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CHAPTER ONE:  Perspective and Principles

In order to set the stage, let us begin our study of the

microscopic laws of nature with some experimental indications

that the laws of classical mechanics, as applied to such

systems, are inadequate.  Although it seems paradoxical, we

turn first to a consideration of matter in bulk to learn

about microscopic behavior.  Let us consider the simplest

type of bulk matter:  gases.  Indeed, let us consider first

the simplest sort of gas:  monotonic.  It was known in the

19th century that for these gases one had the relationship:

Internal energy  ∝  Absolute temperature × Number of
                                                 molecules

This can be systematized as

E
_
 = (

1
2 kT) × Na × 3 (1)

where

E
_
 = average internal energy (per mole)

k = 1.38 × 10-16 
erg

deg. Kelvin ("Boltzmann's constant")

Na  = 6.022 × 1023 ("Avagadro's number")

(Note that a "mole" is simply the number of molecules in amu

grams of the material.  There are always Na = 6.022 × 1023

molecules in a mole.  One can simply view Na as just a

conversion factor from amu's (atomic mass units) to grams.)
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The factor of 3 above comes from the classical

equipartition theorem.  This law basically says that the

average value of each independent quadratic term in the

energy of a gas molecule is 
1
2 kT.  This comes from using

Maxwell-Boltzmann statistics for a system in thermal

equilibrium.  Let us use Maxwell-Boltzmann statistics to

calculate the average value of a single independent quadratic

energy term:
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where β = 
1
kT .  The factor e

-βEdq1...dp1... is proportional to

the probability that the system has an energy E with position

coordinates taking on values between q1 and q1 + dq1, q2 and

q2 + dq2, and similarly for the momentum coordinates.  Just

like all probabilistic considerations, our probabilities need

to add to one; the denominator factor in (2) insures this.

Notice that because of the large number of particles

involved, Maxwell-Boltzmann statistics does not attempt to

predict the motions of individual gas particles, but simply

assigns a probability for a certain configuration to exist.

Notice also that the "Boltzman factor", e-βE discourages

exponentially the probability that the system is in an E ≥ kT

state.  Now let's say that

Ei = ap
2
i or bq

2
i , (3)
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where "a" or "b" are just constants, representing a typical

kinetic or potential energy term in the total internal

energy, E.  Then we have
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where β' = βa.  Introduce the dimensionless variable

x = (β')1/2 pi.  Then

 ∫
-∞

∞

 dp
i
 e

-β'p
i
2

 = (β')
-1/2

 ∫
-∞

∞

 dxe-x
2
,                  (5)

and therefore

  

 
E
i
 = 

(β')
-1/2

-a 
∂β'
∂  (β')

-1/2

 = 
2β'
a  = 

2β
1  = 

2
1 kT.           (6)

If we accept the validity of the equipartition theorem,

we have that

E
_
 = E

_

i × (total no. of quadratic terms in E (7)
             in a mole of gas),

so that (remember that p≥ 2 = p
2
x + p

2
y + p

2
z)

E
_
 = 

3
2 kNaT

Let us define the "molar specific heat at constant volume"

(also called "heat capacity at constant volume"), Cv:

 Cv ≡ 
 

 ∂T
∂E 



v
 .                         (8)
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(The subscript "V" reminds us to keep the variable

representing volume a constant during this differentiation.)

In our case, for a simple monotonic gas, we get

Cv = 
3
2 kNa ≡ 

3
2 R 

 



 

= 12.5 

joules

mole.deg
 .     (9)

How does this simple result stack up against experiment?

(Carried out at room temperature)

monotonic gas Cv(experiment)

     He 12.5
Ar 12.5

A success!

Well, what about diatomic molecules?  To get our

theoretical prediction, based on the equipartition theorem,

all we need to do is just count degrees of freedom for a

single molecule.  If we say that the energy of such a

molecule is a function of only the relative coordinate, r,

separating the two atoms, then we have,

E = 
P≥  2

2M  + 
L≥  2

2µr2
 + 

Pr2

2µ
 + U(r),  (10)

  

(11) 

translation rotation vibration

→ →

⇒deg. of freedom* = 3   +     3    +     1 ,

→

 * If the diatomic atoms were not point particles, one of these
degrees of freedom would increase by one. Can you understand which
one and why?
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(µ = reduced mass and L≥  = center of mass angular momentum)

if we say that U(r) ~ r2.  Thus for a diatomic molecule we

would expect

E
_
 = (

1
2 kT)Na × (3 + 3 + 1) = 

7
2 kNaT. (12)

⇒ Cv = 
7
2 R 

 



 

= 29.1 

joules

mole.deg
(13)

How does this result stack up against experiments at room

temperature?

diatomic gas Cv(experiment)

     N2 20.6
O2 21.1

Something is wrong.  We seem to be "missing" some degree of

freedom.  Notice that

5
2 R = 20.8 

joule

mole.deg

seems to be a better approximation to the experimental situation

than does our 
7
2 R prediction.  Later considerations have shown

that the vibrational degrees of freedom are the "missing" ones.

Historically, this was the first experimental indication of a

failure in classical physics applied to atoms, and was known

already in the 1870's.

Another application of these ideas is to solids.  Let us

treat the atoms of a solid as point masses "locked in place"

to a first approximation.  Then we have for the energy, E, of

a single atom
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E = 
P≥  2

2M  + ax2 + by2 + cz2, (14)

where x,y,z measure the displacement of the ideal atom from

its equilibrium position.  There are now 6 quadratic degrees

of freedom, which means that

E
_
 = 3kNaT (15)

⇒ Cv = 3R 
 



 

= 25 

joule

mole.deg
(16)

This law, known before the above theoretical explanation, is

called the law of Dulong-Petit.  What happens in experiments,

again at room temperature?

Solid Cp ≈ Cv(experimental)

     Copper   24.5  (23.3)
Silver   25.5
Carbon (diamond)    6.1

(These data have been taken from Rief, "Fundamentals of

Statistical and Thermal Physics." For solids and liquids we

have Cv ≈ Cp, "Cp" being the molar specific heat at constant

pressure, which is easier to measure than Cv.)  Although

copper and silver seem to obey the Dulong-Petit rule, diamond

obviously does not.  What is even harder to understand is

that, for example, the Cv for diamond is temperature

dependent.  This is not accounted for by the classical

physics behind the Dulong-Petit prediction of the universal

value, 3R.
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Although copper and silver look rather satisfactory from

the point of view of the above law, there is still a paradox

associated with them according to classical mechanics.  If Na

atoms each give up m valence electrons to conduct electricity,

and if the electrons are freely mobile, the heat capacity of a

conductor should be

Cv =    3kNa      +        
3
2 mkNa        (17)

    ’ ’
  "atomic" piece   "electronic" piece

Thus in these materials the electronic component of specific

heat seems not to be present, or is greatly suppressed.

Classical mechanics is silent as to the cause of this.

Another place that experimental results have pointed to

a breakdown in the application of classical mechanics to

atomic systems was in a classic experiment done by H. Geiger

(of counter fame) and E. Marsden in the early part of this

century.  They scattered α particles (Helium nuclei) off of

gold foil and found that a larger number of α particles were

backscattered by the atoms from the foil than could be

accounted for by then-popular atomic models.  This led

Rutherford to hypothesize that most of the mass of the atom

is in a central core or "nucleus."  Electrons were supposed

to orbit the nucleus like planets around the sun in order to

give atoms their known physical sizes.  For example, the

hydrogen atom was supposed to have a single electron in orbit

around a positively charged nucleus.  Although Rutherford's
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conclusions came via classical reasoning (it turns out that

the classical scattering cross section derived by Rutherford

is essentially unmodified by the new mechanics we will study

here), he could not account for the stability of his proposed

model by classical arguments since his orbiting electrons

would quickly radiate away their energy caused by their

accelerated motion. 

All of these experimental shortcomings, the "missing"

vibrational degrees of freedom in diatomic molecules, the

failure of the law of Dulong and Petit for certain solids,

the missing or suppressed electronic component of Cv, and the

instability of Rutherford's atomic model, pointed to a

breakdown in classical mechanics.  Thus the time was ripe for

a new, more general mechanics to arise.

We will begin our study of quantum mechanics with

another experimental finding which was at variance with

classical ideas.

Consider the following simple, static, neutral charge

distribution in an external electric field:

r
0

e+

e-

E

•

•

≥
≥

Clearly, this system prefers the orientation

+-
E
≥ • •

to
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E
≥

+ -
• • .

This system is called an electric dipole, and there is

an energy associated with its orientation.  We know that

energy = charge × potential

so that ("e" is a positive charge)

U = eφ(+) - eφ(-) (18)

Now we may expand

φ(+) ≅ φ + 
r
≥

0

2  . ∇
≥
φ (19)

φ(-) ≅ φ - 
r
≥

0

2  . ∇
≥
φ (20)

where φ represents the potential of the external field at the

midpoint of the dipole.  Then

φ(+) - φ(-) = r
≥

0
. ∇
≥

φ . (21)

But by the definition of the electric field

E
≥

  = -∇
≥
φ (22)

so that

U = -er
≥

0
. E
≥

(23)

Define d
≥
 = er

≥

0, the "electric dipole moment."  Then (23)

becomes

U = -d
≥ . E

≥
. (24)
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Eqn. (24) is consistent with the picture that r
→
0 prefers to

point along E
→
 since this minimizes the potential energy.

We also know that

Force = charge × electric field,

so

F
≥
 = eE

≥
(+) - eE

≥
(-) = e(r

≥

0⋅ ∇
≥
)E
≥
 = (d

≥
⋅ ∇
≥
)E
≥
 . (25)

Since E
≥
 = -∇

≥
φ, then we may also write this as

F
≥
 = -(d

≥
⋅ ∇
≥
)∇
≥
φ = -∇

≥
(d
≥
⋅ ∇
≥
φ) = ∇

≥
(d
≥
⋅E
≥
) . (26)

This makes sense since we expect that F
≥
 = -∇

≥
U and U = -d

≥
⋅E
≥
.

Notice that if E
≥
 is uniform, there is no net force on the

system.

There is also a torque on the system since

Torque = lever arm × force.

Therefore

t
≥
 = 

r
≥

0

2  ×( )eE
≥
(+) + 

 



 



- 
r
≥

0

2   ×( )-eE
≥
(-) , (27)

so

t
≥
 = d

≥
 × E

≥
 , (28)

where the E
≥
 is the value of the electric field at the center

of the dipole.

In the following we will really be interested in

magnetic properties of individual particles.  Rather than

deriving similar formulas in the magnetic case (which is
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trickier), we will simply depend on an electric-magnetic

analogy to get the formulas we need.  The analogy,

Electric Magnetic

   E
≥

   H
≥

   d
≥

   µ
≥
   ,

where µ
≥
 is the "magnetic moment" then leads to

U = -µ
≥ . H

≥
 , (29)

F
≥
 = (µ

≥ . ∇
≥
)H
≥
 = ∇

≥
(µ
≥ . H

≥
)  ,  (30)

t
≥
 = µ

≥
 × H

≥
  .       (31)

These formulas will help us understand the behavior of

magnetic dipoles subjected to external magnetic fields. Remember,

in order to produce a force on a magnetic dipole, we must first

construct an inhomogeneous magnetic field.  Consider therefore

the following schematic experimental arrangement.

shaped magnetic
  pole faces

screen
(glass plate)

beam

wall furnace

T

N

S

Ag atoms

v
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Looking face-on to the magnets, we would see the following:

S

N

battery

return yolk
(not shown above)

entering beam •

The magnetic field lines near the pole faces are highly non-

uniform.  The field looks something like:

•

 N 

+z
 |
 S
 |

If we take a z-axis centered on the beam and directed

upward as in the figure, a non-uniform magnetic field with

∂Hz
∂z

 < 0 ,

will be produced.  The type of experimental setup suggested

above was first used by Otto Stern and Walther Gerlach in an
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experiment on Ag (silver) atoms in 1922.  The explanation for

their experimental results had to wait until 1925 when Samuel

Goudsmit and George Uhlenbeck, on the basis of some atomic

spectrum considerations, deduced the physical property

responsible.  In the following, we will ignore the

experimental details of this experiment, and will be

considering idealized Stern-Gerlach-like experiments.

