see equations 10.42, 10.44 and related discussion, and appendix F, equation F. 46 and related

discussion.

feven though as we will see leads to considerably weaker transitions,

¥

note that a neutron which is neutral but possesses a spin magnetic moment (equation 10, 44b)

may participate in such transitions.
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L) B ___._C o (o
H' = g(2 ) S (Bx x A) {11.81)
(note 4. = - e for an electron).

Transitions caused by this interaction are then characterized by a rate

_ 2n 9 Rl 2
W =5 |- e (yls 55 X AP s(E, - E)
or
gq_* 5
2% < , 2
Wi = F ) [ls - G x a1 sim - £ | (11.82)

The transition matrix element can now be expressed using the vector potential quantum

#

operator (equation 9.99), 1i.e.

, 5 w12 k thex t
Wls G x AW = o) 3 stenlo) 5 Wyls e o ™ 2o 19 B o
- k9 “x - - T (L83

which can be separated, as before, into a product of a matrix element over the particle

coordinates and a matrix element over the field coordinates, i.e.

k- x t ik-x +
(Y ls e (a5 - a—_ls,a)wi> = (¥ls e [v;) <%fl(a5.d - a-bc)hﬁ> . (11. 84)
e
particle field

The matrix element over the field coordinates is similar to the corresponding matrix
element for the (p-*A) interactions (see equations 11.26 and 11,28, and related discussion).
The mairix element over the particle coordinates can be factored further into a product of a
matrix element over the particle position coordinates and a matrix element involving the

particle spin states, i.e. if

Wi) = }n‘,Z',mh;m;)
(11. 85)
) = \n“,z”,m‘é;mpf ,
we have,
ikrx k- x
s e lv) = <, 47, miyle Int, 2, my) (mifsiml) . (11. 85)
7§Fnote that (¢ = R, L)
ik x & = k sign(g) & s
= k,0 k,0

where sign(R) = 1 and sign{L) = = 1.,
Twe had not included the particle spin states in the previous calculations, since they are un-

affected by the (p-A) interactions.
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It can be seen that in the long wavelength approximation#, corresponding to magnetic
dipole (M1) transitions, the position state of the particle is unaffected, i.e. we must have,
for a non-zero matrix element,

L) S r LN SE— ] - H
n'' = n' , Moo= g, my = mj (11. 87)

while from the matrix element over the spin states we have, from the matrix elements of Sz,
[ 1
my =m_ . (11. 88a)

or

’

from the matrix elements of Sx and Sy'

m' = m =1 . {11. 88b)
] s

It can be seen, however, that these matrix elements can only result in transitions in the
presence of perturbations that can lift the energy degeneracy beéween different spin states
sharing the same spatial wavefunctions (no energy left for the photon!). This may be the
consequence of coupling to additional degrees of freedom, e.g. nuclear spin [nuclear magnetic
resonance (NMR) spectroscopy], or any external influences that lift the spin degeneracy, e.g.
Zeeman splitting of different spin states of a charged particle in a magnetic field, or internal

perturbations, e.g. spin-orbit coupling, relativistic corrections, etc.

e

Magnetic dipole transitions are generally even weaker than electric quadrupole transitions
and in practice need only be considered when both electric dipole and electric quadrupole matrix
elements vanish identically. From a simple scaling analysis, the ratio of magnetic dipole to

electric dipole transition rate is of the order of

(W' ) . AL
St T ALAVu ~ L ey (11. 89)
Wity laglmhplr ™ e

which, for electron transitions (mc? = 0.5 MeV) in the visible (#w ~ 2eV) is of the order

of 107%,

Before leaving this section, it should be noted that all these results and selection rules
we have discussed so far should not be considered as absolute rigid rules, Particle motion
perturbations, such as spin-orbit coupling (section 10.5), other relativistic effects (e.g.
section 10.6), coupling between the electron magnetic moment with the nuclear magnetic
moment, as well as electron-electron interactions in multi-electron systems, introduce suf-

ficient complexity into the analysis of real life radiative transition problems to suggest a
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certain degree of caution in using these results. They nevertheless remain a very useful
starting point for further refinements and can always be relied on to provide a very powerful
set of guidelines. For a more detailed treatment, the interested reader should consult

#

specialized texts in spectroscopy.

#Alan Corney, Atomic and Laser Spectroscopy (Oxford University Press, 1977), for example,

as well as the texts by Gerhard Herzberg on molecular spectroscopy, published by Van Nostrand,

to name a few.



APPENDIX A: Calculus of Variaticns.

Given a scalar function
L = Lig(t),q(t),t] , (A1)

the problem of determining the (vector) path g(t) on which the integral
te

1{q} =f L(g,d,t) dt (A.2)
t

has an extremum is a problem in the Calculus of Variations.
To simplify the thinking, consider first a function of x and vy(x) of the

form
F = Fly(x),y'(x),x] , (A.3)

where
d
y'(x) = e yix) .
We wish to find the curve y{x) that extremizes (minimizes or maximizes) the

definite integral,
X2

Iy} = | Fly(x),y'(x),x}dx . (A.4)

x1
What does it mean to extremize the integral J with respect to the curve y(x)?
Well, let us recall what it means to minimize {or maximize) any function f{{x)

with respect to a variable, x in this case. If we have
min {£(x)} = f(x,) ,

i.e., if the minimum is attained for x = x,, then a small variation x- x, + ¢

leaves the function f(x) unchanged to first order in ¢,

/ \cf")

Zo Lo+ £

In other words, if min {f(x)} = f(x4), then

5fx°=f(xo+e)-f(x°>=0(s3). (A.5)
We can generalize this idea to find the extremum of J{y}. Assume that
the extremum is attained on a particular path y,{x). In that case, if we

consider a2 neighboring path



yix) = yolx) + enix) , (A.6)

such that the function en(x) is small (i.e., £ n(x)/y(x) << 1 everywhere in

xy < x < x3) and vanishes at the endpoints x,, xs, i.e.
nx) = nlxg) = 0, (A7)

we require that

85 = Jlyo+en} - J{ys} = 0(*) (A.8)

or, since <
B

ye + em} =j Flys(x) + n(x), yoix) + en'(x), x] dx (A.9)
X

we can perform a Taylor expansion of F(y, +en, y; +en',x) about y, to obtain
Flys +eM,yo +en',x) = Flyo, yo, %) *
+ eln Flye,ve,%) + n' w5 Flyo,ve,x)]
3Y E El ayl K 2’

+ 0(e®) .

Substituting in equation A.9, we obtain
Xz
2 3 !
Iyoten] = J{y,} + EL n35 Fve,vo,%) + ' 5o Flyo,yo,x)] dx
2

+ 0(e®) .

Integration of the second term in the integrand by parts yields

X2 Xe
3 8

f n' 557 Flye,ye, x)dx = n(x) 55 Fl¥e, Vo, ) j

p.<} Xy

Xz

d 3F
- f n{x} = (-3—}7> dx
. Yo

1
The first term vanishes by virtue of the imposed condition (equation A,7) on the

possible choices of n{x), and therefore we have
6J{Yo} = J{Y¢+€ﬂ} - J{YQ}

x .
. 3F  d_ {oF 2
ef n(x) [ay - <""’ay'>:, dx + 0(e®) . .
Y=Y

X

"

Consequently, if J{y} possesses an extremum at y(x) = y,{x), then equation

A.8 must be satisfied for any n(x) that vanishes at the endpoints and therefore

Yo(x) must be the solution to the differential equation, known as Euler's

equation,
AF d aF
3y " ax (—-——ay,> = 0. (A.10)

The difference between the two types of derivatives that appear in equation A. 10



should be emphasized. The partial derivatives 8F/dy and 39F/dy' arose in the
Taylor expansion of F considered as a function F(y,y',6 x) of three variables.
The total derivative d(8F/8y')/dx arises from the integration by parts with
respect to x and is therefore a derivative with respect to x of the function

Fly(x), v'(x),x] considered as a function of a single variable x.

Example A.] Shortest distance between two points

3 (s Y4 f)

;‘
i (2,%)
[

x

The distance is given by the integral of the arc length s, i.e.

Xz
s=j J1 + v 2(x) dx . (A 1D
X1

The function F in this case is given by

Fly,y, %) = Fly') = /1 +y'? (A.12)

Therefore, Euler's equation becomes

BF _d (BF\ _ _ 4 (3F) _
y dx \oy') =~ dx\ey'} T
or
ir3?1;‘;=const.

Differentiating A. 12 with respect to y', we have

"5%_' e paey) 2.
or
o2 172
y! =< ) = const ,
1-c8

i.e., a straight line,

The extension to paths of higher dimensions is straight-forward, If, for

example, the integrand is a function of a vector function

X(X) = [Y} (X), Y& (X)J """ IYN(X)] *

F = Flylx), y'(x), x]

we then consider small variations about the extremal y.(x), of the form

yix) = yolx} + snix=) ,

A,



update

where n(x) is a vector function

nix) = Iny(x),max), ... ()]
that vanishes at the end-points, i.e.

2("1) = E(Ka) =0 .
Following the procedure in the one dimensional case, we Taylor expand about
Yo(x) to obtain

F(ys +em, yo +€0', %) = Flyp,vo,%) +
+ e Z [n, 2= Flyn.ve.x) + N wr Flys,ve,x)]
4 i Byi i oy,

1
1

+ 0(e?) ,

which we can substitute and integrate by parts, as before, to obtain

Xg
st =[5 e [gag_(.g.z)] x + 016%)
- i i
X1 1 Yo

and therefore for an extremum the vector path must satisfy the N differential

equations,
3F 4 [aF) _ .
_37; - % (5}:) = 0 for 1.-1,2,...,N . (A. 13)

The problem of selecting the vector path of the configuration vector
g(t) in the action integral of equation A.2 is a problem of this type and

therefore the Euler equations become

N (A. 14)

Example A.2 The ballistic trajectory (see example 1.1).

