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Abstract

A thorough review of the structure of the hydrogen atom will be

presented with emphasis on the quantum-mechanical principles in-

volved rather than calculational detail, which will be minimized. First,

the relationship of the Heisenberg uncertainty principle to the hydrogen

atom will be discussed brie
y. This is followed by a discussion of the

energy level structure of the hydrogen atom, including �ne structure, in

the context of the quantum-mechanical theories of Bohr, Schr�odinger,

and Dirac. Finally, smaller-order corrections to these theories will be

discussed, including the Lamb shift, hyper�ne structure, and the Zee-

man e�ect.

1 The Uncertainty Principle

Before discussing speci�cs about the structure of the hydrogen atom, it

is interesting to note what information about the hydrogen atom can be

derived just from the Heisenberg uncertainty principle. A familiar form of

the uncertainty principle looks like the following:

�x�p

x

� �h; (1)

where �x and �p

x

are the uncertainty in the x-component of the position

and momentum of a particle, respectively. Consider an electron in a classical

circular orbit in the xy-plane. It is then reasonable to write �x � r, where

r is the radius of the orbit. Assuming a state of minimum uncertainty, �p

x

is then known from the uncertainty principle, and it should be roughly equal
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to the magnitude of the momentum for the circular orbit being considered.

That is,

p � �p

x

�

�h

r

: (2)

Classically, the energy is simply

1

E =

p

2

2m

�

e

2

r

=

�h

2

2mr

2

�

e

2

r

; (3)

wherem is the electron mass and e the electron charge. The last step results

from the substitution of p from equation 2. The value of r is unknown, but

one would expect it to have a value that minimizes the energy, as Nature

likes to do. Di�erentiating equation 3 with respect to r and setting equal to

zero gives

dE

dr

= �

�h

2

mr

3

+

e

2

r

2

= 0: (4)

This yields

r =

�h

2

me

2

� a

0

= 0:529

�

A; (5)

where a

0

is the Bohr radius. Substituting into equation 3 gives

E = �13:6eV: (6)

The Bohr radius is exactly the radius of the circular orbit in the ground

state of the electron in Bohr theory, and it holds up as representative of the

extent of the orbit in Schr�odinger theory. The energy �13:6eV is the known

ground state energy of the hydrogen atom. So, starting with only a very

rough view of the structure of the atom and the uncertainty principle, one

can make some reasonable assumptions and derive two extremely important

fundamental results | the \size" if the hydrogen atom in its ground state

and its ionization energy. Of course, to get precisely the right results one

needs to make the right assumptions, and so this calculation is certainly not

rigorously accurate. It merely illustrates the relation of the fundamental

physical structure of the hydrogen atom to the uncertainty principle. The

fact that these results were derived assuming minimum uncertainty leads

to a rather important conclusion|the hydrogen atom in its ground state

is essentially in a state of minimum uncertainty. This explains why the

electron in its ground state cannot radiate, as one expects classically, and

1

To achieve consistency and avoid confusion, all equations are written in Gaussian

units.
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get drawn in towards the nucleus | to do so would violate the uncertainty

principle. If the electron were con�ned closer to the nucleus, so that �x

were much smaller, then �p

x

would be much larger and so it would not be

possible to consider the electron as necessarily bound to the nucleus.

2 The Bohr Model

With the use of spectroscopy in the late 19th century, it was found that

the radiation from hydrogen, as well as other atoms, was emitted at speci�c

quantized frequencies. It was the e�ort to explain this radiation that led to

the �rst successful quantum theory of atomic structure, developed by Niels

Bohr in 1913. He developed his theory of the hydrogenic (one-electron) atom

from four postulates:

1. An electron in an atom moves in a circular orbit about the nucleus

under the in
uence of the Coulomb attraction between the electron and

the nucleus, obeying the laws of classical mechanics.

2. Instead of the in�nity of orbits which would be possible in classical

mechanics, it is only possible for an electron to move in an orbit for

which its orbital angular momentum L is and integral multiple of �h.

3. Despite the fact that it is constantly accelerating, an electron moving in

such an allowed orbit does not radiate electromagnetic energy. Thus,

its total energy E remains constant.

4. Electromagnetic radiation is emitted if an electron, initially moving in

an orbit of total energy E

i

, discontinuously changes its motion so that

it moves in an orbit of total energy E

f

. The frequency of the emitted

radiation � is equal to the quantity (E

i

�E

f

) divided by h. [2]

The third postulate can be written mathematically

L = n�h (7)

n = 1; 2; 3; : : :

For an electron moving in a stable circular orbit around a nucleus, Newton's

second law reads

Ze

2

r

2

= m

v

2

r

; (8)
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where v is the electron speed, and r the radius of the orbit. Since the

force is central, angular momentum should be conserved and is given by

L = jr� pj = mvr. Hence from the quantization condition of equation 7,

mvr = n�h: (9)

Equations 8 and 9 therefore give two equations in the two unknowns r and

v. These are easily solved to yield

r =

n

2

�h

2

mZe

2

=

n

2

Z

a

0

(10)

v =

Ze

2

n�h

=

Z

n

�c; (11)

where

� �

e

2

�hc

�

1

137

(12)

is a dimensionless number known as the �ne-structure constant for reasons

to be discussed later. Hence �c is the speed of the electron in the Bohr

model for the hydrogen atom (Z = 1) in the ground state (n = 1). Since

this is the maximum speed for the electron in the hydrogen atom, and hence

v � c for all n, the use of the classical kinetic energy seems appropriate.