From (30), the force on an Ag atom at a single instant

in time is approximately ( Hz→ H )

Fz ≈ 
∂

∂z
 µzH = µz 

∂H

∂z
 . (32)

One can imagine measuring the force on a given atom by its

deflection in the magnetic field:

dpz
dt  ≈ µz 

∂H

∂z
 . (33)

Let us assume that the quantity 
∂H

∂z
  is approximately a

constant in time, fixed by the experimental apparatus.  Then,

we have a situation that looks like:

.beam

v
N

S

+z

L

Î¥

      

The change in the z-component of the momentum of an Ag atom

is then
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∆pz ≈ µz 
∂Η

∂z
 t . (34)

But

t ≈ 
L
v , (35)

where v is the velocity of the atoms, so that

∆pz ≈ µz 
∂Η

∂z
  
L
v . (36)

The small angular deflection caused by the magnetic field is

then

∆θ ≈ 
|∆pz|

|p≥|
 ≈ 

 



 



µz 
∂Η

∂z
  

L

mv2
 . (37)

Let us get some numerical feeling for this situation.

The particular values we will take in the following are:

m = 1.79 × 10-22 gm (Ag atom mass)

T = 103  0K (furnace temp.)

 



 



 

∂Η

∂z
  = 

103 gauss

10-1 cm
 = 104 

gauss
cm  (field gradient)

L = 10 cm (magnet length)

|µz| ≈ 10
-20 

erg
gauss  (Ag z-component magnetic moment)

Using these values, we can estimate the angular derivation ∆θ

as follows.  From the equipartition theorem, we expect the

mean energy of an Ag atom leaving the furnace to be

1
2 m v2  = 

3
2 kT. (38)

which gives
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m v2  = 4.14 × 10-13erg.

Then from (37)

∆θ ≈ 
10-20.104.10

4.14 × 10-13
 = 2.4 × 10-3 radians,

or about .14°.  Naively, we would always expect to be able to

back off far enough from the magnets to see this deflection.

Classically, what would we expect to see on the glass

screen as a result of the beam of Ag atoms passing through

the magnetic field?  Since the atoms will emerge from the

furnace with randomly oriented µz's, and since, from (37), we

expect the deflection of a given particle to be proportional

to µz, the classical expectation was to see something like:

                                      .

However, our idealized experiment will actually yield only 2

spots:

•

•     .

In a real experiment, the "spots" above would be smeared

because of the spread in particle velocities from the furnace

and the nonuniformity of the magnetic field.  (We will

discuss another source of smearing in just a moment.)

Originally, this unexpected two-value-only result was

referred to as "space quantization".  However, this is a

misleading name since the thing which is quantized here is

certainly not space.
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Now let us catalog some experimental results from other

setups of Stern-Gerlach apparatuses.

(a)  First, rotate magnet.

S

N
S N• •⇒

+z +z

We would see that the beam is now split along the new z-axis.

Let us now add a second magnet to the system at various

orientations relative to the first.  Let θ represent the

angular orientation of magnet 1 with respect to magnet 2.

For three specific orientations, one finds the following

experimental results for the intensity of the outgoing beam:

b) θ = 0°

result

up only

magnet 2 magnet 1

c) θ = 180°

result

down only

magnet 1magnet 2
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d) θ = 90°

50% up
50% down ×

×

In fact, for an arbitrary orientation θ, the intensity of the

"up" orientation is cos2 
θ
2 and of the "down" is sin

2 
θ
2 .

Here "result" means whether the final beam emerges in an up

or down orientation relative to the second magnet.

As mentioned above, one would measure the intensity of

the outcoming beams to reach these conclusions.  However, let

us accept the fact that our description of what is occurring

must be based on probabilities. Instead of the intensity of a

beam of particles, let's talk about intrinsic probabilities

associated with individual, independent particles.

Let's define

    z z
_

  p(±,±): probability that a particle deflected in the ± z
_
 

direction from the first S-G gives a particle 

deflected in the ± z direction relative to the 

second S-G. (S-G = Stern-Gerlach experiment)

The axes are related like:
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z z
_

initial
axis

final
axis

¥

There are 4 probabilities here:

1
up

down individual
particle

st

2 up
nd

p(+,+)

p(-,+)

2 downnd
p(+,-)

p(-,-)

From the above we identify p(+,+) = cos2 
θ
2 and p(-,+) = sin

2 
θ
2 .

We must have our probabilities adding to one.

Therefore, we must have

p(+,+) + p(+,-) = 1

⇒ cos2 
θ
2 + p(+,-) = 1

⇒ p(+,-) = sin2 
θ
2 .

Also
p(-,+) + p(-,-) = 1
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⇒ p(-,-) = cos2 
θ
2 .

More abstractly, we have (a' = + -, a" = + - independently)

∑
a'
 p(a",a') = 1, (39)

and
∑
a"
 p(a",a') = 1. (40)

Notice that

p(a',a") = p(a",a'), (41)

and that using (41),(40) follows from (39) or vice versa.

Thus (41) may be viewed as a way of ensuring probability

conservation.  Therefore, only one probability is

independent, p(+,+) say; the rest follow from (39) and (41)

(or (40) and (41)).

From (32) we realize that the upward deflected beam is

associated with µz < 0, while the downward beam must have

µz > 0.  We now ask the question:  given the selection of the

up beam along the initial z
_
 axis (µz

_ < 0), what is the mean

value expected for µz measured along the final z axis?  The

situation looks like:

+z z
_

initial
axis

final
axis

¥

cos

+

}-µ
µ

¥
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Classically, the answer to this question is given by just

picking out the projection of µ
≥
 along the z-axis.  Thus, the

classical answer is -µ cos θ.  What do we get from our new,

probability point of view?  From this point of view, our mean

value of µz is the weighted average of the two probabilities

for finding an upward deflected beam from the 2nd S-G (µz < 0)

and a downward beam from the 2nd S-G (µz > 0).  Therefore, we

have

<µz>+ ≡ average value of µ
≥
 along the z-axis,

         given an initial selection of the upward

            deflected beam along z
-
.

<µz>+  = (-µ)p(+,+) + (+µ)p(-,+)

      = -µ  


 
cos2 

θ
2 - sin

2 
θ
2 

      = -µ cos θ

We thus get the same result as expected classically,

although the way we have reached our conclusion is not

classical at all.

Let us try to build a classical model of the basic S-G

experiment.  Magnetic moments classically are produced by the

motion of charged particles.  (There are no magnetic

monopoles, at least so far.)  A reasonable connection is thus

that

µ
≥
 = γS

≥
 . (42)
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where S
≥

 is a type of angular momentum associated with the Ag

atom.  The symbol "γ" above is just a proportionality

constant, usually called the "gyromagnetic ratio".  What "S
≥
"

represents is not clear yet.  Eqn (42) is patterned after a

classical result.  If one has a current loop in a plane,

I

,

where the elementary charge carriers have a charge -e like an

electron (e > 0 here), the magnetic moment produced by these

moving charges is

µ
≥
 = - 

e
2mc L

≥
 , (43)

where m refers to the charge carrier's mass.  (See Jackson's

Classical Electrodynamics, second edition, p.183).  If (42)

holds for the Ag atom, because the beam is seen to split into

two discrete components, we can associate discrete values of

Sz with the two spots observed.  This behavior of Ag atoms in

a magnetic field is due to its internal structure:  one

unpaired electron outside a closed shell of electrons (which

possess no net magnetic dipole moment).  Thus, the property

of the Ag atoms we are studying is really due to a property

of the electron.  This property, called "spin", sounds very

classical, but is far from being a classically behaving

angular momentum.  Since the magnetic moment we are measuring

in the S-G experiment really refers to a property of
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electrons, it is natural to expect that the gyromagnetic

ratio in (42) be not too different from the classical one in

(43), which also refers to the electron.  In fact, the actual

gyromagnetic ratio is approximately a factor of two larger

than (43):

γ ≈ - 
e
mc . (44)

Given this value of γ and the experimental determination of

the deflection angle ∆θ in (37), one can deduce the allowed

values of the electron spin along the z-axis:

N

S

= < 0, =
2
_©

= > 0,

µ
z

Sz Sz

µz Sz S z =
2
_-© .

,

h

h

The quantity "h" 
 


 
h ≡ 

h

2π
 is known as Planck's constant.

The z-component of the electron's spin is thus quantized,

i.e. limited to the two discrete values 
h

2 and - 
h

2.

Let us continue to develop our classical model.  From

(31) we have t
≥
 = µ

≥
 × H

≥
. From (42) we have µ

≥
 = γS

≥
, so

t
≥
 = γS

≥
 × H

≥
 . (45)

Newton's laws relate t
≥
 to the rate of change of angular

momentum,

t
≥
 = 

dS
≥

dt . (46)

Putting (45) and (46) together gives
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dS
≥

dt = γS
≥
 × H

≥
 . (47)

Let us take H
≥
 = Hêz, where H is a constant.  Then we have

dSz
dt  = 0; 

dSx
dt  = γHSy; 

dSy
dt  = -γHSx. (48)

Then for example

d2Sx
dt2

 = γH 
dSy
dt  = -(γH)

2Sx. (49)

This is a differential equation of the form ẍ + ω2x = 0,

where the angular frequency is given by

ω = γH. (50)

The picture that emerges is that of a precessing S
≥

vector:

S

H

direction of precession
if  < 0.γ

≥

≥

Notice that neither |S
≥
| nor Sz changes in time.  Since

the time to pass through the magnet poles is given in (35) as

t ≈ 
L
v, the total pression angle for an Ag atom is

φ = ωt ≈ γH 
L
v . (51)
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Again, let's gets some feeling for order of magnitude

here.  Using our previous result for v (below eqn(38) above),

we get

φ = 
1.76 × 107 . 103 . 10

4.81 × 104
 = 3.7 × 106 radians!

This is equal to 5.8 × 105 complete revolutions.

In order to see how far we can push this classical

description of spin, we would like to try to "catch" an atom

while in the act of rotating.  Classically, one should in

principle be able to accomplish this by, say, decreasing the

value of H and L in (51).  Then, the deflection angle (37)

will become smaller, but one can always move the screen far

enough away to see such a deflection.  However, nature makes

it impossible to accomplish this goal.  To see why, let us

examine the experimental arrangement in more detail.

In calculating the deflection angle, ∆θ, we have assumed

we know exactly where the atom is in the magnetic field.  In

fact, we don't know exactly where an individual atom is since

the wall the beam had to pass through actually has a finite

width.

wall furnace

Tδz⇐
leads to

S

N

?



1.25

"δz" represents the finite width of the slit.  In our

idealized experiment, up to this point, we have been

imagining two separate operations to be done on the beam:

first, collimation by the wall; second, the measurement done

on the beam by the magnets.  Let us idealize our experiment

even further.  Imagine that the action of the thin wall and

the beginning of the effect of the magnets on the beam both

take place at the same time, or at least approximately

simultaneously.  Then δz represents an uncertainty in the

position of the Ag atoms as they begin their traverse through

the magnetic field.  Because of the gradient in H, this will

cause an uncertainty in the value of the field acting on the

atoms,

δH = 
δH

δz
 δz.

This then implies an uncertainty in the precession angle

δφ = γδΗ 
L
v = γ 

∂H

∂z
 
L
v δz. (52)

Along with the uncertainty in position, δz, there is

also an uncertainty in z-component of momentum, δpz, of the Ag

particles after they have emerged from the slit.

T

δz
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This spread in momentum values will, in fact, wash out our

magnetically split beam if it is too large.  In order to

insure that the experiment works, i.e., that the beam is

split so we can tell which way an individual atom is

rotating, we need that

(∆pz)+ - (∆pz)- > δpz, (53)

where the (∆pz)± represent the up(+) or down (-) "kick" given

to the atoms by the field.  From (36) we know that (remember,

µz = γSz, with Sz = 
h

2 or - 
h

2 ).

(∆pz)+ = γ 
h

2 
∂H

∂z
 
L
v , (54)

(∆pz)- = -γ 
h

2 
∂H

∂z
 
L
v , (55)

From (52) we then have that

(∆pz)+ - (∆pz)- = 
hδφ

δz
 . (56)

Eqn(53) now says that for the experiment to work, we must

have

 
hδφ

δz
 > δpz ,

or hδφ > δpzδz. (57)

If nature is such that

δpzδz ≥ h , (58)
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then we must conclude that

δφ ≥ 1, (59)

can not be avoided.  Relations such as (58) or (59) are

called "uncertainty relations," and are an intrinsic part of

quantum theory. Eqn(58) is Heisenberg's famous

momentum/position uncertainty relation which will be

motivated and discussed extensively in the upcoming chapters.

