
Leture 1

Introdution and the essene of QM

Purpose of these letures is to give you an introdution to perhaps the most

important theory of modern physis - quantum mehanis. This theory has

revolutionized the way we view the mirosopi world and is perhaps the best

tested sienti� theory ever devised - (ertain quantities an be alulated

and ompared to experiment at the level of a part in a million or better).

That said it is a theory that has been ontested sine its ineption -

Einstein always onsidered it a stop gap answer to a fundamental theory

God does not play die with the Universe

We will (hopefully) have time to disuss why Einstein was wrong in his view

later in this ourse. Philosophers still debate its true meaning and even

pratising physiists �nd it ounter to intuition

I think I an safely say that noboby understands quantum me-

hanis

Rihard Feynman

It forms the foundation (with general relativity) of all of twentieth en-

tury physis and underpins most of modern hemistry. As one of mankind's

greatest intelletual ahievements it really forms an important part of our

ulture - although very few people have any understanding of it - hopefully

we an address that in these letures...

OK then, why did QM ome to be ? Essentially it was a response to a

series of rises in physis at the turn of the entury

1. Blakbody radiation

2. Photoeletri e�et

3. Stability of atoms and disrete emission spetra

It appeared that lassial physis (Newton and Maxwell) was inompatible

with some of the new experimental results following from the disovery of

the internal struture of atoms. This was the situation in the early years of

this entury - it took till 1926 before a satisfatory new framework was devel-

oped whih ould enompass and explain these problems. That framework
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was QM. Unlike relativity QM owed its birth to a number of physiists -

Shroedinger, Heisenberg, Einstein, de Broglie, Bohr, Born, Ehrenfest, Dira

and others.

Although QM may introdue some rather unfamiliar math its basi pos-

tulates are not too long or terribly ompliated. They an be written easily

on the bak of a T-shirt. But they do signal a dramati departure from New-

tonian physis. Consider the motion of a partile subjet to some fore in

one dimension. The goal of lassial physis is to alulate how the position

oordinate x(t) varies with time. The answer an be gotten by solving the

di�erential equation

m

d

2

x

dt

2

= �

dV

dx

(1)

If we speify eg. the initial position and veloity the resulting motion an

be predited from the solution of this equation. In QM the analogous al-

ulation is phrased very di�erently. Newtons's seond law 1 is replaed by

Shroedinger's equation

�

�h

2

2m

�

2

	

�x

2

+ V	 = i�h

�	

�t

(2)

The wavefuntion 	(x; t) plays the role of the oordinate in lassial physis

- one we know it at some time we an use Shroedinger's eqna 2 to �nd

it for all time. Beause 	(x; t) is a funtion of both x and t we must use

partial derivatives in the equation. Notie that a new fundamental onstant

has appeared - Plank's onstant �h = 1:05� 10

�34

Js. The smallness of this

onstant is related to the observation that we do not need to invoke quantum

methods until we study the realm of the very small. If it were identially

zero lassial physis would work even at the smallest of sales (although

we wouldn't be here to observe it as the very stability of the atoms in our

bodies is the result of quantum e�ets!) It was �rst measured by Plank in

his work on the light emitted by radiant bodies - the theoretial analysis of

this problem led to the need for a quantum theory.

But what is 	 and what does it tell us about the behavior of the original

quantum partile ? The answer is simple and yet puzzling 	

�

	�x gives the

probability of �nding the partile to be between x and x +�x ! Notie that

(beause of the square root of minus one in eqn2) the wavefuntion 	 is a

omplex number - hene the need to multiply it by its omplex onjugate to

obtain a positive de�nite real probability.
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In summary, providing we are happy with partial derivatives, omplex

numbers and probabilities (!) QM gives us a lear presription for alulat-

ing quantum phenomena. But notie it is (aording to our intuitive ideas)

an apparently inomplete piture. QM tells us only the probabilities of mea-

suring ertain values for the position of the partile at a spei� point in

spae and time. And that is the most we an expet to be able to know ! It

is a radially di�erent piture than that of lassial physis - and one that

many people inluding Einstein were/are unhappy with.

For suppose I ask the question - where was the partile just before I

measured its position - Einstein and others would have liked to believe that

it had a well-de�ned position desribed by hidden variables and QM, being

inomplete, annot tell me about it. In e�et when one averages out the

hidden variables a statistial theory results whih an only tell me about

probabilities - QM. In ontrast the orthodox (Copenhagen) position on this

is that the partile does not have a position before it is measured - it is a

meaningless onept - there are no hidden variables - this is the quantum

nature of matter. Reently, a set of experiments, following on theoretial

work of John Bell have served to eliminate the possibility of hidden variables

theories and strengthened the orthodox position.

It appears that many of of evreyday, intuitive onepts about the world

fail to desribe the behavior of the quantum world. The only area of QM

still in debate is the nature of a measurement on a quantum system and how

that is a�eted by a so-alled observer. We wll disuss this later.

Some math

Lets introdue/review a few things:

Partial derivatives

Suppose we have a funtion of more than one variable eg. f(x; t). A partial

derivative with respet to x is denoted

�f

�x

and means `di�erentiate with

respet to x holding t onstant'. An example, if f(x; t) = x

2

t

3

then

�f

�x

= 2xt

3

Similarly,

�f

�t

= 3x

2

t

2
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Complex numbers

Generalize notion of a real number to aommodate square roots of negative

numbers. De�ne

p

�1 = i, then

p

�4 =

p

�1� 4 = i

p

4 = 2i

Complex number is z = x + iy. The real part is alled x and the imaginary

part is y. Its omplex onjugate is z

�

= x � iy. To add omplex numbers

just add real and imaginary omponents separately eg.

z = (a+ ib) + (+ id) = (a + ) + i(b + d)

We an multiply omplex numbers as follows

z = (a+ ib)� (+ id) = a� + i

2

b� d+ i(b� + a� d)

Sine i

2

= �1 we then have

z = a� � b� d+ i(b� + a� d)

Probability

Suppose I were to look at snowfall for Syrause in the month of January

during this entury. I ould imagine onstruting a histogram (bar hart)

having as x-axis the number of inhes and on the y-axis the number of times

that number of inhes fell during all 100 januaries on reord. It is easy to

onvert this to a piture of the probability distribution for snowfall during a

Syrause january - just divide the numbers on the y-axis by 100. The y-axis

now runs between 0 and 1 and measures the probability of a ertain number

of inhes of snow falling. Notie now that the area under the histogram is

now unity.

Of ourse snowfall does not really fall in exat inh amounts - one january

there might have been 7.4 inhes say. Indeed, when we onstruted the

original histogram we impliitly rounded snowfalls to their nearest integer.

We ould improve on this by reording the snowfall in 1/2 inh inrements

Then 7.4 would be rounded into the bar orresponding to 7.5 rather than

7.0 inhes. Providing we have enough data we ould imagine ontinuing this

proess ounting the number of januaries with snowfall in ever dereasing

small intervals. Suppose we do this to an inrement of 1/100 inh. You
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should see that tops of all the vertial bars start to approah a ontinuous

urve - the true probability distribution that desribes the possibility of any

possible snowfall amount. Call this urve P (x). Notie that the total area

under this urve will still be unity.

Suppose you now want to know the probability of having between 6 and

8 inhes - this be read o� from the area under the urve from x=6 and

x=8. More generally, suppose you want to know the probability of having

a snowfall between x = 6 and x = 6 + �x where �x = 0:1. This will be

approximately 0:1� P (6). In the limit where �x! 0 this is exat. That is

P (x) ��x is the probability that x lies in the range x! x+�x as �x! 0.

Bak to QM

Thus in QM the probability distribution P (x) = 	

�

(x; t)	(x; t) and tells

us the probability of a measurement of the partile's position resulting in a

value within the range x! x +�x. Notie that we now have an additional

onstraint on thde wavefuntion 	(x; t) - we must have

Z

	

�

(x; t)	(x; t)dx = 1

We say that the wavefuntion must be normalized. It is easy to see that it

always possible to modify any solution to the Shroedinger equation to make

this true. It is also possible to show that this feature is preserved in time

- that is if we normalize a solution at some initial time and then evolve it

in time in aord with the Shroedinger equatioon eqn.2 it will always be so

normalized. This is an important onsisteny hek on the framework.
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Leture 2

History

Lest go bak and disuss some of the spei� problems whih fored this

radial departure from lassial physis:

BlakBody radiation - 1901

Consider a avity in an oven at uniform temperature. One everything has

ome into equilibrium we an sample the radiation emerging from the avity.

We �nd the distribution of energy W (f) with frequeny f initially rises like

f

2

but then turns over and falls to zero with large f . The initial rise is easy

to understand - the number of modes of the radiation �eld between f and

f +�f is simply 4�f

2

�f . To understand this remember that a em wave is a

vetor quantity - it has both a magnitude and diretion. Thus a given mode

is desribed by a wavelength and a diretion in spae. When we alulate

the number of modes of a given wavelength magnitude (or equivalently fre-

queny) we �nd a result analagous to the surfae area of a sphere - but now

a sphere in `frequeny spae'. In lassial thermodynamis) eah suh mode

arries the same energy - basially k

B

T so the net energy at frequeny f rises

like f

2

. Notie not only does this disagree with the measured distribution -

it gives the total radiated energy as in�nite !

However, Plank was able to �t the distribution with the funtion

8�hf
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3

1

e

hf=k

B

T

� 1

By drawing on ideas in lassial statistial physis and reasting the above

expression as an in�nite sum over di�erent energy states he was led to a very

unusual hypothesis: the radiation energy of a single mode of the em �eld

ould only ome in units of hf . He had no explanation for this ...

Photoeletri e�et - 1905

It was notied that when UV light was inident on a metal plate eletrons

are ejeted. When the energy of the eletrons is measured as a funtion of

light frequeny it was found that below a ertain threshold frequeny there

were no eletrons and above this the energy of the eletrons rose linearly

with frequeny. The light intensity had no e�et on the maximum eletron
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energy - it only a�eted the number emitted. This was ompletely at variane

with lassial ideas whih would have yielded eletrons whose energy was

intensity dependent (essentially the larger amplitude waves would ase the

driven eletrons to `wiggle' more vigorously whih would lead to an inrease

in their kineti energy). Einstein explained the e�et by extending Plank's

idea to suppose that light onsists of photons whose energy varies linearly

with frequeny. A given eletron is kiked out from the metal when it ollides

with a single photon of suÆient frequeny. A photon was imagined to be a

paket of wavepaket with a ertain partiular energy (given by the Plank

formula)

Rutherford and Bohr - 1911-13

In 1911 Rutherford performed an histori experiment in whih he �red a beam

of alpha partiles (a type of radiation) at a gold foil. He found that most of

the alpha partiles su�ered only small deetions while just a few were sat-

tered through very large angles. He interpreted the results of this sattering

experiment as indiating that the gold atoms onsisted of a small,dense ore

of positive harge surrounded by a muh larger and more di�use loud of

negative harge - the eletrons. Unfortunately, this planetary model of the

atom was in onit with lassial physis - if the eletrons were in a iru-

lar orbit they would be aelerating and beause of Maxwell's theory they

should radiate light energy. But this loss of energy would lead to a spiraling

of the eletron into the nuleus - atoms would not be stable. Furthermore,

the spetrum of light emitted by suh an atom would ontain light of all fre-

quenies - whih was not was observed. In fat the light emitted by heated

atoms shows a disrete struture harateristi of that partiular atom { a

so-alled line emission spetrum.