The Lagrangian is given by
L(g,4,t) = m[3(&*+7°) - gyl
We therefore have two Euler equations, since

g(t) = [x(t),y(8)],

namely
%,‘If'%(i?>='d% =0 (A.152)
ax
3L, d oL d .
57-3<__._)=_g-3?y=o, (A.15b)
dy
Therefore

x= const , V= - g, (A.16)



which together with the boundary conditions yield the parabolic trajectory of

equation 1. 14,
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Eroblems

Al

Find the equation of the curve y(x) for which the functional

Iy} = Fy',y,x)dx '

has an extremum subject to the constraints
y@a) s a, yd) =g, Kiyls [ Gy,y,xiex=1y .
Hint: Consider the functional

Liy} = J{y} + aly - K{yl].

[
Find the equation of a long heavy chain ]
of length £ strung between the two points

1 (Qb)
(0,b) and (a,0).

(0]




APPENDIX B: The Fourier Transform.

If a function f(x) can be expressed as .
K .
f(x) = 5= f F(k) e ak (B. 1)
=00
then the function F(k) is given by

0

Fik) = f fx) o qy | (B.2)
il o]
and called the Fourier transform of f(x). Both f(x) and F(k) can be complex.
In particular if
f(x) = fR(x) + ifl(x) (B.3)
and
F(k) = FR(k) + i Fl(k) (B.4).

ikx ..
we have (e = cos kx + i sin kx),

o0,

FR(k) = / [fR(x) cos kx + fI(x) sin kx] dx (B.5a)
oo
S0}
Fl(k) = - [fR(x) gin kx + fI(x) cos kx] dx (B.5b)
=00
and also
[Se)
fplx) = El}? [ (FL (k) cos kx - F (k) sin kx] dk B.. ba)
=00
[2e]
£00) = —2;1; f [Fok) sinlx + Fy(k) cos kx] dk .  (B.6b)
- 00

The pair of functions f(x) and F(k) are called a Foprier transform pair, and

have the following properties :

§1. If f(x) is real, then F (k) = F(-k).

Proof: 1If fI(x) = 0 then

]
FR(k) = / f(x) cos kx dx (B.7a)
Yoo
and
0
FI(k) =z - f f(x) sin kx dx {(B.7b)
=00
and therefore FR(k) = FR(-k) and Fl(k) = —-FI(-k), which proves the theorem.

s
§2. I f(x) is purely imaginary, F (k) = - F(-k).




§3.

If f(x) is even then F(k) is also even.

Proof: If f(x) = f(-x), then

and,

[* ¢}
f f(x) e_lkx dx = f(x) cos kx dx

—

F(k)
Yoo <00
in fact
F(k) =

o0
2 [f(x) cos kx dx ,

and therefore F(k) = F(-k).

§4.

§5.

If f(x) is real and even, F{k) is real and even.

Even-odd decomposition. A function f(x) can always be decomposed into

an even function plus an odd function. In particular if

£x) = 3 (£x) + £(-x)] (B. 8a)
and

£ = 3 [fx) - £(-x)] , (B. 8b)
then

f(x) = £ (x) + £ (x), {B. 8c)
where fé(x) = fe(-x) and fo(x) = - fo(x). Then if we decompose F(k),

the Fourier transform of f(x), in a similar fashion into an even function

Fe(k) and an odd function Fo(k), we have

o
1
fe(x) == fFe(k) cos kx dk
(4]
o
i .
fo(x) == /Fo(k) sin kx dk
0

and correspondingly
)

Fe(k) = foe(x) cos kx dx

iFo(k) = 2 fo(x) sin kx dx .

0\8 e

{B. 9a)

(B.9b)

(B. 10a)

(B. 10b)

Note that if f(x) is real then Fe(k) = FR(k) and Fo(k) = iFI(k), where

F(k) = FR(k) + i FI(k)’ the real and imaginary parts of F(k).



§6. Linearity: If F;(k) and Fy(k) are the Fourier transforms of fj(x) and

fa(x) then F(k) = a; Fy (k) + ag Fp(k) is the Fourier transform of f(x) =

a; fi{x) + ag fa(x).

§7. Symmetry: If F(k) is the Fourier transform of f(x), then 2w f(-k) is the

Fourier transform of I(x).

§8. Scaling: If F(k) is the Fourier transform of f(x) then the Fourier trans-

form of f(ax) is given by [at|'1 F(k/a), where a is a real constant.

Proof: If a > 0,

P 0
Glk) = [ f(ax)e-ikx dx = ;1_ / f(x,)e-i(k/a)x' dx' = .i F(k/a) .
Y0 Yoo

If a-< 0 the reversal in the order of integration changes the sign and the

theorem is proven,

§9. Complex conjugate: If F(k) is the Fourier transform of f(x), then

E3 3
F (-k) is the Fourier transform of f (x).

§10. Cordinate shift: If F(k) is the Fourier transform of f(x), then

F(k)e-lkx° is the Fourier transform of f{x - x5)

Proof:
0 . 0
f(x - x0) = L F(k)elk(x - %) gp = - [F(k)e—lkxo]elkx dk .
2w 2w
Yoo * 00
Similarly F(k - ko) is the Fourier transform of eikox i(x).

§11, Differentiation: If F(k) is the Fourier transform of f(x), then (ik)nF(k)
is the Fourier transform of d"f(x)/dx”. Similarly, d"F(k)/dk” is the

Fourier transform of (-ix)nf(x).

§12. Moments: If F(k) is the Fourier transform of f(x), then an(o)/dxxl is

equal to the Fourier transform of



8

n

(i) f(x)dx |

8

where the integral is the nth moment of f(x). Also, using a Taylor

expansion about k = 0

m . n o0
Fk) = Z (';!k’ fxnf(x)dx.

m=0 o0

§13. Convolution: If F(k) and G(k) are the Fourier transforms of f(x) and
g{x) respectively, then F(k)-G(k) is the Fourier transform of u(x),

where

u(x) = i f{x') g{x - x")dx'
=00

is the conyolution of f(x) and g(x). Conversly, the Fourier transform

of f(x)-g(x) is given by V(k), where
oQ
Vik) = El'n‘ f F(k') G(k - k') dk' .

=0

§14. Parseval's theorems: If F(k) and G(k) are the Fourier transforms of

f(x) and g(x) respectively, then

o0 o0
f £(x)-glx) dx = 21—" / F(k)-G(-k) dk . (B.11)
=00 - 00

as a special case
[4)]
/ [£x)|® dx = 71"— 7 PP ak . (B.12)
00 “o0 i
Proof: From the result of §13 we have

e} . 00
/ f(x)-gx) e dx = o f F(k')-Gk - k') dk!
o0

%o
Setting k = 0 we obtain equation B.1l. Equation B.12 follows if we choose

gix) = f*(x) and also use the results of §9.

The function f{x) may be discontinuous,



=)

ice., f(xy") # f(xo+). In that case, at x, the Fourier integral of equation B.1

assumes the mean value of f(x,”) and i(xo+), i.e., if
o0
1 ikx
f(x) = 3= [F(k)e dk
Yoo

then 0 .
A f F(k) e¥* ak = -;— [f(x0") + £(x0)] .
Yoo

Similarly for discontinuous F(k).

These results can be generalized to more dimensions in a straightforward

. manner. In particular, for two dimensions we have that if

0
. il x + K y)
fx,y) = (35) f[ Fikgkde 7 ak dk;
=00

then 0

' itk x + k_vy)
Flk, k) = f(x,y)e * Y axdy

-
and if w0
£(x) =(.Zl;j [[/ Filo e B2 goxc
- 00
then o
it =[[[ flx) e KX g3y
-0

where x = (x,y,z) and k = (kx, ky’ kz) .
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Problems

B.l1 Prove that if f(x) is imaginary and

8

F(k) = £(x) e K% gy

§

s
then F (k) = - F(-k)
B.2 Prove the complex conjugate property (§9).

B.3 Prove the differentiation properties (§11).
Hint: assuming that f(n)(i w) = 'F(n)(d: ) =_0, integrate by parts
repeatedly.
Notation:
4

£y = o (I
n

B.4 Extend the differentiation properly (§11) to three dimensions by proving
that if F(k) is the Fourier transform of f(x), then ik F(k) is the

Fourier transform of the gradient of f(x), i.e.,

o]
ik Fk) = f [3‘9; £(x) ]e‘llﬁ'ﬁ & x
=00

Notation:
9 _a 0 . O 2 0
Bz_ex6x+ey8y+ez8z

B.5 Find the Fourier transform of U(x), the unit step function, defined by

1 x>0
Ux) =
0 x <0

1 U (=)

A

3

Hint: e ax =

8 f

'
-



~ APPENDIX C: The minimum joint spread wave packet.  lermite pulynnmioll.

We have to solve the equation (§ > 0)

vE) £ (B - T v(B) =0 (C. I

subject to the boundary conditions

%

vitw) = 0 and vi2)d? = 1

i
8

From the differential equation for v(%), we note that
vi'(g) = 22v(%) as gl ~ » . (C.2)

We therefore need a function whose asymptotic behavior for large |%|

satisfies the condition C.2. Noting that

dl;; (!“etgﬂ/z) ,[;3 £ (2p + 1) +&Lg;z_ll] (g“e,gz/z)

has the right behavior for any finite ¥, we try a solution of the form

.
v(g) = A h(D)e > 7% (C.3)

where the negative exponent was selected to satisfy the boundary condition
at £, and the constant A may be required for normalization. Substituting

in the original equation, we obtain an equation for h(%), which is given by
h'(8) - 23hH{E) + (B - I h(%) = 0. {C. 4

We now try a power series expansion for h(%), i.e.,
€%

B(g) = z a8, (C.5)
m=0

where a4 # 0, We then have
)