Given this input, (59) says that the classical picture of a

rotating spin angular momentum, whose precession angle should

be arbitrarily localizable, is untenable.  Ag atoms are not

behaving as just scaled-down classical tops; we cannot

"catch" an Ag in the act of rotating.

As said before, the name "spin", when applied to a

particle like an electron, sounds classical but it is not.

It is, in fact, impossible to construct a classical picture

of an object with the given mass, charge and angular momentum

of an electron. Let's try to.  Consider the following

electron model.
z

ω

θ

da
→

r

|r| = a≥

≥
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The "electron" consists of an infinitely thin, spherical

shell of charge, spinning at the rate that gives it an

angular momentum along z of 
h

2 .  The moment of inertia of

this system is

I = ρs ∫s(a
2 - z2)ds (60)

where we are doing a surface integral, and

ds = a2 sinθdθdφ,

 z = a cosθ,

ρs  = 
m

4πa2
 .

Doing the integral gives 
 


 
∫0

π
sin3θdθ = 

4
3

I = 
2
3 ma

2 (61)

Classically, we have (for a principle axis)

L = Iω . (62)

Setting L = 
h

2 , we find that the classical electron's angular

velocity must be

ω = 
3h

4ma2
 . (63)

Now it takes energy in order to assemble this positive shell

of charge because of the electrostatic forces of repulsion.

This energy must be on the order of

E ~ 
e2

a  . (64)

We know from special relatively that mass and energy are

equivalent (E = mc2).  Thus (64) gives a mass for the
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electron, which, if we hypothesize supplies the entire

observed electron mass, implies a radius

a ~ 
e2

mc2
 . (65)

(This is called the "classical electron radius").  But now

notice that the velocity of the electron's surface at its

"equator" is given by

ωa ~ 
3h
4ma =  


 
3

4α
 c ~ 103c!

The surface is moving much faster than the speed of light,

which is impossible by special relativity.  The constant

α  = 
e2

hc

is called the fine structure constant and has the approximate

value α ≈ 
1
137 .  The impossible surface speed of the electron

is not the only thing wrong with this model; we are still

stuck with the classical result (43) for the magnetic moment

produced by this spinning charge distribution, which gives

the wrong magnetic moment.

Our conclusion is that electron spin, called "spin 
1
2 "

since Sz = ± 
h

2 only, is a completely non-classical concept.

Its behavior (as in the S-G setup) and its origin (as above)

are not accounted for by classical ideas.

Now let's go back to the S-G experiment again and look

at it from a more general coordinate system.  Our

experimental results from the two magnet S-G setup are:
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p(+,+) = cos2 
θ
2 (66)

p(-,+) = sin2 
θ
2 .

The "+" or "-" are labeling whether the particles are

deflected "up" (µz < 0) or "down" (µz > 0) respectively.  We

now know that the upward deflected particles have Sz = + 
h

2

and the downward ones have Sz = - 
h

2 .  Instead of regarding

the signs in (66) as labels of being deflected up or down,

let us regard them instead as labeling the value of the

selected Sz value in units of 
h

2 .  (We often call Sz = + 
h

2

spin "up" and Sz = - 
h

2 spin "down").  The result (66) can

also be written

p(+,+) = 
1 + cos θ

2  , p(-,+) = 
1 - cos θ

2  . (67)

Remember, "θ " is the relative rotation angle of magnet 1

with respect to magnet 2.  Picking our z-axis arbitrarily

compared to the two S-G apparatuses leads to the picture:
z

2

1

'

'θ

φ

φ

e1
^

2êΘ

θ
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Assuming that the θ's in (67) retain their meaning as the

relative rational angle, the probabilities in this new

picture should be written as

p(+,+) = 
1 + cos Θ

2 , p(-,+) = 
1 - cos Θ

2  . (68)

An identity relating Θ to the other angles in the above

diagram is

ê1⋅ê2 = cos Θ = sin θ cos φ sin θ'cos φ'

+ sin θ sin φ sin θ' sinφ' + cos θ cos θ', (69)

    ⇒ cos Θ = cos θ cos θ' + sin θ sin θ' cos(φ - φ'). (70)

Let's write cos Θ as

            (cos θ)           (cos θ')

cos Θ =  


 
cos2 

θ
2 - sin

2 θ
2  


 
cos2 

θ'
2  - sin2 

θ'
2

                       (sin θ)          (sin θ')

  + 2 sin 
θ
2 cos

 θ
2 ⋅ 2 sin

 θ'
2  cos 

θ'
2  cos(φ - φ')

or

   cos Θ = cos2 
θ
2 cos

2 θ'
2  + sin2 

θ
2 sin

2 θ'
2

        - sin2 
θ
2 cos

2 θ'
2  - cos2 

θ
2 sin

2 θ'
2

          + 2 sin 
θ
2 cos

 θ
2 ⋅ 2 sin

 θ'
2  cos 

θ'
2  cos(φ - φ')

Using 1 =   


 
cos2 

θ
2 + sin

2 θ
2  


 
cos2 

θ'
2  + sin2 

θ'
2  , we get
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  p(+,+) = 
1 + cos Θ

2  = cos2 
θ
2cos

2 θ'
2  + sin2 

θ
2sin

2 θ'
2

      + 2 cos 
θ
2 cos

 θ'
2  sin 

θ
2 sin

 θ'
2  cos(φ - φ') . (71)

Now suppose that (φ - φ') = 0.  Then we can write p(+,+) in a

matrix formulation as

                "row matrix"

         

 p(+,+) = 

 



 


cos 

2
θ',sin 

2
θ' 



 ⋅  

 



cos 
2
θ

sin 
2
θ

 



 



2

 .         2      (7 )

         "column" matrix

(The absolute value signs are not needed here, yet.)  This

interesting structure can be repeated when (φ - φ') ≠ 0.

Consider the quantity

 Q = 

 



 


e
-iφ'/2

 cos 
2
θ',e

iφ'/2
 sin 

2
θ' 




∗
 ⋅  

 



e-i /2 cos 
2
θ

e
iφ/2

  sin 
2
θ

 



 



2

  (73)

φ

Working backward, we can express this as

Q = |cos θ2 cos
 θ'
2  + sin 

θ
2 sin

 θ'
2  ei(φ - φ')|2 . (74)

Now

|a + b|2 = (a + b)∗(a + b)

   = |a|2 + |b|2 + a∗b + b∗a , (75)

                                 

}

2 Re(a b)∗

⇒ Q = cos2 
θ
2 cos

2 θ'
2  + sin2 

θ
2 sin

2 θ'
2

+ 2 cos 
θ
2 cos

 θ'
2  sin 

θ
2 sin

 θ'
2  cos(φ - φ'). (76)
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This is just the form we want!  In general then

 

 p(+,+) = 

 



 


e
-iφ'/2

 cos 
2
θ',e

iφ'/2
 sin 

2
θ' 




∗
 ⋅  

 



e-i /2 cos 
2
θ

e
iφ/2

  sin 
2
θ

 



 



2

 ( )77

φ

.

This factored sort of form would not have been possible

without using complex numbers.  This is actually a general

lesson about quantum mechanics:  complex numbers are a

necessity.

Now let's do the same thing for p(-,+):

p(-,+) = 
1 - cos Θ

2  = cos2 
θ
2 sin

2 θ'
2  + sin2 

θ
2 cos

2 θ'
2

    - 2 cos 
θ
2 sin

 θ'
2  sin 

θ
2 cos

 θ'
2  cos(φ - φ'),

      → p(-,+) = |- sin 
θ'
2  cos 

θ
2 + cos

 θ'
2  sin 

θ
2 e

i(ϕ-ϕ')|2 . (78)

With a little hindsight, this can be seen to be equivalent to

 p(-,+) = 

 



 


-e

-iφ'/2
  

2
θ',e

iφ'/2

 2
θ' 




*

 ⋅  

 



e-i /2 cos 
2
θ

e
iφ/2

  sin 
2
θ

 



 



2

. (79)

φ

sin cos 

Let's define the column matrices

     

 ψ+(θ,φ) = 

 



e
-iφ/2

 cos 
2
θ

e
iφ/2

  sin 
2
θ

 


 ,                (8 )0
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 ψ-(θ,φ) = 

 



-e
-iφ/2

 

cos

 
2
θ

e
iφ/2
  

sin

 
2
θ

 


 .                (8 )1

Then we may write (the explicit matrix indices are not shown):

p(+,+) = |ψ+(θ',φ')
+ ψ+(θ,φ)|

2, (82)

p(-,+) = |ψ-(θ',φ')
+ ψ+(θ,φ)|

2, (83)

where "+" means "complex conjugation + transpose."  (The

transpose of a column matrix is a row matrix.)

In general one may show that (a',a" = +- independently)

p(a",a') = |ψa"(θ',φ')
+ ψa'(θ,φ)|

2. (84)

In order to make sure we haven't made a mistake, set

θ' = 0 in the above expressions.  We should recover our old

results, since this means the z-axis is now taken along the ê2

direction (i.e., along the direction of the field in the final

S-G apparatus).  From (77) we get

 p(+,+) = 

 



(e-iφ'/2 , 0 )* 
 



e
-iφ/2

 cos 
2
θ

e
iφ/2

  sin 
2
θ

 



 



2

           

 = 
 


e
i(φ' - φ)/2

 cos 2
θ  




2

 = cos2 
2
θ .

From (79) we get
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 p(-,+) = 

 



( e
iφ'/2
   0 )* 

 



e
-iφ/2

 cos 
2
θ

e
iφ/2

  sin 
2
θ

 



 



2

,

        

 = 
 


e
-i (φ' - φ)/2

 sin 2
θ  




2

 = sin2 
2
θ .

No mistakes.

The ψa'(θ,φ) are called "wave functions."  In order to find

an interpretation for such objects, as well as to learn about

other aspects of quantum mechanical systems, we will now try to

generalize our S-G type of measurements.

Before, in the S-G case, we were measuring Sz(or µz).  The

physical outcomes were Sz = 
h

2 or Sz = - 
h

2 .  The whole

measurement can be idealized as:

physical
outcomes

arbitrary
beam

{
h

+
2

The line entering the box is indicative of a beam of

particles entering a S-G apparatus.  The separation of the beam

suggests the effect of the magnets on the atoms.  In addition a

selection is being performed whereby only particles with a

given physical attribute (Sz = 
h

2, say) are permitted to exit.

Let us generalize the above as
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physical
outcomes

arbitrary
beam{

a'

Just as the above S-G apparatus selects the outcome of 
h

2

of the physical property Sz, we are imagining the above setup

to select an outcome a' of some more general physical property

A.  We will adopt a symbol which represents the above process,

and call it a "measurement symbol" or an "operator."  The

measurement symbol for the above is:

|a'|

We will let a',a",... be typical outcomes of such measurements;

we will sometimes explicitly label specific outcomes as

a1,a2,... .  For right now think of the outcomes a',a"... as

dimensionless numbers, to keep things simple.

What sort of manipulations are appropriate to these

measurement symbols?  Consider the S-G type of process:

|a'|

arbitrary
beam

|a'|⋅

a'

This is clearly the same as just

arbitrary
beam

|a'|

a'
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This suggests the rule:

|a'||a'| = |a'|. (85)

On the other hand, consider (a' ≠ a"):

|a"|

arbitrary
beam

|a'|⋅

a'

This is equivalent to an apparatus which blocks everything:

arbitrary
beam

We will call the above a "null measurement" and associate

it with the usual null symbol, 0.  Therefore, we adopt

|a"||a'| = 0, a' ≠ a". (86)

Notice

|a'||a"| = |a"||a'|, (87)

which says that selection experiments are commutative.  This

defines multiplication in this context.  What about addition?

Let's start at the opposite end to the null measurement in a

system with 4 physical outcomes, say

arbitrary
beam

a

a

a

a

1

2

3

4
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Such a measurement apparatus can perform a separation, but

no selection.  Our symbol for this will be the usual identity

character:  1.  Clearly, we have

1 ⋅ 1 = 1. (88)

Now start blocking out physical outcomes one by one:

    

a.b.

Symbol:  1 - |  |

a

a

a

1

2

3

a4

a

a
a.b.