From equation 8, one can then write the kinetic energy,

K =

1

2

mv

2

=

Ze

2

2r

; (13)

and hence the total energy,

2

E = K + V =

Ze

2

2r

�

Ze

2

r

= �

Ze

2

2r

: (14)

Having solved for r as equation 10, one can then write

E = �

mZ

2

e

4

2�h

2

1

n

2

= �

mc

2

2

(Z�)

2

1

n

2

: (15)

Numerically, the energy levels for a hydrogenic atom are

E = �13:6eV

Z

2

n

2

: (16)

2

The reader may notice that E = �K, as a natural consequence of the virial theorem

of classical mechanics.
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One correction to this analysis is easy to implement, that of the �nite

mass of the nucleus. The implicit assumption previously was that the elec-

tron moved around the nucleus, which remained stationary due to being

in�nitely more massive than the electron. In reality, however, the nucleus

has some �nite mass M , and hence the electron and nucleus both move,

orbiting about the center of mass of the system. It is a relatively simple ex-

ercise in classical mechanics to show one can transform into the rest frame

of the nucleus, in which frame the physics remains the same except for the

fact that the electron acts as though it has a mass

� =

mM

m+M

; (17)

which is less than m and is therefore called the reduced mass. One can

therefore use � in all equations where m appears in this analysis and get

more accurate results. With this correction to the hydrogen energy levels,

along with the fourth Bohr postulate which gives the radiative frequencies

in terms of the energy levels, the Bohr model correctly predicts the observed

spectrum of hydrogen to within three parts in 10

5

.

Along with this excellent agreement with observation, the Bohr theory

has an appealing aesthetic feature. One can write the angular momentum

quantization condition as

L = pr = n

h

2�

; (18)

where p is the linear momentum of the electron. Louis de Broglie's theory

of matter waves predicts the relationship p = h=� between momentum and

wavelength, so

2�r = n�: (19)

That is, the circumference of the circular Bohr orbit is an integral number of

de Broglie wavelengths. This provided the Bohr theory with a solid physical

connection to previously developed quantum mechanics.

Unfortunately, in the long run the Bohr theory, which is part of what

is generally referred to as the old quantum theory, is unsatisfying. Looking

at the postulates upon which the theory is based, the �rst postulate seems

reasonable on its own, acknowledging the existence of the atomic nucleus,

established by the scattering experiments of Ernest Rutherford in 1911, and

assuming classical mechanics. However, the other three postulates introduce

quantum-mechanical e�ects, making the theory an uncomfortable union of

classical and quantum-mechanical ideas. The second and third postulates

seem particularly ad hoc. The electron travels in a classical orbit, and yet

5



its angular momentum is quantized, contrary to classical mechanics. The

electron obeys Coulomb's law of classical electromagnetic theory, and yet

it is assumed to not radiate, as it would classically. These postulates may

result in good predictions for the hydrogen atom, but they lack a solid

fundamental basis.

The Bohr theory is also fatally incomplete. For example, the Wilson-

Sommerfeld quantization rule, of which the second Bohr postulate is a spe-

cial case, can only be applied to periodic systems. The old theory has no

way of approaching non-periodic quantum-mechanical phenomena, like scat-

tering. Next, although the Bohr theory does a good job of predicting energy

levels, it predicts nothing about transition rates between levels. Finally,

the theory is really only successful for one-electron atoms, and fails even

for helium. To correct these faults, one needs to apply a more completely

quantum-mechanical treatment of atomic structure, and such an approach

is used in Schr�odinger theory.

3 Schr�odinger Theory

The Schr�odinger theory of quantum mechanics extends the de Broglie con-

cept of matter waves by providing a formal method of treating the dynamics

of physical particles in terms of associated waves. One expects the behavior

of this wavefunction, generally called 	, to be governed by a wave equation,

which can be written

 

p

2

2m

+ V (x; t)

!

	(x; t) = H	(x; t); (20)

where the �rst term of the left represents the particle's kinetic energy, the

second the particle's potential energy, andH is called the Hamiltonian of the

system. Making the assertion that p and H are associated with di�erential

operators,

p = �i�hr (21)

H = i�h

@

@t

; (22)

this becomes

 

�

�h

2

2m

r

2

+ V (x; t)

!

	(x; t) = i�h

@

@t

	(x; t); (23)
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which is known as the time-dependent Schr�odinger equation. For the speci�c

case of a hydrogenic atom, the electron moves in a simple Coulomb potential,

and hence the Schr�odinger equation is

 

�

�h

2

2m

r

2

�

Ze

2

r

!

	(x; t) = i�h

@

@t

	(x; t): (24)

The solution proceeds by the method of separation of variables. First one

writes the wavefunction as a product of a space component and a time

component, for which the solution for the time part is easy and yields

	(x; t) =  (x)e

�iEt=�h

: (25)

Here E is the constant of the separation and is equal to the energy of the

electron. The remaining equation for the spatial component is

 

�

�h

2

2m

r

2

�

Ze

2

r

!

 (x) = E (x) (26)

and is called the time-independent Schr�odinger equation. Due to the spheri-

cal symmetry of the potential, this equation is best solved in spherical polar

coordinates, and hence one separates the spatial wavefunction as

 (r; �; �) = R(r)�(�)�(�): (27)

The equations are more di�cult but possible to solve and yield

�(�)�(�) = Y

m

l

l

(�; �) (28)

R(r) = e

�Zr=na

0

�

Zr

a

0

�

l

L

2l+1

n�l�1

�

2Zr

na

0

�

; (29)

where L is an associated Laguerre polynomial, and for convenience the prod-

uct of the angular solutions are written together in terms of a single function,

the spherical harmonic Y . With foresight the separation constants �m

2

l

and

and l(l + 1) were used. The meaning of the numbers n, l, and m

l

will now

be discussed.