Bohr tried to �x this in an ad ho fashion. Spei�ally he assumed that

for hydrogen only ertain states were stable - those in whih the angular

momentum were a multiple of

h

2�

. In those states the eletron does not

radiate. Furthermore, when an eletron moves from one suh state to another

(lower) state it emits the di�erene in energy as a photon whose frequeny is

related to its energy via Plank/Einstein's relation. Using lassial physis

it is then easy to see that the allowed radii are

r

n

=

4��

0

n

2

�h

2

me

2
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Similarly the allowed possible energies an be found

E

n

= �

1

2

me

4

(4��

0

�h)

2

1

n

2

This explanation aounted well for the experimentally observed line spe-

trum of hydrogen but what justi�ation ould there be for the quantization

of momenta that Bohr had assumed (or the resulting stability at those mo-

menta) ?

de Broglie { 1925

The situation lay fallow for some years before de Broglie started a new line of

reasoning. If light ould sometimes behave as a partile (a photon) ould not

matter behave sometimes as a wave ? The energy relation of Plank ould

be written as

E = �h! and p =

E



= �hk (1)

Perhaps a similar relation governed material partiles ? Notie that this iden-

ti�ation of wavelength with momenta allowed a possible interpretation of

the Bohr quantization ondition - via 2�r

n

= n� - the ondition for standing

waves !

In this ase eletrons should be able to exhibit phenomena harateristi

of waves - suh as interferene and di�ration ! Suh behavior was looked for

in a famous experiment of Davisson and Germer (1927) in whih a beam of

eletrons was sattered o� a rystal surfae in whih the interatom separation

was omparable to the de Broglie wavelength of the eletrons. Lo and behold

an interferene pattern was observed ! Peaks in intensity were observed

whenever the path di�erene between wave reeted from the �rst and seond

atomi layers mathed an integral number of wavelengths (2a os � = n�).

We may imagine generalizing this setup to the lassi Young's double

slit experiment used for light. Eletrons are shot at a sreen possessing two

losely spaed slits. A sreen is plaed a large distane beyond the slits and is

used to reord the arrival of eletrons wheih have passed through one of other

of the slits. In pratie we detet eletrons with a detetor whih ashes when

an eletron hits it. If we were to do this experiment and reord the intensity

of eletrons reorded by the detetor we would �nd a surprising thing - at

ertain plaes on the sreen we would never see eletrons, while at others we

would see always a maximum eletron intensity! Furthermore these maxima
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and minima our at regular intervals along the sreen - we see interferene

fringes just as we would with light. So the eletrons must be assoiated with

a wave as de Broglie had suspeted. Clearly the partile harater of the

eletrons emerges as a statistial thing - any individual eletron an land

anywhere - the wave just gives the probability of �nding it at one plae

or another. It was �rst thought that the assoiated wave must somehow

desribe the aggregate behavior of a bunh of mutually interating eletrons

- a given eletron will pass through one or other of the slits for ertain. But

onsider the following variation - we an turn down the intensity of the beam

until just one eletron passes through at a time. If the eletron has to go

through just one slit then we would predit that the interferene pattern

would disappear - but it does not we still see an interferene pattern ! In

some sense the eletron passes through both slits ! The assoiated wave

desribes the behavior of just a single eletron. Equivalently we an say that

the eletron in passing through the apparatus behaves as a wave but when

we ome to reord it it behaves as a partile ! This is the basis for wave-

partile duality. In e�et the eletron is represented by an abstrat state

whih, depending on what kind of measurement we hoose to make, make

look alternately partile or wavelike in harater !

By 1926, the stage was set - quantum matter should be desribable in

terms of a wave theory where the momentum of a (free) partile is just

p = h=�. The interferene experiment hints that the intensity of the wave

gives the probability for �nding the eletron. But what is the equation that

desribes the wave evolution ? Enter Shroedinger ...
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Leture 3.

Arguments for Shroedinger's equation

Free partiles

We have seen that free partiles are desribed by the relations

E = �h! (1)

p = �hk (2)

It is a reasonable guess that suh partiles should be assoiated with the

simplest type of wave solution - simple sine or osine funtions.

	 � sin k(x� vt) or os k(x� vt) (3)

Now, kv = ! the frequeny. These solutions desribe waves moving in

the diretion of positive x at speed v. Waves travelling in the opposite

diretion are obtained by simply swithing the sign of v. We will seek a

linear wave equation that desribes the time and spae evolution of suh

waves. This means any linear ombination of sine and osine funtions will

also be a solution. Spei�ally we an take the ombination f(kx � !t) =

os (kx� !t)+ i sin (kx� !t). It an be shown that this funtion f(kx�!t)

has a very speial form

f(kx� !t) = e

i(kx�!t)

(4)

We will take this (omplex) exponential funtion as the free partile solution

to the sought-for wave equation.

	 = A exp i(kx� !t) (5)

Additionally, notie the following result

�h

i

�

�x

	 = �hk	 = p	 (6)

Also,

i�h

�

�t

	 = �h!	 = E	 (7)

Thus, very loosely, the momentum of the partile an be found by di�eren-

tiating its wavefuntion with respet to x and the energy by di�erentiating
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with respet to t. This means in turn that the lassial formula for the en-

ergy of a free partile E = p

2

=2m implies that the wavefuntion of suh a

free partile will satisfy the wave equation

��h

2

2m

�

2

	

�x

2

= i�h

�	

�t

(8)

This is the free partile Shroedinger equation !

Interation

How an we generalize this to derive a wavefuntion for a partile moving in

some potential ? Just take the lassial energy formula E = p

2

=2m+ V and

do the same replaements !

��h

2

2m

�

2

	

�x

2

+ V	 = i�h

�	

�t

(9)

One must be areful. We have not derived the Shroedinger equation

in the previous pages - rather we have written down the simplest, linear,

di�erential equation that is onsistent with onservation of energy and has

simple sine or osine like solutions in the absene of any potential energy. It is

an enlightened guess. We must study the onsequenes of this equation and

hek them against experiment to be sure of the orretness of this equation.

So far this equation has proven fully onsistent with all experiments (notie

that this equation treats time and spae in distint ways just as did the

lassial expressions for energy - so it is really only a nonrelativisti equation

valid for speeds whih are small ompared to the speed of light. Dira was

the �rst person to formulate the analogous relativisti equation whih was

subsequently named after him).

Averages

We have argued that QM only gives us aess to statistial aspets of a

partiles motion - for example 	

�

	�x is the probability of �nding the partile

between x and x + �x. How an we �nd its average position ? Standard

probability theory tells us this immediately - multiply the position x by the

probability of �nding it near x i.e 	

�

	�x and integrate the result over all

positions.

< x >=

Z

dx	(x; t)

�

x	(x; t) (10)
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Notie we have assumed that the wavefuntion has been normalized.

This is all very well but suppose I want to know not the average position

of the partile but say its average momentum. How should I alulate that

? This highlights an aspet of QM that we need to disuss. I have stated

that the wavefuntion ontains all the information that is available about the

quantum partile but so far we only how to alulate information related to

its position. In general I should like to be able to alulate the probabilities

of measuring spei� values for any physial observable, the mean values of

those observables et et. The general question I want to postpone till later

but for now I an give you the orret presription for omputing the average

momentum.

Reall that di�erentiating the wavefuntion with respet to position was

(up to onstant fators) the same as multiplying by the momentum. In

general we say that in QM the momentum of a partile is replaed by an

operator whih in this ase is just the derivative operator

�

�x

. Spei�ally

p

QM

!

�h

i

�

�x

(11)

Operators are mathematial objets whih when applied to funtions yield

other funtions eg. the operator x when applied to the funtion f(x) = x

2

yields another funtion f

0

= xf(x) = x

3

. Similarly the operator

d

dx

when

applied to f yields f

0

=

df

dx

= 2x. The average value of the momentum in

QM is now gotten by sandwihing its assoiated operator between 	

�

(x; t)

and 	(x; t) and integrating over all x.

< p >=

Z

dx	(x; t)

�

�h

i

�

�x

	(x; t) (12)

This is the same presription as for the average position if we just replae

the (simple!) position operator x by the (more ompliated!) momentum

operator p =

�h

i

�

�x

. We will return to this issue and its generalizations later.

At this point you may just onsider eqn.12 as another postulate of QM.

What is meant by expetation value ?

In the previous paragraph we introdued a formula for the expetation value

of some observable (or operator as it is represented in QM). What is this ?

It is not the result of measuring that observable for a single partile many

times. On the ontrary if the �rst measurement of the partile's position
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yields x = 0:5 say, then every subsequent measurement of the partile's

position will yield x = 0:5 (we assume that no other measurements are made

in between and the partile is subjet to no new fores). Rather, < x >

measures the average result for measurements of a ensemble of partiles all

in the same initial state.

Other observables ...

For the simple situation we have disussed so far it is also easy to write down

expressions for other mehanial observables suh as the kineti energy or

angular momentum eg.

< T >=< p

2

=2m >= �

�h

2

2m

Z

	

�

�

2

	

�x

2

dx (13)
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Leture 4

Conservation of Probability

We have argued that the wavefuntion should be normalized to unity. Physi-

ally this orresponds to the simple that the probability of �nding the partile

somewhere should be unity. Whatever happens in the subsequent motion we

expet that the total probability to �nd the partile somewhere should still

total to unity. It is possible to prove this diretly from Shroedinger's equa-

tion. Consider

d

dt

Z

	

�

	dx =

Z

�

�t

	

�

	dx

Using Leibnitz's rule

�

�t

	

�

	 = 	

�

�	

�t

+

�	

�

�t

	

Using the Shroedinger equation for the time derivatives allows us to rewrite

this as

�

�t

	

�

	 =

i�h

2m

 

	

�

�

2

	

�x

2

�

�

2

	

�

�x

2

!

We now notie that this expression an be rewritten

�	

�

	

�t

=

�

�x

"

i�h

2m

 

	

�

�	

�x

�

�	

�

�x

	

!#

We an now integrate this over all x and see sine 	 must go to zero at large

x that we obtain the result

d

dt

Z

	

�

	dx = 0

Thus if it is normalized at t = 0 it will remain so - probability is onserved.

This is an important and neessary test of the orretness of Shroedinger's

approah.

Summary so far

QM tells us that the most information we an obtain about a (mirosopi)

partile is ontained in its wavefuntion 	(x; t). One we know the wave-

funtion at one time Shroedinger's equation allows you to alulate it at
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any later time. Physial partiles are desribed by normalized wavefuntions

R

	

�

	 = 1. In fat QM tells us to interpret 	

�

	 as a probability density.

This then allows us to write expressions for the expetation value of some

observable quantity Q(x; p) as

< Q >=

Z

	

�

Q	dx

where the QM operator Q is just obtained from its lassial expression by

replaing x with just x and p by

�h

i

�

�x

.

Time independent Shroedinger equation

OK, we have the Shroedinger equation but how do we go about solving

it ? It turns out that if the potential V is independent of time this may

be aomplished by a method termed the separation of variables. What this

means is that we seek solutions of the form

	(x; t) = �(x)f(t)

The justi�ation for this is three fold

� More general solutions an be built up from these separable solutions

� They turn out to be states of de�nite energy

� Expetation values in these states are independent of time. They are

also termed stationary states.

If we do this we �nd that the Shroedinger equation redues to two ordinary

di�erential equations

f(t) = exp�iEt=�h (1)

H�(x) = E�(x) (2)

E is a onstant whih we will identify shortly as the energy of the state and

H is the hamiltonian

H =

��h

2

2m

d

2

dx

2

+ V (x)

This seond equation involving the Hamiltonian 2 is alled the time-independent

Shroedinger equation. Notie that, as advertized, the probability density

2



	

�

	 is time independent. Furthermore, the operator H is a QM version of

the lassial energy funtion for the system and from eqn.2 has an expeta-

tion value equal to E. Furthermore, any power of H has expetation value

just equal to E raised to that power. Thus the variane of the probability

distribution for the energy is zero - the distribution is trivial. Thus any mea-

surement of the energy will return exatly E - stationary states are states of

�xed energy.

