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Voorwoord

Het college Quantummechanica II wordt dit najaar verzorgd door Prof. Piet Mulders met assistentie van
Drs. Alessandro Bacchetta bij het werkcollege.

Het college beslaat de hoofdstukken 6 t/m 11 van het boek Quantum Mechanics van F. Mandl (Cam-
bridge University Press). Deze aantekeningen geven soms een iets andere kijk op de stof, maar bevatten
nauwelijks stof die niet ook in het boek te vinden is.

Piet Mulders
September 2000

2



Literature

1. F. Mandl, Quantum Mechanics, Wiley 1992

2. C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics I and II, Wiley 1977
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1 Spin

1.1 Definition

In quantum mechanics spin is introduced as an observable defined via the vector operator s. These
(three) hermitean operators satisfy commutation relations

[si, sj ] = ih̄ǫijk sk, (1)

similar to the commutation relations for the angular momentum operator ℓ = r × p. The spin operators
s commute with the operators r and p and thus also with ℓ. That’s it. All the rest follows from these
commutation relations.

1.2 Rotation invariance

Earlier we have seen that, without spin, rotation invariance required specific commutation relations with
ℓ. In fact scalar quantities S and vectors V under rotations behaved like

[ℓi, S] = 0, (2)

[ℓi, Vj ] = ih̄ ǫijk Vk, (3)

e.g. scalars S = r2, p2, r · p or ℓ2 and vectors V = r, p or ℓ.
Including spin vectors s, the notion of behavior under rotations has to be altered, e.g. [ℓi, sj ] = 0 and

[ℓi, ℓ · s] = −ih̄ (ℓ × s)i. It is easy to see that the operator

j ≡ ℓ + s, (4)

satisfies

[ji, S] = 0, (5)

[ji, Vj ] = ih̄ ǫijk Vk, (6)

not only for the above examples, but now also for the vectors s and j and including scalars like s2 and
ℓ · s.

For a system of many particles the operators r, p and s for different particles commute. It is easy to
see that the operators

L =
N∑

n=1

ℓn, S =
N∑

n=1

sn, J =
N∑

n=1

jn = L + S, (7)

satisfy commutation relations [Li, Lj ] = ih̄ ǫijk Lk, [Si, Sj] = ih̄ ǫijk Sk, and [Ji, Jj ] = ih̄ ǫijk Jk, while
only the operator J satisfies

[Ji, S] = 0, (8)

[Ji, Vj ] = ih̄ ǫijk Vk, (9)

for any scalar S or vector V .

It is easy to show that the inner product a · b of two vectors satisfying the commutation relation in
Eq. 9 indeed is a scalar quantity, satifying the commutation relation in Eq. 8.

An important property is that rotational invariance is one of the basic symmetries of our world.

Rotation invariance of a system of particles requires

[J , H ] = 0. (10)
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Besides the behavior under rotations, also the behavior under parity is considered to classify quantities.
Vectors behave as P V P−1 = −V , axial vectors as P AP−1 = +A, a scalar S behave as P S P−1 =
+S, and a pseudoscalar S′ behaves as P S′ P−1 = −S′. Examples of specific quantities are

vector axial vector scalar pseudoscalar

r ℓ r2 s · r
p s p2 s · p

j ℓ2

ℓ · s
The hamiltonian is a scalar quantity. Therefore, if we have parity invariance, combinations as s · r
cannot appear but a tensor operator of the form (s1 · r)(s2 · r) is allowed. Note, however, that such
an operator does not commute with ℓ (see Exc. 5.8).

1.3 spin states

As mentioned above, the commutation relations are all that defines spin. As an operator that commutes
with all three spin operators (a socalled Casimir operator) we have s2 = s2x + s2y + s2z,

[si, sj] = ih̄ ǫijk sk, (11)

[s2, si] = 0. (12)

Only one of the three spin operators can be used to label states, for which we without loss of generality

can take sz. In addition we can use s2, which commutes with sz. We write states χ
(s)
m = |s,m〉 satisfying

s2|s,m〉 = h̄2 s(s+ 1)|s,m〉, (13)

sz |s,m〉 = mh̄ |s,m〉. (14)

It is of course a bit premature to take h̄2 s(s + 1) as eigenvalue. We need to prove that the eigenvalue
of s2 is positive, but this is straightforward as it is the sum of three squared operators. Since the spin
operators are hermitean each term is not just a square but also the product of the operator and its
hermitean conjugate. In the next step, we recombine the operators sx and sy into

s± ≡ sx ± i sy. (15)

The commutation relations for these operators are,

[s2, s±] = 0, (16)

[sz, s±] = ±h̄ s±, (17)

[s+, s−] = 2h̄ sz, (18)

The first two can be used to show that

s2 s±|s,m〉 = s±s2|s,m〉 = h̄2 s(s+ 1) s±|s,m〉,
sz s±|s,m〉 = (s±sz ± h̄ s±) |s,m〉 = (m± 1)h̄ s±|s,m〉,

hence the name step-operators (raising and lowering operator) which achieve

s±|s,m〉 = c±|s,m± 1〉.

Furthermore we have s†± = s∓ and s2 = s2z + (s+s− + s−s+)/2, from which one finds that

|c±|2 = 〈s,m|s†±s±|s,m〉 = 〈s,m|s2 − s2z − [s±, s∓]/2|s,m〉
= 〈s,m|s2 − s2z ∓ h̄ sz|s,m〉 = s(s+ 1) −m(m± 1).

It is convention to define

s+|s,m〉 = h̄
√

s(s+ 1) −m(m+ 1) |s,m+ 1〉
= = h̄

√

(s−m)(s+m+ 1) |s,m+ 1〉 (19)

s−|s,m〉 = h̄
√

s(s+ 1) −m(m− 1) |s,m− 1〉
= h̄

√

(s+m)(s−m+ 1) |s,m− 1〉. (20)
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This shows that given a state |s,m〉, we have a whole series of states

. . . |s,m− 1〉, |s,m〉, |s,m+ 1〉, . . .

But, we can also easily see that since s2 − s2z = s2x + s2y must be an operator with positive definite

eigenstates that s(s + 1) − m2 ≥ 0, i.e. |m| ≤
√

s(s+ 1) or strictly |m| < s + 1. From the second
expressions in Eqs 19 and 20 one sees that this inequality requires mmax = s as one necessary state to
achieve a cutoff of the series of states on the upper side, while mmin = −s is required as a necessary
state to achieve a cutoff of the series of states on the lower side. Moreover to have both cutoffs the step
operators require that the difference mmax−mmin = 2 s must be an integer, i.e. the only allowed values
of spin quantum numbers are

s = 0, 1/2, 1, 3/2, . . . ,

m = s, s− 1, . . . ,−s.

Thus for spin states with a given quantum number s, there exist 2s+ 1 states.

1.4 Why is ℓ integer

Purely on the basis of the commutation relations, the allowed values for the quantum numbers s and m
have been derived. Since the angular momentum operators ℓ = r×p satisfy the same commutation rela-
tions, one has the same restrictions on ℓ and mℓ, the eigenvalues connected with ℓ2 and ℓz. However, we
have only found integer values for the quantum numbers in our earlier treatment. This is the consequence
of restrictions imposed because for ℓ we know more than just the commutation relations. The operators
have been introduced explicitly working in the space of functions, depending on the angles in R3. One
way of seeing where the constraint is coming from is realizing that we want uni-valued functions. The
eigenfunctions of ℓz = −ih̄ d/dφ, were found to be

Y mℓ (θ, φ) ∝ eimφ.

In order to have the same value for φ and φ+2π we need exp(2π im) = 1, hence m (and thus also ℓ) can
only be integer.

For spin, there are only the commutation relations, thus the spin quantum numbers s can also take
half-integer values. Particles with integer spin values are called bosons (e.g. pions, photons), particles
with half-integer spin values are called fermions (e.g. electrons, protons, neutrinos, quarks). For the
angular momenta which are obtained as the sum of other operators, e.g. j = ℓ+s, etc. one can easily see
what is allowed. Because the z-components are additive, one sees that for any orbital angular momentum
the quantum numbers are integer, while for spin and total angular momentum integer and half-integer
are possible.
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2 Spin states

2.1 Matrix representations of spin operators

In the space of spin states with a given quantum number s, we can write the spin operators as (2s+ 1)×
(2s+ 1) matrices. Let us illustrate this first for spin s = 1/2. Define the states

χ
(1/2)
+1/2 or χ↑ or |1/2,+1/2〉 ≡




1
0



 ,

χ
(1/2)
−1/2 or χ↓ or |1/2,−1/2〉 ≡




0
1



 .

Using the definition of the quantum numbers in Eq. 14 one finds that

sz = h̄




1/2 0
0 −1/2



 , s+ = h̄




0 0
1 0



 , s− = h̄




0 1
0 0



 ,

For spin 1/2 we find the familiar spin matrices, s = h̄σ/2,

σx =




0 1
1 0



 , σy =




0 −i
i 0



 , σz =




1 0
0 −1



 .

For spin 1 we define the basis states,

χ
(1)
+1 = |1,+1〉 ≡





1
0
0




, χ

(1)
0 = |1, 0〉 ≡





0
1
0




, χ

(1)
−1 = |1, 0〉 ≡





0
0
1




.

The spin matrices are then easily found,

sz = h̄





1 0 0
0 0 0
0 0 −1




, s+ = h̄





0
√

2 0

0 0
√

2
0 0 0




, s− = h̄





0 0 0√
2 0 0

0
√

2 0




,

from which also sx and sy can be constructed.

2.2 Rotated spin states

Instead of the spin states defined as eigenstates of sz, one might be interested in eigenstates of s · n̂, e.g.
because one wants to measure it with a Stern-Gerlach apparatus with an inhomogeneous B-field in the
n̂ direction. We can of course just write down these states formally like

χ
(1/2)
+1/2(n̂) and χ

(1/2)
−1/2(n̂)

Suppose that we want to write them down in terms of the eigenstates of sz, given above. To do this we
work in the matrix representation discussed in the previous section. Taking n̂ = (sin θ, 0, cos θ), we can
easily write down

s · n̂ =
1

2
h̄σ · n̂ =

h̄

2




cos θ sin θ
sin θ − cos θ



 . (21)

We find the following two eigenstates and eigenvalues

χ
(1/2)
+1/2(n̂) =




cos(θ/2)
sin(θ/2)



 with eigenvalue + 1/2,

χ
(1/2)
−1/2(n̂) =




− sin(θ/2)
cos(θ/2)



 with eigenvalue − 1/2.