1

2

Symbol:  1 - |  | - |  |a3 a4

("a.b." above means "arbitrary beam".)  Now, block all of the

outcomes:

a.b.

Symbol:  1 - |  | - |  | - |  | - |  |a
1

a2a3a4

This is obviously just the null measurement again.  The

two characterizations must be the same:

1 - ∑
i
|ai| = 0. (89)

We require that

0 + |a'| = |a'|, (90)

so (89) can be written

∑
i
|ai| = 1. (91)
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Eqn(91) will be called "completeness." It is no exaggeration to

say it is the foundation stone of all of quantum mechanics.

We can write down other mathematical results suggested by

the above type of diagrams.  Consider

a
1
'

a.b.

1 a
1
'|    |⋅

This is clearly equivalent to the opposite order,

a
1
'

a.b.

1a
1
'|    | ⋅

In fact, both are the same as just

a
1
'

a.b.

Mathematically, these diagrams tell us that

1 ⋅ |a'| = |a'| . 1 = |a'|. (92)

One can also show

1 ⋅ 0 = 0; 0 ⋅ 1 = 0. (93)
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We have to tie this discussion in with real numbers

eventually.  All experiments have results and all results are

numbers.  There has to be more to an experiment than just

accepting or rejecting physical attributes.  There is also the

possibility of modulating a signal.  If "C" represents in

general a complex number, we adopt the simple rules that

}C|a'| = |a'|C

C1 = 1C

C  0 = 0⋅

(94)

These properties assure that no distinction between 1,0

(measurement symbols) and 1,0 (numbers) is necessary.  For now,

let us also regard the numbers "C" as being dimensionless.  We

will suggest a modulating device as follows:

a
1

a.b.
C

Symbol:  C|  |a
1

The amplitude of the a1 beam above has been modified by a

factor |C|, and it's phase has been changed by

tan-1(Im(C)/Re(C)), just like for an electronic circuit.  A

slash through an emerging beam will sometimes be used to denote

its modified character, and we can also, if we wish, write the

modulating factor in the little box thus - C .  Using
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a.b.
C

C|  |a
1

a
1

|  | ⋅

we see that, for example,

|a1|(C|a1|) = C|a1|, (95)

which also follows mathematically from (94) and (85) above.  We

adopt the rule that our beam always travels from right to left,

and will write down our measurement symbols in the same order

as they appear in the diagrams.  An example of a more general

modulated measurement is:

a
1 a.b.

C

a3

a
4

C3

1

Symbol:  C |  | + C |a | + |a |a
1 3 41 3

Now that we know how to associate numbers with measurement

symbols, we may write (85) and (86) together as

|a'||a"| = δa'a"|a'| (96)

where δa'a" is the Kroniker delta symbol:

 δ
a'a"

 = 
 



1,  a' = a"

0,  a' ≠ a"
 . )(97
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In addition, one can show that the distributive law is

operative here:

 (|a'| + |a''|)|a'''| = |a'||a'''| + |a''||a'''|.    (98)

Let us now define a very special sort of modulated

operator.  If we choose

Ci = ai , (99)

i.e., the amplification factors are chosen as the values of the

physical outcomes (which are real), then we have for this

measurement
A = ∑

i

ai|ai|. (100)

We have been thinking of the ai as dimensionless, but we

may want to associate physical dimensions with the property A,

just as we associate physical dimensions with Sz.  We can

always supply dimensions by multiplying both sides of (100) by

a single dimensionful constant.

 A' = CA = ∑
i

 Ca
i
|a

i
| = ∑

i

 a
i
|a

i
|  (101)

 ‘

                             related as Cai = a
-
i ,

This mathematical act is somewhat mysterious from the point of

view of our diagrams, since it can't be represented in such a

manner.  However, every experiment has a readout in units of

some kind.  Let us assume the above conversion to physical

units represents the machinery's readout of the result in some

appropriate units. For now, we will continue to use

dimensionless physical outcomes ai; we can always supply a

dimensionful constant later.
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Let us deduce some properties of the above A.  First,

notice that

 A|a'| = 
 


∑
i
 a

i
|a

i
|

 

|a'| = (a1|a1| + a2|a2| + ...)|a'|

             = a'|a'||a'| = a'|a'|, so

A|a'| = a'|a'|. (102)

Also

     |a'|A = a'|a'|. (103)

"A" has the important property of singling out the value

of the physical outcome a' when it acts in concert with the

selection |a'|.  Pictorically, (102) is saying

a.b.
=

a'
a'

a'|a'|

a.b.

a'
a'

A |a'|

Eqn(103) can be seen as

    

a.b.
=

a'|a'|

a.b.

A|a'| ⋅
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The order of these operations or measurements is not

important yet.

It's time to say a little bit more about what the diagrams

I have been drawing represent.  Although we have used the S-G

experimental apparatus to model these idealized measurements

after, the above manipulations on the incoming "beam" do not

actually represent physical operations carried out in real

space.  Instead, they represent operations carried out on

individual particle characteristics in a mathematical "space"

or arena where the concepts "amplitude" and "phase" makes

sense.  This mathematical space has been given the name of

"Hilbert space."  Although the above do not represent real-

space experimental setups, there is still a correspondence

between what happens in a real experiment (involving spin, say)

and in our Hilbert space idealizations; this connection will be

stated shortly.  I will call these ideal manipulations on

arbitrary beams ("arbitrary" in the sense of containing nonzero

amplitudes for all physical outcomes, a') "Process Diagrams".

Some other properties of the above A are now detailed.

Notice that

A2 = A ⋅ A = A ∑
i

ai|ai| = ∑
i

aiA|ai|.

But A|ai| = ai|ai|, so

A2 = ∑
i

ai
2|ai|. (104)

This can be pictured as
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a.b.

a1

2a

3a

4a

=

a.b.

,

a1
2

2
2a

3
2a

2
4a

a1

2a

3a

4a

where the amplitude factors a1,a2,... associated with each one

of the physical outcomes has been written in explicitly.

The generalization of the above rule for A2 is

f(A) = ∑
i

f(ai)|ai|. (105)

for some f(A) some power series in A. Let us take some examples

to understand (105) better. First, which f(A) results from the

choice of f(ai) = 1 for all i?

f(A)  = ∑
i

|ai| = 1.

Next, which f(A) results from f(ai) = 0 for all i?

f(A)  = ∑
i

0|ai| = 0.

Which f(A) results from the following choice?

f(aj) = 1,

f(ai) = 0, all ai ≠ aj?

This also is easy:

f(A) = |aj|.

However, what is this in terms of A? (This is not so easy.)

Now

A|aj| = aj|aj|,

  ⇒ (A - aj)|aj| = 0,
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where I have suppressed the unit symbol 1, in writing the

second form. Now consider the statement:

  
 

 


∏
i=1

n

(A - ai)
 


 
|a

j
| = 0 (106).

To see that this is true, write this out more explicitly:

(A - a1)(A - a2)...(A - aj)...(A - an)|aj|

    = (aj - a1)(aj - a2)...(aj - aj)...(aj - an)|aj| = 0. (107)

Since the above is true for any |aj|, we must have

∏
i

(A - ai) = 0. (108)

So this represents a new way of writing the null measurement.

(Can you think of a Process Diagram to represent the left hand

side of (108)?)  Now comparing (108), written in the form

∏
i

(A - ai) = (A - aj)∏
i≠j

(A - ai) = 0. (109)

with the statement (A - aj)|aj| = 0 leads to the conclusion that

 |aj| = C ∏
i≠j

(A - ai), (110)

where "C" is some unknown constant.  I will just supply this

constant:

  

 |a
j
| = ∏

i≠j 
 

 aj - ai

A - a
i  


.

(111)

It is easy to show that (111) works correctly.  First, let

us show that |aj||aj| = |aj|:
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∏
i≠j

 

 aj - ai

A - a
i  



 


|a

j
| = 

 

 aj - a1

A - a
1  


 ... 

 


a
j
 - an

A - an  


|a

j
|.

                  

 = 
 

 aj - a1

a
j
 - a

1 


...

 

 aj - an

a
j
 - an 



|a

j
|

        = 1...1|aj| = |aj|.

This tells us we have chosen the constant C correctly.

Next, let us check that |aj||ak| = 0 (j ≠ k):

 

 


∏
i≠j
 

 

 aj - ai

A - a
i  



 


|a

k
| = 

 

 aj - a1

A - a
1  


...

 


a
j
 - an

A - an  


|a

k
|

  

 = 
 

 aj - a1

a
k - a1  



...

 

 aj - an

a
k

 - ak  



|a
k
|...

 


a
j
 - an

a
k
 - an 




  = 0.

Let us study the two-physical-outcome case in some detail.

Let a1 = 1, a2 = -1.  Then

∏
i

(A - ai) = 0 ⇒ (A - 1)(A + 1)  = 0 ⇒ A2 = 1. (112)

This is the algebraic equation satisfied by the physical

property A.  Also (let |1|= |+|, |-1| = |-|)

 |+| = ∏
i≠1
 

 

a1 - ai

A - a
i

 


 = 

2
A + 1,               (113)

 |-| = ∏
i≠2
 

 

a2 - ai

A - a
i

 


 = 

2
1 - A .               (114)

In addition, we have completeness:
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∑
i

|ai| = |+| + |-| = 
A + 1
2  + 

1 - A
2  = 

1
2 + 

1
2 = 1.

We can explicitly check some properties here:

 |-||+| = 
 

 2
1 - A 




 

 2
A + 1 


 
= 

4
1 - A

2

 = 0

 |+||+| = 
 

 2
A + 1 




2

 = 
4

1 + 2A + A
2

 = 
4

2 + 2A = |+|

 |-||-| = 
 

 2

A - 1  



2

 = 
4

1 - 2A + A
2

 = 
4

2 - 2A = |-|.

There is another operation we can imagine performing on

our "arbitrary beam" of particles that has a quantum mechanical

basis.  Besides the selection and amplification operations, one

can also imagine the following Process Diagram:

a.b.
a'

a"

That is, we are imagining an experiment that performs a

transition.  In the above, the beam with physical outcome a' is

transformed into a beam with physical outcome a", keeping the

a' beam's amplitude and phase information.  In the S-G case,

the above would represent

an apparatus which turned spin Sz = 
h

2 into Sz = -
h

2, say.  The

symbol we will adopt for the above is (the "1" is implicit)

     |a"  a'|.
  ‘  ‘

 exiting property entering property
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The connection to our earlier measurement symbol is clear:

|a'a'| = |a'|. (115)

Consider the following:

 

 

a.b.
a'

a"

⋅ |a"a'|

a"'

|   a"|a"'

This is the same as

a.b.
a'

a"'

|   a"|a"'

So we adopt the rule that

 |a"' a"||a"a'| = |a"' a'|.                  (116)

It is also clear that

 |a'v a" |a"a'| = 0,  a  ≠ a .              (117)"' "|'

The algebraic properties of our two types of measurement

symbols are summarized in

|a'||a"| = δa'a"|a'|,  (118)

 |a'v a"'||a"a'| = δ
a"'a"

|a'v a'|.                   (119)
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As pointed out before, the |a'|-type measurements are

reversible (i.e., the order of the operations doesn't matter).

However, these new types of measurements are not reversible.

An example is the following:

|a'|

a.b.

a'

⋅

a"

|a"a'|

≠

      |a'|

a.b.

⋅

a"

|a"a'|

⇒ |a"a'||a'| ≠ |a'||a"a'|. (120)

Eqn(120) follows mathematically from (119) and the fact

that |a'| = |a'a'|.  Another example is

|a'a"|

a.b.

⋅

a"

|a"a'|

a'

≠

|a'a"|

a.b.

⋅

a"

|a"a'|

a'
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⇒ |a'a"||a"a'| ≠ |a"a'||a'a"|. (121)

The algebra of the |a'a"|-type symbols is non-commutative.

Each side of (120) and (121) can be reduced further using

(119).  We can always label the Ο-symbols in our transition-

type Process Diagrams with the actual transition this device

performs in order to remove any ambiguity.  We will do this

occasionally in the following.

Let us concentrate on the two-physical outcome case, since

this is the simplest situation.  The symbol associated with

     

a.b.
+

-

- +

+ -

+

-

is

|-+| + |+-|.