But what is the energy E - so far we have not spei�ed it. In general

we will see that the energy E an take on an in�nite number of disrete

values dependent on the nature of the potential V . We will all these values

E

1

; E

2

; E

3

; : : : and to eah allowed value of E there will be an assoiated

solution to the time-independent Shroedinger equation �

1

(x); �

2

(x); : : :.

It is a theorem (we will not attempt to prove it) that the most general

solution to Shroedinger's equation is a linear ombination of these stationary

state solutions (the 

n

's are onstants)

	(x; t) =

X

n



n

�

n

(x)e

�iE

n

t=�h

(3)

These oeÆients 

n

an be usually found from a knowledge of the wave-

funtion at t = 0 and the solution of the time-independent problem. The

moral of the story is that one we have solved the time-independent equa-

tion we have very little left to do to �nd the most general solution to the

time dependent Shroedinger equation! Furthermore, the time-independent

equation does not ontain i and so we an just look for real solutions of this

equation.

Examples

The in�nite square well

Suppose V = 0 for 0 � x � a and is in�nite elsewhere. A partile is

permanently on�ned inside this potential well. It ould be thought of as a

very rude model for a single eletron atom. Classially, a partile on�ned

to suh a system would just boune bak and forth at onstant speed. Its

energy ould take on any value. We will see that in QM the allowed possible

energies are disrete!

First, notie that � = 0 for x < 0 and x > a sine there is no probability

of �nding the partile outside the well. Inside the well, where V = 0, the

3



time-independent equation redues to

��h

2

2m

d

2

dx

2

� = E�

Assuming that E > 0 we may introdue the variable k =

q

2mE=�h

2

and

write this equation as

d

2

�

dx

2

= �k

2

�

The general solution to this is

� = A sin kx +B os kx

The onstants A and B are �xed by applying the boundary onditions �(0) =

0 and �(a) = 0. This yields B = 0 and the quantization ondition

sin ka = 0

The latter means that ka = n�. Thus not all wavelengths are allowed - only

those whih orrespond to standing waves in the well. We have seen that the

Bohr quantization ondition for the hydrogen atom ould be understood on

a similar basis - here we see for the �rst time that the formal theory of QM is

able to explain many of the quantum phenomena whih had been observed

and whih had proven so diÆult for lassial physis to aount for. What

remains - well we still have to normalize the solution - that is the origin of

the remaining freedom in the onstant A ! Thus we �nd that the stationary

states of this potential are of the form

�

n

(x) =

s

2

a

sin

n�

a

x

The energy of this state is E

n

=

n

2

�

2

�h

2

2ma

2

.

We speak of the ground state as the state of lowest energy whih here

orresponds to n = 1 with E

1

=

�

2

�h

2

2ma

2

. Classially the state of lowest energy

orresponds to the partile at rest with E = 0. We see in QM that suh a

state is impossible. The minimum energy the partile an have is E

1

whih

inreases as we on�ne the partile to smaller and smaller regions (a ! 0).

This is a orollary of a very general theorem in QM alled Heisenberg's

unertainty priniple. This roughly states that the more aurately ones

4



knows the position of a quantum partile the less ertain we are about its

momentum (and hene its energy). In fat the produt of the unertainty

in its position times the unertainty in its momentum is always greater than

some minimum whih is equal to �h=2. We will prove this theorem later in

the ourse but one immediate orollary is that no partile an ever be at rest

at a point sine then it would have a well-de�ned position and momentum

(zero!). Thus even at zero temperature partiles always su�er utuations

in their positions and momenta - they are somewhat smeared out. This of

ourse is required if they sometimes behave like waves ...

Other points to notie: as n inreases the number of zero rossings of

the wavefuntion inreases. By symmetry the expetation value for x is at

x = a=2 for all states.

5



Leture 5

Orthogonality - example for in�nite well

Imagine taking the ground state and �rst exited state, multiplying them

and integrating between x = 0 and x = a.

Z

a

0

dx sin (�x=a) sin (2�x=a)

Using the identity

sin (�x=a) sin (2�x=a) =

1

2

(os (�x=a)� os (2�x=a))

We an see that the integral is zero - the two wavefuntions are said to

be orthogonal. Atually, it is not too hard to see that this is true for the

produt of any two wavefuntions �

n

(x) and �

m

(x) - their produt integrates

to zero. This allows us to determine the oe�ients 

n

easily knowing the

initial wavefuntion. Taking the general expansion result 	 =

P



n

�

n

,

multiplying both sides by �

m

(x) and integrating (at t = 0) leads to the

result



m

=

Z

	(x; 0)�

m

(x)dx

Thus a partile starting in a stationary state will always remain in that state

(all the 

n

's are zero bar one) and all average properties of that partile will

be time independent.

It will turn out to be a general feature of solutions to the time-independent

Shroedinger equation for arbitrary potential - di�erent stationary states

(with di�ering energies) will be orthogonal (in this sense) to eah other.

Furthermore, any state of the partile an be expanded out on this set of

speial stationary states and the expansion oeÆients determined using the

orthogonality ondition.

Time dependene

Suppose we manage to reate an initial wavefuntion that is of the form

	(x; 0) =

s

1

a

(sin (�x=a) + sin (2�x=a))

1



Thus we �nd that 

1

= 

2

=

q

1

a

and all other 's are zero. The energy of

this state is no longer �xed but an utuate - it is not a stationary state.

We an now ompute the time dependene of the probability density of the

partile. This yields

a	

�

	 = sin

2

(�x=a) + sin

2

(2�x=a)

+ 2 sin (�x=a) sin (2�x=a) os (E

1

� E

2

)t=�h

In obtaining this we have used the result

2 os � = e

i�

+ e

�i�

Thus the probability density (and hene the mean position of the partile)

osillates with time. Let's alulate < x(t) >

< x(t) >=

Z

	

�

(x; t)x	(x; t)dx

Thus

a < x(t) > =

Z

x sin

2

(�x=a)dx+

Z

x sin

2

(2�x=a)dx (1)

+

Z

2x sin (�x=a) sin (2�x=a) os (�Et=�h)dx (2)

where �E = E

2

� E

1

and using the result

Z

x sin

2

(px) =

x

2

4

� x

sin (2px)

4p

�

os (2px)

8p

2

Z

a

0

x sin (�x=a) sin (2�x=a)dx = �

8a

9�

2

we an show that

< x(t) >=

a

2

�

1�

32

9�

2

os (�Et=�h)

�

The angular frequeny of this motion is thus

!

quantum

=

3

2

�

2

�h

ma

2

Thus the mean position of the partile osillates with time in a way reminis-

ent of the lassial osillations of a partile in the same well. In fat if we

2



alulate the mean energy of this state E = (E

1

+E

2

)=2 and use it to derive

a speed v we �nd

v

lassial

=

5�

2

�h

2

4ma

2

the frequeny of suh a motion is then !

lassial

=

2�v

2a

and yields

!

lassial

=

s

5

2

�

2

�h

ma

2

Thus the quantum osillation frequeny is pretty lose to the lassial os-

illation frequeny of a partile whose energy is lose to the mean quantum

energy.

!

2

lassial

!

2

quantum

=

10

9

Thus ertain linear ombinations of stationary states an produe probability

`lumps' whose averaged motion resembles the lassial motion of a partile.

We will see another example of this when we return to the disussion of free

partiles. Another example of suh a onnetion to lassial physis is given

the Bohr Correspondene Priniple whih states that in the limit of large

quantum numbers n the results of quantum physis agree with the lassial

motion. Atually the orretness of this priniple relies on the fat that

the separation between energy levels beomes small for large n - whih is

not in fat true for potentials whih go to in�nity for large distane suh

as the in�nite square well but it is true for the potentials within atoms and

moleules - the situation whih Bohr was trying to desribe.

Ehrenfest's theorem

The onnetion to lassial physis an be made more expliit in a elebrated

theorem due to Paul Ehrenfest whih shows that quantum expetation values

evolve aording to Newton's 2nd law. Consider the time rate of hange of

the expetation value of the momentum < p >

d < p >

dt

=

Z

dx

�

�t

 

	

�

�h

i

�

�x

	

!

Using Leibnitz we �nd

d < p >

dt

=

�h

i

Z

dx

 

�	

�

�t

�	

�x

+	

�

�

2

	

�x�t

!
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Substituting in from the Shroedinger equation and using integration by parts

we an see

d < p >

dt

= �

Z

dx	

�

�V

�x

	

The right hand side is nothing but the expetation value of the fore on the

partile and we have the result. Similarly it is easy to see that

d < x >

dt

=< p >

Wave pakets and free partiles

We have seen that the Shroedinger equation in free spae admits simple

plane wave solutions e

ikx�!t

where ! = �hk

2

=2m. However, although we

initially hypothesised that these represented free partiles it is easy to see

that this annot be true.

� They are not normalizable

� If we ompute their wave veloity v

quantum

=

�hk

2m

it is half the speed of

the lassial partile they are supposed to represent! (v

lassial

= p=m =

�hk=m)

� Suh states do not satisfy the Unertainty Priniple - they have a def-

inite momentum.

These problems are all evaded one we realise that physial partiles are

neessarily restrited to a �nite region of spae. They should hene be rep-

resented not by in�nitely long plane wave states but superpositions of suh

states whose wavelengths/momenta are restrited to lie in a small band. Suh

a solution is termed a wavepaket - 	(x; t)

P

.

	(x; t)

P

=

Z

dk(k)e

ikx�!t

If we assume that (k) is strongly peaked about some wavenumber k

0

we an

expand !(k) around k

0

!(k) � !(k

0

) + (k � k

0

)

d!

dk

j

k

0

4



Changing variables to s = k � k

0

we an write this as

	

P

� e

�!

0

t

Z

ds(k

0

+ s)e

i(k

0

+s)x�!

0

0

st

This an be rewritten

e

i(�!

0

t+k

0

!

0

0

t)

Z

ds(k

0

+ s)e

i(k

0

+s)(x�!

0

0

t)

Thus the wavepaket at time t is just of the same form as at t = 0 but

translated to x � !

0

0

t. Thus the veloity of the paket as a whole (the so-

alled group veloity) is just !

0

0

whih is none other than the lassial veloity

! Furthermore, by hoosing a suitably rapidly deaying funtion (s) we an

make the resulting wavepaket go to zero suÆiently fast as x ! 1 as to

render it normalizable. Finally, suh wavepakets are omaptible with the

Unertainty Priniple - if you ompute the typial spread in momenta k it

is possible to show that it varies inversely with the typial region in position

over whih the wavepaket is none zero - the oeÆient of proportionality

being at least �h=2 (the latter being realised by a gaussian funtion (k)).

In summary (free) physial partiles do not possess a de�nite energy

or momentum but possess a spread ompatible the unertainty priniple

given their spatial loalisation. Mathematially they are represented by a

wavepaket whih is just a linear superposition of plane wave states. Suh

a wavepaket propagates approximately as a single probability lump with a

veloity equal to the lassial veloity of the free partile of that energy.
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Leture 6

Solving the Shroedinger equation on the omputer

Types of solutions

We have seen that �nding solutions to the full Shroedinger equation redues

to solving the time independent Shroedinger equation

H	 = E	

where H is the hamiltonian (or energy) operator. The solutions to this

equation are of two types

� Bound state solutions

� Sattering solutions

The former are exempli�ed by solutions of the in�nite square well potential

- we see a disrete spetrum of normalizable allowed states. A partile in

suh a state has zero hane of being found at in�nity - it is essentially

on�ned to a ertain region of the x-axis. The reason for this is simply

that its energy E is less than the potential at large distane E < V (1) -

even quantum e�ets annot allow it to tunnel over in�nite distanes. The

sattering solutions on the other hand allow the partile to esape to large

distanes and are haraterized by E � V (1). One example of suh a

state is the free partile. We have seen that suh states have a ontinuous

range of possible energies E and an be represented by non-normalizable

wavefuntions - like e

ikx

. To ahieve physial sattering wavefuntions we

must then superpose many of these mathematial solutions to Shroedinger's

equation leading to the reation of wavepakets. Suh wavepakets ontain

a set of momenta and energies entred around some entral (lassial) value

and hene satisfy the unertainty priniple. They are then normalizable.

