
Le
ture 1

Introdu
tion and the essen
e of QM

Purpose of these le
tures is to give you an introdu
tion to perhaps the most

important theory of modern physi
s - quantum me
hani
s. This theory has

revolutionized the way we view the mi
ros
opi
 world and is perhaps the best

tested s
ienti�
 theory ever devised - (
ertain quantities 
an be 
al
ulated

and 
ompared to experiment at the level of a part in a million or better).

That said it is a theory that has been 
ontested sin
e its in
eption -

Einstein always 
onsidered it a stop gap answer to a fundamental theory

God does not play di
e with the Universe

We will (hopefully) have time to dis
uss why Einstein was wrong in his view

later in this 
ourse. Philosophers still debate its true meaning and even

pra
tising physi
ists �nd it 
ounter to intuition

I think I 
an safely say that noboby understands quantum me-


hani
s

Ri
hard Feynman

It forms the foundation (with general relativity) of all of twentieth 
en-

tury physi
s and underpins most of modern 
hemistry. As one of mankind's

greatest intelle
tual a
hievements it really forms an important part of our


ulture - although very few people have any understanding of it - hopefully

we 
an address that in these le
tures...

OK then, why did QM 
ome to be ? Essentially it was a response to a

series of 
rises in physi
s at the turn of the 
entury

1. Bla
kbody radiation

2. Photoele
tri
 e�e
t

3. Stability of atoms and dis
rete emission spe
tra

It appeared that 
lassi
al physi
s (Newton and Maxwell) was in
ompatible

with some of the new experimental results following from the dis
overy of

the internal stru
ture of atoms. This was the situation in the early years of

this 
entury - it took till 1926 before a satisfa
tory new framework was devel-

oped whi
h 
ould en
ompass and explain these problems. That framework
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was QM. Unlike relativity QM owed its birth to a number of physi
ists -

S
hroedinger, Heisenberg, Einstein, de Broglie, Bohr, Born, Ehrenfest, Dira


and others.

Although QM may introdu
e some rather unfamiliar math its basi
 pos-

tulates are not too long or terribly 
ompli
ated. They 
an be written easily

on the ba
k of a T-shirt. But they do signal a dramati
 departure from New-

tonian physi
s. Consider the motion of a parti
le subje
t to some for
e in

one dimension. The goal of 
lassi
al physi
s is to 
al
ulate how the position


oordinate x(t) varies with time. The answer 
an be gotten by solving the

di�erential equation

m

d

2

x

dt

2

= �

dV

dx

(1)

If we spe
ify eg. the initial position and velo
ity the resulting motion 
an

be predi
ted from the solution of this equation. In QM the analogous 
al-


ulation is phrased very di�erently. Newtons's se
ond law 1 is repla
ed by

S
hroedinger's equation

�

�h

2

2m

�

2

	

�x

2

+ V	 = i�h

�	

�t

(2)

The wavefun
tion 	(x; t) plays the role of the 
oordinate in 
lassi
al physi
s

- on
e we know it at some time we 
an use S
hroedinger's eqna 2 to �nd

it for all time. Be
ause 	(x; t) is a fun
tion of both x and t we must use

partial derivatives in the equation. Noti
e that a new fundamental 
onstant

has appeared - Plan
k's 
onstant �h = 1:05� 10

�34

Js. The smallness of this


onstant is related to the observation that we do not need to invoke quantum

methods until we study the realm of the very small. If it were identi
ally

zero 
lassi
al physi
s would work even at the smallest of s
ales (although

we wouldn't be here to observe it as the very stability of the atoms in our

bodies is the result of quantum e�e
ts!) It was �rst measured by Plan
k in

his work on the light emitted by radiant bodies - the theoreti
al analysis of

this problem led to the need for a quantum theory.

But what is 	 and what does it tell us about the behavior of the original

quantum parti
le ? The answer is simple and yet puzzling 	

�

	�x gives the

probability of �nding the parti
le to be between x and x +�x ! Noti
e that

(be
ause of the square root of minus one in eqn2) the wavefun
tion 	 is a


omplex number - hen
e the need to multiply it by its 
omplex 
onjugate to

obtain a positive de�nite real probability.
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In summary, providing we are happy with partial derivatives, 
omplex

numbers and probabilities (!) QM gives us a 
lear pres
ription for 
al
ulat-

ing quantum phenomena. But noti
e it is (a

ording to our intuitive ideas)

an apparently in
omplete pi
ture. QM tells us only the probabilities of mea-

suring 
ertain values for the position of the parti
le at a spe
i�
 point in

spa
e and time. And that is the most we 
an expe
t to be able to know ! It

is a radi
ally di�erent pi
ture than that of 
lassi
al physi
s - and one that

many people in
luding Einstein were/are unhappy with.

For suppose I ask the question - where was the parti
le just before I

measured its position - Einstein and others would have liked to believe that

it had a well-de�ned position des
ribed by hidden variables and QM, being

in
omplete, 
annot tell me about it. In e�e
t when one averages out the

hidden variables a statisti
al theory results whi
h 
an only tell me about

probabilities - QM. In 
ontrast the orthodox (Copenhagen) position on this

is that the parti
le does not have a position before it is measured - it is a

meaningless 
on
ept - there are no hidden variables - this is the quantum

nature of matter. Re
ently, a set of experiments, following on theoreti
al

work of John Bell have served to eliminate the possibility of hidden variables

theories and strengthened the orthodox position.

It appears that many of of evreyday, intuitive 
on
epts about the world

fail to des
ribe the behavior of the quantum world. The only area of QM

still in debate is the nature of a measurement on a quantum system and how

that is a�e
ted by a so-
alled observer. We wll dis
uss this later.

Some math

Lets introdu
e/review a few things:

Partial derivatives

Suppose we have a fun
tion of more than one variable eg. f(x; t). A partial

derivative with respe
t to x is denoted

�f

�x

and means `di�erentiate with

respe
t to x holding t 
onstant'. An example, if f(x; t) = x

2

t

3

then

�f

�x

= 2xt

3

Similarly,

�f

�t

= 3x

2

t

2
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Complex numbers

Generalize notion of a real number to a

ommodate square roots of negative

numbers. De�ne

p

�1 = i, then

p

�4 =

p

�1� 4 = i

p

4 = 2i

Complex number is z = x + iy. The real part is 
alled x and the imaginary

part is y. Its 
omplex 
onjugate is z

�

= x � iy. To add 
omplex numbers

just add real and imaginary 
omponents separately eg.

z = (a+ ib) + (
+ id) = (a + 
) + i(b + d)

We 
an multiply 
omplex numbers as follows

z = (a+ ib)� (
+ id) = a� 
+ i

2

b� d+ i(b� 
+ a� d)

Sin
e i

2

= �1 we then have

z = a� 
� b� d+ i(b� 
+ a� d)

Probability

Suppose I were to look at snowfall for Syra
use in the month of January

during this 
entury. I 
ould imagine 
onstru
ting a histogram (bar 
hart)

having as x-axis the number of in
hes and on the y-axis the number of times

that number of in
hes fell during all 100 januaries on re
ord. It is easy to


onvert this to a pi
ture of the probability distribution for snowfall during a

Syra
use january - just divide the numbers on the y-axis by 100. The y-axis

now runs between 0 and 1 and measures the probability of a 
ertain number

of in
hes of snow falling. Noti
e now that the area under the histogram is

now unity.

Of 
ourse snowfall does not really fall in exa
t in
h amounts - one january

there might have been 7.4 in
hes say. Indeed, when we 
onstru
ted the

original histogram we impli
itly rounded snowfalls to their nearest integer.

We 
ould improve on this by re
ording the snowfall in 1/2 in
h in
rements

Then 7.4 would be rounded into the bar 
orresponding to 7.5 rather than

7.0 in
hes. Providing we have enough data we 
ould imagine 
ontinuing this

pro
ess 
ounting the number of januaries with snowfall in ever de
reasing

small intervals. Suppose we do this to an in
rement of 1/100 in
h. You
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should see that tops of all the verti
al bars start to approa
h a 
ontinuous


urve - the true probability distribution that des
ribes the possibility of any

possible snowfall amount. Call this 
urve P (x). Noti
e that the total area

under this 
urve will still be unity.

Suppose you now want to know the probability of having between 6 and

8 in
hes - this be read o� from the area under the 
urve from x=6 and

x=8. More generally, suppose you want to know the probability of having

a snowfall between x = 6 and x = 6 + �x where �x = 0:1. This will be

approximately 0:1� P (6). In the limit where �x! 0 this is exa
t. That is

P (x) ��x is the probability that x lies in the range x! x+�x as �x! 0.

Ba
k to QM

Thus in QM the probability distribution P (x) = 	

�

(x; t)	(x; t) and tells

us the probability of a measurement of the parti
le's position resulting in a

value within the range x! x +�x. Noti
e that we now have an additional


onstraint on thde wavefun
tion 	(x; t) - we must have

Z

	

�

(x; t)	(x; t)dx = 1

We say that the wavefun
tion must be normalized. It is easy to see that it

always possible to modify any solution to the S
hroedinger equation to make

this true. It is also possible to show that this feature is preserved in time

- that is if we normalize a solution at some initial time and then evolve it

in time in a

ord with the S
hroedinger equatioon eqn.2 it will always be so

normalized. This is an important 
onsisten
y 
he
k on the framework.
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Le
ture 2

History

Lest go ba
k and dis
uss some of the spe
i�
 problems whi
h for
ed this

radi
al departure from 
lassi
al physi
s:

Bla
kBody radiation - 1901

Consider a 
avity in an oven at uniform temperature. On
e everything has


ome into equilibrium we 
an sample the radiation emerging from the 
avity.

We �nd the distribution of energy W (f) with frequen
y f initially rises like

f

2

but then turns over and falls to zero with large f . The initial rise is easy

to understand - the number of modes of the radiation �eld between f and

f +�f is simply 4�f

2

�f . To understand this remember that a em wave is a

ve
tor quantity - it has both a magnitude and dire
tion. Thus a given mode

is des
ribed by a wavelength and a dire
tion in spa
e. When we 
al
ulate

the number of modes of a given wavelength magnitude (or equivalently fre-

quen
y) we �nd a result analagous to the surfa
e area of a sphere - but now

a sphere in `frequen
y spa
e'. In 
lassi
al thermodynami
s) ea
h su
h mode


arries the same energy - basi
ally k

B

T so the net energy at frequen
y f rises

like f

2

. Noti
e not only does this disagree with the measured distribution -

it gives the total radiated energy as in�nite !

However, Plan
k was able to �t the distribution with the fun
tion

8�hf
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3

1

e

hf=k

B

T

� 1

By drawing on ideas in 
lassi
al statisti
al physi
s and re
asting the above

expression as an in�nite sum over di�erent energy states he was led to a very

unusual hypothesis: the radiation energy of a single mode of the em �eld


ould only 
ome in units of hf . He had no explanation for this ...

Photoele
tri
 e�e
t - 1905

It was noti
ed that when UV light was in
ident on a metal plate ele
trons

are eje
ted. When the energy of the ele
trons is measured as a fun
tion of

light frequen
y it was found that below a 
ertain threshold frequen
y there

were no ele
trons and above this the energy of the ele
trons rose linearly

with frequen
y. The light intensity had no e�e
t on the maximum ele
tron
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energy - it only a�e
ted the number emitted. This was 
ompletely at varian
e

with 
lassi
al ideas whi
h would have yielded ele
trons whose energy was

intensity dependent (essentially the larger amplitude waves would 
ase the

driven ele
trons to `wiggle' more vigorously whi
h would lead to an in
rease

in their kineti
 energy). Einstein explained the e�e
t by extending Plan
k's

idea to suppose that light 
onsists of photons whose energy varies linearly

with frequen
y. A given ele
tron is ki
ked out from the metal when it 
ollides

with a single photon of suÆ
ient frequen
y. A photon was imagined to be a

pa
ket of wavepa
ket with a 
ertain parti
ular energy (given by the Plan
k

formula)

Rutherford and Bohr - 1911-13

In 1911 Rutherford performed an histori
 experiment in whi
h he �red a beam

of alpha parti
les (a type of radiation) at a gold foil. He found that most of

the alpha parti
les su�ered only small de
e
tions while just a few were s
at-

tered through very large angles. He interpreted the results of this s
attering

experiment as indi
ating that the gold atoms 
onsisted of a small,dense 
ore

of positive 
harge surrounded by a mu
h larger and more di�use 
loud of

negative 
harge - the ele
trons. Unfortunately, this planetary model of the

atom was in 
on
i
t with 
lassi
al physi
s - if the ele
trons were in a 
ir
u-

lar orbit they would be a

elerating and be
ause of Maxwell's theory they

should radiate light energy. But this loss of energy would lead to a spiraling

of the ele
tron into the nu
leus - atoms would not be stable. Furthermore,

the spe
trum of light emitted by su
h an atom would 
ontain light of all fre-

quen
ies - whi
h was not was observed. In fa
t the light emitted by heated

atoms shows a dis
rete stru
ture 
hara
teristi
 of that parti
ular atom { a

so-
alled line emission spe
trum.