The physics of the Schr�odinger theory relies on the interpretation of the

wave function in terms of probabilities. Speci�cally, the absolute square

of the wavefunction, j	(x; t)j

2

, is interpreted as the probability density for

�nding the associated particle in the vicinity of x at time t. For this to make

physical sense, the wavefunction needs to be a well-behaved function of x

and t; that is, 	 should be a �nite, single-valued, and continuous function. In
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order to satisfy these conditions, the separation constants that appear while

solving the Schr�odinger equation can only take on certain discrete values.

The upshot is, with the solution written as it is here, that the numbers n, l,

and m

l

, called quantum numbers of the electron, can only take on particular

integer values, and each of these corresponds to the quantization of some

physical quantity. The allowed values of the energy turn out to be exactly

as predicted by the Bohr theory,

E = �

mc

2

2

(Z�)

2

1

n

2

: (30)

The quantum number n is therefore called the principle quantum number.

To understand the signi�cance of l and m

l

, one needs to consider the orbital

angular momentum of the electron. This is de�ned as L = r � p, or as an

operator, L = �i�hr�r. With proper coordinate transformations, one can

write the operators L

2

and the z-component of angular momentum L

z

in

spherical coordinates as

L

2

= ��h

2

"

1

sin �

@

@�

�

sin �

@

@�

�

+

1

sin

2

�

@

2

@�

2

#

(31)

L

z

= �i�h

@

@�

: (32)

It can be shown that when these operators act on the solution 	, the result

is

L

2

	 = l(l + 1)�h

2

	 (33)

L

z

	 = m

l

�h	: (34)

It can also be shown that this means that an electron in a particular state

has orbital angular momentum of constant magnitude

p

l(l + 1)�h and con-

stant projection onto the z-axis of m

l

�h. Since the electron obeys the time-

independent Schr�odinger equation H	 = E	, and hence has constant en-

ergy, one says that the wavefunction 	 is a simultaneous eigenstate of the

operators H, L

2

, and L

z

. Table 1 summarizes this information and gives the

allowed values for each quantum number. It is worth repeating that these

numbers can have only these speci�c values because of the demand that 	

be a well-behaved function.

It is common to identify a state by its principle quantum number n and a

letter which corresponds to its orbital angular momentum quantum number

l, as shown in table 2. This is called spectroscopic notation. The �rst four
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Table 1: Some quantum numbers for the electron in the hydrogen atom.

Quantum number Integer values Quantized quantity

n n � 1 Energy

l 0 � l < n Magnitude of

orbital angular momentum

m

l

�l � m

l

� l z-component of

orbital angular momentum

Table 2: Spectroscopic notation.

Quantum number l 0 1 2 3 4 . . .

Letter s p d f g . . .

designated letters are of historical origin. They stand for sharp, primary,

di�use, and fundamental, and refer to the nature of the spectroscopic lines

when these states were �rst studied.

Figure 1 shows radial probability distributions for some di�erent states,

labelled by spectroscopic notation. The radial probability density P

nl

is

de�ned such that

P

nl

(r)dr = jR

nl

(r)j

2

4�r

2

dr (35)

is the probability of �nding the electron with radial coordinate between r

and r + dr. The functions are normalized so that the total probability of

�nding the electron at some location is unity. It is interesting to note that

each state has n� l� 1 nodes, or points where the probability goes to zero.

This is sometimes called the radial node quantum number and appears in

other aspects of quantum theory. It is also interesting that for each n, the

state with l = n�1 has maximum probability of being found at r = n

2

a

0

, the

radius of the orbit predicted by Bohr theory. This indicates that the Bohr

model, though known to be incorrect, is at least similar to physical reality in

some respects, and it is often helpful to use the Bohr model when trying to

visualize certain e�ects, for example the spin-orbit e�ect, to be discussed in

the next section. The angular probability distributions will not be explored

here

3

, except to say that they have the property that if the solutions with

all possible values of l and m

l

for a particular n are summed together, the

result is a distribution with spherical symmetry, a feature which helps to

3

See Eisberg and Resnick, chapter 7, for a more thorough discussion.
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greatly simplify applications to multi-electron atoms.

3.1 The Spin-Orbit E�ect

In order to further explain the structure of the hydrogen atom, one needs to

consider that the electron not only has orbital angular momentum L, but

also intrinsic angular momentum S, called spin. There is an associated spin

operator S, as well as operators S

2

and S

z

, just as with L. Usually written

in matrix form, these operators yield results analogous to L

2

and L

z

when

acting on the wavefunction 	,

S

2

	 = s(s+ 1)�h

2

	 (36)

S

z

	 = m

s

�h	; (37)

where s and m

s

are quantum numbers de�ning the magnitude of the spin

angular momentum and its projection onto the z-axis, respectively. For an

electron s = 1=2 always, and hence the electron can have m

s

= +1=2;�1=2.

Associated with this angular momentum is an intrinsic magnetic dipole

moment

�

s

= �g

s

�

b

S

�h

; (38)

where

�

b

�

e�h

2mc

(39)

is a fundamental unit of magnetic moment called the Bohr magneton. The

number g

s

is called the spin gyromagnetic ratio of the electron, expected

from Dirac theory to be exactly 2 but known experimentally to be g

s

=

2:00232. This is to be compared to the magnetic dipole moment associated

with the orbit of the electron,

�

l

= �g

l

�

b

L

�h

(40)

where g

l

= 1 is the orbital gyromagnetic ratio of the electron. That is,

the electron creates essentially twice as much dipole moment per unit spin

angular momentum as it does per unit orbital angular momentum. One

expects these magnetic dipoles to interact, and this interaction constitutes

the spin-orbit e�ect.

