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Vorbemerkung

Ohne es selbst untersucht zu haben oder entsprechende Untersuchungen zu
kennen, wage ich die Behauptung, dass Vorworte die am griindlichsten gelese-
nen Seiten von Skripten, Monographien und Biichern sind. Im vorliegenden Fall,
das weif} ich ganz sicher, ist der einzig akzeptable Grund dafiir, dass nur hier
einige zusammenhéingende (deutsche) Sétze zu finden sind. Das Skript selbst
besteht weitgehend aus Formeln und (englischen) Stichpunkten. Das reflektiert
meine Uberzeugung, dass man Quantenmechanik nicht versuchen sollte zu lernen,
ohne eines oder mehrere der reichlich vorhandenen hervorragenden Lehrbiicher
zu Rate zu ziehen. Dieses Skript soll nicht mit diesen (teilweise recht umfangre-
ichen) Biichern konkurrieren, sondern lediglich eine Orientierung liefern, was die
Kernaussagen der Quantenmechanik sind, die in einer einsemestrigen Vorlesung
typischerweise behandelt werden. Ich selbst habe eine entsprechende Vorlesung
an der TU Clausthal in den Wintersemestern 03/04, 04/05 und 06/07 gehalten.

Ich hoffe, das Skript wird als Leitfaden zur Nacharbeit und Priifungsvorberei-
tung niitzlich sein. Hinweise auf Fehler nehme ich — wie stets — gerne entgegen.

Tom Kirchner

Clausthal-Zellerfeld im Oktober 2007
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Chapter 1

Introduction

Classical (theoretical) physics consists of two pillars

Matter Radiation

particles (trajectories) waves (fields)

Newton Maxwell

— classical mechanics classical electrodynamics
+ statistical mechanics

(— classical thermodynamics)

Both pillars are relatively independent (although wave phenomena exist also for
material objects, e.g. water waves)

Experiments (~1900) bring up problems:

1. 'Quantal’ behavior of radiation

— cannot be explained by classical electrodynamics

e Black-body radiation

Planck’s hypothesis (1900) : E, = nhv, n=12,..
h = 6,626-107* Js
= 4,1357-107% eVs

i.e. emission and absorption of energy is quantized

— Planck’s law agrees with experiments
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e Photoelectric effect (first experiments in 1887)

Observations:
EM radiation metal - number of emitted electrons
T >~ ¥ o intensity of light
,/ - kinetic energy of electrons
@e@ x frequency of light,
detector s but independent of intensity!

Einstein’s interpretation (1905):
Radiation consists of photons which carry energy

E=hv

<  explains observation!

e Compton effect (1922)

N

observation : Vo< v

— can be understood as inelastic collisions of 'particles’

energy of photon E = hv = pc

hv h

— momentum of photon p= — =3
c

2. But: in other situations radiation behaves like waves do (e.g. interference
in Young’s two-slit experiment, which in 1801/1802 was very important to
establish the wave picture of radiation!)

—— dualism particle-wave

3. Structure and stability of 'atoms’ (for whose existence there was ample
evidence) cannot be explained by classical mechanics

e Rutherford’s scattering experiment (1911) lead to ’planetary model’
of an atom:

c .
— radius of 'nucleus’

R, <5-107% em
— radius of atom
R, ~107% em



but: according to classical electrodynamics these atoms cannot be sta-
ble as accelerated charges radiate and lose (continuously) energy; life-
time of Rutherford atom ~ 107! s!

Moreover: line spectra of elements cannot be explained, but only de-
scribed empirically
(e.g. for H: Balmer/Rydberg formula:

1 1

V:R<—2——2>, n,m € N, n>m)
m2 n

— theoretical basis completely unclear!

Bohr’s model (1913):

classical mechanics + postulates

postulate (1): existence of stable, quantized orbits — i.e. he
assumes that classical electrodynamics is not in
operation on these orbits

postulate (2): emission + absorbtion of radiation = transition
between two orbits hv = E,, — E,,

— postulates + classical mechanics (and Coulomb’s law) yield Balmer/Rydberg
formulal

but: problems for other atoms (He) remain and ad-hoc assumptions
are not well founded

De Broglie’s matter waves (1923/24):
Suggestion: one can ascribe wave length and frequency to a particle
according to Planck’s/Einstein’s formulae:

h
= mv = —
b A
E = hv
Combination of de Broglie relations with Bohr’s 15! postulate yields an

‘interpretation’ because one finds that Bohr’s postulate of quantized
orbits (levels) corresponds to boundary conditions of a standing wave

— question: can one observe typical wave phenomena with
particles?

Interference phenomena of electrons in diffraction experiments (Davis-
son + Germer, 1927)

—> wave-particle dualism for radiation + matter!
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bad news:  both pillars of classical theoretical physics
are affected

good news: problems are similar — solutions may
be similar

— in fact, one ends up with one theory instead of two; the quantum theory

(QT)

A simple scheme of QT

classical particles

n(,)n_' . relativistic
relativistic
1%t quatization (classical observables — operators)
v v
Schrédinger Dirac classical electromagnetic
equation equation field (relativistic)
wave character; statistical <+— 'wave'
interpretation deals with dualism mechanics
e, e antiparticles

A 4 \ 4

quantum particles interacting with
classical electromagnetic field

2nd quantization
(fields —» operators)

v

QED
e+9 S Y

interact via elemen-
tary processes

We will be concerned mainly with the left panel (wave mechanics) in this
lecture!



Chapter 2

Wave Mechanics

2.1 Matter waves

2.1.1 Classical wave functions

...solve wave equation (WE)

1
Agb - ﬁatQQb - O

remember: E and B solve WE if there are no charges + currents

plane waves (PWs) solve WE:

¢(I‘, t) _ Aei(kr:l:wt)

o w(k) = vk (dispersion relation)

For electromagnetic (EM) waves in vaccum: v =c¢ =~
phase of PW : o(r,t) = krtwt
points in space with constant phase are characterized by

kr = const. = ¢y F wiy

3-10%m

(2.1)
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t =1ty |: eq. (2.5) defines a plane perpendicular to vector k

A — — plane moves in direction of k
& + plane moves in opposite direction
r, \
: o(r,t) =kr £wt = ¢
r, Yo W k-r
> — t)=—F—t ith = —
T’H( ) 2 + 2 w1 7| I
) w
— phase velocity vy, = z (2.6)

(consistent with eq. (2.3))

2.1.2 Transition to Matter Waves (MWs)

e Starting point: de Broglie relations

E 1 h
w== k=-p., (h=-
P, or

) (2.7)

e define a "plane matter wave”, that moves in direction of p by using (2.7)
in (2.2):

o(r,t) = AerPr=F0 (2.8)

e for a free, non-relativistic particle we have

P = mvg (2.9)
2
p
= = 2.10
v (2.10)
w h FE % Ukl
Hse T TR T D 2m 2 (2.11)

— what does that mean?

— but concept of plane matter waves is ill-defined anyway as a particle
wave needs to be localized in space!



2.1 Matter waves

2.1.3 Wave Packets (WPs)
(2.12)

defined as dense linear combinations of PWs
1 i(kr—wt) 3
A(k)e d’k

r,t)=
o) =

It is easy to show that ¢(r,t) and A(k) form a Fourier transform pair, i.e.
(2.13)

! /¢(r, 0)e ** @*r

N|w

Ak) =
(k) (2m)2
One can define a Fourier transform of ¢(r,t) at any time ¢ by
Ak, t) = A(k)e ™! (2.14)
(2.15)

a) One-dimensional WP at t =0
ow.0) = = [ Ae™ di
7,0) = — e
2

Ak
A 2
0 / ezk:v dk

Example 1)
Ak): A
) A width ak < 0(2,0) = Von
2 sin(2ky
= \/jAOM (2.16)
>k T v
- AK2 Ak/2
Ar
Ak

approximate width Az ~
"classical” uncertainty (a property of Fourier transforms)

(_>7
Ak - Az ~ 4w

define momentum width  Ap = hAk

—  Azx-Ap=irnh

"naive uncertainty relation” (will be interpreted later on)
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Example 2)
. A ko+4%
A(k): ¢(ZE,O) — 0 / 6zkm dk
A —Ak—> V2T o4
0 9 Ak
_ \/j A2 T ikoa (2.18)
T x

; f >k
Ko

— modulation of PW with wave number kq by envelope function

2 sin &k
X(x70>:\/jA051n 5L
T x

¢(z,0) = x(z,0)e™"

defined via

Figure 2.1: Real part of ¢(z,0) (blue line)
and envelope function x(x,0) (red line)

Example 3) Gaussian wave packet (GWP)

=2 .
o(z,0) = Ce 2a:2 e'koe (2.19)
envelope function x(z,0)

width Az (sometimes defined as %)
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itan

Figure 2.2: Real part of GWP (blue line) and
envelope function (red line)

1 [ | .
— A(k;) = — ¢(x’0)6—zkx dr = (exc?r'cl.ses)
V2T /Oo
Ar(k — ko)*

= CAzexp [— 5 (2.20)
— again, this is a Gaussian! width Ak = Aiz
— Ax-Ap=h (2.21)

b) Time development of WPs

define time-dependent envelope function:

@) = == [ 1w a
o(k,x,t) = (k—ko)r — (w(k) —wo)t + a(k)

Wy = u)(k‘o)
A(k) = |A(K)le®
— ¢z, t) = x(z,t)ekormwot

x(x,t) characterizes time-development of WP 7as a whole”. What is the
associated velocity?
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— define center of WP via ’stationary phase condition’:

_da
dk

ng dw
- = — = | ¢
0 Zo 2

ko

(2.22)

ko

Obviously xy moves on a rectilinear trajectory with the constant ”group
velocity”:

_do
- dk

Vgr = Zo
ko

Relation between group and phase velocities:

dw d duyy,
e _d k) _ ( j; Lh ) 2.2
1 A S M U (2.23)
Example 1) EM-WP in vaccum
wlk) = ck
dw w
% = Cc = E < Vgr = Uph

In this case the shape of the WP does not change in time:
As w is a linear function of k we can write
(k — ko)

ko
= Wy + Ugr(k‘ — ]{30)

w(k‘) = wo+ —

1 .
- X($,t) - —%/|A(ka)|el[(k—ko)x—vgr(k:—ko)t-ka} dk

1 )
- - Ak ez(k—kg)(m—vgrt) dk
\/27r/ (k)

= x(z —v4t,0)

Example 2) EM-WP in media

w(k) = wvun(k)k
in this case, w is not a linear function of k
— X(‘xa t) 7£ X('T - Ugrta O)

i.e. the WPs shape changes (dispersion)
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Example 3) Matter wave packet (MWP)
(nonrelativistic case) (confer (cf.) page 6)
P w w E p  hk
kK hk p 2m 2m
hk?
<~ k)= — 2.24
k) = o (2.24)
w  hk
dw hko Po
I . 2.96
Y dk ko m m Ukl ( )

— i.e. we can identify v, with the classical velocity of the "particle’
Since v, # vpy,: dispersion (in vacuum)!
How fast does the MWP disperse?
St wk) —wy = i(k;2 )
2m

h
= [(k k)2 + 2kko — 2k2
h hko ik
5k = ko)* + 0 — Py
m m m

h
= %(k — ko)? + vgr(k — ko)

1 |
=Xt = e / A(k)elltk—hoe=(w=eo)] g

1 . . ,
- A(k)ez[(k—ko)(x—vgrt)} oo (k—ko)?t dk

this term causes dispersion

e dispersion can be neglected as long as 7= (k — ko)*t < 1
e dispersion is significant for times

(Az)®

TR

St 3

(with Az ~ 7 = ﬁ)
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e define width of MWP

spreading of MWP!

Example: GWP for ¢t > 0 (cf. page 8)

1 > k2
p(z,t) = N / A(k)eh=52D) qg;

with expression (2.20) for A(k)
= exercises  — inyolved complex expression!

consider "intensity’ of GWP (less involved expression)
IC|? (z — Mhoy)?

|6z, 1) = exp | — 5 ] (
1+ (7)° 20 (1+ (7))

— still a Gaussian, centered around

hkg
To = ——1 = vyt
m

2.27)

but indeed: the width increases continuously!

L I L | B I B | | I | T T T T T T T T T l L |

0 10 20 a0 40
X

Figure 2.3: Intensity of spreading GWP at three
points in time
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2.2 Schrédinger equation

Open questions at this point:

(a) interpretation of MWPs?
(b) is there a differential equation for MWPs?

2.2 Schrédinger equation

Some requirements for a ‘'matter wave equation’:
- linear + homogeneous
i.e. if eq. is solved by 11, 1 it is also solved by a1 +agths ,  (aq,a9 € C)
(principle of superposition)
- consistent with de Broglie relations
2.2.1 Schrodinger equation for a free particle

We seek for a differential equation that is solved by MWPs

e classical wave eq. (2.1)

Dip = (A = y0p)¢p = 0

does not do the job!
MWP:  o(r,t) — / ok, 4) dk (2.28)
Ak ’
sert) = 20 o [Lpr— k) (2.20)
(2m)2 h
A k?  4m?
< Dok,r,t) =0 <= ’y:E:hzmzfy(/ﬂ)
as v depends on k the wave eq. is not solved by the MWP!
e way out: note that
2 hk,?
% == 2m = const. (2.30)
e ansatz:  Dip = (A —~9)1h =0
. 2 B
check : Délk,r,t) = ( . % 7%) é(k,r,t) = 0
(2.30) 2m
<~ =" —1—— = const.
h
Dip(r,t) = /f)gb(k,r,t) &Pk =0
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= MWP solves this differential equation: the ’free’ Schrédinger equation
(SE):

- —~E1A¢( t) = ik (r, 1) (2.31)

2m

Discussion:

e Solutions ¥ must be complex
(i.e. sin / cos -type functions do not solve (2.31))

— 1) is not observable!

e 'Quantization rule’

apply SE to MWP explicitly:

ithoy(r,t) = / )§ #(pr—Et) g3

SN :/

from ihid) = —22 Ay it follows that

% pr—Et) d3k'

m\o,

E=— (classical energy conservation)

— extract recipe:

— classical energy

P
E—-—= 2.32
o =0 (2.32)

— ’quantization’
E —  ihd,=FE (2.33)
p? — —R*A =p? (2.34)
h

— p — -V =p (2.35)

(sign will be justified later on)
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e application of the recipe to relativistic particles

— classical energy-momentum relation
E? = p*c® + mict (2.36)

— correspondence  E? — —h20, = E2
S e (B 5 —mie =0

1 moc 2
— (A — 0 — <—°) )Mr,t) —0 (2.37)
c h
Klein-Gordon-equation
mo—0 . .
— classical wave equation
Looks nice, but it turns out that this equation does not work for

electrons (cf. Section 5)

2.2.2 SE for a particle in a potential (conservative system)
use recipe:
e classical energy

E=2 4 V(r)=  H(r,p) (2.38)

Hamilton function

e quantization

— (E—Hy=0 (2.39)
—  ihdpp(r,t) = Hy(r,t) (2.40)
7 = —%A+V(r) (2.41)

e note that V(r) is not quantized (i.e. we apply the trivial quantization rule
r—>r=r)

e extension to time-dependent potentials V (r, )
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— (E—-H(t))=0

= h(r,t) = ( - %A +V(r, t))1/z(r, )

(2.42)

(energy is not conserved, but we still have E = H classically and can

‘quantize’ this relation as before).

Note that a time-dependent potential usually corresponds to a classical
description of an external field (e.g. the classical EM field), i.e. the time-
dependent SE (2.42) usually describes a 'quantum particle’ in a classical

environment.

2.2.3 SE for a particle in the classical EM field

e step 1: derive classical Hamilton function
(details can be found, e.g., in [Blob] and [Kira], chap. 4.3.4)

— Lorentz force
F,=q¢E+vxB)

— EM potentials are introduced via
E = -V¢—-09A
B = VxA
< F, = q(—V¢—3tA+ (v x (V xA)))

— define ’generalized potential’
Wr=qlo—A-v)

— show that
F,=-VW"+ d0 W
L dt ov
— Lagrangian

1
L:T—W*zﬁmvz—qgf)—l—qv-A
— Hamilton function

1
H=p-v—L=5-(p—qA) +qo
m

with canonical momentum

pza—vzmv+qA

(2.43)

(2.44)
(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)
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— add another external potential V'

1
H=—(p—qgA)? 2.52
— 2m(p qA)* +qp+V (2.52)

e step 2: quantization as usual

ihoy)(r,t) = (— <7—1V — qA(r, t)>2 + qop(r,t) + V(r)) P(r,t)

]

in Coulomb gauge ([Jac], chap. 6.5) for source-free fields we have

V-A=0, ¢=0

. h? qh ¢ o
ihoy(r,t) = { — %A +V(r)— E;A(r,t) -V + %A (r,t)}w(mt) (2.53)

comment: one step towards QED would be to 'quantize’ in (2.53) the vector
potential A (but we would need some additional rules to do that).

2.2.4 SE for N particles

e conservative classical system:

E=H(ri..tN,p1...PN) (2.54)
e quantization: R
H = H(I‘l...I'N,f)l...IA)N) (255)
with p; = 2V,
e SE
— ihoU = HU (2.56)
note that U = Y(ry..ry,t) (2.57)

i.e. WU is defined on 3/N-dimensional configuration space!
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e Example: Atom with N = Z electrons

—  ho,V(R,ry..rN,t) =

Ar KA al Ze? e2
_ ! _p2 2E 0 T N _“
{ <2M +;2m) ;47r50\ri—R| +;47r50\ri—rj\
x U(R,ry...rN, t) (2.58)

— this eq. cannot be solved analytically
for N > 1. It contains many aspects of
the observable properties of atoms (atomic
nucleus structure) and can be solved with good accu-
racy by ‘numerical’ or approximate methods.

2.3 Statistical interpretation

2.3.1 Problems with the concept of 'matter waves’ and
the solution
a) ¥ € C — not observable
can we interpret p = |¢|* as a density
(such that gp would be a ’classical’ charge density)?

b) Spreading of wave packets (concerns also p(r,)!)

c) Self interaction of a charge density

according to classical electrodynamics p(r, t) should be the source of an elec-
tric field (Poisson eq.)! This was not taken into account in the Schrédinger

eq.!
d) What does |¥(r;...ty,1)[* mean?

Obviously, it is not a charge density in ordinary space!

e) Double-slit experiment with electrons cannot be described in terms of clas-
sical waves only (neither in terms of classical particles)

— this is best explained in [Fey], Vol I1I
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Solution: Born’s statistical interpretation (1926):

p(I‘,t) = |¢(r>t)|2 = ¢*(r7t)1/f(rat)

is a measure for the probability to find a particle at time ¢ at position r.

—— this is the link between the 'wave picture’ and the ’particle picture’ and
allows a consistent description of experiments with quantum particles such as
electrons or photons.

— probability distribution [¢]? is - for a given initial state 1y = (o) -
uniquely determined by the Schrodinger eq., but the behavior of a given particle
is random’ (i.e., it cannot be predicted).

particle — like p.rob‘abll%ty wave — like
events distribution behavior
P =y?

2.3.2 Probabilities, norm, continuity

(r,t) : probability amplitude

[4(r, t)|? : probability density

(e, t)]? dBr probability to find particle within d®r
Normalization (for one particle)

N = / (e, t)]* d®r =1 (2.59)
— conditions: a) 1 quadratically integrable (square-integrable) i.e. N < oo

b) N(t) = N = const.
— a) is fulfilled, e.g., for the GWP, but not for plane waves!

prove b) : % = /8t|¢(r,t)|2 d*r =0 (2.60)
proof s AWEOP = A+ (O
B[ () - ()
with H = —%A +V(r), (V =V
o AEOR = ah[yad - (Al (261)

'In a footnote of an article about e~-atom scattering
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use Green’s theorem?

AN ik dy dy”

G om %mﬂ)df:o

S—o00

(because 1(oc0) = %(oo) = 0)(for well-behaved quadratically integrable func-
tions) )
(by the way: we have proven the hermiticity of H - see Section 3.1.2)

e differential form of norm conservation

start from eq. (2.61):

S AY = (A0) | =~ iUV - U V)
= —div  j(r,t)
——

'current density’

— Op+divj=0 (continuity equation) (2.62)

note that eq. (2.61) is also valid for non-square integrable functions, for
which N — oo0.

check it for a plane wave ¥(r,t) = eilkr—wt)
p(I‘, t) =1, atp =0

ih hk

ey = - bk

j(r,t) 5 (VYU —0VY) =

divj = 0

2.3.3 Probability densities in coordinate and momentum
space

Wave functions:

1 ip~r 3

6 = sy [ et ety (2.63)
1 —ipr 3T

op.t) = s [wtenerivr (2:64)

[ (oav—vao) = (o5 -v5")
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(cf. egs. (2.12) - (2.14)): ¥(r,t) and ¢(p,t) are a Fourier transform pair.