Bohr tried to �x this in an ad ho
 fashion. Spe
i�
ally he assumed that

for hydrogen only 
ertain states were stable - those in whi
h the angular

momentum were a multiple of

h

2�

. In those states the ele
tron does not

radiate. Furthermore, when an ele
tron moves from one su
h state to another

(lower) state it emits the di�eren
e in energy as a photon whose frequen
y is

related to its energy via Plan
k/Einstein's relation. Using 
lassi
al physi
s

it is then easy to see that the allowed radii are

r

n

=

4��

0

n

2

�h

2

me

2
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Similarly the allowed possible energies 
an be found

E

n

= �

1

2

me

4

(4��

0

�h)

2

1

n

2

This explanation a

ounted well for the experimentally observed line spe
-

trum of hydrogen but what justi�
ation 
ould there be for the quantization

of momenta that Bohr had assumed (or the resulting stability at those mo-

menta) ?

de Broglie { 1925

The situation lay fallow for some years before de Broglie started a new line of

reasoning. If light 
ould sometimes behave as a parti
le (a photon) 
ould not

matter behave sometimes as a wave ? The energy relation of Plan
k 
ould

be written as

E = �h! and p =

E




= �hk (1)

Perhaps a similar relation governed material parti
les ? Noti
e that this iden-

ti�
ation of wavelength with momenta allowed a possible interpretation of

the Bohr quantization 
ondition - via 2�r

n

= n� - the 
ondition for standing

waves !

In this 
ase ele
trons should be able to exhibit phenomena 
hara
teristi


of waves - su
h as interferen
e and di�ra
tion ! Su
h behavior was looked for

in a famous experiment of Davisson and Germer (1927) in whi
h a beam of

ele
trons was s
attered o� a 
rystal surfa
e in whi
h the interatom separation

was 
omparable to the de Broglie wavelength of the ele
trons. Lo and behold

an interferen
e pattern was observed ! Peaks in intensity were observed

whenever the path di�eren
e between wave re
e
ted from the �rst and se
ond

atomi
 layers mat
hed an integral number of wavelengths (2a 
os � = n�).

We may imagine generalizing this setup to the 
lassi
 Young's double

slit experiment used for light. Ele
trons are shot at a s
reen possessing two


losely spa
ed slits. A s
reen is pla
ed a large distan
e beyond the slits and is

used to re
ord the arrival of ele
trons whei
h have passed through one of other

of the slits. In pra
ti
e we dete
t ele
trons with a dete
tor whi
h 
ashes when

an ele
tron hits it. If we were to do this experiment and re
ord the intensity

of ele
trons re
orded by the dete
tor we would �nd a surprising thing - at


ertain pla
es on the s
reen we would never see ele
trons, while at others we

would see always a maximum ele
tron intensity! Furthermore these maxima
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and minima o

ur at regular intervals along the s
reen - we see interferen
e

fringes just as we would with light. So the ele
trons must be asso
iated with

a wave as de Broglie had suspe
ted. Clearly the parti
le 
hara
ter of the

ele
trons emerges as a statisti
al thing - any individual ele
tron 
an land

anywhere - the wave just gives the probability of �nding it at one pla
e

or another. It was �rst thought that the asso
iated wave must somehow

des
ribe the aggregate behavior of a bun
h of mutually intera
ting ele
trons

- a given ele
tron will pass through one or other of the slits for 
ertain. But


onsider the following variation - we 
an turn down the intensity of the beam

until just one ele
tron passes through at a time. If the ele
tron has to go

through just one slit then we would predi
t that the interferen
e pattern

would disappear - but it does not we still see an interferen
e pattern ! In

some sense the ele
tron passes through both slits ! The asso
iated wave

des
ribes the behavior of just a single ele
tron. Equivalently we 
an say that

the ele
tron in passing through the apparatus behaves as a wave but when

we 
ome to re
ord it it behaves as a parti
le ! This is the basis for wave-

parti
le duality. In e�e
t the ele
tron is represented by an abstra
t state

whi
h, depending on what kind of measurement we 
hoose to make, make

look alternately parti
le or wavelike in 
hara
ter !

By 1926, the stage was set - quantum matter should be des
ribable in

terms of a wave theory where the momentum of a (free) parti
le is just

p = h=�. The interferen
e experiment hints that the intensity of the wave

gives the probability for �nding the ele
tron. But what is the equation that

des
ribes the wave evolution ? Enter S
hroedinger ...
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Le
ture 3.

Arguments for S
hroedinger's equation

Free parti
les

We have seen that free parti
les are des
ribed by the relations

E = �h! (1)

p = �hk (2)

It is a reasonable guess that su
h parti
les should be asso
iated with the

simplest type of wave solution - simple sine or 
osine fun
tions.

	 � sin k(x� vt) or 
os k(x� vt) (3)

Now, kv = ! the frequen
y. These solutions des
ribe waves moving in

the dire
tion of positive x at speed v. Waves travelling in the opposite

dire
tion are obtained by simply swit
hing the sign of v. We will seek a

linear wave equation that des
ribes the time and spa
e evolution of su
h

waves. This means any linear 
ombination of sine and 
osine fun
tions will

also be a solution. Spe
i�
ally we 
an take the 
ombination f(kx � !t) =


os (kx� !t)+ i sin (kx� !t). It 
an be shown that this fun
tion f(kx�!t)

has a very spe
ial form

f(kx� !t) = e

i(kx�!t)

(4)

We will take this (
omplex) exponential fun
tion as the free parti
le solution

to the sought-for wave equation.

	 = A exp i(kx� !t) (5)

Additionally, noti
e the following result

�h

i

�

�x

	 = �hk	 = p	 (6)

Also,

i�h

�

�t

	 = �h!	 = E	 (7)

Thus, very loosely, the momentum of the parti
le 
an be found by di�eren-

tiating its wavefun
tion with respe
t to x and the energy by di�erentiating
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with respe
t to t. This means in turn that the 
lassi
al formula for the en-

ergy of a free parti
le E = p

2

=2m implies that the wavefun
tion of su
h a

free parti
le will satisfy the wave equation

��h

2

2m

�

2

	

�x

2

= i�h

�	

�t

(8)

This is the free parti
le S
hroedinger equation !

Intera
tion

How 
an we generalize this to derive a wavefun
tion for a parti
le moving in

some potential ? Just take the 
lassi
al energy formula E = p

2

=2m+ V and

do the same repla
ements !

��h

2

2m

�

2

	

�x

2

+ V	 = i�h

�	

�t

(9)

One must be 
areful. We have not derived the S
hroedinger equation

in the previous pages - rather we have written down the simplest, linear,

di�erential equation that is 
onsistent with 
onservation of energy and has

simple sine or 
osine like solutions in the absen
e of any potential energy. It is

an enlightened guess. We must study the 
onsequen
es of this equation and


he
k them against experiment to be sure of the 
orre
tness of this equation.

So far this equation has proven fully 
onsistent with all experiments (noti
e

that this equation treats time and spa
e in distin
t ways just as did the


lassi
al expressions for energy - so it is really only a nonrelativisti
 equation

valid for speeds whi
h are small 
ompared to the speed of light. Dira
 was

the �rst person to formulate the analogous relativisti
 equation whi
h was

subsequently named after him).

Averages

We have argued that QM only gives us a

ess to statisti
al aspe
ts of a

parti
les motion - for example 	

�

	�x is the probability of �nding the parti
le

between x and x + �x. How 
an we �nd its average position ? Standard

probability theory tells us this immediately - multiply the position x by the

probability of �nding it near x i.e 	

�

	�x and integrate the result over all

positions.

< x >=

Z

dx	(x; t)

�

x	(x; t) (10)
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Noti
e we have assumed that the wavefun
tion has been normalized.

This is all very well but suppose I want to know not the average position

of the parti
le but say its average momentum. How should I 
al
ulate that

? This highlights an aspe
t of QM that we need to dis
uss. I have stated

that the wavefun
tion 
ontains all the information that is available about the

quantum parti
le but so far we only how to 
al
ulate information related to

its position. In general I should like to be able to 
al
ulate the probabilities

of measuring spe
i�
 values for any physi
al observable, the mean values of

those observables et
 et
. The general question I want to postpone till later

but for now I 
an give you the 
orre
t pres
ription for 
omputing the average

momentum.

Re
all that di�erentiating the wavefun
tion with respe
t to position was

(up to 
onstant fa
tors) the same as multiplying by the momentum. In

general we say that in QM the momentum of a parti
le is repla
ed by an

operator whi
h in this 
ase is just the derivative operator

�

�x

. Spe
i�
ally

p

QM

!

�h

i

�

�x

(11)

Operators are mathemati
al obje
ts whi
h when applied to fun
tions yield

other fun
tions eg. the operator x when applied to the fun
tion f(x) = x

2

yields another fun
tion f

0

= xf(x) = x

3

. Similarly the operator

d

dx

when

applied to f yields f

0

=

df

dx

= 2x. The average value of the momentum in

QM is now gotten by sandwi
hing its asso
iated operator between 	

�

(x; t)

and 	(x; t) and integrating over all x.

< p >=

Z

dx	(x; t)

�

�h

i

�

�x

	(x; t) (12)

This is the same pres
ription as for the average position if we just repla
e

the (simple!) position operator x by the (more 
ompli
ated!) momentum

operator p =

�h

i

�

�x

. We will return to this issue and its generalizations later.

At this point you may just 
onsider eqn.12 as another postulate of QM.

What is meant by expe
tation value ?

In the previous paragraph we introdu
ed a formula for the expe
tation value

of some observable (or operator as it is represented in QM). What is this ?

It is not the result of measuring that observable for a single parti
le many

times. On the 
ontrary if the �rst measurement of the parti
le's position
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yields x = 0:5 say, then every subsequent measurement of the parti
le's

position will yield x = 0:5 (we assume that no other measurements are made

in between and the parti
le is subje
t to no new for
es). Rather, < x >

measures the average result for measurements of a ensemble of parti
les all

in the same initial state.

Other observables ...

For the simple situation we have dis
ussed so far it is also easy to write down

expressions for other me
hani
al observables su
h as the kineti
 energy or

angular momentum eg.

< T >=< p

2

=2m >= �

�h

2

2m

Z

	

�

�

2

	

�x

2

dx (13)

4



Le
ture 4

Conservation of Probability

We have argued that the wavefun
tion should be normalized to unity. Physi-


ally this 
orresponds to the simple that the probability of �nding the parti
le

somewhere should be unity. Whatever happens in the subsequent motion we

expe
t that the total probability to �nd the parti
le somewhere should still

total to unity. It is possible to prove this dire
tly from S
hroedinger's equa-

tion. Consider

d

dt

Z

	

�

	dx =

Z

�

�t

	

�

	dx

Using Leibnitz's rule

�

�t

	

�

	 = 	

�

�	

�t

+

�	

�

�t

	

Using the S
hroedinger equation for the time derivatives allows us to rewrite

this as

�

�t

	

�

	 =

i�h

2m

 

	

�

�

2

	

�x

2

�

�

2

	

�

�x

2

!

We now noti
e that this expression 
an be rewritten

�	

�

	

�t

=

�

�x

"

i�h

2m

 

	

�

�	

�x

�

�	

�

�x

	

!#

We 
an now integrate this over all x and see sin
e 	 must go to zero at large

x that we obtain the result

d

dt

Z

	

�

	dx = 0

Thus if it is normalized at t = 0 it will remain so - probability is 
onserved.

This is an important and ne
essary test of the 
orre
tness of S
hroedinger's

approa
h.

Summary so far

QM tells us that the most information we 
an obtain about a (mi
ros
opi
)

parti
le is 
ontained in its wavefun
tion 	(x; t). On
e we know the wave-

fun
tion at one time S
hroedinger's equation allows you to 
al
ulate it at

1



any later time. Physi
al parti
les are des
ribed by normalized wavefun
tions

R

	

�

	 = 1. In fa
t QM tells us to interpret 	

�

	 as a probability density.

This then allows us to write expressions for the expe
tation value of some

observable quantity Q(x; p) as

< Q >=

Z

	

�

Q	dx

where the QM operator Q is just obtained from its 
lassi
al expression by

repla
ing x with just x and p by

�h

i

�

�x

.

Time independent S
hroedinger equation

OK, we have the S
hroedinger equation but how do we go about solving

it ? It turns out that if the potential V is independent of time this may

be a

omplished by a method termed the separation of variables. What this

means is that we seek solutions of the form

	(x; t) = �(x)f(t)

The justi�
ation for this is three fold

� More general solutions 
an be built up from these separable solutions

� They turn out to be states of de�nite energy

� Expe
tation values in these states are independent of time. They are

also termed stationary states.

If we do this we �nd that the S
hroedinger equation redu
es to two ordinary

di�erential equations

f(t) = exp�iEt=�h (1)

H�(x) = E�(x) (2)

E is a 
onstant whi
h we will identify shortly as the energy of the state and

H is the hamiltonian

H =

��h

2

2m

d

2

dx

2

+ V (x)

This se
ond equation involving the Hamiltonian 2 is 
alled the time-independent

S
hroedinger equation. Noti
e that, as advertized, the probability density

2



	

�

	 is time independent. Furthermore, the operator H is a QM version of

the 
lassi
al energy fun
tion for the system and from eqn.2 has an expe
ta-

tion value equal to E. Furthermore, any power of H has expe
tation value

just equal to E raised to that power. Thus the varian
e of the probability

distribution for the energy is zero - the distribution is trivial. Thus any mea-

surement of the energy will return exa
tly E - stationary states are states of

�xed energy.