For the moment we will onentrate on the bound states (for potentials

like the in�nite square well these are the only possibility). For most realisti

potentials we will �nd that is impossible to solve the (time independent)

Shroedinger equation to �nd the allowed states and energies and so we

must turn to numerial methods to �nd approximate solutions.

1



Disretization

The simplest method to solve the one-dimensional problem for bound states

is alled the shooting method. First, we replae derivatives with �nite di�er-

enes

d�

dx

!

�

n+1

� �

n

�x

Here, �

n

represents the value of �(x) at x = n�x and �x is a (small) interval

on the x-axis. The idea is that for �x small enough the approximation for the

derivative will be aurate enough and the �nal solution �

n

will approximate

losely the solution to the ontinuum equations. To proeed we �rst write

the Shroedinger equation as two �rst order equations

d�

dx

= p

dp

dx

=

2m

�h

2

(V � E)�

Next we apply our simple disretization reipe and rearrange the two equa-

tions into the simple form

�

n+1

= �

n

+�xp

n

p

n+1

= p

n

+�x

2m

�h

2

(V

n

� E)�

n

This way of writing the Shroedinger equation makes it lear what we have

to do - if we speify an initial value (say at x = 0) for �(0) and

d�(0)

dx

we

an use these equations to predit their values at x = �x. Having their

values at x = �x we an use the equations again to get their values at

x = 2�x et et. In this way we an generate the wavefuntion for all x.

What value should we hoose at x = 0 ? If the potential is symmetri about

x = 0 i.e V (x) = V (�x) it is easy to see that the �nal wavefuntion obeys

one of two onditions �(x) = �(�x) the so-alled even parity solutions or

�(x) = ��(�x) the odd parity solutions. The former are even funtions and

hene have gradient p = 0 at x = 0. The latter have �(0) = 0. Furthermore,

we an adjust the sale of �(x) arbitrarily at this stage so that a suitably

general set of initial onditions are

� �(0) = 1, p(0) = 0 (even parity)

� �(0) = 0, p(0) = 1 (odd parity)

2



Allowed energies - shooting and bisetion

OK, so now we have initial onditions and a reipe eqn. 1 to generate the

wavefuntions. At this point you may be wondering - what determines the

allowed values of E ? We will see that only for rather speial values of the

energy E will iteration of these equations yield a normalizable wavefuntion

- in general the numerial solution will yield wavefuntions whih diverge

very rapidly at large x. Thus the shooting tehnique onsists of guessing a

value for E, iterating the equations determining �

n

and seeing whether in

some region far from the enter of the potential the wavefuntion is `small'

- if not we use some riterion for improving on our guess for E. If we do

this arefully, gradually inreasing the energy E, we an �nd all the allowed

energies and assoiated wavefuntions.

One good way to loate the energies preisely is alled bisetion. By

experimenting with the loal Java applet you will notie that if you have

found two values of E say E

1

and E

2

whih straddle an allowed energy they

will diverge with opposite signs at large x (say some �xed point x = x

L

).

Thus if you overshoot the allowed energy the wavefuntion gets large in say

a positive diretion (�(x

L

) > 0) while undershooting yields a wavefuntion

whih diverges in a negative diretion (�(x

L

) < 0). Now onsider the mean

energy (E

1

+ E

2

)=2. If its wavefuntion at x = x

L

has the same sign as say

the wavefuntion omputed at E

1

you an use this midpoint energy as a new

guess for E

1

. If not it must have the same sign as that orresponding to

E

2

and you may use the midpoint energy as the new E

2

. In either ase you

have now halved the region in whih the true allowed energy is loated. By

iterating this proedure many times you an loate the energy to arbitrary

preision.

General Strategy

� Deide a region of E in whih you want to searh for allowed energies.

Deide also the minimum possible energy.

� Guesstimate a typial energy level separation (say using dimensional

analysis)

� Deide on a value for x

L

- the potential will ontain a length sale - use

some multiple of this.

3



� Set a lower energy E

1

to the minimum possible energy. Set the upper

energy E

2

to the same. Compute �(x

L

) for this energy.

� San upward in the energy E

2

(using the average energy level separation

as a guide) until you �nd �(x

L

) hanging sign - an allowed energy lies

now between E

1

and E

2

.

� Biset to �nd exat energy.

� Reset lowest energy E

1

to (just above) this allowed energy

� Repeat last three steps until you have exhausted the initial energy

region of interest.

The C ode you will use employs this strategy. To hange the potential you

are examining you just edit the funtion potential()

Harmoni Osillator

We will �rst use this tehnique to �nd the allowed energies and wavefuntions

of the harmoni osillator potential V =

1

2

m!

2

x

2

. First we simplify the dis-

rete equations by working in terms of resaled energy � =

2m

�h

2

E. Also, the po-

tential is now of the form v(x) =

2m

�h

2

m!

2

x

2

2

= �

2

x

2

. Initially in the ode we set

� = 1=2. First we set PARITY=0 (even parity) and ompile the ode. When

we run it the energies are (approx) 0:50; 2:50; 4:50; 6:50; 8:50. Similarly when

we set PARITY=1 (odd parity) we �nd the energies 1:50; 3:50; 5:50; 7:50; 9:50.

Thus we see that the energies � of the harmoni osillator are equally spaed

(and for � = 1=2) separated by unity. The ground state has non-zero energy

as required by the unertainty priniple. The plotted wavefuntions osillate

and then deay rapidly to zero at large x. As the energy inreases the number

of osillations inreases just as for the in�nite square well. Furthermore, we

an show that the produt of any two suh states integrated over the interval

is zero as required by orthogonality!

If we vary � we will �nd that the energy level splitting varies as 2�. In

fat we an demonstrate numerially that

E

n

= �h!

�

n +

1

2

�

We will see later that we an derive this result analytially. However, by

repeating this alulation for the anharmoni osillator V = �x

4

we an use

4



these numerial methods to solve a system whih is not tratable by analyti

methods. Similarly we an use these tehniques to study the bound states of

the �nite square well - for a deep well the low lying states will look like those

of the in�nite well - although the wavefuntion will now extend outside the

range of the well - deaying exponentially out to large distane. Also, a �nite

well possesses only a �nite number of bound states - for large energies the

partile an move o� to in�nite distane with �nite probability - it exhibits a

ontinuum of so-alled `sattering' states. These are not aessible with the

urrent ode.
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Leture 7.

Vetors, Operators and the Hamiltonian evolution

We now turn to a more abstrat disussion of QM. We have seen that in

wave mehanis a quantum system is desribed mathematially by a fun-

tion of spae and time alled the wavefuntion. This wavefuntion forms

a onvenient representation for the more abstrat notion of quantum state.

Remember that the desription of a quantum state is quite di�erent from its

lassial ounterpart - it must be onsistent with the Heisenberg unertainty

priniple and the priniple of superposition. Thus a quantum state desribing

a single partile may admit the possibility that a measurement of the par-

tile's position or momentum may return more than one value. To explain

double slit interferene we must also assume it may be split and reombined

to yield other new quantum states.

Thus the mathematial quantity whih is used to represent this quantum

state should ontain a large number of di�erent omponent piees of infor-

mation and two suh objets may be added together with di�erent weights

to produe another suh quantum state objet. If we look around in mathe-

matis for objets whih behave in this way we will see that quantum states

have the same properties as vetors. Unlike the familiar vetors of three di-

mensional spae the quantum state vetors inhabit a so-alled omplex vetor

spae whose dimemsion may be in�nite! To see how this all works out lets

summarize the important properties of ordinary vetors - one this is done it

will be obvious whih of these properties arries over to more general vetor

spaes. These properties are as follows

1. The sum of two vetors a and b is a vetor  = a+ b.

2. We an multiply any vetor by a salar to yield another vetor eg.

b = �a.

3. Vetors an be expanded in omponents; that is it is possible to hoose

a suitable basis set of vetors (like (i; j;k) of Cartesian oordinates)

and express every vetor as a sum over basis vetors weighted by (real

number) oeÆients.

a = a

i

i+ a

j

j+ a

k

k

The set of 3 numbers (a

i

; a

j

; a

k

) are then the omponents of the vetor.

1



4. There exists a dot produt between two vetors a and b denoted a:b

whih is just a salar. If a and b are expanded on a Cartesian basis

this is just

a:b = a

i

b

i

+ a

j

b

j

+ a

k

b

k

The omponents of a vetor are then nothing else than the dot produt

of the vetor with the (unit) basis vetors eg. a

i

= i:a.

The generalization that is needed to disuss vetors for QM is

� Introdue a new notation ja > for quantum state vetor.

� Replae real salars by omplex salars. (vetor omponents are also

in general omplex numbers)

� Let the dimension of the spae in whih QM takes plae be as big as

you like. Thus the expansion of a state vetor in omponents an be

written

ja >=

X

i

a

i

je

i

>

where the set of vetors fje

i

>g forms a basis in the spae.

� The exists a dot produt whih ombines two vetors to yield a omplex

number. This is denoted

< ajb >

� The analog of a Cartesian basis is one in whih the basis vetors are

orthogonal { < e

i

je

j

>= Æ

ij

.

� The omponents a

i

an just be intrepreted as the dot produts of the

basis vetors with the vetor eg. a

i

=< e

i

ja >.

� The dot produt between two vetors ja > and jb > in suh a basis is

now

a:b = a

�

i

b

i

+ a

�

j

b

j

+ a

�

k

b

k

The latter result an be understood if we allow ourselves two types of

vetor - the original (sometimes alled ket-vetor) ja > and a dual bra vetor

< aj whose omponents a

bra

i

with respet to the dual bra basis < e

i

j are just

the omplex onjugates of the ket omponents a

bra

i

= a

�

i

. The vetor < aj

dual to ja > is sometimes also alled the adjoint vetor. Notie that this

2



de�nition of the dot produt ensures that the dotprodut of a vetor with

itself is a positive real number (this will be a neessary ingredient in order to

allow for the probability interpretation of the theory - it will allow us to nor-

malize the quantum state vetor to be of unit length < aja >= 1 ompletely

analogously to the normalization of the Shroedinger wavefuntion).

With this tehnology we an expand the state vetor j	 > on some n-

dimensional basis fje

i

>g - we will assume from now on the basis is orthonor-

mal;

j	 >=

n

X

i=1

 

i

je

i

>

The oeÆients  

i

are just the generalized dot produts of the state vetor

with the basis vetors �

i

=< e

i

j	 >. Let us postpose disussion of what

appropriate set of basis vetors to hoose. We will see that this is inti-

mately onneted to the hoie of observable to measure. Just notie that

this mathematial expansion of the state vetor embodies the physial prin-

iple of superposition - that is the quantum probability wave an be the sum

of many ontributions eah of whih may orrespond to lassially distint

possibilities (for example eah basis vetor might represent a possible loa-

tion of the partile on the x-axis - the quantum state is a sum over these -

allowing the partile to be simultaneously at many positions and foring a

probabilisti interpretation of the theory).

The evolution of the state vetor follows from the Shroedinger equation

of wave mehanis:

i�h

�j	 >

�t

= Hj	 > (1)

The quantity H is alled the Hamiltonian operator. Its purpose is to trans-

form one vetor into another (neighboring) vetor. It has the dimensions of

energy - a primary observable.