This suggests that the operation,

 

a.b.
- +

+ -

+

-

- +

+ -

+

-

(|-+| + |+-|) (|-+| + |+-|)⋅

simply reconstitutes the original beam. Let's confirm this

mathematically:
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(|-+| + |+-|)⋅(|-+| + |+-|)

 = |-+||-+| + |-+||+-| + |+-||-+| + |+-||+-|

 = |-| + |+| = 1.

Here are some more examples and the equations that go

along with them.

- +

=

0 =

-

|-+| ⋅

a.b. a.b.
- +

|-+|

+ -

=

=

-

a.b. a.b.
- +

+ -

++

|+-| ⋅|+|  (|-+| + |+-|)

   

- +

=

0 =

-

a.b. a.b.
- +

+

|-+|  (|-+| + |-|)  |+|⋅ ⋅

Beams can sometimes combine, as in

-

a.b.
- + +

-

(|-+| + |-|)
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Of course, the "-" beam's amplitude has in general been

modified.

Let's continue to investigate the two-physical outcome

case.  There are four independent measurement symbols:

1.  |++| = |+|

2.  |--| = |-|

3.  |+-|

4.  |-+|.

We will make a different, more convenient choice of the

four independent quantities.  We choose the unit symbol

1 = |+| + |-|, (122)

as one of them.  Another independent choice is

σ3 = |+| - |-|, (123)

which we can write as

    

 σ
3
 = ∑

σ
3
'

|σ
3
'|σ

3
' ,                       (124)

where σ'3 = ± 1.  σ3 is just a renaming of the special modulated

operator A we investigated on (p. 1.41) above.  Let's confirm

that (112) holds:

σ
2
3 = (|+| - |-|)(|+| - |-|) = |+| + |-| = 1.

We will take the other two independent combinations to be:

σ1 = |-+| + |+-|,

σ2 = i|-+| - i|+-|.
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In our Process Diagram language, σ1 performs a double

transition (see some of the examples already drawn) while σ2

performs the same transition, but additionally modifies the

phases of the signals. It is easy to see that, in addition to

σ
2
3 = 1, we have

σ
2
1 = 1, σ

2
2 = 1. (125)

Some other mathematical properties of these new

combinations are:

  σ1σ2 = (|-+| + |+-|)(i|-+| - i|+-|)

      = -i|-| + i|+| = iσ3, (126)

  σ2σ1 = (i|-+| - i|+-|)(|-+| + |+-|)

      = i|-| - i|+| = -iσ3. (127)

Therefore, we see that

σ1σ2 = - σ2σ1. (128)

One can also show the following:

σ2σ3 = iσ1,  σ3σ2 = - iσ1, (129)

σ3σ1 = iσ2,  σ1σ3 = - iσ2. (130)

Summarizing the properties of the σ's, we have

σ
2
k = 1       (k = 1,2,3), (131)

σkσl = -σlσk  (k ≠ l), (132)

σkσl = iσm    (k,l,m in cyclic order). (133)
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Some mathematical phraseology we will use is:

if AB = BA, then A and B commute;

if AB = -BA, then A and B anticommute.

Now our two-physical-outcome case has just been modeled after

spin 
1
2.  Electron spin, being a type of angular momentum,

should involve three components; we hypothesize these spin

components are represented by the σi above, which are seen to

satisfy (112), the basic operator equation for the two-physical

outcome case.  However, in order to supply the correct physical

units, we write

Si = 
h

2 σi, i = 1,2,3. (134)

The multiplication by 
h

2 above is the "somewhat mysterious" part

of the measurement that cannot be represented by a diagram.

(See p. 1.42 above.)  Eqn(134) is the crucial connection that

allows us to tie our developing formalism to the real world.

It is important to realize that the above quantities Si

are operators, not numbers.  Nevertheless, if they represent an

angular momentum they must behave like a vector under rotations

in real space.  Let us confirm our identification of the σi as

angular momentum components under the following passive

rotation ("passive" means the axes, not the vector is rotated)

about the third axis:
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3

2
-

2

1
_

1

v≥

φ

A vector v≥ should now have new components v
_
i given by:

 

v

_
3 = v3

v
_
1 = v1 cos φ + v2 sin φ

v
_
2 = -v1 sin φ + v2 cos φ  

(135)

v1,v2,v3 are the components along the old (unbarred) axes.  We

will choose the angle φ in the above figure to be positive by

convention.  In analogy to (135), we require that the spin

components in the new coordinates be

 

σ

_
3 = σ3

σ
_
1 = σ1 cos φ + σ2 sin φ

σ
_
2 = -σ1 sin φ + σ2 cos φ  

(136)

Now, is it still true that σ
_2
i = 1?

  σ
_

 
2
3  = σ

2
3 = 1

= 0

(σ
_
1)

2 = σ
2
1 cos

2 φ + σ
2
2 sin

2 φ + (σ1σ2 + σ2σ1) cos φ sin φ

           = cos2 φ + sin2 φ = 1

= 0

(σ
_
2)

2 = σ
2
1 sin

2 φ + σ
2
2 cos

2 φ + (σ1σ2 + σ2σ1) cos φ sin φ

= sin2 φ + cos2 φ = 1
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What about the cyclic property? One can show that

 

σ

_
1σ
_
2 = iσ

_
3,  σ

_
2σ
_
1 = -iσ

_
3

σ
_
2σ
_
3 = iσ

_
1,  σ

_
3σ
_
2 = -iσ

_
1

σ
_
3σ
_
1 = iσ

_
2,  σ

_
1σ
_
3 = -iσ

_
2.

(137)

We would like to show now that the properties σ
_

 
2
i = 1 and

the cyclic properties (137) above hold for a more general

rotation.  To start off, let's rewrite σ
_
1 above as

σ
_
1 = σ1 cos φ + σ2 sin φ = σ1 cos φ - iσ3σ1 sin φ

⇒ σ
_
1 = (cos φ - iσ3 sin φ)σ1, (138)

or

σ
_
1 = σ1(cos φ + iσ3 sin φ). (139)

You will show in a problem that

   eiλσ3 = cos λ + iσ3 sin λ, (140)

where "λ" is just a real number.  In fact, more generally, one

can show that

  
 e
iλ(

∧
n⋅ σ )

 = cos λ + i(∧n⋅ σ)sin λ.                 (141).

where n̂ ⋅ σ
→
 = n1σ1 + n2σ2 + n3σ3 and n̂ is a unit spatial vector (n̂

2

= 1).  Using (140) or (141) with n̂ = ê3, we can write (138) and

(139) above as

 σ
_
1 = e

-iφσ3 σ1 (142)

or

σ
_
1 = σ1e

iφσ3 . (143)
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[There are many ways of seeing the equality of (142) and (143).

Since σ1 and σ3 anticommute, we have for example

σ3σ1 = σ1(-σ3)

and

σ
2
3σ1 = σ1(-σ3)

2.

Generalizing from these examples, it is easy to see that

f(σ3)σ1 = σ1f(-σ3)

for f(σ3) any power series function of σ3.] We now wish to prove

that

eiλσ3 eiλ'σ3 = ei(λ + λ')σ3. (144)

We can rewrite

eiλσ3 = cos λ + iσ3 sin λ,

⇒ eiλσ3 = cos λ(|+| + |-|) + i(|+| - |-|)sin λ,

⇒ eiλσ3 = |+|eiλ + |-|e-iλ (145)

Using (145), we now have

eiλσ3 eiλ'σ3 = (|+|eiλ + |-|e-iλ) (|+|eiλ' + |-|e-iλ')

          = |+|ei(λ + λ') + |-|e-i(λ + λ') = ei(λ + λ')σ3,

which proves (144) above. Therefore, we can write from (142)

for example

    = σ1e
iφ/2 σ3

    

  σ
_
1 = e

-iφ σ3 σ1 = e
-iφ/2 σ3 e-iφ/2 σ3 σ1 = e

-iφ/2 σ3 σ1e
iφ/2 σ3 (146)

Eqn(143) leads to the same conclusion. Now, if we call

U = eiφ/2 σ3, then U-1 = e-iφ/2 σ3  since
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e-iφ/2 σ3 eiφ/2 σ3 = ei(φ/2 - φ/2)σ3 = e0 = 1

by (144) above.  Then, we may write

σ
_
1 = U

-1σ1U. (147)

σ
_
2 and σ

_
3 above can also be written as in (147):

  U-1σ2U = e
-iφ/2 σ3 σ2e

iφ/2 σ3 = σ2e
iφ σ3

   = σ2(cos φ + iσ3 sin φ) = σ2 cos φ - iσ1 sin φ

   = σ
_
2,

  U-1σ3U = σ
_
3.  (trivial)

Thus we have (Si = 
h

2 σi)

S
_

i = U
-1SiU. (148)

These forms shed a new light on why the algebraic

properties of the σi are preserved under a rotation.  Taking a

particular example

σ1σ2 = iσ3,

we can write this as

U-1σ1UU
-1σ2U = iU

-1σ3U

or therefore

σ
_
1σ
_
2 = iσ

_
3,

and the algebra has been preserved.  The entire content of the

algebra of the σi can be summarized as

σiσj = 1δij + i∑
k

 εijkσk (149)

where the permutation symbol εijk has been introduced.  It is

defined as
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   εijk = 
 

 0, if any index is equal to any other index
+1, if i,j,k form an even permutation of 1,2,3
-1, if i,j,k form an odd permutation of 1,2,3.

  (150)

Eqn(149) is, of course, true for the σ
_
i also.

Let's take another example of a rotation, as given in the

figure below (rotation in the 1,3 plane).

3

3
-

2

1
_1

v≥θ

Again, the angle θ  shown above is positive by our conventions.

The components of the new σ
_
i operators are clearly

 

σ

_
1 = σ1 cos θ - σ3 sin θ

σ
_
2 = σ2

σ
_
3 = σ3 cos θ + σ1 sin θ  

(151)

Now let's try to produce the same σ
_
i with the following

guess for U:

U = eiθ/2 σ2 . (152)

We find

U-1σ1U = e
-iθ/2σ 2σ1 e

iθ/2 σ2 = σ1e
iθσ2

 = σ1(cos θ + iσ2 sin θ) = σ1 cos θ - σ3 sin θ

      = σ
_
1
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Likewise,

   U-1σ2U = σ
_
2 (trivial)

   U-1σ3U = e
-iθ/2σ2 σ3e

iθ/2σ2 = σ3e
iθσ2

    = σ3(cos θ + iσ2 sin θ) = σ3 cos θ + σ1 sin θ

          = σ
_
3.

Summing up, we have found that:

U = eiφ/2 σ3 describes a rotation by φ about the 3-axis.

U = eiθ/2 σ2 describes a rotation by θ about the 2-axis.

Using these operators, we can now describe the more

general rotation shown below.

3
3
-

2

1
_

1

θ

φ

_
2

We can generate the new (barred) axes from the old ones by

performing the following two steps.

1.  Rotate by θ about the 2-axis

2.  Rotate by φ about the 3-axis

Of course, this specification of how to get the

orientation of the new axes from the old is not unique.  What

is the U that describes this transformation?
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At the end of the first step, we have for the spin

components Si,

e-iθ/2 σ2 Sie
iθ/2 σ2 .

At the end of the second step then

S
_

i = e
-iφ/2 σ3(e-iθ/2 σ2 Sie

iθ/2 σ2)eiφ/2 σ3.

By comparison with the usual form S
_

i = U
-1SiU, we then find

that

 

U = eiθ/2 σ2 eiφ/2 σ3

U-1 = e-iφ/2 σ3 e-iθ/2 σ2 
(153)

describes this more general rotation.  Notice in (153) that the

individual exponential factors appear not only with extra minus

signs, but also show up in the opposite order.  This is really

not so mysterious since if

U = U1U2

then

    (U1U2)(U1U2)
-1 = 1

⇒ U2(U1U2)
-1 = U

-1
1

⇒ U-1 = (U1U2)
-1 = U

-1
2 U

-1
1

assuming U1 and U2 both possess inverses. Because of the

noncommutative algebra, this is not the same as U
-1
1 U

-1
2 .

Using the U-transformation, we have alternate but

equivalent sets of measurement symbols in the two frames of

reference which are connected by a rotation. In the "old"

description we have the symbols:

|a'a"|.

In the "new" description, we have the symbols:
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| a'a" |.

The connection is

| a'a" | = U-1|a'a"|U. (154)

Notice that "completeness" is preserved:

 ∑
a'
|a'a'| = U

-1

(∑a' |a'a'|) U = U
-1
U = 1.