R'(g) = 2 (m+s)a_ 3o (C. 6)
m=0 ’

and therefore
o

208 = Y 2m+s)a 2T cn
m=0

and also
w0

h'"(8) = z (mt+s)m+s-1a gm*s-2

ma0

= s(s - 1)ag gs-Z t(1+m)s a gs"

k]
+ z (m+s+2)m+s+1)a
m=0

2 5T (€9

.1



Substituting equations C.5, C.7 and C.8 into C.4 we obtain

s(s - llag ;s-z + (1+s)sa, !s'l +
© (c- 9
+ Z [m+s+2)(m+s+l)a_,, - @m+2s+1-pla_18""% = 0
m=0
Equation C.9 can only be satisfied if
8(s - 1)Jag = O (C. 10a)
(l+s)s a =0 (C. 10b)
and
(m+s+2)(m+s+l)am+z = (2m+23+l-¢3)am im=0,1,2,.. (C.10c)

from equation C. 10a we see that 3=0 or szl are acceptable values for s.
From equation C.10b we see that either s = 0 or a, = 0 (or both). Then,
from equation C.10c we get ag from ao‘, a, from aq etc., a; from a,,
ag from ay, etc. We now note that

as m - oo,
a m

therefore, for large £, the series tends to ;V e;a where v is a finite number
and consequently v{(8), as given by equation C.3, cannot satisfy the boundary
conditions at *w. The only poesibility is if the series terminates to yield a
polynomial for h{(f). That will happen if the coefficient of a_ in equation

(C.10c) is zero for some m, which will occur if the constant § is equal to
B:Z(m+s)+l‘ (C.11)

where m = 0,1,2,... and s = 0 or 1. Since this must happen for even m

(the recursion relation C.10c relates a to a_. and a, # 0) we must choose

m+2

a; 3 0, Consequently we have an even or odd power polynomial depending

on whether s = 0 or 1 respectively. $ must then be of the form
B=2n+1 ; n=0,12,... (C.12)

to yield in an even or odd polynomial hn(g), depending on whether n is even

or odd. The resulting polynomials are called Hermite polynomials. The first

few of these are listed below:

ho(8) = 1

h(8) = 28

he(Z) = 487 - 2 (C.13)
he (§) = 82% - 128

he (%) = 168% - 488% + 12



hﬂ(g) = 1208 - lboga + sagh

he (E) = 120 - 72023 + 4808° - p48°

and solve the equation

4

hi(8) - 25 hy8) + 2n h,(§)=0 , (C. 14)

where we have substituted C. 12 into C. 4.

The study of the properties of the Hermite polynomials is facilitated by

the generating function, defined by

* n
Z T B0 = 2(s.9) (C. 15)
n=0
and equal to
3
P(s,8) = &7 T205 : (C. 16)

We now differentiate 9(3,5) with respect to s to get
Z $s.9) = (-25+ 22) P, 8)

n-1
oot hn(ﬁ) ,

o n on
: (=28 *+ 2%)s - s
= z n! hn(g) = Z

n=0 n=0

where the last series was obtained by differentiating the defining series

directly. Equating the coefficients of equal powers of 3 we obtain

28h (%) = h () + 2nh_ (7). (C.17)

n+l
Similarly, differentiating with respect to % we have

hy(8) = 2nh__(8) . (C.18)

It is easy to show that the sequence of functions which are related by
equations C. 17 and C.18 are solutions to equation C. 14, proving thereby that

the generating function given by equation C. 16 is indeed the correct ane.

Using the fact that for any function f(s), we have

w0
n
f(s) = z = £™oy
n=0
where
n
™) = <4 (s ,
ds

s=a

and consequently

n
h (8) = 2= @(s,8)
as



Noting that
s +2s8 8% -(s-2P

F(s,3) = e
we have
n 2 n 3 =3 n 3

2 Ps, %) = e B (8RN n gF 2 n(s-

as" as™ 7"
and therefore

3 n a
h(8) = (-1)%e® S S (c.19)
d8

a much simpler way of generating the Hermite polynomials.

Integrals of Hermite polynomials. The generating function also helps in

evaluating the normalization integral corresponding to the wave functions

k4 ” "”; /Z
val2) = A_h (8)e (C.20)
(see equation C.3). In particular, consider the integral
15
= 4 z
S -/ v (8) v _(%)dE
= w0
o
A a3
- b4 L4 K
= A A / hn(-,-) hm(,)e dg .

‘o
To generate the integrals of the cross products we integrate the products

of two generating functions, i.e.,

0 o0,
- a - 3 g - 3 r ]
sy, sa) = [9(51,§)?(53.5)e€ dg = [ e TEnE gmsa” r2sal -8 g
T T
- 1|_l/2 o251 82
DY (25, 59)"
n! ’
n
but, integrating the product of the two series corresponding to ?(sl, 7) and
9(5;,{) we also have
o, P, M , 23
. = s U - . T1e"3 (47
sy, %) = Y fhn(;) h(De” ds
n,m Zn
Equating terms, we then see that
ri ]
-z
h (&) h_(81e”> at= «'/% 2701 5, (c.21)
=




where 6nm is the Kronecker deita (see Appendix D) and given by

1 , if n=m

0 > if n#m

Using equation C.21 it is easy to see that the proper normalization constant
An for the vn(g) in equation C, 20 is given by

-1/2

A= @12 2™ ny) ) (C.22)

Consequently, the sequence of functions

-1/2 2
va® = /22%an T h g)es /2 (C.23)

forms an orthonormal set, i.e.,

w
[ volB) v (M€ = 6 0, (C.24)
-0

since the vn's have been normalized and are orthogonal to each other

{solutions to a Sturm-Liousville problem).



Problems

C.1

Generate the first four Hermite polynomials using the recursion relation

C. 10c.

Prove equations C.17 and C. 18 and show that the sequence of functions

hn(g) that satisfies them is a solution to equation C. 14.
Generate the first four Hermite polynomials using equation C.19.

Using equations C.17, C.23 and C.24, compute the matrix element

O

(mig|n) = fvm(§) g v, (5)ds .

-0

If X is the conjugate coordinate to § and ¥ = -i3/9% is the corresponding

operator in §-apace, compute the matrix element

oo

(m|¢|n) /vm(;) X v (5)d5

=

using equation C.18.



APPENDIX D. The Kronecker and Dirac delta functions.

Consider the problem of the scalar product of two vectors

te

= Z &u (D. 1)
1
and

vz Y év. (D.2)
i

where the Ei are the basis vectors, We then have
uy = e.u, | e} = Z (e.-e.)uu, . (D.3)
(i “) <j“) iy i
In the important special case where the Si are orthonormal i.e., orthogonal unit

vectors, we have
i if i=j

It is convenient to define a function 6ij that has this property, i.e,,
1 if i=j

= (D. 4}
0 if ifj

known as the Kronecker delta, Evidently if a set of 2.1 form an orthonormal basis

then

e.r3, =5, {D. %)

Substituting equation D, 5 in equation D, 3 we have (for orthonormal basis vectors)

ity 0§ i

uy = Z uwvbh = Zui<2v.5..) =, Z:uivi (D, 6)
ij j i

It can be seen that the role of the function sij is to select one of the terms of a

summation, i.e,,

Y vb. =v, (D.7)

From the defining equation D, 4, we can see that sij is really a matrix

{tensor of rank two) and is in fact the identity matrix

or

L = 8;;



DIz

To introduce the Dirac delta function, it is convenient to define the unit step

function
Oforx< 0

Ufx) =

i U(ix)

With it we can express any integral over finite limite as an integral over

the whole x-axis, i,e.,

b -
f £(x) dx =J' [U(x-a) - U(x-b)] f(x)dx .
[y -®
Consider now the integral
h/s = .
J. f(x)dx = J [U(x+%—) - U(x-fz‘-)} £(x) dx
‘h/z -

where h is a small length, This we can write in terms of the mean value of the

function £(x)

f e+ D - v -B]torax =nre

where

pesed

or
e d

j Floc P -ve-B] e = og)

Taking the limit as h «+ 0

-

1 h h .
lim Uk +2) - Ux - Dyl exyax} = tim {£(€)3
h=0 J‘F[ z Z] h4o{

or
P h h
fiu:lo 1y [U(x + f) -Ufx - 2—)] fixydx = £f{0)

if f(x) is continuous at x = 0,



We can now define

6(x) = lim
h+0

%[U(x +3) - utx - %)]} (D. 8)

which is the Dirac delta function,

Using this definition, we can show the following properties of §(x).

.4
(i) fb(x)dx = U(x) (D.9)

0 forx £ 0
(i1} §(x) = (D. 10}
o for x = 0

(iii) jé(x)dx =1 ' {D.11}

(iv} §(x) = §(-x) (D.12)

v) B(x) = 5 fe““ dk (D. 13)
Proof:

We essentially wish to show that the Fourier transform of §(x) is unity,

From the definition,

o
Zi5(x)) = lim i[muh) - U -5)]e‘“°‘dx
h h 2 2
- 0
-m
or
h/2
?{ 5(x) } = lim }L‘ [ e i gl lim {-k%sin%-h- =1
h+0 h -0
-h/2
We now take the inverse transform to get
@
ikxd 1

. 1 2 _. kh : 2 . kh| il
&§(x) = lim J’ sin-z- e kil = 5= f lim sin e dk
hao| B )R T ) e T

from which the desired result follows by taking the limit.

f(x.)
(vi) ]uxw[w»]ex:z: -

. (.14)
i le’ el

where g(xi) =0,



It is this property that is the claim to fame of §(x), Some important

special cases are

f £(x) 6(x) dx = £{0) (D. 15)

ff(x)a(x-a)dx = f(a) (D. 16)

fi(x)&(ax)dx = 5,(9-% . (D.17)
a

The similarity of 6(x -a) and 6ij is apparent from the above relations, We
see that it is a property of 5(x -a) to select the value of f(x) at x = a by integrating

over x, i.e.,
«
f(a) = ff(x)&(x-a)dx .
-
in turn, 6ij selects the value of fj at i = j by summing over j, i.e.,

£ = ,?_‘, fjéij .