The probability that given a state with spin along the z-direction a measurement of the spin along the
+n̂-direction yields the value +h̄/2 is thus given by

∣
∣
∣
∣
χ

(1/2) †
+1/2 (n̂)χ

(1/2)
+1/2 =

∣
∣
∣
∣

2

= cos2(θ/2).
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In general the rotated eigenstates are written as

χ(s)
m (n̂) =





d
(s)
sm(θ)

...

d
(s)

m′m(θ)
...

d
(s)
−sm(θ)





. (22)

where dm′m(θ) are the d-functions. These are in fact just matrix elements of the spin rotation matrix
exp(−i θ Sy) between states quantized along the z-direction. Extended to include azimuthal depen-
dence it is customary to use the rotation matrix e−i φ Sz e−i θ Sy e−i χ S3 and the functions are called
Dm′m(φ, θ, χ).
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3 Combination of angular momenta

3.1 Quantum number analysis

We consider situations in which two sets of angular momentum operators play a role, e.g.

• An electron with spin in an atomic (nℓ)-orbit (spin s and orbital angular momentum ℓ combined
into a total angular momentum j = ℓ + s).

• Two electrons with spin (spin operators s1 and s2, combined into S = s1 + s2).

• Two electrons in atomic orbits (orbital angular momenta ℓ1 and ℓ2 combined into total orbital
angular momentum L = ℓ1 + ℓ2).

• Combining the total orbital angular momentum of electrons in an atom (L) and the total spin (S)
into the total angular momentum J = L + S.

Let us discuss as the generic example
J = j1 + j2. (23)

We have states characterized by the direct product of two states,

|j1,m1〉 ⊗ |j2,m2〉, (24)

which we can write down since not only [j2
1, j1z] = [j2

2, j2z] = 0, but also [j1m, j2n] = 0. The sum-
operator J obviously is not independent, but since the J-operators again satisfy the well-known angular
momentum commutation relations we can look for states characterized by the commuting operators J2

and Jz, | . . . ; J,M〉. It is easy to verify that of the four operators characterizing the states in Eq. 24,
[J2, j1z ] 6= 0 and [J2, j2z] 6= 0 (Note that J2 contains the operator combination 2j1 · j2, which contains
operators like j1x, which do not commute with j1z). It is easy to verify that one does have

[J2, j2
1] = [J2, j2

2] = 0,

[Jz , j
2
1] = [Jz, j

2
2] = 0,

and thus we can relabel the (2j1 +1)(2j2 +1) states in Eq. 24 into states characterized with the quantum
numbers

|j1, j2; J,M〉. (25)

The basic observation in the relabeling is that Jz = j1z + j2z and hence M = m1 +m2. This leads to the
following scheme, in which in the left part the possible m1 and m2-values are given and the upper right
part the possible sum-values for M including their degeneracy.

j2

j1j1

j2

j1 j2

j1 j2+=

+

+

x
m

M

m1

2

-

-

-

1. Since |m1| ≤ j1 and |m2| ≤ j2, the maximum value for M is j1 + j2. This state is unique.

2. Since J+ = j1+ + j2+ acting on this state is zero, it corresponds to a state with J = j1 + j2. Then,
there must exist other states (in total 2J + 1), which can be constructed via J− = j1− + j2− (in
the scheme indicated as the first set of states in the right part below the equal sign).
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3. In general the state with M = j1 + j2−1 is twofold degenerate. One combination must be the state
obtained with J− from the state with M = j1 + j2, the other must be orthogonal to this state and
again represents a ’maximum M ’-value corresponding to J = j1 + j2 − 1.

4. This procedure goes on till we have reached M = |j1 − j2|, after which the degeneracy is equal to
the min{2j1 + 1, 2j2 + 1}, and stays constant till the M -value reaches the corresponding negative
value.

Thus

Combining two angular momenta j1 and j2 we find resulting angular momenta J with values

J = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|, (26)

going down in steps of one.

Note that the total number of states is (as expected)

j1+j2∑

J=|j1−j2|

(2J + 1) = (2j1 + 1)(2j2 + 1). (27)

Furthermore we have in combining angular momenta:

half-integer with half-integer −→ integer
integer with half-integer −→ half-integer
integer with integer −→ integer

3.2 Clebsch-Gordon coefficients

The actual construction of states just follows the steps outlined above. Let us illustrate it for the case of
combining two spin 1/2 states. We have four states according to labeling in Eq. 24,

|s1,m1〉 ⊗ |s2,m2〉 : |1/2,+1/2〉 ⊗ |1/2,+1/2〉 ≡ | ↑↑〉,
|1/2,+1/2〉 ⊗ |1/2,−1/2〉 ≡ | ↑↓〉,
|1/2,−1/2〉 ⊗ |1/2,+1/2〉 ≡ | ↓↑〉,
|1/2,−1/2〉 ⊗ |1/2,−1/2〉 ≡ | ↓↓〉.

1. The highest state has M = 1 and must be the first of the four states above. Thus for the labeling
|s1, s2;S,M〉

|1/2, 1/2; 1,+1〉 = | ↑↑〉. (28)

2. Using S− = s1− + s2− we can construct the other S + 1 states.

S−|1/2, 1/2; 1,+1〉 = h̄
√

2 |1/2, 1/2; 1, 0〉,
(s1− + s2−)| ↑↑〉 = h̄(| ↑↓〉 + | ↓↑〉),

and thus

|1/2, 1/2; 1, 0〉 =
1√
2

(

| ↑↓〉 + | ↓↑〉
)

. (29)

Continuing with S− (or in this case using the fact that we have the lowest nondegenerate M -state)
we find

|1/2, 1/2; 1,−1〉 = | ↓↓〉. (30)
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3. The state with M = 0 is twofold degenerate. One combination is already found in the above
procedure. The other is made up of the same two states appearing on the right hand side in Eq. 29.
Up to a phase, it is found by requiring it to be orthogonal to the state |1/2, 1/2; 1, 0〉 or by requiring
that S+ = s1+ + s2+ gives zero. The result is

|1/2, 1/2; 0, 0〉 =
1√
2

(

| ↑↓〉 − | ↓↑〉
)

. (31)

The convention for the phase is that the higher m1-value appears with a positive sign.

It is easy to summarize the results in a table, where one puts the states |j1,m1〉 ⊗ |j2,m2〉 in the
different rows and the states |j1, j2; J,M〉 in the different columns, i.e.

j1 × j2
... J

...
... M

...
. . . . . .
m1 m2

. . . . . .

For the above case we have

1/2 × 1/2 1 1 0 1
1 0 0 -1

+1/2 +1/2 1

+1/2 −1/2
√

1
2

√
1
2

−1/2 +1/2
√

1
2 −

√
1
2

−1/2 −1/2 1

Note that the recoupling matrix is block-diagonal because of the constraintM = m1+m2. The coefficients
appearing in the matrix are the socalled Clebsch-Gordan coefficients. We thus have

|j1, j2; J,M〉 =
∑

m1,m2

C(j1,m1, j2,m2; J,M) |j1,m1〉 ⊗ |j2,m2〉. (32)

Represented as a matrix as done above, it is unitary (because both sets of states are normed). Since the
Clebsch-Gordan coefficients are choosen real, the inverse is just the transposed matrix, or

|j1,m2〉 ⊗ |j2,m2〉 =
∑

J,M

C(j1,m1, j2,m2; J,M) |j1, j2; J,M〉. (33)

In some cases (like combining two spin 1/2 states) one can make use of symmetry arguments. If a
particular state has a well-defined symmetry under permutation of states 1 and 2, then all M -states
belonging to a particular J-value have the same symmetry (because j1±+j2± does not alter the symmetry.
This could have been used for the 1/2 × 1/2 case, as the highest total M is symmetric, all S = 1 states
are symmetric. This is in this case sufficient to get the state in Eq. 29.

We will give two other examples. The first is

1 × 1/2 3/2 3/2 1/2 3/2 1/2 3/2
+3/2 +1/2 +1/2 −1/2 −1/2 −3/2

+1 +1/2 1

+1 −1/2
√

1
3

√
2
3

0 +1/2
√

2
3

−
√

1
3

0 −1/2
√

2
3

√
1
3

−1 +1/2
√

1
3

−
√

2
3

−1 −1/2 1
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for instance needed to obtain the explicit states for an electron with spin in an (2p)-orbit coupled to
a total angular momentum j = 3/2 (indicated as 2p3/2) with m = 1/2 is

φ(r, t) =
u2p(r)

r

(√

1

3
Y 1

1 (θ, φ)χ↓ +

√

2

3
Y 0

1 (θ, φ)χ↑

)

.

The second is

1 × 1 2 2 1 2 1 0 2 1 2
+2 +1 +1 0 0 0 −1 −1 −2

+1 +1 1

+1 0
√

1
2

√
1
2

0 +1
√

1
2

−
√

1
2

+1 −1
√

1
6

√
1
2

√
1
3

0 0
√

2
3

0 −
√

1
3

+1 −1
√

1
6

−
√

1
2

√
1
3

0 −1
√

1
2

√
1
2

−1 0
√

1
2

−
√

1
2

−1 −1 1

This example, useful in the combination of two spin 1 particles or two electrons in p-waves, illustrates
the symmetry of the resulting wave functions.

3.3 An example: the Helium atom

As a first-order description of the helium atom, one can consider the independent-electron approxima-
tion, starting with a hamiltonian in which the electron-electron interaction is neglected, as well as any
interactions involving the spin of the electrons. In that case one has a separable hamiltonian and for
each of the electrons the solutions are given by hydrogen-like states (Z = 2), characterized by (nℓ). Let
us investigate the possible ground-state configurations, (1s)2 and the first excited levels (1s)(2p) and
(1s)(2s).