But what is the energy E - so far we have not spe
i�ed it. In general

we will see that the energy E 
an take on an in�nite number of dis
rete

values dependent on the nature of the potential V . We will 
all these values

E

1

; E

2

; E

3

; : : : and to ea
h allowed value of E there will be an asso
iated

solution to the time-independent S
hroedinger equation �

1

(x); �

2

(x); : : :.

It is a theorem (we will not attempt to prove it) that the most general

solution to S
hroedinger's equation is a linear 
ombination of these stationary

state solutions (the 


n

's are 
onstants)

	(x; t) =

X

n




n

�

n

(x)e

�iE

n

t=�h

(3)

These 
oeÆ
ients 


n


an be usually found from a knowledge of the wave-

fun
tion at t = 0 and the solution of the time-independent problem. The

moral of the story is that on
e we have solved the time-independent equa-

tion we have very little left to do to �nd the most general solution to the

time dependent S
hroedinger equation! Furthermore, the time-independent

equation does not 
ontain i and so we 
an just look for real solutions of this

equation.

Examples

The in�nite square well

Suppose V = 0 for 0 � x � a and is in�nite elsewhere. A parti
le is

permanently 
on�ned inside this potential well. It 
ould be thought of as a

very 
rude model for a single ele
tron atom. Classi
ally, a parti
le 
on�ned

to su
h a system would just boun
e ba
k and forth at 
onstant speed. Its

energy 
ould take on any value. We will see that in QM the allowed possible

energies are dis
rete!

First, noti
e that � = 0 for x < 0 and x > a sin
e there is no probability

of �nding the parti
le outside the well. Inside the well, where V = 0, the

3



time-independent equation redu
es to

��h

2

2m

d

2

dx

2

� = E�

Assuming that E > 0 we may introdu
e the variable k =

q

2mE=�h

2

and

write this equation as

d

2

�

dx

2

= �k

2

�

The general solution to this is

� = A sin kx +B 
os kx

The 
onstants A and B are �xed by applying the boundary 
onditions �(0) =

0 and �(a) = 0. This yields B = 0 and the quantization 
ondition

sin ka = 0

The latter means that ka = n�. Thus not all wavelengths are allowed - only

those whi
h 
orrespond to standing waves in the well. We have seen that the

Bohr quantization 
ondition for the hydrogen atom 
ould be understood on

a similar basis - here we see for the �rst time that the formal theory of QM is

able to explain many of the quantum phenomena whi
h had been observed

and whi
h had proven so diÆ
ult for 
lassi
al physi
s to a

ount for. What

remains - well we still have to normalize the solution - that is the origin of

the remaining freedom in the 
onstant A ! Thus we �nd that the stationary

states of this potential are of the form

�

n

(x) =

s

2

a

sin

n�

a

x

The energy of this state is E

n

=

n

2

�

2

�h

2

2ma

2

.

We speak of the ground state as the state of lowest energy whi
h here


orresponds to n = 1 with E

1

=

�

2

�h

2

2ma

2

. Classi
ally the state of lowest energy


orresponds to the parti
le at rest with E = 0. We see in QM that su
h a

state is impossible. The minimum energy the parti
le 
an have is E

1

whi
h

in
reases as we 
on�ne the parti
le to smaller and smaller regions (a ! 0).

This is a 
orollary of a very general theorem in QM 
alled Heisenberg's

un
ertainty prin
iple. This roughly states that the more a

urately ones

4



knows the position of a quantum parti
le the less 
ertain we are about its

momentum (and hen
e its energy). In fa
t the produ
t of the un
ertainty

in its position times the un
ertainty in its momentum is always greater than

some minimum whi
h is equal to �h=2. We will prove this theorem later in

the 
ourse but one immediate 
orollary is that no parti
le 
an ever be at rest

at a point sin
e then it would have a well-de�ned position and momentum

(zero!). Thus even at zero temperature parti
les always su�er 
u
tuations

in their positions and momenta - they are somewhat smeared out. This of


ourse is required if they sometimes behave like waves ...

Other points to noti
e: as n in
reases the number of zero 
rossings of

the wavefun
tion in
reases. By symmetry the expe
tation value for x is at

x = a=2 for all states.

5



Le
ture 5

Orthogonality - example for in�nite well

Imagine taking the ground state and �rst ex
ited state, multiplying them

and integrating between x = 0 and x = a.

Z

a

0

dx sin (�x=a) sin (2�x=a)

Using the identity

sin (�x=a) sin (2�x=a) =

1

2

(
os (�x=a)� 
os (2�x=a))

We 
an see that the integral is zero - the two wavefun
tions are said to

be orthogonal. A
tually, it is not too hard to see that this is true for the

produ
t of any two wavefun
tions �

n

(x) and �

m

(x) - their produ
t integrates

to zero. This allows us to determine the 
oe�
ients 


n

easily knowing the

initial wavefun
tion. Taking the general expansion result 	 =

P




n

�

n

,

multiplying both sides by �

m

(x) and integrating (at t = 0) leads to the

result




m

=

Z

	(x; 0)�

m

(x)dx

Thus a parti
le starting in a stationary state will always remain in that state

(all the 


n

's are zero bar one) and all average properties of that parti
le will

be time independent.

It will turn out to be a general feature of solutions to the time-independent

S
hroedinger equation for arbitrary potential - di�erent stationary states

(with di�ering energies) will be orthogonal (in this sense) to ea
h other.

Furthermore, any state of the parti
le 
an be expanded out on this set of

spe
ial stationary states and the expansion 
oeÆ
ients determined using the

orthogonality 
ondition.

Time dependen
e

Suppose we manage to 
reate an initial wavefun
tion that is of the form

	(x; 0) =

s

1

a

(sin (�x=a) + sin (2�x=a))

1



Thus we �nd that 


1

= 


2

=

q

1

a

and all other 
's are zero. The energy of

this state is no longer �xed but 
an 
u
tuate - it is not a stationary state.

We 
an now 
ompute the time dependen
e of the probability density of the

parti
le. This yields

a	

�

	 = sin

2

(�x=a) + sin

2

(2�x=a)

+ 2 sin (�x=a) sin (2�x=a) 
os (E

1

� E

2

)t=�h

In obtaining this we have used the result

2 
os � = e

i�

+ e

�i�

Thus the probability density (and hen
e the mean position of the parti
le)

os
illates with time. Let's 
al
ulate < x(t) >

< x(t) >=

Z

	

�

(x; t)x	(x; t)dx

Thus

a < x(t) > =

Z

x sin

2

(�x=a)dx+

Z

x sin

2

(2�x=a)dx (1)

+

Z

2x sin (�x=a) sin (2�x=a) 
os (�Et=�h)dx (2)

where �E = E

2

� E

1

and using the result

Z

x sin

2

(px) =

x

2

4

� x

sin (2px)

4p

�


os (2px)

8p

2

Z

a

0

x sin (�x=a) sin (2�x=a)dx = �

8a

9�

2

we 
an show that

< x(t) >=

a

2

�

1�

32

9�

2


os (�Et=�h)

�

The angular frequen
y of this motion is thus

!

quantum

=

3

2

�

2

�h

ma

2

Thus the mean position of the parti
le os
illates with time in a way reminis-


ent of the 
lassi
al os
illations of a parti
le in the same well. In fa
t if we

2




al
ulate the mean energy of this state E = (E

1

+E

2

)=2 and use it to derive

a speed v we �nd

v


lassi
al

=

5�

2

�h

2

4ma

2

the frequen
y of su
h a motion is then !


lassi
al

=

2�v

2a

and yields

!


lassi
al

=

s

5

2

�

2

�h

ma

2

Thus the quantum os
illation frequen
y is pretty 
lose to the 
lassi
al os-


illation frequen
y of a parti
le whose energy is 
lose to the mean quantum

energy.

!

2


lassi
al

!

2

quantum

=

10

9

Thus 
ertain linear 
ombinations of stationary states 
an produ
e probability

`lumps' whose averaged motion resembles the 
lassi
al motion of a parti
le.

We will see another example of this when we return to the dis
ussion of free

parti
les. Another example of su
h a 
onne
tion to 
lassi
al physi
s is given

the Bohr Corresponden
e Prin
iple whi
h states that in the limit of large

quantum numbers n the results of quantum physi
s agree with the 
lassi
al

motion. A
tually the 
orre
tness of this prin
iple relies on the fa
t that

the separation between energy levels be
omes small for large n - whi
h is

not in fa
t true for potentials whi
h go to in�nity for large distan
e su
h

as the in�nite square well but it is true for the potentials within atoms and

mole
ules - the situation whi
h Bohr was trying to des
ribe.

Ehrenfest's theorem

The 
onne
tion to 
lassi
al physi
s 
an be made more expli
it in a 
elebrated

theorem due to Paul Ehrenfest whi
h shows that quantum expe
tation values

evolve a

ording to Newton's 2nd law. Consider the time rate of 
hange of

the expe
tation value of the momentum < p >

d < p >

dt

=

Z

dx

�

�t

 

	

�

�h

i

�

�x

	

!

Using Leibnitz we �nd

d < p >

dt

=

�h

i

Z

dx

 

�	

�

�t

�	

�x

+	

�

�

2

	

�x�t

!
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Substituting in from the S
hroedinger equation and using integration by parts

we 
an see

d < p >

dt

= �

Z

dx	

�

�V

�x

	

The right hand side is nothing but the expe
tation value of the for
e on the

parti
le and we have the result. Similarly it is easy to see that

d < x >

dt

=< p >

Wave pa
kets and free parti
les

We have seen that the S
hroedinger equation in free spa
e admits simple

plane wave solutions e

ikx�!t

where ! = �hk

2

=2m. However, although we

initially hypothesised that these represented free parti
les it is easy to see

that this 
annot be true.

� They are not normalizable

� If we 
ompute their wave velo
ity v

quantum

=

�hk

2m

it is half the speed of

the 
lassi
al parti
le they are supposed to represent! (v


lassi
al

= p=m =

�hk=m)

� Su
h states do not satisfy the Un
ertainty Prin
iple - they have a def-

inite momentum.

These problems are all evaded on
e we realise that physi
al parti
les are

ne
essarily restri
ted to a �nite region of spa
e. They should hen
e be rep-

resented not by in�nitely long plane wave states but superpositions of su
h

states whose wavelengths/momenta are restri
ted to lie in a small band. Su
h

a solution is termed a wavepa
ket - 	(x; t)

P

.

	(x; t)

P

=

Z

dk
(k)e

ikx�!t

If we assume that 
(k) is strongly peaked about some wavenumber k

0

we 
an

expand !(k) around k

0

!(k) � !(k

0

) + (k � k

0

)

d!

dk

j

k

0

4



Changing variables to s = k � k

0

we 
an write this as

	

P

� e

�!

0

t

Z

ds
(k

0

+ s)e

i(k

0

+s)x�!

0

0

st

This 
an be rewritten

e

i(�!

0

t+k

0

!

0

0

t)

Z

ds
(k

0

+ s)e

i(k

0

+s)(x�!

0

0

t)

Thus the wavepa
ket at time t is just of the same form as at t = 0 but

translated to x � !

0

0

t. Thus the velo
ity of the pa
ket as a whole (the so-


alled group velo
ity) is just !

0

0

whi
h is none other than the 
lassi
al velo
ity

! Furthermore, by 
hoosing a suitably rapidly de
aying fun
tion 
(s) we 
an

make the resulting wavepa
ket go to zero suÆ
iently fast as x ! 1 as to

render it normalizable. Finally, su
h wavepa
kets are 
omaptible with the

Un
ertainty Prin
iple - if you 
ompute the typi
al spread in momenta k it

is possible to show that it varies inversely with the typi
al region in position

over whi
h the wavepa
ket is none zero - the 
oeÆ
ient of proportionality

being at least �h=2 (the latter being realised by a gaussian fun
tion 
(k)).