The interaction is most easily analyzed in the rest frame of the electron,

as shown in �gure 2. The electron sees the nucleus moving around it with

speed v in a circular orbit of radius r, producing a magnetic �eld

B =

Zev

cr

2

: (41)
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Figure 1: Radial probability distribution for an electron in some low-energy

levels of hydrogen. The abscissa is the radius in units of a

0

.
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Figure 2: On the left, an electron moves around the nucleus in a Bohr orbit.

On the right, as seen by the electron, the nucleus is in a circular orbit.

In terms of the electron orbital angular momentum L = mrv, the �eld may

be written

B =

Ze

mcr

3

L: (42)

The spin dipole of the electron has potential energy of orientation in this

magnetic �eld given by

�E

so

= ��

s

�B: (43)

However, the electron is not in an inertial frame of reference. In transforming

back into an inertial frame, a relativistic e�ect known as Thomas precession

is introduced, resulting in a factor of 1=2 in the interaction energy. With

this, the Hamiltonian of the spin-orbit interaction is written

�H

so

=

Ze

2

2m

2

c

2

r

3

L � S: (44)

With this term added to the Hamiltonian, the operators L

z

and S

z

no longer

commute with the Hamiltonian, and hence the projections of L and S onto

the z-axis are not conserved quantities. However, one can de�ne the total

angular momentum operator

J = L+ S: (45)

It can be shown that the corresponding operators J

2

and J

z

do commute

with this new Hamiltonian. Physically what happens is that the dipoles

associated with the angular momentum vectors S and L exert equal and

opposite torques on each other, and hence they couple together and precess
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Figure 3: Spin-orbit coupling for a typical case of s = 1=2, l = 2, j = 5=2,

m

j

= 3=2, showing how L and S precess about J.

uniformly around their sum J in such a way that the projection of J on

z-axis remains �xed. The operators J

2

and J

z

acting on 	 yield

J

2

	 = j(j + 1)�h

2

	 (46)

J

z

	 = m

j

�h	; (47)

where j has possible values

j = jl � sj; jl � sj+ 1; : : : ; l + s� 1; l + s: (48)

For a hydrogenic atom s = 1=2, and hence the only allowed values are

j = l � 1=2; l + 1=2, except for l = 0, where only j = 1=2 is possible.

Figure 3 illustrates spin-orbit coupling for particular values of l, j, and m

j

.

Since the coupling is weak and hence the interaction energy is small

relative to the principle energy splittings, it is su�cient to calculate the

energy correction by �rst-order perturbation theory using the previously

found wavefunctions. The energy correction is then

�E

so

= h�H

so

i =

Z

	

�

�H

so

	d

3

x: (49)

The value of L � S is easily found by calculating

J

2

= J � J = L

2

+ S

2

+ 2L � S; (50)

and hence when acting on 	,

L � S	 =

1

2

�h

2

[j(j + 1)� l(l + 1)� s(s+ 1)]	: (51)
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One then needs to calulate the expectation of r

�3

, which is more compli-

cated. The answer is

�E

so

= (Z�

4

)mc

2

[j(j + 1)� l(l + 1)�

3

4

]

4n

3

l(l +

1

2

)(l + 1)

; (52)

where the value s = 1=2 has been included.

3.2 Kinetic Energy Correction

Before claiming that this formula explains the �ne structure of the hydrogen

atom, however, one needs to be careful. The correction is of the order �

4

,

which means it of the order v

4

, where v is the electron speed. The kinetic

energy used in the Hamiltonian when solving the Schr�odinger equation was

just p

2

=2m, which contributed to order �

2

. However, the next term in the

expansion of the true relativistic kinetic energy is of order p

4

and hence will

contribute to order �

4

. So if one wishes to quote the energy splittings of the

hydrogen atom accurate to order �

4

, one had better include the contribution

from this further correction.

The relativistic kinetic energy of the electron can be expanded in terms

of momentum as

T =

p

2

2m

�

p

4

8m

3

c

2

+ : : : (53)

Therefore, the correction to the Hamiltonian is

�H

rel

= �

1

8m

3

c

2

p

4

: (54)

At �rst sight, this looks quite complicated, since it involves the operator

p

4

= �h

4

r

4

. However, one can make use of the fact that

p

2

2m

= E

n

� V (55)

to get

�H

rel

= �

1

2mc

2

(E

2

n

� 2E

n

V + V

2

): (56)

With V = �Ze

2

=r, applying �rst-order perturbation theory to this Hamil-

tonian reduces to the problem of �nding the expectation values of r

�1

and

r

�2

. This can be done with some e�ort, and the result is

�E

rel

= �(Z�)

4

mc

2

1

2n

"

1

(l +

1

2

)

�

3

4n

#

: (57)
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Combining equations 57 and 52 and using the fact that j = l� 1=2; l+1=2,

the complete energy correction to order (Z�)

4

may be written

�E

fs

= �E

rel

+�E

so

= �(Z�)

4

mc

2

1

2n

"

1

(j +

1

2

)

�

3

4n

#

: (58)

This energy correction depends only on j and is called the �ne structure of

the hydrogen atom, since it is of order �

2

� 10

�4

times smaller than the

principle energy splittings. This is why � is known as the �ne-structure

constant. The �ne structure of the hydrogen atom is illustrated in �gure 4.