• The ground state configurations (1s)2.
Knowing the two angular momenta involved is sufficient to know the parity of these states, Π =
(−)ℓ1(−)ℓ2 = +. The angular momentum recoupling works in the following way.

– Combining ℓ1 = 0 and ℓ2 = 0, the only possibility is L = 0. The orbital wave function then is
symmetric under the interchange of the two electrons 1 and 2.

– Combining the spins s1 = 1/2 and s2 = 1/2 gives two possibilities, S = 0 or S = 1. The first
possibility is antisymmetric under the interchange of the electrons, the second is symmetric.

– The total wave function (product of orbital and spin parts) must be antisymmetric for fermions
according to the Pauli principle, hence L = 0 can only be combined with S = 0. This leaves
only one possibility for the total angular momentum, J = 0. The notation for the only allowed
ground state configuration is

(n1 ℓ1)(n2 ℓ2)
2S+1LJΠ = (1s)2 1S0+ .

• The configurations (1s)(2p) with parity Π = −.

– We have L = 1, but appearing twice. We can construct the symmetric and antisymmetric
combinations,

φ
s/a
LML

=
1√
2

[
u1s(r1)

r1
Y 0

0 (Ω1)
u2p(r2)

r2
YML

1 (Ω2) ±
u2p(r1)

r1
YML

1 (Ω1)
u1s(r2)

r2
Y 0

0 (Ω2)

]

for the spatial part.

– The combination of the spins gives again an antisymmetric S = 0 and a symmetric S = 1
wave function.

9



– The allowed configurations are thus obtained by the appropriate antisymmetric combinations
of orbital and spin parts,

(1s)(2p) 1P1− and (1s)(2p) 3P0−,1−,2− .

• The configurations (1s)(2s) with parity Π = +.

– We have L = 0, but now also appearing twice in a symmetric and antisymmetric combination.

– As above, antisymmetric S = 0 and symmetric S = 1.

– This gives the allowed configurations

(1s)(2s) 1S0+ and (1s)(2s) 3S1+ .

10



4 The EPR experiment

4.1 The ’experiment’

One of the best ways to illustrate the ’absurdness’ of quantum mechanics when one tries to understand
it with classical means is the EPR experiment, proposed by Einstein, Podolsky and Rosen (1935) to
show that quantum mechanics should be wrong. A simplified version of the experiment is the decay of
a spin 0 system into two spin 1/2 particles with opposite spin. The spin is measured along a direction
perpendicular to the motion of the two particles, which are moving apart at (say) half of the speed of
light. The angles θA and θB, along which the spin is measured can be varied, but the actual decision
which angles are measured is only taken (at random) when the particles are halfway1.

o

o

120

180

0

60 o

o

θB

v  A

decide 

A B

of B
passage

1
2 c=

60

0

180

120

o

o

o

o
spin 0

v  = c2
1

B

d

passage

decide θ
of A

A

measuremeasure
s.n s.nA B

The results of the measurements (which in recent years have actually been performed with a variety of
particles over macroscopic distances) are as follows:

• Considering only the measurement at A, the probability to measure a spin along n̂A is P (θA,+) =
1/2 and the probability to measure a spin opposite to this is P (θA,−) = 1/2. Similarly at B.

• Given a ’+’-measurement at A at a given angle θA, the following results are found:

|θA − θB| = 0◦ 60◦ 120◦ 180◦

P (θA,+; θB,+) 0 1/4 3/4 1

P (θA,+; θB,−) 1 3/4 1/4 0

4.2 A classical explanation?

In any ’realistic’ theory the information on the potential measurements for particle A should be a property
of particle A and hence stored in the particle. Thus to simplify things, only concentrate on three angles
(0◦, 60◦ and 120◦). Any event has particles A and B flying apart with known prescriptions for what to
do if they encounters a Stern-Gerlach apparatus under a given angle θA. E.g.

Event 1: memory A = (+ − +) memory B = (− + −)

Event 2: memory A = (+ + −) memory B = (−− +)
1In this way information on the setting of B cannot reach A at the time of measurement
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etc. For instance in the first example the prescription tells A that if θA = 0◦, then a spin measurement
yields +h̄/2, if θA = 60◦, then a spin measurement yields −h̄/2, while if θA = 120◦, then a spin
measurement yields +h̄/2. In each of the events the common origin of A and B is reflected in the
complementary prescriptions. This is the only way the first and last colums of the ’experiment’ can be
explained. Let’s now concentrate on the correlations and write some explicit probabilities P (θA,+; θB,+)
in terms of the fractions of events with particular memories. We have e.g.

P (0◦,+; 120◦,+) =
∑

σ=−τ

f(+σ−;−τ+)

= f(+ + −;−− +) + f(+ −−;− + +) (34)

P (60◦,+; 120◦,+) = f(+ + −;−− +) + f(− + −; + − +)
︸ ︷︷ ︸

≥0

(35)

P (0◦,+; 60◦,+) = f(+ − +;− + −)
︸ ︷︷ ︸

≥0

+ f(+ −−;− + +), (36)

and hence we must have in a realistic theory

P (60◦,+; 120◦,+) + P (0◦,+; 60◦,+) ≥ P (0◦,+; 120◦,+), (37)

which is an explicit example of a Bell inequality. But clearly our ’experiment’ above violates this inequal-
ity! Thus a realistic theory cannot explain the results in the EPR experiment.

4.3 The quantum-mechanical explanation!

Quantum mechanics can explain the results. Using e.g. the spin states defined with respect to the θ = 0
directions, we know that the AB system is in an antisymmetric (spin zero) state,

|AB〉 =
1√
2

(|A ↑〉 ⊗ |B ↓〉 − |A ↓〉 ⊗ |B ↑〉) (38)

Using the rotated spin states along an arbitrary direction n̂, it is straightforward to check the results of
the EPR experiment. Given a ’+’-measurement at A, the wave function becomes

|A ↑〉 ⊗ |B ↓〉

and the probability

P (0◦,+; θB,+) =

∣
∣
∣
∣
〈A ↑ ||A ↑〉 〈θB,+||B ↓〉

∣
∣
∣
∣

2

= sin2(θB/2). (39)

For any other angle for θA, simply choose this as the quantization axis, to see that the result only depends
on θA − θB.
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5 Time dependent perturbation theory

Mandl, chapter 9

For a hamiltonian without explicit time-dependence, i.e. H = H(r,p, . . .) one has stationary state
solutions of the form |φ〉 e−iEt/h̄, where |φ〉 is time-independent and is a solution of the eigenvalue equation
H |φ〉 = E|φ〉.

This can be checked by inserting such a solution (with constant E) in the Schrödinger equation,
ih̄∂|ψ〉/∂t = H(t)|ψ(t)〉, leading to

ih̄
∂

∂t
|φ〉 = (H − E) |φ〉,

If H has no time-dependence a solution satisfying ∂|φ〉/∂t = 0 exists.

As discussed earlier, there are two possibilities

1. One starts (e.g. after a measurement) with ψ(0) = |φi〉, where φi is one of the eigenstates of H with
eigenvalue/energy Ei. In that case |ψ(t)〉 = |φi〉 e−iEit/h̄ and all expectation values of operators
(that do not explicitly depend on time) are time-independent.

2. One starts in a mixed state, say |ψ(0)〉 = |φ1〉+ |φ2〉. In that case one has |ψ(t)〉 = |φ1〉 e−iE1t/h̄ +
|φ2〉 e−iE2t/h̄ or |ψ(t)〉 ∝ |φ1〉 + |φ2〉 e−i(E2−E1)t/h̄, which leads to oscillations in expectation values
with frequency ∼ (E2 − E1)/h̄.

In the situation that the hamiltonian of a system contains explicit time dependence, i.e. H = H(r,p, . . . , t)
one no longer has stationary state solutions of the form |φ〉 e−iEt/h̄. It is easy to see that a check as dis-
cussed above with a time-dependent H(t) will leave us with a time-dependence in |φ〉 = |φ(t)〉.

Next consider the case that the time-dependence is contained in a part of the Hamiltonian, which we
(in order to study it perturbatively) multiply with a factor λ,

H = H0 + λV (t), (40)

where H0 does not have explicit t-dependence, while the second part has a (possible) time-dependence.
Assume the problem H0 to be known, i.e. H0|φn〉 = En|φn〉 with eigenstates |φn〉 and eigen-energies En.
In doing time-independent perturbation theory (when V is time-independent) one tries to express the true
eigenfunctions of H in the complete set φi. Already in that case one observes that if the system originally
is in a state |φi〉, it will at a later time no longer be in this state, because we have to expand |φi〉 in the
true eigenstates of H , which deviate from the eigenstates of H0. This problem is more easily dealt with
in time-dependent perturbation theory, which, moreover, can also treat time-independent perturbations.
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6 Treatment of time-dependent perturbations

We consider as mentioned in the previous section H = H0 + λV (t), with a known (time-independent)
part for which the eigenstates and eigen-energies satisfy H0|φn〉 = En|φn〉. Using completeness of the
states |φn〉 we know that it is always possible to write

|ψ(t)〉 =
∑

n

cn(t) |φn〉 e−iEnt/h̄. (41)

Note that one could have absorbed the exponential time-dependence in cn(t), but not doing so is more
appropriate in perturbation theory. In the choosen way of proceeding, the time-dependence of cn is solely
a consequence of λV .

By substituting the expression for |ψ(t)〉 in the Schrödinger equation,

ih̄
∂

∂t
|ψ(t)〉 = (H0 + λV (t)) |ψ(t)〉, (42)

one simply finds

ih̄ ċp(t) =
∑

n

λVpn(t) cn(t) e
+i ωpnt, (43)

where Vpn = 〈φp|V |φn〉 and ωpn = (Ep − En)/h̄. As promised if λV = 0, the righthand-side is zero and
the coefficients are time-independent.

In the next section we solve the above equations for a simple two-state system. More often, however,
one will encounter a perturbative approach.