The new symbols will allow a more complete description of our

original S-G two magnet setup.  In particular, they will allow

us to describe the situation where the two magnets have a

relative rotational angle.  For example we will model the real

space setup

  

magnet 2

magnet 1

z-axis

S  =
2

h
z

S  =
2
h

z

_
relative θÅ

where magnet 1 is rotated an angle θ with respect to magnet 2,

with the Process Diagram:

+
+

|+| ⋅ |+|
_

The first measurement symbol, |+
_
|, selects spin "up" along

the z
_
-axis.  The resultant beam is then operated on by the

second symbol, |+|, in which a further splitting of the beam,
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suggestive of what happens in magnet 2 of the real space setup

above, takes place.  Notice in the above that although both

measurements select spin "up", the z-axes of the two

descriptions are different.  This is suggested in the Process

Diagram by barring the first |+
_
| selection apparatus.

We still need to know how to calculate probabilities based

on the above ideas.  First, we have a vital realization to

make.  Consider the transition-type measurement device.

a' a.b.
a'a"

The realization that we need to make at this point is that

the above can be viewed as a two-step process.  This is

symbolized by a division of the measurement symbol for the

above into two parts, destruction and creation:

|a' a"|

creation part destruction part

Viewing these as independent acts we will then write (even

when a' = a")

|a'a"| = |a'> < a"|. (155)

We will call

 

|a'>: a "bra"

< a"|: a "ket"  together they make a "bra-ket".

"Completeness" now appears as
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∑
i

|ai > < ai| = 1. (156)

The algebraic condition (96) above (|a'||a"| = δa'a"|a'|)

now becomes

|a'> < a'|a" > < a"| = δa'a"|a' > < a'|. (157)

Notice, in writing (157) we have shortened < a'||a"> into

< a'|a" >. Now because (157) is true for any |a' > < a"|

combination, we must have that

< a'|a" > = δa'a". (158)

Eqn(158) is called "orthonormality."  Thus we learn that

the bra-ket combinations < a'|a" > (called the "inner product")

are just ordinary numbers.  The connection (154) now says

|a
_
' > < a

_
"| = U-1|a' > < a"|U (159)

We separate the independent pieces:

|a
_
' > = U-1|a' >, (160)

< a
_
"| = < a"|U. (161)

Using (160) and (161), we easily see then that

< a
_
'| a
_
"> = < a'|UU-1|a" > = < a'|a" > = δa'a" . (162)

That is, orthonormality is true in the rotated system

also.  Without making a distinction between bras and kets, I
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will often refer to a particular member |a' > or < a'| as a

state.  Also without the same distinction, I will call all

possible states of a system in a particular description a

basis.  The collections {|a' >} and {| a
_
'>} represent different

bases, connected however by a U-transformation.

We are now ready to model our S-G probabilities.  We model

the general situation (we are not necessarily selecting spin

"up" as my inadequate drawing indicates)

magnet 2
magnet 1

S  =
2
h

3

relative ¥Å
±

_

2

h
S  =3 ±

z-axis

with

⋅

σ"
3 σ'3

σ"
3|   ><   |σ"

3

_
σ'3|   ><   |σ'3

_

We have performed the separation (155) on the measurement

symbols.  We can now see that this last diagram is equivalent

to (the physical outcomes are given by S3
' = 

h

2 σ3
', σ3

' = ±1)

σ"
3 σ'3

σ"
3

_
σ'3|   ><   |σ"3 σ'3A(  ,  ) .
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What we have drawn here is a hybrid sort of object that

destroys particles with physical property σ3
' in the barred

basis, transforming them into particles with physical property

σ3
" in the unbarred basis. In addition, a modulation on the

selected beam has been performed.  This happens in general

because of the action of the second magnet in the beam produces

a further selection and thus a loss of some particles.  From

the equivalence of the above last two Process Diagrams, we find

that

|σ3
" > < σ3

"| σ3
' > < σ3

' | = A(σ3
",σ3

')|σ3
"> < σ3

' |,

so

A(σ3
",σ3

') = < σ3
"| σ3

' >. (163)

When the relative angle θ = 0, it is easy to figure out

what the value of A(σ3
",σ3

') is.  Then the barred and unbarred

bases coincide and we have

 A(σ
3
",σ

3
')θ=0 = δσ3'σ3"

(164),

i.e., either 0 or 1.  This suggests in the general case that

the modulus (magnitude) of A(σ3
",σ3

') lies between these two

values.  However, as we will see explicitly later, A(σ3
",σ3

') is

in general a complex number.  Therefore it is not directly

interpretable as a probability.  Now A(σ3
",σ3

') is just a

transition amplitude for finding a particle with physical

outcome σ3
" in one basis given a particle with the property σ3

'

in a different, physically rotated, basis.  If we say that

probabilities are like intensities, not amplitudes, one might
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guess from an analogy with the relation between intensity and

amplitude of waves that

P(σ3
",σ3

') =? (A(σ3
",σ3

'))2,

where P(σ3
",σ3

') is the associated probability for this

transition.  However, because A(σ3
",σ3

') is not real this

relation does not yield a real number in general. The next

simplest guess is that

P(σ3
",σ3

') = |A(σ3
",σ3

')|2 (165)

where |⋅⋅⋅| denotes an absolute value.  We will now explicitly

calculate A(σ3
",σ3

') using the mathematical machinery we have

developed to show that (165) gives the correct observed

probabilities given in (66).

Let us recall the geometrical situation:

3

3
-

2

1

θ

φ

final axis)(

(initial axis)

 

This situation was studied before where we found that

U = eiθ/2 σ2 eiφ/2 σ3        (166)

describes the transformation between the barred and unbarred

frames.  Although in the situation shown an angle φ is
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necessary to describe the general relationship of the 3 and 3
_

axes, we expect from our experimentally observed results, (66),

that our answers for the various probabilities will actually be

independent of φ. Let us see if this is so.

Using (160) in (163) gives

A(σ3
",σ3

') = <σ3
"|U-1|σ3

'>. (167)

[ Eqn(167) allows a more elegant interpretation of A(σ3
",σ3

') in

terms of Process Diagrams, but one which is more unlike the

real S-G setup.  Instead of the earlier measurement involving

the |σ3
"> <σ3

"| and | σ3
' > < σ3

' | symbols, we can also deduce

A(σ3
",σ3

') from the diagrammatic equation

  

σ"
3

σ'3

σ"3 σ'3A(  ,  )

σ"
3

=

σ"
3 σ'3|      | σ"

3|  | σ'3|  |U-1

That is, instead of rotating the magnets, we can think of the

U-1 above rotating the beam.]

To begin our evaluations, let's choose σ3
' = σ3

" = +.  Then

A(+,+) = <+|e-iφ/2 σ3 e-iθ/2 σ2 |+>. (168)

Some reminders:

σ1 = |- > < +| + |+ > < -|,

σ2 = i(|- > < +| - |+ > < -|),

σ3 = |+ > < +| - |- > < -|.
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Therefore from orthonormality

σ1|+ >  = |- > ,  σ1|- > = |+ > ,

σ2|+ >  = i|- > , σ2|- > = -i|+ > ,

σ3|+ >  = |+ > ,  σ3|- > = -|- > .

(168) now becomes

A(+,+) = < +|e-iφ/2(cos 
θ
2 - iσ2 sin 

θ
2 |+)

       = e-iφ/2 < +| ⋅ (|+ > cos 
θ
2 + |- > sin 

θ
2 )

       = e-iφ/2 cos 
θ
2 . (169)

Thus we get the correct result:

p(+,+) = |A(+,+)|2 =  cos2 
θ
2 .

Likewise, you will show in a problem that

A(+,-) = -e-iφ/2 sin 
θ
2 , (170)

A(-,+) =  eiφ/2  sin 
θ
2 , (171)

A(-,-) =  eiφ/2  cos 
θ
2 , (172)

which also give correct probabilities.

We have now found the explicit connection between the

Process Diagrams and the real-space experimental setup:

Drawing the Process Diagram of some experimental

measurement identifies the transition amplitude of that

process; the corresponding probability is the absolute

square of the amplitude.
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We know that this works now for the two-magnet S-G setup;

let's test this out on a three-magnet experiment.  It will

yield a valuable lesson.  Consider the setup (set φ = φ'=0 for

simplicity):

magnet 2

magnet 1

+

θÅ '

Å θ

+

+
magnet 3

z-axis

The Process Diagram is

|+|
__

+
+

+

|+| |+|
_

⋅ ⋅

The transition amplitude is identified from

|+|⋅|+
_
|⋅|+=| = |+ > < +|+

_
 > < +

_
|+= > < +=|,

as

A = < +|+
_

 > < +
_
|+= >.

The probability is then

P1 = |A|
2 = |< +|+

_
 >|2| < +

_
|+= >|2 = cos2 

θ
2 cos

2 
θ'
2 ,

where we have used (169), with a proper understanding of the

role of the angles θ and θ'.  What would we have gotten if we

had chosen spin "down" from the second magnet?  The appropriate

diagram is:
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+
- +

|+| |-|
_

|+|
__

⋅ ⋅

The transition amplitude from

|+|⋅|-
_
|⋅|+=|,

is

A = < +|-
_

 > < -
_
|+= >.

The probability is then

P2 = |A|
2 = |< +|-

_
 >|2| < -

_
|+= >|2 = sin2 

θ
2 sin

2 
θ'
2 .

Given both choices of the intermediate magnet, the

probability that final "up" is selected, given the selection

"up" from magnet 1, is

  P = P1 + P2 = cos
2 

θ
2 cos

2 
θ'
2  + sin2 

θ
2 sin

2 
θ'
2 . (173)

Now let's remove the second magnet entirely, without

changing the orientation of magnets one and three.  We know the

probability for

+
+

|+| |+|
__

⋅

is just

P' = | < +|+= >|2 = cos2  


 
θ + θ'

2 . (174)

We get a useful alternate view of the latter probability

by inserting completeness (in the single-barred basis),
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1 = |+
_
| + |-

_
| = |+

_
 > < +

_
| + |-

_
 > < -

_
|,

as follows:

P' = |< +
_
|1|+= >|2 = |< +|+

_
 > < +

_
|+= > + < +|-

_
 > < -

_
|+= >|2.

Using (169), (170) and (171) here then yields

P' = |cos 
θ
2 cos 

θ'
2  - sin 

θ
2 sin 

θ'
2 |2. (175)

Mathematically, this is the same as (174) of course.  Comparing

(175) to (173) we see a strong similarity.  Eqn(173) represents

the sum of two probabilities whereas (182) arises from the sum

of two amplitudes. We say that the two amplitudes that make up

(173) add incoherently while the amplitudes in (175) add

coherently. Using this terminology, we state an important

quantum mechanical principle that is being seen here as an

example.  That is:

( )Destinguishable
Indestinguishable  processes add ( )incoherently

coherently .

Thus, there is a difference in the final outcome whether

the second magnets are present or not.  The act of observing

whether an individual particle has spin "up" or "down" in an

intermediate stage has altered the experimental outcome.

Although the above principle has been stated in the context of

the behavior of spin, it is actually a completely general

quantum mechanics rule.  A paraphrase of the above could be:

The fundamental quantum mechanical objects are amplitudes, not

probabilities.
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We can now recover and get an interpretation of some of

our previous results. Let us consider the situation of the two

magnet S-G setup described from an arbitrary orientation.
z

2

1

'

'θ

φ

φ

e1
^

2êΘ

θ

(We already saw the above figure on p. 1.30; ê1 represents the

initial z
_
-axis and ê2 represents the final z

=-axis.)  The spin

basis in the single-barred frame we take to be {|σ
_
3
' >} and in

the double-barred frame we use {|σ=3
' >}.  Then, from the Process

Diagram we identify the transition probability,

p(σ3
",σ3

') = |<σ=3
"|σ

_
3
' >|2, (176)

where σ3
',σ3

" = ± 1 independently as usual.  We are referring

both S-G's to a third, independent axis.  This is accomplished

by writing

p(σ3
",σ3

') = |<σ=3
"| 1 |σ

_
3
' >|2, (177)

with
∑
ß3

 |σ
3
><σ

3
| = 1, (178)

where the basis {|σ3 >} refers to the unbarred frame.  Therefore
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 p(σ
3
",σ

3
') = |∑

σ
3

 < σ=
 

3
"|σ

3
 > < σ

3
|σ-  

3
' >|

2
(179)

We have already calculated the following:

<+|+
_

 > =  e-iφ/2 cos 
θ
2 ,

<+|-
_

 > = -e-iφ/2 sin 
θ
2 ,

<-|+
_

 > =  eiφ/2 sin 
θ
2 ,

<-|-
_

 > =  eiφ/2 cos 
θ
2 .