Note that all levels are shifted down from the Bohr energies, and that for

every n and l there are two states corresponding to j = l�1=2 and j = l+1=2,

except for s states. Also note that states with the same n and j but di�erent

l have the same energies, though this will be shown later not to be true due

an e�ect know as the Lamb shift. As an aside, these �ne structure splittings

were derived by Sommerfeld by modifying the Bohr theory to allow elliptical

orbits and then calculating the energy di�erences between the di�erent states

due to di�erences in the average velocity of the electron. By using the wrong

method he got exactly the right answer, a coincidence which caused much

confusion at the time.

Strictly speaking, equation 58 has only been shown to be correct for l 6= 0

states, although it turns out to be correct for all l. To do the calculation

correctly for l = 0, one needs to include the e�ect of an additional term

in the Hamiltonian known as the Darwin term, which is purely an e�ect of

relativistic quantum mechanics and can only be understood in the context

of the Dirac theory. It is therefore appropriate to discuss the Dirac theory to

achieve a more complete understanding of the �ne structure of the hydrogen

atom.

4 Dirac Theory

The theory of Paul Dirac represents an attempt to unify the theories of

quantum mechanics and special relativity. That is, one seeks a formulation

of quantum mechanics which is Lorentz invariant, and hence consistent with

special relativity. For a free particle, relativity states that the energy is

given by E

2

= p

2

c

2

+m

2

c

4

. Associating E with a Hamiltonian in quantum

mechanics, one has

H

2

= p

2

c

2

+m

2

c

4

: (59)
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Figure 4: The �ne structure of the hydrogen atom. The diagram is not to

scale.
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If H and p are associated with the same operators as in Schr�odinger theory,

then one expects the wave equation

��h

2

@

2

@t

2

	 = (��h

2

r

2

c

2

+m

2

c

4

)	: (60)

This is known as the Klein-Gordan Equation. Unfortunately, attempts to

utilize this equation are not successful, since that which one would wish to

interpret as a probability distribution turns out to be not positive de�nite.

To alleviate this problem, the square root may be taken to get

H = (p

2

c

2

+m

2

c

4

)

1=2

: (61)

However, this creates a new problem. What is meant by the square root

of an operator? The approach is to guess the form of the answer, and the

correct guess turns out to be

H = c� � p+ �mc

2

: (62)

With this form of the Hamiltonian, the wave equation can be written

i�h

@�

@t

= (c� � p+ �mc

2

)�: (63)

In order for this to be valid, one hopes that when it is squared the Klein-

Gordan equation is recovered. For this to be true, equation 63 must be

interpreted as a matrix equation, where � and � are at least 4� 4 matrices

and the wavefunction � is a four-component column matrix.

It turns out that equation 63 describes only a particle with spin 1=2.

This is �ne for application to the hydrogen atom, since the electron has spin

1=2, but why should it be so? The answer is that the linearization of the

Klein-Gordan equation is not unique. The particular linearization used here

is the simplest one, and happens to describe a particle of spin 1=2, but other

more complicated Hamiltonians may be constructed to describe particles of

spin 0; 1; 5=2 and so on. The fact that the relativistic Dirac theory automat-

ically includes the e�ects of spin leads to an interesting conclusion|spin is a

relativistic e�ect. It can be added by hand to the non-relativistic Sch�odinger

theory with satisfactory results, but spin is a natural consequence of treating

quantum mechanics in a completely relativistic fashion.

Including the potential now in the Hamiltonian, equation 63 becomes

i�h

@�

@t

= (c� � p+ �mc

2

�

Ze

2

r

)�: (64)
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When the square root was taken to linearize the Klein-Gordan equation,

both a positive and a negative energy solution was introduced. One can

write the wavefunction

� =

 

	

+

	

�

!

; (65)

where 	

+

represents the two components of � associated with the posi-

tive energy solution and 	

�

represents the components associated with the

negative energy solution. The physical interpretation is that 	

+

is the par-

ticle solution, and 	

�

represents an anti-particle. Anti-particles are thus

predicted by Dirac threory, and the discovery of anti-particles obviously

represents a huge triumph for the theory. In hydrogen, however, the contri-

bution of 	

�

is small compared to 	

+

. With enough e�ort, the equations

for 	

+

and 	

�

can be decoupled to whatever order is desired. When this

is done

4

, the Hamiltonian to order v

2

=c

2

can be written

H = H

s

+�H

rel

+�H

so

+�H

d

; (66)

where H

s

is the original Schr�odinger Hamiltonian, �H

rel

is the relativistic

correction to the kinetic energy, �H

so

is the spin-orbit term, and �H

d

is the

previously mentioned Darwin term. The physical origin of the Darwin term

is a phenomenon in Dirac theory called zitterbewegung, whereby the electron

does not move smoothly but instead undergoes extremely rapid small-scale


uctuations, causing the electron to see a smeared-out Coulomb potential

of the nucleus.

The Darwin term may be written

�H

d

= �

e�h

2

8m

2

c

2

r

2

�: (67)

For the hydrogenic-atom potential � = Ze=r, this is

H

d

= �

Ze

2

��h

2

2m

2

c

2

�

3

(r): (68)

When �rst-order perturbation theory is applied, the energy correction de-

pends on j	(0)j

2

. This term will only contribute for s states (l = 0), since

only these wavefunctions have non-zero probability for �nding the electron

at the origin. The energy correction for l = 0 can be calculated to be

�E

d

= (Z�)

4

mc

2

1

2n

3

: (69)

4

See Bjorken and Drell chapter 4 for a thorough discussion of the transformation.
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Including this term, the �ne-structure splitting given by equation 58 can be

reproduced for all l. All the e�ects that go into �ne structure are thus a

natural concequence of the Dirac theory.