Normalization of the wavefuntion translates into the statement < 	j	 >=

1 - i.e the state vetor is a kind of unit vetor. This normalization ondi-

tion was neessary for a probabilisti interpretation of the theory - and it is

neessary that it remain true for all time - thus as the state vetor evolves

in time it remains always of unit `length'. What properties must H have in

order that this be true ?

Imagine solving the equation 1 over a small time period �t.

j	(t+�t) >= j	 > �

i�t

�h

Hj	(t) >

3



To hek the normalization ondition we need to introdue the onept of

adjoint operator. Suppose j� >= Aj > then the adjoint vetor < �j is given

by

< �j =<  jB

y

This is often written as

< B

y

 j

whih emphasises that B

y

operates on the bra vetor - here <  j Thus we

�nd that

< 	(t+�t)j	(t+�t) >=< 	(t)j	(t) > +

i�t

�h

�

< 	(t)j(H

y

�H)	(t) >

�

Thus we require the Hamiltonian to be a self-adjoint or Hermitian operator

H = H

y

. We will see that hermitian operators play a entral role in quantum

mehanis.

Notie that our argument implies that the operator (1 �

i�t

�h

H) applied

to any vetor preserves its length to O(�t

2

). In the limit of vanisihing �t it

is an example of a unitary operator U . Suh operators U have the property

U

y

= U

�1

where U

�1

is the inverse operator - the operator whih undoes the

e�et of U . To see this is norm preserving onsider

ja >= U jb >

< aU

y

U ja >=< aja >

In general, suh an operator may be written as exp iH where the operator

H is hermitian (not neessarily the Hamiltonian). This is the ase for the

Shroedinger evolution eqn. 1 whih has a formal solution

j	(t) >= exp�iHt=�hj	(0) >

Notie that general unitary operators take one orthonormal frame into

another - they orrespond to a hange of basis. For example if we have some

orthonormal basis fje

i

>g then for any unitary operator S we may onstrut

another basis fje

p

rime

i

>g whih is also orthonormal.

je

0

i

>= Sje

i

>

then

< e

0

j

je

0

i

>=< e

j

jS

y

Sje

i

>= Æ

ij
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The length of any vetor j	 > is then invariant under suh a hange of basis

(although its omponents will hange). Unitary hanges of basis are just

analogous to using a rotated frame of referene in a disussion of two or

three dimensional vetors.

Eigenvalues and Eigenvetors

Consider again vetors in ordinary three dimensional spae. And onsider the

rotation operator - most vetors will hange under rotation - the exeption

are vetors whih lie along the axis of rotation. They don't hange at all.

Also, vetors lying in the plane at 90 degrees to the axis just ip sign if the

angle of rotation is 180 degrees. In a omplex vetor spae suh as used by

QM every linear transformation has `speial' vetors suh as these - they are

alled eigenvetors. The transform into multiples of themselves under the

operator/transformation. The multiplying onstant is alled the eigenvalue.

T j� >= �j� >

Hermitian operators are speial beause

� They have real eigenvalues

� Their eigenvetors are orthogonal (and an be made orthonormal)

� They span the spae - that is any vetor an be expanded as a linear

ombination of the eigenvetors - they an hene be used as a basis set.

The last statement is stritly only always true for �nite dimensional vetor

spaes. The �rst of these is easily proved:

< �jT j� >= � < �j� >

beause of hermitiity we may rewrite this as

< T�j� >= �

�

< �j� >

(we have used the fat that the Hermitian adjoint of a salar is just its om-

plex onjugate) Hene � = �

�

QED. To prove the seond statment suppose

T j� >= �j� >

5



and

T j� >= �j� >

Thus

< �jT� >= � < �j� >

Using hermitiity we see that this an be rewritten

< T�j� >= � < �j� >

But the LHS is just < ��j� > and sine � is real and � 6= � we see

< �j� >= 0

Generalized Statistial Interpretation

Suppose now that we have a quantum system desribed by a state vetor j	 >

evolving aording to eqn. 1. It is a postulate of QM that every observable

will be represented in the theory by an hermitian operator. Suppose we

hoose to make a measurement of some physial observable orresponding to

an hermitian operator Q. The possible results of that measurement are the

eigenvalues measuring q

i

is simply

j < �

Q

i

j	 > j

2

After the measurement the state `ollapses' to the state j�

Q

i

> and will then

ontinue to evolve aording to eqn. 1 one more.
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Leture 8.

The Unertainty Priniple

As we have desribed, for any observable A we will assoiate an hermitian

operator A. The expetation value of the operator in the state j	 > is then

naturally given by the expression

< A >=< 	jA	 >

Consider two suh observables A and B. The produt of the (squared) un-

ertainty in A will be

�

2

A

= h(A� < A >)	j(A� < A >)	i =< f jf >

Similarly for the observable B (with f replaed by g) Therefore

�

2

A

�

2

B

=< f jf >< gjg >� j < gjf > j

2

This is alled the Shwarz inequality. It is a theorem for all vetor spaes

equipped with a notion of dot produt. Now the RHS of this expression is

always bigger than the square of the imaginary part of < f jg > so we an

also write this as

�

2

A

�

2

B

�

�

1

2i

[< f jg > � < gjf >℄

�

2

But

< f jg >=< 	j(A� < A >)(B� < B >)j	 >

This is simply

< AB > � < A >< B >

Similarly

< gjf >=< BA > � < B >< A >

So we �nd

�

2

B

�

2

A

�

�

1

2i

< [A;B℄ >

�

2

where the square brakets are de�ned by

[A;B℄ = AB �BA

1



This is the Unertainty Priniple in its most general form. It says that for

any pair of observables whose quantum operators do not ommute there will

be an assoiated unertainty relation for the produt of the utuations in

their expetation values. This will be true for any quantum state vetor

j	 >. If we hoose A = x and B =

�h

i

d

dx

we �nd

[x; p℄ = i�h

and hene

�

x

�

p

�

�h

2

This is the famous Heisenberg unertainty priniple whih we have enoun-

tered several times already.

Operators whih do not ommute do not share a omplete set of ommon

eigenvetors - thus if we make a measurement of one of them we will (by

the generalized statistial interpretation desribed above) ollapse the state

vetor to a partiular eigenvetor of that observable, whih will not then be

an eigenvetor of the other observable. Indeed, if we hoose to expand this

ollapsed state vetor on the basis of eigenvetors of the seond observable we

will generate a range of values - i.e a measurement of that seond observable

would be unertain. The magnitude of that unertainty would be given by

the unertainty relation.

Finite dim representations - matrix mehanis

Let us now derive a onrete realization of these ideas by thinking of a �nite

dimensional system endowed with some orthonormal basis set fje

i

>g, i =

1; : : : n. An operator T takes every vetor into some other vetor. Thus

ating on a partiular basis vetor je

1

> we would �nd

T je

1

>= T

11

je

1

> +T

21

je

2

> + � � �+ T

n1

je

n

>

and similarly for all the other basis vetors. Thus the e�et of the transfor-

mation an be enoded in n

2

oeÆients T

ij

where we an see that

T

ij

=< e

i

jT je

j

>

Furthermore if j� > is an arbitrary vetor

j� >= a

1

je

1

> +a

2

je

2

> + � � �+ a

n

je

n

>

2



then

T j� >=

X

j

a

j

(T je

j

>) =

X

i

0

�

X

j

T

ij

a

j

1

A

je

i

>

Evidently T takes a vetor with omponents a

1

; : : : a

n

into a vetor with

omponents a

0

i

= T

ij

a

j

. It is easy to see that a ompound operator C = ST

is just represented by a set of n

2

numbers C

ij

given by

C

ij

=

X

k

S

ik

T

kj

Thus if we represent the state vetor by its omponents in a partiular basis,

then operators may be represented by matries. Furthermore, if we think of

the omponents of a ket vetor ja > as just a olumn matrix, then the dot

produt < bja > is just the matrix produt

b

y

a

where the dagger operation transposes the olumn vetor jb > into the row

vetor < bj and takes its omplex onjugate.

Now onsider the salar

< �jAj > =

X

i;j

�

�

i

 

j

< e

i

jAje

j

> (1)

=

X

i;j

�

�

i

A

ij

 

j

(2)

If A is Hermitian we must have that the LHS equal

< H�j >

This will only be true when

A

ij

= A

�

ji

This then is the de�nition of a Hermitian matrix. It is a result in matrix

theory that the eigenvalues of a hermitian matrix are purely real and that

the eigenvetors are orthonormal and span the original spae - just as for

the abstrat operators. Unitary matries are then simply those matries

whose (matrix) inverse is just equal to its (matrix) hermitian onjugate as

you would expet.

Thus any observable an be represented by either an operator or a (possi-

bly in�nite dimensional) hermitian matrix. The possible (real) values whih

3



an result from measurement of that observable are just the eigenvalues of

that matrix and the probability of measuring any suh value is just the (mod)

square of the omponent of its state vetor along the eigenvetor orrespond-

ing to that eigenvalue. Thus most of day to day business of doing a QM

alulation, written in this language, orresponds to �nding the eigenvalues

and eigenvetors of some Hermitian matrix A. For small systems this an be

done by setting the determinant of A � �I equal to zero. This generates a

polynomial equation with n roots - the eigenvalues �

i

; i = 0 : : : n.

Notie that a matrixM will take on a diagonal form in a basis of its own

eigenvetors

M

ij

=< e

i

jM je

j

>= �

j

< e

i

je

j

>= �

j

Æ

ij

The transformation to this basis from the original basis must be a unitary

matrix transformation (sine it must preserve the length of the state vetor).

Thus

je

D

i

>= S

ij

je

j

>

The form of the matrix eigenvalue equation may then be preserved if the

matrix M

ij

undergoes a so-alled similarity transformation.

A

diagonal

= SAS

y

The only remaining question is how is the unitary matrix S determined ? The

unitary matrix an be built from the eigenvetors of the matrix by assembling

them into suessive olumns of S. Thus if we know the eigenvetors of an

given matrix (in a given basis) we an onstrut the unitary matrix that

e�ets the hange of basis whih renders the matrix diagonal.

It is also lear then that if two operators have a ommon set of eigen-

vetors they an be simultaneously diagonalized (put in diagonal form) by

a ommon unitary transformation. But diagonal matries ommute - hene

there will be no unertainty relation holding between the two orresponding

observables. So suh observables are often said to be ompatible. The oppo-

site reasoning is also true - inompatible operators are those whih do not

ommute and have a non-trivial mutual unertainty relation. They annot

be simultaneously diagonalized and have di�erent eigenvetors.

Numerial methods for solving matrix mehanis problems often turn

this around - they typially fous on �nding iteratively a transformation S

whih is apable of rendering A diagonal. The diagonal elements are then

the eigenvalues and the matrix whih e�ets the diagonlization yields the

eigenvetors.
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The Shroedinger equation just beomes a matrix equation now. This

an be seen by taking the vetor form and expanding j	 > on a (time-

independent) set of basis states fje

i

>g

j	 >=

X

i

< e

i

j	 > je

i

>

Inserting this into the Shroedinger equation we �nd

i�h

X

i

d < e

i

j	 >

dt

=

X

i

Hje

i

>< e

i

j	 >

Take dot produt of this with < e

j

j. Orthogonality of the basis says

i�h

< e

j

j	 >

dt

=

X

i

< e

j

jHje

i

>< e

i

j	 >

or equivalently (< e

i

j	 >= 

i

et)

i�h

d

i

dt

= H

ij



j

where H

ij

is the Hamiltonian matrix. If we look for solutions of this equation

in whih all the 

i

vary with time in the simple way 

i

� e

�iEt=�h

(the station-

ary solutions) we �nd that the allowed energies E are just the eigenvalues of

the Hamiltonian matrix and the eigenvetors the allowed stationary states
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Leture 9.