The new objects we need to calculate are the

<σ=3
"|σ3 > = < σ3

"|U|σ3 >, (180)

with the same U as on p.1.68 with θ,φ → θ',φ'.  Using this

form, in the same way as before we find

<+=|+ > =  eiφ'/2  cos 
θ'
2  , (181)

<+=|- > =  e-iφ'/2 sin 
θ'
2  , (182)

<-=|+ > = -eiφ'/2 sin 
θ'
2  , (183)

<-=|- > =  e-iφ'/2 cos 
θ'
2  . (184)

Let's examine the structure of p(+,+):

p(+,+) = |<+=|+ > <+|+
_

 > + <+=|- >  <-|+
_

 >|2

       = |(eiφ'/2 cos 
θ'
2  )(e-iφ/2 cos 

θ
2 )

         + (e-iφ'/2 sin 
θ'
2  )(eiφ/2 sin 

θ
2 )|

2
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 = 

 


(e

-iφ'/2
 cos 

2
θ',e

iφ'/2
 sin 

2
θ')* 

 



e
-iφ/2

 cos 
2
θ

e
iφ/2

 sin 
2
θ

 



 



2

  = |ψ+(θ',φ')
+ ψ+(θ,φ)|

2, (185)

where we have used the previous matrix definition of ψ+(θ,φ),

equation (80).  Likewise, we may write

p(-,+) = |<-=|+ > <+|+
_

 > + <-=|- >  <-|+
_

 >|2

  = |(-eiφ'/2 sin 
θ'
2  )(e-iφ/2 cos 

θ'
2  )

      + (e-iφ'/2 cos 
θ'
2  )(eiφ/2 sin 

θ
2 )|

2

  

 = 

 


(-e

-iφ'/2
 sin 

2
θ' e

iφ'/2
 cos 

2
θ')∗ 

 



e
iφ/2

 cos 
2
θ

e
iφ/2

 sin 
2
θ

 



 



2

,

  = |ψ-(θ',φ')
+ ψ+(θ,φ)|

2, (186)

where we have now used the definition of the matrix ψ-(θ,φ),

equation (81).  Equations (185) and (186) are the exact same as

the forms for p(+,+) and p(-,+) found in (82) and (83).  We

make several realizations from our recovery of the previous

results.  First, we notice that when θ' = θ and φ' = φ (then,

the distinction between the |σ=3
' >} and {|σ

_
3
' >} states

disappears), we have from (169) - (172) (listed again above

(180)) and (181) - (184) that

< σ
_
3
' |σ3 >∗ = < σ3 |σ

_
3
' > (187)
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for any value of σ3 ,σ3
'.  Notice that (187) is consistent with

(41) and so conserves probabilities. Equation (187) suggests

that the act of complex conjugation, or actually some extension

of its usual meaning, interchanges bras and kets.  Let's define

an operator "+" that does this.  In general for any bra or ket,

(< a'|)+ – |a' >, (188)

(|a' >)+ – < a'|. (189)

We require that the "+" operation not change the character of

the mathematical object it acts on.  That is, it reduces to

complex conjugation when acting on a number, but when acting on

an operator just gives another operator.  (It does not change

an operator into a number or vice versa.)  What's more, we

assume this operation is completely distributive.

Let's test out the effect of "+", which we will call

Hermitian conjugation (or "Hermitian adjoint" or just

"adjoint") on the operators σ1,2,3:

σ
+
3 = [|+ > < +| - |- > < -|]+ = σ3 (190)

σ
+
2 = [i|- > < +| - i|+ > < -|]+ = σ2 (191)

σ
+
1 = [|- > < +| + |+ > < -|]+ = σ1 (192)

Operators that satisfy A+ = A are said to be Hermitian or

self-conjugate.  Such operators are of fundamental importance

in quantum mechanics; we will discuss the reason for this later

in this Chapter.  Notice now that we have two operations

designated as "+".  The first time we used this symbol, it was
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in a matrix context, and it meant "complex conjugation +

transpose."  (See p.1.34).  In the present context of Dirac

bra-ket notation it now means "complex conjugation + bra-ket

interchange."  Mathematically, it would be better to introduce

a distinction between these two uses of the same symbol.  In

practice, however, physicists let the context tell them which

usage is appropriate.  We will follow this point of view here.

That there is a connection between these sets of mathematical

operations will be evident in a moment.

Let us be crystal clear about what we have done in

introducing "+" in this context.  Because the quantity < σ
_
3
' |σ3 >

is just a (complex) number, we have the trivial statement that

< σ
_
3
' |σ3 >+ = < σ

_
3
' |σ3 >∗ (193)

On the other hand, using (188) and (189) gives

< σ
_
3
' |σ3 >+ = < σ3|σ

_
3
' >. (194)

Comparing (193) and (194) gives (187).  Thus, the existence of

an operation which interchanges bras and kets, but which

reduces to ordinary complex conjugation when applied to complex

numbers, renders (187) an identity.  We will assume the

existence of such an operation.

The existence of the Hermitian conjugation operation has

another important consequence.  From the left hand side of

(194) we must have

< σ
_
3
' |σ3 >+ = < σ3

'|U|σ3 >+ = < σ3|U
+|σ3

'>, (195)
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whereas the equality stated there demands this is the same as

 < σ3 |σ
_
3
' > = < σ3|U

-1|σ3
'>. (196)

Comparing the right hand sides of (195) and (196), for any

states < σ3|,|σ3
'>, demands that

U-1 = U+ (197)

Such an operator as in (197) is called unitary.  We now

ask the question:  Are the U-transformation operators we have

written down so far unitary?  Let us concentrate on the

transformation (166) (on p.1.68).  First, we derive an

important rule for Hermitian conjugation.  We have by

definition

(< a'|U1U2)
+ = (U1U2)

+|a'>. (198)

However, we may also write

(< a'|U1U2)
+ = (< a

_
'|U2)

+ = U+2| a
_
'>, (199)

where

| a
_
'> = (<  a

_
'|)+ = (< a'|U1)

+ = U+1| a
_
'>. (200)

Substituting (200) in (199) gives

(< a'|U1U2)
+ = U+2U

+
1| a

_
'>. (201)

Then comparing (198) and (201) for any |a'> then tells us that

(U1U2)
+ = U+2U

+
1. (202)

Although the rule (202) has been stated for unitary

operators, it is in fact true of any product of operators.

Now applying (202) to equation (166) gives
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U+ = (eiθ/2 σ2 eiφ/2 σ3)+ = (eiφ/2 σ3)+(eiθ/2 σ2)+. (203)

Remembering that (equation (141))

 e
iλ(

∧
n  ⋅ σ≥)

 = cos λ + i(∧n  ⋅ σ≥)sin λ,

and from (190) - (192) above, we then have

U+ = (eiφ/2 σ3)+(eiθ/2 σ2)+ = e-iφ/2 σ3 e-iθ/2 σ2. (204)

The last form on the right is identically U-1, so we have

shown that this U is unitary.  We will have a lot more to say

about unitary operators as we go along.

Generalizing (185) and (186), we have

p(σ3
",σ3

') = |ψσ3"
(θ',φ')+ ψσ3'

(θ,φ)|2, (205)

which is identical to (84) above if we change the names a', a"

to σ3
',σ3

".  We called the ψσ3
(θ,φ) "wavefunctions."  Another

realization we make comes from comparing (205) with the earlier

expression (179), written in the form

 

 p(σ
3
",σ

3
') = |∑

σ
3

 <  σ
=  
3
"|σ

3
 >  < σ

3
|σ-  

3
' >|

2
(206)∗ ,

which now reveals explicitly that

[ ]ψσ3'
(θ,φ)

σ3
 = < σ3 |σ

_
3
' >, (207)

where the  σ3  on the left hand side of this equation is being

viewed as the row index of ψσ3'
(θ,φ).  Thus the components of

ψσ3'
(θ,φ) are revealed as just the transition amplitudes in

equation (163) above.  This gives us a concrete interpretation

of the wavefunction, for which we use the following figure:
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3

3
-

2

1

θ

φ

    



    

[ ]ψψψψσσσσ3 '(θθθθ,φφφφ) σσσσ3

 is the transition amplitude for spin 
1
2

 selected along the 3- axis (σσσσ3
' = ±1) having component

 σσσσ3 = ±1 along the 3-axis.

Explicitly again

ψ+(θ,φ) = 
 




 


< +|+

_
>

< -|+
_

>

 = 

 



 

e-iφ/2 cos 

θ
2 

eiφ/2  sin 
θ
2

 , (208)

ψ-(θ,φ) = 
 




 


< +|-

_
>

< -|-
_

>

 = 

 



 

-e-iφ/2 sin 

θ
2

 eiφ/2  cos 
θ
2

 . (209)

The fact that the wavefunctions above can be displayed as

column matrices suggests that the rest of the algebra we have

introduced involving the spin operators σ1,2,3 can also be viewed

as matrix manipulations.  Indeed this is so, and we will

discuss how this can be done for spin 
1
2 below, deferring a

more general discussion until we come to Chapter 4.  The

basic idea is as follows.  Instead of using the spin 
1
2

Hilbert-space operators σ1,2,3, we may instead use matrix
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representations of them.  Given a spin basis {|σ3
' >} and an

operator A, one may produce a two-indexed object Aσ3'σ3"
 as in

Aσ3  'σ3  "
 = < σ3

'|A| σ3
" > (210)

If we now interpret σ3
'  as the row index and σ3

"  as the

column index, we may regard this object as a matrix.

Explicitly, for σ1,2,3 we find

 σ
1
 = |- > < +| + |+ > < -| ⇒ σ

1
 = 

+
 
-
 

 



0  1

1  0

 


 

+  - σ
3
'/σ

3
"

 σ
2
 = i|- > < +| - i|+ > < -| ⇒ σ

2
 = 

+
 
-
 

 



0  -i

i   0

 


 

+  - σ
3
'/σ

3
"

 σ
3
 = |+ > < +| - |- > < -| ⇒ σ

3
 = 

+
 
-
 

 



1  0

0  -1

 



 

+ - σ
3
'/σ

3
"

Notice that I have not attempted to assign a different

symbol to the σ's when they are regarded as matrices, although

to be mathematically clear we probably should.  This again is

the common usage; the context will tell us what is meant.  The

σ1,2,3 matrices above are called the Pauli matrices.

Using our matrix language now, let us verify some of the

prior algebraic statements involving the σ's.  First, let us

notice that (208) and (209) become, when θ = φ = 0,

Ψ+(0,0) = ( )10 ,   Ψ-(0,0) = ( )01 . (211)
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We usually call ( )10  "spin up" and ( )01  "spin down."  Then in

terms of this matrix language, let us write a few examples of

how the matrix algebra works.

  Operator statement Matrix realization

< +|σ1 = < -| (1  0)( )0  1
1  0  = (0  1)

< -|σ1 = < +| (0  1)( )0  1
1  0  = (1  0)

< +|σ2 = -i < -| (1  0)( )0  -i
i   0  = (0  -i)

< -|σ2 = i < +| (0  1)( )0  -i
i   0  = (i  0)

σ1|+ > = |- >           ( )0  1
1  0 ( )10  = ( )01

σ1|- > = |+ >           ( )0  1
1  0 ( )01  = ( )10

σ2|+ > = i|- >           ( )0  -i
i   0 ( )10  = ( )0i

σ2|- > = -i|+ >           ( )0  -i
i   0 ( )01  = ( )-i

 0

One may also easily check that the algebraic properties of

the σi stated in (149) above also hold for the Pauli matrices.

Although there is an ambiguity in our notation now whether when

we write σ3, say, we mean the matrix representation or the more

abstract operator quantity, let us be clear about the

difference of the two in our minds.  The more fundamental of

the two is the Hilbert space operator quantity.  The matrix

representation is just a realization of the basic operator

quantity in a particular basis.  By changing to a rotated basis
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{|σ
_
3
' >} we could in fact change the representation, although the

basic underlying operator structure has not changed.  The

relationship between operator and representation is summed up

very picturesquely in a footnote on p.20 of J.J. Sakurai's

Advanced Quantum Mechanics:  "The operator is different from a

representation of the operator just as the actress is different

from a poster of the actress."  The fact that there are two

languages of spin, operator and matrix, explains why the same

symbol "+" was introduced in two apparently different contexts.