In the case of perturbation theory, we realize that in trying a solution of the form

cp(t) = c(0)p (t) + λ c(1)p (t) + . . . , (44)

the time-dependence of a specific order is determined by the next lower order,

ih̄ ċ(m+1)
p =

∑

n

Vpn(t) c(m)
n (t) e+i ωpnt. (45)

Starting with cp(0) = δpi one immediately sees that the first two orders are given by

c(0)p (τ) = δpi, (46)

c(1)p (τ) =
1

ih̄

∫ τ

0

dt Vpi(t) e
+i ωpit. (47)

This can straightforwardly been extended and leads to the socalled ‘time-ordered’ exponential, which we
will not discuss here.

The quantity |cp(τ)|2 is the probability to find the system in the state |φp〉, which means the probability

for a transition i→ p. The first order result is valid if |c(0)p (τ) + c
(1)
p (τ)|2 ≈ 1.
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6.1 An exactly soluble example

Consider the following hamiltonian for a two-state system,

H = −µ · B(t) = −γ s · B(t), (48)

describing the interaction of a spinning particle (with magnetic moment µ proportional to its spin) in
a magnetic field. For instance for an elementary electron µ = −(e/m) s where s = (h̄/2)σ. For other
(composite particles) the factor may be different. However, for any spin 1/2 particle the spin operators
can be represented by the Pauli matrices.

Considering first the case of a constant magnetic field in (say) the z-direction, i.e. B0 = (0, 0, B0).
Using the matrix representation for a spin 1/2 particle one has

H = −γB0

2
h̄ σz = −γB0

2
h̄




1 0
0 −1



 . (49)

The solutions are easily obtained,

|φ1〉 =




1
0



 with E1 = −γB0

2
h̄, (50)

|φ2〉 =




0
1



 with E2 =
γB0

2
h̄, (51)

If the system is in a spin-state along the z-direction, it will stay in this state. If it is in another direction,
it will start to oscillate with a frequency ω12 = (E1 − E2)/h̄ = −γ B0.

Next consider the system in a circulating magnetic field in the x-y plane, superimposed on B0, B(t)
= B0 + B1(t), where B1(t) = (B1 cosωt,B1 sinωt, 0). In that case

H = −γB0

2
h̄ σz −

γB1

2
h̄(σx cosωt+ σy sinωt)

= −γB0

2
h̄




1 0
0 −1



− γB1

2
h̄




0 e−iωt

e+iωt 0



 . (52)

As discussed in the previous section we can assume

|ψ(t)〉 = c1(t)




1
0



 e−iω12t/2 + c2(t)




0
1



 e+iω12t/2 =




c1(t) e

−iω12t/2

c2(t) e
+iω12t/2



 , (53)

for which insertion in the Schrödinger equation or using the theory in the previous section one finds

ih̄




ċ1(t)
ċ2(t)



 = −γB1

2
h̄




0 e−i(ω−ω12)t

e+i(ω−ω12)t 0








c1(t)
c2(t)





= h̄




0 v(t)

v∗(t) 0








c1(t)
c2(t)



 , (54)

with |v| = γB1/2. The coupled equations,

i ċ1(t) = v(t) c2(t), (55)

i ċ2(t) = v∗(t) c1(t), (56)

can be simply rewritten into a second order differential equation for c1,

c̈1 + i(ω − ω12) ċ1 + |v|2 c1 = 0. (57)

This equation has two independent solutions of the form ei pt with

p = −1

2
(ω − ω12) ±

1

2
∆ (58)
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with ∆ =
√

(ω − ω12)2 + 4|v|2. The general solution can then be written as

c1(t) = e−
1
2 i(ω−ω12)t

(

A sin
∆ t

2
+B cos

∆ t

2

)

,

c2(t) =
i

v(t)
ċ1(t). (59)

Starting off with c1(0) = 0 and |c2(0)| = 1, it is straightforward to check that

c1(t) = Ae
1
2 i (ω−ω12)t sin

∆ t

2
, (60)

|A|2 = 4
|v|2
∆2

=
γ2B2

1

(ω − ω12)2 + γ2B2
1

, (61)

|c1(t)|2 + |c2(t)|2 = 1. (62)

Thus, given an initial spin aligned parallel or antiparallel to the B0 field, the probability for transition to
the other spin state shows oscillations with a frequency ∆, while the magnitude depends on the frequency
of the rotating perpendicular B1 field, showing a resonance at ω = ω12. In that case the spin completely
flips from parallel to antiparallel and back with frequency ∆ (at resonance we have ∆ = γB1). For further
discussion and plots, see Mandl (section 9.2).
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7 Fermi’s golden rule

We now return to the perturbative treatment of time-dependence and note that also for a time-independent
interaction V , transitions occur, if the initial state is not an eigenstate of the full Hamiltonian, but only
of H0. If V is sufficiently weak, we find the result in first order perturbation theory,

c(1)p (τ) =
Vpi
ih̄

∫ τ

0

dt e+i ωpit = − Vpi
h̄ωpi

e+i ωpit

∣
∣
∣
∣

τ

0

=
Vpi
h̄ωpi

(
1 − e+i ωpiτ

)
= −2Vpi

h̄ωpi
sin(ωpiτ/2) e+i ωpiτ/2, (63)

and thus for p 6= i,

P
(1)
i→p(τ) =

4 |Vpi|2
h̄2

sin2(ωpiτ/2)

ω2
pi

. (64)

The function

f(ωpi) =
sin2(ωpiτ/2)

ω2
pi

is for increasing times τ ever more strongly peaked around ωpi = 0. The value at zero is f(0) = τ2/4,
the first zeros are at |ωpi| = 2π/τ . Since

∫

dωpi
sin2(ωpiτ/2)

ω2
pi

=
π τ

2
, (65)

we approximate
sin2(ωpiτ/2)

ω2
pi

=
π τ

2
δ(ωpi). (66)

Then we find2

P
(1)
i→p(τ) = τ

2π

h̄
|Vpi|2 δ(Ep − Ei) (67)

or for the transition probability per unit time,

Ṗ
(1)
i→p =

2π

h̄
|Vpi|2 δ(Ep − Ei) Fermi’s Golden Rule. (68)

Although the allowed final state is selected via the energy delta function, it is often possible that the
system can go to many final states, because we are dealing with a continuum. In that case one needs the
density of states ρ(E), where ρ(E) dE is the number of states in an energy interval dE around E. The
transition probability per unit time is then given by

Ṗ
(1)
i→p =

∫

dEf ρ(Ef )
2π

h̄
|Vfi|2 δ(Ef − Ei) =

2π

h̄
|Vpi|2 ρ(Ep)

∣
∣
∣
∣
Ep=Ei

(69)

(Fermi’s Golden Rule No. 2).

2 δ(ax) = 1
|a|

δ(x)
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8 The dipole approximation

As an example of time-dependent perturbations, we discuss the absorption and emission of photons
by atoms. In this case one often uses the dipole approximation for the interaction of matter with an
electromagnetic field. Here only a very global treatment is presented, to be used in the next section.

We take a plane wave for the scalar and vector potential,

φ = φ̃(k, ω) exp[i(k · r − ωt)], (70)

A = Ã(k, ω) exp[i(k · r − ωt)], (71)

with ω = |k|c, corresponding with the energy and momentum relation, E = |p|c, for a massless photon.
Although the physical fields are real, we can work with the plane waves by always taking also the complex
conjugate solution into account. The corresponding behavior for the electric and magnetic fields can be
obtained from the potentials3

E = Ẽ(k, ω) exp[i(k · r − ωt)], (72)

B = B̃(k, ω) exp[i(k · r − ωt)]. (73)

The interaction of matter with an electromagnetic field is given by

Hint =

∫

d3r [ρ(r)φ(r) − j(r) · A(r)] , (74)

where ρ and j are the charge and current distribution. The dipole approximation is valid when the wave
length λ = 2π/|k| is much larger than the typical size of the system, e.g. for light (λ ≈ 6000Å) and atoms
(size ≈ 1 − 10Å). In that case one can restrict oneself to the first nontrivial term in

exp[i(k · r − ωt)] = e−i ωt (1 + ik · r + . . .). (75)

One obtains

Hint =

∫

d3r
[

(1 + ik · r) ρ(r) φ̃(k, ω) − (1 + ik · r) j(r) · Ã(k, ω)
]

(76)

= Q φ̃(k, ω) − D · Ẽ(k, ω) − µ · B̃(k, ω) + . . . , (77)

where we have used that ik φ̃ = −Ẽ + (ω/c) Ã and ik × Ã = B̃. The charge and current distributions
give rise to charge, electric and magnetic dipole moments,

Q =

∫

d3r ρ(r) =⇒
∑

i

qi, (78)

D =

∫

d3r r ρ(r) =⇒
∑

i

qi ri, (79)

µ =

∫

d3r r × j(r) =⇒
∑

i

qi
mi

ℓi, (80)

The results after the arrow in the above equations indicate the results for a number of charges qi at
position ri, i.e. ρ(r) =

∑

i qi δ
3(r − ri). For a neutral system the first interaction term disappears and

the next important one is the interaction with the electric dipole moment (D).