Chemial Bonding revisited

We an use this matrix formulation of QM to return to the problem of un-

derstanding the QM origin of the hemial bond. Suppose we are looking

at say the H

+

2

ion whih onsists of just one eletron shared between two

protons. If these two protons are a long way apart we an envisage the ele-

tron as being attahed to one or the other - giving two physial states j1 >

and j2 >. These will be our base states. This trunation of the spae of all

states to just two will be suÆient to disuss simple properties of the ground

state of the system. Imagine taking the two protons in�nitely far apart -

then we expet no overlap < 1jHj2 >= 0 - the (loal) Hamiltonian annot

ause an eletron to jump from one state to another. In this limit we an

trivially solve the Shroedinger equation for the two state system - we �nd

j1 >� exp (�iH

11

t=�h). Thus H

11

= E

0

is to be interpreted as the energy

an eletron would have in a single hydrogen ion. By symmetry it is equal to

H

22

- the energy if the eletron lived on the other proton. As we put the two

protons loser and loser together we �nd a non-zero hane for the eletron

to jump from one proton to another - this is represented by a nonzero matrix

element between the two states - < 1jHj2 >6= 0 = �A say. Thus the two

state system we must solve takes the form

i�h

 

d

1

dt

d

2

dt

!

=

 

E

0

�A

�A E

0

! 



1



2

!

where 

1

=< 1j	 > et. Lets look for solutions where both amplitudes 

1

; 

2

have the same time dependene exp�iEt=�h. Thus we need to solve the

matrix eigenvalue problem H = E. The possible eigenvalues turn out to

be

E

+=�

= E

0

+ =� A

with orresponding eigenvetors je

+=�

=

1

p

2

(j1 > += � j2 >). Thus the

ground state is lowered in energy with respet to a single hydogren atom and

its amplitude is an even funtion of the two separate amplitudes. In order to

get the true ground state we must use a state in whih the eletron is equally

split between the two protons! This energy will derease as the distane

between the two protons is dereased (i.e we assume that the magnitude of

A inreases as the distane dereases) - hene hemial bonding.

1



Notie also, that if we start out with the eletron loated on atom j1 >

it will not remain so - the presene of the two time dependent fators for

the eigenstates, whih osillate at di�erent frequenies, ensures that at some

later time it will ontain an admixture of the seond state - i.e there will be

some probability that the eletron would be found on the seond atom!

Suppose we had two distint atoms trying to share an eletron in this

piture. It is easy to modify the alulation to handle the situation when

H

11

6= H

22

. For small A the new energies are

E

I

= H

11

+

A

2

H

11

�H

22

E

II

= H

22

�

A

2

H

11

�H

22

This is typially muh smaller than the splitting for equal energies and ex-

plains why single eletron bonding in non-symmetri moleules is not very

ommon.

A more typial situation is the two eletron hemial bond in whih two

eletrons are shared by the two atoms. The hydrogen moleule furnishes a

nie example. The situation an still be modelled approximately as a two

state system orresponding to the physial situation in whih eletron a is

around the �rst proton and eletron b is around the seond and vie versa.

As before the base states for these two situations have the same energy by

symmetry but as before there is a possibility of hopping or exhange of the

two eletrons between the two protons. The mathematis is idential to the

single eletron problem and so we expet that the allowed energies of the

ombined system are split by this quantum mehanial hopping and we pre-

dit that the energy of the ground state is lowered as a result. This derease

in ground state energy is aentuated for small inter-proton separations and

results in a hemial bond - the ovalent bond.

If we admit two more base states into the piture - those orresponding

to the two eletrons being on one or the other of the two atoms (if they

are dissimilar) we an an allow for ioni bonding in this piture. Thus by

extensions of these ideas we an start to understand the quantum mehanial

basis for hemistry.
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Emergene of wave mehanis

Consider a one dimensional rystal with lattie sites i = 1 : : :N spaed a

apart. A quantum partile an move on this lattie and we an adopt a set

of basis states to desribe this motion as follows je

i

> orresponds to the

partile being loated at site i.

j	 >=

X

i

< e

i

j	 > je

i

>

Writing down the Shroedinger equation for this system we �nd

i�h

d

i

dt

=

X

j

H

ij



j

where  

i

=< e

i

j	 > is the amplitude for the partile to be loated at site

i (the omponent of the state vetor on the basis vetor je

i

>). The matrix

elements H

ij

are just

H

ij

=< e

i

jHje

j

>

and measure the omponent of Hje

j

> on the basis vetor je

i

>. Remember

that the hamiltonian measures the hange in a vetor under an in�nitessimal

amount of time. We expet that for very short times the only state a partile

an hop to from lattie site i are its neighbours i� 1 and i+1. Furthermore

we expet that the probability for going in either diretion is the same. Thus

we might guess

Hje

i

>= (V + 2A)je

i

> �Aje

i�1

> �Aje

i+1

>

where A and V are some onstants. Furthermore, we expet that for a free

partile the vetor orresponding to a uniform probability distribution for

the partile is time independent. This identi�es V as a simple funtion of

the potential energy of the partile. We thus have found

H

ij

= �Aa

2

�

ij

+ V Æ

ij

where �

ij

is a disrete form of the operator

d

2

dx

2

restrited to the rystal

lattie. Furthermore, we an rewrite this matrix equation in the suggestive

form

X

j

a

 

�Aa�

ij

+ V

Æ

ij

a

!

 

j

= E 

i

3



In the limit in whih a ! 0 with N ! 1 the sums beome integrals and

Æ

ij

=a ! Æ(i � j) where i and j an now be thought of as ontinuous valued

positions. Thus this equation will be the same as the fundamental equation

of wave mehanis if we require

Aa =

�h

2

2m

In this limit an learly adopt a normalization for the eigenvetors in

whih

X

i

aj 

i

j

2

= 1

whih just goes over into the usual form

Z

dx 

�

(x) (x) = 1

when it is realized that  

i

=< e

i

j	 >=  (x

i

) is just the probability ampli-

tude for �nding the partile at lattie site x

i

. Notie that the eigenvetors

then take the form of Dira delta funtions  

i

(x

j

)!

Æ

ij

p

a

.

Thus we an see that wave mehanis is just one representation of QM -

in whih we fous on measurements of position and expand all vetors on a

basis orresponding to the eigenvetors of the position operator. On a �nite

lattie this is a �nite dimensional matrix problem and as a! 0 it goes over

to a in�nite dimensional matrix problem. Di�erential operators - like

d

2

dx

2

being just onvenient representations of in�nite dimensional matries !

Indeed you an see that the spae of all funtions satis�es all the require-

ments of a vetor spae - the sum of two funtions is a funtion. One an

de�ne operators and salars (just omplex numbers) and most importantly

one an de�ne the notion of a dot produt where summation over omponents

is replaed by integration over a ontinuous valued index - the position x.

The most deliate remaining issue onsists of ompleteness - that any funtion

an be expanded out as a sum over a set of basis funtions. The boundary

onditions play a ruial role here - if the wavefuntion is subjet to suitable

boundary onditions this postulate may also be satis�ed - eg. Fourier series

and the in�nite square well. Suh funtions are also square integrable - that

is their dot produt is �nite always. The latter is neessary for a probability

interpretation of the theory. Funtions satisfying these requirements are said

to live in a Hilbert spae after the famous mathematiian.
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Band struture

Suppose we use this lattie Shroedinger equation to model the situation in

a rystal in whih an additional onstant potential energy is aquired when

an eletron is at a lattie site - V

i

= V

0

say. It is easy to see that e

ikna

is a

solution of the time independent Shroedinger equation with energy

E = V

0

�

�h

2

m

(1� os ka)

for any k from �=a to zero (for an in�nitely long rystal). Thus the possible

energies form a band with energies ranging from V

0

to V

0

�

2�h

2

m

. Clearly V

0

is the energy an eletron would have on a isolated lattie site - its original

atomi energy level - this is split into a band of allowed energies in the rystal.

Furthermore, a similar proess will be true for all the original atomi levels -

leading to a sequene of bands of allowed energies separated by �nite energy

gaps. This struture is a ruial omponent to the arguments whih are used

to explain all metalli, insulator and semiondutor behavior. Eletrons �ll

these stationary states up to some maximum energy - the so-alled Fermi

energy (there is a priniple alled the Pauli exlusion priniple that prevents

eletrons from being in the same state). A �lled band is inert for ondution

purposes - it has an equal number of left and right traveling eletron waves

and no free states available to take more eletrons suh as those responsible

for arrying an eletri urrent. A partially �lled band however has available

eletron states for arrying urrent and suh a substane is a metal. An

insulator has a �lled band and hene annot use eletrons to arry heat or

eletri urrent. A semiondutor has a �lled band but a small bandgap

to the next (empty) band - hene at room temperature a small number of

eletrons an beome thermally exited to this new band and arry urrent.

Furthermore, the holes left behind in the nearly �lled band an also arry

urrent - this substane will be a semiondutor.
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Leture 10.

Angular Momentum

Let us now turn to QM in more than one dimension. In one dimension we

know how to represent the position and momentum operators (when referred

to the basis of eigenvetors of the position operator). In three dimensions we

will immediately need to know how to represent the angular momentum of

a partile. This is a vetor quantity in lassial mehanis with omponents

L

x

, L

y

, L

z

where

L

x

= yp

z

� zp

y

L

y

= zp

x

� xp

z

L

z

= xp

y

� yp

x

In QM we expet it to be represented by a set of three Hermitian operators

orresponding to these omponents. By plugging in the 1D orrespondane

p

x

=

�h

i

�

�x

et we �nd the operators

L

x

=

�h

i

 

y

�

�z

� z

�

�y

!

L

y

=

�h

i

 

z

�

�x

� x

�

�z

!

L

z

=

�h

i

 

x

�

�y

� y

�

�x

!

The �rst question we should ask is: what are the eigenvalues and eigenfun-

tions of these operators ? We know that the former are the possible values

of a measurement of the orresponding omponent of angular momentum L

and the latter are important for extrating the probabilities of measuring

any one suh eigenvalue. We an also ask the question - what is the maximal

amount of information we an have onerning the angular momentum of a

partile in QM - that is, an we know all these omponents preisely and

simultaneously ? This latter question an be answered by omputing the

ommutator of these operators with eah other. We know if this is zero the

operators are simultaneously diagonal in the basis of their ommon eigenve-

tors. Otherwise there will be a generalized unertainty priniple governing

the minimum size of the utuations in these two operators. We an easily

1



show that

[L

x

; L

y

℄ = i�hL

z

[L

z

; L

x

℄ = i�hL

y

[L

y

; L

z

℄ = i�hL

x

From these fundamental ommutation relations the entire theory of angular

momentum an be dedued. Evidently, the di�erent omponents are inom-

patible observables

�

L

x

�

L

y

�

�h

2

j < L

z

> j

On the other hand the square of the total angular momentum L

2

= L

2

x

+

L

2

y

+ L

2

z

does ommute with any of these omponents eg.

[L

2

; L

z

℄ = 0

Thus we an hoose eigenstates whih are simultaneously eigenstates of both

L

2

and say L

z

.