Definition of probability densities:

plr,t) = [p(r, 1) (2.65)
P(p,t) = l|o(p,t)° (2.66)

Note that for a free MWP we have P(p,t) = P(p,0), but p(r,t) # p(r,0), i.e.
the wave packet spreads in position space, but not in momentum space. The
stationarity of P(p) reflects momentum conservation of a free particle!

We can prove that

N=1= /p(r,t) dr = /P(p,t) d*p (2.67)

proof:

< Jumneer = oo [an [ @ et sen)
[ (sie)oue) [ e i a)

= / d’p / &’p’ ¢1(p")¢2(p)3(p’ — p)

(this is Parsevals relation)

(eq. (2.67) follows for 1 = 1)9)

Since Fourier transformation is a unique, invertible mapping, position and
momentum wave functions are completely equivalent (i.e. they carry the same
information)

2.3.4 Expectation values

— probability interpretation of QM implies that notions of probability theory,
such as the expectation value of a distribution can be defined

e In one dimension (classically + QM)
(x) = [wp(z) du

[ p(z) dz =1
QM ingredient: p(x) = |¢(z)]?

valid for a continuous
classical distribution
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e In three dimensions

(if Gp#0  — (2)(t) = (x)(t0))

write

in general

momentum space
— apply the same rule:

@) = [Pt dp = [ o Etpolp.t)
(G(p,1)) = /W@ﬁG@ﬁdnﬂfp
Example
(H) = {T)+ (V)
/¢ p,t)—a(p,t d3p—i—/w V(r)i(r,t) d*r

can we express (H ) as an integral over d®r only (or over d*p only)?

consider : Op(r,t) = e /gb p,t)0, eFPr d®p
2

= 3 /gb p,t pxeﬁpr dS
)2
i.e. we have a Fourier transform pair 20,4y «— p,¢

St = / & (0, Dpad(p, 1) dp

Patgeval /@/}* r,t) ﬁé) U(r,t) d*r
/ B (x, Opatb(r

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)
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With the same argument we obtain

B0 = [ epotee) dr (with p= V) (2.76)
and in general
(G(p.t)) = / w*(r,t)G(?V,t>w(r,t) & (2.77)
eg. (T) = —%/@z)*(r,t)mﬁ(r,t) d*r

Remarks:

— These relations justify the definition of the sign in p (cf. page 14)

— The average momentum is related to the current density (for quadrat-
ically integrable wave functions):

B0) =m [ §.t)
We can apply a similar argument to show that
® = [0e.0mT,00.0 ¢ (2.78)
and  (F(r,t)) = / ¢*(p,t)F(ihV,, t)o(p,t) d°p  (2.79)

Note that expressions F(ihV,,t), G(2V,t) do not work in all cases, e.g.
for the Coulomb potential |r| appears in the denominator!

Examples:

(i) One-dimensional harmonic oscillator

classical Hamilton function:

() (1) 2
= [t gttt Fude?) i) da

2
* X m
= [0t (52— TR )olpant) do.
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(ii) Free particle

We can write for the position expectation value:

x)(t) = / & (0, il ,0(p.t) dp

= 00 = [0E0dEnY, (op.0c ) d
= [ om0t B {inV,00.0) + o0 e i d

= [ 600,000 Ep+ - [ 6'(p.0po(p.0)

= (r)(t=0)+ %t

d (p) hkg

= T Y

This is a special case of Ehrenfest’s theorems (see exercises and Section

3.4.2)

We have seen that we can evaluate expectation values either in coordinate
space or in momentum space. Both 'representations’ are fully equivalent
(below we will see that we can even rewrite the SE as an equation for

¢(p, 1))
Note the extended correspondence rule (cf eqs. (2.33) - (2.35))

coordinate space

/ r by N

N momentum space /
1hV,, p
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2.4 Solution of the Schrédinger equation — quan-
tum effects

2.4.1 Stationary (time-independent) SE

Consider egs. (2.40), (2.41); i.e., SE for a time-independent potential V' (r). Note
that ihdy)(r,t) = Hi(r,t) is an initial-value problem (i.e. solution is unique for
a given initial state ¢ (r,ty) = 1o(r))

e Ansatz
U(r,t) = ¥(r)f(t) (2.80)
— insertion into SE eq. (2.40)

ihf(t)  Hy(r)

T o)~ ot =4 (2.81)

— separate eqs.:
f= —pAfL o f)= et (28
o) = Ab(r) 2.83)

e What is A?
<« E = (H) = / (v, t)Ho(r,t) d*r = / O*(r)Hy(r) dr

:/w JA0e) = 4 [ (e

— solution of SE (eq. (2.40)) has the form
Vn(r,t) = Yp(r)e 7 (2.84)

and describes a state with constant energy.
Properties:
o p(r,t) = p(r,t)]* = [vp(r)* = p(r)
o Op=0 = divj=0 (andj=j(r))
d A

o E<A> =0 for all operators %} =0

— the states (2.84) are called stationary states

The task then is to solve the stationary SE
Hp(r) = Ep(r) (2.85)

which is an eigenvalue problem (see later), and which is specified completely
only if boundary (and regularity) conditions are imposed.
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e "Weak’ boundary conditions (always imposed)

— Yg(r), Vig(r) are continuous, unique, < oo (bounded)
(they have implicitly been used in chapter [2.3] in order to deal with 'well-
defined’ probability and current densities)

e In general, one can distinguish two types of solutions of (2.85):

a) bound states
a classical bound particle cannot escape to infinity

T—00

— the quantum particle must fulfill ¥ g(r) — 0

— [ )P ' < oo

— this ’strong’ boundary condition leads to quantized states and a
discrete spectrum (i.e. only a discrete subset of energies F is allowed
in eq. (2.85))

b) scattering states
classically, a scattered particle may escape to infinity

— g(r) = finite value

— / @) d*r — oo

— continuous spectrum (all energies E are possible)

e Extract strategy for the solution of time-dependent SE for time-independent
potentials:

1. Solve stationary SE — obtain F, ¢ g(r)

2. A reasonably well-behaved initial-state ¢o(r) can be represented by a
linear combination of stationary states

3. Apply principle of superposition: the corresponding linear combina-
tion of stationary states describes solution of time-dependent SE for
all times

For bound state problems one usually deals only with the first issue.

2.4.2 One-dimensional model systems

Stationary SE takes the form

() + (e~ Ul)la) = 0 (2.86)
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2m
EZ—E, U:ﬁV

Eq. (2.86) is an ordinary differential equation of second order and of Sturm-
Liouville type.

— general solution:

¥ =ve(2) = ari(z) + aahs(z)
eigenvalue ¢ is two-fold degenerate

a) The free particle (again)
Step 1:
Solutions of eq. (2.86) for U = 0 and ¢ > 0:

() = Aek® 4 Be~ike
N

— stationary states (cf. eq. (2.84))

wg (33, t) = Aei(kx_‘*)t) _I_ Be—i(k‘l‘—‘rwt)

w f— h_k2
- 2m
[ Wwopdo= [ jp@Pa — o

— continuous spectrum (weak boundary conditions only)

Step 2: Represent initial-state wavepacket (top = 0)

vo(z) = /000 (A(k;)eik$+B(k)e—ikx> dk
= \/LQ_W/:A(@@““ dk (cf. eq. (2.15))

Typically, ¢o(r) is given explicitly (e.g. as a GWP), and the task is to
determine A(k) (by inverse FT)
Step 3: Apply principle of superposition

Y RS
-, w(:p,t):E / A(k)etthz=
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Remarks:

(i) WPs solve time-dependent SE

(ii) On the other hand PWs are eigenfunctions of H, but not appropriate
wave functions for particles (well: not really...)

(iii) Think of PW as (non-normalized) limit of WP with width Ak — 0
()

P.(x) = Ae™ + Be "™ (2.87)
K = \—¢

boundary conditions: ¢.(z) < oo Vzx

= x— -—00 — B=0
r— 400 — A=0

—  (x)=0
(free particle with e < 0 does not exist (in nonrelativistic QM))

b) General remarks about piecewise constant potentials

We will consider potentials of the type U(z) = U; for z € [a;, bil;

©& A A A
%% R N % Vg
step x barrier X well X
Figure 2.4: Different types of piecewise constant potentials
Scheme:

1) Solve SE (2.86) in all intervals, in which U is constant, separately

o ¢ >
ki = v/e—=U; > 0
SE : V" (z) + ki(x) =0
solution : Ve (x) = Ae'®i® 4 Bem i (2.88)

= Asin(kz + ¢)
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o c < U

— k)z = \/€—Ui:i\/Ui—€
ki = —ik; = JU;—¢ > 0

SE:  ¢"(z) — Kiv(z) =0
solution : e(x) = Ae™* + Be ™i* (2.89)
2) Matching and boundary conditions

— for n intervals with constant potentials U;...U,, we have (2n — 2)
matching conditions

— 2 constants remain (fixed by normalization and phase — initial
condition of physical problem)

c) Potential step

1 0 r <0
Ulx) =Ub(z) =
U U x>0

1 II =X
Ve(x) = 0(—2)r(z) + 0(z)r(2) (2.90)
1) :

Yr(x) = Ae*r® 4 BemthiT (2.91)
Yr(z) = Ce™r* 4 Dem ke (2.92)
kr = e (2.93)
k[[ = \/€—U = \/k%—U (294)
matching conditions:

¥r(0) = rr(0) (2.95)
v1(0) = ¥,(0) (2.96)

choose A =1, D =0 (justification follows)

1+B=C
egs. (2.95) + (2.96) yield
iky —ikiB = ik C
kr —k 2k

p=—+"" ¢ ! (2.97)

T kit kn o ki + ko
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Vel t) = {0n(@)(=0) + e (2)0(=) + Yty (2)0(a) f

Yin(z) = ™®
ih hkr

(cf. eq. (2.62))

ki — ki _irsa

wref@:) = k[ —|—k11
. B ki — kir\2hk;
Jres(z) = _<k:1 n kH) m
2k[ ik
¢t7‘ans(x) k[ ‘l‘ k[]
. B 2kr  \2hkps
jtrans(x) o (k’[—l-k[[) m

define reflection coefficient R and transmission coefficient T°

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

R = |Jrei| (kf_’“ff)Q
Jin kr+krr
T — jtrans o 4k1k11
= : — -
Jin (k1 + k1)
— R+T=1
A
1
T(e)
(if we choose A =0,D =1,
R(¢) we obtain the same R, T')
>e

U

Note that R, T have to be interpreted as probabilities for reflection
and transmission. The individual event (as stated on page 17) is not
determined. Each particle is either reflected or transmitted; i.e. the

wave packet splits, but not the particle!

consider WPs for further analysis

Pl t) = %27 / " fk)be(@)e diy

(2.103)
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solves time-dependent SE if 1. solves stationary SE. More explicitly:

1 o0 ) )
— . i(kjz—wt) —i(krz+wt)
b(z,b) —m/mf(kj){é( ) [Ae + Be ]
+ ()| Celtbrmen 4 pemiusen] g, (2.104)

note: w = w(ky) = Zij o ki =kir(kr)  (eq. (2.94))

Consider the motion of centers of WP (cf. eq. (2.22), (2.23)):
A) pa(kr) = kjx — wt

dpa

A h_k?t
dk;

k7

m

— moves to the right in [ for ¢ < 0 (— incoming WP)
B) gOB(k]) = —k]ZL‘ —wt

hk?

— moves to the left in I for ¢ > 0 (— reflected WP)
C) wc(kr) = ki(kr)z — w(kp)t

Rk}
o g ="

— moves to the right in I/ for ¢t > 0 (— transmitted WP)
D) gOD(]CI) = —k[[(k?[)l‘ - w(k:;)t

hk?
- b=k

—— moves to the left in 11 for t < 0

. If we choose A =1,D =0, we

t<0 choose the initial condition
corresponding to an incoming
WP from left to right

t<0 If we choose A =0,D =1, the
incoming WP moves from the
right to the left
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— due to eq. (2.104) we can speak of a splitting of the wave packet
at t > 0; it is partly reflected and partly transmitted.

2) [e<U]:

Yr(xr) = Ae™ 4 Be ™ (2.105)
Yr(xr) = Ce™ + De ™ (2.106)
k=k = Ve, s=VU—-¢ >0 (2.107)

Y(r)<oo VYV — (C=0
— () = 0(—x){Ae“” + Be”'k“} + 0(z)De™ ™ (2.108)
choose A =1
matching conditions (2.95) + (2.96) yield
: 0
po itk 2k (2.109)
K — 1K Kk — ik
current densities (cf. page 25)
jin = %
jref = _]m = T =0 s R=1 (2110)
jtrans =0

— no current in classically forbidden region I7, but finite prob-
ability density

4k?
— 2 _ 2 —2Kx __ —2KT
pri(r) = [ri(x)|" = [DFe™™ = 15— (2.111)
define average 'penetration depth’ x,,:
1 2.111 In2
pit(n) = 5p11(0) G, = > (2.112)

We can anticipate the tunnel effect: if the potential step has a
finite width, i.e. becomes a barrier, there is a chance (i.e., a finite
probability) to find the particle that comes from one side on the
other side of the barrier (a quantum particle can penetrate a finite
barrier)

For our problem we have total reflection (R = 1), but as the
particle can enter region I the reflection is (slightly) delayed
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e WPs
t) = 1 E)0(— i(kx—wt) B(k —i(kz+wt)
vie.t) = <= [ 10 {o(=) [0 + Bkye
+ O(x)D(k)e""e ™"} dk (2.113)
note that B(k) (2.109) |B(k’)|ew(’“) — (iBk)
i 2k ;
D) = DI = e

— i.e. additional phases (3, d!

motion of center of WPs:

Yin zo =0t (as before)
Uref o(k) = —kx — wt + [(k)
hke  dB
=—t+ — 2.114
IR (2.114)
delay time:
m df dg
—0)=—— ) 2.115
oo =00 = 50 Ik W dE|, (2.115)
Cx B 21/ 2
[ = arctan ;];—B = arctan % (2.116)
dg  2mdpg 2m —2
E:ﬁd—g:ﬁ[ﬁ((]—ﬁ)} 2>0, (fOI‘€ G]O,U[)
(2.117)

consider limit U — oo
— k=VU—¢c = VU — 00 — tx)=0, (z>0)

wave function vanishes in regions where U — oo
d) Infinitely deep potential well
U(x)
A

U
7 0 —L<y<ti
€ 2 = =7

-, Y, X
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e boundary conditions (see above)

w(_%) :w<£) _0 (2.119)

Ae=*5 & Beiks — ()

Ae*s + Be 5 —

s sinkL=0 <= k=k, = % (2.120)
21.2 1 2
S R L _<h_”) n? (2.121)
2m 2m\ L

— quantized energy levels!

e eigenfunctions:

i = afe - Cape oo ) oo )]

e norm alization:

N 1= [ cm:/g [Gu(2)? da

X
= A = \/ﬁ
= o) = [0(e+5) -0 (s )]y 7 cos'fa, n=135,.

isin“Fr, n=24,..
(note that 1g(x) ~ sin0z = 0)
discussion:

e Quantization = standing waves: de Broglie wavelength
B = Z_: = 2L s adapted to width of the well
2
e ground-state energy E; = ﬁ (%) >0
(— zero point motion: bound particle cannot be at rest)
Later on we will see that this is a consequence of the uncertainty
relation

e quantization of energies F, o % — level spacings become very
small for heavy particles

e ¢, (x) has n — 1 nodes (general result)
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e parity; defined by

(z) = Y(—x) even parity (e.g. cosine)  (2.123)
Y(x) = —i(—z) odd parity (e.g. sine) (2.124)

in our case U(x) = U(—xz) — eigenfunctions v, have well-defined
parity (see chapter (3.5.5))

e) Finite potential well

U(x)
A

U r < —%
U
— 7% U)={ 0 —L<e<t
Z U x> L
I -4 1 AT
Nle<U]:
Yr(x) = Ae™ + Be ™ (2.125)
Y (z) = Csin(kx + @) (2.126)
Yrr(z) = De "™ + Ee™ (2.127)
K VU—¢ >0, k=+ye >0 (2.128)
e boundary condition: ¢(z) < oo V x
— B=FE=0
e matching conditions: consider
L L
¢z( - 5) = wn( - 5) (2.129)
L L
?/JH<§> = 1/1111<§> (2.130)
and logarithmic derivative % Iny(z) = % instead of deriva-
tive
/ L / L
1(=3) 11(=3) (
= 2.131)
bi(=%) brr(=7%)
1 (L / L
¢II<%) _ III(%) (2132)
Yrr(5) Yr(35)
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From egs. (2.131) + (2.132) we get

E = tan < - %L + go)
— (2.133)
E = —tan <% + 4,0)
solve for ¢:

— kL k
¢ = %5 +arctan

— _ kL _ k
p = —%° —arctan . +nmw

Add and subtract both equations to obtain

_nm
Y=g

(2.134)

E_ _kL | nm
arctan;— 5 + 5

transcendental equation determines the quantization of energy
levels

graphical analysis:

define ¢ = \/g, 0< (<1

K = VU
eq. (2.134) can be written as

KL
% - CT — arcsin (2.135)

solutions: intercept points of straight line and arcsin function:

a — n eigenvalues exist if

~N (n—1)m < VUL? < nrm

2 (at least one for n = 1)

quantization : k — k,

K — Ky

A, C, D — An; Cna D,
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e cigenfunctions:

nm

(2.129) + (2.130) together with ¢ =

eqs.
yield:

Distinguish n even and n odd:

5 (eq.

37

(2.134))

(2.136)

n even :

solution :

n odd :

solution :

— A, = —-D,
A o=t + for n = 2,6, 10, ...
n€
— Cp = *——7
S5 — forn=4,8,12, ...
(A, efn* T < —%
—knL
_ Ape 3 L L
Qﬂgn(l') = < _SiIel—k"TL smk‘n:v -3 <z < 5
[ —A,e7? T > %
Anefﬁan + forn=1,5,9,...
= Cn = =
€os Ty — forn =3,7,11, ...
(A, en* x < —%
—knL
Ane 3 L L
Ve, (z) = ﬁcos kna —3<x< 3
A, e fn* r>—%L
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A,, can be determined by

/ T a@)P de = 1

Nl

o0

/ e T dy + Ai/ e 2 dy;
oo L

—knL

— A2

+oa©

— A, = e 2

(same result is obtained for n odd)
— structurally very similar to previous case (U — o0), but

eigenfunctions enter (slightly) the classically forbidden regions
1111,

2 [e>U]:

Yr(x) = eM* 4y BemhT ki =\e-U
V() Ce™® 4+ De™™2" | ky =\/e
Yrr(z) = Ee*”

(we have chosen A =1, F = 0; cf. page 25)

— 4 equations for 4 constants B,C, D, FE follow from matching
conditions
— continuous spectrum (no restriction on ¢)

e consider current densities and coefficients T, R (page 26)

jref = _‘BP% T= |E|2

jtv‘ansz |E|2% (R+T: ‘B|2+‘E|2:1)
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e matching conditions yield (after some calculation (see A.1))

o—ik1L
E = -
cos koL — %(:—; + i—f) sin ko L
1
T = - (2.137)
cos? koL + i(% + i—f) sin? ko L

T=1 if cos’kol =1, sin®kpyL=0 ]{;2:%

(cf. eq. (2.120)) De Broglie wavelength A\ = k;]% = 2L s
adapted to width of the well (cf. Sec. (2.4.2d))

— one can show that a particle (represented by a narrow
WP) with wave number close to ky = “F stays in 11 for 'a long

time’ (significantly longer than a classical particle) before it
moves on. (it is 'quasi-bound’ «+— resonance phenomenon)

{

Lo ™o B Py 1Py

2 3 4 5 6
k2

Figure 2.5: Transmission coefficient
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e Transition from potential well to barrier

well : kk = vVe-=-U
ky = e
barrier : kk = vVe-U
ko = e—=2U = W2U — ¢ = 1k

i.e. replace in eq. (2.137) kg by ik
1

T = 5
cosh? kL + i(k—"‘l — %) sinh? kL

this is the transmission coefficient for tunneling through a
rectangular barrier.

f) Summary: quantum effects
e spreading of (free) WPs
e splitting of WPs: T, R
e WPs can enter + penetrate classically forbidden regions
— delayed reflection, tunnel effect
e bound states in wells are quantized; zero-point motion + en-

ergy
e scattering at potential wells: resonances

— all items are rather general phenomena (not at all specific for
our simple models!)