The two are entirely equivalent. Indeed it is possible to define 6(x -a) in

terms of 6ij by taking the limit of infinitesimally spaced indeces in the summation,

We can now make the extension to three dimensions as follows, We would

like a property of the sort

ff(z)é(r)d‘_g:f(o) (D. 18)
v

or,equivalently

ff(s)ﬁ(s -a)d®r = f(a)
v
We can see now how to write §(r - a) if we express the integral in
Cartesian coordinates,
i.e.. since

ff(x. y.2)8 (2 - a)dxdydz = fla .2 .a,) (D.19)
v



it is clear that the function that does the job is

(vii) B(z-a)=b(x-a)b(y-a)b(z-a,) . (D. 20)

We can define the derivative of the delta fun ction as follows, Since, at

«

least formally,

ff(x)&"(x)d::=f(:y()"‘°- J.f'(x)a(x)dx

ff(x)éf(X)& = -1'(0),

we have

or, by repeated applicétion of integration by parts

witi) [£ee)8™ ) dx = (-1 £y | (D. 21)

We can get an intuitive feeling for what5'(x) and §'/(x) look like by trying

to draw them . From the definition and the definition of the derivative of a
function we can see that

6(x) = a‘,’? U (x) {D.22)

Let us now imagine that U(x) had slightly rounded corners over an interval ¢,

a{x)

1
|
—
|
since the delta function is the derivative of the above, we can get it by plotting

the slope of the rounded U(x),

1

! )
| : S(‘) (lim as ¢ » 0)
i
I

—— ‘r‘——-——-t

{lim as ¢ -+0)



We differentiate that in a similar manner to get

1 SI(")

(lim as ¢ » 0)

and

— e

(lim as € +0)

—_— e —

etc,

® |

These we can use to express any function that satisfies relatively weak

conditions that need not concern us here,as a series of derivatives of the delta

function, {.e.,

f(x} = fob(x) - £;,6'(x) + BEy6'x) - .. .

or

f(x) = }:é-n“ -i-l!-a‘“)(x)
ns=

where

fH = J. f(x)dx

fy = J' xf{x) dx

fg = f x3f(x) dx

(D.23)



£ =J x™f(x) dx (D. 24)

are the various moments of f(x) about x = 0, We can make a plausibility
argument at this point as to the validity of this expansion as a representation of
f(x). If we multiply both sides of the equation by x™ and integrate over the

x - axis we get

jxmf(x)dx = Ixm -0t ;f;‘- 6™ x)lax
n=0 ‘

-
or

Ixmf(x)dx = 20(-1)";“}- fxma‘"’(x)a
n=
- -

but

-]
5
dn
Jxmb(n‘(x)dx = (-1 — x“smn = (-1 e
-

where Gmn is the Kronecker delta, Therefore we must have

o
m
J. x  f(x)dx = tm

which is how we defined fm' We have therefore reduced the problem to showing
that two functions (subject to certain restrictions) are equal if all their moments
are equal, which is a plausible statement. As an additional 'proof', compare
the Fourier transform of both sides of equation D, 23 and #12 of Appendix A,
That, in fact, is the easiest way to see whether it is possible to represent a
function f(x) in terms of an expansion of the type given by equation D.23. In
particular, if the Fourier transform of f(x) can be represented as a series of
integral powers of k,

To those familiar in multipole expansions, this is exactly what we have
done, A glance at the picture of §'(x) shows that it is dipole, whereas f, is the
dipole moment of {(x) about the origin, etc.

The extension to higher dimensions is straight forward, In particular a

function {(x), localized about x = 0 can be expanded in a series

5 (1ttim Dam a* st

k £

f(x) = (D.25)

kim Kigim! 3x " dy”* 0z

§(x)

m 2



where

fk.tm = J.xky‘sz()i)d"i (D. 26)

[X,]

are the various moments of f(x) about the origin'along adcH direcsion,
To demonstrate how this machinery can be very useful, let us conaider
a specific problem, Let us consider an f(x) which is localized about the origin
and bounded by a constant,
i.e.,
f(x) =0 for |x]| >a

f(x) < X

Let us suppose we wish to calculate the integral

1= f{x)G{x)dx

"““"og

where G{x) has a strong maximum at x,. |

-4

Wt o o e e

x

-k -5

L
It is very easy to see that such a thing cannot be calculated in the general case.
We can approximate the answer, however, in the following way. Substituting our

delta function expansion for f(x) we get

1= J { ¥ (1" 3 8™ Gy ax
n=0 "
-
or
t= Y (-1 fﬁ(n)(x)c(x)dx
n=0 ° )
therefore
1= 3 —f"}-c‘")w)}
n=0 ¢
where

n
c™o) = —d; G(x)
ax

x=0



is the n”l derivative of G(x) evaluated at the origin,
Let us now make the assumption that G(x) goes to zero for large distances

from its maximum like

Go
G{x) ~ e for large lx-xo IRER!

[x-xq |
then
(n),, . ( n! \
G " (x) = O] as [xexg]| 4o
’x_xa |n+rl
and

c™o) =o( :;r>
Xo

We can also make an upper bound estimate for fn as follows.

-
f = fx"f(x)dx
J .

= | x™f(x)dx

b
-amt f&"«aemg S
i

2K a‘ﬂ-"f.

*TREFT

anﬂ
= °<‘E‘ﬂ)
That means that the terms in the series go like

eonst.) () (2

and the series converges since it is bounded term by term by

r-1

-(const)(—:;-) in (1 -é)
e

which we are assuming for the purposes of this discussion,

provided

Taking the first few terms. we get {let r = 1; the worst case)

I = £ G(0) + £,G'(0) + HyGt(0) +o(l%° l")

If xo is a few times a we can see that we have a very good estimate for the inte -

gral, (U x, = 10a, the error after three terms is of the order of 0,01%). In



D, 10

addition we sec that the exact details of f{x) do not affect the solution nd are
not needed. Indeed we can often estimate or measure the moments of a function
without knowing its exact form. In particular, if f(x) is an even functinn of x,
i.e,, if

f(x) = f(-x)

all the odd moments vanish identically and we have
a\®
I=fG(0) +%£,G™0) +0 (x:)

(~0,001% if x, = 10a. not bad for just two terms!)

Problems

D,1 Prove equation D, 14, Hint: prove D, 17 first,

D.2 Prove the Fourier transform formula, i, e,, if

£(x) =g J Fic)e ' ak
then
F(k) = ff(x). -ilo gy
-

by direct substitution, Hint: Careful with integration variables!

D.3 Prove Parseval's theorems (equations A, 1l and A.12) by direct substitution,

D.4 From Maxwell's equations we have that, for a stationary charge density

§(x)
#lr) = = 3 d3r
£ T 4ne, l:‘-};l r

where g(r) is the electrostatic potential. If the charge density is confined to a

region '_t:, < a and in addition has no net charge, i.e,,

(0] =jg(£)d‘£_ =0



D.11

but has a dipole moment along the z - axis given by

d, =J‘zg(£)d’£ 5

with all other moments equal to zero, i,e.

Pram :J'xky ‘zmg(i)d'L =0

for (k, £, m) # (0, 0. 1), find the potential g(r) for Ir| >a.

4()

D.5 Find the behavior of #(r) in the previous problem if !3'_/3, <<l1, and

Q sjg(z_ )d‘L =0
but
Ousm = |y 2 Tptmex £ 0

fork+g+m 2 1,



APPENDIX E: Newton's method.

Consider a root x = x, of the equation

f(x) =0 , (E. 1)

where f(x) is well-behaved in the vicinity of x = x,.

f

If we expand f(x) in the vicinity of the root, we have
f(x0) = £(x) + (%0 - x) £'(x) + 0[(x - x)? '(x)]

or, since f(xy) = 0, we have

f m
o 2o o - ]

provided f'(x) # 0. Consequently, in the vicinity of x = x, we have,

- o f)
X > X - may - ‘ (E.2)

Equation E. 2 can serve as the basis of a very efficient iterative scheme, i.e.

()

n)

Lot ()
o

(E. 3)

where £ f[x(n)] and e f'[x(n)], known as Newton's method. Using equation E.3
) (1) @) (a)

we obtain x"’. From x we obtain x'°’, etc. This sequence

and an initial guess

usually converges extremely rapidly to the root x,.

Example E. 1. Square root algorithm.

We have

f(x):xa—azo

f'(x) = 2x

Therefore

.1



i
E)

]

+

or

x(n-H) - x(n) + a/x(n)

(o)

For a = 2, and an initial guess of x = 1 we have

x(o) =1.0

x(l) = 1.50
<) = 14167
@) 2 1414216

=) = 1. 41421356

which is equal to 4/2, to as many places.

Quite frequently, it may be advantageous to avoid having to. evaluate both f(x) and

f'{x) at every iteration of equation E.3, by using two successive estimates of f(x) to obtain

an estimate for f'(x), i.e.

(n) {n-1)
l(n) o £ - f
f x(n) i x(n'l) (E. 4)
Substituting E.4 in E.3, ‘we then have,
‘ (n) (n-1)
(nt1) _ () [ - x (n)
x = x - [f(n) : f(n-l) ]f . (E. 5)

The iterative algorithm based on E.5 is usually referred to as the chord method. Note,

(o)

that it requires two guesses, x and x(l) to start.

Example E.2. Energy levels of a rectangular potential well.

We must solve equations 4. 59

cot § ; even parity

H

:

tan € ; odd parity

Useful to scale E = Bx. This yields

£.00 = (1 - )12 cos Bx - x sinpx = 0 (E. 63)



- xa)l/Z

fo(x) = (1 sin Bx + xcos Bx = 0 ,

where we have multiplied by the denominators to avoid infinities.

We first solve for the lowest eigenvalue £, = Bx,, for p = /30 = 5.4772.

xf,°’—L

=25 = 0.2868

go:

[NIE]
4

and as a second guess, using 4. 62

2 T L I w N
€ = T FI) X = B F DS 0. 2425
We then iterate, for the lowest eigenvalue
(n) : (n)
n Xg fe
4] 0.2868 -0.2868
1 - 0.2425 -0. 0024
2 0.2421 0. 0000
For the next even eigenvalue, we have
_ 3n (o) _ 3w _
EZ = —2—‘ = Xg = m = 0.8604 4
and as a second guess,
37 1) 3 N .
277+ "% T - 0T
We then iterate to obtain
n x(zn) . f(n)
e .
0 0. 8604 0. 8604
1 0. 7275 0.0871
2 0. 7125 -0.0165
3 ‘ 0.7149 0. 0000

For the lowest odd eigenvalue, we have

g, > w =x§°) =X = 0.5736

i)

For the next estimate, we have

g =El'{3—f=x§1) 5 = 0.4850

We now iterate for x,,

(E. 6b)



n xl(n) fén)

0 0.5736 -0.5736
1 0. 4850 -0.0212
2 0.4816 0.0013
3 0.4818 0. 0000

For the next higher odd eigenvalue, we have

Ea ™ 2w = Xj — = 1.1471 -,

This value, however, is greater than unity and the radical in equation E.6b will be negative.