The hydrogen atom can be solved exactly in Dirac theory, where the

states found are simultaneous eigenstates of H, J

2

, and J

z

, since these

operators can be shown to mutually commute. The exact energy levels in

Dirac theory are

E

nj

= mc

2

2

6

4

1 +

0

@

Z�

n� (j +

1

2

) +

q

(j +

1

2

)

2

� (Z�)

2

1

A

2

3

7

5

�1=2

: (70)

This can be expanded in powers of Z�, yielding

E

nj

= mc

2

(

1�

1

2

(Z�)

2

n

2

"

1 +

(Z�)

2

n

 

1

j +

1

2

�

3

4n

!#

+ : : :

)

: (71)

This includes an amount mc

2

due to the relativistic energy associated with

the rest mass of the electron, along with the principle energy levels and

�ne structure, in exact agreement to order (Z�)

4

with what was previously

calculated. However, even this exact solution in Dirac theory is not a com-

plete description of the hydrogen atom, and so the the next section describes

further e�ects not yet discussed.

5 Smaller E�ects

5

One correction to the Dirac theory involves the use of the reduced electron

mass, which was previously discussed. Another involves considering that

the proton has some �nite size and is not exactly a point charge. Instead of

having a V = �Ze

2

=r potential energy, one might imagine something like

V =

(

�

Ze

2

r

r > r

0

�V

0

r � r

0

;

(72)

where r

0

is some representative size of the proton � 10

�13

cm. Like the

Darwin term, this will only a�ect s states, since only in these states can the

electron be found at the origin. However, even for s states this correction

turns out to be of the order �E � 10

�10

eV, and hence it is not very im-

portant. Other e�ects will now be discussed which are more important, not

5

From this point on, e�ects will only be discussed only in terms of the hydrogen atom,

although they can be extended to other one-electron atoms.
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Figure 5: Feynman loop diagrams showing some e�ects that contribute to

the Lamb shift.

Table 3: Contribution of di�erent e�ects to the energy splitting of 2s

1=2

and

2p

1=2

in hydrogen. Numbers are given in units of frequency � = E=h.

E�ect Energy contribution

Vacuum polarization -27 MHz

Electron mass renormalization +1017 MHz

Anomalous magnetic moment +68 MHz

Total +1058 MHz

only because the energy shifts are larger, but because they split the energy

levels of states that would otherwise be degenerate.

5.1 The Lamb Shift

According to Dirac and Schr�odinger theory, states with the same n and j

quantum numbers but di�erent l quantum numbers ought to be degenerate.

However, a famous experiment by Lamb and Retherford in 1947 showed that

the 2s

1=2

(n = 2; l = 0; j = 1=2) and 2p

1=2

(n = 2; l = 1; j = 1=2) states of the

hydrogen atom were not degenerate, but that the s state had slightly higher

energy by an amount now known to be E=h = 1057:864MHz. The e�ect is

explained by the theory of quantum electrodynamics, in which the electro-

magnetic interaction itself is quantized. Some of the e�ects of this theory

which cause the Lamb shift are shown in the Feynman diagrams of �gure 5.

Table 3 shows how much each of these contribute to the splitting of 2s

1=2

and 2p

1=2

. The most important e�ect is illustrated by the center diagram,

which is a result of the fact that the ground state of the electromagnetic

�eld is not zero, but rather the �eld undergoes \vacuum 
uctuations" that

interact with the electron. Any discussion of the calculation is beyond the
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scope of this paper, so the answers will merely be given. For l = 0,

�E

Lamb

= �

5

mc

2

1

4n

3

fk(n; 0)g; (73)

where k(n; 0) is a numerical factor which varies slightly with n from 12.7 to

13.2. For l 6= 0,

�E

Lamb

= �

5

mc

2

1

4n

3

(

k(n; l)�

1

�(j +

1

2

)(l +

1

2

)

)

(74)

for j = l� 1=2, where k(n; l) is a small numerical factor < 0:05 which varies

slightly with n and l. Notice that the Lamb shift is very small except for

l = 0.

5.2 Hyper�ne Structure

To this point, the nucleus has been assumed to interact with the electron

only through its electric �eld. However, like the electron, the proton has

spin angular momentum with s = 1=2, and associated with this angular

momentum is an intrinsic dipole moment

�

p

= 


p

e

Mc

S

p

; (75)

where M is the proton mass and 


p

is a numerical factor known experimen-

tally to be 


p

= 2:7928: Note that the proton dipole moment is weaker than

the electron dipole moment by roughly a factor of M=m � 2000, and hence

one expects the associated e�ects to be small, even in comparison to �ne

structure, so again treating the corrections as a perturbation is justi�ed. The

proton dipole moment will interact with both the spin dipole moment of the

electron and the orbital dipole moment of the electron, and so there are two

new contributions to the Hamiltonian, the nuclear spin-orbit interaction and

the spin-spin interaction. The derivation for the nuclear spin-orbit Hamilto-

nian is the same as for the electron spin-orbit Hamiltonian, except that the

calculation is done in the frame of the proton and hence there is no factor

of 1=2 from the Thomas precession. The nuclear spin-orbit Hamiltonian is

�H

pso

=




p

e

2

mMc

2

r

3

L � S

p

: (76)

The spin-spin Hamiltonian can be derived by considering the �eld pro-

duced by the proton spin dipole, which can be written

B(r) =

1

r

3

�

3

(�

p

� r)r

r

2

� �

p

�

+

8�

3

�

p

�

3

(r): (77)
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Figure 6: The �eld of a magnetic dipole. All B �eld lines cross the plane of

the dipole going up inside the loop and down outside the loop.