Chapter 3

Formalism of Quantum
Mechanics

3.1 Mathematical framework

Wave mechanics is based on the principle of superposition. Mathematically, this
implies that wave functions are vectors.

3.1.1 (State-) vectors and their linear space

a) Definition: vector space H (over C)
denote ("ket”) vectors as [¢) (the symbol | ) was introduced by Dirac)

A vector space is a set of vectors with two composition laws:
(i) summation of vectors:

+: HxH —H
1) + ) = [¥) € H

H is abelian group with respect to 4+, i.e.:

o (l00) + 1)) + vy = leny + (o) + o)

e dneutral element |0) € H

) +10) = |¥), (Vo) l¢¥) € )
eVighe 5, 3 ) e %

) + 1) = 10)

— ) = |—1) (inverse element)
e ’abelian’: <= |¢1) + [1)2) = |t2) + |1)1)

41
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(ii) multiplication with & € C
©: CxH—H
aly) =lay) € H
o (a1 + a2)lth) = ) + aofth)
. 041<|1/11> + Wz>> = a1|th1) + auin)

o (nan)l) = anazft))
o 1-9) =[v)

principle of superposition: |¢;) € H, o € C, i=1,...,N

N

- |¢>=ZO@|¢¢> € H

=1

b) Definition: scalar (inner, dot) product in H

HxH — C
1), [ha) — (ils) € C
——

""bracket’

(V1lth2 +P3) = (Yrlvh2) + (Y1 [¢h3)
(U1]arhe) = a (s ]tha)

(ilba)* = (talthr)
(
(

vy =05 @) =0 <<= ) =]|0)
() € R follows from  (¢1]1h2)* = (Ya|th1))

a complex vector space with a scalar product is called unitary space or
prehilbert space

— consequences:

o (V1 + thalths) = (i[ths) + (12]ths)
o (ath1|the) = " (Y1 ]thy)

The objects "( |” are called "bra” (vectors). They are not elements of H,
but form another vector space, namely the so-called dual vector space H*
of H.

obvious properties : (ap] = o™ (W]

(U1 + 2] = (1| + (o]
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Some remarks:

e norm of a vector: ||¢|| = /{¥|)

e Schwarz’s inequality: [(¢1]2)| < |[|1]] |2
e “orthogonality”: <= (¢1]ihe) =0
e “orthonormality”: <= (¢1]|¢2) =0
A (Urfr) = (aliha) = 1, de. (Wifyy) = b
e quadratically integrable functions form unitary space.

Vector properties can be easily checked.
scalar product (V1]g) = / U (x)iho(x) dx
normalization (W) = / |v(z)]? dw

This can be generalized to functions W¥(ry...ry):
<\I/1|\112> = /\I/’{(rl...rN)\Ilg(rl...rN) d3r1...d3rN

c) Basis states and systems

i) finite vector space dimH = N
a set of vectors {|¢1> , i=1..,N } is linearly independent:

N
< Z@Z’wz> =0 only if ap=ay=..=ay=0
=1

N
— V¢ o€ H: ) =) ail), {[vi)}: "basis”
=1

a basis {|¢;)} is called orthonormal if

N

W) = Z a;|es)
i=1
<g01|(,0]> :5ij s Z,j: 1,...7N
i) dimH — oo
definition of a linearly independent set persists, but we have to clarify
what |¢) = > 7, a;]p;) shall mean, i.e., we need to establish the notion

of convergence of a sequence |y) = Zf\il ;i) Nzoe |4)
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e Let’s define a "distance” (metric):

d(,vn) = |[[v— o]
= \/<¢—¢NW—¢N> J\M—O’o 0

— this is a well-defined notion of convergence

e Cauchy sequence {|¢y)} <= Ve >0 IN € N:

| — V|| < €, Vn,m>N

e a unitary space is called complete if all Cauchy sequences converge,
. N—oo
Le, [yn) — ) € H

d) Hilbert space :<=> unitary space which is complete with respect to
norm [[¢]| = /(¢[¢)
e separable Hilbert space (<= V |[¢)) € JH 3 countable sequence
{l¢n)} such that [¢) = >>7 | a|@,) (the basis may be orthonor-
mal ("ONB”) (¢sl¢;) = 6;)

The quadratically integrable functions ¥(ry...ry) in
configuration space (rj...ry) form a separable Hilbert space
with dim H = oo

— QM states can be characterized as Hilbert space vectors

e cxample for an orthonormal basis in such a space (" L?*(—o0, 0)")

1 22
W) = ———= e TH,(z), n=01,..
o) = (@)
(Hermite's functions)
n _x? d" —z2 N/ .
H,(x) =(—-1)"e ey e Hermite's polynomials
:L-TL

=  Y(r) = i ()
n=0
for all quadratically integrable functions v (z)
= [ onle@ e = (onlv)
= ian /_OO épm(x)gpvn(:v) dz = oy,

[e.9]

n=0 —bim
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Making use of Dirac’s notation we can write

> anlen) (3.1)

= A{eml|Y) = om (3.2)
e scalar product with respect to ONB:

(W) = > aV"al (mlon) = > (W1]om)(Pmltb2)

=0mn

in particular:

(l) Za Qn §0m|90n Z|O‘n|2 (3.3)

757’?171

(Parseval’s relation: characterizes a complete basis set)
Short hand notation: |p,) = |n)

3.1.2 (linear) Operators

Operators are linear maps: |p) A, 1) = Alg) = |Ag):

Aln) +102) = Alt) + Alg) 3.
Alaly)) = aAly) (3.5)
a) Sum of operators and multiplication with scalar
A+ B = AW)+ Ble). V| e K
(@A) = a(AlY)), Va € C

— the set of linear operators forms a vector space! (check the vector space
axioms!)

b) Product of operators

ABlY) = A(Blg) = A|BY) , ¥ |¢) € K
("apply B first, and then /Al”)

properties:
ABC) = (AB)C
a(AB) = (aA)B = A(aB)
Al = 1A=A, (1 : "unity” operator)
A(B+C) = AB+ AC
(A+B)C = AC+ BC
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but:

e not every operator A has an inverse operator A1 , such that
AA T =A1A=1

e in general AB # BA
— commutator [A,B] = AB — BA (3.6)

(a very important object for QM!)
some rules (easy to prove):

A4 = [AT]=0
48] = (5,4
(ABB] = pAB
R
[A,BC] = [A,BIC + BIA, (]
0 = [A[B,C]+[B.[C, A +[C,[A B]]

c¢) Operator functions

With sum and product of operators we can define
f(/i) == Ofoi + CY1121 -+ OéQAz +
e.g. : e = Z — (3.7)

note that eA+? = ede? only if [A, B] =
d) Special operators

e Inverse operator: if it exists it is defined via

) = Al)
= ¥ = ATx)
— AAT! = A'A=1 (3.8)
(A = 4
n 1 -
A—l — _A—l
()" = ~
(AB)™* = B'A™!
e Adjoint operator Af
consider scalar product (x|¢) = (x|Av)
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AT is defined by property:

(x| Av) = (ATx]p) = (Y] ATx)" (3.9)
properties (easy to verify) : (AN = A
(@A) = a*Af
(A+B)t = At 4+ Bt
(AB)! = BAf

note the ”conjugation relations”

c-numbers a* —
vectors (V| s |v)
operators At —

(but note that ()| and [¢)) are elements of different spaces)
e Self-adjoint (hermitian) operator :«<=> A = Af
properties:
— {(Aix[Y) = (Axlv) = (xJAv)
write = (x|A[®) (3.10)

(we will use this notation from now on for all operators. In general,
it is understood that A acts to the right.)

- WlAly) € B
(AB)T = BTAT BA=AB onlyif [A, B] =

- [A B]T = [B A] = —[A B]
e Unitary operator :<= Ur=0-1

— UU'=UU=1 (3.11)
properties:

— W) = UR), |¢) = Ulp)

= (¢I) = UplUy) = (p|UTY)
= (o)

~W=0V and U,V unitary
— Wl=OV)'=v1U=ViUi=0V) =W

(— unitary operators form a group)
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e Projection operators (projectors)
define ’elementary projector’ via

Poly) = n){nl¢),  (assume (nfn) = 1)
— e P, = |n)(n| (3.12)

properties: (easy to prove)

P, =Pt . :

" " these are the defining properties
. N of ’general’ projectors
P _p g proj

further examples of projectors:

~

N
P = Z In)(n| , (i.e., show P = P | P2 =P)

—  Ploy=) In){nlv) =) auln)

P, = Z In)(n| =1, "completeness relation” (3.13)

— )= In)nly) =) anln)

The completeness relation (decomposition of the unity operator) is
equivalent to Parseval’s relation (3.3):

(W) = (W[il) = D _(@ln)(nly) = sz

3.1.3 Representation of vectors and operators

— insert unity operator at appropriate places:

a) Vectors

W) = 1) =) In)(n|y) (3.14)
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(o] = (o1 = (gln)(nl (3.15)
(¢| — ((0[1), (2]2), .. .)
= (([e)", 2le)7,-..)
= (81,5, -)
scalar product

(0lv) = > _(Glmhinly) = (8165 -.) | @2

n

= Bion+ Bioa+ ... =Y Brow, (3.16)
b) Operators
A=1A1=>"|m)(m|An)(n| (3.17)

”matrix elements” A, := (m|A|n) € C

A (WAL (11AR)
A — | (@A) (2ldf)

o (m|Al) = 2., (m[Aln)(n|Y) = 3., Amnan
— the representation of the vector Aly) has to be calculated as a
matrix-vector product

o (9lAIn) = 3=, (8lm)(m|Aln) = 3, B Aun

e general matrix element

A A oq
BBy | A An ... g
e operator product
AB=1A1B1 =) |m) Y AmBu (K (3.18)
mk n

product of matrices
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e adjoint operator
(AN = (m[Afn) = (n|Alm)* = A7, = AL, (3.19)
— adjoint operator is represented by adjoint matrix

e hermitian operator A=At

Apn = (m[Aln) = (n]Alm)* = A7, (3.20)

¢) Change of representation

consider two different ONB’s

{‘u1>7 izl,...}, (uilug) = O,
{|Uj> ) j: 17} ) <Uj|vl> = 5jl

b = D luuld)
Z|UJ (vjlus) (il ) = Z|U] (vil¥)

= (o) =D (vl (wilv) = Z Ui (i) (3:21)
— transformation is mediated by unitary matrix U!

proof:

S ULUG = D UiUii = (welus)* (vgluy)
k k k
= > (wilor) (olug) = (uiluy) = 6
k

— if ONB’s {|u;)}, {|v;)} have the same index set one can extract an
operator U that has the matrix elements U;; = (v;]u;)

— U= |lu)w|, (U =0 (3.22)

proof:

Ui = (u|Uvi) = (vjlux) (velvs)
= (vjlus) = (uy|Ulus)
= > (usluw) (vrlus) = (v5lus)

k
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e transformation of operators

(il Afug) =Y Cuslon) (orl Ajen) (urlus)

kl

= Y Ul AU, (3.23)
kl

3.1.4 Non-orthogonal basis sets

Sometimes it is useful to consider a basis { lpi) , =1, } which is (complete,
but) not orthonormal, i.e.,

Sij = {wiles) # 03

Si; = ‘overlap matrix’ is positive definite and hermitian
S;: = S8*%) — inverse exists and is also hermitian!
J Jt

A projector onto an N—dimensional subspace {|¢1)...|pn)} is given as
N
P=3 lens; (ol (3.24)
ij=1
proof:
i)y P=Ft
N
— (P = Y (XledSi el
ij=1

- Z@iym*(sjzl)*wlsoj)*

= (Xwledsitel)

= (@[P|x)" = (Px|v)

—  P? = ) le)S; eslen) Sy (@l

ijkl

= > o) <Z Si;lsjk> Su (1]

ikl

=ik

= > le)Sylel = P
il

= 1 = > |e)S; ' (el (3.25)

ij=1
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e representation of a ket

) = Z|%>Si;1<§0j|¢> = Zcz'|%'>

ij=1 i

— ¢ = Zsi}l(%'W)

e representation of an operator

A=1A1 = > |e)S; el Al Sl

ijkl

= Z i) Aa (ol
il

Ay = Z St AnSy

jk

for S;; = 6;5 = Sigl the old expressions (3.14), (3.17) are reobtained.
3.1.5 Eigenvalue problem

< Alua) = alua) . (Jua) € H) (3.26)

Obviously it depends on the properties of A whether such an equation is fulfilled,
i.e., whether eigenvectors |u,,) and eigenvalues a; exist.

Insert 1 in (3.26):

DAl (klua) = ay k) (Klua) IRU

k

— Z (Alku’g — a(5lku§> =0 (327)

k

for dim H = N this homogeneous system of eqs. has a nontrivial solution if
det(Alk - 5lka) =0 (328)

— the roots of eq. (3.28) are the eigenvalues a;, and inserting them into (3.27)
yields the eigenvectors. The eigenvectors can be normalized: (ug,|uq,) = 1

a) Eigenvalue problem for hermitian operators (non-degenerate case)

A|u‘1i> = ai’uai>
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non-degenerate case means that each eigenvector |u,,) corresponds to a

different eigenvalue a; (i.e. a; # a; for @ # j)

— <uaj |A‘uaz> = G <ua]’ |uai>
= <Auaj |ta, )
= (Uqg, A|uaj>*

= 4a; <uaj |uaz>

= (a; — a;)(uq;|ua,) =0

i) i=j: = a;=a; Vi

— all eigenvalues are real numbers!

i) i#j: = (Uq,|tq;) =0
— eigenvectors are orthogonal!

further remarks:

(3.29)

(3.30)

e the eigenvectors of hermitian operators form ONBs in Hilbert space

(disregarding some exceptions that will not be discussed):

Z |t ) (| = i
i=1
[} (uaj|fl|uai) = aiéij
(3]
. az
— diagonal matrix A —
0

o ady = Y (g, ID{UAIK) (Klug,)

kl

= Y ULAU
kl

(3.31)

— diagonalization is mediated by unitary transformation from
representation {|k)} to representation {|uq)} (cf. eq. (3.23))
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e spectral representation of an operator A=At

= 1A1 = Zallual Uq, Zal g (3.32)

o AR = [(ual) (3.33)
o F(A) = apl + A+ a A2 +
= (D) = f(ai)]ua) (3.34)

— i.e. operator function f (A) has the same eigenvectors as A

Instead of a general proof: illustrate (3.34) for A2

Z |ta,) (Ua, |Ua;) (Ua; aia;
ij —

=i

= Z a3 uq, ) (ta,]
i

b) Eigenvectors of commuting operators (without degeneracies)

consider : Alug) = ai|ug,)

and [A,B] = 0

- AE|UQZ>ZBA|UGZ> = aié|uai>
= B|uai> = bi|ua¢>

on the other hand: assume that A, B have the same complete set of eigen-

vectors, i.e.
A = Z a;i|tq,) (Uq, Z a; P;
B = Z bj|ta, ) (Uq;| = Z b; P

— AB= Z ai]%bjpj = Z bj]%-aipi = BA , (because [PL, ]5]] =0)

i i

summary: operators A, B have the same complete set of eigenvectors
— [A B =

very important statement!
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c) Degeneracy A
Ala’f> :a”i|a5> ) ,u: 17"'7N7,' (335)

(we use short-hand notation |aj) = [ul ))
— eigenvalue a; is N;-fold degenerate, i.e., N; linearly independent eigen-

vectors {\aé‘ ), w=1, ...,NZ-} exist. They span an N;-dimensional sub-
space of Hilbert space (”eigenspace”)(N; — oo is also possible)

— they are not automatically orthogonal, but one can always orthogonal-
ize them (e.g. by Gram-Schmidt procedure)

= (aj]a}) = 0ij0 (3.36)
e consider operator B which commutes with A (cf. page 54)
—  ABlal') = BAa!) = a,B|a")
L.e. vector B|a§‘ ) is eigenvector of A with eigenvalue a;. This implies
that Bla!) € {|a}),...,|a})}
One can always find a transformation such that

Blaf') = vf|af)

— note that eigenvalues b!' of B are not necessarily degenerate (like
a;); degeneracy may be lifted

summary: [A,B] =0 <= A,B have same (complete) set of
eigenvectors, but degeneracies of eigenvalues can be different

e unity operator:

> laf)af] =1 (3.37)
e spectral representation:

A=>"ajlal)(a] (3.38)
i

(note that Zip, = > i ZL\L)

3.1.6 Continuous basis sets and spectra

(One) motivation: stationary Schrodinger equation has the form of an eigen-
value equation. We have seen that in some cases the 'spec-
trum of eigenvalues’ is continuous (— scattering problems)
and not discrete!

— we need to talk about continuous basis sets and spectra
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e For |¢),|¢p) € I (I separable) we can calculate the scalar product ac-
cording to

(@lv) = (oli|w) =D (lk)(k|y) = Zwk

e On the other hand we have argued that

o) = [ o' @ta) da

is a legitimate scalar product for quadratically integrable wave functions
(which form a separable Hilbert space). If we compare both expressions we
find that the second looks like the result of a limiting process of the first

one: ¢|k- ]{;|¢
Oyt =
T

Ak—0 / o (k)(k) dk (3.39)
with ) = () = i 1
and o"(k) = (glk)
— k)= Al}g(}% (3.40)

i.e. the scalar product (3.39) is the representation of the scalar product
(¢|¢) in a continuous basis {|k)}.

a) Representation of kets
W)= e — [ R dE
/ B(k)|F) di (3.41)

1—/\k (k| dk (3.42)

. K[y = [(K|k)(kly) d
— (KK =8 — k) (3.43)

— unity operator

— {|l§:)} are not properly normalized and are not elements of H!
Mathematically, this fact causes some trouble. Practically, one can
work with these states in a very similar fashion as with elements of H:
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discrete representation continuous representation
> k) (k| =1 J k) (k| dk =1
(E[K') = O (K|K') = 0(k — k)

(omit tilde from now on)

There are cases where a basis is partly discrete and partly continuous:

L= |k)(k|+ / k) (k| dk

k

condensed notation (sometimes used):

im (k| dk = 1

KK = (k) (3.44)
e scalar product in continuous representation
0lo) = [ i (@) k) = [ 0" (poi) di

note that |¢), |¢) € H , but |k) ¢ H!

b) Representation of operators
A =141 = /yk><k\A|k/><k’y dkdk!