In summary (free) physi
al parti
les do not possess a de�nite energy

or momentum but possess a spread 
ompatible the un
ertainty prin
iple

given their spatial lo
alisation. Mathemati
ally they are represented by a

wavepa
ket whi
h is just a linear superposition of plane wave states. Su
h

a wavepa
ket propagates approximately as a single probability lump with a

velo
ity equal to the 
lassi
al velo
ity of the free parti
le of that energy.
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Le
ture 6

Solving the S
hroedinger equation on the 
omputer

Types of solutions

We have seen that �nding solutions to the full S
hroedinger equation redu
es

to solving the time independent S
hroedinger equation

H	 = E	

where H is the hamiltonian (or energy) operator. The solutions to this

equation are of two types

� Bound state solutions

� S
attering solutions

The former are exempli�ed by solutions of the in�nite square well potential

- we see a dis
rete spe
trum of normalizable allowed states. A parti
le in

su
h a state has zero 
han
e of being found at in�nity - it is essentially


on�ned to a 
ertain region of the x-axis. The reason for this is simply

that its energy E is less than the potential at large distan
e E < V (1) -

even quantum e�e
ts 
annot allow it to tunnel over in�nite distan
es. The

s
attering solutions on the other hand allow the parti
le to es
ape to large

distan
es and are 
hara
terized by E � V (1). One example of su
h a

state is the free parti
le. We have seen that su
h states have a 
ontinuous

range of possible energies E and 
an be represented by non-normalizable

wavefun
tions - like e

ikx

. To a
hieve physi
al s
attering wavefun
tions we

must then superpose many of these mathemati
al solutions to S
hroedinger's

equation leading to the 
reation of wavepa
kets. Su
h wavepa
kets 
ontain

a set of momenta and energies 
entred around some 
entral (
lassi
al) value

and hen
e satisfy the un
ertainty prin
iple. They are then normalizable.

For the moment we will 
on
entrate on the bound states (for potentials

like the in�nite square well these are the only possibility). For most realisti


potentials we will �nd that is impossible to solve the (time independent)

S
hroedinger equation to �nd the allowed states and energies and so we

must turn to numeri
al methods to �nd approximate solutions.

1



Dis
retization

The simplest method to solve the one-dimensional problem for bound states

is 
alled the shooting method. First, we repla
e derivatives with �nite di�er-

en
es

d�

dx

!

�

n+1

� �

n

�x

Here, �

n

represents the value of �(x) at x = n�x and �x is a (small) interval

on the x-axis. The idea is that for �x small enough the approximation for the

derivative will be a

urate enough and the �nal solution �

n

will approximate


losely the solution to the 
ontinuum equations. To pro
eed we �rst write

the S
hroedinger equation as two �rst order equations

d�

dx

= p

dp

dx

=

2m

�h

2

(V � E)�

Next we apply our simple dis
retization re
ipe and rearrange the two equa-

tions into the simple form

�

n+1

= �

n

+�xp

n

p

n+1

= p

n

+�x

2m

�h

2

(V

n

� E)�

n

This way of writing the S
hroedinger equation makes it 
lear what we have

to do - if we spe
ify an initial value (say at x = 0) for �(0) and

d�(0)

dx

we


an use these equations to predi
t their values at x = �x. Having their

values at x = �x we 
an use the equations again to get their values at

x = 2�x et
 et
. In this way we 
an generate the wavefun
tion for all x.

What value should we 
hoose at x = 0 ? If the potential is symmetri
 about

x = 0 i.e V (x) = V (�x) it is easy to see that the �nal wavefun
tion obeys

one of two 
onditions �(x) = �(�x) the so-
alled even parity solutions or

�(x) = ��(�x) the odd parity solutions. The former are even fun
tions and

hen
e have gradient p = 0 at x = 0. The latter have �(0) = 0. Furthermore,

we 
an adjust the s
ale of �(x) arbitrarily at this stage so that a suitably

general set of initial 
onditions are

� �(0) = 1, p(0) = 0 (even parity)

� �(0) = 0, p(0) = 1 (odd parity)

2



Allowed energies - shooting and bise
tion

OK, so now we have initial 
onditions and a re
ipe eqn. 1 to generate the

wavefun
tions. At this point you may be wondering - what determines the

allowed values of E ? We will see that only for rather spe
ial values of the

energy E will iteration of these equations yield a normalizable wavefun
tion

- in general the numeri
al solution will yield wavefun
tions whi
h diverge

very rapidly at large x. Thus the shooting te
hnique 
onsists of guessing a

value for E, iterating the equations determining �

n

and seeing whether in

some region far from the 
enter of the potential the wavefun
tion is `small'

- if not we use some 
riterion for improving on our guess for E. If we do

this 
arefully, gradually in
reasing the energy E, we 
an �nd all the allowed

energies and asso
iated wavefun
tions.

One good way to lo
ate the energies pre
isely is 
alled bise
tion. By

experimenting with the lo
al Java applet you will noti
e that if you have

found two values of E say E

1

and E

2

whi
h straddle an allowed energy they

will diverge with opposite signs at large x (say some �xed point x = x

L

).

Thus if you overshoot the allowed energy the wavefun
tion gets large in say

a positive dire
tion (�(x

L

) > 0) while undershooting yields a wavefun
tion

whi
h diverges in a negative dire
tion (�(x

L

) < 0). Now 
onsider the mean

energy (E

1

+ E

2

)=2. If its wavefun
tion at x = x

L

has the same sign as say

the wavefun
tion 
omputed at E

1

you 
an use this midpoint energy as a new

guess for E

1

. If not it must have the same sign as that 
orresponding to

E

2

and you may use the midpoint energy as the new E

2

. In either 
ase you

have now halved the region in whi
h the true allowed energy is lo
ated. By

iterating this pro
edure many times you 
an lo
ate the energy to arbitrary

pre
ision.

General Strategy

� De
ide a region of E in whi
h you want to sear
h for allowed energies.

De
ide also the minimum possible energy.

� Guesstimate a typi
al energy level separation (say using dimensional

analysis)

� De
ide on a value for x

L

- the potential will 
ontain a length s
ale - use

some multiple of this.

3



� Set a lower energy E

1

to the minimum possible energy. Set the upper

energy E

2

to the same. Compute �(x

L

) for this energy.

� S
an upward in the energy E

2

(using the average energy level separation

as a guide) until you �nd �(x

L

) 
hanging sign - an allowed energy lies

now between E

1

and E

2

.

� Bise
t to �nd exa
t energy.

� Reset lowest energy E

1

to (just above) this allowed energy

� Repeat last three steps until you have exhausted the initial energy

region of interest.

The C 
ode you will use employs this strategy. To 
hange the potential you

are examining you just edit the fun
tion potential()

Harmoni
 Os
illator

We will �rst use this te
hnique to �nd the allowed energies and wavefun
tions

of the harmoni
 os
illator potential V =

1

2

m!

2

x

2

. First we simplify the dis-


rete equations by working in terms of res
aled energy � =

2m

�h

2

E. Also, the po-

tential is now of the form v(x) =

2m

�h

2

m!

2

x

2

2

= �

2

x

2

. Initially in the 
ode we set

� = 1=2. First we set PARITY=0 (even parity) and 
ompile the 
ode. When

we run it the energies are (approx) 0:50; 2:50; 4:50; 6:50; 8:50. Similarly when

we set PARITY=1 (odd parity) we �nd the energies 1:50; 3:50; 5:50; 7:50; 9:50.

Thus we see that the energies � of the harmoni
 os
illator are equally spa
ed

(and for � = 1=2) separated by unity. The ground state has non-zero energy

as required by the un
ertainty prin
iple. The plotted wavefun
tions os
illate

and then de
ay rapidly to zero at large x. As the energy in
reases the number

of os
illations in
reases just as for the in�nite square well. Furthermore, we


an show that the produ
t of any two su
h states integrated over the interval

is zero as required by orthogonality!

If we vary � we will �nd that the energy level splitting varies as 2�. In

fa
t we 
an demonstrate numeri
ally that

E

n

= �h!

�

n +

1

2

�

We will see later that we 
an derive this result analyti
ally. However, by

repeating this 
al
ulation for the anharmoni
 os
illator V = �x

4

we 
an use

4



these numeri
al methods to solve a system whi
h is not tra
table by analyti


methods. Similarly we 
an use these te
hniques to study the bound states of

the �nite square well - for a deep well the low lying states will look like those

of the in�nite well - although the wavefun
tion will now extend outside the

range of the well - de
aying exponentially out to large distan
e. Also, a �nite

well possesses only a �nite number of bound states - for large energies the

parti
le 
an move o� to in�nite distan
e with �nite probability - it exhibits a


ontinuum of so-
alled `s
attering' states. These are not a

essible with the


urrent 
ode.
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Le
ture 7.

Ve
tors, Operators and the Hamiltonian evolution

We now turn to a more abstra
t dis
ussion of QM. We have seen that in

wave me
hani
s a quantum system is des
ribed mathemati
ally by a fun
-

tion of spa
e and time 
alled the wavefun
tion. This wavefun
tion forms

a 
onvenient representation for the more abstra
t notion of quantum state.

Remember that the des
ription of a quantum state is quite di�erent from its


lassi
al 
ounterpart - it must be 
onsistent with the Heisenberg un
ertainty

prin
iple and the prin
iple of superposition. Thus a quantum state des
ribing

a single parti
le may admit the possibility that a measurement of the par-

ti
le's position or momentum may return more than one value. To explain

double slit interferen
e we must also assume it may be split and re
ombined

to yield other new quantum states.

Thus the mathemati
al quantity whi
h is used to represent this quantum

state should 
ontain a large number of di�erent 
omponent pie
es of infor-

mation and two su
h obje
ts may be added together with di�erent weights

to produ
e another su
h quantum state obje
t. If we look around in mathe-

mati
s for obje
ts whi
h behave in this way we will see that quantum states

have the same properties as ve
tors. Unlike the familiar ve
tors of three di-

mensional spa
e the quantum state ve
tors inhabit a so-
alled 
omplex ve
tor

spa
e whose dimemsion may be in�nite! To see how this all works out lets

summarize the important properties of ordinary ve
tors - on
e this is done it

will be obvious whi
h of these properties 
arries over to more general ve
tor

spa
es. These properties are as follows

1. The sum of two ve
tors a and b is a ve
tor 
 = a+ b.

2. We 
an multiply any ve
tor by a s
alar to yield another ve
tor eg.

b = �a.

3. Ve
tors 
an be expanded in 
omponents; that is it is possible to 
hoose

a suitable basis set of ve
tors (like (i; j;k) of Cartesian 
oordinates)

and express every ve
tor as a sum over basis ve
tors weighted by (real

number) 
oeÆ
ients.

a = a

i

i+ a

j

j+ a

k

k

The set of 3 numbers (a

i

; a

j

; a

k

) are then the 
omponents of the ve
tor.

1



4. There exists a dot produ
t between two ve
tors a and b denoted a:b

whi
h is just a s
alar. If a and b are expanded on a Cartesian basis

this is just

a:b = a

i

b

i

+ a

j

b

j

+ a

k

b

k

The 
omponents of a ve
tor are then nothing else than the dot produ
t

of the ve
tor with the (unit) basis ve
tors eg. a

i

= i:a.

The generalization that is needed to dis
uss ve
tors for QM is

� Introdu
e a new notation ja > for quantum state ve
tor.

� Repla
e real s
alars by 
omplex s
alars. (ve
tor 
omponents are also

in general 
omplex numbers)

� Let the dimension of the spa
e in whi
h QM takes pla
e be as big as

you like. Thus the expansion of a state ve
tor in 
omponents 
an be

written

ja >=

X

i

a

i

je

i

>

where the set of ve
tors fje

i

>g forms a basis in the spa
e.

� The exists a dot produ
t whi
h 
ombines two ve
tors to yield a 
omplex

number. This is denoted

< ajb >

� The analog of a Cartesian basis is one in whi
h the basis ve
tors are

orthogonal { < e

i

je

j

>= Æ

ij

.

� The 
omponents a

i


an just be intrepreted as the dot produ
ts of the

basis ve
tors with the ve
tor eg. a

i

=< e

i

ja >.

� The dot produ
t between two ve
tors ja > and jb > in su
h a basis is

now

a:b = a

�

i

b

i

+ a

�

j

b

j

+ a

�

k

b

k

The latter result 
an be understood if we allow ourselves two types of

ve
tor - the original (sometimes 
alled ket-ve
tor) ja > and a dual bra ve
tor

< aj whose 
omponents a

bra

i

with respe
t to the dual bra basis < e

i

j are just

the 
omplex 
onjugates of the ket 
omponents a

bra

i

= a

�

i

. The ve
tor < aj

dual to ja > is sometimes also 
alled the adjoint ve
tor. Noti
e that this

2



de�nition of the dot produ
t ensures that the dotprodu
t of a ve
tor with

itself is a positive real number (this will be a ne
essary ingredient in order to

allow for the probability interpretation of the theory - it will allow us to nor-

malize the quantum state ve
tor to be of unit length < aja >= 1 
ompletely

analogously to the normalization of the S
hroedinger wavefun
tion).

With this te
hnology we 
an expand the state ve
tor j	 > on some n-

dimensional basis fje

i

>g - we will assume from now on the basis is orthonor-

mal;

j	 >=

n

X

i=1

 

i

je

i

>

The 
oeÆ
ients  

i

are just the generalized dot produ
ts of the state ve
tor

with the basis ve
tors �

i

=< e

i

j	 >. Let us postpose dis
ussion of what

appropriate set of basis ve
tors to 
hoose. We will see that this is inti-

mately 
onne
ted to the 
hoi
e of observable to measure. Just noti
e that

this mathemati
al expansion of the state ve
tor embodies the physi
al prin-


iple of superposition - that is the quantum probability wave 
an be the sum

of many 
ontributions ea
h of whi
h may 
orrespond to 
lassi
ally distin
t

possibilities (for example ea
h basis ve
tor might represent a possible lo
a-

tion of the parti
le on the x-axis - the quantum state is a sum over these -

allowing the parti
le to be simultaneously at many positions and for
ing a

probabilisti
 interpretation of the theory).