So, we will use x;") = 0.99 and xcsl) = 0.95 just to start the iteration. We then have,
n x@(n) fé’n)
0 0.9900 0.5384
1 0.9500 0.1725
2 - 0.9311 0.0144
3 0.9294 0.0003
4 0.9294 0. 0000

This work is greatly facilitated if a programablve calculator (or a computer) is available.



Appendix F: Electromagnetic fields.

F.1. The electric and magnetic fields.

.1

The electromagnetic field is described by six scalar fields, the three components of the

electric field

=6, 8,8)

x y z

and the three components of the magnetic field
B=®B, B, 5)
= x’ Ty Tz
These fields exert a force on a moving charge 9. given by

EF=q@8+xxA8 ,
{Coulomb force) where z'c_ is the charge velocity.
In the MKSA system of units, the force is measured in Newtons,
[F] = Newton =1 kg - meter/sec”
= 10° dynes
(= weight of 0,102 by) ,
the electric field in Volts per meter,

{8] = Vvolts/meter ,

the magnetic field in Webers per square meter,
[B] = Weber/meter® = 1 Newton/ampere - meter
= 10* gauss ,
(note that a Weber is a unit of magnetic flux), the charge in Coulombs
[qc] = Coulomb = Newton . meter/Volt ,
and the current in amperes

[Ic] = ampere = Coulomb/sec

Charge is conserved, and as a consequence,charge density
P = pc(f_, t) Coulombs/m® -,
and current density

de = =t amperes/meter®

obey a local conservation equation,

(£t + 2= st =0

B
ot Pc

F.2. Maxwell's equations.

(F.

(F.

(F.

(F.

la)

1b)

2)

. 3a)

. 3b)

. 3c¢)

. 3d)

.3e)

. 4a)

. 4b)

5)

The electric and magnetic fields are related to the charge and current density by means

of Maxwell's equations,



i) 1 \
_ag.§_€:pc (F. ba)
8 2
BEXQ""?)TQ (F. 6b)
9
B—E @_ = 0 (F 6C)
3 1 1 . 3
_— = mm— (e o=
ax < & = G de e ® ., (F. 6d)
where ¢ is the square of the speed of light,
c = 2.998 x 108 m/sec (F. )
and €, is the permittivity of vacuum and equal to
€o = 8.854 x 1071? Farad/meter’ , (F. 8)
such that,
4reoc® = 107 Farad. meters/sec® . ‘ (F.9)

It may seem strange that equation F.9 is written as a definition. There exists an arbitrari-
ness, however, in the scale of the units in which we measure electromagnetic qualities which
is removed by equation F.9. This constant of proportionality relate§ electromagnetic quantities
and mechanical forces. For example, the force between two point charges q;, qg spaced by a

distance r, is given by

= (o) D% .
Fo = lgmgy) 207 - (F. 10)

in much the same way as we have another arbitrary constant G.r to relate our units of mass

to our units of force, i.e. for two point masses m,, mg

Fg:-GTjg”—“i , _ (F. 11)
If the units of force and charge are chosen independently, then we have no choice about
1/4weo, just as if the units of force and mass are chosen independently, wbe have no choice
about the gravitational constant. To claim that we have no right to assign arbitrary units to
charge, i.e. Coulombs, as is done in the c.g.s. (Gaussian) electromagnetic units since they
are related by the Coulomb force, is equivalent to claiming that we have no business in

assigning arbitrary units to mass since it is related to force and distance through the

gravitational force.

#

A Farad is the unit of capacitance given by

1 Farad = 1 Coulomb/Volt

*G = 6.673 x 107 Nt. meters®/kg®



F.3. The electromagnetic potentials.

The electric and magnetic fields can be solved in terms of the charge and current
density through the use of the electromagnetic potentials. More specifically, we define a
scalar potential

® = 9(x,t) Volts
and a vector potential
A = A(x,t)] Webers/meter |,

in terms of which,

) 3
Q—-'éch—-ﬁé (F. 12a)
and
)
-§=—3x XA . (F. 12b)

It should be noted that equations F.12a and F.12b define a unique & and & from a
given @ and A. Interestingly enough the converse is not true. In particular, the transfor-

mation of ® and A into a new ¢®' and A' given by

9
P = -2y (F. 13a)
and
- 8
A=At x (F. 13b)

for any scalar function .y (x,t), leaves & and & unchanged. Try it! Such a transformation

is called a gauge transformation.

We can now solve for ® and A, in terms of Pe and -j-c‘ using the Maxwell equations,

In particular, from the divergence of & equation, we have,

2 .8 28 . =
_<3_)g ag_;)q"at(a é) % Po - (F. 14a)

The curl & and divergence £ equations are identically satisfied, and the curl £ yields

) 8 N 9 8 ®
F_}Ex<_3_gxé)—ca(so-‘lc—353tm- zé>

We can express the left hand side using the vector identity (see Appendix G)

8, (2 2 (o A} . (2.2
5§X(”82x—>’8§<65‘é> <85 aé)é”
to obtain
3 2 1 8 1. a8 {1 8 .38 '
=2 = p - -2 + 2 A F.14b
(8_:5 3§>é+ca ot .é.“ecca e 8§<ca at ox —> (F. 14b)

We now note that the degree of freedom afforded to us by our choice of gauge (through the



gauge transformation equations F. 13) allows us to set#
1 el
-_2-%:8+-5;-—A—=0 . (F. 15)
¢ X

See problem F.4. Substituting F.15 in F. 14a and F. 14b then yields

8 0 1 & _ 1
—(3_}2 . 8_}_:_) @ + e o P = P P (F. 16a)
and
3 a> 1 & |
L - 2)a+ L A= . (F. 16b)
(ai‘— % & o €oC” L

In other words the fields ® and A obey wave equations with source strengths p_ /e, and

_j_c/eo c®. These can be solved using a Green's function solution to yield

d3x!
- 1 I ] -
blxt) = e / L) T T (F. 17a)
and
1 asx
Alx,t) = / i (x',t) — , (F. 17b)
e ] e x-x
where .t' is the retarded time
0=t -2 |x-x| (F. 17c)

F. 4.  Electric fields in matter.

Consider a neutral atom sitting at the origin.

g.(z)

Its total charge (Z = atomic number),

Ze -~ [pcd3_>§= ]

is of course zero (neutral atom). If the electrons are symmetrically distributed around the

nucleus, its dipole moment
d= - /§ p (x)d% = 0 (F.18)

is also zero, since pc(ig_) = pc(- x).

Imagine now that we turn on an electric field 8 along, say, the z-direction. This will

#Equation F. 15 is called the Lorentz gauge.



result in a tendency for the nucleus (positively charged) to move along §, and in a tendency

for the electrons to move along the opposite directions

1o

resulting in an asymmetric distribution p'c(:_c_) of electrons about the nucleus. Now the dipole
moment is no longer zero. In particular, we will have a hon-zero component along the

z-direction (direction of §),

= - ' 3
dz = ]z pc(_}_;)d x

where, to compute the integral, we have shifted the origin to the new position of the nucleus.
To lowest order in the electric field strength, one finds that the induced dipole moment
is proportional to the magnitude of "8 and, for an originally symmetric distribution of charge,

also along the direction of 8. We can express this as a vector proportionality equation

[f-3

epa 8, (F.19)

where o is a constant, with dimensions of volume, called the polarizability of the atom.
The dipole moment d ‘has units of charge times displacement (distance) and we can write
it as
d = qcé . (F.20)

If q, = Ze, the magnitude of the positive (or negative) charge, we see that -§ is the
average net displacement of the electrons from the nucleus.

Consider now a piece of material which need not be homogeneous and is exposed to an
electric field which may not be uniform. Then the induced dipole moment will vary from one

location to another. We may think of the local dipole moment per unit volume as a vector

field, called the polarization field and given by

@ =Nd=Ng & , (F.21)

c=
where N is equal to the number of atoms per unit volume.
Consider next a parallel plate capacitor formed by two conducting plates charged to a

surface charge of ¥ o Coulombs per unit area on the top and bottom plate respectively.



This results in an electric field inside the capacitor, given by

o]
4 = —
€q

If we now introduce a slab of material in between the two plates, it will be polarized in
response to the electric field. This will result in a net displacement & of the positive
charges from the negative charges leaving a net positive charge on the upper surface and a
net negative charge on the lower surface. This is sketched below.

R e —— ) —
- - — - py [ c.:fne‘e

R NS

«— " T
- + -~ ; £ =+"_.\.- + 0:‘.,“_

w4

The induced surface charges on the material are called polarization charges which we will

denote by Opol' It can be seen that the electric field inside the material is now decreased
and given by
%ree ~ Ypol
= 2ree  Ppo-
6inside €5 ’ (F. 22)

where the subscript 'free' is used to separate the twyp types of charge.
The polarization charge is now given by the total displaced charge per unit volume,

times the displacement thickness 6§, i.e.

O = (Nae

this, however, we recognize as the magnitude of the polarization field on the surface of the

material, i.e.

[} = (@)

pol surface
For a homogeneous material, however, the polarization field will be uniform and we can write

Gpol =@

Substituting in equation F.22, we then have

Otree ~ @
‘ginside = TTe, (F.23)

Equation F.23 motivates the definition of a new field, called the displacement field $,




defined by
B=e, 8+ . (F.24)

Evidently, the displacement field inside the dielectric is given by

%inside = %free
In other words, the magnitude of the displacement field is equal to the electric field we
would have had (times e¢5) if the dielectric was not there.
Using Gauss' theorem, one can show that the divergence of the displacement field is

equal to the (free) charge density, i.e.