= /|k (K| dkdk' (3.45)
” generalized matrix elements”  A(k, k') = (k|A|K)

o (KAW) = / (KIAIK) K |) i
_ / Ak, K) (k) d’ (3.46)

. (0|Alp) = /¢ Y(k') dkdk’ (3.47)
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c) Eigenvalue equations

e Discrete spectrum (as before, but this time we’d like to represent the
eigenvalue problem with respect to continuous basis)

A‘ua¢> = ai‘u’ai> ) (‘uai> uai> € H; A = AT)

- / KIAR) K lua) dK = as{klus)

— / Ak, K g, (K) dE' = a; ug, (k) (3.48)

— eigenvalue problem becomes an integral equation

special case (but important):

Ak K) = FR)S(k— k) + g(k) ok — )
d2

+ (k)20 (k = k) + ... (3.49)

— insertion into (3.48) yields with standard properties of J-function
(and its derivatives)

. <f(k:) " g(k)% n h(k)% ¥ .)uai(k:) = a; uq (k) (3.50)

integral eq. reduces to differential eq.

e Continuous spectrum

é|?}b> = b’Ub> (351)
(wloy) = 6(b—1) (3.52)

this problem cannot be treated with mathematical rigor, as |vy) ¢
H (one cannot even write down eq. (3.51)), but if we stretch the
rules somewhat we can describe the continuous spectrum in a formally
simple way.

o as in the case of the discrete spectrum we can prove that
b € R if B=5B

o (vy|B|vy) = bluy|vs) = bd(b—b')
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if {|vy)} is complete we have:

A

B = / |up) (vp| Bluy ) (vy | dbdl’

= / o)/ 5(b — ) (vy | dbdl’

- /‘Ub>b<vb| db

(generalized spectral representation)

59

(3.53)

For an operator with mixed discrete and continuous spectrum we have

B = Zbi|bi><bi‘+/b|b><b| db

_ i blb) (8] b

(in condensed notation)

— our statements about the eigenvalue problems of commutating
operators and about degeneracies translate very directly to the

continuous case.

further reading: [Gro]

d) Eigendifferentials (Weyl)

One option to deal with the continuous spectrum in terms of legitimate

Hilbert space vectors is the concept of eigendifferentials.

formal analogies of wave packets:

1 b+Ab
v = ) db’
|Ub,Ab) 7~ |y

with |?7b/> = lim ”Ub/>

AV —0 /Al

These kets are normalized properly:

1 b+Ab b+Ab
<Ub,Ab|Ub,Ab> - E db// db” <6b’|ﬁb”>
b b S——
=5(b/=b")
1 b+Ab
b

They are the

(3.54)

Eigendifferentials are approximate eigenvectors in the continuous spectrum.

further reading: (e.g.) [Gre| chap. 5
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Literature on the mathematical framework of QM:

a) QM textbooks [Bal], [Gri], [Jel], [Mes] and [Sha]
b) Mathematics for physicists [Arf] and [FK]
¢) Mathematical textbooks [Gro] and [Heu]

3.2 From wave mechanics to QM

We’d like to express our wave mechanics of chapter 2 in terms of our new math-
ematical language. We are thereby led to the conclusion that wave mechanics
is nothing else but the representation of a more abstract theory in configuration
(sometimes called position) space. We have already seen that we can switch from
configuration space to momentum space via Fourier transformation. In our new
language this is nothing else but the special case of a unitary change of represen-
tation (cf. chapter 3.1.3). Our final goal will be to peel off any representation
from quantum theory (cf. chapter 3.3)

But first, let’s revisit wave mechanics (in the one-dimensional world)

3.2.1 State

— is characterized by quadratically integrable wave function ¢ (x)
According to chapter 3.1.6 we can write

¥(z) = (z(¢) (3.55)

(x) is the coordinate space (configuration/position space) representation of

V) € H
o W)= / () ) do = / (@) di = 1

with |¢(z)|*> = |{x]1)|*: probability density (cf. chapter 2.3).
Each state vector can be expanded in the continuous basis:

|w=1ww3/uwuwm (3.56)

Momentum space representation (according to eq. (2.64))

W) = vp) = — /¢@ﬁ%m¢r
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— identify (unitary) 'transformation matrix’

1 i

(zlp) = 27rheﬁpx (3.57)
1 i

(p|lz) = e nb? (3.58)

3

2T

— transformation between coordinate and momentum spaces is given by plane
waves (i.e. Fourier transformation)

interpretation: (z|p) is the coordinate space representation of the vector [p) & H
etc. What is [p)?

3.2.2 Eigenvalue problems etc.

— |p) is the eigenvector of a hermitian operator p with eigenvalue p :

plp) = plp), p=p" (3.59)
similarly : tlz) = xlz), =4l (3.60)
”normalization”:
. 1 p
(xla') = / (2lp)(pla’y dp =~ [ eir@) ap
2mh
= d(z—2a) (3.61)
(3.58)

(plp') = =" op—p) (3.62)

Note that completeness of {|:1c)} and {|p)} is a consequence of the Fourier
theorem.

e spectral representation (cf. eq. (3.53))
T = /]x)a:(x] dx (3.63)
p = / [p)p{p| dp (3.64)

e change of representation

consider : (@|plz) = /<$/|p/><p/|ﬁ‘p> (p|x) dpdp'

1 W i
= 5 | e’ Tpd(p’ —p)em " dpdpf
1 7 /
- jp(x_l’)
2mh per dp
h d
= D s —
1 dx (v =)
h d
= —— —(d'|z) (3.65)
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(the last equality can be proven by considering, that %(1” |z) =
(#'|p)(plz) dp )
from eq. (3.65) it follows, that

h d

plz) = —;%>

o (@) = / (o' |pla) (o) dx
(3.65) / '
=" — [ Y(x)d(z -2

= 2o

1 da’

= Pa)¥(a’)

— the coordinate space representation of vector pli) is given by Zd,(a’);
a result that we know from wave mechanics (write Py = %dm/). Similarly

one finds: (z'|z]¢)) = 2/ ()

3.2.3 Commutators

In coordinate space representation we have

h
()

but this result can be proven to be independent of any representation:

— (dlap-pilv) = (@)EplY) — (/|pale)
B2 ) - / (' [pla) (@l ) de
. . h d
(3 59)£(3 65) xlﬁ(x')¢($/) _ ; %(l‘llﬁ(I/))
= ... = i@
= ih(z'|¢)
extract:
] = ih (3.66)

Interestingly, one can change the line of argumentation and can postulate the
fundamental commutator eq. (3.66) for hermitian operators z, p.
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Without any further physical ingredients one can prove the following

e 1, p have continuous spectra (eq. (3.63), (3.64))

e |z), |p) are normalized with respect to J-functions (eq. (3.61), (3.62))

coordinate space representation of p|v)
e momentum space representation of Z|t)

e plane waves form the unitary transformation (eq. (3.57), (3.58))

stationary Schrodinger equation
e uncertainty relation

see, e.g. [Mes| QM I, chap. 8.1; [Fic|, chap. 4.1

Let’s consider the 6! item on the list

3.2.4 Stationary Schrédinger equation

From the time-dependent Schrodinger equation (SE) we derived eq. (2.86), the
stationary SE

(- i+ v@))vio) = Bvle) (3.67)

Let’s show, that eq. (3.67) is identical to the coordinate space representation of
the abstract eigenvalue problem

H|p) = EJb) (3.68)

A

with H = % + V(%) (weassume V = V(i) and H = H')

proof : @mw>:¢w—+wmw
::—/| vle) di' + [V @)ul) o

(cf. eq. (3.49,3.50))! = 8" (z — 2')(2") da’ +/V(x’)(5(x — 2" (') da!

2m

Lsimilarly to eq. (3.65) one finds

<1"ﬁ2‘$l> — 27rh/ 2 p(w z’ dp _ —h25//($—$/)

and Py = —h?di|2)
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= (- E 2hvw)ew

= Exly) = Eyz) q.e.d.

In chapter 2.4 we learned that the eigenvalues E of eq. (3.67) (or eq. (3.68))
are the possible energies that one can measure?. In the next section, we will
elevate this statement to a postulate for all hermitian operators!

e SE in momentum space

starting point: abstract eigenvalue eq. (3.68):

< (plHl) = E(plp)
ﬁ2 SN / /
Ihs : = /<p|%+le>w(p)dp

_ % / p26(p —p)u() dp + / PV Y dyf

p2

T+ [ Ve df = Ev) (3.69)

SE in momentum space is not a differential but an integral equation (in
general more difficult to solve)

Vips) = (VD) = /mmwwmmdx

1 e
= 57 [ V(@)ei®™" dz (Fourier integral)

(This expression plays an important role in scattering theory when one
considers elastic scattering, e.g., from a Coulomb potential, which leads to
Rutherford’s cross section formula; cf. [LL], § 137)

e Question: What about the time-dependent SE?

— this eq. cannot be derived form commutators etc., but has to be
postulated as an independent axiom of QM (see next section)

2and that, in general, the spectrum of H may be (at least partly) discrete (i.e. energy levels
are quantized).
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3.3 The postulates of Quantum Mechanics

We'd like to summarize the fundamental statements (that we have already en-
countered) as 6 postulates:

3.3.1 States

are characterized by kets [¢) € .
(cf. chapter 3.1.1: this is motivated by the principle of superposition)

3.3.2 Observables

Observables are characterized by linear, hermitian operators. Their (real) eigen-
values are the possible outcomes of measurements (spectra can be (partially)
discrete or continuous)

Often, one calls hermitian operators with a complete set of eigenvectors "ob-
servables’. We will consider only such (hermitian) operators

A=Y aP,

(spectral representation, eq. (3.32))

3.3.3 Expectation values

(of observables) (cf. chapter 2.3.4)

define : (A) == <Q<bz|;|41|;§}> e R (3.70)

if state is normalized, i.e., (1)) = 1 we can write, e.g.

(A) = (V| Afg) = / (6]) (2| Ala") (| ) darda

(for a one-dimensional system )

~ A

if A=A1) — (z|Al2)) = A(2")é(x — 2')

- W = [ U@ d (3.71)
— [ AP i

(cf. eq. (2.71) for a 3-dimensional system)
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e For N particles we have
i:/|r1...rN)<r1...rN| &Pry..dry (3.72)
and for A = A(f,...Fy) we obtain similarly to eq. (3.71)
(A) = /\Il*(rl...rN)A(rl...rN)\Il(rl...rN) &Eri..d’ry  (3.73)

= /A(rl...rN)|‘If(r1...rN)|2 dry...dry

e For A =p we obtain (for one particle again to facilitate the notation)
B = [wpebiE)e) day
- [ vepee) (3.74)
(this is eq. (2.72))
= [l @) dra

ef. eq_(3.65) —?/¢*(r)</vr/5(r' —1)(r') d37"> d*r

h
- / V() TV () dr (3.75)
(this is eq. (2.76))
In the same fashion we can re-derive eq. (2.78) etc.

e With respect to As eigenbasis we have

(A) = Z anl{an|¥)|? , (compare to egs. (2.68), (2.72)) (3.76)

n

(follows from spectral representation of A)

interpretation: a, are the possible outcomes of measurements (postu-
late 3.3.2), and w,, = |{a,|¢))|* € R are the corres-
ponding probabilities

Note that w, = (¥]a,){a,|v) = W!Pn\w = (Pp)

one calls (a,|t) € C ’probability amplitudes’
if V) = lam) — (A)=an, wnp=1
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this is a certain measurement.

In this case one can show that
(AA)? = ((A—(4))%) = (A%) —(4)* =0

and vice versa (which is quite evident)

(for details see [Bloc], chap. 7.2)

3.3.4 Measurements

We cannot delve into the conceptual difficulties of this issue (which is controversial
to the present day). For laboratory measurements the 'Kopenhagen interpreta-
tion” has been and still is successful in (almost) all cases, although its foundations
are still under discussion.

Literature: [Aud] and [Omnb]
More technical accounts: [d'E] and [Omnal

From postulates 3.3.1 - 3.3.3 we know the following

[
meas/ul“e A
measure A
)y =" lam)
measure B
N\
|0n)

The measurement of A changes (disturbs) the state [¢)). After the measurement
the system is characterized by the eigenstate |a,,). If we measure A again we re-
obtain a,,, because this is then a certain measurement. If we measure B we disturb
the system again (in general) and change the state to one of B’s eigenstates. One
calls these 'perturbations’ or changes

"reduction (collapse) of the wave function”.

There is no element in the theory that tells us which eigenvector is chosen,
we can only calculate (know) the corresponding probability; the collapse itself is
‘indeterministic’ (which many physicists find unsatisfactory)

We can think of a measurement as a projection onto the corresponding eigen-
state and re-normalization of the state because after the measurement the system
is in the eigenstate with probability one!
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3.3.5 Commutation relations

As mentioned in chapter 3.2.3 we postulate fundamental commutation relations
(which cannot be derived, but which rest on plausibility arguments and corre-
spondence rules)

a) Important commutation relations

1) The fundamental commutator for one particle in one dimension is eq.
(3.66)

2) One (spinless) particle in three dimensions

[Z:,D;] = ihdy; (3.77)
[, 2] = [pi,pj] =0 (3.78)

3) We can then consider operator functions F' = F(Z;, p;)

- OF
one can show : F,pj] = th— (3.79)

an

(using eq. (3.77), (3.78))

- hoF
f: BIG F.z;] = = 3.80
proof : see [Bléc] |F, ;] i 0p; (3.80)

4) Example for an operator function:
angular momentum operator defined by

l:=ixp (3.81)

(=10, i=1,23)

we can calculate various commutators on the basis of eq. (3.79) and
(3.80), e.g.

I3, @3] = [l3,p3] = 0
[lg,i’l] == Zﬁi‘g

[Z37ﬁ1] = ihpo



3.3 The postulates of Quantum Mechanics 69

and
A A 3 A
{ is lj] = ZhZ&kalk
k=1
1 cyclic permutation (ijk)
with Eijk = -1 anticyclic permutation (ijk)
0  two like indices (ijk)
and
[12, Zz] = 0

The commutators (3.82) are the basis of angular momentum algebra
and can be used as definition of angular momentum in QM (see chapter

4.3).
5) (electron) spin (chapter 4.4.4)

— define operator § = (31,82,83), % =48 Vi
and require [5i,8]] = ih g EijkSk
2
and 8i,2;] = [8,p;] = 0, Vi, j

together with eq. (3.77) and eq. (3.78) these relations form the basis
for the discussion of a one-particle system with spin.

b) General uncertainty relation

The commutator relations are intimately related to the (general) uncer-
tainty relation(s). For hermitian operators we prove

AAAB > %|<[A, B))| (3.83)

”two non-commuting observables cannot be measured simultaneously with
arbitrary accuracy.”

proof: the ’square variations’ are defined by
(AA)? = ((A—(A4))%) . (AB)*={((B—(B))?
in addition, we define (hermitian) operators

= A— (A1
B 1

S

(3.82)
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and consider

(AAXAB)? = (Wla*|w)(y[b?[y)

= (alav) by |bv)
> [{ash|by))? Schwarz inequality, chapter 3.1.1
= |(¥lably)[?
I ab + ba ~ab — ba
< ab = + 1 :
2 27
N—— N——
hermitian hermitian
A ab+ba
—  (Ylably) = < | ) + ( )
ER EVR
A 9 ab—i—ba Q 2
= |{wlably)? = ) (w1 =5—1))

Comments:
1. 3Y) € H: AAAB= %\([/Al, B))| (minimal uncertainty)

In this case it follows from Schwarz’s (in-)equality that

aly) =cbly) , (¢ € C)
additionally, we require
(@b +baly) =
= Y)Yy = 0
= Re(WFw) = 0

= c is imaginary!

note that ) )
(W[P*[p) =0 <= BlY) = (B)|¢)

in this case we have AB = AAAB = 0 (certain measurement)
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2. [&,p] = ih

(3.84)

~

3. [l 1) = ihl,
(L) (3.85)

4. in general: Two Operators A, B are called ‘complementary’ operators:
— [AB]#0
28 they cannot be measured simultaneously with certainty! What can we
say about measurements of complementary operators: (cf. page 67)

A

state ) — |am,) — |bn) - |ax)
measured value Am by, ag
probability [{am|¥)|? [{am | ) |? |(ak|bn) |2

— measurement of A is not necessarily reproduced!

5. Two operators A, B are called ‘compatible’ operators:
— [A,B]=0 <= common set of eigenvectors (cf. chapter 3.1.5)

measurements:

(a) no degeneracy

state vy — | @) =, |am,) = |Gm)
measured value A, b A
probability [{am|10)]? 1 1
T T
these are certain measure-
ments as state is an eigenstate
(b) degeneracy (of A)
state ) o {leb, =1 ey S ab)
ie? |¢) =
> Grla)
measured value G bk G
probability >l a ) [{ah[¢")[? 1

= leh
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This scheme leads us to

6. Complete set of compatible observables

— measure compatible operators (with degenerate spectra) until the di-
mension of their simultaneous eigenspace is 1 < in this case the state of
the system is completely determined

|y = Jabc...)

L "quantum numbers” (i.e. eigenvalues of

complete set of observables characterize state)

— g |abe...)(abe...| = 1

The number of operators which are needed to determine the state of the
system completely is related to the degrees of freedom of the system.

e.g. - one particle in one dimension: one observable (Z or p)
suffices to determine the state
- one particle in three dimensions: need three compatible observables

(e.g. &1, &9, 23; or (see later) H,12,1, )

7. What about the energy-time uncertainty relation?

AT AE > (3.86)

B | St

— it does not follow from a commutator via eq. (3.83)
because there is no time operator in (textbook) QM

— eq. (3.86) has to be derived and interpreted differently
(see chapter 3.4)

3¢k can be determined in the following way:

W) = O lak)ak]v)
@) = 1= C*Y (k)

(af|¥)
V2 Kaml)?

= oy = Clapld) =
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3.3.6 Dynamics

The last postulate which completes the formal scheme of QM is about the time
development of quantum systems.

We postulate that the dynamics is governed by the time-dependent Schrodinger
equation

A

ihdip(t)) = H|p(1)) (3.87)
[0 (to)) |%0)

(H may or may not depend on time)

The time ¢t in this equation is the 'usual’ classical time, i.e., it is what we measure
with a classical clock; it is not an observable of the quantum system!

Note that eq. (3.87) boils down to eq. (2.40) or eq. (2.42) in coordinate space.

in one dimension:

Wb (0) = iyl ()
ihoy)(x,t)

(o 0)

" (g V() )

2m

in momentum space we have: (cf. eq. (3.69))

ih{pldip(t)) = RO (p,t)
= (plH[¥(1))

2
— f—mw(p,t)+/V(p7p’)¢(p’,t) dp’

3.4 Equations of motion

We elaborate on the last topic: the time-development of quantum systems. The
time-dependent Schrodinger equation (TDSE) is an initial value problem and is

linear, i.e.
TDSE

[¥(to)) — [¥@)

Let’s characterize this linear map.



74 Formalism of Quantum Mechanics

3.4.1 Time-development (evolution) operator

Define U(t, ty) via

[(t)) = U, to) |¢(t0)) (3.88)
due to [¥(to)) = Ulto, to)[¥(to)), it follows, that
Ulto, to) = 1 (3.89)
a) Differential equation
TDSE eq. (3.87):
_ d -
ihdy (1)) 2 m(%U(t,to))W(to»

= H(t)U(t o) (to))

—  GhdU(t,ty) = H(HU(t, ) (3.90)

Ultg, o) = 1

— equivalent with TDSE!

b) Equivalent integral equation

i t

Ult,to) =1 — - HU( to) dt’ (3.91)
to
c¢) Some properties (without proofs)
(i) Uty = U@ t"UE" ) (3.92)
(group property)
(ii) Ult,te) = UMt ty) = Ulto,t) (3.93)

ie. U unitary <= H hermitian

> @WOE) = W)Ut t)U(t to)v(to))
= (U(to)|v(to))

— norm conservation (cf. chapter 2.3.2)

(ili)  For stationary systems (8,4 = 0)
v

< U(t, ) = exp [ - S H(t - to)] (3.94)
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(check it by applying eq. (3.90))

in this case

o 0 = exp [~ 2B~ 1)1 (t0)

o An) = El) A
ie. [(ty)) = |1/)E(t0)> (eigenvector of H)
= [Up®) = e (k) (3.95)

[We(r, )" = [(re)® = [(reto)l* = [s(r,to)l*
— no change in probability density (stationary state)

This scheme, together with the postulates of the the last chapter, are sum-
marized as formulation of QM in the so-called

”Schrodinger picture”

characteristics: e states obey TDSE
e observables can depend on time only explicitly

(dtfl = atfl); e.g. time-dependent EM field

Since unitary transformations do not change scalar products and eigenvalue
spectra, they do not change the physical contents. Hence, we can apply a
(time-dependent) unitary transformation to the states and operators of the
Schrédinger picture in order to formulate QM in a different "picture’!