3Recall that

E = −∇Φ −

1

c

∂A

∂t
,

B = ∇× A
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9 Emission and absorption of radiation by atoms

The radiation fields can be obtained from the vector potential

A = ǫ(k, ω)
c Ẽ0(k, ω)

i ω
exp[i(k · r − ωt)] (81)

and φ = 0. The vector ǫ is called the polarization. One has

E = ǫ Ẽ0 exp[i(k · r − ωt)], (82)

B =
k × ǫ

|k| Ẽ0 exp[i(k · r − ωt)]. (83)

In the dipole approximation the interaction with matter is given by

V (t) = −D · E(t) = −D · ǫ Ẽ0 e
−i ωt. (84)

Although we have a time-dependent interaction, we can proceed as in the derivation of Fermi’s golden
rule. We obtain now

c(1)p (τ) =
〈φp|D · ǫ|φi〉 Ẽ0

ih̄

ei (ωpi−ω)τ − 1

i (ωpi − ω)
, (85)

which gives as before rise to a delta function δ(ω − ωpi). With ω being the positive photon frequency,
this can only describe absorption of a photon, h̄ω = Ep − Ei > 0. As discussed before, also the complex
conjugate solution must be considered, which gives the same result with ω → −ω. This gives rise to a
delta function δ(ω + ωpi) and describes the emission of a photon, h̄ω = −h̄ωpi = Ei − Ep > 0. The
transition probability can be summarized by

P
(1)
i→p(τ) =

Ẽ2
0(ω)

h̄2 |〈φp|D · ǫ|φi〉|2
π τ

2
δ(ω − |ωpi|). (86)

If one is not working with monochromatic light one has an integral over different frequencies ω. Instead
of the intensity of the field Ẽ0 one can use the number of incident photons N(ω) (number/(area×time)).
This number is determined by equating the energy densities in a frequency interval dω,

1

2
ǫ0E

2
0 (ω) dω =

N(ω) h̄ω

c
dω. (87)

Integrating over the photon frequencies, one sees that the atom absorps or emits photons of the right
frequency leading to a transition rate

Ṗ
(1)
i→p =

π

ǫ0 h̄c
|ωpi|N(|ωpi|) |〈φp|D · ǫ|φi〉|2. (88)

For electrons D = −∑i e ri = −eR. For unpolarized light ǫ is arbitrary and averaging gives a factor
1/3. In terms of the fine structure constant α = e2/4π ǫ0 h̄c the averaged transition rate is

Wi→p = Ṗ
(1)
i→p =

4

3
π2 α |ωpi|N(|ωpi|) |〈φp|R|φi〉|2. (89)

Note that by treating also the electromagnetic field quantummechanically one finds in addition to the
stimulated absorption or emission rate a spontaneous emission rate

W
spont.
i→p =

4

3
α
ω3
ip

c2
|〈φp|R|φi〉|2, (90)

governed by the same transition matrix element and thus obeying the same selection rules.
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10 Unstable states

In many circumstances one encounters unstable states, i.e. the probability P to find a system in a
particular state decreases in time,

P (t+ dt) = P (t) (1 − γ dt) =⇒ dP

dt
= −γ P (t),

where γ is the decay rate or decay probability per unit time. The solution is

P (t) = P (0) e−γ t = P (0) e−t/T , (91)

with T = 1/γ ≡ h̄/Γ the lifetime. The quantity Γ is referred to as the width of a state. For a decaying
state we thus write

|ψn(t)〉 ∝ e−i Ent/h̄−γnt/2. (92)

We can expand a decaying state in eigenmodes according to

e−iEnt/h̄−γnt/2 θ(t) =

∫ ∞

−∞

dω

2π
c(ω) e−i ωt, (93)

with

c(ω) =

∫ ∞

0

dt e+i (ω−ωn+iγn/2)t

=
−i

ω − ωn + iγn/2
e+i (ω−ωn+iγn/2)t

∣
∣
∣
∣

∞

0

=
i

ω − ωn + iγn/2
. (94)

For unstable states the transition amplitude for emission or absorption of a photon is then proportional
to

T (ω) =

∫
dω′

1

2π

dω′
2

2π
c∗2(ω

′
2) c1(ω

′
1) 2π δ(ω − ω′

1 + ω′
2)

=

∫
dω′

2π
c∗2(ω

′) c1(ω
′ + ω)

=

∫
dω′

2π

∫ ∞

0

dt1

∫ ∞

0

dt2 e
−i (ω′−ω2−iγ2/2)t2 e+i (ω

′+ω−ω1+iγ1/2)t1

=

∫ ∞

0

dt1

∫ ∞

0

dt2 e
+i (ω2+iγ2/2)t2 e+i (ω−ω1+iγ1/2)t1 δ(t1 − t2)

=

∫ ∞

0

dt e+i (ω−ω12+iγ12/2)t =
i

ω − ω12 + iγ12/2
, (95)

where ω12 = ω1 − ω2 and γ12 = γ1 + γ2. Thus the line-intensity becomes instead of a delta-function
δ(ω − |ωpi|) proportional to

I(ω) ∝ |T (ω)|2 ∝ 1

(ω − ω12)2 + γ2
12/4

,

or normalizing to the peak intensity

I(ω) = I0
Γ2

12/4

h̄2 (ω − ω12)2 + Γ2
12/4

, (96)

showing the reason for the name width. The quantity Γ12 is precisely the width of the peak at half-
maximum intensity, when plotting I as a function of the photon energy h̄ω. The function is known as a
Lorentzian distribution or a Breit-Wigner distribution.
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11 Introduction to scattering theory

Mandl, chapter 10

The quantummechanical treatment of a scattering problem is that of a particle (with mass m and
incoming momentum p) scattering in a given potential V (r). We assume that the particle is scattered
into a final state with momentum p′. The latter is the result of a measurement with a detector with
opening angle dΩ, located under an angle (θ, φ) with respect to the incoming momentum.

dΩ

p

V(r)
p

The number of scattered particles per unit time per solid angle, n(θ, φ), is proportional to the incoming
flux jin, the number of particles per area per unit time,

n(θ, φ) dΩ = |jin| dσ(θ, φ). (97)

This is the definition of the differential cross section dσ, from which it should be immediately clear that
the unit of cross section indeed is that of an area.

Typically cross sections have something to do with the area of the target as seen by the incoming
particle, e.g. for proton-proton scattering a characteristic cross section is 40 mb, where 1 barn = 1 b
≡ 10−28 m2. The number 40 mb, indeed, is roughly equal to the area of a proton (with a radius
of about 1 fm = 10−15 m). Besides the area of the target the cross sections also depends on the
strength of the interaction. For instance electromagnetic interactions are typically a factor 100 or
(100)2 smaller, e.g. σγp ≈ 100 µb and σep ≈ 1µb, corresponding to the presence of the fine structure
constant α or α2 respectively, where α = e2/4πǫ0h̄c = 1/137. Weak interactions, e.g. neutrino-proton
scattering, again have much smaller cross section in the order of 10−2 pb, indicative for the weakness
of the ”weak” interactions.
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12 Cross section in Born approximation

We use the result of time-dependent perturbation theory to obtain an expression for the cross section,
namely the unperturbed situation is the free case, with as possible solutions, the incoming particle in a
plane wave, φi(r) =

√
ρ exp (ip · r/h̄), with energy E = p2/2m and the detected final state, φf (r) =√

ρ exp (ip′ · r/h̄), with energy E′ = p′2/2m. Note that we allow processes in which the energy of the
scattered particle changes. writing Q ≡ E′−E one has Q = 0 for an elastic scattering process, an energy
release, Q > 0, for an exothermic process and energy absroption, Q < 0, for an endothermic process.
The potential V is a perturbation that can cause transitions between these states. Using Fermi’s golden
rule, we have for the number of particles with momentum p′ (of which the direction with respect to p is
given by the angles θ, φ),

n(θ, φ) dΩ =
2π

h̄

[

|〈φf |V |φi〉|2 ρ(E′)
]

E′=E+Q
. (98)

In order to get dσ we need to get the flux I in the initial state and the density of states ρ(E′) in the final
state.

• Initial state flux.
The initial state flux is obtained from the wave function in the initial state via the expression for
the current,

j(r, t) =
h̄

2im
(ψ∗

∇ψ − (∇ψ)∗ψ) = ρ
p

m
= ρv. (99)

The incoming flux is along p and, as expected, given by I = ρ v = ρ p/m (we use p = |p|).

• Final state density of states. The final states are plane waves and the density of plane waves is in
momentum space given by

ρ(p) d3p =
1

ρ

d3p

(2πh̄)3
. (100)

This can be seen by looking at the expansion of the unit operators in coordinate and momentum
space consistent with the choice of the normalization of the plane waves,

1 =

∫

d3r |r〉 〈r| =
1

ρ

∫
d3p

(2πh̄)3
|p〉 〈p|. (101)

Another way is to use box normalization, in which case one finds that for one particle in a box with
sides L, i.e. 0 ≤ x ≤ L, 0 ≤ y ≤ L and 0 ≤ z ≤ L (i.e. density ρ = 1/L3), the wave function is
found after imposing periodic boundary conditions,

φp(r) =
1

L3/2
exp(ip · r/h̄), (102)

with p = (2πh̄/L) (nx, ny, nz), showing a density of states in p-space given by (L/2πh̄)3. Rewriting
the final state density ρ(p′) in terms of E′ and Ω′ we find

ρ(p′)d3p′ =
1

ρ

p′2

(2πh̄)3
dp′ dΩ′ =

1

ρ

mp′

(2πh̄)3
dE′ dΩ′ = ρ(E′) dE′ dΩ′. (103)

With the flux and density of final states, we get immediately

dσ(θ, φ) = dΩ′

(
m

2πh̄2

)2
p′

p

∣
∣
∣
∣

∫

d3r exp

(
i

h̄
(p − p′) · r

)

V (r)

∣
∣
∣
∣

2

E′=E+Q

, (104)

or introducing the Fourier transform

Ṽ (k) =

∫

d3r V (r) exp(ik · r), (105)
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one obtains the following expression for the differential cross section in the socalled Born approximation,

dσ

dΩ′
=

(
m

2πh̄2

)2
p′

p

∣
∣
∣Ṽ (q)

∣
∣
∣

2

, (106)

where q = (p − p′)/h̄ is the momentum transfer in the process. Often the differential cross section
is azimuthally symmetric and one uses dΩ = d cos θ dφ = 2π d cos θ to obtain dσ/dθ. Integrating the
differential cross section over all angles one obtains the total cross section,

σ(E) =

∫

dΩ
dσ

dΩ
(E,Ω). (107)

Note that in the case of elastic scattering one has p′ = p in which case the momentum transfer squared
is given by

h̄2q2 = |p − p′|2 = p2 + p′2 + 2 pp′ cos(θ)

= 2 p2(1 − cos θ) = 4 p2 sin2(θ/2). (108)

A dependence of the differential cross section (dσ/dΩ)(E, θ) on this combination is a test for the validity of
the Born approximation. This dependence is in particular applicable for central potentials, V (r) = V (r),
in which case the Fourier transform

Ṽ (q) =

∫

d3r V (r) exp(i q · r)

= 2π

∫ ∞

0

dr

∫ 1

−1

d cosα r2V (r) ei qr cosα

=
4π

q

∫ ∞

0

dr rV (r) sin(qr), (109)

only depends on q = |q|.