L

2

f = ��h

2

f

and

L

z

f = ��hf

De�ne the two operators

L

�

= L

x

+ iL

y

The ommutators with L

z

are

[L

z

; L

�

℄ = [L

z

; L

x

℄� i[L

z

; L

y

℄ = ��hL

�

and, of ourse, L

�

ommutes with L

2

. Imagine some funtion f whih is an

eigenfuntion of L

2

and L

z

then we an show that L

�

f is also an eigenfuntion

of these two operators with eigenvalues ��h

2

and (� + 1)�h. L

+

is termed a

raising operator and L

�

a lowering operator. Thus, for a given value of

� the appliation of these two operators generates a ladder of states, eah

one separated from its neighbors by a L

z

eigenvalue di�erent by �h. We an

keep applying say L

+

and move up the ladder. Eventually, however we must

�nd a state with the highest possible value of the z-omponent of angular

momentum. For suh a state � = l say and we have

L

+

f

l

= 0

2



Now, we an show that

L

�

L

�

= L

2

x

+ L

2

y

� i (L

x

L

y

� L

y

L

x

)

or

L

2

= L

�

L

�

+ L

2

z

� �hL

z

Thus

L

2

f

l

=

�

�h

2

l

2

+ �h

2

l

�

f

l

Thus � = l(l + 1). In the same way there is a bottom value of � = l�h suh

that

L

�

f

l

= 0

we �nd similarly that l(l� 1) = l(l + 1). Thus l = �l. Thus the eigenvalues

of L

z

are m�h where m runs from �l to +l in 2l + 1 integer steps. Thus l

must be integer or half-integer. Notie that the maximum omponent of the

angular momentum l an never equal its total value l(l+ 1) sine this would

invalidate the generalized unertainty priniple (sine then we would preisely

the values of L

x

and L

y

- zero!). The omputation of the eigenfuntions takes

a little more e�ort!

Eigenvetors

We employ spherial oordinates

x = r sin � os�

y = r sin � sin�

z = r os �

We �nd

L

+

= �he

i�

 

i ot �

�

��

+

�

��

!

L

�

= �he

�i�

 

i ot �

�

��

�

�

��

!

Notie that they are independent of the oordinate r - thus so will be the

eigenfuntions. If we an solve the equation L

+

f

l;l

= 0 for the highest L

z

eigenstate with L

2

eigenvalue l(l+1) we an always get the other 2l states by

3



applying L

�

. Furthermore, lets assume that the eigenstates an be written

as a produt state

f

l;l

= F (�)G(�)

We �nd that G(�) = e

im�

where m must be an integer in order for G to be

single valued. Furthermore, sine L

z

= �i�h

�

��

we see m = l. The remaining

equation for � reads

dF

d�

= l ot �F

Writing l ot � =

d

d�

ln sin

l

�

d lnF

d�

=

d

d�

ln sin

l

�

Thus

F (�) = A sin

l

�

and the total eigenfuntion looks like

f

l;l

e

il�

sin

l

�

By applying L

�

we �nd

f

l;l�1

� e

(l�1)�

sin

l�1

� os �

These eigenfuntions are alled spherial harmonis and play a ruial role

in the states of 3D systems whih are rotationally invariant.

Spin

Usual orbital angular momentum orresponds to integral l. But it is observed

that partiles may also possess intrinsi angular momentum analagous to

rotation about an axis - alled spin. This may be half-integral. For example,

the eletron has spin 1/2 meaning that L

2

= 1=2(1=2+1)�h

2

and its projetion

on the z-axis is �

1

2

�h. It is an example of a `exat' two state system, similar

to the ones introdued earlier to desribe (approximately) hemial bonding.

In this ase the representation we have derived for integral l is not valid.

Instead the spin operators an be represented by 2 � 2 matries - the � (or

Pauli) matries introdued in the homework. A general spin state may be

represented by a 2 omponent olumn vetor or spinor.

j� >= aj

1

2

> +bj �

1

2

>

4



The omponents of j� > are the vetor

 

a

b

!

. Also,

S

x

=

 

0 1

1 0

!

S

y

=

 

0 �i

i 0

!

S

z

=

 

1 0

0 �1

!

As we have seen these obey the fundamental ommutation relations of angu-

lar momentum and yield the orret eigenvalues for S

2

and S

z

. Suppose the

system is known to be in the state (a; b) and we ask the question: what is

the probability of �nding the partile `spin-up' along the x-axis ? First, we

must on�rm that S

x

has the same two eigenvalues �

1

2

and then express the

state in terms of the orresponding eigenvetors of S

x

. This yields

j� >=

 

a+ b

p

2

!

j

1

2

>

x

+

 

a� b

p

2

!

j �

1

2

>

x

Thus

1

2

ja + bj

2

is the probability of �nding the partile spin up along the

x-axis!

Spin in a magneti �eld

It is known that a partile with spin interats with a magneti �eld B with

Hamiltonian

H = �B:S

For an eletron with magneti �eld in the z-diretion Shroedinger's equation

takes the form

i�h

d

dt

 

a

b

!

= �B�h=2

 

1 0

0 �1

! 

a

b

!

The general state is then a linear ombination

� =

 

os (�=2)e

iBt=2

sin (�=2)e

�iBt=2

!
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where we have automatially imposed a normalization ondition on the state.

Thus

< S

z

>= os

2

(�=2)� sin

2

(�=2)�h = os��h=2

Similarly

< S

x

>= �

y

S

x

�

with � as above. We �nd

< S

x

>=

�h

2

sin� os (Bt)

and a similar result for the y-omponent. We see that the spin vetor lassi-

ally preesses around the �eld diretion with angular frequeny (the Larmor

frequeny) ! = B.

Addition of angular momentum

Consider two spin 1/2 partiles. What is the total angular momentum for

the system ? More generally, onsider two partiles with angular momentum

eigenvalues l

1

; m

1

and l

2

; m

2

. Think of them initially as very far apart or

unoupled. It is easy to see that there are 4 ommuting angular momentum

operators for this system: L

2

(1), L

z

(1), L

2

(2) and L

z

(2). Any linear ombi-

nations of them will also be ommuting. The obvious ones we are interested

in are L

z

= L

z

(1) + L

z

(2) and L

2

= L(1) + L(2):L(1) + L(2) together with

the squares of the individual angular momenta. We an equally well hoose

these latter four as the maximal ommuting set. The eigenstates of these will

orrespond to the total angular momentum of the ombined system and its

omponent along some axis. The eigenstates of these operators will be built

out of produts of eigenstates of the original angular momentum operators

jlml

1

l

2

>=

X



m

1

;m

2

jl

1

m

1

> jl

2

m

2

>

If, initially there are (2l

1

+1)(2l

2

+1) states for the two partiles this will be

preserved in this new representation.

Clearly, the maximal value for m will be l

1

+ l

2

. This means the two

partiles an be found in a state with l

max

= l

1

+ l

2

. The minimal value of

m will be jl

1

� l

2

j. In fat we an show that this yields l

min

the possible min-

imal value of the total angular momentum quantum number. Sine angular

momentum is quantized we expet any angular momentum in between will

6



also be seen. One way to see this is to see what value of l

min

will yield the

orret total number of states

l

1

+l

2

X

l

min

(2l + 1) = (2l

1

+ 1)(2l

2

+ 1)

To make things more onrete reonsider our original example of the spin

of two eletrons. The possible onbined state with largest z-omponent of

angular momentum m = 1 is are

j ">

1

j ">

2

Lets operate with L

�

= L

�

(1) + L

�

(2) on this. We get

j #>

1

j ">

2

+j ">

1

j #>

2

This has m = 0. Operate again with L

�

and we �nd

j #>

1

j #>

2

whih has m = �1 as expeted for an l = 1 state. But wait, this is only

3 states and I started with four base states. Also, my previous presription

implies there is also the possibility of a spin zero state l = 0 whih must have

m = 0. Of ourse, there is indeed another m = 0 state orthogonal to the one

we have already written down. It is

j ">

1

#>

2

�j #>

1

">

2

Thus the ombined system an exist in a triplet l = 1 or singlet l = 0 state.
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1 Leture 11.

QM in three dimensions

The Shroedinger equation is

i�h

�	

�t

= H	

where the hamiltonian takes the form

H =

1

2m

�

p

2

x

+ p

2

y

+ p

2

z

�

+ V (x; y; z)

and p

x

!

�h

i

�

�x

et. Normalization of the wavefuntion is simply

Z

dxdydzj	j

2

= 1

The time-independent Shroedinger equation is just the same with E re-

plaing the LHS. For systems whih are rotationally invariant (i.e where the

potential depends only on r) we may guess that solutions will look simpler in

spherial oordinates (r; �; �). To solve the Shroedinger equation in suh a

oordinate system we again try to �nd separable solutions - that is we write

	(x; y; z) = R(r)Y (�; �). This means we must transform terms involving

derivatives in x eg.

�

2

�x

2

into derivatives with respet to r, � and �. This is a

straightforward but tedious alulus exerise. I won't do it here but simply

quote the result We �nd

�

�h

2

2m

 

1

r

2

�

�r

 

r

2

� 

�r

!

+

1

r

2

sin �

�

��

 

sin �

� 

��

!

+

1

r

2

sin

2

�

�

2

 

��

2

!

+ V  = E 

This leads to two equations

1

Y

 

1

sin �

�

��

 

sin �

�Y

��

!

+

1

sin

2

�

�

2

Y

��

2

!

= �C

and

1

R

d

dr

 

r

2

dR

dr

!

�

2mr

2

�h

2

(V (r)� E) = C

Now, sine we have shown that the Hamiltonian ommutes with the angular

momentum generators, the states of the system will be eigenstates of the

1



angular momentum operators - thus, the angular equation here must simply

generate the spherial harmonis we have already met. In whih ase the

onstant C = l(l + 1) with l integral (it must be L

2

that omes in sine this

is the only operator whih does not single out a diretion in spae { unlike

L

z

). Thus the angular shape of the allowed wavefuntion does not depend

on the details of the potential if it only depends on radial distane r. We an

simplify the radial equation still further by making the hange of variables

R = u=r. Hene

dR

dr

=

�

r

du

dr

� u

�

=r

2

and

d

dr

�

r

2

dR

dr

�

= r

d

2

u

dr

2

. We �nd

�

�h

2

2m

d

2

u

dr

2

+

"

V +

�h

2

2m

l(l + 1)

r

2

#

u = Eu

This is idential in form to the 1D Shroedinger equation exept that the

potential is replaed by the e�etive potential

V

e�

= V +

�h

2

2m

l(l + 1

r

2

The normalization ondition beomes just

Z

dru

2

= 1

If you don't like all this math it is also possible to guess this equation for

u(r). The argument goes like this; the Hamiltonian is rotationally invariant

- hene it an only depend on the radial oordinate r plus onstants. We

might guess

H �

1

2m

p

2

r

+ V (r)

where p

r

denotes the momentum along the radial diretion. This annot be

the full story sine suh a Hamiltonian does not give the orret expression

for the energy of lassial irular motion. The latter an be written

E

irular motion

=

L

2

2mr

2

where L is the angular momentum of the partile. Now we know that L

2

is an operator in QM whih ommutes with H for a rotationally invariant

system. Hene we an add suh a term to our previous quantum Hamilto-

nian without hanging the rotationally invariant nature of the Hamiltonian.

Suh a Hamiltonian will give the orret expression for purely radial motion

2



and also for simple irular motion. In addition we know that eigenstates

of the Hamiltonian will be simultaneously eigenstates of L

2

- their angular

dependene wil hene just be given by the spherial harmonis we introdued

previously! Furthermore, for suh states we may replae the operator L

2

by

its eigenvalue l(l + 1)�h

2

and we arrive at the same equation as before.