3.4.2 Heisenberg picture

e define Heisenberg state |¢g) via

) = UT(tt)|vs(t)) (3.96)
L 'Schrédinger state’ that
fulfills TDSE eq.(3.87)
Ulto, )|vos() = |ibs(to))
= dilYm) = 0 (3.97)

e transformation of operators (cf. eq. (3.23))

~

Ap(t) = Ut(t, 1) As(t)U (¢, to) (3.98)
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Consequence:

<A> — <¢S(t>|AS(t)|’l/js<t)> use inverse:transform.
= (Wul|U'(t, t0)U(t, to) An(t) U (¢, t0)U (¢, to)|¥m)
= WulAut)|vn) (3.99)

— invariant as required!
a) Equation of motion
4 ihd, Ap(t) = z’hdt{UT(t,to)fls(t)U(t,to)}
— Ut(t,t0) Hs(t) As(t)U (t, 1)
+ UT(t,to) As(t) Hs () U (¢, to)
+ ihU(t, to)((‘?tAS)U( o)
= Ut t){ [As(t), Hs(t)] + ihdy As bO (2, 1o)

3.98 A - ) -

O 1A (1), Hu ()] + ihd, Ay
(where we have defined 8, Ay = U'(t,t0)9, AU (¢, to))

Note that commutators are invariant under transformation*
— "Heisenberg equation”

U
U

d . . . .
ih%AH(t) = [Au(t), Hg(t)] + iho An(t) (3.100)
initial condition : Ap(ty) = As(ty)

characteristics of Heisenberg picture: e states are time-independent
e operators obey Heisenberg eq.

b) Eigenvalue problem

Schrodinger picture : Agla®) = alad)
Ut (t.to)]a?)
Ut (t.to) Asla?)
= ailaf’(1))

Heisenberg picture : la (1))
= An(t)lai’(t))

[As,Bs] =0 <= [Ay,Bu]=0
[AS,BS]ZOS < [AH,BH]ZCH
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— same eigenvalues a; as required!
c¢) Transition probabilities
wi= [l ls(t)? = [af Ol (nvariant!)
d) Analogy with classical mechanics

e Schrodinger picture is advantageous for practical calculations

e Heisenberg picture is advantageous for formal development; e.g. it
shows nicely the formal correspondence between QM and classical me-
chanics

- oH
~H . H .
!, Hy| =ih——=—, =1,2,3
We obtain a similar eq. for the momentum operator

.4 5 g (3.100)
< zhdtxj =

Summary:
i OHn
dizll = e (3.101)
J
(correspond to Hamilton egs.
of classical mechanics)
0Hpy
~H
Wpj = i

J

note that there is a further correspondence: if one introduces "Poisson brack-
ets’ {f, g} in classical mechanics

- of 0g  Of Og

i
classical eq. of motions take the form

d 0An

EAkl(Il-uxN;plu-pNQt) = {Aw, Ha} + ot

(cf. eq. (3.100))

moreover : {zi,z;} = {pi,pj} = 0
{zi,pi} = 0y
— extract correspondence rule (first observed by Dirac) for the transition
from classical to quantum mechanics

{Akla Bkl} B

1
€.g. {ﬂfzij} - Z.—h[%?pj]

(" canonical quantization”)
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Constants of motion

defined by d;Ag(t) =0
if 0;A = 0 (which is often the case)

diAy =0 < [Ay,Hy] =0 (3.102)
<~ [As,Hg] =0

‘constants of motion commute with the Hamiltonian’

in this case : Ala;)) = aila;)
L "good quantum number”

(i.e. 'certain measurement’)

Examples:

(i) H = % (free particle)

~

[p,H] = 0 — momentum conservation
but :

~

(i) H=L +V(#)

A s ho

p, H] = [p,V(2)] 55 70

Expectation values and Ehrenfest’s theorems

Let’s consider eq. of motion for expectation values (can also be derived in
Schrodinger picture)

d ~
E<A> = (YuldiAn|Yn)
(3100 %WHHAH, Hulltn) + (b 0rAu|dn)
1 . .
= (Aw. Hn)) + (0 An)

Since this eq. holds also in Schrodinger picture we can write

d 1, - -
2 (A) = = (4. 1)) + (2.4) (3.103)

(same structure as eq. (3.100))
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in particular we find

d 1, . @19 OH
E(SUD = E([%HD = <(9_13¢> (3.104)
S = LA = ~(50) (3.105)

— Ehrenfest’s Equations

Do they imply that the expectation values of position and momentum move
classically? — Not quite!

Examples:

Sy o= Sy =

@0 = Pty fa)

classical motion!

(i) =2 +mw232 (harmonic oscillator)

d _ (p> . d _ 2
Dy = W0 By o i
2 )

— —dt2<x>+w () =0

(classical motion!)
(iii) but: H = £ +V(2)

in general %(M = _<?9_‘;> = (F(x)) # F({z))

only if the latter inequality becomes an equality (free particle, har-
monic oscillator) do (z), (p) obey classical equations of motion!

g) Energy-time uncertainty relation (cf. page 72)

We have the general uncertainty relation eq. (3.83), and, in particular:

AAAE > (A H))



80 Formalism of Quantum Mechanics

for any observable
If ;A = 0 we can use eq.(3.103) and obtain

AA AE > g‘|dt<,21>|

<A>

T+ <A>
AA

Define time interval A7 via

AA d, .
— _ 1ZA
AT dt< )|

— AEATZ%:L

(3.106)

Interpretation: properties of a system change noticeably during A7 only if
AT > I (stationary states: AE=0 < A7 — oo)

application: lifetimes (e.g. of excited states) + energy widths (’line widths’)

3.4.3 Interaction picture

— defined as lying ’in between’ Schrédinger and Heisenberg pictures

S-picture [-picture H-picture
Ul (t,t0), H Ul (tto), V
st U ey )
AS Ap (t) AH(t)
N\ /
Ut(tto), H
—— — —_—
we consider decomposition
H = Hy+V (3.107)
Ult,te) = Uyt to)Ur(t, to) (3.108)
egs. of motion : zhdtUo(t ty) = H, Ao(t, to)
UO(th to) = 1
Zhdt (t to) = HU(t, to)
(thtO) = 1
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Use them in eq. (3.108) (which defines U;):

ihd,U(t,to) = il(d,U)U; + Uyihd,U;
HoUyU; + Ugihd, Uy
= HUU;

= ihdU(t,ty) = Ug(t,to)(]:]—AI:IO)UO(t,tO)UI(t,tO)
=V

define, in general, transformed operators

As(t) = UJ(t, to) As(t)Uo(t, o) (3.109)
and states X
[ (1)) = Ug (¢, o) s(1)) (3.110)
—  hd Uit ty) = Vi(t)Ui(t,to) (3.111)
Ur(to, to) = 1 (3.112)

U; can be interpreted as evolution operator in interaction picture

moreover : i(t) = Ut to) (1))
= Ui(t, to)|u)
= Us(t, o) (to)) (3.113)
(—  [i(to)) = [vs(to)) = [¢¥m))

Differentiate eq. (3.113):

ihd|r(t)) = (ihdtﬁl(tto))WI(to»
= Vi(t)Ui(t, to)|21(t0))

= ihdiJr()) = Vi()]r (1)) (3.114)

Schrodinger-type equation in interaction picture

Similarly, we obtain an equation of motion for operators (3.109)

ihd, Ap(t) = [A;, HY + ihd,A; (3.115)
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Characteristics of interaction picture:
e states and operators are time-dependent
e states are driven by V; (eq. (3.114))
e operators are driven by H? (eq. (3.115))

Literature: a thorough discussion of S-, I- and H-pictures can be found in:
[Fic|, chap. 3.5

3.5 Symmetries

" Ein Ding 1st symmetrisch, wenn es eine Mdglichkeit gibt, es zu verdndern, und
es hinterher doch wieder so aussieht wie vorher.”
H. Weyl nach R.P. Feynman, "Vom Wesen physikalischer Gesetze’, Kapitel 4

translation’:

— symmetry transformation: <= operation which leaves some
mathematical expressions or
laws invariant

Noether theorem .
— conservation laws

(i.e. constants of

classical physics: symmetry transformation

motion)
important examples: + special cases
invariance with respect to:
translations — momentum conservation
rotations — angular momentum conservation
translations in time — energy conservation

— we will find analogous relations in QM!

3.5.1 Representation of symmetry transformations

We restrict the discussion to symmetry transformations which are mediated by
linear operators (the other important case which we omit are transformations
that are expressed by ’anti-linear’ operators).

a) Transformation of states

~ A

) = S|¥) (3.116)
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require norm conservation:
@) = (WISTS1) = (@l)
1

— St = g

— linear symmetry transformations are represented by unitary operators
(cf. page 47)

b) Transformation of operators
A= S5AST (3.117)

such that <1/~1\;1|1Z> = WM\W

Consequences:

1. fl|an> = ay|an)
—  Alay) = §A818]a,) = anSlan) = anldn)

(same eigenvalues)

2. wn = [{an| )2 = |(@n|)]?

(same ’transition’ probabilities)
i.e. if ’everything’ is transformed simultaneously, physics remains unchanged!
¢) Some properties of symmetry operators S

1. they can be written as
S =¢© (3.118)

S1=8" —= 0=0
(proof: [Bléc], chap. 9)

— [5,0]=0

2. Slon) = €©|6,) = €elo,) , (o, € R) A
— i.e. common eigenvectors, and eigenvalues of S are of modulus 1

3. Symmetry transformations (and - apart from exceptions - operators
S) form (not necessarily abelian) groups
— group theory is a powerful approach to the investigation of sym-

metries (see, e.g., [Mes| QM II, App. D and chap. 15)
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3.5.2 Symmetries and constants of motion

a) Definition: operator A is called symmetrical (invariant) with respect to S

(3.119)

— (@A) = (W|A[lp)

(with [) = §T]¢5) )

i.e. transformation of A yields same expectation value as inverse transfor-
mation of state

b) Invariance of the TDSE (3.87)

transformation W) = S )

consider ihdy|) ihd, (5' V)

i1(9,5)|) + Sihd|)
(ihdS + SH)[)

Hl) = HS[Y)

invariance means that :

(i.e. transformed state fulfills TDSE with the same Hamiltonian!)

— ihd,S+[S,H] =0 (3.120)

Note that this equation holds also in the Heisenberg picture (although we
have derived it in the Schrodinger picture). In fact, one can extract it also
from the requirement that the Heisenberg equation (3.100) be invariant
with respect to S,

Now, let’s compare eq. (3.120) with ’standard Heisenberg equation’ (3.100)
for S.

— invariance of equation of motion <=  d;Sy =0 (3.121)
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Note that S is no observable; but O (eq. (3.118)) is, and it is straightforward
to show that d;Sy = 0 implies d;Oy =0

— If TDSE is invariant with respect to transformation S
— hermitian operators O which are defined via S are
constants of motion®

in closed systems, we have até = &S =0

< O is constant of motion <<= [0, H]=0=[S, H] (3.122)
= [0,U(t,t)] =0

(cf. eq. (3.102))
c¢) Recipe for discussion of stationary problems

(a) Write down H

(b) Find symmetry transformations via [S, H] = 0
) Find generators 0] (which are constants of motion)
)

(c

(d) Find simultaneous eigenstates of S , O, H

3.5.3 Translations (1-d)

Let’s consider translations in real space as an example of a continuous symmetry
transformation.

Obviously we have:

translation & + translation & = translation &; +&; = translation & + translation

&1

— translations form a continuous abelian group!

— translation operator

TENT(&) = T(&)T(E) = T(&+&) (3.123)
— eq. (3.123) is solved by
T = ¢, (G=aN (3.124)

e Infinitesimal translation
T(6¢) = 140G
. _Z, T(8¢) — T(0) dT

= G = o€ = _id_g (3.125)

50 is called "generator’ of symmetry transformation
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e Action on states (this is an obvious postulate)

TOl) = |z+&) = |a) (3.126)
') = |z —¢) (3.127)
= @) = (@) = @TEk) = (T1(©zly)
= {z—=¢&) = ¥z —¢) (3.128)
Transformed wave function at = original wave function at inversely

transformed position & — &
e Action on
< @) = (@lalfe) = @IFT)
— [ alila’) a9} dode

- [i@eie

(3.128) /¢ O — &) do
2 [ @+ o) do

= (i +£lly)
compare:
THOZT(E) = +¢€d (3.129)
T(&)zTH(E) = #—€l (3.130)

e Consider infinitesimal transformation

T(06)&THo6) = (1+4i06G)i(1 —i6eq)
= & +i6¢[G, 7] + 002
CLO & sl
—  [G.3] =i (3.131)
Define: R
p=—hG, (p has dimension of momentum)
— T = e (3.132)

[&,p] = ih
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i.e. one can derive the basic commutator [Z,p], which was postulated in
chapter 3.3.5 from consideration of symmetry transformation

L i [l G| o) o

— standard form of p,) is recovered from definition and properties of transla-
tions.

Some comments:

1. Structure of theory

1%¢ step: consider symmetry transformations; i.e. define and investigate
translations

— derive [z, p] = ih

— further consequences (see chapter 3.2.3)

2. if [H,T(€)] = 0 (translational invariance)
= momentum conservation (cf. eq. (3.122))

n2

A~ p A~ A~ N R
e.g. H = om [H,T)=[H,p]=0
)
=2 4ve — [m1)=V1+#0

2m

3.5.4 Other continuous symmetry transformations

a) Rotations
e about a fixed axis — abelian group

e.g. —  R.(a)= e~ nolb (3.133)
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one finds that generator can be identified with corresponding compo-
nent of angular momentum operator

if [H,R.(a)] =0 — L. is conserved!

i.e. rotational invariance —— angular momentum conservation

e general rotations:

more difficult!

But: each rotation can be composed from three (non-commuting) ro-
tations about "Euler angles’ (cf. Classical Mechanics)

One finds correspondingly:

—  R(apy) = e~ 1ol o il el (3.134)

and

i) =iy el (cf. eq. (3.82))
k
as rotations about different axes do not commute.

b) Galilei transformations

consider translation of coordinate system

r < r = r—vVvt

r P = p—mv

v

T, = Vot

v

S

— corresponding operators (requires some calculation)

i = I(W)ilf(v) = t—vti (3.135)
p = I(v)pli(p) = p—vmi (3.136)

with ,
I'(v) = exp %v(mf'—tf)) (3.137)

'Galilei operator’ depends on time explicitly!

— invariance of TDSE if (cf. eq. (3.120))

ihdL(v) + [[(v),H] =0



3.5 Symmetries 89

3.5.5 Discrete symmetry transformations

a) Reflections — parity

the simplest symmetry group (only two elements) is obtained from definition

Solr) = | —r) (3.138)
—  Sr) = |r)

symmetry operator is unitary and hermitian
— apply it to wave function

Sotb(r) = (x| Solp) = (Sor|y)) = ¢(—1)

e cigenvalue equations:

— So is unitary: modulus of eigenvalues = 1 (page 83)
— Sp is hermitian: eigenvalues real
—  eigenvalues +1

Sols) = *[tpa) (3.140)
+ : positive (even) 'parity’

— : negative (odd) "parity’
if [S’O, H |]=0 — parity conservation

(not fulfilled in case of weak interactions — parity violation in f-
decay)

b) Discrete translations — Bloch-theorem

Simple model of a crystal: atomic sites are fixed and form a periodic lattice;
electrons move independently in a model potential which is also periodic

task: solve (stationary) Schrodinger eq. for an electron in periodic potential
V(r+t)=V(r) (3.141)

t is an arbitrary lattice-translation vector (see [Bloc], chap. 10.5)

— discrete translation (cf. eq. (3.126), (3.127))

Tlr)y = |r+t) (3.142)
— Te(r) = (@|T]Y) = ¥(r—t)

if V)=V(+t) — [H,T]=0
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search for common eigenstates v (r):

< eigenvalue eq. of T (in coordinate space)

A

Ty (r) = e () (3.143)

(defines k implicitly)
together with eq. (3.142):

Yr—t) = e "(r)
= oY) = Y —t)
ansatz : Y(r) = e*u(r) (3.144)
N w(r) eikteik(r—t)uk (I‘ . t)
uk(r) = uk(r — t) (3.145)

Bloch theorem: Eigenfunctions of periodic systems are of the form
Y(r) = e®uy(r) with wu(r) = u(r —t)
(i.e. periodic functions)

Use it in Schrédinger eq.

2

( _ h_A + V(r)>w(r) = Ey(r)

2m

o (e (VR V) i) = Bk (3.146)
I??(,k)

the new Hamiltonian H’ depends continuously on k

— E,(k): dispersion relations of electrons in periodic potential
(cf. dispersion relation of free particles (eq. (2.24)))
— band structure

¢) Permutations of identical particles

identical particles share all physical properties, e.g. mass, charge; their
permutations are connected with a symmetry property

Consider two identical particles (N = 2)
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Preparation:
e Some remarks on direct product states and spaces

consider states My e HW
@) e 5O

define direct product:

W) = |
o W@y e 3 = HD X K@

scalar product in H:
(PP pMp®) = (oW M) (@] @) (satisfies axioms, chapter 3.1.1)
if {|g0,(€1)>} ONB (orthonormal basis) in H; and {|gol(2))} ONB in ,
—  {lee)} ONB in K
chl\cp,(:)gol( Y for all V) € H

if dimensions of spaces are finite

Operators:
i ADIO) = )
then ADpWe®) = [x W)

(i.e. AM) does not act on l®)))
e [A(l)’ B(2)} = 0

but: there are operators that act on both |} and |o®)
Define permutation operator Plg

Pulw(1,2)) = [¥(2,1)) (3.147)
(coordinate representation (rirq|V) = U(r;ry) )

obviously PL=1 < P,=P5 =P (3.148)
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(cf. parity operator eq. (3.139))

< eigenvalue problem (similar to the one of Sp)

PL|U+(1,2)) = |¥F(1,2), ('symmetrical’)  (3.149)
Ppl0(1,2)) = —|¥(1,2)), ("antisymmetrical’) (3.150)
states

All known Hamiltonians commute with Pjo: [PI , ]512] =0
Moreover, we postulate that all observables commute with all permu-
tation operators P, of a many-particle system (if particles are identi-

cal)

symmetrization postulate

P,,0]=0, VY O,P, (3.151)

Implication: there is no way to distinguish identical particles in QM
(no observable is sensitive to permutations)

—> QM states are either (totally) symmetric or (totally)
antisymmetric with respect to particle exchange, i.e.

either o= |t for all permutations

F,|¥
or P07y = —|u7) for all transpositions

This statement is very important and has no classical analogy. It must
be fulfilled since otherwise the projector |®)(®| on a non-(anti-)sym-
metric state |®) would not commute with all permutation operators
(i.e. would violate eq. (3.151))!

A simple example: two non—interacting particles in common potential

- 04 g® +v(r1) v 21’2 + V(r2) (3.152)

2m

We assume that we know the single—particle solutions:

2 1 1
2 2 2 2

it follows that |¥) = |go,(€1)<pl(2)) solves

H|V) = E|¥) with E=¢e" +e?
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proof:

2 1 2 2 1 2 D\ 75 2
o) = (A1) 1) + VAP

2
= <()+€l )‘S% o)

There is a second eigenstate with the same eigenenergy:

= - 2
B) = Poo|¥) = |pi o)

— exchange degeneracy

|¥), |¥) are not symmetric or antisymmetric (i.e. they don’t fulfill eq.
(3.149), ( 3.150))

— (Anti-) symmetric solutions (for [ # k):
1 -1 . 5
) = {0 1) = {1 e el el |
_ 1 = 1 1 2
) = {1} = {1l e} @15y

e properly normalized for [ # &k, ((UT|¥+) = (U~ |U7) =1)

e for [ = k we have

) = |99k @k >a (Trwt) =1)
v=) = 0 —  Pauli principle!

e Antisymmetric product states
We can rewrite |U~) of eq. (3.153) in the form of a determinant:

1 2
M) o)

1 2
o) o)

This can be generalized (N > 2):

1 N
X Iso( D lel))
) = —— (3.154)
VNLL ()
[ |©hy )

"Slater determinant”  ( (U~ |¥~) =1, if
(r;lon;) = 03 )
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determinant is zero if two lines or two columns are identical

— Pauli principle: two particles of a system of N
(for antisym- identical particles cannot occupy the
metric states)  same single-particle state |y, )!

Even though we have only considered non-interacting systems so far, we
can formulate the Pauli principle for the case of interacting particles in a
similar way:

Let’s consider:

e Interacting two-particle systems
H=HY 1+ H® 4+ W(1,2) (3.155)

« Schrodinger eq. H|¥) = E|¥) cannot be separated, but sym-
metrization postulate (3.151) is still valid.

+ 1 2
= ) =" e o) (3.156)
kl

i.e. the physical solutions are either symmetric or antisymmetric and

can be expanded in the basis {|g0,(€1)30§2)>}

(note that |¥~) is no longer a single Slater determinant)

E.g. in coordinate representation we can write:
(r.ry|UE) =
\I/(i)(rl...ri...rj...rN) = j:\I/(i)(rl...rj...ri...rN)
— U (ry.rp..r..ry) = -V (r..r..r..ry) = 0
— Pauli principle!

e Symmetry considerations show that only (anti-) symmetric many par-
ticle states exist in QM. Do they both exist in nature?