(F.25)

0x $= Pfree

Now since the induced local dipole moment is proportional to &, we must also have that
the polarization field is also proportional to the local ¢ and that we should be able to write
a local proportionality equation,

¢ =coxg & . (F.26)

"The constant XE is dimensionless and is called the electric susceptibility.

It would appear that we could combine equations F.19, F.21 and F.26 to compute X g
The situation, however, is a bit more complicated because the local electric field is
altered by the neighboring polarization charges. The situation is even more complicated by
the fact that in a crystal, for example, which is not isotropic, € and ‘¢ will not even be
parallel, i.e. Xz is a temsor. In a gas, however, where we can neglect all these effects,
we have

(Xg) = Na (F.27)
gas

whereas in isotropic condensed matter (condensed noble gases for example) we have#

= 19
dlocal * 3 eg
so that,

- Na
XE = T-Na/3 - A (F. 28)

known as the Clausius-Mossoti equation, which reduces to F.27 for Ngq << 1.

We can combine egquations F.24 and F.26 to obtain
B =e5(1 + XE) 8

or, combining the constants,

H=c8 (F.29)
where the constant
€ =6l Fxg) (F.30)

Hew Ly ewamiple Feyiiian levtuees, v W, chapter 1),



is called the permitivity. The ratio

K= =1+ ‘ (F.31)

is called the dielectric constant and is the quantity frequently tabulated for dielectrics.

Before leaving this section, we should note that a time varying polarization field yields
a current density given by (see equation)
. 3 :
dpor = Bt 2= Na 8, (F.32)

called polarization current.

F.5.  Magnetic fields in matter.

The interaction of a magnetic field with an atom is more complicated than that of the

electric field because it is the result of three mechanisms:

(i) interaction with the magnetic moment By associated with the orbital motion of

the electrons,

(ii) = interaction with the magnetic moment Hg associated with the electron spin,
and

(ii1) interaction with the nuclear magnetic moment By

In a particular situation these interactions may oppose each other so that a macroscopic
sample may tend to either weaken or strengthen an external field depending on the material

and its state,

The interaction of the orbital angular momentum of the electrons with an external mag-
netic field can be understood as follows. If we assume that the external magnetic field is

uniform over the extent of the atom, we can approximate the vector potential by
At > -2 (x xB) . (F.33)

See problem F.10. From the Hamiltonian for a charged particle in an electromagnetic field

(problem 1!.7), we have

1
H=5—(p-qA) @-qA +q® . (F.34)

If we now choose the z-axis to lie along £, we have, in cylindrical coordinates (see appendix

a 2 s, lrn (F.35)
é=e?A"—e‘?Er.Lz , .

and the Hamiltonian becomes

=+ L S 28 P + p?
H = 5 [pl+r=(p?*2qc 2B )P +pll+ g (F.36)
L



update

where P, Py and p, are the conjugate momenta to r, ¢ and =z, classically given by

1
p, = mr (F.37a)
= mra. + 1 2B ’
Py =mr ¢ t5q 1 F (F.37b)
p, = mz . (F. 37c)

There is a magnetic (dipole) moment associated with the orbital motion of the charge

q _, given by the circulating current times the orbit area, which is normal to the orbit, i.e.

= : = K T
b, = current- area = 9. 35 " TT,
or
1, 22
B, =3 qcrltp (F.38)
Substituting for rf:Q from F.37b, we then have
a
q q
< i - (F.39)

uz=_2—rn-p¢—m 1z

Now since H # H($), we have that

N oH
= - e = 0
P¢ " " B¢

or p? is a constant of the motion, Therefore as we increase the magnetic field from zero

to a final value El'z, the magnetic moment decreases by an amount
3

-5 - e 2B (F. 40)
K, = dm %7, :

since pq‘ = constant.# Note that the change in H, is in the opposite direction to the change
in Bz for both positive and negative charges.

Now for a spherically symmetric atom,
(Y= 8y = 2 (R
L 3 ’

therefore we expect that for each. (spherically symmetric) bound orbiting electron

3
= - S (2
opy = = (*Y8 (F. 41)

where 94, = - e is the charge and m = m is the mass of the electron,

If we now define a magnetization field & equal to the local magnetic dipole moment

per unit volume, i.e.
m o= Ng , (F. 42)

where N is the number of magnetic dipoles per unit volume, we see that, as a result of this

effect, an external magnetic field & will result in a change in the local magnetization in the

opposite direction to £. This behavior is called diamagnetism.

ﬂote that pQ = LZ = (x X E)Z = z-component of angular momentum. See also problem 1.5.



F.
The spin angular momentum S of the electron is associated with a magnetic dipole
moment e
Bg=-8.6)8 ., (F. 43)
e

where g, is called the electron spin g-factor and found to be equal to (see problem F.15)

g, ~ 2.00 ‘ (F. 44)
and S is the spin angular momentum. The projection of S however, along a particular axis
(say the z-axis) is restricted for an electron to the values

s, =+t3h , , (F. 45)
where # is Planck's constant divided by 2w.

If we ignore the possible finite size of the electron, this spin magnetic moment has a
Hamiltonian in a2 magnetic field & given by
HS -_-_Es.é (F. 46)
Compare this with the Hamiltonian of problem F.13 and the discussion in problem F, 15.
Consider now Ns magnetic spin dipoles per unit volume in thermal equilibrium at a

temperature T. If we ignore mutual interaction effects and treat them independently, we

must have that the probability of finding one parallel to B (spin up) must be proportional to

-E/kBT ‘
e , or
+ o /kBT
prob (1) « e z , (F.47a)
where [y = Ipzl, whereas for spin down
- o /kBT
prob (i) =« e z . (F. 47b)

Combining these two, we have that the fraction per unit volume in the spin up state must be
given by
P B_/k T
N1 e z'"B

i - : , (F. 48a)
Ng e'yo'ﬂszBT . RoB Tk T

#

whereas the fraction per unit volume in the spin down state,

N; - yoﬁz /kBT
-t = e (F. 48b)
Ng euoﬂszBT s pcﬁz/kBT

Correspondingly, the magnetic dipole moment per unit volume (magnetization field) is given by

uQBz/kBT i e- yoﬁz/kBT

e
’Rz = NS (pz)= NS "—“—o?;.]kBT R '“on]RBT Ho (F. 49)
e e .

¥

Note that we have used the quantum mechanical result that for an electron these are the only
two possibilities. A purely classical calculation would have to allow for a random dipole

orientation.



where, for an electron (see equation F.13)

ko = ge(Zl?n )

NIES

(F.50)
e

since Sz =+ h/2,

We recognize the temperature dependent part of equation F.49 as the hyperbolic tangent,

-
e

BB,
mz = Nsuo tanh <—I—.—I.> . (F.51)
B

Now for weak magnetic fields, poﬁz << kBT {see problem F.17) we have tanh x ~ x, so that

3

~ Ha_

n, NS T Bz . (F.52)
B

It can be seen that the direction of the magnetization is along BZ, i. e. strengthens the

#

magnetic field. This behavior of matter is called paramagnetism. Note that as 8

increases, or T decreases, we réach a saturation magnetization (tanh x - 1) given by

M )gat = Ngho - - (F.53)

sat

The quantity po, the absolute value of the electron spin moment projection is very
nearly equal to the Bohr magneton

= 9.27 x 107 ampere~mefer3 . (F. 54)

Matter displays both kinds of behavior and is found to be diamagnetic or paramagnetic
depending on which of the two effects is stronger. One should also mention that some
materials display a large scale magnetization whose behavior is called ferromagnetic. In

these materials, the spin dipole moments can align each other and we end up with large

scale net magnetization fields that extend to domain boundaries. In that case we are not
aligning a single electron spin moment when we turn on an external magnetic field, but ‘the
magnetization field of a region in the material. The net effect is a response that can be

several thousand times stronger than paramagnetism.

In an analogous fashion to the case of dielectrics in electric fields one defines an

auxiliary field
1

2
€oc

¥Eeb- n . (F. 55)

Note that the curl of the magnetization field is a current density, i.e.
3 o :
o% X = -‘Lmag , (F. 56)

which can be identified as the current density that would be required in the magnetic dipoles

¥

Mnemonijc rule: paramagnetism = spins parallel to &.



to produce the magnetization field M.

in a material into three types:

-j-cond

; = 0 =
dmag T Bx xR =
. a3

dpol % € -

magnetization current

polarization current

and correspondingly consider the total current as the sum,

* .-imag + -ipol

4= ‘icond

externally introduced conduction current

i.e.

If we introduce these quantities into Maxwell's equations we have

]

8= -tlo— (pfrée *
8=-%8

B =0

== .Cl?[(c% -icond
fields,

‘B = Pfree

8- -(—;’; 5

B8 =0

¥ =--'i~cor1d + _agf 3

ppol)

)
+a_xm+

s

(F.

(F.

(F.

(F.

(F.

(F.

which may look simpler but has of course swept the difficulty of the material response

the auxiliary fields $§ and N.

Correspondingly we can separate the total current

. 57)

. 58a)

. 58b)

58¢c)

58d)

59a)

59b)

59¢)

594d)

in



Problems

F.1 Assume that the electric and magnetic fields obey periodic boundary conditions at the

edges of a box

|xl <L /2, |y|< Ly/Z .zl < L /2,

8(- Lx/Z, Y, %) _di'_(Lx/Z,y,z)
§(x,-Ly/2,z) = &8(x, Ly/Z,z)

8(x,y,-L,/2) = 8(x,y,L_/2)

and similarly for £. Show that both fields can be expressed as Fourier series of

the form 2 -
ik - x
8(x, t) = z Z le o0 & 4]
k 4=0 .
and
2 k-x
B(x,t) = Z /5_15,1(“ ®, 0] © ,
k L4=0 J
where %ko is a unit vector along the wavenumber k and & & are the two

perpendicular unit vectors such that

and -where
1 - . k-x
dk. 29 = Folome [[eg,z 8(x,t)] e d®x
and

S S a . T = 4
P, 19 = Totume [[‘*_15,1 Bl t)] e x

PF.