The evolution of the state ve
tor follows from the S
hroedinger equation

of wave me
hani
s:

i�h

�j	 >

�t

= Hj	 > (1)

The quantity H is 
alled the Hamiltonian operator. Its purpose is to trans-

form one ve
tor into another (neighboring) ve
tor. It has the dimensions of

energy - a primary observable.

Normalization of the wavefun
tion translates into the statement < 	j	 >=

1 - i.e the state ve
tor is a kind of unit ve
tor. This normalization 
ondi-

tion was ne
essary for a probabilisti
 interpretation of the theory - and it is

ne
essary that it remain true for all time - thus as the state ve
tor evolves

in time it remains always of unit `length'. What properties must H have in

order that this be true ?

Imagine solving the equation 1 over a small time period �t.

j	(t+�t) >= j	 > �

i�t

�h

Hj	(t) >

3



To 
he
k the normalization 
ondition we need to introdu
e the 
on
ept of

adjoint operator. Suppose j� >= Aj > then the adjoint ve
tor < �j is given

by

< �j =<  jB

y

This is often written as

< B

y

 j

whi
h emphasises that B

y

operates on the bra ve
tor - here <  j Thus we

�nd that

< 	(t+�t)j	(t+�t) >=< 	(t)j	(t) > +

i�t

�h

�

< 	(t)j(H

y

�H)	(t) >

�

Thus we require the Hamiltonian to be a self-adjoint or Hermitian operator

H = H

y

. We will see that hermitian operators play a 
entral role in quantum

me
hani
s.

Noti
e that our argument implies that the operator (1 �

i�t

�h

H) applied

to any ve
tor preserves its length to O(�t

2

). In the limit of vanisihing �t it

is an example of a unitary operator U . Su
h operators U have the property

U

y

= U

�1

where U

�1

is the inverse operator - the operator whi
h undoes the

e�e
t of U . To see this is norm preserving 
onsider

ja >= U jb >

< aU

y

U ja >=< aja >

In general, su
h an operator may be written as exp iH where the operator

H is hermitian (not ne
essarily the Hamiltonian). This is the 
ase for the

S
hroedinger evolution eqn. 1 whi
h has a formal solution

j	(t) >= exp�iHt=�hj	(0) >

Noti
e that general unitary operators take one orthonormal frame into

another - they 
orrespond to a 
hange of basis. For example if we have some

orthonormal basis fje

i

>g then for any unitary operator S we may 
onstru
t

another basis fje

p

rime

i

>g whi
h is also orthonormal.

je

0

i

>= Sje

i

>

then

< e

0

j

je

0

i

>=< e

j

jS

y

Sje

i

>= Æ

ij

4



The length of any ve
tor j	 > is then invariant under su
h a 
hange of basis

(although its 
omponents will 
hange). Unitary 
hanges of basis are just

analogous to using a rotated frame of referen
e in a dis
ussion of two or

three dimensional ve
tors.

Eigenvalues and Eigenve
tors

Consider again ve
tors in ordinary three dimensional spa
e. And 
onsider the

rotation operator - most ve
tors will 
hange under rotation - the ex
eption

are ve
tors whi
h lie along the axis of rotation. They don't 
hange at all.

Also, ve
tors lying in the plane at 90 degrees to the axis just 
ip sign if the

angle of rotation is 180 degrees. In a 
omplex ve
tor spa
e su
h as used by

QM every linear transformation has `spe
ial' ve
tors su
h as these - they are


alled eigenve
tors. The transform into multiples of themselves under the

operator/transformation. The multiplying 
onstant is 
alled the eigenvalue.

T j� >= �j� >

Hermitian operators are spe
ial be
ause

� They have real eigenvalues

� Their eigenve
tors are orthogonal (and 
an be made orthonormal)

� They span the spa
e - that is any ve
tor 
an be expanded as a linear


ombination of the eigenve
tors - they 
an hen
e be used as a basis set.

The last statement is stri
tly only always true for �nite dimensional ve
tor

spa
es. The �rst of these is easily proved:

< �jT j� >= � < �j� >

be
ause of hermiti
ity we may rewrite this as

< T�j� >= �

�

< �j� >

(we have used the fa
t that the Hermitian adjoint of a s
alar is just its 
om-

plex 
onjugate) Hen
e � = �

�

QED. To prove the se
ond statment suppose

T j� >= �j� >

5



and

T j� >= �j� >

Thus

< �jT� >= � < �j� >

Using hermiti
ity we see that this 
an be rewritten

< T�j� >= � < �j� >

But the LHS is just < ��j� > and sin
e � is real and � 6= � we see

< �j� >= 0

Generalized Statisti
al Interpretation

Suppose now that we have a quantum system des
ribed by a state ve
tor j	 >

evolving a

ording to eqn. 1. It is a postulate of QM that every observable

will be represented in the theory by an hermitian operator. Suppose we


hoose to make a measurement of some physi
al observable 
orresponding to

an hermitian operator Q. The possible results of that measurement are the

eigenvalues measuring q

i

is simply

j < �

Q

i

j	 > j

2

After the measurement the state `
ollapses' to the state j�

Q

i

> and will then


ontinue to evolve a

ording to eqn. 1 on
e more.

6



Le
ture 8.

The Un
ertainty Prin
iple

As we have des
ribed, for any observable A we will asso
iate an hermitian

operator A. The expe
tation value of the operator in the state j	 > is then

naturally given by the expression

< A >=< 	jA	 >

Consider two su
h observables A and B. The produ
t of the (squared) un-


ertainty in A will be

�

2

A

= h(A� < A >)	j(A� < A >)	i =< f jf >

Similarly for the observable B (with f repla
ed by g) Therefore

�

2

A

�

2

B

=< f jf >< gjg >� j < gjf > j

2

This is 
alled the S
hwarz inequality. It is a theorem for all ve
tor spa
es

equipped with a notion of dot produ
t. Now the RHS of this expression is

always bigger than the square of the imaginary part of < f jg > so we 
an

also write this as

�

2

A

�

2

B

�

�

1

2i

[< f jg > � < gjf >℄

�

2

But

< f jg >=< 	j(A� < A >)(B� < B >)j	 >

This is simply

< AB > � < A >< B >

Similarly

< gjf >=< BA > � < B >< A >

So we �nd

�

2

B

�

2

A

�

�

1

2i

< [A;B℄ >

�

2

where the square bra
kets are de�ned by

[A;B℄ = AB �BA

1



This is the Un
ertainty Prin
iple in its most general form. It says that for

any pair of observables whose quantum operators do not 
ommute there will

be an asso
iated un
ertainty relation for the produ
t of the 
u
tuations in

their expe
tation values. This will be true for any quantum state ve
tor

j	 >. If we 
hoose A = x and B =

�h

i

d

dx

we �nd

[x; p℄ = i�h

and hen
e

�

x

�

p

�

�h

2

This is the famous Heisenberg un
ertainty prin
iple whi
h we have en
oun-

tered several times already.

Operators whi
h do not 
ommute do not share a 
omplete set of 
ommon

eigenve
tors - thus if we make a measurement of one of them we will (by

the generalized statisti
al interpretation des
ribed above) 
ollapse the state

ve
tor to a parti
ular eigenve
tor of that observable, whi
h will not then be

an eigenve
tor of the other observable. Indeed, if we 
hoose to expand this


ollapsed state ve
tor on the basis of eigenve
tors of the se
ond observable we

will generate a range of values - i.e a measurement of that se
ond observable

would be un
ertain. The magnitude of that un
ertainty would be given by

the un
ertainty relation.

Finite dim representations - matrix me
hani
s

Let us now derive a 
on
rete realization of these ideas by thinking of a �nite

dimensional system endowed with some orthonormal basis set fje

i

>g, i =

1; : : : n. An operator T takes every ve
tor into some other ve
tor. Thus

a
ting on a parti
ular basis ve
tor je

1

> we would �nd

T je

1

>= T

11

je

1

> +T

21

je

2

> + � � �+ T

n1

je

n

>

and similarly for all the other basis ve
tors. Thus the e�e
t of the transfor-

mation 
an be en
oded in n

2


oeÆ
ients T

ij

where we 
an see that

T

ij

=< e

i

jT je

j

>

Furthermore if j� > is an arbitrary ve
tor

j� >= a

1

je

1

> +a

2

je

2

> + � � �+ a

n

je

n

>

2



then

T j� >=

X

j

a

j

(T je

j

>) =

X

i

0

�

X

j

T

ij

a

j

1

A

je

i

>

Evidently T takes a ve
tor with 
omponents a

1

; : : : a

n

into a ve
tor with


omponents a

0

i

= T

ij

a

j

. It is easy to see that a 
ompound operator C = ST

is just represented by a set of n

2

numbers C

ij

given by

C

ij

=

X

k

S

ik

T

kj

Thus if we represent the state ve
tor by its 
omponents in a parti
ular basis,

then operators may be represented by matri
es. Furthermore, if we think of

the 
omponents of a ket ve
tor ja > as just a 
olumn matrix, then the dot

produ
t < bja > is just the matrix produ
t

b

y

a

where the dagger operation transposes the 
olumn ve
tor jb > into the row

ve
tor < bj and takes its 
omplex 
onjugate.

Now 
onsider the s
alar

< �jAj > =

X

i;j

�

�

i

 

j

< e

i

jAje

j

> (1)

=

X

i;j

�

�

i

A

ij

 

j

(2)

If A is Hermitian we must have that the LHS equal

< H�j >

This will only be true when

A

ij

= A

�

ji

This then is the de�nition of a Hermitian matrix. It is a result in matrix

theory that the eigenvalues of a hermitian matrix are purely real and that

the eigenve
tors are orthonormal and span the original spa
e - just as for

the abstra
t operators. Unitary matri
es are then simply those matri
es

whose (matrix) inverse is just equal to its (matrix) hermitian 
onjugate as

you would expe
t.

Thus any observable 
an be represented by either an operator or a (possi-

bly in�nite dimensional) hermitian matrix. The possible (real) values whi
h

3




an result from measurement of that observable are just the eigenvalues of

that matrix and the probability of measuring any su
h value is just the (mod)

square of the 
omponent of its state ve
tor along the eigenve
tor 
orrespond-

ing to that eigenvalue. Thus most of day to day business of doing a QM


al
ulation, written in this language, 
orresponds to �nding the eigenvalues

and eigenve
tors of some Hermitian matrix A. For small systems this 
an be

done by setting the determinant of A � �I equal to zero. This generates a

polynomial equation with n roots - the eigenvalues �

i

; i = 0 : : : n.

Noti
e that a matrixM will take on a diagonal form in a basis of its own

eigenve
tors

M

ij

=< e

i

jM je

j

>= �

j

< e

i

je

j

>= �

j

Æ

ij

The transformation to this basis from the original basis must be a unitary

matrix transformation (sin
e it must preserve the length of the state ve
tor).

Thus

je

D

i

>= S

ij

je

j

>

The form of the matrix eigenvalue equation may then be preserved if the

matrix M

ij

undergoes a so-
alled similarity transformation.

A

diagonal

= SAS

y

The only remaining question is how is the unitary matrix S determined ? The

unitary matrix 
an be built from the eigenve
tors of the matrix by assembling

them into su

essive 
olumns of S. Thus if we know the eigenve
tors of an

given matrix (in a given basis) we 
an 
onstru
t the unitary matrix that

e�e
ts the 
hange of basis whi
h renders the matrix diagonal.

It is also 
lear then that if two operators have a 
ommon set of eigen-

ve
tors they 
an be simultaneously diagonalized (put in diagonal form) by

a 
ommon unitary transformation. But diagonal matri
es 
ommute - hen
e

there will be no un
ertainty relation holding between the two 
orresponding

observables. So su
h observables are often said to be 
ompatible. The oppo-

site reasoning is also true - in
ompatible operators are those whi
h do not


ommute and have a non-trivial mutual un
ertainty relation. They 
annot

be simultaneously diagonalized and have di�erent eigenve
tors.

Numeri
al methods for solving matrix me
hani
s problems often turn

this around - they typi
ally fo
us on �nding iteratively a transformation S

whi
h is 
apable of rendering A diagonal. The diagonal elements are then

the eigenvalues and the matrix whi
h e�e
ts the diagonlization yields the

eigenve
tors.

4



The S
hroedinger equation just be
omes a matrix equation now. This


an be seen by taking the ve
tor form and expanding j	 > on a (time-

independent) set of basis states fje

i

>g

j	 >=

X

i

< e

i

j	 > je

i

>

Inserting this into the S
hroedinger equation we �nd

i�h

X

i

d < e

i

j	 >

dt

=

X

i

Hje

i

>< e

i

j	 >

Take dot produ
t of this with < e

j

j. Orthogonality of the basis says

i�h

< e

j

j	 >

dt

=

X

i

< e

j

jHje

i

>< e

i

j	 >

or equivalently (< e

i

j	 >= 


i

et
)

i�h

d


i

dt

= H

ij




j

where H

ij

is the Hamiltonian matrix. If we look for solutions of this equation

in whi
h all the 


i

vary with time in the simple way 


i

� e

�iEt=�h

(the station-

ary solutions) we �nd that the allowed energies E are just the eigenvalues of

the Hamiltonian matrix and the eigenve
tors the allowed stationary states

5



Le
ture 9.