Yes, they do. Moreover, both ’kinds’ of states are related to the spin
(see chapter 3) of the particles:

Spin-statistics theorem (Pauli, 1940)

Symmetrical states — Spin =0,1,2, ...
”bosons” (photons, mesons)
Antisymmetrical states —— Spin = %, %,

" fermions” (e”, p, n, quarks)
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Shell structure of atoms follows from antisymmetric nature of elec-
trons, which cannot occupy the same state.

Bosons do not avoid each other, they can occupy the same state, e.g.
the ground state.

Such states have been realized recently for bosonic atoms (and, even
more recently, molecules)

—— Bose-Einstein condensation
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Chapter 4

Applications of the Theory

4.1 The harmonic oscillator

Important model system, because

e describes systems in the neighborhood of a stable equilibrium (see [Kiral,
chap. 3.2)

e mathematically exactly solvable in classical and quantum mechanics

4.1.1 Algebraic solution of the one-dimensional harmonic
oscillator

Hamiltonian:

- ~2 2 2.2 4.1
# = L et (4.)

Rewrite H:
R 1. . . ) ) o
H = —|(p+imwoed)(p — imwo) + imwo(ps — :L'p)]
2m L
; _(]5 + imwoZ)(p — imwoz) 1
- 5 4.2
’ 2mhwy + 2 (4.2)

97
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To proceed we need

a) Creation and annihilation operators

Definition:
al = ;(ﬁ + imwo)
2mhwg
"creation operator”
. 1 . .
a = Tﬁwo(p — meOiL')

"annihilation operator”

N (&T)T =4

. 1 : NP L o
H = . [(}5 — imwo) (P + imwol) + imwy|Z, p]]
(p — imwoZ)(p + tmwoez) 1
— T _ =
2mhw0 2
1
— hwo (aeﬁ - —>
2
Combine egs. (4.5) and (4.6)
a VS|
— — = aa'—=
hwy 2
a vt L
- — a'a —
hwy 2
suggct [d, dT] _ i
M4 et pala= A
hwo

Definition: Anti-commutator

(4.3)

(4.4)

(4.6)

(4.7)

(4.8)
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Some useful relations:

a,H] = hwola,a'dl
= ha{la,alla+a'la,al |
= hwoa (4.9)
[af, H] = hwolal,aal]
- mo{[aT d]dT—i—a[aT,dT]}
= —hwal (4.10)
b) Energy spectra
< Haly) = (aH —la H))l,)
= (B, — hwo)a|ty) (4.11)
< dall) = (- [l ]
= CAL]L(IvA{"i_]}’f<"}0)|¢n>
= (B, + hwo)a'[¢,) (4.12)
Conclusion: R
If |¢,) is eigenvector of H to the eigenvalue F,, then
W)y = af|w,) is eigenvector to the eigenvalue E, + hwy, and

|1) == aly,) is eigenvector to the eigenvalue F,, — fuwy.

If [)) is a normalized eigenvector of H ((@Z)W) = 1) to the eigenvalue F,
then:

. 1
E = (YH[Y) = hwo(vla'a+ S[v)

= 5+ hwo(ylaaly)
= T4 huy(avfav)
= BT i) 2 0

i.e. the spectrum is bounded from below.
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Is £ = % possible? Yes!

proof by reductio ad absurdum

assume : Ey = min{En} > %
hw - hw R
— = < Ey = (o|Hwe) = =+ hwolalao)

2 2
< 0 < (avolave) = (g |vg)

~ hw
— |1, ) eigenvector of H to Ey— 70 contradiction!
Conclusion: ground state |t)g) is eigenvector to the eigenvalue Fy = %

—  Ey = (tho|H[tbo)

o -
= 5+ o (aro|azho)

fiwo
2

= alo) =0

From (4.12) it follows that the first excited state has the eigenenergy

Ei = Ey+ hwy = 3@”0, the second Ey = Ey + hwg = 5h§"0 ete.

—  eigenvalue spectrum of the harmonic oscillator

(4.13)

1
En:hwo(n—|—§) . n=0,1,2, ..

c) Eigenstates

e the ground state is defined via
alo) =0, (Yolth) =1 (4.14)
o first excited state is generated by |1f) := af|e,)

= (@l = (voladl|vo)
= (Yolatalio) + (wolla, ] 1)
= (Yolto) = 1

— |y) = W(T)) is normalized eigenstate to I
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e second excited state 1) := af|ey)

normalized eigenstate to Ey =

In general:

= (@] = (@hlaally)
= (pula’alyr) + (vnlla, a’ljr)
= <¢0W0>+<¢1|¢1> = 2

5hwo
2

= |Yg) = %ATWQ = %(Cﬂ)QW(ﬁ

If |¢,) is the normalized eigenstate to F, =

|Ynt1) = \/ﬁd”?ﬂn) is the normalized eigenstate to E,, 1

proof (of normalization):

<¢n+1|¢n+1> = n+1<¢n|d&uwn>
1 1 .
- = \Wn H n _}
T U (el H ) 4 5
B 1 { n 1 . 1} _ 1
TS GRS B
Similarly, one can show that |¢, 1) = \/Lﬁdwn) is the normalized eigenstate
to En,1
Summary:
|Vn) = \/%? (&T) |1)g) is the normalized eigenstate to F,, (4.15)

4.1.2 Discussion

a) Coordinate space representation of the eigenvectors

Option 1) starting point: consider coordinate space representation of

&Wo> =0
1

= m(ﬁ — imwo) o)

—  (@|pltho) — imwo(z|Z[e) = 0O
TEE i) (x) — imworio(z) = 0
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this differential equation has the (normalized) solution

mwo % _mwg .2
— - 2h B 41
Yo() [ b ] ¢ (4.16)
excited states: (z|,) = %<$|(CLT)"W0>

1 1 h d ) "
e e 2 Sy
_ one can show: __ mwo i 1 _n;ﬂa’j Mm%
= o = [B) e ()

(Hermite’s functions, see chapter 3.1.1)

Option 2) solve Schrédinger equation in position space

Literature: [Fli], chap. 12; [Gre], chap. 7; [DL], chap. 5.3
b) Properties of the eigensolutions

(i) Energy spectrum is discrete and equidistant

(ii) Zero-point energy Ey = % >(0 «— uncertainty-relation
(cf. chap. 2.4.2d)

one can show that for the n—th eigenstate:

E, |
Az, Ap, = =2 = h(n n —)
Wo 2

in particular AzgApy = £ (minimal uncertainty)

(iii) number of nodes + parity: same as for infinitely deep potential well
(cf. chap. 2.4.2d)

c) Some special features
Literature: [Mes] I, chap. 12.2; [Schal, § 13

d) Meaning of the creation and annihilation operator

the creation operator enhances the excitation
. +hiw
aT|¢n> = Vn+ 1) E, == En1
the annihilation operator reduces the excitation

CA’/|1pn> = \/ﬁ|¢n—1> En —_EW(Q En—l
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e ’conventional’ interpretation of the oscillator:
one particle with mass m in ground or excited state with energy £,

e ’field-quantum’ interpretation:
system consisting of n 'field-quanta’ with the constant energy ¢ = hwy
in 'mode’ wy

Eo
Ey

no ‘particle’ (but zero-point oscillation)
one ’particle’

> 1

FE, = n ’particles’

— a, a' create and annihilate these 'particles’ (field-quanta)

example: photons = field-quanta of the EM-field

e) Multi-dimensional and coupled oscillators
Literature: [Bloc], chap. 5.5.3; [Gre] I, chap. 14

4.2 Approximation methods

Only a few QM problems can be solved exactly. In most cases one has to resort
to approximation techniques (or numerical methods or a combination of both).
Here, we sketch only the most 'fundamental’ approximation methods; perturba-
tion theory and variational methods.

4.2.1 Stationary perturbation theory

Idea: Start with a simpler problem and use its known solution to construct
an (approximate) solution of the problem at hand

a) Formulation

task: solve stationary Schrodinger Equation (i.e. O,H = 0)

H|pn) = En|tn) (4.17)
decompose ) ) )
H=Hy+V (4.18)
assume that H, problem can be solved
Holyn) = EP|47) (4.19)

We'd like to seek solutions cf. eq. (4.17) in terms of a Taylor (like) expan-
sion based on the eigenvalues and eigenstates of the 'undisturbed problem’
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eq. (4.19). Therefore, we require that the 'perturbation’ V be small. Let’s
introduce a parameter A:

~ A

V=AW with A< 1 (4.20)

2 (B ) () = Ea) () (4:21)

Taylor expansion about A\ = 0:

dE,(\) 1dE, ()

_ (0) 2
BN = BY+ =2 A N (4.22)
d
[a(N)) = ‘¢2>+ﬁ’wn()‘)>’)\:0)\+"' (4.23)

We need to find expressions for the derivatives in eqs. (4.22), (4.23):
consider derivative cf. eq. (4.21):

(a4 A = B, () = 0

d\
= (Ho+ 2 = B, h ) + (W = EL00) () = 0
, dE,
(B, = N etc.)

= W MH Q) = BV L)) + (n(NIW = B, (W) |a(A) =0

i)m=n

= E,(\) = @n(N)[W[¢a(N) (4.24)

i) m#n

(NI ¢ (V)
EHO‘) - EmO‘)

= @m(Nn(N) = (4.25)

In order to use eq. (4.25) for an expansion of [¢/) in terms of the or-
thonormal basis {[¢,)} we have to consider the coefficient (1,(X)[¢],()))
in addition. If we assume that (¢, (\)|[¢)(N)) = (WL (N)|[vn(N)) (ie. we

choose real states which is not a restriction) we can show that

(U (M)t (A)) =0

d

f: —
proo ™

({nWPn(N) = @nN)[Pn(A) + @a(N[5(N))
1

= 2 (VI = 0
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S L)) = ) (W) (N[, (V)

(U (V)W [ (V)
Z En(/\) - Em()‘)

[¢m(A)) (4.26)

m#n

We consider also the 2" derivative term in eq. (4.22):

d? (4.24)
CIEN) = ) 2 ) ()
= (¥ (A)!W\wn( )) + (U (V) [Wg, (V)
(4.26) (¢ rwww )12
(4.27)
; E,(3) — B ()

Higher order terms can be calculated by differentiating expressions (4.26),
(4.27) successively. We stop here and insert (4.24)-(4.27) in the Taylor
expansions (4.22), (4.23):

Ei(A) = B 4 M (0)[W]1(0) (4.28)

2 x| (0 (0) W[40, (0)) 2
2 ) R0 = En(0)

+ ...

R OV 0\|2
- B0 ) + 3 M
m#n m

Z <77Z} |V|¢ >W)O> (4'29>

[Vn(A) = [tn) + 50

m#n

eqs. (4.28), (4.29) are the standard expressions for the lowest-order correc-
tions.

b) Remarks:

1. Derivation and result are valid only if EY # EY (i.e. no degeneracies)
For degenerate perturbation theory — QM literature, e.g. [Jel], chap.
7

2. Convergence of perturbation series?
Cannot be answered in general. In some cases, perturbation expan-
sions do converge, in some they do not, and in some other cases the
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perturbation series turns out to be a so-called semi-convergent (asymp-
totic) series.

Consistency criterion for convergence (check eq. (4.29))

(ol V1w

50 _ 50 <1, (for n # m)

further reading: e.g. [Jel], chap. 7.2

3. In practice, ’exact’ calculations beyond 1 order are often not feasible
due to (infinite) sums over all basis states (cf. eq. (4.29)).

4. Variants of stationary perturbation theory (as well as more formal
derivations) exist.

Literature: [Jel], chap. 9; [Mes], QM II, chap. 16; [DL], chap. 11

c) Example: Perturbed harmonic oscillator (1-d)

Hy=2 + 022 (4.30)
m
— can be solved exactly (chap. 4.1)
1. linear perturbation
V=az, (a € R) (4.31)
We need - cf. eq. (4.29) - matrix elements
(WolVIvnm) = alynlzlyn,)

— can be calculated e.g. by using (well-known and easy-to-prove)
recursion relations for Hermite’s polynomials and functions

iegle) = /e, \f 3

R n+1 n
- <¢2|3€|1/10 \/mw {\/ 5n+1,m + \/;5711,771}

—— i.e. almost all matrix elements vanish!
to 2" order:

E, ~ EO+EV+E®

2mw§> (4:32)
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It turns out, that all higher-order terms vanish and eq. (4.32) is the
exakt solution! This can be seen from a different viewpoint:

n2

H = ﬁo%—f/:Qp—m—l—%wgﬁ—l—ax
. m m
- 4 —wi(z +b)? — —wib?

2m 2
(with @ = mw3b)

2

— the oscillator potential is not really disturbed, but only displaced!

A
X2
> X
a2
2mo,>
b
— all eigenenergies are shifted by —%w%lﬁ = —2;;2!
2. Anharmonic oscillator R
V = ci? (4.33)

i.e., calculate matrix elements (0|23[42). In this case, the 15! order
energy correction vanishes as well, but higher orders do contribute.

Further discussion of undisturbed and disturbed harmonic oscillator:
[CT] 1, chap. 5 and II, chap. 11.4

4.2.2 Variational methods

a) Rayleigh-Ritz principle (of minimal energy)

Consider energy functional (functional=linear map vector — scalar)

El¢] = (01H19) (4.34)

(0l6)
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The expectation value of H with respect to any trial state |p) is larger
than (or equal to) the true groundstate energy, i.e., the lowest eigenvalue |

of H

proof : I:f|¢n> = Ey|tn)
with (Ynltr) = Onk
and Z W)n) <¢n| =1

We can expand each trial function:

[6) =D cily)

J

consider AE = FE[¢| — Ey
(Ol — Eolo) _ juCGen(tH — Eoluw)
(9]¢) > el

>, leP(E; - By [ =0 i1e) =1vo)

12
ZJ' ’Cﬂ| >0 otherwise

— energy functional E[¢] is bounded by ground-state energy.

One exploits this principle in the following way:

e Choose a set of trial states |¢)
e Find the minimum of E[¢]

e According to the Rayleigh-Ritz principle the state that minimizes the
energy is the best approximation within the set!

b) Simple application

e consider |p) = |p(N))

HO) _ g

el = = te 0y

. . dE(A
e search for minimum; i.e., calculate % =0
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example: 1-dim harmonic oscillator

N h?
H = —%di + %WSIQ
2 2
Ansatz : oz, \) = Ae 2"
A2 [ efgxz{ R R %w%:ﬂ}e*%xz dx
- B = A2 [ e=22® (g
AP o
B S n mwa
B o Am 4N
dE WX mw] 5 MW
I T i A
— oz, \) = Aexp [— 77;_‘;:()%2} (cf. eq. (4.16))
1 [R2AS mw? hwg
B0 = 2_)\(2)[2771 2 } T2

— in fact, this is the true ground-state wave function (and energy).
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One can refine the method by introducing trial wave functions that depend on
more than one parameter or by considering other ansétze, such as the expansion

of trial wave functions with respect to known finite basis systems, etc.

In fact, the variational method may be considered as the most important

approximation technique for the determination of ground states.

4.2.3 Time-dependent perturbation theory

a) Formulation
task: solve TDSE (i.e. 0,H # 0)

i (t)) = H (&) (1))
decompose Hamiltonian (cf. eq. (4.18))

H(t) = Hy+V()
= Hy+ \W(t)

(4.35)

(4.36)
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assume that W(t < t;) =0

— t<1p: Holp;) = ele;)
assume [U(to)) = lpo) , (initial state) (4.37)
Ansatz [6(B) = D et )
J
= D aOly0) (4.38)
J
Insertion cf. eq. (4.38) into eq. (4.35):
o 3 (it + ) Hgg) = 3 e H|g) | ()]
J J
= ihie =AY el Tyl W (D)) (4.39)
J

‘coupled-channel’ eqs. (still exact if basis is complete)

If Wt>T)=0 — ¢(t >T) = const. and

[(erl¥)] = const. (4.40)

Pk = |Ck|2 2
t t>T

o1
— transition probabilities pg — @i
Ansatz for solution of eq. (4.39):
cr(t) = c,(co) (t) + )\c,(cl)(t) + )\20,(3) (t)+... (4.41)
Insertion into eq. (4.39) yields:
z‘h(é,(f’ Fae + 0% 4 )

= A3 (e A+ 2 e i (1))
J

(H

PR z'hc',(f) =0 — c,(f) (t) = const.
o 0) i (ep—e; -

Nt ik =3 e T W)

J

N ihd? = 3 ek o 1 (1))

J
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These equation can be solved successively:

A0 c,(co)(t) = const. = dgo (cf. eq. (4.37))  (4.42)
Mok = Z50€ﬁ(’“ ok W (1))

= eﬁ(ﬁ’“ O o [W (£)|00)

. t
1
= 0-4 ) = — / e O QW (H)ipo) dE - (4.43)
~— to
=0

(as A=0at t =t)

Accordingly:

A2 - (2) Z/ dt/ dt'e £en—ej)t 67" (ej—e0)t”
X (oW (") 07) (03 [W ()] 00) (4.44)
Remarks:

(a) 7Exakt” calculations beyond 1% order are in general impossible due
to infinite sums (cf. page 105)

(b) Interpretation

to t

1% order |©0) v, |pr)  ’direct transition’
W 144

24 order [eo) — @i — lew)

transition via 'virtual’ intermediate states (2 steps)

further reading (and more appropriate visualization’ in terms of generic
diagrams): [Mes], QM II, chap. 17

b) Discussion of 1°* order — Fermi’s Golden Rule (FGR)
To 1% order time-dependent perturbation theory we have (cf. eq. (4.42),

(4.43)):
.t
Ck<t) ~ 5k0 — %/ e”’“ot/Vko(t’) dt/ (445)
to
. €k — € / .. /
with Wry = Wp— Wy = 5 transition frequency

Vio = (orlVIgo) = Meor|Wleo)

'transition matrix element’
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Two useful (and related) examples:

(i) Sudden perturbation (somewhat academic)

Va
) 0 t<ty=
V(t) =
‘7 t>1p
"
k#0
O L
— Ck}(t) == _ﬁ/ elwkot ‘/’ko(t/> dt/
0
¥ t
ih 0
_ _<<P1%|L/ |0) (eiwkot_l)
k0
— transition probability
4| Vio|?
potl®) =l = L p(r (4.46)
sin? @eot o 2
fltwg) = ——2= = (4.47)
k0

Figure 4.1: y = f(t,wko)
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significant transitions occur only around wyy = 0 within width

_2n
Aw—t

One can consider limit ¢t — oo:

U

flt,ww) =2 5 0(wr — wo) (4.48)
oo 2wt
o Pk S ?\Vko|25(wk — wo)
(ii) Periodic perturbation
0 t<ty=0
V(t) = (4.49)

Be®t + Ble=it > ¢,

(note that V = V)

1/t
—  qt) = 7i/¢%“%dﬂdf
0

1

_ _l{ (x| Blgo) <ei(wk0+w)t _ 1)

hl wi+w

4 <90k|BT|§00> (ei(wkoﬂv)t _ 1)}

Wro — W

if 1> (le. Aw < w):

4| Bio|?
po_k(t) = | hl;0| {f(t,wko +w)+ f(t,wro — w)} (4.50)
— ?|Bk0| {5(wk—wo+w)+5(wk—wo—w)}

with By = (@r|Blo) and eq. (4.47)

‘resonances’ at wyg = tw (significant transitions occur only around
these resonance frequencies)

e W= —Ww <= ¢ =¢ —hw

€
l . " stimulated emission’ (of energy)
(O]

(only possible if ¢ is not the ground state)

&
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e W =+4w <= € =¢ + hw

T . (stimulated) absorbtion (of energy)
(O]

If one considers a quantum particle in a (weak) classical electromag-
netic (EM) field (eq. (2.52)) one can rewrite the Hamiltonian such
that it takes the form H(t) = Hy + V(t) with eq. (4.49) for V. One
can interpret the stimulated emission of the energy 'packet’ hw as the
emission of a photon with energy Aw and the absorption of Aw as the
absorption of a photon from the radiation field. The latter process
corresponds to the photoelectric effect (cf. page 2) if the final state is
a (true) continuum state (i.e., if an electron is ionized).

problems:

(i) po—r — 00 for ¢t - oo and wyy — Fw

(i) po_x(t) oscillates (is proportional to t* for wyy = tw)

< (i) and (ii) seem unphysical!

solution: consider transitions into continuum of final states
(it turns out that this is always justified for realistic
systems due to finite line-width of excited states)

g t+Ae

er+Ae
wre Prorar= [ ool d (451
« € —Ae

T

with p(eg): density of states (in interval [ex — A€; e + Ae])

)

One finds with eqgs. (4.48) - (4.50)

27t / I
Porsr = T / [ Brolplef) {8lwr — wo +w) + 8(wr — wo — w) pd(husf)

21
— 2 |Biol? t }
= {|Buolo(er) .