PF.2

Problems (continued)

Hint: Show that for k and k' whose components 1‘;1_, ki' are given by

k., k! = n, (-ZJl) ;o n.o= 0,+1,42,, ..
i i i

i(k-k') - ol
e d°x = (Volume)&k’k,

Volume

Assuming that the charge and current densities also obey periodic boundary conditions

at the edges of the same box, show that

X, t) = 2 Py () ek X
& Tk

and

. . - ik -
d(x0) = z Gy L) & Je="%
ket T -
and that the equation of charge conservation becomes
+ ik jk o T 0 , for all admissible k
where k° = ki + k; + ki. Note the form of the divergence in this representation

and ‘the fact that the charge conservation equation does not restrict the two transverse

components

Show that the Maxwell equations for the Fourier components of & and £ reduce to

algebraic equations, given by

i =L ; -
ik 55‘0 e p—13 . ik B_k_,o =0
. _ LR _ 1. )
- ik 65,1 = E_k_,a , ke Blg.l i 55‘2
. _ A 1B I +
ik 6.1‘_:“ = Bl_(_,l oo ike B_li:a = oo Jin + ék,l

Note that these are six independent equations for six unknowns, not eight as the vector

form of the Maxwell equations in (x,t) space might lead you to believe.

Assume that a particular choice ®' and A' yielded

Lm0, L,

2z ot ox —
c X

We now transform these using equations F.13. Show that

1 oy 0
- + 2. =
B ot ax A 0



Problems (continued)

if we chose ¥ such that

a 2 1 9
'(35 —3—.’.‘.>X+

- o X=V
2 o

[Note that this is a wave equation for y with a source ¢, whose solution is given

1 &=’
X(J_i,t)=zn-[‘ll(§,t')m .
where

t":

t - £} Ix - x'|
c IX-x
You don't have to show this!]

F.5 If we separate the local charge density into externally introduced free charges and
polarized bound charges, i.e.
pc(§-’ t) = pfree(f’ £+ ppo:)l(ﬁ" L

show that the divergence of the polarization field is given by,

9 ., - _
ax 2= Ppol
in general

{w

17

A dipole can be idealized as a pair of charges iqc, separated by a vector

El_/qc_, directed from the negative charge to the positive charge, in the limit of
- 0, keeping d constant.

o *9e
' s=d/g
—.1‘

F.6 Show that an idealized stationary dipole generates an electrostatic potential given by
o
o= (d 37) %

where ©, is the electrostatic potential generated by a unit charge, i.e

%o = Tne, =l
and that therefore

by



Using the Lagrangian for charged particles in a constant electromagnetic field (equation
1.38), show that the Lagrangian for an idealized dipole in a constant electromagnetic

field is given by

tadn sl mlil® -4 LA dg D
L% d,dit) = g m|2l° - d-gro+rd- A+ £ @ A
and compute the conjugate momenta
_ oL aL
= = s ==
8x ad

Note that we are neglecting the effect of the dipole on ¢ and A.

Show that, in this approximation, the Hamiltonian for the dipole is given by

1

2 .0
Hegm lp-@gal? rd 50,

HE

that the energy of a stationary dipole (%x=0) is given by

and that it feels a torque given by

T=dx8

If A = 0, derive the equations of motion for the center of mass of the dipole, i.e.

. . _ oH . . 2H
R =- ox  ’ X= %
and show that it feels a force given by
.8
F=@ g8
int: 2 s ux (L 9 L8 2
Hint: 8__:5(2 v) —_lix(aiE X v) + v X (35 X u) + (u '85)-‘—’+(X 85)3

Show that the vector potential of equation F.33 yields the correct magnetic field, if

5
Hint: _882 X {u X v) EE(‘Z?_: ¥) - X(—;—§ u) + (v~%{-)3 - (u %_;)X

Show that the Hamiltonian of equation F.34 can be written, for a uniform magnetic field

as s
) a, q
H=5=20" +q0-55 L-B+5= [zfF - z-8°1 ,
where

L=xXxp

is the (orbital) angular momentum.



F. 12

From the definition of the orbital magnetic dipole moment (equation F.39) show that,

in general,

qC qz -~ 2
B tom Lo Iz - Rl B,

where L = x X p is the (orbital) angular momentum, and Ié/:'i is a unit vector in the

direction of 8.

Hint: Show that = L, = z-component of angular momentum in equation F.39.
Py 2 P g

Show that if we increase a uniform magnetic field from zero to some final value &,
the change in the Hamiltonian, as a result of the orbital motion of a charge q.. is

given by R
q

H o= - p 8- 52 lan 6 - (x 8°]

A magnetic dipole u can be idealized as the product of the current in a small loop

times the area of the loop, in the limit of zero area keeping the product constant.

#

I Arta, B

Show that the vector potential generated by such a idealized dipole is given by

1 L xx
B 41're:°ca. |_}£I'a

Electron spin magnetic moment. It should not be surprising that there is a need for a

roportionality constant to relate the dipole moment to the angular momentum.
prop go P g

The magnetic dipole moment is related to the distribution of current density, whereas
the angular momentum is a function of the distribution of mass. For example compute

the g-factor for the magnetic moment b,
uz = g(—_) L .
of a uniformly dense sphere of mass m whose charge, as a result of electrostatic

repulsive forces, resides uniformly on the surface.

47Tafo; ’f‘

4 e

Answer: g = 5/3.



Problems (continued)

F.16 Derive the result of equation F,40 using Maxwell's equations. Consider an orbiting

F. 17

charge at zero magnetic field and allow the field to rise to its final value. Integrate
the resulting torque from the induced electric field as a consequence of the curl (4)

equation.

Compute the magnetic field strength (give your answer in gauss) such that

e .
kBT

at room temperature, where By is the Bohr magneton (equation F.54).



update

Appendix G: Useful vector relations

G. 1. Vector identities

ABxL) =C (AxB) =B (CXxA)=-A-(CxB)=-B(AxC)=-C"(BxA) (G. 1)
AXx(BxQ =-(A-B)C+{A QOB (G.2)
AX(BxC +Cx(AxB)+Bx(CxA)=0 (G.3)
(AxB)-(€CxD) = A-[Bx(Cx D]
(G. 4)
= (A-C)B-D) - (A-D)}B-C)
G.2. Differential identities (5"’2 = éx‘a%? + ‘éy% + éz%)
2 — el Y.
ax ¥ ‘(aﬁ)“’”"ai (G. 5)
2 8Y, 2
x (VA S5 A+ Vg A (G. 6)
-8—-><(\yé)=-g—‘t x_;}_+\y-éazxA (G. 7
9 9 . R
3% (BXC) = gz xB)'C - Briz2xQ) (G. 8)
3 3 3 9 N
E“—B—XC)=“3—§§)£+-§(3_§ o - (& 8__)_<;+(_§ 3§)§ (G. 9)
0 = (2 9 .2 R
= {B-C) = -(3§ X.E)XE+_1§_><(3§ xC)+ (B =S (E 35)13- (G. 10)
a3 . 08 .0 3 .8
(gg.a_i)_é_ ='3§-:(—az-_A_) - —a}EX(85 xA) (G. 11)
3 -
2xLy=o0 (G. 12)
5 8 -
—E)E'(B_gc_xf'-) = 0 (G. 13)
Note also » x
8 = — 5 L 1 .=
Eg _}S =3 N a}. X .JE 0 335 'rg = lx’a (G 14)

G. 4. Integral identities

If d"’_:E is the volume element, dS is the unit outward normal to the surface element

and df is the counter-clockwise tangent to the contour & bounding the surface S we have;



A (G. 15)
A\ S
a, (&Y =f G. 16
fdi (8§) = ds v ( )
v S
a3, (2. = G. 17
j:ié(aixé)_fd_x_A_ ( )
A% S
Green's lst identity: [daﬁ (cp-a?g g—\é + %% . %) = fd_ ® -g—‘iy- (G. 18)
v s
Green's theorem: [dazz_ (cpai5 —g—§ - \ysa-—_-- %) E[d_-(cp —g%- wi;%) (G. 19)
A% S
Stokes's theorem: fd§_~(-:—x- X A) =¢d_{-é (G. 20)
S - e
Y
[d_§ X (8_:5_) = df v
S c

(G.21)



G.4. Cartesian coordinate system
aP dex = 0
dé =0
y
A
a2 e =
G. dez =0
é x =&
. 4
dx = &
e X
9 _ . B
ax = ®x Bx
=
x/
Examples:
2 N, oLy By
grad (y) = 9x ¥ = ®x Bx ey 9y * ¢2 B
an A aAz
d“’(f*-)"'g ég-é;-+ oy * 9z
& 8 [
X y z
. L8 8
curl (A) = 3% X A = det ™ By Bn
Ay AY A,
A 2A
=8 (=2 . —X)
x ° 8y oz
+ 'é an _ aAZ)
y ' 8z ox
‘s 8Az 8Ax
z - 9x dy
] 3
Lapl (‘“ = (.ai.ai.)\y = ﬂ+ﬂ+u
X ox 3  8y?  82°



G.5. Cylindrical coordinate system

>

1>

"

&
A
Qy
A
eq
~
e,
z=
n
$
3 9y + 8 ﬂ.}. 2 By
x 9x y 0y z 9z
oA 0A
L2 (r A) + =27 + 2
r C8r EREN op 0z
i L v
e ewrl e,
1 2] 9 2
— det — — —
T, Br_L o Bz
A_L rLAcp Ar
. (_1- aAz ) 8A :
L'r & 02
L
A (BAJ. aAz)
p oz BrL
0A
~ 1 9 X
e — [ (r A ) - —==]
er_ 8r_L LY op
2 2
- (r, 5 + L 24 2
F RS i r® af 8z°

1}

& r +8& rdo+ & dz

1L P L z

-~ ¢} ~ 1 23 a 9
—— 4 — —— -

€y arJ_ etp T, b 1vo] €. Bz



G. 6. Spherical coordinate system

“ ) d'ér = 'éede + ‘écr sin 6 diy
” d%e = - ‘érde + ::Cb('useda}
e,
A decp = - e sin @ dy - eecosﬂdcp
€e
x = e r
a = r
e’
¢ dx = é dr + &,rdf + & rsinfdy
- r ¢} (¢ ’ +
B2 B s 10 .z 1 o
8x ~ "r dr 6T of 8 rsinb op
=
¢
”°<
Examples:
W A By a1 . 1 3y
ox = € 3r ' € % ecp rsin® o
: BA :
9 .01 8 (3 U R N )
8x A= 2 ar (r Ar) * r sin [89 (smeAe) * oxp 1
e e.r e rsin®
r ] ®p
) 1 9 0 9
Lxa=—t  get] & 2 2
ax " — ?sin 6 or or EL)
A rAe rs:mGAcp
BA
= ¢ rsmB [T (s1n9A ).~ —]
BA A
- 1 r 18 4 18 r
* €g |:rsinﬁ &p r or (rAqJ)] * o T [—{F (rAg) - 357 ]
V= E e g g e B+ L Ty
' sin® 8 &p°

update



Appendix H. The spherical Bessel functions.