23



13 Applications

13.1 The square well potential

As a first application consider the square well potential, V (r) = V0 for r ≤ a and zero elsewhere for
sufficiently weak potentials at low energies and small angles (qa ≪ 1). We will come back to the
applicability of the Born approximation in a later section. The Fourier transform is given by

Ṽ (q) =
4π V0

q

∫ a

0

dr r sin(qr)

=
4π V0

q3

∫ qa

0

dx x sin(x)

=
4π V0

q3
[sin qa− qa cos qa]

qa≪1−→ 4π V0

q3

[

qa− 1

3!
(qa)3 − qa+

1

2!
(qa)3 + . . .

]

=
4π

3
V0a

3, (110)

leading for E → 0 to

dσ

dΩ
≈ 1

9

(
2mV0 a

2

h̄2

)2

a2 (111)

13.2 The Coulomb potential

The integral

Ṽ (q) = − Ze2

4πǫ0

4π

q

∫ ∞

0

dr sin(qr) (112)

diverges and we need to consider for instance the screened Coulomb potential, multiplied with exp(−µr).
In that case one obtains

Ṽ (q) = − Ze2

4πǫ0

4π

q

∫ ∞

0

dr sin(qr) e−µr

= − Ze2

4πǫ0

4π

q

∫ ∞

0

dr
1

2i

(

ei(q+iµ)r − ei(q−iµ)r
)

= −Ze
2

ǫ0

1

q2 + µ2
, (113)

allowing even the limit µ→ 0 to be taken. Thus

dσ

dΩ
(E, θ) =

(
m

2π h̄2

)2(
Ze2

ǫ0

)2
1

q4
=

(
Ze2

8π ǫ0 pv

)2
1

sin4(θ/2)
. (114)

This result is known as the Rutherford cross section.

13.3 Processes near threshold

If the volume integral over the potential exists, one knows that Ṽ (0) is finite and one sees that for small
values of the momentum transfer one can write

σ(E) ∝ p′

p
=

√

E′

E
. (115)

Thus for an endothermic process (energy absorption or Q < 0) one has a threshold value for the incoming
energy, Ethr = |Q| and one has for E ≈ Ethr

σ(E) ∝
√

E − Ethr. (116)
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For an exothermic process (with energy release Q > 0) one can scatter for any (positive) energy E and
one has near E ≈ 0

σ(E) ∝ 1√
E
. (117)

13.4 Application to two-particle collisions

In most applications, the target is not an ”external” potential, but rather two particles that collide
(collider experiments) or one particle that is shot onto another one (fixed target experiments). This can
in general lead to several possibilities corresponding to several scattering channels,

a+ b −→ a+ b (elastic scattering)

−→ c1 + c2
−→ d1 + d2 + d3

}

(inelastic scattering) (118)

Nevertheless, one can deal with these processes, at least the two → two ones, by considering the problem
in the center of mass (CM) system. Considering two particles with momenta p1 and p2 and masses
m1 and m2, for which the only translationally invariant interaction that is allowed must be of the form
V (r1 − r2) = V (r) with r = r1 − r2 the relative coordinate. Since the flux factor is just given by

I = ρ |v1 − v2| = ρ

∣
∣
∣
∣

p1

m1
− p2

m2

∣
∣
∣
∣
= ρ

p

µ
, (119)

where p is the relative momentum and µ the reduced mass one sees that the collision of two particles
indeed can be described by considering the scattering of one particle with reduced mass µ having the
relative momentum p, scattering of the potential V (r).

p

p

1

2

2

1

p

p
p

V(r) p

Notes:

• Note that in the scattering of one particle in an ”external” potential, there is no translation in-
variance, hence no momentum conservation, while for two particles with a potential depending on
the relative coordinate there is translation invariance. The latter requires conservation of the total
momentum P = p1 + p2, but not of the relative momentum.

• In the limit that one of the masses becomes very large, the light particle’s momentum and mass,
indeed, coincide with relative momentum and reduced mass, so one finds (consistently) that the
heavy particle can be considered as scattering center.

25



14 Scattering off a composite system

Consider the scattering of an electron off an extended object, e.g. an atomic nucleus consisting of Z
protons (and N neutral neutrons). The hamiltonian is given by

H = Hnucleus + V, (120)

where Hatom(r1,p1; . . . ; rZ ,pZ) is the nuclear hamiltonian and V describes the interaction between the
scattering electron and the nucleus,

V = −
Z∑

j=1

e2

4π ǫ0 |r − rj |
. (121)

We consider the nucleus to be initially in a state |ΦA〉 with energy ǫA and after the collision in a state |ΦB〉
with energy ǫB. Depending on the energy of the incoming electron this will be an elastic or endothermic
process with Q = ǫA − ǫB ≤ 0, i.e. part of the energy of the scattering electron is absorbed and brings
the nucleus into an excited state. The wave functions of the scattering electron in initial and final states
are plane waves characterized by the momenta p = h̄k and p′ = h̄k′, respectively. The full initial state
and final state wave functions are taken to be Ψi(r, r1, . . . , rZ) =

√
ρ exp(ik · r)ΦA(r1, . . . , rZ) and

Ψf (r, r1, . . . , rZ) =
√
ρ exp(ik′ · r)ΦB(r1, . . . , rZ), respectively. The Fourier transform of the potential

becomes

V (q) =

∫

d3r

∫ Z∏

k=1

d3rk exp(i q · r)Φ∗
B(r1, . . . , rZ)





Z∑

j=1

−e2
4π ǫ0 |r − rj |



 ΦA(r1, . . . , rZ)

= − e2

4π ǫ0

Z∑

j=1

∫ Z∏

k=1

d3rk

∫

d3r exp(i q · r)Φ∗
B

1

|r − rj |
ΦA

= − e2

4π ǫ0

Z∑

j=1

∫ Z∏

k=1

d3rk exp(i q · rj)
∫

d3r′ exp(i q · r′)Φ∗
B

1

r′
ΦA

= − e2

4π ǫ0

4π

q2
FBA(q), (122)

where we have introduced the nuclear form factor

FBA(q) =

Z∑

j=1

∫ Z∏

k=1

d3rk exp(i q · rj)Φ∗
B(r1, . . . , rZ)ΦA(r1, . . . , rZ)

=

∫

d3s exp(i q · s) Z

∫ Z∏

k=2

d3rk Φ∗
B(s, r2, . . . , rZ)ΦA(s, r2, . . . , rZ)

︸ ︷︷ ︸

ρBA(s)

, (123)

which is the Fourier transform of the one-nucleon (transition) density ρBA(s). We note that the wave
functions ΦA and ΦB are fully antisymmetric. The result for the cross section is

dσBA
dΩ

=

(
me2

2π ǫ0 h̄
2 q2

)2
p′

p
|FBA(q)|2 . (124)

and shows the possibility to determine the distribution of nucleons in a nucleus.
In Chapter 10 of Mandl the equivalent example for the scattering off an atom is considered, for which

the full hamiltonian is given by

H = − h̄2

2m
∇

2 +Hatom + V, (125)
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whereHatom(r1,p1; . . . ; rZ ,pZ) is the Z-electron hamiltonian of the atom and V describes the interaction
between the scattering electron and the atom,

V = − Ze2

4π ǫ0 r
+

Z∑

j=1

e2

4π ǫ0 |r − rj |
. (126)

with |Φa〉 with energy ǫa and |Φb〉 with energy ǫb the initial and final state wave functions. The full initial
state and final state wave functions are taken to be Ψi(r, r1, . . . , rZ) =

√
ρ exp(ik ·r)Φa(r1, . . . , rZ) and

Ψf (r, r1, . . . , rZ) =
√
ρ exp(ik′ · r)Φb(r1, . . . , rZ), respectively. This neglects the antisymmetrization

of the scattering electron and the atomic electrons, which will be allright at sufficiently high momentum
transfer.

The first of the two contributions of the potential in Eq. 126 is evaluated as the example of the
Coulomb potential in the previous section. Since Φa and Φb are orthonormal solutions, one finds

∫

d3r

∫ Z∏

k=1

d3rk exp(i q · r)Φ∗
b(r1, . . . , rZ)

(

− Ze2

4π ǫ0 r

)

Φa(r1, . . . , rZ) = − Ze2

4π ǫ0

4π

q2
δba (127)

The second contribution is equivalent to the case of the nucleus considered above. The result for the
cross section is now

dσba
dΩ

=

(
me2

2π ǫ0 h̄
2 q2

)2
p′

p
|Zδba − Fba(q)|2 (128)

getting contributions from both nucleus and electrons. The quantity Fba(q) is the Fourier transform of
the one-electron (transition) density ρab(s). This shows the possibility to determine electron distributions
in an atom.

Note that the first term is derived treating the nucleus as a point. In fact Z δba, should read FAA(q) δba

(where A indicates the nuclear groundstate). However as we will see in the next section, for relevant
q-values for scattering of the atomic electrons one has FAA(q) = FAA(0) = 1.
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15 Form factors

Form factors as encountered in the previous section are defined as the Fourier transform of a density,

F (q) =

∫

d3r exp(i q · r) ρ(r). (129)

As before in discussing the potential in momentum space, one has for a spherically symmetric density,

F (q) =
4π

q

∫

dr r ρ(r) sin(qr). (130)

For a spherical distributions it is trivial to find by expanding the exponential exp(i q · r) = 1 + i q · r -
1
2 (q · r)2 + . . ., that

F (q) = Q− 1

6
q2 〈r2〉 + . . . , (131)

where

Q =

∫

d3r ρ(r), (132)

〈r2〉 =

∫

d3r r2 ρ(r). (133)

This is the reason that the small-q behavior of a form factor can be used to determine the charge radius
of an atom or similarly of elementary particles, like pions or nucleons.