+ |Bk0|2,0(€k>t
hw

€g—€0=

define transition rate wo_;ax = %POH,%M
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— Fermi’s Golden Rule (FGR)

27
2
WO emim)oﬂ k;7Ak‘ WO absﬂ}lon k,Ak h |Bk0’ p(ek) Ek:€O:|IhLU

(4.52)

Note that wo_x ax is constant (i.e. does not depend on t).
For actual calculations three ingredients are needed (see App. A.2):

1) Explicit form of B
starting point: Hamiltonian for a particle in the EM field (eq.
(2.73))

2) Initial and final states to calculate By

3) Density of states p(ex)

Literature: [Schal, chap. 11; [BS], chap. IV

Note that the notion of photons for the interpretation of stimulated emission
and absorbtion has no significance as long as we are dealing with classical
EM fields. From a theoretical point of view photons enter the game only
if the EM field is ’quantized’ (— quantum electrodynamics (QED)). This
quantization does not change the final expressions for stimulated emission
and absorbtion, but it shows that there is another process which cannot be
described in our ’semiclassical’ framework: spontaneous emission, i.e., the
emission of a photon (and transition to a lower-lying state) without any
external EM field.

A relatively simple account on the quantization of the EM field can be
found, e.g., in: [Fri], chap. 2.4 or [?], chap. 1-2

‘higher formulations’ [Schal, chap. 14; [Mes], chap. 21 (and of course,
QED textbooks)

4.3 Angular momentum and spin

e We have introduced "orbital angular momentum’ of a particle by (eq. (3.81))
1=%xp
consequences: o ly, [, A hermitian
L, ] = ih )", el
e Turn the argument upside-down and define a "general” angular momentum
operator J as a vector operator:

~

j = (jxa Jy7 jz)
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with hermitian components which satisfy
iy Jj) = iR eignedi (4.53)
k
All properties of angular momentum in QM follow from this definition.

4.3.1 Angular momentum algebra

Definition: ) ) R )
Y=J+J+J: (4.54)
— [J2J]=0, (i=1,2,3) (4.55)
proof:
2071 172, 72 7
[J7 Z] - [x+Jy7JZ]
- [Jxa Jz] T + Jx[Jx7 Jz] + [Jya Jz]Jy + Jy[Jyv JZ]
R~ » IEN A A
= ;{ ot dod, = Jod, — T Y = 0 ete
AZ
— 3
\\ |
\\ i I — one component can be measured si-
\\ i ’ multaneously with the absolute square.
v - Usually, one picks the z-component.
X

e Eigenvalue problems of J2, J,:

j2|90jm> = )‘j|90jm> (456)
Jz|§0jm> = /Lm“pjm) (457)

We abbreviate the common eigenstates by their quantum numbers:
(ojm) — Ldm) . ({Gmli'm') = 65 0mm )
What can we say about the eigenvalues A;, fi,,?

< (W] J2)p) (JaplJapy >0, (Y ]¢))

Ji=J1
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in particular:
(jm|J?jm) =|A; =0 (4.58)
(Gml T2+ Jylgm) = (Gml3* = JZ|jm)
= N —Hp 20
— — )\j S Hm S \/ )\j (459)

(i.e. spectrum of J, is bounded by eigenvalues of J2!)

define ’ladder operators’ (cf. creation and annihilation operators in chap.

4.1)

Some useful relations

JoJ_
[']27 Jﬂ:]

let’s play with them:

—  Jiljm) = aljm)

with jAjm’) = (pm + R)|gm’)

. (4.6
Jodilim) =

j+ — Ax—f—Z.Ay
J = J,—iJ,

- Jlo= g, Jt =
+ - - +

(easy to prove):

+hJ,
+nhJ!
I T2 —nJ, \,
[Jy,J ] = 2hJ,
P -Jrynt.
0

3) o N
(Jod, + hJ)|jm)

= (ﬂm+h)j+’]m>

J|jm) is another

(4.60)
(4.61)
(4.62)

(4.63)
(4.64)

(4.65)

(4.68)

cigenvector of J, with

Norm of the eigenvector .J, |jm):

[ jm)||”

T (4.65)
(JmlJ_Jy|jm) ~=

Nj = iy = Pyt = af?

eigenvalue raised by A

(jm|J* — J2 — hJ.|jm)
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HQ —

There is one case where |[J,|jm)||> = 0 ; namely when

)‘j _H?n _h,um =0
= Aj = pm(pm + h)

On the other hand we know that the spectrum of J, is bounded, i.e., there
is a smallest and a largest eigenvalue (fmin, fhmaz ). In particular, the eigen-
value eq.

jz |jmmax> = KUmax |jmmaa:>

exists. Let’s apply j+ t0 [JMimaz):
— j+|jmmax> =7

— it cannot raise eigenvalue by h as [, is already the largest eigenvalue.
The only way out is
Jilimimaz) =0

which implies (see above)

)\j = Mmam(,umax + h) (469>

We can play the same game with J_:

soa (4.63) .
— J_Jlgm) =" (pm — R)J_|jm)
a . . N . (4.66)
[J_lim)||? = (mlJoJ_|im) “=" A — po, 4 R

There is a smallest eigenvalue (i,

- j*‘]mmm> =0 ij’jmmzn>”2:o

From eq. (4.69) and (4.70) it follows that

Mmaz = —Hmin (471)
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We can move through the spectrum of J, by applying ladder operators,
e.g., we can start at fi;,q, and move towards the lower boundary i, by:

T ey 2 (T~ 0 i)
= (Nmam - nh) jﬁ‘]mmaﬁ
- 3 ng € NO : Hmaz — nOh = HMUmin = —MHmaz (472)

(i.e. we reach fi,q, after ng steps; note that we cannot miss it due to eq.

(4.70))

— spectrum of J, is quantized!

(@ Hmaz = %h = hj = —Hlmin (473>
1 .3
ith j7=0,=,1,=,.
W1 ] 9 27 Y 27
o (470) = N = R(+1) (474)
and fm = hm,  (m=—j ..j)

Summary: angular momentum spectrum is discrete (quantized):

A

J2|jm) = Bj(j + 1)|jm)

J.|jm) = hm|jm) (4.75)
1.3
= 0,=,1,—,...
j 727 727
m =

:j7 _.] + 17"'7j - ]-7.1

(27 + 1) values — spectrum of J? is
(25 + 1)—fold degenerate

— ladder operators

Jelgm) = w50+ 1) —m(m + 1)]jm + 1) (4.76)
Jljm) = /G +1) —m(m —1)[jm—1)
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4.3.2 Orbital angular momentum

(cf. chap. 3.3.5) R
l=rxp
is an angular momentum operator

e One can show (see below) that eigenvalues are integer numbers:

lim) = R +1)|im)

Lllm) = mhllm)
1 = 0, 1, 2, 3,
spectroscopic notation s p d f

e cigenvalue problem in coordinate space
Loy (1) = (x|l |im) = ifi(yds — 20, )b (v, y, 2)

e in spherical coordinates!

. h !
Lwdim(r) = —04um(r,0,0) = mhihm(r,0,¢) (4.78)
— 77Z)lm(r7 8) @) = XZ<T7 0)61'77‘&(,0 (479)
require that ¥y, (r,0, ¢ + 27) = Uy, (r,0,9) = m integer!
correspondingly one finds after some calculation

h? 0 0 h? 02
}¢lm

12 _ R -y -
1 Ui (1,0, 0) = { sno26 " 055) sinZ 0 92

= B+ D (4.80)

this partial differential equation is solved by the so-called

Spherical harmonics Y}, (6, )

dr (I+m)!

m (_)m 2\ 2 dl+m
o) = " 0= ) e

_ | .
Vinlh.p) = \/2”1 B (cos ) (1.81)

(2% — 1) (4.82)

8
|

rsinf cos ¢
y = rsinfsingp

z = rcosf
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"associated Legendre polynomials’

R+ )Y, ), 1=0,1,2,...

ie.: 12Y;,,,(6, )
0 mhY,, (0, ¢) , m=—1,..,1

(cf. eq. (4.79), (4.80))  1.Yin(0, )

— Y}, form a complete set of orthonormal functions (quadratically inte-
grable) on unit sphere;

Le. f(‘97 90) = Z CleEm(07 90) s v f(07 SO)
lm
and \/Yzfm/(Q)Yzm(Q) dQ) = 5ll’5mm’ (Wlth Q= (9, QD))
1
YVon = ——
00 i
3
Vin — il
10 = cos 6
Yi = — i sin fe'?
s
Yio, = i sin fe %
8

More details can be found, e.g., in: [Kirb], chap. 2.2.3; [Jac|, chap. 3.5, 3.6; [Mes]
QM I, Appendix B.4; [Lin]

(note that some authors use slightly different definitions of Y}, or P™ )

4.3.3 Spin

What about half-integer angular momenta? Are they only acceptable mathematical
solutions of the angular momentum eigenvalue problem or do they exist in na-
ture? Let’s consider the mathematics for the simplest case first and answer the
question about its physical relevance afterwards!

a) Angular momentum algebra for j = s = %

e cigenvalue equations (cf. eqs. (4.75)):

1 1 3R 1 1

82|smy) = &%=, o) = 2|5, 4= 4,
1 1 h1 1

Slsmy) = &=, Eo) =to|5,£2) (4.84)

2 2
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— two orthonormal spin functions exist:

1 1

|§,+§> = | 7) "spin up”

1 1

|§,—§) = | |)  "spin down”

s {\ ™ l)} is orthonormal basis in this two-dimensional space
A general spin function |y) can be written as
X)=al T)+8] 1) (4.85)

e Consider ladder operators (cf. eq. (4.76), (4.77))

5ils,ms) = hy/s(s+1) —my(mg+1) |s,ms+1)
5_|s,ms) = hy/s(s+1)—ms(ms—1)|s,ms—1)

explicitly:
Sel 1) = 5[ 1) =0 (4.86)
NI TN (4.87)
"spin — flips”
s 1) = nl L)y /S (4.88)
e Matrix representation (2 x 2)
Vectors:
I — (é)
Iy — ((1’)
(4.85) !
o 2 (4)
Operators:
’ == (LISl 1) (L3 1)
(483),480) h (1 0
=S < - (4.89)
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correspondingly one finds from eqs. (4.83), (4.84) and (4.86) - (4.88):
(ands =3(s, +5 ) s =35(s, —5))

s = %#(é (1)) (4.90)
s = g(? é) (4.91)
5, = g(? _OZ) (4.92)

Definition: Pauli’s spin matrices

(01 (0 —i (10
Z:7\V10) &= \i o) Z7\0 -1

One can show that every 2 x 2 matrix can be represented as a linear

combinationof ¢ , ¢ , ¢ and 1= Lo :
=z’ =y’ =z = 0 1

b) Magnetic moments and spin hypothesis

Classical orbital angular momentum (of a charged particle) gives rise to a
magnetic moment p.

poox 1 (4.93)
Naive argument: consider charge ¢ with circular motion:

' _ w2y, = TV 4
1F = 5 e, = 2eL— 1

current X area'’

I’l’:

Better argument: [Kirb], chap. 3.3.3

— energy in external magnetic field

W=-u-B (4.94)
— force F=-VW = [y Oy By (4.95)
,uzasz

— deflection in inhomogeneous field!

— One can measure magnetic moment via deflection of (charged) particle
in inhomogeneous B-field
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— Stern-Gerlach experiment (1922)

z

Ag atom
beam L4 observation:
> two distinct 'spots’
source WY L (where Ag atoms arrive)
inhonmogenous
screen
Interpretation:

e quantize magnetic moment eq. (4.93) according to

N : q
e measure z-component of g — l.e. eigenvalues of /i,
(proportional to eigenvalues of [, )

—  u, = ahm, m=—I,..,1 (4.97)

— the quantization of L, explains why only distinct maxima are found
instead of a continuous distribution. The number of spots must cor-
respond to the number of possible eigenvalues of fi,.

= Stern-Gerlach experiment can be understood if one assumes the
existence of an intrinsic angular momentum § (of an electron) with
quantum numbers

1 1 1
S=g5. Ms=—5 5, (spin doublet)

(spin hypothesis by Goudsmit + Uhlenbeek, 1925)

This intrinsic angular momentum - the spin - is a new degree of free-
dom of a quantum particle without classical analogy. It is, however,
connected with a magnetic moment (otherwise it would not be observ-
able by Stern-Gerlach apparatus)

fry = 08 (4.98)

One finds that constant (3 is different from a = —3% for the orbital
angular motion (by a factor of 2; i.e. 3 = —= for an electron). This
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factor - as well as the Spin % structure itself - can be derived with-

out any ad hoc assumption or hand-waving arguments from the Dirac
equation - the relativistic equation of motion for an electron (cf. chap-
ter 5), which is why some authors consider spin a relativistic effect.

Note that Stern-Gerlach experiment was also performed with hydrogen
atoms (i.e., one-electron systems) with the same result.

Further remarks:

e Spin hypothesis explains also the splitting of the spectral lines (of
an atom) in an external (homogeneous) magnetic field (— Zeeman
effect)

e Not only electrons carry spin. In fact, quantum particles with inte-
ger and half-integer spin quantum numbers exist (— spin-statistics
theorem, chap. 3.5.5¢).

¢) Wave functions with spin

How to describe a quantum particle that carries spin and that has position
(momentum) degrees of freedom?

Spin is independent of 'motion’ of the particle, i.e.,
[f(2,9:),9(8)] = 0

(for all operator functions)

— state is a direct product state

v) = & & (4.99)

orbital motion spin

v(r) = (@[w) = @)(al 1)+5 D)
- (5) = (U6 410
— two-component ”spinor” wave function

Note that (U|¥) = (x|x)(¥]) =1 x 1 =1
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Consider a special decomposition:
ey = [ ey o

- [ e we) (V) #
= [ (P +1wP) ¢ = [ o)
T T 7

spin — densities total density

Expectation values of spin operators s:

(8) = (¥[s5]v)
= [(ww aw) (o) () e
/

(S(r)) d°r

(10
e.g. 5.5 0 1

h
= (S.0) = F{ IO — ()] (4.101)
"net” spin at position r (’spin-excess’)

d) Wave equation for particles with spin: Pauli equation

How to incorporate spin-dependent terms in Schrodinger equation?

e starting point: Hamiltonian for particle in EM field (eq. (2.52))

e assume that particle (electron with q= -e) has spin 3 < magnetic
moment jis (eq. (4.98) < energy Wy (eq. (4.94))

e add this energy

W, = —p,-B = ups-B (4.102)
. Pauli matrices
h
with  pup = 26— "Bohr magneton’ (4.103)
m

to Hamiltonian which then acts on spinor wave functions:
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- ihd, ¥ = HU (4.104)
O (hv+ A)Q— 6+ upd - B (4.105)
T oom\i e «oThE '
Yy(r) ) . .

U = —— Pauli equation
(wm b

Remarks:

e Pauli equation describes Zeeman effect

e Spin-orbit coupling, i.e., the interaction of the spin of a bound electron
with the magnetic field that originates from the relative motion of the
nucleus can also be included in Pauli equation

e Pauli equation can be derived from Dirac equation (chapter 5) for
v

4.3.4 Addition of angular momenta
Consider sum of angular momentum operators
J=J,+7J, (4.106)

— J is also angular momentum operator, i.e., has hermitian components which

fulfill eqs. (4.56), (4.57).

Examples:

total angular momentum of a particle
total orbital angular momentum of N —particle system
;—15i total spin of N—particle system

— all such angular momentum operators share the characteristic spectrum (eq.

(4.75))

Question: How are quantum numbers and eigenvectors of J?, J, connected with
those of J2, Ji,, J2, Jo.?
— angular momentum coupling

Literature: [Mes|, QM II, chap. 13.5; [Lin]; [CT], chap. 10
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4.4 The hydrogen atom (and extensions)

Two-body problem for nucleus (n) and electron (e): (cf. chap. 2.2.4)

-2 -2 2
v P p Ze
H=-—-" < — 4.107
2m,, + 2m,.  Ameglr, — 1y ( )
my, = 1836m. ; me~9.1 x 107! kg
4.4.1 Separation of the two-body problem
e Classical coordinate transformation (cf. [Kiral, chap. 5.1.1)
(re;Pe; T, Pn) —  (R,P,r,p)
definition : M = m.+m, =~ m,
MeMy
— —_— " me
a Me + My,
R — MnLn+Mele AT,
center — of — mass
. ti
P:pe+pn:MR ~ Pn HHOHOR
T= e In relative
p— i — mnpe]\}mepn motion
e QM transformation analogously
(Fe:PesBnsBn)  — (R, PE,D) (4.108)
insertion in eq. (4.107) yields
. P2 p? —Ze?
A= —+2 vey, (V: ) 4109
RETRRAL ") = Ter (4.109)
= ]:ICM + Flrel

eq. (4.109) is the Hamiltonian of a non-interacting two-(quasi-)particle
system < can be separated into one-particle problems (cf. chap. 3.5.5¢):

Ansatz : W) = |Perrprer) (4.110)

(i.e. U(r,R) = ®op(R)pre(r) in coordinate space)
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— Schrodinger eqs.

Hem|®ent) = Eeu|®Pon) (4.111)
Hrel’@rel> = Erell¢rel> (4112)
and HY) = (Eow + Eva)|) (4.113)

SE (4.111) can be solved without difficulty:

— Doy (R) = AcER

free — particle
motion

K=1p

_ R?K?
ECM — oM

eq. (4.112) can also be solved analytically, but before we sketch the solution
we consider some general properties/features of the quantum central-field
(V(r) = V(r)) problem.

4.4.2 The QM central-field problem

52
Consider H,e = 5——1—‘/(7’) (4.114)
v

One can show that FIrel is invariant with respect to any rotation R (cf. chap.
3.5.4a), i.e.

[I:Irelu R] = 0
= [Had]=0 (4.115)
. conservation of angular momentum!

In particular, the operators [:[rela 12, [, form a complete set of compatible operators
(cf. page 72), i.e.,

~

[HrelviQ] = [[A{relaiz] - [12, iz] =0 (4116)

— they have a common set of eigenstates. The eigenstates of 12, I, are the spher-
ical harmonics Y}, (4.81);

<  ansatz Ora(r) = Ri(1)Yim (6, ¢) (4.117)

Insertion into (4.112) for Hamiltonian (4.114) yields radial SE:

{%+%+V(T)_E}RM ~0 (4.118)
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h2
with 151% = —_23r<7’28r>
r
12
and operator identity p> = pi+ ]

(can be proven in spherical coordinates in coordinate space)

useful definition : yi(r) = rRy(r) (4.119)
I )+ - U() - l(l;; 1>] W(r) =0 (4.120)

The radial eq. (4.120) is very similar to the 1D-SE (2.86). There are, however,
two important differences:

(i) ’Effective’ potential in eq. (4.120)
I(1+1)

2
. "angular momentum barrier”

Ufi(ry = U@r)+

(cf. classical central-field problem)

(ii) boundary conditions

o [ora(m)* = [Ri(r)P|Yim (0, 9)]* < 00

in particular for r =0
— 'regularity condition’
y(0) =0 (4.121)

e — O

(a) £ <0 (bound spectrum)

JECIR / PR dr [ Yin(6, ) a2
= /0 yP(r) dr < oo

(quadratically integrable solutions required)

T—00

— y(r) — 0 (boundary condition)

(b) E > 0 (continuous spectrum)
— oscillatory solutions y;(r) for r — oo
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4.4.3 Solution of the Coulomb problem (£ < 0)

note: for E > 0 the solution leads to Rutherford’s scattering formula
(which is identical in classical mechanics and QM)

definition : K2 = —e >0
dmegh?
o = — ~053-10°m
e
for  pu = m., a = ay is the 'Bohr radius’

— radial eq. (4.120):

2+ 2z,
—_— = —_— = =0 4.122
(dr2 72 + ar K ui(r) ( )
transformation: r = 2kr
d? 1 d?
dr?  4k2 dr?
d I(l+1) a1

asymptotic solutions:

l. + —

(g;—iymwzo

— y(z) = Ae 2 + Be?

because of y;(r — 00) =0 — B=0

— (dd—; - W; 1)).%(96) =0

A
o ule) =5+ B

2. x —0

because of y(0) =0 — A=0

This consideration motivates the following ansatz:

yi(r) = 2*e 2 (x) (4.124)



132 Applications of the Theory

Insertion into eq. (4.123) yields new differential eq. for v;(z):
s md—2+(2l+2—x)i—(l—l—1—)\) u(z) =0 (4.125)
dx? dx e '

The quadratically integrable solution of (4.125) ("Kummer’s’ or 'Laplace’s’ dif-
ferential eq.) are known; they are the associated Laguerre polynomials:

L];(:U) _ Z(_)j [(p‘Fk)!} >

2= G+ )

more specifically:
o n=n—101—1>0
v(x) = Ln—l—l(x) ) ( = n—-1>1

with n=>A=—, n=12,.. (4.126)
Fn

The detailed solution shows that the integrability of the solutions requires \ = %
to be positive, integer numbers — quantization of x (i.e. quantization of the
energy)?