Chemi
al Bonding revisited

We 
an use this matrix formulation of QM to return to the problem of un-

derstanding the QM origin of the 
hemi
al bond. Suppose we are looking

at say the H

+

2

ion whi
h 
onsists of just one ele
tron shared between two

protons. If these two protons are a long way apart we 
an envisage the ele
-

tron as being atta
hed to one or the other - giving two physi
al states j1 >

and j2 >. These will be our base states. This trun
ation of the spa
e of all

states to just two will be suÆ
ient to dis
uss simple properties of the ground

state of the system. Imagine taking the two protons in�nitely far apart -

then we expe
t no overlap < 1jHj2 >= 0 - the (lo
al) Hamiltonian 
annot


ause an ele
tron to jump from one state to another. In this limit we 
an

trivially solve the S
hroedinger equation for the two state system - we �nd

j1 >� exp (�iH

11

t=�h). Thus H

11

= E

0

is to be interpreted as the energy

an ele
tron would have in a single hydrogen ion. By symmetry it is equal to

H

22

- the energy if the ele
tron lived on the other proton. As we put the two

protons 
loser and 
loser together we �nd a non-zero 
han
e for the ele
tron

to jump from one proton to another - this is represented by a nonzero matrix

element between the two states - < 1jHj2 >6= 0 = �A say. Thus the two

state system we must solve takes the form

i�h

 

d


1

dt

d


2

dt

!

=

 

E

0

�A

�A E

0

! 




1




2

!

where 


1

=< 1j	 > et
. Lets look for solutions where both amplitudes 


1

; 


2

have the same time dependen
e exp�iEt=�h. Thus we need to solve the

matrix eigenvalue problem H
 = E
. The possible eigenvalues turn out to

be

E

+=�

= E

0

+ =� A

with 
orresponding eigenve
tors je

+=�

=

1

p

2

(j1 > += � j2 >). Thus the

ground state is lowered in energy with respe
t to a single hydogren atom and

its amplitude is an even fun
tion of the two separate amplitudes. In order to

get the true ground state we must use a state in whi
h the ele
tron is equally

split between the two protons! This energy will de
rease as the distan
e

between the two protons is de
reased (i.e we assume that the magnitude of

A in
reases as the distan
e de
reases) - hen
e 
hemi
al bonding.

1



Noti
e also, that if we start out with the ele
tron lo
ated on atom j1 >

it will not remain so - the presen
e of the two time dependent fa
tors for

the eigenstates, whi
h os
illate at di�erent frequen
ies, ensures that at some

later time it will 
ontain an admixture of the se
ond state - i.e there will be

some probability that the ele
tron would be found on the se
ond atom!

Suppose we had two distin
t atoms trying to share an ele
tron in this

pi
ture. It is easy to modify the 
al
ulation to handle the situation when

H

11

6= H

22

. For small A the new energies are

E

I

= H

11

+

A

2

H

11

�H

22

E

II

= H

22

�

A

2

H

11

�H

22

This is typi
ally mu
h smaller than the splitting for equal energies and ex-

plains why single ele
tron bonding in non-symmetri
 mole
ules is not very


ommon.

A more typi
al situation is the two ele
tron 
hemi
al bond in whi
h two

ele
trons are shared by the two atoms. The hydrogen mole
ule furnishes a

ni
e example. The situation 
an still be modelled approximately as a two

state system 
orresponding to the physi
al situation in whi
h ele
tron a is

around the �rst proton and ele
tron b is around the se
ond and vi
e versa.

As before the base states for these two situations have the same energy by

symmetry but as before there is a possibility of hopping or ex
hange of the

two ele
trons between the two protons. The mathemati
s is identi
al to the

single ele
tron problem and so we expe
t that the allowed energies of the


ombined system are split by this quantum me
hani
al hopping and we pre-

di
t that the energy of the ground state is lowered as a result. This de
rease

in ground state energy is a

entuated for small inter-proton separations and

results in a 
hemi
al bond - the 
ovalent bond.

If we admit two more base states into the pi
ture - those 
orresponding

to the two ele
trons being on one or the other of the two atoms (if they

are dissimilar) we 
an 
an allow for ioni
 bonding in this pi
ture. Thus by

extensions of these ideas we 
an start to understand the quantum me
hani
al

basis for 
hemistry.

2



Emergen
e of wave me
hani
s

Consider a one dimensional 
rystal with latti
e sites i = 1 : : :N spa
ed a

apart. A quantum parti
le 
an move on this latti
e and we 
an adopt a set

of basis states to des
ribe this motion as follows je

i

> 
orresponds to the

parti
le being lo
ated at site i.

j	 >=

X

i

< e

i

j	 > je

i

>

Writing down the S
hroedinger equation for this system we �nd

i�h

d


i

dt

=

X

j

H

ij




j

where  

i

=< e

i

j	 > is the amplitude for the parti
le to be lo
ated at site

i (the 
omponent of the state ve
tor on the basis ve
tor je

i

>). The matrix

elements H

ij

are just

H

ij

=< e

i

jHje

j

>

and measure the 
omponent of Hje

j

> on the basis ve
tor je

i

>. Remember

that the hamiltonian measures the 
hange in a ve
tor under an in�nitessimal

amount of time. We expe
t that for very short times the only state a parti
le


an hop to from latti
e site i are its neighbours i� 1 and i+1. Furthermore

we expe
t that the probability for going in either dire
tion is the same. Thus

we might guess

Hje

i

>= (V + 2A)je

i

> �Aje

i�1

> �Aje

i+1

>

where A and V are some 
onstants. Furthermore, we expe
t that for a free

parti
le the ve
tor 
orresponding to a uniform probability distribution for

the parti
le is time independent. This identi�es V as a simple fun
tion of

the potential energy of the parti
le. We thus have found

H

ij

= �Aa

2

�

ij

+ V Æ

ij

where �

ij

is a dis
rete form of the operator

d

2

dx

2

restri
ted to the 
rystal

latti
e. Furthermore, we 
an rewrite this matrix equation in the suggestive

form

X

j

a

 

�Aa�

ij

+ V

Æ

ij

a

!

 

j

= E 

i

3



In the limit in whi
h a ! 0 with N ! 1 the sums be
ome integrals and

Æ

ij

=a ! Æ(i � j) where i and j 
an now be thought of as 
ontinuous valued

positions. Thus this equation will be the same as the fundamental equation

of wave me
hani
s if we require

Aa =

�h

2

2m

In this limit 
an 
learly adopt a normalization for the eigenve
tors in

whi
h

X

i

aj 

i

j

2

= 1

whi
h just goes over into the usual form

Z

dx 

�

(x) (x) = 1

when it is realized that  

i

=< e

i

j	 >=  (x

i

) is just the probability ampli-

tude for �nding the parti
le at latti
e site x

i

. Noti
e that the eigenve
tors

then take the form of Dira
 delta fun
tions  

i

(x

j

)!

Æ

ij

p

a

.

Thus we 
an see that wave me
hani
s is just one representation of QM -

in whi
h we fo
us on measurements of position and expand all ve
tors on a

basis 
orresponding to the eigenve
tors of the position operator. On a �nite

latti
e this is a �nite dimensional matrix problem and as a! 0 it goes over

to a in�nite dimensional matrix problem. Di�erential operators - like

d

2

dx

2

being just 
onvenient representations of in�nite dimensional matri
es !

Indeed you 
an see that the spa
e of all fun
tions satis�es all the require-

ments of a ve
tor spa
e - the sum of two fun
tions is a fun
tion. One 
an

de�ne operators and s
alars (just 
omplex numbers) and most importantly

one 
an de�ne the notion of a dot produ
t where summation over 
omponents

is repla
ed by integration over a 
ontinuous valued index - the position x.

The most deli
ate remaining issue 
onsists of 
ompleteness - that any fun
tion


an be expanded out as a sum over a set of basis fun
tions. The boundary


onditions play a 
ru
ial role here - if the wavefun
tion is subje
t to suitable

boundary 
onditions this postulate may also be satis�ed - eg. Fourier series

and the in�nite square well. Su
h fun
tions are also square integrable - that

is their dot produ
t is �nite always. The latter is ne
essary for a probability

interpretation of the theory. Fun
tions satisfying these requirements are said

to live in a Hilbert spa
e after the famous mathemati
ian.
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Band stru
ture

Suppose we use this latti
e S
hroedinger equation to model the situation in

a 
rystal in whi
h an additional 
onstant potential energy is a
quired when

an ele
tron is at a latti
e site - V

i

= V

0

say. It is easy to see that e

ikna

is a

solution of the time independent S
hroedinger equation with energy

E = V

0

�

�h

2

m

(1� 
os ka)

for any k from �=a to zero (for an in�nitely long 
rystal). Thus the possible

energies form a band with energies ranging from V

0

to V

0

�

2�h

2

m

. Clearly V

0

is the energy an ele
tron would have on a isolated latti
e site - its original

atomi
 energy level - this is split into a band of allowed energies in the 
rystal.

Furthermore, a similar pro
ess will be true for all the original atomi
 levels -

leading to a sequen
e of bands of allowed energies separated by �nite energy

gaps. This stru
ture is a 
ru
ial 
omponent to the arguments whi
h are used

to explain all metalli
, insulator and semi
ondu
tor behavior. Ele
trons �ll

these stationary states up to some maximum energy - the so-
alled Fermi

energy (there is a prin
iple 
alled the Pauli ex
lusion prin
iple that prevents

ele
trons from being in the same state). A �lled band is inert for 
ondu
tion

purposes - it has an equal number of left and right traveling ele
tron waves

and no free states available to take more ele
trons su
h as those responsible

for 
arrying an ele
tri
 
urrent. A partially �lled band however has available

ele
tron states for 
arrying 
urrent and su
h a substan
e is a metal. An

insulator has a �lled band and hen
e 
annot use ele
trons to 
arry heat or

ele
tri
 
urrent. A semi
ondu
tor has a �lled band but a small bandgap

to the next (empty) band - hen
e at room temperature a small number of

ele
trons 
an be
ome thermally ex
ited to this new band and 
arry 
urrent.

Furthermore, the holes left behind in the nearly �lled band 
an also 
arry


urrent - this substan
e will be a semi
ondu
tor.
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Le
ture 10.

Angular Momentum

Let us now turn to QM in more than one dimension. In one dimension we

know how to represent the position and momentum operators (when referred

to the basis of eigenve
tors of the position operator). In three dimensions we

will immediately need to know how to represent the angular momentum of

a parti
le. This is a ve
tor quantity in 
lassi
al me
hani
s with 
omponents

L

x

, L

y

, L

z

where

L

x

= yp

z

� zp

y

L

y

= zp

x

� xp

z

L

z

= xp

y

� yp

x

In QM we expe
t it to be represented by a set of three Hermitian operators


orresponding to these 
omponents. By plugging in the 1D 
orrespondan
e

p

x

=

�h

i

�

�x

et
 we �nd the operators

L

x

=

�h

i

 

y

�

�z

� z

�

�y

!

L

y

=

�h

i

 

z

�

�x

� x

�

�z

!

L

z

=

�h

i

 

x

�

�y

� y

�

�x

!

The �rst question we should ask is: what are the eigenvalues and eigenfun
-

tions of these operators ? We know that the former are the possible values

of a measurement of the 
orresponding 
omponent of angular momentum L

and the latter are important for extra
ting the probabilities of measuring

any one su
h eigenvalue. We 
an also ask the question - what is the maximal

amount of information we 
an have 
on
erning the angular momentum of a

parti
le in QM - that is, 
an we know all these 
omponents pre
isely and

simultaneously ? This latter question 
an be answered by 
omputing the


ommutator of these operators with ea
h other. We know if this is zero the

operators are simultaneously diagonal in the basis of their 
ommon eigenve
-

tors. Otherwise there will be a generalized un
ertainty prin
iple governing

the minimum size of the 
u
tuations in these two operators. We 
an easily

1



show that

[L

x

; L

y

℄ = i�hL

z

[L

z

; L

x

℄ = i�hL

y

[L

y

; L

z

℄ = i�hL

x

From these fundamental 
ommutation relations the entire theory of angular

momentum 
an be dedu
ed. Evidently, the di�erent 
omponents are in
om-

patible observables

�

L

x

�

L

y

�

�h

2

j < L

z

> j

On the other hand the square of the total angular momentum L

2

= L

2

x

+

L

2

y

+ L

2

z

does 
ommute with any of these 
omponents eg.

[L

2

; L

z

℄ = 0

Thus we 
an 
hoose eigenstates whi
h are simultaneously eigenstates of both

L

2

and say L

z

.