Some examples of form factors corresponding to specific densities are:

• A uniform density
ρ(r) = ρ0 for x ≤ R (134)

(and zero elsewhere). If ρ0 = 3/4π a3, i.e. the integrated density is one, the Fourier transform is
given in terms of the Bessel function j1,

F (q) =
3 j1(qR)

qR
, (135)

where

j1(x) =
sinx

x2
− cosx

x
. (136)

Note that
3 j1(x)

x
≈ 1 − 1

10
x2 + . . . , (137)

and, indeed, the charge radius of a uniform distribution is 〈r2〉 = 3
5 R

2.

• A (normalized) Yukawa distribution

ρ(r) =
µ2

4π

e−µr

r
, (138)

has as form factor

F (q) =
µ2

q2 + µ2
=

1

1 + q2/µ2
, (139)

which is called a monopole form factor. We have encountered this example already in a previous
section where we derived the momentum space screened Coulomb potential.

• The form factor of the exponential distribution

ρ(r) =
µ3

8π
e−µr, (140)
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is simply found by differentiation of the Yukawa form factor with respect to µ,

e−µr = − d

dµ

(
e−µr

r

)

.

This gives

F (q) =
1

(1 + q2/µ2)
2 , (141)

which is called a dipole form factor.

• Finally a normalized Gaussian distribution

ρ(r) = ρ0 e
− 1

2 r
2/R2

(142)

has also a Gaussian form factor
F (q) = e−

1
2 q

2 R2

. (143)
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16 Scattering solutions

Mandl, chapter 11

In this section we will attack the scattering of a potential in a different way, namely by solving the
Schrödinger equation. The time-independent Schrödinger equation can be rewritten as

(
∇

2 + k2
)
ψ(r) =

2m

h̄2 V (r)ψ(r), (144)

where E = h̄2k2/2m. This is a linear equation of which the righthandside is referred to as source term.
There is a whole family of solutions of such an equation. Given a solution of the above inhomogeneous

equation, one can obtain all solutions by adding any of the possible solutions of the homogeneous equation,

(
∇

2 + k2
)
ψhom(r) = 0. (145)

The solutions of the homogeneous equation are well-known, namely the plane waves,

φk(r) = exp(ik · r), (146)

characterized by a wave vector k.
Another systematic way of obtaining the solutions of the homogeneous equation is by considering the

radial Schrödinger equation, i.e. writing

ψ(r) =
u(r)

r
Y mℓ (θ, φ), (147)

the radial wave function u(r) satisfies for the homogeneous equation

(
d2

dr2
+
ℓ(ℓ+ 1)

r2
+ k2

)

u(r) = 0. (148)

There are two type of solutions of this equation

• Regular solutions: spherical Bessel functions of the first kind: u(r) = kr jℓ(kr).
Properties:

j0(z) =
sin z

z
,

jℓ(z) = zℓ
(

−1

z

d

dz

)ℓ
sin z

z

z→0−→ zℓ,

z→∞−→ sin(z − ℓπ/2)

z
.

• Irregular solutions: spherical Bessel functions of the second kind: u(r) = kr nℓ(kr).
Properties:

n0(z) = −cos z

z
,

nℓ(z) = −zℓ
(

−1

z

d

dz

)ℓ
cos z

z

z→0−→ z−(ℓ+1),

z→∞−→ −cos(z − ℓπ/2)

z
.

Equivalently one can use linear combinations, known as Hankel functions,

kr h
(1)
ℓ (kr) = kr (jℓ(kr) + i nℓ(kr))

z→∞−→ (−i)ℓ+1 ei kr ,

kr h
(2)
ℓ (kr) = kr (jℓ(kr) − i nℓ(kr))

z→∞−→ (i)ℓ+1 e−i kr.

30



A specific example of an expansion into these spherical solutions, is the expansion of the plane wave,

exp(ik · r) = ei kz = ei kr cos θ =

∞∑

ℓ=0

(2ℓ+ 1) iℓ jℓ(kr)Pℓ(cos θ), (149)

where the Legendre polynomials Pℓ can be also expressed in Y 0
ℓ ,

Pℓ(cos θ) =

√

4π

2ℓ+ 1
Y 0

ℓ (θ).
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17 Asymptotic solution

In order to construct solutions of the Schrödinger equation that describe a scattering process, one wants
the appropriate asymptotic behavior, which includes a plane wave part, describing the incoming part and
outgoing spherical waves, describing the scattering part, pictorially represented below

p

V(r)

We thus require the following asymptotic form,

ψ(r)
r→∞−→ exp(ik · r) +

ei kr

r
f(k; θ, φ). (150)

We have seen in the previous chapter that for r → ∞, this is a solution of the homogeneous equation.

It can also simply be checked that the above represents a solution if r → ∞, by inserting it into
the homogeneous equation. In order to select the leading part for large r one needs to use that
∇f(k; θ, φ) ∝ 1/r and ∇

2f(k; θ, φ) ∝ 1/r2.

For the asymptotic solution the current corresponding to the first part is given by

jin =
h̄k

m
, (151)

while the second part up to O(1/r) corresponds with a radially outward directed flux of magnitude

jr = − ih̄

2m

[

ψ∗ d

dr
ψ −

(
d

dr
ψ∗

)

ψ

]

=
h̄k

m

|f(k; /θ, φ)|2
r2

. (152)

From it, one derives the cross section using that

|jin| dσ(θ, φ) = n(θ, φ) dΩ = jr r
2 dΩ, (153)

i.e.
dσ

dΩ
= |f(k; θ, φ)|2. (154)

The above considerations require a careful analysis of the forward direction (θ = 0), where the inter-
ference term becomes important. For an acceptable asymptotic scattering solution one must have that
∫
dΩ jr|r=R = 0 for large R, i.e. that there is no loss of probability. This leads to the optical theorem or

Bohr-Peierls-Placzek relation,

Imfel(θ = 0) =
k

4π
σT , (155)

where σT is the total cross section and fel is the scattering amplitude for elastic scattering.
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In order to derive this result, one can just consider the full current. Keeping only the dominant
contributions when r → ∞, this is given by

jr =
h̄k

m

{

cos θ +
|f |2
r2

+ Re
[

(1 + cos θ)
eikr(1−cos θ)

r
f

]}

Integrating over the polar angle (writing cos θ ≡ X) gives for the interference term:

Re
∫ 1

−1

dX (1 +X)
ei kr(1−X)

r
f

= Re
∫ 1

−1

d
(
ei kr(1−X)

) (1 +X)f

−i kr2

= Re
(

2 f(k; θ = 0)

−i kr2

)

− 2Re
∫ 1

−1

dX
ei kr(1−X)

−i kr2
d

dX
[(1 +X)f ]

= −2Imf(k; θ = 0)

kr2
+ O

(
1

r3

)

.

The interference term thus actually only contributes at forward angles if r → ∞. Neglecting any
contribution disappearing faster than 1/r2 the integral over the angles gives

∫

dΩ jr

∣
∣
∣
∣
r=R

=
1

R2

[∫

dΩ |f |2 − 4π

k
Imf(k; θ = 0)

]

,

yielding the optical theorem. In fact the result is only derived if the total cross section is given by the
integration over |f |2, but it should be clear that flux conservation needs only to hold if we integrate
over elastic and inelastic channels, while the interference only occurs for the elastic channel. We will
encounter the result again in the section on partial wave expansions.
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18 The integral equation for the scattering amplitude

In order to solve the inhomogeneous equation with which we started, we solve the Green’s function
equation

(
∇

2 + k2
)
G(r, r′) = −δ3(r − r′). (156)

With the help of the Green’s function an inhomogeneous solution for

(
∇

2 + k2
)
ψ(r) = ρ(r),

can be written down, namely

ψ(r) = −
∫

d3r′ G(r, r′) ρ(r′).

By choosing an ’appropriate’ Green’s function one can built in boundary conditions. Note that the
difference between any two Green’s function is a solution of the homogeneous equation.

It is not difficult to check that two particular Green’s functions in our case are

G(±)(r − r′) = −exp (±i k|r − r′|)
4π |r − r′| . (157)

In particular G(+) has the correct asymptotic behavior as discussed in the previous section. As an exact

solution valid for all r, we can write

ψ(r) = exp(ik · r) − m

2π h̄2

∫

d3r′
exp (±i k|r − r′|)

|r − r′| V (r′)ψ(r′). (158)

This result is the desired integral representation of the inhomogenous Schrödinger equation, which has
the advantages that the boundary conditions for interpretation as a scattering solution have been built
in. It is therefore a good starting point for approximations

The result for f(k; θ, φ) is obtained by taking the limit for r → ∞ in the integral equation, in particular

|r − r′| = r

√

1 − 2
r · r′

r2
+
r′2

r2
≈ r

[

1 − r · r′

r2
+ . . .

]

,

exp (±i k|r − r′|)
|r − r′| ≈ ei kr

r
exp

(
ik′ · r′

)
+ . . . ,

where k′ ≡ kr̂. This gives

ψ(r)
r→∞−→ exp(ik · r) − ei kr

r

m

2π h̄2

∫

d3r′ exp
(
−ik′ · r′

)
V (r′)ψ(r′). (159)

and thus the exact expression is

f(k; θ, φ) = − m

2π h̄2

∫

d3r′ exp
(
−ik′ · r′

)
V (r′)ψ(r′). (160)
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19 The Born approximation and beyond

The Born approximation is obtained by using perturbation methods, namely to approximate in the above
expression ψ(r′) = exp (ik · r′), yielding the result

f(k; θ, φ) = − m

2π h̄2

∫

d3r′ exp (i q · r′) V (r′), (161)

where q = k− k′. This gives for the cross section the same result as we found using Fermi’s golden rule.