The spherical Bessel functions provide the non-trivial solutions to the equation

5, f(p) = £,(p) (H. la)
where
sl 4 ad,, Merl)
8, = -—= 35 (p dp)+ A (H. 1b)
p p
3
E-L_EECL+M (H. 1c)
dp? p dp o?

We can eliminate the first derivative term by a transformation of the dependent variable.

Making the substitution

' gy = Pfﬂ (H. 2)
results then in the equation
a
L(4+1)
&+ - gyle) = 0 . (H.3)
2 3
dp P
For L = 0, we recognize the two solutions as the sine and cosine of p, and therefore
since f, = go/p, we have
1 .
= sin p
folp) = 4 P (H. 4)
1
= cos
- p

These two solutions are called respectively the £ = 0 regunlar spherical Bessel function

(finite at the origin),

Jolx) = -pl- sin p , (H, 5a)

and the ‘4 = 0 irregular spherical Bessel function, or spherical Neuman function (infinite

at the originj,
ns{x) = % cos p . (H. 5b)
To solve the equation for £ # 0, we note that the operator ﬂz can be factored into
the product of two operators, i.e.
d 4-1, d 2+1

('35+'—;>:-)('&'5+—p_) . (H. 6)

]

8,

This motivates the definition of two differential operators

+ d 2 -2 4 4
E oo+ - 22— + = H.7
}:"‘z 3 + 5 F!, 3 + o ( )
We then have, from equations H.6 and H.7, the identity
1 Fi (H. 8)

+ ' .
If we now compute the reverse product F“_1 F:L-l’ we find by direct substitution that

- Y & U R 3 |
FZ+1FL-1—(dp+ p)( dp+ p)

1



or

Consider now the fact that

- +
p+1 Fao) Gy =50,

+
and operate on both sides of the equation with Fl,-l'

8 £

g-1 f41 = (F

This yields

+ - + +
Foop Fgpy Fu) £y = (Fyy £40)

or
. + +
(Fpop Foap) (Fyog £ou) = (Fy £, )

Using equation H.8, we have, however, that

+
By (Fy g £y )= (Fy £, 1),

and therefore we see that if fl-l

function of sj,' In other words,

ar
+
FZ f£=fz+1 R

within a constant. Using equations H.9 and H. 10 we then also have,

or

is an eigenfunction of st- 1° then F+

(H.9)

£ is an eigen-

4-1 "2-1

(H. 10)

(H.11)

Using equation H. 10 and the solutions for 4£=0 we can now generate all the other

solutions, in particular

. ol
Jgerle) = Fy jyle)
and
(p) = F; n,(p)
Bue1tP) = Fy myle
The first few of these are given by
. 1. 1
jilp) = = sinp - = cosp ,
3 p
P
ap) = (& - H sinp - L cosp
pa 3
and

nl(p)=—1—c05p+lsinp ,

0? P

3 1 3 :
no(P)=(—'--;) cos p + == sinp

p® )

(H. 12a)

(H. 12b)

(H. 132)

(H. 13b)

{H. 14a)

(H. 14b)

The functions jz(p) and nz(p) can also be expressed in terms of the cylindrical

Bessel functions of half-integer order, through the equations

1/2 1/2

)= G5 T L oae = 0ty Y

_(z+1/2)(")

(H. 15)



They possess an asymptotic behavior in the vicinity of the origin, given by (p < 1)

£ 3
3 P~ -
g~ i | e ¢t (H. 16a)
L2 ~(4+1) o
By Y2y P L*sey o | (H. 16b)

and become oscillatory for large p. In particular, for p 2 L(L+1),

e 1 [fsie
~1 (p - tm/2) . (H. 17)
nz p coOs

For problems involving radial travelling wave solutions, it is often convenient to intro-

duce the spherical Hankel functions, defined by

h‘;” =n, +ij, (H. 18a)
and
2l = n, - i, . (H. 18b)

which, of course, are also solutions of the original equation. The first few of these are

given by N
tip
b6 = 2
*ip
wd - (%? ) & L (H. 19)
+ip
(£) o (3 731 e
hg (pa . 1) 5

/

From the defining equations, it can be seen that

1 ;
n, = > (pz cos p - g, sin p) (H. 20a)
and
R § .
jp=2(agcosp +tpysing) (H. 20b)

where P, and q, are polynomials of even or odd powers in p*, of degree L and

£4-1 respectively. Substitution of these -expressions in equation H. 18 then yields

2o = (p, * 1a,) (H.21)
It can be seen that for real p, jz(p) and nz(p) are real, whereas
BV ) = 8 (o1" (H. 22)
The asymptotic behavior of the spherical Hankel functions, for large p 1is given by
+i(p-4w/2)
B (e ~ (1 %4 U?fl)] 2 . (H. 23)

It should also be mentioned that these functions also solve the eigenvalue equation

H.la with the opposite sign, if we replace p with ip in the solutions, i.e.

8, £,(ip) = ~ £,{ip) (H. 24)



or -
1ld a4 e o
[,,8 - T = ] f,ip) = 0 . (H. 24')

A word of caution! The various arbitrary signs and phases for the spherical Bessel
functions are not universal. The choices in these lectures were motivated by the goal of
making the analogy Between the solutions of the one dimensional problem [sin, cos & eiikx]
and the radial problem [jz,nz & hff)] as explicit as possible. In most references, the
spherical Neumann function nz(p) is defined with the opposite sign, while the spherical
Hankel functions of the first and second kind are related to the hff) through the equations

h&” = - ind hf) = ih;') ) (H. 25)

»

QOther useful relations

1
3 @e+1) £, = £, + £, (H. 26a)
d
(24+1) T Lo = Ml - (D £y (H. 26b)
d , &+l 2+1
Tl )=t (H. 26¢)
d , -2 -2
.5.5 (p fz) = - p fzﬂ (H. 26d)
d | 4+l - _
Gt 5T T B 7 R (H. 26e)
d %, =gt o
('3'5+?) £,2F, £, = £, (H. 26f)
< £, = (- %a‘%)‘ £ (H. 26g)
[
. : 1
By dgey v Bgey 7T (H. 26h)
p
s T & .
ig n, Ji == (H. 26i)

P



APPENDIX I. The auxiliary operator Q in the hydrogen polarizability calcu-

lation.
Substituting
#2 3 e?
H°—_2rnrv T 4meor
we have, if Q = Q(x) only,
#
QH, - HoQ = [Q,Ho] = - 50— [Q,7°]

m
r
Substituting in equation 8.58, we see that the operator 2 rnust satisfy the dif-

ferential equation

3
- e [, - (Y] = 2V (1.1
T

where Y, is the ground state hydrogen atom wavefunction. By dimensional

analysis we must have

3
m_ag

_ _r
Q= 3 g (1.2)

where g is a dimensionless function. Substituting 1.2 into I.1 we then have

3
- %[gvz% - Pleve)] = () Ve - (I.3)
<]

Now

P (gV¥e) = Vs + 2(78) - (W) + VoVg

so that 1.3 can be written as

a30(72)- (Vo) + 3 ¥o7°8] = (£) cos® ¥o . G 3P
Substituting
-r/a,
Yo < e
we have
| r/ao
Yo = - :o— e €.

and therefore

3
Eznvag-aogés(f;-)cose. (.5)

By separation of variables or otherwise, we can see that

g = f(p)cos®

where p = r/a, and

where a prime denotes differentiation with respect to p, or

T RARC A T 1. 6)

I.1



The solution of equation I.6 which leaves I.1 finite as p - 0 and p - « is given by

1
fle) = -(p + 55°) ,
so that
m_al m_ag
__r° 9 1,749 ,2
Q = e g = e [1+Z(a°)](ao)cose
or
m_ag
Q= - z (aq +—%r)z ,

ﬁQ

as required by equation 8.57.

Reference: Landau and Lifshitz, Quantum Mechanics, section 76, problem 4.




APPENDIX J: The Radiation Gauge.

Using the transformation equations,

Azt = At + 2 X(xt) (J. 1a)
P (%t = 5t - 2 Xt (J. 1b)

and the choice

t
XA, t) =[¢(§,t‘~)dt' s (I.2)
0
we have
t
Az, t) = Ax,t) +f [332 o(x, t?)]dt' (I.3a)
0
and
P, = 0 . | (7. 3b)

We now transform the fields again, using

a3 x!

1 X
XHg 8 = - g= [%-_A_‘(_:g‘,t)] T - =] {(F.4)
This results in a new vector potential given by

At = At + = X0, (7.5)
whose divergence is zero, since

Danmt) = oAy + 12l 'x, t)
N T 9% X

ox
and
2 4? p)
=1 (&t = - 5= AR, (7.6

since equation J, 4 is the solution of equation J. 6 (inhomogeneous Laplace's
equation) by construction.

The new scalar potential
1 8 +
@ (E: t) = - _a_t)X (E: t)

is also zero since, from Gauss' law

0
3 8 ° 8
3% St = - 5l M -2 [f,g'é'(é:t)] =0,

we have that x'b(é, t) is not, in fact a function of time, i.e.,

X' = Xi(x)



and therefore ®''(x,t) = 0.

Reference:

Hill,

J.D. Bjorken and S.D. Drell,

1965), §14.2.

Relativistic Quantum Fields (McGraw
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