L

2

f = ��h

2

f

and

L

z

f = ��hf

De�ne the two operators

L

�

= L

x

+ iL

y

The 
ommutators with L

z

are

[L

z

; L

�

℄ = [L

z

; L

x

℄� i[L

z

; L

y

℄ = ��hL

�

and, of 
ourse, L

�


ommutes with L

2

. Imagine some fun
tion f whi
h is an

eigenfun
tion of L

2

and L

z

then we 
an show that L

�

f is also an eigenfun
tion

of these two operators with eigenvalues ��h

2

and (� + 1)�h. L

+

is termed a

raising operator and L

�

a lowering operator. Thus, for a given value of

� the appli
ation of these two operators generates a ladder of states, ea
h

one separated from its neighbors by a L

z

eigenvalue di�erent by �h. We 
an

keep applying say L

+

and move up the ladder. Eventually, however we must

�nd a state with the highest possible value of the z-
omponent of angular

momentum. For su
h a state � = l say and we have

L

+

f

l

= 0

2



Now, we 
an show that

L

�

L

�

= L

2

x

+ L

2

y

� i (L

x

L

y

� L

y

L

x

)

or

L

2

= L

�

L

�

+ L

2

z

� �hL

z

Thus

L

2

f

l

=

�

�h

2

l

2

+ �h

2

l

�

f

l

Thus � = l(l + 1). In the same way there is a bottom value of � = l�h su
h

that

L

�

f

l

= 0

we �nd similarly that l(l� 1) = l(l + 1). Thus l = �l. Thus the eigenvalues

of L

z

are m�h where m runs from �l to +l in 2l + 1 integer steps. Thus l

must be integer or half-integer. Noti
e that the maximum 
omponent of the

angular momentum l 
an never equal its total value l(l+ 1) sin
e this would

invalidate the generalized un
ertainty prin
iple (sin
e then we would pre
isely

the values of L

x

and L

y

- zero!). The 
omputation of the eigenfun
tions takes

a little more e�ort!

Eigenve
tors

We employ spheri
al 
oordinates

x = r sin � 
os�

y = r sin � sin�

z = r 
os �

We �nd

L

+

= �he

i�

 

i 
ot �

�

��

+

�

��

!

L

�

= �he

�i�

 

i 
ot �

�

��

�

�

��

!

Noti
e that they are independent of the 
oordinate r - thus so will be the

eigenfun
tions. If we 
an solve the equation L

+

f

l;l

= 0 for the highest L

z

eigenstate with L

2

eigenvalue l(l+1) we 
an always get the other 2l states by

3



applying L

�

. Furthermore, lets assume that the eigenstates 
an be written

as a produ
t state

f

l;l

= F (�)G(�)

We �nd that G(�) = e

im�

where m must be an integer in order for G to be

single valued. Furthermore, sin
e L

z

= �i�h

�

��

we see m = l. The remaining

equation for � reads

dF

d�

= l 
ot �F

Writing l 
ot � =

d

d�

ln sin

l

�

d lnF

d�

=

d

d�

ln sin

l

�

Thus

F (�) = A sin

l

�

and the total eigenfun
tion looks like

f

l;l

e

il�

sin

l

�

By applying L

�

we �nd

f

l;l�1

� e

(l�1)�

sin

l�1

� 
os �

These eigenfun
tions are 
alled spheri
al harmoni
s and play a 
ru
ial role

in the states of 3D systems whi
h are rotationally invariant.

Spin

Usual orbital angular momentum 
orresponds to integral l. But it is observed

that parti
les may also possess intrinsi
 angular momentum analagous to

rotation about an axis - 
alled spin. This may be half-integral. For example,

the ele
tron has spin 1/2 meaning that L

2

= 1=2(1=2+1)�h

2

and its proje
tion

on the z-axis is �

1

2

�h. It is an example of a `exa
t' two state system, similar

to the ones introdu
ed earlier to des
ribe (approximately) 
hemi
al bonding.

In this 
ase the representation we have derived for integral l is not valid.

Instead the spin operators 
an be represented by 2 � 2 matri
es - the � (or

Pauli) matri
es introdu
ed in the homework. A general spin state may be

represented by a 2 
omponent 
olumn ve
tor or spinor.

j� >= aj

1

2

> +bj �

1

2

>

4



The 
omponents of j� > are the ve
tor

 

a

b

!

. Also,

S

x

=

 

0 1

1 0

!

S

y

=

 

0 �i

i 0

!

S

z

=

 

1 0

0 �1

!

As we have seen these obey the fundamental 
ommutation relations of angu-

lar momentum and yield the 
orre
t eigenvalues for S

2

and S

z

. Suppose the

system is known to be in the state (a; b) and we ask the question: what is

the probability of �nding the parti
le `spin-up' along the x-axis ? First, we

must 
on�rm that S

x

has the same two eigenvalues �

1

2

and then express the

state in terms of the 
orresponding eigenve
tors of S

x

. This yields

j� >=

 

a+ b

p

2

!

j

1

2

>

x

+

 

a� b

p

2

!

j �

1

2

>

x

Thus

1

2

ja + bj

2

is the probability of �nding the parti
le spin up along the

x-axis!

Spin in a magneti
 �eld

It is known that a parti
le with spin intera
ts with a magneti
 �eld B with

Hamiltonian

H = �
B:S

For an ele
tron with magneti
 �eld in the z-dire
tion S
hroedinger's equation

takes the form

i�h

d

dt

 

a

b

!

= �
B�h=2

 

1 0

0 �1

! 

a

b

!

The general state is then a linear 
ombination

� =

 


os (�=2)e

i
Bt=2

sin (�=2)e

�i
Bt=2

!
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where we have automati
ally imposed a normalization 
ondition on the state.

Thus

< S

z

>= 
os

2

(�=2)� sin

2

(�=2)�h = 
os��h=2

Similarly

< S

x

>= �

y

S

x

�

with � as above. We �nd

< S

x

>=

�h

2

sin� 
os (
Bt)

and a similar result for the y-
omponent. We see that the spin ve
tor 
lassi-


ally pre
esses around the �eld dire
tion with angular frequen
y (the Larmor

frequen
y) ! = 
B.

Addition of angular momentum

Consider two spin 1/2 parti
les. What is the total angular momentum for

the system ? More generally, 
onsider two parti
les with angular momentum

eigenvalues l

1

; m

1

and l

2

; m

2

. Think of them initially as very far apart or

un
oupled. It is easy to see that there are 4 
ommuting angular momentum

operators for this system: L

2

(1), L

z

(1), L

2

(2) and L

z

(2). Any linear 
ombi-

nations of them will also be 
ommuting. The obvious ones we are interested

in are L

z

= L

z

(1) + L

z

(2) and L

2

= L(1) + L(2):L(1) + L(2) together with

the squares of the individual angular momenta. We 
an equally well 
hoose

these latter four as the maximal 
ommuting set. The eigenstates of these will


orrespond to the total angular momentum of the 
ombined system and its


omponent along some axis. The eigenstates of these operators will be built

out of produ
ts of eigenstates of the original angular momentum operators

jlml

1

l

2

>=

X




m

1

;m

2

jl

1

m

1

> jl

2

m

2

>

If, initially there are (2l

1

+1)(2l

2

+1) states for the two parti
les this will be

preserved in this new representation.

Clearly, the maximal value for m will be l

1

+ l

2

. This means the two

parti
les 
an be found in a state with l

max

= l

1

+ l

2

. The minimal value of

m will be jl

1

� l

2

j. In fa
t we 
an show that this yields l

min

the possible min-

imal value of the total angular momentum quantum number. Sin
e angular

momentum is quantized we expe
t any angular momentum in between will

6



also be seen. One way to see this is to see what value of l

min

will yield the


orre
t total number of states

l

1

+l

2

X

l

min

(2l + 1) = (2l

1

+ 1)(2l

2

+ 1)

To make things more 
on
rete re
onsider our original example of the spin

of two ele
trons. The possible 
onbined state with largest z-
omponent of

angular momentum m = 1 is are

j ">

1

j ">

2

Lets operate with L

�

= L

�

(1) + L

�

(2) on this. We get

j #>

1

j ">

2

+j ">

1

j #>

2

This has m = 0. Operate again with L

�

and we �nd

j #>

1

j #>

2

whi
h has m = �1 as expe
ted for an l = 1 state. But wait, this is only

3 states and I started with four base states. Also, my previous pres
ription

implies there is also the possibility of a spin zero state l = 0 whi
h must have

m = 0. Of 
ourse, there is indeed another m = 0 state orthogonal to the one

we have already written down. It is

j ">

1

#>

2

�j #>

1

">

2

Thus the 
ombined system 
an exist in a triplet l = 1 or singlet l = 0 state.
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1 Le
ture 11.

QM in three dimensions

The S
hroedinger equation is

i�h

�	

�t

= H	

where the hamiltonian takes the form

H =

1

2m

�

p

2

x

+ p

2

y

+ p

2

z

�

+ V (x; y; z)

and p

x

!

�h

i

�

�x

et
. Normalization of the wavefun
tion is simply

Z

dxdydzj	j

2

= 1

The time-independent S
hroedinger equation is just the same with E re-

pla
ing the LHS. For systems whi
h are rotationally invariant (i.e where the

potential depends only on r) we may guess that solutions will look simpler in

spheri
al 
oordinates (r; �; �). To solve the S
hroedinger equation in su
h a


oordinate system we again try to �nd separable solutions - that is we write

	(x; y; z) = R(r)Y (�; �). This means we must transform terms involving

derivatives in x eg.

�

2

�x

2

into derivatives with respe
t to r, � and �. This is a

straightforward but tedious 
al
ulus exer
ise. I won't do it here but simply

quote the result We �nd

�

�h

2

2m

 

1

r

2

�

�r

 

r

2

� 

�r

!

+

1

r

2

sin �

�

��

 

sin �

� 

��

!

+

1

r

2

sin

2

�

�

2

 

��

2

!

+ V  = E 

This leads to two equations

1

Y

 

1

sin �

�

��

 

sin �

�Y

��

!

+

1

sin

2

�

�

2

Y

��

2

!

= �C

and

1

R

d

dr

 

r

2

dR

dr

!

�

2mr

2

�h

2

(V (r)� E) = C

Now, sin
e we have shown that the Hamiltonian 
ommutes with the angular

momentum generators, the states of the system will be eigenstates of the

1



angular momentum operators - thus, the angular equation here must simply

generate the spheri
al harmoni
s we have already met. In whi
h 
ase the


onstant C = l(l + 1) with l integral (it must be L

2

that 
omes in sin
e this

is the only operator whi
h does not single out a dire
tion in spa
e { unlike

L

z

). Thus the angular shape of the allowed wavefun
tion does not depend

on the details of the potential if it only depends on radial distan
e r. We 
an

simplify the radial equation still further by making the 
hange of variables

R = u=r. Hen
e

dR

dr

=

�

r

du

dr

� u

�

=r

2

and

d

dr

�

r

2

dR

dr

�

= r

d

2

u

dr

2

. We �nd

�

�h

2

2m

d

2

u

dr

2

+

"

V +

�h

2

2m

l(l + 1)

r

2

#

u = Eu

This is identi
al in form to the 1D S
hroedinger equation ex
ept that the

potential is repla
ed by the e�e
tive potential

V

e�

= V +

�h

2

2m

l(l + 1

r

2

The normalization 
ondition be
omes just

Z

dru

2

= 1

If you don't like all this math it is also possible to guess this equation for

u(r). The argument goes like this; the Hamiltonian is rotationally invariant

- hen
e it 
an only depend on the radial 
oordinate r plus 
onstants. We

might guess

H �

1

2m

p

2

r

+ V (r)

where p

r

denotes the momentum along the radial dire
tion. This 
annot be

the full story sin
e su
h a Hamiltonian does not give the 
orre
t expression

for the energy of 
lassi
al 
ir
ular motion. The latter 
an be written

E


ir
ular motion

=

L

2

2mr

2

where L is the angular momentum of the parti
le. Now we know that L

2

is an operator in QM whi
h 
ommutes with H for a rotationally invariant

system. Hen
e we 
an add su
h a term to our previous quantum Hamilto-

nian without 
hanging the rotationally invariant nature of the Hamiltonian.

Su
h a Hamiltonian will give the 
orre
t expression for purely radial motion

2



and also for simple 
ir
ular motion. In addition we know that eigenstates

of the Hamiltonian will be simultaneously eigenstates of L

2

- their angular

dependen
e wil hen
e just be given by the spheri
al harmoni
s we introdu
ed

previously! Furthermore, for su
h states we may repla
e the operator L

2

by

its eigenvalue l(l + 1)�h

2

and we arrive at the same equation as before.