—  yulr) = Ayrte L2 (2k,7)

and properly normalized wave functions take the form

n—1—1)!
prale) = puin(e) = LI Dhteiie g
[(n+ D]
x rle™ T L2 (26,7) Vi (0, ¢) (4.127)
n>0
= Ru(r)Ym(0,¢) , [<n-1
1 <m<]
quantization condition (4.126) leads to:
RZ?
B, = ——5, n=12. (4.128)
h2
R = 5 ~ 136V "Rydberg” constant (4.129)
2ua

20One can find the quadratically integrable solutions of (4.125) explicitly by using the ansatz
v(z) =Y, bla’ and by taking the boundary (and regularity) conditions into account.
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The lowest-lying hydrogen eigenfunctions (‘orbitals’)

n Il m n=n—1-1 @nlm(r) —-F,
10 0 0 Is %(g) e RZ?
2 0 0 1 2% 4m<§>§< )e z nz?
210 0 2po 4\}g<§)< )e % cosf RTZQ
2 1 =1 0 2p+1 ﬁ;(%) <%>e % sin fe*iv RTZQ
E A S p d
O__
— 3l
! 35 3p.3p.3p, 3d,3d,3d 3d 3d,
n=2—
2s  2p, 2p, 2p,
=1t 75

Figure 4.2: Energy spectrum of the Schrédinger-Coulomb problem. Note that
Coulomb potential supports infinitely many bound states (E,, —> 0).

Degeneracy of energies (depend only on n)

given n [=0,1,...,n—1
given [ m=—Il,..,1

n—1
s Z2l+1
=0

— each energy level E,, is n?-fold degenerate. Note that all central-field prob-
lems share (2[ 4 1)-fold degeneracy originating from rotational invariance. The
fact that energies do not depend on n,., [ separately, but only on n =n, +1+1
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is specific to the Coulomb problem (one denotes n as the ’principal’ quantum
number, and n, as the 'radial’ quantum number which determines the number of

nodes in the radial wave functions).
Often one considers a radial probability density defined by

pu(r) = /'Yim |2 dS2
= 32,(r) (4.130)

pni(1) dr: probability to find electron at radial distance [r,r + dr]

1s 2s 2p

Figure 4.3: Radial hydrogen 1s, 2s, 2p wave functions (blue) and probability
densities (red)

3s 3p 3d

Figure 4.4: Radial hydrogen 3s, 3p, 3d wave functions (blue) and probability
densities (red)



4.4 The hydrogen atom 135

4.4.4 Assorted remarks

a)

b)

More (mathematical) details about the Coulomb problem can be found in
any QM textbook!

Hydrogen-like ions

We have solved not only the (Schrédinger) hydrogen problem (Z = 1), but
also the bound-state problems of all one-electron atomic ions (e.g. He™,
Li?T,...) for Z =2,3, ...

Exotic systems

. are also solved

(a) positronium (ete™)

(b) myonium (p*e™)

(¢) myonic atom (pu~)
In these cases one has to take care of the different masses compared to the
hydrogen problem (p*e™); (m, ~ 207 m.)
Corrections

The spectrum determined by eq. (4.128) is the exact solution of the Schrodinger-
Coulomb problem, but not exactly what one sees experimentally. The rea-
son is that the Schrodinger equation is not the ultimate answer, e.g., it has

to be modified to meet the requirements of the theory of special relativity.
Therefore, corrections show up (cf. chapter 5), which lead to a (partial)
lifting of the degeneracy.

Many-electron atoms
. cannot be solved analytically!

One approach to approximate solutions: stationary perturbation theory.

Let’s consider the He atom (2 electrons) with 'fixed’ nucleus (i.e. m, — 00).

. h2 h2 Z 2 Z 2 2
LN e Ze N e
2m 2m Amegry  Amegry  Ameg|r; — 1y
= H, + Vi (4.131)

e 0" order approximation: \712 =0

< Hy is the non-interacting Hamiltonian.
Note that we have to take care about the Pauli principle because we
deal with a many-particle fermionic system.
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The antisymmetric ground-state wave function reads:

1

S(Th=11m) @)

N J/

_ C+ C+
Uy = @i (r)ehs (r2)

o
""spin singlet”’

L.e., we have filled the ”K”-shell (n = 1) with 2 electrons with opposite
spin such that ¥, be antisymmetric.

Since the Hamiltonian (4.131) does not include spin-dependent inter-
actions only the spatial part of W is needed to determine the ground-
state energy (from eq. (4.128)):

EY = —8R = —1088¢V
E5 = = —79eV

This is obviously a poor approximation

1%t order approximation

We can improve the calculation by consideration of the first-order cor-
rection according to eq. (4.28):

BN = (W[ Vi Wo)

e? 1,2 6_25(:1 6_25(;2
e fenl B
47eg T2 \ay lr; — 1o
_ _ 5Ze?
— = S

for Z = 2 we obtain £V =34 eV, and
EMN =EY + EW = —748 eV

which is a considerable improvement!

Better starting point for 1% order perturbation theory

H = |Hy+veps(r) + Ueff(r2)} + [Vlz — Vess(r1) — Ueff(ﬁ)]
= ﬁ(l) + ‘71/2

idea: subtract a 'mean-field potential’ v.ss from the electron-electron
repulsion Vjs, solve modified Hj-problem, and calculate (¥)|V/,|W4) as
the 1% order correction. As some parts of the electron-electron inter-
action are now included in fl(’), \71’2 should be a smaller perturbation
than 1712, and the 1°¢ order result should be more accurate.
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The systematic consideration of this idea leads to the so-called ’inde-
pendent particle model’ (IPM), and, in particular, to the Hartree-Fock
method (one has to find reasonable mean-field potentials v.s, and in
Hartree-Fock theory on uses the variational principle to find the ’best’
one).

Within the IPM the main characteristics of the (shell-structure of)
atoms (and the periodic table) can be understood.

e Another road that can be taken to find better approximations for Ejy
for a many-electron atom is to use the variational principle to construct
approximate two-electron wave functions (beyond IPM models). This
has been very successful for small atoms, but is computationally costly
for true rr?ny—electron atoms/systems.

(the most accurate solutions to date - e.g. for He - are obtained along
these lines)

f) Bound atoms — molecules

The simplest idea of a molecule is one with fixed nuclei. Then, we have to
solve the SE for the electrons in a multiple-center Coulomb potential. The
more complicated geometry makes this more challenging, but such calcula-
tions can be done, e.g., on the level of the IPM (Hartree Fock), and many
aspects of the structure of molecules (e.g., the existence of stable bonds)
can be understood in this fashion. More quantitative/complete calculations
require refinements, i.e., electronic structure calculations beyond the IPM,
and an account of the nuclear motion.

A (qualitive) discussion of molecules and chemical bonds can be found in
[Bloc], chap. 14.
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Chapter 5

Brief introduction into
relativistic Quantum Mechanics

Literature: [BD]; [BS]; [Schb], II; [Jel], II and [Scha], chap. 13. The latter two

sources provide condensed accounts on relativistic Quantum Mechanics.

5.1 Klein-Gordon equation

5.1.1 Formulation

e Relativistic energy-momentum relation (classical)

E? = p*c® + mict (5.1)
e 'Quantization’ : E — iho,
h
(correspondence rules) p — =V
i

— E? — —h?%9,
e (free) wave equation (Klein-Gordon equation (KGE))
—R20pt(r,t) = —R*AY(r,t) + micty(r,t) (5.2)

first "derived’ by Schrédinger in winter 1925/26

5.1.2 Discussion
1. KGE is invariant under Lorentz transformations

2. Time development is determined via initial conditions (%), %—Qf(to) since

KGE is (partial) differential eq. of second order in ¢ (and in r).

139
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Brief introduction into relativistic Quantum Mechanics

3. Continuity equation?

— one can derive O;p + divj =0 (cf. eq. (2.62)

with j = %(mvw* —*V1) (as usual; cf. eq. (2.62))
ih

2mc?

but - p = (Db — VD) (5.3)

problem: p(rt) 20 (i.e. not positive definite)
— probabilistic interpretation is not possible (or at least not obvious)

. Ansatz:
U(r,t) = Aellkr—wb
— insertion in eq. (5.2) yields together with de Broglie relations
E=hw=+/p>+mic*s 0 (5.4)
Meaning of E < 0 solution?
. Add Coulomb potential to free KGE and solve it (in spherical coordinates)

— yields wrong ’fine structure’ of hydrogen spectrum (i.e. contradicts
experimental findings)

In 1934 KGE was recognized as correct wave equation for spin-0 particles
(mesons).

5.2 Dirac equation

In 1928, Dirac found a new wave equation which is suitable for electrons
(spin 3-particles): the Dirac equation (DE)

5.2.1 Construction of the free DE

Ansatz : o,V = HpW (5.5)

i.e. stick to the form of the TDSE; a partial differential eq. of 1%¢ order in ¢ such
that W(ty) is the only initial condition (see postulate 3.3.6)

Requirements:

1. DE must be compatible with energy-momentum relation (5.1)

2. DE must be Lorentz-covariant

3. Continuity equation with probabilistic interpretation
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4. Stick to quantization rules!

Dirac recognized that these requirements cannot be satisfied by a single scalar
equation, but by a matrix equation for a spinor wave function with N components.

A

Ansatz : Hp = cap+ Pmyc? (5.6)
B
= C— E oziﬁxi+ﬁmoc2
i
i=1

with N x N matrices ag, oy, o, 8 and spinor wave function

¢1 (I‘, t)
U= : as solution of (5.5)

Yy (r,t)

— requirement (1) is met if each component 1); solves KGE (5.2)
— iterate eq. (5.5):

ihdy(ihd, V) = Hp(HpD)

s  —h20pU = (? Z Oy, + ﬁmocz) (Cl—h Z O, + ﬁm002>\lf
J k

— { hc 220@0%8 Oy, + hmocgz (B + Ba;) 0y, + B°mic? }\IJ

_ e Z U LU U P+ e’ 7 2 (058 + Ba;)0., ¥

T;jTh
J

comparison with KGE yields conditions for «;, 5:

a0 + oo = 2(5]k
Oﬂjﬂ + ﬁOéj = 0 .
=3 =1 (5.9)

Further conditions and consequences:

e «;, 3 hermitian (because Hp shall be hermitian)
— real eigenvalues

59 .
—> eigenvalues are +1

e From (5.7)-(5.9) it follows that «;, 5 are ’traceless’, i.e.
tr aj =tr f =0

'The trace of a matrix A is defined as the sum over the diagonal elements. The trace does
not change when A is diagonalized. Hence tr A =} eigenvalues.



142 Brief introduction into relativistic Quantum Mechanics

e Together with eigenvalues +1 this implies that dimension N is even
e N = 2 is too small as there are only three (but not 4) ’anti-commuting’
(egs. (5.7) and (5.8)) matrices for N = 2 (the Pauli matrices)
o try N =4
e derive explicit representations from these conditions
1 0
0 ag; . 1
0 —1
with Pauli matrices o;
— free DE takes the form
(G0 (0
ihoy va | (ca- P + Bmoc?) V2 (5.11)
V3 V3
(o (0N

and one can derive a meaningful continuity equation:

4
with p o= WU = g (r,t)(r, )
i=1
and j = cUlal
U
Y4

5.2.2 Solutions of the free DE

Ansatz : P;(r,t) = uje’ et j=1,..,4
after some calculation one finds:

e there are 4 linear independent solutions.

Two correspond to E = +,/p?c+mic*
and two to E = —\/p? +m3c
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e they have the form (£ > 0):

1 0
ORI
X1 X1
X2 X3

(and similarly for £ < 0)

vk
0

with X1, X2, X1, X2 — 0 : ’small components’

u® is interpreted as ’spin up’
u? is interpreted as ’spin down’ solution

| /e 3
2
m,c

511 keV for e~

0
5 Aole
-m,Cc

Q

Dirac sea

Figure 5.1: Energy spectrum

Dirac’s interpretation: ("hole theory’)

In the vacuum all negative energy states (in the Dirac sea) are occupied.
Hence, if electrons are present at £ > moc? they cannot "fall down” into the
Dirac sea because of the Pauli principle.

On the other hand, one can imagine that it is possible to excite one electron
from the Dirac sea to E > moc?. Such an excitation corresponds to a hole in
the Dirac sea, which can be interpreted as the presence of a positively charged
particle - an anti-particle (i.e. a positron). This process - electron-positron pair
creation - has indeed been observed, and also the reversed process - destruction of
electron-positron pairs and y-ray emission (the latter to balance the total energy).

In fact, the first experimental detection of positrons in 1932 was considered a
strong proof of Dirac’s theory.
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5.2.3 Electromagnetic potentials

‘minimal coupling prescription’ (cf. chap. 2.2.3)

5.11

2 e, = {ca(p —gA) + g6+ ﬁmoc2}\IJ

indeed, one can show that eq. (5.12) is Lorentz-covariant

5.2.4 Relativistic hydrogen atom
Consider eq. (5.12) with A =0 and

Ze?
49 = _47T607“
Ansatz : \Il(r7 t) = \y(r)e—%Et

(cf. eq. (2.84))

ields A A A 2
yeld {cap + Bmgc® — c }\I/(r) = EV(r)
dmegr

can be solved analytically!

Result for bound spectrum (— fine structure)
— quantized energy levels:

(Za)?
(n —4;)?

Enj = myC

1\2 13
N T -
J j+ \/]+2 (O[), J 2a27

(7 can be identified as quantum number of total angular momentum)

hooooe 1
meay  4Amephc 137

o =

fine-structure constant’
Expansion cf. eq. (5.15) in powers of Za < 1:

(Za)? (Za)4< 1 3>1L...]

2
1— — _
j—i—% 4dn

E,; = mgyc
" 2n? 2n3

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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15t term: rest energy

2" term: non-relativistic binding energy (4.128)
3% term: lowest order relativistic corrections — fine structure splitting

of energy levels

A
E =m,c?
n=3-4
3ds),
3ps; 3dy,
n=2-4 S 3812 3P
—2py,
28, 2pin
. s /1.8 x 10* eV
~~~~~~~~ Is)),
Schrédinger Dirac

Figure 5.2: Energy spectrum of the Coulomb problem

Further corrections of energy spectrum:

145

e hyperfine structure (coupling of magnetic moments of electrons + nuclei)

~ 1076 eV

e QED effects ("Lamb shift’)
~107% eV

Instead of solving egs. (5.15)-(5.17) exactly and subsequently expanding the
solutions one can consider a 'weakly relativistic’ limit of the stationary DE (5.15)
and solve it in 1% order perturbation theory. This procedure yields the result
(5.18) once again, but together with some interpretations concerning the nature

of the relativistic corrections.

One obtains
A vLe

HD ~ ﬁSchrédinger—{'[A{l +If[2 +H3
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with

le

P
8m3c?

‘'mass-velocity’” term — corresponds to relativistic correction of non-relativistic

kinetic energy

. Ze? 1 .
i, = ETCH)

8megm2c?
‘spin-orbit-coupling’” — a natural consequence of relativistic electron dynamics!

(cf. chap. 4.3.3)

~ h? Ze2h?

H; = WAVCoulomb(r) 5(1‘)

8m?2c?e
'Darwin term’ — "Zitterbewegung’

(its appearance is connected with existence of negative energy solutions)
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Some details

A.1 Details on the splitting at the potential well

eik'lx _|_ Be—’ik’lx I
Y(x) = Ceh2® + Dethee II
Eeife 117
ikleiklm — Z‘leeiiklx I

@D,(I) = ik2Ceik2$ — inge_““?w II

ik Eett1® 177

Sl

matching conditions at z = —

_ikjL ik L ikgL ikoL

Y: | e 2 +Bez =Ce 5 + De 3

(V. kle—g — leey = sze‘% - ngeikgL kil
L 2 =01+ D) 4D - D) et
k’l kl 2
1 @ i(klflm)[/ i @ i(1614*162)[/ _ *
= C(1+ —)ez +D(1 = =)e> =1 ()
2 ]{51 kl

147
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matching conditions at = = —i—%:

(I Ce™3 4 D% = B+
V| kyCe™ — kyDe 3 =k Be 3 | i
L e =B+ ﬁ)e# E 1 ikt
ko 2
1 ki i
_ 4 R1\ i (ky—ky)L
<= C = 2E(1+ k2)62 1= (%)
1 ki i
_ _ 1 R\ ik ko)L
— D= 2E(1 k2)62 1+k2 (%)
Insert (**) and (***) into (*):
1cE ]{1 kg . E kl k'Z i
1 = _{_ 1 (1 va i(k1—k2)L (1 — 22)(1 = = l(k‘l-i-k‘g)L}
H{FA+ s ettt 2 - - e
E 'le{ kv | ke ir ki ko gr
— . 7 2 - _“ 1R2 2 _ 74 1K2 }
7¢ ( +k2+k1)e + ( " k:1>
ik1L i kl k'2 .
= FEe { cos(koL) — §<k_ + k_) sm(kQL)}
2 1
. 464le
cos(kaoL) — %(Z—; + Z—f) sin(ko L)
1
T =|Ef? = -
cos(koL) + i(’;—; n ',;—) sin®(kyL)
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A.2 Remarks on photoabsorption

Starting point for the discussion of the interaction of a hydrogen atom (chap.

4.4) and the EM-field

Ze?
4regr

A

H =

1
— (D A2 — e —
5 (P eA)” —ed
-2 702 2
D +L<A.A+A.p)+e_A2_e¢

2m  4dmegr  2m 2m |
D e — N
Ho V(t)

monochromatic, sourcefree electromagnetic field can be characterized by vector
potential in Coulomb gauge
A(rt) = n(Ageren o agemiteman) (g =
V-A = 0= (nlk)
¢ =0

w
C

)

— H = Hy+V()
- he
V(t = —(V-A+A-V
(1) S (V-A+AV)
he e A
= —A(r,t)-V = —A-p (Coulomb gauge!)
mi m

e . e .
_ EAoez(kr—wt)n . f) + EASe—z(kr—wt)n . f)

) e . R . e . R .
= (_Agefzkrn . p> ezwt + (_Aoezkrn . p)@ iwt
m m

— B eiwt + BT efiwt
b T2 e’ 2 ik 2
abs IKIT ~

Pk o |Bjol® = w\Ao\ [ (prle™ n - Do)

transition matrix element

ikrn . f’|§00>

Tro = (pxle
dipole approximation

6ikr _ e%z

~ 1

, justified for k < ag’

— dipole-velocity form of the transition matrix element

Tlg)ip = (rn - Pleo)
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use commutation relation p = 5*[Ho, T

i m
— Tp" = 5 — (k| Hon - £ — n - £Hy|pp)
= 277::1 (ex — €0)(pr|n - T|o) dipole — length form

= imw(pkn - £lgpo)
H, is a central-field problem for the hydrogen atom
— ng(I‘) = Rj<T)Yljmj Q)

choose n = e, n-r=z=rcosf =,/ ”rYlo

< Tk%lp ,/—zmw / 3 Ri(1)Ro(r) / Y i () Y10(2)Yigm, () dQ

The angular integral over 3 spherical harmonics is a well-known special case of
the so-called Wigner-Eckart theorem. It is nonzero only if
mp=mog A |lp—1l=1
(dipole) ’selection rules’
Literature: [Mes] QM II, Appendix C; [Lin]

For o = p15(r)
— possible transitions 1s —  2pg, 3pg, ... (E <0)

and continuum states with [ = 1

ZA

Figure A.1: dipole characteristic cos?  dependence
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