Lets solve this �rst in the ase where V = 0 for R < a and is in�nite for

r > a. The radial equation inside the well reads

d

2

u

dr

2

=

"

l(l + 1)

r

2

� k

2

#

u

where k =

p

2mE=�h. We need to solve this equation subjet to the boundary

ondition u(a) = 0. The ase l = 0 is easy

u = A sin (kr) +B os (kr)

Sine the true wavefuntion is u=r so B = 0. The other boundary ondition

then requires sin (ka) = 0 whih yields ka = n�. The allowed energies are

simply

E

n

=

n

2

�

2

�h

2

2ma

2

and the allowed wavefuntions are just

 = sin (n�r=a)=r

The general solution for nonzero l is r j

l

(kr) where the funtion j

l

(kr) is

alled a spherial Bessel funtion. The allowed energies are given by the

solution of the equation

j

l

(ka) = 0

whih yields an in�nite disrete set of solutions. If �

nl

is the n

th

solution to

this equation we �nd the allowed energies

E

n

l =

�h

2

2ma

2

�

2

nl

and the wavefuntions are just

 (R; �; �) = j

nl

(�

nl

r=a)Y

lm

(�; �)

Notie that eah energy level is (2l + 1) fold degenerate whih reets the

fat that the energy of the system does not depend on hoie of the z�axis.
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The hydrogen atom

To �nd the energy levels and wavefuntions we merely substitute in the form

for the Coulomb potential V = �=r and solve the radial equation again.

The solutions are again a set of speial funtions - the Laguerre funtions.

Its easy to modify the C ode I gave you to determine the energies and

wavefuntions. You will see that all the allowed wavefuntions are osillatory

but with exponentially deaying amplitudes. The allowed energy levels turn

out to go like

E

n

= �

2

4

m

2�h

2

 

e

2

4��

0

!

2

3

5

1

n

2

and l is restrited to lie in the range 0 : : : n � 1. Notie that eah of these

states is 2l + 1 degenerate also. For the ground state the energy in physial

units is E

0

= �13:6eV.

Spetrum

If you put an atom in some stationary state then it will stay there forever

but if that state is not one of the lowest energy it will be prone to make

transitions to lower energy states (this an be aused by thermal ollisions

between atoms for example). To onserve energy a photon whose energy

mathes the atomi energy di�erenes is emitted.

E

photon

= �13:6eV

 

1

n

2

i

�

1

n

2

f

!

Transitions to the ground state lie in the UV - Lyman series. The Balmer se-

ries are transitions to n = 2 et and our in the visible part of the spetrum.

This spetra an be produed by �rst passing an eletri spark through the

gas and then wathing for the photons produed as the atoms relax bak to

lower energies.

Indistinguishability, atoms and the periodi table

Suppose I want to study a system with more than one partile. One might

want to start with systems in whih the two partiles do not interat strongly.

In this ase the allowed energies/wavefuntions an be omputed from 2 in-

dependent Shroedinger equations. Just as in the ase with two independent

4



angular momenta we an write down a wavefuntion for the ombined system

by taking produts of the single partile wavefuntions.

	(r

1

; r

2

) =  

a

(r

1

) 

b

(r

2

)

Of ourse, we are impliitly assuning that we an tell whih partile is whih

- this is absolutely impossible for two idential partiles suh as eletrons.

We have already seen a preursor to this when we disussed simple 2-state

models for ovalent hemial bonding - we found that the allowed states of

the system were linear ombinations of states in whih the eletrons initially

labelled were at one or the other of the two parent atoms. Thus we found

that

	(r

1

; r

2

) =  

a

(r

1

) 

b

(r

2

)�  

a

(r

2

) (b(r

1

)

Indeed, quantum indistuingishability fores us to use suh a basis of states

when disussing systems with more than one idential partile. If we intro-

due the exhange operator P suh that

Pf(r

1

; r

2

) = f(r

2

; r

1

)

then learly P

2

= 1 and it follows that the eigenvalues of P are �1. This

operator will ommute with the Hamiltonian and hene we an �nd a set of

funtions whih are simultaneously eigenstates of P and H. Suh eigenstates

will either be even or odd under exhange of partile label. These are just

the previous wavefuntions. Partiles for whih P = 1 are termed bosons

and those with P = �1 are alled fermions. In relativisti QM we an also

show that fermions have half-integral spin while bosons have integer spin

(this is alled the CPT-theorem). In our ase we must just postulate it as

an additional assumption.

Notie immediately that two idential fermions annot oupy the same

state - for then 	 = 0. This is termed the Pauli exlusion priniple. Its use

in ombination with the existene of disrete allowed energies gives an expla-

nation for the atomi struture of atoms and the peridodi table. Imagine

that as a �rst approximation we treat eah eletron around the atom as mov-

ing independently of all the others (that is we neglet their mutual eletrial

interation and use only the Coulomb fore of attration of eah eletron

to the positively harged nuleus). Just as in the hydogen atom if I solve

the Shroedinger equation for this system I will �nd a set of single partile

allowed energies. Eah of these will be labelled by some radial quantum num-

ber and an angular momentum. Typially the energy of the system inreases

5



with both radial quantum number (shell number) and angular monentum.

To assemble the atom we put eletrons in one by one in order of inreasing

energy - the Pauli priniple stops us putting 2 eletrons in the same state

(thus we an put 2 eletrons in a state with l = 0 sine they an have distint

spin states, 6 eletrons in a state with l = 1 sine there two spin states for

every value of l

z

). One we have �lled a given l-state the resultant eletrons

have no net spin and angular momentum and suh a shell is hemially in-

sert. Thus the hemistry of an atom is determined only by its outermost

partially �lled single eletron states. This leads to a periodi variation in

the properties as the atomi number (number of eletrons) inreases. If we

inlude eletron repulsion and spin properly into this model we an aount

quantitatively for all the known hemistry of the atoms.
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Leture 12.

Symmetry and onservation laws in QM

Imagine omputing the time variation of the expetation value of some ob-

servable orresponding to the operator A. We have

d < A >

dt

=

� < 	j

�t

Aj	 > + < 	jA

�j	 >

�t

From the Shroedinger equation we have

d < A >

dt

= i=�h < 	j [HA� AH℄ j	 >

Thus any operator whih ommutes with the Hamiltonian will have an ex-

petation value in any state whih does not vary with time - it is onserved.

Furthermore, we know from our disussion of angular momentum that eigen-

states of the hamiltonian an also be hosen to be eigenstates of the operator

A if it ommutes with H. Thus they an be labelled with the orresponding

eigenvalue of A. This quantum number will not then hange with time.

There are three basi operators we know that satisfy lassial onservation

laws - the energy, momentum and angular momentum. In QM the assoiated

operators will hene ommute with the Hamiltonian (in the �rst ase this is

of ourse trivial!). We might ask the questiom: is there any fundamental

priniple of nature whih might guarantee that these lassial onservation

laws also hold true in QM ? The answer is yes and it has to do with symmetry.

Consider the operator O = exp (iap=�h). By expanding this operator in

powers of p - the momentum operator it an be seen that this operator

e�ets a translation of the wavefuntion by the distane a. If the system is

translation invariant this does not hange the energy of the state. This will

be true if the Hamiltonian of the system is invariant under translation and it

follows that 0 must ommute withH. This in turn means that p will ommute

with H and hene will be onserved. This invariane of the hamiltonian is

alled a symmetry - and we see the intimate onnetion between symmetry

and onservation laws. A similar result is true for angular momentum and

symmetry under rotations.
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Perturbation Theory

Suppose we have solved the Shroedinger equation for some potential V

0

and now want to �nd the eigenvetors/values for another potential whih

di�ers from V

0

by a small amount. Perturbation theory is a tool for �nding

approximations to the latter knowing the eigenvetors/values for V

0

. Writing

H = H

0

+ �V

We will take � to be a small number. We write

j 

n

>= j 

0

n

> +�j 

1

n

> + : : :

E

n

= E

0

n

+ �E

1

n

+ : : :

If we substitute this ansatz into the Shoedinger equation and equate powers

of � we �nd

V j 

0

n

> +H

0

j 

1

0

>= E

1

n

j 

0

n

> +E

0

n

j 

1

n

>

Taking the dot produt with <  

0

n

j we �nd

E

1

n

=<  

0

n

jV j 

0

n

>

This is the �rst order shift in the energy. To �nd the eigenvetor to �rst

order in � we expand it as

j 

1

n

>=

X

m



m

j 

0

m

>

Notie that we do not need to inlude any term 

n

in this expression as suh

a term is not O(�). Thus we �nd

X

m

(E

0

m

� E

0

n

)

(n)

m

j 

0

m

>= �(V � E

1

n

)j 

0

n

>

Taking the dot produt with j 

0

l

> we �nd

(E

0

l

� E

0

m

)

l

(n) = � <  

0

l

jV j 

0

n

>

Notie that the denominator is never zero unless there is degeneray.
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Fine Struture of Hydrogen

The spetrum of hydrogen is in leading approximation given by that of the

non-relativisti Shoedinger equation with Coulomg potential. However, the

true Hamiltonian of the system should treat the eletron relativistially.

Sine terms are supressed by O(v

2

=

2

) relative to the leading term their

er�ets an be omputed using perturbation theory. Using the (relativisti)

formula

T = p

2

=2m� p

4

=8m

3



2

+ : : :

the lowest order orretion to the kineti energy is

E

1

= �

1

8m

3



2

< p

2

 jp

2

 >

Now p

2

j >= 2m(E � V )j >. Hene

E

1

= �

1

2m

2

�

E

2

n

+ 2E

n

� <

1

r

> +�

2

<

1

r

2

>

�

This yields

E

1

= �

E

2

n

2m

2

"

4n

l + 1=2

� 3

#

Notie that this breaks the original degeneray of the levels and makes them

l-dependent (� = e=4��

0

).

There is a further ontribution to the energy of the eletron oming from

relativity. Imagine the eletron `at rest' with the proton irling around

it. Suh a harge will generate a magneti �eld whih interats with the

eletron's spin in the way we desribed earlier

V = �S:B

Notie that the magneti �eld will be proportional to the orbital angular

momentum vetor of the eletron.

B = �

1

m

2

1

r

3

L

The fator  is given by

 = �

e

2m

S

3



Thus we expet a lowest order ontribution to the energy of the form from

this spin-orbit term to be

E

1

n

=<

e

2

8��

0

1

m

2



2

r

3

S:L >

Now, this term does not ommute with L and S separately so these two

are not separately onserved. However, V does ommute with J = L +

S. Thus states of the hydogen atom should be labelled by the onserved

quantum numbers n and j. Furthermore, L:S =

1

2

(J

2

� S

2

� L

2

). Thus the

eigenvalues of this new term are proportional to

j(j + 1)� s(s+ 1)� l(l + 1)

This allows us to write the eletron energy shift as

E

1

=

E

2

n

m

2

"

n[j(j + 1)� l(l + 1)� 3=4℄

l(l + 1=2)(l + 1)

#

Combining this result with the orretion from the kineti energy we �nd the

�nal �ne struture formula

E

nj

= �

13:6

n

2

"

1 +

�

2

n

2

 

n

j + 1=2

�

3

4

!#

Degenerate Perturbation Theory

If the unperturbed states are degenerate in energy then ordinary perturbation

theory fails (unless the two degenerate states have <  

a

jV j 

b

>= 0 whih

ours if the perturbation ommutes with the original Hamiltonian - this is

the ase for the �ne struture alulation above). Thus we must �nd some

other way to handle the problem. Suppose that j 

a

> and j 

b

> are two

orthogonal, degenerate states with energy E

0

. Notie that any linear ombi-

nation of states will also be an eigenstate of the unperturbed Hamiltonian.

Typially, V will break this degeneray. The lue as to hwo to proeed an

be seen from the formula for the oeÆients 

(n)

m

. The two (say) degenerate

states will start to dominate in this sum and we may analyze the system as

a simple 2-state system by inluding only those two states in the equation

for the new state vetor. We will �nd

H

0

 

1

+ V  

0

= E

0

 

1

+ E

1

 

0

4



with

 

0

= � 

0

a

+ � 

0

b

we �nd by taking appropriate dot produts that

� <  

0

a

jV j 

0

a

> +� <  

0

a

jV j 

0

b

>= �E

1

This is just a simple matrix problem where the matrix elements are just

taken with respet to the original, unperturbed wavefuntions.
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