Lets solve this �rst in the 
ase where V = 0 for R < a and is in�nite for

r > a. The radial equation inside the well reads

d

2

u

dr

2

=

"

l(l + 1)

r

2

� k

2

#

u

where k =

p

2mE=�h. We need to solve this equation subje
t to the boundary


ondition u(a) = 0. The 
ase l = 0 is easy

u = A sin (kr) +B 
os (kr)

Sin
e the true wavefun
tion is u=r so B = 0. The other boundary 
ondition

then requires sin (ka) = 0 whi
h yields ka = n�. The allowed energies are

simply

E

n

=

n

2

�

2

�h

2

2ma

2

and the allowed wavefun
tions are just

 = sin (n�r=a)=r

The general solution for nonzero l is r j

l

(kr) where the fun
tion j

l

(kr) is


alled a spheri
al Bessel fun
tion. The allowed energies are given by the

solution of the equation

j

l

(ka) = 0

whi
h yields an in�nite dis
rete set of solutions. If �

nl

is the n

th

solution to

this equation we �nd the allowed energies

E

n

l =

�h

2

2ma

2

�

2

nl

and the wavefun
tions are just

 (R; �; �) = j

nl

(�

nl

r=a)Y

lm

(�; �)

Noti
e that ea
h energy level is (2l + 1) fold degenerate whi
h re
e
ts the

fa
t that the energy of the system does not depend on 
hoi
e of the z�axis.

3



The hydrogen atom

To �nd the energy levels and wavefun
tions we merely substitute in the form

for the Coulomb potential V = �=r and solve the radial equation again.

The solutions are again a set of spe
ial fun
tions - the Laguerre fun
tions.

Its easy to modify the C 
ode I gave you to determine the energies and

wavefun
tions. You will see that all the allowed wavefun
tions are os
illatory

but with exponentially de
aying amplitudes. The allowed energy levels turn

out to go like

E

n

= �

2

4

m

2�h

2

 

e

2

4��

0

!

2

3

5

1

n

2

and l is restri
ted to lie in the range 0 : : : n � 1. Noti
e that ea
h of these

states is 2l + 1 degenerate also. For the ground state the energy in physi
al

units is E

0

= �13:6eV.

Spe
trum

If you put an atom in some stationary state then it will stay there forever

but if that state is not one of the lowest energy it will be prone to make

transitions to lower energy states (this 
an be 
aused by thermal 
ollisions

between atoms for example). To 
onserve energy a photon whose energy

mat
hes the atomi
 energy di�eren
es is emitted.

E

photon

= �13:6eV

 

1

n

2

i

�

1

n

2

f

!

Transitions to the ground state lie in the UV - Lyman series. The Balmer se-

ries are transitions to n = 2 et
 and o

ur in the visible part of the spe
trum.

This spe
tra 
an be produ
ed by �rst passing an ele
tri
 spark through the

gas and then wat
hing for the photons produ
ed as the atoms relax ba
k to

lower energies.

Indistinguishability, atoms and the periodi
 table

Suppose I want to study a system with more than one parti
le. One might

want to start with systems in whi
h the two parti
les do not intera
t strongly.

In this 
ase the allowed energies/wavefun
tions 
an be 
omputed from 2 in-

dependent S
hroedinger equations. Just as in the 
ase with two independent

4



angular momenta we 
an write down a wavefun
tion for the 
ombined system

by taking produ
ts of the single parti
le wavefun
tions.

	(r

1

; r

2

) =  

a

(r

1

) 

b

(r

2

)

Of 
ourse, we are impli
itly assuning that we 
an tell whi
h parti
le is whi
h

- this is absolutely impossible for two identi
al parti
les su
h as ele
trons.

We have already seen a pre
ursor to this when we dis
ussed simple 2-state

models for 
ovalent 
hemi
al bonding - we found that the allowed states of

the system were linear 
ombinations of states in whi
h the ele
trons initially

labelled were at one or the other of the two parent atoms. Thus we found

that

	(r

1

; r

2

) =  

a

(r

1

) 

b

(r

2

)�  

a

(r

2

) (b(r

1

)

Indeed, quantum indistuingishability for
es us to use su
h a basis of states

when dis
ussing systems with more than one identi
al parti
le. If we intro-

du
e the ex
hange operator P su
h that

Pf(r

1

; r

2

) = f(r

2

; r

1

)

then 
learly P

2

= 1 and it follows that the eigenvalues of P are �1. This

operator will 
ommute with the Hamiltonian and hen
e we 
an �nd a set of

fun
tions whi
h are simultaneously eigenstates of P and H. Su
h eigenstates

will either be even or odd under ex
hange of parti
le label. These are just

the previous wavefun
tions. Parti
les for whi
h P = 1 are termed bosons

and those with P = �1 are 
alled fermions. In relativisti
 QM we 
an also

show that fermions have half-integral spin while bosons have integer spin

(this is 
alled the CPT-theorem). In our 
ase we must just postulate it as

an additional assumption.

Noti
e immediately that two identi
al fermions 
annot o

upy the same

state - for then 	 = 0. This is termed the Pauli ex
lusion prin
iple. Its use

in 
ombination with the existen
e of dis
rete allowed energies gives an expla-

nation for the atomi
 stru
ture of atoms and the peridodi
 table. Imagine

that as a �rst approximation we treat ea
h ele
tron around the atom as mov-

ing independently of all the others (that is we negle
t their mutual ele
tri
al

intera
tion and use only the Coulomb for
e of attra
tion of ea
h ele
tron

to the positively 
harged nu
leus). Just as in the hydogen atom if I solve

the S
hroedinger equation for this system I will �nd a set of single parti
le

allowed energies. Ea
h of these will be labelled by some radial quantum num-

ber and an angular momentum. Typi
ally the energy of the system in
reases

5



with both radial quantum number (shell number) and angular monentum.

To assemble the atom we put ele
trons in one by one in order of in
reasing

energy - the Pauli prin
iple stops us putting 2 ele
trons in the same state

(thus we 
an put 2 ele
trons in a state with l = 0 sin
e they 
an have distin
t

spin states, 6 ele
trons in a state with l = 1 sin
e there two spin states for

every value of l

z

). On
e we have �lled a given l-state the resultant ele
trons

have no net spin and angular momentum and su
h a shell is 
hemi
ally in-

sert. Thus the 
hemistry of an atom is determined only by its outermost

partially �lled single ele
tron states. This leads to a periodi
 variation in

the properties as the atomi
 number (number of ele
trons) in
reases. If we

in
lude ele
tron repulsion and spin properly into this model we 
an a

ount

quantitatively for all the known 
hemistry of the atoms.
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Le
ture 12.

Symmetry and 
onservation laws in QM

Imagine 
omputing the time variation of the expe
tation value of some ob-

servable 
orresponding to the operator A. We have

d < A >

dt

=

� < 	j

�t

Aj	 > + < 	jA

�j	 >

�t

From the S
hroedinger equation we have

d < A >

dt

= i=�h < 	j [HA� AH℄ j	 >

Thus any operator whi
h 
ommutes with the Hamiltonian will have an ex-

pe
tation value in any state whi
h does not vary with time - it is 
onserved.

Furthermore, we know from our dis
ussion of angular momentum that eigen-

states of the hamiltonian 
an also be 
hosen to be eigenstates of the operator

A if it 
ommutes with H. Thus they 
an be labelled with the 
orresponding

eigenvalue of A. This quantum number will not then 
hange with time.

There are three basi
 operators we know that satisfy 
lassi
al 
onservation

laws - the energy, momentum and angular momentum. In QM the asso
iated

operators will hen
e 
ommute with the Hamiltonian (in the �rst 
ase this is

of 
ourse trivial!). We might ask the questiom: is there any fundamental

prin
iple of nature whi
h might guarantee that these 
lassi
al 
onservation

laws also hold true in QM ? The answer is yes and it has to do with symmetry.

Consider the operator O = exp (iap=�h). By expanding this operator in

powers of p - the momentum operator it 
an be seen that this operator

e�e
ts a translation of the wavefun
tion by the distan
e a. If the system is

translation invariant this does not 
hange the energy of the state. This will

be true if the Hamiltonian of the system is invariant under translation and it

follows that 0 must 
ommute withH. This in turn means that p will 
ommute

with H and hen
e will be 
onserved. This invarian
e of the hamiltonian is


alled a symmetry - and we see the intimate 
onne
tion between symmetry

and 
onservation laws. A similar result is true for angular momentum and

symmetry under rotations.

1



Perturbation Theory

Suppose we have solved the S
hroedinger equation for some potential V

0

and now want to �nd the eigenve
tors/values for another potential whi
h

di�ers from V

0

by a small amount. Perturbation theory is a tool for �nding

approximations to the latter knowing the eigenve
tors/values for V

0

. Writing

H = H

0

+ �V

We will take � to be a small number. We write

j 

n

>= j 

0

n

> +�j 

1

n

> + : : :

E

n

= E

0

n

+ �E

1

n

+ : : :

If we substitute this ansatz into the S
hoedinger equation and equate powers

of � we �nd

V j 

0

n

> +H

0

j 

1

0

>= E

1

n

j 

0

n

> +E

0

n

j 

1

n

>

Taking the dot produ
t with <  

0

n

j we �nd

E

1

n

=<  

0

n

jV j 

0

n

>

This is the �rst order shift in the energy. To �nd the eigenve
tor to �rst

order in � we expand it as

j 

1

n

>=

X

m




m

j 

0

m

>

Noti
e that we do not need to in
lude any term 


n

in this expression as su
h

a term is not O(�). Thus we �nd

X

m

(E

0

m

� E

0

n

)


(n)

m

j 

0

m

>= �(V � E

1

n

)j 

0

n

>

Taking the dot produ
t with j 

0

l

> we �nd

(E

0

l

� E

0

m

)


l

(n) = � <  

0

l

jV j 

0

n

>

Noti
e that the denominator is never zero unless there is degenera
y.
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Fine Stru
ture of Hydrogen

The spe
trum of hydrogen is in leading approximation given by that of the

non-relativisti
 S
hoedinger equation with Coulomg potential. However, the

true Hamiltonian of the system should treat the ele
tron relativisti
ally.

Sin
e terms are supressed by O(v

2

=


2

) relative to the leading term their

er�e
ts 
an be 
omputed using perturbation theory. Using the (relativisti
)

formula

T = p

2

=2m� p

4

=8m

3




2

+ : : :

the lowest order 
orre
tion to the kineti
 energy is

E

1

= �

1

8m

3




2

< p

2

 jp

2

 >

Now p

2

j >= 2m(E � V )j >. Hen
e

E

1

= �

1

2m


2

�

E

2

n

+ 2E

n

� <

1

r

> +�

2

<

1

r

2

>

�

This yields

E

1

= �

E

2

n

2m


2

"

4n

l + 1=2

� 3

#

Noti
e that this breaks the original degenera
y of the levels and makes them

l-dependent (� = e=4��

0

).

There is a further 
ontribution to the energy of the ele
tron 
oming from

relativity. Imagine the ele
tron `at rest' with the proton 
ir
ling around

it. Su
h a 
harge will generate a magneti
 �eld whi
h intera
ts with the

ele
tron's spin in the way we des
ribed earlier

V = �
S:B

Noti
e that the magneti
 �eld will be proportional to the orbital angular

momentum ve
tor of the ele
tron.

B = �

1

m


2

1

r

3

L

The fa
tor 
 is given by


 = �

e

2m

S

3



Thus we expe
t a lowest order 
ontribution to the energy of the form from

this spin-orbit term to be

E

1

n

=<

e

2

8��

0

1

m

2




2

r

3

S:L >

Now, this term does not 
ommute with L and S separately so these two

are not separately 
onserved. However, V does 
ommute with J = L +

S. Thus states of the hydogen atom should be labelled by the 
onserved

quantum numbers n and j. Furthermore, L:S =

1

2

(J

2

� S

2

� L

2

). Thus the

eigenvalues of this new term are proportional to

j(j + 1)� s(s+ 1)� l(l + 1)

This allows us to write the ele
tron energy shift as

E

1

=

E

2

n

m


2

"

n[j(j + 1)� l(l + 1)� 3=4℄

l(l + 1=2)(l + 1)

#

Combining this result with the 
orre
tion from the kineti
 energy we �nd the

�nal �ne stru
ture formula

E

nj

= �

13:6

n

2

"

1 +

�

2

n

2

 

n

j + 1=2

�

3

4

!#

Degenerate Perturbation Theory

If the unperturbed states are degenerate in energy then ordinary perturbation

theory fails (unless the two degenerate states have <  

a

jV j 

b

>= 0 whi
h

o

urs if the perturbation 
ommutes with the original Hamiltonian - this is

the 
ase for the �ne stru
ture 
al
ulation above). Thus we must �nd some

other way to handle the problem. Suppose that j 

a

> and j 

b

> are two

orthogonal, degenerate states with energy E

0

. Noti
e that any linear 
ombi-

nation of states will also be an eigenstate of the unperturbed Hamiltonian.

Typi
ally, V will break this degenera
y. The 
lue as to hwo to pro
eed 
an

be seen from the formula for the 
oeÆ
ients 


(n)

m

. The two (say) degenerate

states will start to dominate in this sum and we may analyze the system as

a simple 2-state system by in
luding only those two states in the equation

for the new state ve
tor. We will �nd

H

0

 

1

+ V  

0

= E

0

 

1

+ E

1

 

0

4



with

 

0

= � 

0

a

+ � 

0

b

we �nd by taking appropriate dot produ
ts that

� <  

0

a

jV j 

0

a

> +� <  

0

a

jV j 

0

b

>= �E

1

This is just a simple matrix problem where the matrix elements are just

taken with respe
t to the original, unperturbed wavefun
tions.
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