The �rst term is just the usual �eld associated with a magnetic dipole, but

the second term requires special explanation. Normally, when one considers

a dipole �eld, it is implicit that one is interested in the �eld far from the

dipole|that is, at distances far from the source compared to the size of

the current loop producing the dipole. However, every �eld line outside the

loop must return inside the loop, as shown in �gure 6. If the size of the

current loop goes to zero, then the �eld will be in�nite at the origin, and

this contribution is what is re
ected by the second term in equation 77. The

electron has additional energy

�E

ss

= ��

e

�B (78)

due to the interaction of its spin dipole with this �eld, and hence the spin-

spin Hamiltonian is

�H

ss

=




p

e

2

mMc

2

�

1

r

3

[3(S

p

� r̂)(S

e

� r̂)� (S

p

� S

e

)] +

8�

3

(S

p

� S

e

)�

3

(r)

�

:

(79)

The operator J

z

does not commute with this Hamiltonian. However, one

can de�ne the total angular momentum

F = L+ S

e

+ S

p

= J+ S

p

: (80)

The corresponding operators F

2

and F

z

commute with the Hamiltonian,

and they introduce new quantum numbers f and m

f

through the relations

F

2

	 = f(f + 1)�h

2

	 (81)

F

z

	 = m

f

�h	: (82)
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The quantum number f has possible values f = j + 1=2; j � 1=2 since the

proton is spin 1=2, and hence every energy level associated with a particular

set of quantum numbers n, l, and j will be split into two levels of slightly

di�erent energy, depending on the relative orientation of the proton magnetic

dipole with the electron state.

Consider �rst the case l = 0, since the hyper�ne splitting of the hy-

drogen atom ground state is of the most interest. Since the electron has

no orbital angular momentum, there is no nuclear spin-orbit e�ect. It can

be shown that because the wavefunction has spherical symmetry, only the

delta function term contributes from the spin-spin Hamiltonian. First order

perturbation theory yields

�E

hf

=

8�


p

e

2

3mMc

2

(S

p

� S

e

)j	(0)j

2

: (83)

Like the Darwin term, this depends on the probability of �nding the electron

at the origin. The value of S

p

� S

e

can be found by squaring F, which with

l = 0 gives

F

2

= S

2

e

+ S

2

p

+ 2S

e

� S

p

: (84)

Hence

S

p

�S

e

=

�h

2

2

[f(f +1)� s

p

(s

p

+1)� s

e

(s

e

+1)] =

�h

2

2

�

f(f + 1)�

3

2

�

; (85)

where the last step includes the values s

e

= s

p

= 1=2. The hyper�ne energy

shift for l = 0 is then

�E

hf

=

�

m

M

�

�

4

mc

2

4


p

3n

3

�

f(f + 1)�

3

2

�

: (86)

It is easy to see from this expression that the hyper�ne splittings are smaller

than �ne structure by a factor of M=m. For the speci�c case of the ground

state of the hydrogen atom (n = 1), the energy separation between the

states of f = 1 and f = 0 is

�E

hf

(f = 1)��E

hf

(f = 0) = 5:9� 10

�6

eV: (87)

The photon corresponding to the transition between these two states has

frequency and wavelength

� = 1420:4057517667(10)MHz (88)

� = 21:1cm: (89)
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This is the source of the famous \21 cm line," which is extremely useful to

radio astronomers for tracking hydrogen in the interstellar medium of galax-

ies. The transition is exceedingly slow, but the huge amounts of interstellar

hydrogen make it readily observable. It is too slow to be seen in a terrestrial

laboratory by spontaneous emission, but the frequency can be measured to

very high accuracy by using stimulated emission, and this frequency is in

fact one of the best-known numbers in all of physics.

For l 6= 0, the � term does not contribute but the other terms in the

spin-spin Hamiltonian as well as the nuclear spin-orbit Hamiltonian do con-

tribute. The calculation is much harder but yields

�E

hf

=

�

m

M

�

�

4

mc

2




p

2n

3

�1

(f +

1

2

)(l +

1

2

)

(90)

for f = j � 1=2.

Figure 7 shows a revised version of the structure of the hydrogen atom,

including the Lamb shift and hyper�ne structure. Note that each hyper�ne

state still has a 2f + 1 degeneracy associated with the di�erent possible

values of m

f

which correspond to di�erent orientations of the total angular

momentum with respect to the z-axis. For example, in the ground state, the

higher-energy state f = 1 is actually a triplet, consisting of three degenerate

states, and the f = 0 state is a singlet. This degeneracy can be broken by

the presence of an external magnetic �eld.

5.3 The Zeeman E�ect

When considering the Zeeman e�ect, it is easiest �rst to consider the hydro-

gen atom without hyper�ne structure. Thenm

j

is a good quantum number,

and the atom has a 2j +1 degeneracy associated with the di�erent possible

values of m

j

. In the presence of an external magnetic �eld, these di�erent

states will have di�erent energies due to having di�erent orientations of the

magnetic dipoles in the external �eld. The splitting of these energy levels is

called the Zeeman e�ect.