We can go beyond the first order result by introducing the scattering amplitude T . It is defined by

V ψ ≡ Tφ,

where ψ is the scattering solution and φ the incoming plane wave part of it. One then finds that the
integral equation, V ψ = V φ+ V G̃ V ψ turns into Tφ = V φ+ V G̃ Tφ, i.e. an equation for T ,

T = V + V G̃ T, (162)

the socalled Lippmann-Schwinger equation. Here G̃ is the Green’s function with factor −2m/h̄2

absorbed, which is the inverse of E−H0. The exact expression for the scattering amplitude f is thus
given by

f(k; θ, φ) = − m

2π h̄2
〈p′|T |p〉. (163)

The lowest order (Born approximation) result is the first term in the expansion obtained from Eq. 162,

T = V + V G̃ V + V G̃ V G̃ V + . . . .

To judge the validity of the Born approximation one requires that the scattering term in the wave function
is small, i.e.

m

2π h̄2

∣
∣
∣
∣

∫

d3r′
exp (i k|r − r′|)

|r − r′| V (r′)ψ(r′)

∣
∣
∣
∣
≪ 1. (164)

The disturbance of the plane wave is near r ≈ 0, while for selfconsistency ψ(r) should be dominantly
plane wave, thus

∣
∣
∣
∣

∫

d3r′
exp (i kr′ + ik · r′)

r′
V (r′)

∣
∣
∣
∣
≪ 2π h̄2

m
∣
∣
∣
∣
2π

∫ 1

−1

dX

∫

dr′ r′ ei kr
′(1+X) V (r′)

∣
∣
∣
∣
≪ 2π h̄2

m
,

∣
∣
∣
∣

∫

dr′
(

e2i kr
′ − 1

)

V (r′)

∣
∣
∣
∣
≪ h̄2k

m
= h̄v.

We see two limits in which the Born approximation is applicable

• Weak potentials with a finite range.
Starting with the second of the above estimates, we see for a potential with average depth V0 and
range a one has after bringing the absolute value under the integral V0 a

2 ≪ h̄2/m, i.e.

V0 ≪ h̄2

ma2
, (165)

a condition where an approximately equal sign usually is already ok.

• High energies (but nonrelativistic!).
In the last of the three expressions the exponential is fast-varying for high momenta k and can be
neglected, so V0 a≪ h̄2 k/m, i.e.

ka≫ mV0 a
2

h̄2 or E ≫ mV 2
0 a

2

h̄2 . (166)
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20 Identical particles

We already discussed how to treat the scattering of two particles in the center of mass frame. In the case
that one has two identical particles the scattering in the following two situations both leads to the same
final state,

p

p

p

p

p

p
p

p

θθ

π−θ

1 2 2 1

Thus if ψ12 is the wave function in which particle 1 is coming from the left and is scattered over an angle
θ and ψ21 is the wave function in which particle 1 is coming from the right and is scattered over an angle
π − θ,

ψ12(r) = ei kz + f(k; θ, φ)
ei kr

r
, (167)

ψ21(r) = e−i kz + f(k;π − θ, φ+ π)
ei kr

r
, (168)

one has the same final state. One should use the appropriately symmetrized or antisymmetrized wave
functions, leading to (omitting φ-dependence)

n(θ, φ) dΩ =
h̄k

µ
|f(k; θ) ± f(k;π − θ)|2 dΩ

In the cross section,

dσ

dΩ
= |f(k; θ) ± f(k;π − θ)|2

= |f(k; θ)|2 + |f(k;π − θ)|2 ± 2Re [f∗(k; θ) f(k;π − θ)] , (169)

the (third) interference term gives rise to oscillations. Note that in order to determine the total cross
section one has to integrate over the range 0 ≤ θ ≤ π/2 in order to avoid double counting. Note that the
cross sections at angles θ and π − θ are identical. For destructive interference (a minus sign) the cross
section is zero at θ = 90 degrees.

For example in the (hypothetical) scattering process of two pions the amplitudes interfere construc-
tively as pions are bosons (spin 0 particles) and the wave function must be symmetric. When scattering
two electrons (spin 1/2 particles) off each other the total wave function is antisymmetric, but the sym-
metry of the scattering solution depends on the spin state. In the spin 0 state (singlet) the spin wave
function is antisymmetric, while in the spin 1 state (triplet) the spin wave function is symmetric. Hence

dσs
dΩ

= |fs(θ) + fs(π − θ)|2, (170)

dσt
dΩ

= |ft(θ) − ft(π − θ)|2, (171)

If one scatters unpolarized electrons, the initial state has a probability 1/4 to be in the singlet state, 3/4
to be in the triplet state, thus for a spin-independent potential

dσ

dΩ
=

1

4

dσs
dΩ

+
3

4

dσt
dΩ

= |f(k; θ)|2 + |f(k;π − θ)|2 −Re [f(k; θ) f∗(k;π − θ)] . (172)

36



21 Partial wave expansion

At low energies a particle scattering off a target with impact parameter b has an angular momentum
h̄
√

ℓ(ℓ+ 1) = p b,

b a
rangep

If the potential has a finite range a the angular momenta that are important correspond to b ≤ a. From
this we obtain h̄ℓ ≤ pa = h̄ka or ℓ ≤ ka. Therefore it is especially at low energies convenient to expand
into different partial waves, eigenstates of angular momentum, because the lower partial waves dominate.
Also for central potentials, which satisfy [L, V (r)] = 0, it is useful to expand in partial waves, since each
angular momentum state in that case is a proper scattering solution.

Starting off with the plane wave, we have

eikz =
∑

ℓ

(2ℓ+ 1) iℓ jℓ(kr)Pℓ(cos θ). (173)

As already mentioned it only contains the φ-independent spherical harmonics, namely Y 0
ℓ (θ) =

√

(2ℓ+ 1)/4π Pℓ(cos θ).
Assuming azimuthal symmetry the scattering amplitude only depends on θ and also can be expanded in
Legendre polynomials,

f(k; θ) =
∑

ℓ

(2ℓ+ 1) fℓ(k)Pℓ(cos θ). (174)

Thus one obtains

ψsc(r)
r→∞−→

∑

ℓ

(2ℓ+ 1)Pℓ(cos θ) iℓ
[

jℓ(kr) + (−i)ℓ e
i kr

r
fℓ(k)

]

︸ ︷︷ ︸

ψ
(ℓ)
sc (r)

. (175)

Rewriting the scattering wave in the following way,

ψ(ℓ)
sc (r)

r→∞−→ sin(kr − ℓπ/2)

kr
+ (−i)ℓ e

i kr

r
fℓ(k)

=
1

2i k

[

−e
−i(kr−ℓπ/2)

r
+
ei(kr−ℓπ/2)

r
(1 + 2i kfℓ(k))

]

, (176)

Conservation of flux tells us that the incoming and outgoing fluxes should be equal in magnitude, i.e.

1 + 2i kfℓ(k) ≡ e2i δℓ(k), (177)

where δℓ(k) is called the phase shift. Going back and expressing fℓ(k) in the phase shift it is easy to see
that

fℓ(k) =
e2i δℓ(k) − 1

2i k
=
ei δℓ(k) sin δℓ(k)

k
, (178)

and

ψ(ℓ)
sc (r)

r→∞−→ ei δℓ(k)
sin(kr − ℓπ/2 + δℓ(k))

kr
. (179)
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22 Cross sections and partial waves

At this point it is useful to slightly generalize the result of the previous section. If also inelastic scattering
is possible a particular ℓ-wave amplitude is parametrized

1 + 2i kfℓ(k) ≡ ηℓ e
2i δℓ(k), (180)

where ηℓ is called the elasticity. One then has for the elastic cross section

dσel
dΩ

= |f(k; θ)|2 = 4π
∑

ℓ,ℓ′

√

(2ℓ+ 1)(2ℓ′ + 1) fℓ(k) fℓ′(k)Y
0∗
ℓ (θ)Y 0

ℓ′ (θ). (181)

Integrating over angles the orthonormality of the Y mℓ ’s can be used to get

σel =
4π

k2

∑

ℓ

(2ℓ+ 1) sin2 δℓ(k) (182)

Via the optical theorem, which relates the forward scattering amplitude to the total cross section one
finds

σT =
2π

k2

∑

ℓ

(2ℓ+ 1) (1 − ηℓ cos 2δℓ), (183)

which indeed is identical for purely elastic scattering (ηℓ = 1). The difference is the inelastic cross section,

σinel =
π

k2

∑

ℓ

(2ℓ+ 1) (1 − η2
ℓ ). (184)
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23 Calculating the phase shift from the potential

The easiest illustration of the calculation of the phase shift is the calculation for a square well, V (r) = V0

for r ≤ a and zero elsewhere. We immediately know that for r ≥ a the solution must be the asymptotic
solution. Inside the square well we use the radial Schrödinger equation to get the radial wave function
u(r). Thus for

ψℓm(r) =
uℓ(r)

r
Y mℓ (θ, φ), (185)

we have [

− h̄2

2m

d2

dr2
+
ℓ(ℓ+ 1)

r2
+ V (r)

]

uℓ(r) = E uℓ(r). (186)

Knowing that uℓ(0) = 0 we obtain for s-waves (ℓ = 0)

r ≤ a u(r) = A sinKr with K =

√

2m

h̄2 (E − V0),

r ≥ a u(r) = B sin(kr + δ0) with k =

√

2m

h̄2 E,

Matching the logarithmic derivative (du/dr)/u(r) at r = a gives

tan(ka+ δ0) =
k

K
tanKa (187)

or

tan δ0(k) =
k
K tanKa− tanka

1 + k
K tanKa tan ka

(188)

ka≪1−→ ka
[
tanKa
Ka − 1

]

1 + (ka)2 tanKa
Ka

, (189)

Ka≪1−→ ka

[
tanKa

Ka
− 1

]

≈ K2 a3

3
k (190)

For low energies, where s-waves are the dominant contribution, the above result and its limits can be
used to understand many qualitative features in the cross section, e.g. the disappearance of the cross
section at specific energies, because of a zero in 1 − tanKa/Ka (the Ramsauer-Townsend effect) or the
behavior of the cross section near threshold for weak potentials. The first two coefficients of the phase
shift in an expansion in the momentum,

δ0(k) = a0 k +
1

2
re k

2 + . . . , (191)

have specific names, namely scattering length and effective range, respectively.
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