Figure 8 illustrates the geometry of the Zeeman e�ect. The total mag-

netic dipole moment of the electron is

� = �

l

+ �

s

= �

�

b

�h

(L+ 2S); (91)

where g

l

= 1 and g

s

= 2 have been used. Because of the di�erence in the

orbital and spin gyromagnetic ratios of the electron, this is not in general

parallel to

J = L+ S: (92)
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Figure 7: Some low-energy states of the hydrogen atom, including �ne struc-

ture, hyper�ne structure, and the Lamb shift.

25



Figure 8: Geometry of the Zeeman e�ect. On the left, the total dipole

moment � precesses around the total angular momentum J. On the right,

J precesses much more slowly about the magnetic �eld.
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So, as L and S precess about J, the total dipole moment � also precesses

about J. Assuming the external �eld to be in the z direction, this �eld

causes J to precess about the z-axis. Typical internal magnetic �elds in the

hydrogen atom can be shown to be of the order 1 Tesla. If the external �eld

is much weaker than 1 Tesla, which it is for almost all practical purposes,

then the precession of J around the z-axis will take place much more slowly

than the precession of � around J. The Hamiltonian of the Zeeman e�ect is

�H

z

= �� �B = ��

B

B; (93)

where �

B

is the projection of the dipole moment onto the direction of the

�eld, the z-axis. Because of the di�erence in the precession rates, it is

reasonable to evaluate �

b

by �rst evaluating the projection of � onto J,

called �

J

, and then evaluating the projection of this onto B, thus giving

some average projection of � onto B. First, the projection of � onto J is

�

J

=

� � J

J

= �

�

b

�h

(L+ 2S) � (L+ S)

J

: (94)

Then

�

B

= �

J

J �B

JB

= �

J

J

z

J

= �

�

b

�h

(L+ 2S) � (L+ S)J

z

J

2

: (95)

Evaluating the dot product using again that J

2

= L

2

+ S

2

+ 2L � S, this

becomes

�

B

= �

�

b

�h

(3J

2

+ S

2

� L

2

)

2J

2

J

z

: (96)

So when �rst order perturbation theory is applied, the energy shift is

�E

z

= �

b

Bgm

j

; (97)

where

g = 1 +

j(j + 1) + s(s+ 1)� l(l + 1)

2j(j + 1)

(98)

is called the Land�e g factor for the particular state being considered. Note

that if s = 0, then j = l so g = 1, and if l = 0, j = s so g = 2. The Land�e

g factor thus gives some e�ective gyromagnetic ratio for the electron when

the total dipole moment is partially from orbital angular momentum and

partially from spin. From equation 97, it can be seen that the energy shift

caused by the Zeeman e�ect is linear in B and m

j

, so for a set of states with

particular values of n, l, and j, the individual states with di�erent m

j

will

be equally spaced in energy, separated by �

b

Bg. However, the spacing will
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Table 4: Di�erences in energy of some particular pairs of states in the hy-

drogen atom. The state of lower energy is listed �rst.

E�ect States Energy di�erence(eV)

Principle splitting 1s

1=2

,2s

1=2

10:2

Fine structure 2p

1=2

,2p

3=2

4:5� 10

�5

Lamb shift 2p

1=2

,2s

1=2

4:4� 10

�6

3d

3=2

,3p

3=2

1:7� 10

�8

Hyper�ne structure 1s

1=2

(f = 0),1s

1=2

(f = 1) 5:9� 10

�6

Zeeman e�ect 2s

1=2

(m

j

= �1=2),2s

1=2

(m

j

= +1=2) 1:2� 10

�7

(B = 10gauss)

in general be di�erent for a set of states with di�erent n, l, and j due to the

di�erence in the Land�e g factor.

Including hyper�ne structure with the Zeeman e�ect is more di�cult,

since the �eld associated with the proton magnetic dipole moment is weak,

and hence it does not take a particularly strong external �eld to make the

Zeeman e�ect comparable in magnitude to the strength of the hyper�ne

interactions. The approximation of small external �eld is thus not practical

when discussing the Zeeman splitting of hyper�ne structure. However, it

can be treated, and the result for the most important case of the Zeeman

splitting of the hyper�ne levels in the ground state of hydrogen

6

is shown

in �gure 9. The degeneracy of the triplet state is lifted, the three states of

m

f

= �1; 0;+1 having di�erent energies in the external �eld. Notice how

the splitting is linear for small external �eld, but then deviates as the �eld

gets larger. The \21 cm" transitions shown on the right will have slightly

di�erent energies, and measuring the amount of this splitting is a good tool

for radio astronomers to measure magnetic �elds in the interstellar medium.

6 Conclusions

To summarize the relative strengths of the e�ects discussed in this paper,

table 4 gives some numbers for comparison of some energy splittings in the

hydrogen atom. Note how much larger the principle energy splittings are

than any of the other e�ects.

6

See Feynman, volume III, chapter 12 for a discussion of the calculation of the splittings.
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Figure 9: On left, Zeeman splitting of the hyper�ne levels in the ground

state (1s

1=2

) of hydrogen. On right, some possible transitions between these

states.
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The hydrogen atom is one of the most important dynamical systems in

all of physics, for several reasons:

1. Hydrogen is the most abundant stu� in the known universe. About

92% by number of the nuclei in the universe are hydrogen, 75% by

mass.

2. Even though it is a relatively simple system, the physics of the hy-

drogen atom contains many important quantum mechanical concepts

that extend to more complex atoms and other systems.

3. Because of its relative simplicity, the hydrogen atom can be solved

theoretically to very high precision. Experimental measurements in-

volving hydrogen thus o�er very sensitive tests of modern physical

theories, like quantum electrodynamics.

Every physicist should therefore have a solid understanding of the physics

of the hydrogen atom.
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