In a matrix context, if you remember, it meant:  "complex

conjugation + transpose."  In an operator context it meant:

"complex conjugation + bra-ket interchange."  For example, we

can now verify the statements (190) - (192) using the first

meaning of "+":

σ3
+  = ( )1   0

0  -1
+
 = ( )1   0

0  -1  = σ3,

σ2
+  = ( )0  -i

i   0
+
 = ( )0  -i

i   0  = σ2,

σ1
+  = ( )0  1

1  0
+
 = ( )0  1

1  0  = σ1.

It should be clear now why I did not introduce a

distinction between the two senses of the adjoint symbol.  It

is because one is carrying out the same basic mathematical

operation, but in different contexts. We will go over this

point again in a later chapter.

While we are on the subject of the matrix language of

spin, let us see if we can recover the ψσ3  '
(θ,φ) wave functions,
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which we have already derived from operator methods, using

instead matrix manipulations.

From (102) above, we know that

A|a'| = a'|a'|.

Since |a'| = |a'> < a'|, and multiplying on the right by |a'>,

gives

A|a'> = a'|a'> (212)

We know that σ3 plays the role of "A" above in the two-

physical-outcome case, which we know now as spin 
1
2 .  Therefore

σ3|σ3
'>  = σ3

' |σ3
' > (213)

The matrix realization of this statement is

σ3 ψσ3'
(0,0) = σ3

' ψσ3'
(0,0) (214)

where σ3 is now a matrix.  Likewise, in a rotated basis, the

analog of (213) is

σ
_
3 |σ

_
3
' > = σ3

' |σ
_
3
' >. (215)

There are of course only two values allowed for σ3
' above

(σ3
' = ±1 as usual), but σ

_
3 is the rotated version of σ3.  We

already know how to compute σ
_
3.  It is given by

 σ
_
3 = U

-1σ3U (216)

with

U = eiθ/2 σ2 eiφ/2 σ3. (217)

(You will carry out the above evaluation of σ
_
3 in a problem.)

Another, easier, way of deriving this quantity is simply to
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project out the component along the new 3
_
 axis.  With the help

of the unit vector

n̂ = (sin θ cos φ, sin θ sin φ, cos θ) (218)

pointing in the direction given by the spherical coordinate

angles θ and φ, we find σ
_
3 as

    σ
_
3 = σ

≥  ⋅ n̂ = σ1 sin θ cos φ + σ2 sin θ sin φ + σ3 cos θ.(219)

We therefore have

   σ
_
3 = sin θ cos φ( )0  1

1  0  + sin θ sin φ( )0  -i
i   0  + cos θ( )1   0

0  -1

⇒ σ
_
3 = 

 



 

cos θ     e-iφ sin θ

eiφ sin θ  -cos θ
 .  (220)

The matrix realization of (215) is then

 



 

cos θ     e-iφ sin θ

eiφ sin θ  -cos θ
 

 



 

ψσ3'

(+)

ψσ3  '
(-)

 = σ3
' 

 



 

ψσ3  '

(+)

ψσ3  '
(-)

 ,  (221)

where we are calling the upper and lower matrix components of

ψσ3  '
(θ,φ) as ψσ3  '

(+) and ψσ3  '
(-).  Eqn(221) represents two equations

in two unknowns.  Written out explicitly, we have

cos θ ψσ3  '
(+) + e-iφ sin θ ψσ3  '

(-) = σ3
' ψσ3  '

(+), (222)

eiφ sin θ ψσ3  '
(+) - cos θ ψσ3  '

(-) = σ3
' ψσ3  '

(-), (223)

or

(cos θ - σ3
')ψσ3  '

(+) + e-iφ sin θ ψσ3  '
(-) = 0, (224)
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eiφ sin θ ψσ3  '
(+) - (cos θ + σ3

')ψσ3  '
(-) = 0. (225)

We know from the theory of linear equations that for the above

two (homogeneous) equations to have a nontrivial solution, we

must have that the determinant of the coefficients is zero.

Therefore:

-(cos θ - σ3
')(cos θ + σ3

') - sin2 θ = 0

⇒  σ3
' 2 - cos2 θ - sin2 θ = 0

⇒ σ3
' 2 = 1. (226)

We have recovered the known result that σ3
'  = ±1 only.  Let's

look at the σ3
'  = 1 case now.  Eqn (224) now gives

-2 sin2 
θ
2 ψ+(+) + 2 sin 

θ
2 cos 

θ
2 e

-iφψ+(-) = 0

⇒ 
ψ+(+)

ψ+(-)
 = e-iφ 

cos 
θ
2

sin 
θ
2

. (227)

All that is determined is the ratio ψ+(+)/ψ+(-). (Eq
n(225) gives

the same result.)  Therefore, a solution is

ψ+(+) = A e
-iφ/2 cos 

θ
2, (228)

ψ+(-) = A e
iφ/2   sin 

θ
2, (229)

where "A" is a common factor.  It is not completely arbitrary

because these transition amplitudes give probabilities that

must add to one:

|ψ+(+)|
2 + |ψ+(-)|

2 = 1 (230)
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A statement like (230) is called normalization.  Eqn (230)

shows that we must have |A|2 = 1.  However, A is still not

completely determined because we can still write A = eiα with α

some undetermined phase.  Such an overall phase has no effect

on probabilities however, since probabilities are the absolute

square of amplitudes.  The operator analog of the normalization

condition (230) is just the statement

< +
_
|+
_

 > = 1. (231)

(Compare (231) with equation (162) above).  Question:  can you

derive (230) from (231)?  [Hint:  use completeness.]

So, outside of an arbitrary phase, we have recovered the

result (215) for ψ+(θ,φ) which we previously derived using

operator techniques.  Similarly, we can recover the result

(209) for ψ-(θ,φ) if we choose to look at either (224) or (225)

for σ3
'  = -1.

I would like to return now to our spin mesurements that

we began this Chapter with to see how they now look in our

emerging formalism.  We found that the average value of an

electron's magnetic moment along the z-axis, given an initial

selection along the +z
-
-axis was

<µz>+ = -µ(p(+,+) - p(-,+)). (232)

We saw that <µz>+ was obtained as the weighted sum of physical

outcomes.  In our new language of operators (remember

µz = γS3), consider the quantity (we have inserted

completeness twice):
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<+|µz|+> = γ ∑
σ

3
', σ

3
''= ± 1

<+|σ
3
'><σ

3
'|S

3
|σ

3
''><σ

3
''|+ >. (233)

But

    

<σ
3
'|S

3
|σ

3
''> = <σ

3
'|
h

2
 σ

3
|σ
3
''> = h

2
 δ

σ
3
'σ

3
''
σ
3
', (234)

so

   

< +| µz|+ >  = 
γh
2

 ∑
σ

3
'
 σ

3
'<  + |σ

3
' >< σ

3
' | + > 

=  
γh
2

 ∑
σ

3
'
 σ

3
'|<  σ

3
' | + >|

2
 . (235)

This gives

< +
_
|µz|+

_
 > = 

γh
2  (p(+,+) - p(-,+)). (236)

Since µ = - 
γh
2  for the electron, we learn that

< µz >+ = < +
_
|µz|+

_
 >. (237)

This is in a spin context.  In more generality, we say that

the expectation value of the operator A in the state |ψ > is

< A >ψ ≡ < ψ|A|ψ>. (238)

If A = A+, then expectation values are real:

< A >ψ
∗ = < ψ|A|ψ >∗ = < ψ|A|ψ >+

       = < ψ|A+|ψ> = < A >ψ. (239)
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This is the reason, mentioned on p.1.77, that

Hermiticity of operators is so important.

I have two final points to make before closing this

(already too long) Chapter.  First, you may have noticed that

we have never asked any questions about the results of a S-G

measurement of the original beam of atoms coming directly from

the hot oven.  That is because we have not developed the

necessary formalism to describe such a situation. The formalism

we have developed assumes that any mixture of spin up and down

that we encounter is a coherent mixture, i.e. the beam of

particles is a mixture of the amplitudes of spin up and down.

The furnace beam however is a completely incoherent mixture of

spin up and down, i.e. the probabilities (or intensities) of

the components are adding.  There is a formalism for dealing

with the more general case of incoherent mixtures, but we will

not discuss such situations here.  In fact, our Process

Diagrams are incapable of representing an incoherent beam of

particles.  The "arbitrary beam" entering from the right in

such Diagrams is really not arbitrary at all but only

represents the most general coherent mixture.  Nevertheless, we

have seen the usefulness of these Diagrams in modeling

situations where the behavior of coherent beams is concerned.

If you are interested, you will find a useful discussion of

these matters in Sakurai's book, starting on p.174.  Such

considerations become important in any realistic experimental

situation where one must deal with beams which are only

partially coherent.
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The other point I wish to make concerns the Process

Diagrams.  They are only meant to be a stepping stone in our

efforts to learn the principles of quantum mechanics.  These

principles have a structure of their own and are independent of

our Diagrams, which are an attempt to simply make manifest some

of these principles.  The basic purpose of these Diagrams is to

illustrate the existence of quantum mechanical states with

certain measurable physical characteristics and to make

transparent the means of computing such amplitudes.  You should

now be in possession of a rudimentary intuitive and

mathematical understanding of the simplest of all quantum

mechanical systems, spin 
1
2.  We will now go on to see how the

principles of quantum mechanics apply to other particle and

system characteristics. 
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Problems

1. The total instantaneous power radiated from a

nonrelativistic, accelerated charge is

P  =  
2
3 
e2

c3
 |a
≥
|2  ,

where  a
≥
  is the acceleration and  e  and  c  are the

particle's charge and the speed of light, respectively.

According to this classical result, a hydrogen atom should

collapse in a very short amount of time because of energy

loss. Estimate the time period for the hydrogen atom's

electron to radiate away it's kinetic energy,  E  =  
e2

2a0  .

Take as a crude model of the atom an electron moving in a

circular orbit of radius  a0  =  
h2

me2
  , with a velocity  v2  =

e2

ma0
  . ( These numerical values for  a0  and  v  come from the

simple Bohr model of the hydrogen atom, which we will study

next Chapter.)

2. In the notes, I use the estimate  |µz| ≈ 10-20 erg/gauss

for the magnitude of the  Ag z-component magnetic moment.

Reach a more accurate estimate of this value by looking up

and plugging in values in

|µz| =  
e
mc |Sz|   ,

assuming  |Sz|  =  
h

2. Should one use the  Ag-atom or the

electron mass for  m  ?

3. Think of a gas in thermal equilibrium at a temperature  T,

each atom acting as a tiny magnetic dipole, µ
≥
. Let's not

worry what the source of this field is at present.
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(Classically, magnetic dipole fields arise from current

loops.) Imagine putting such atoms in an external magnetic

field, H
≥
. Of course, without H

≥
, we would expect there to be

no preferred direction and so no net gas magnetic moment.

Let's use Maxwell-Boltzmann statistics to describe the gas:

 



The probability that an atom
has a magnetic moment

between µ
≥
 and µ

≥
 + dµ

≥
.

 = 
dΩe-β(-µ≥.H≥)

 ⌡
⌠
dΩ-β(-µ≥.H≥)

 .

Therefore

< µ
≥
 >T  =  

∫dΩeβµ≥.H≥ µ
≥

∫dΩeβµ≥.H≥
. 

(a) Consider the situation where  |µ
≥.H
≥
| << kT  .

< µ
≥
 >T  = 

∫dΩµ
≥
  



 



1 + 
µ
≥.H
≥

kT 

∫dΩ
 = 

0 + 
1
kT ∫dΩµ

≥
(µ
≥.H
≥
)

4π
 .

Since  H
≥
  is the only direction in the problem, we

hypothesize that

∫dΩµ
≥( )µ

≥.H
≥

 = CH
≥
,

where  "C"  is just some constant. By taking  H
≥
 along the  z-

direction and using  µz = |µ
≥
|cosθ, find the value of  C  and

show that for weak magnetic fields

< µ
≥
 >T  ≈ 

µ
≥2

3kT H
≥
.

This result is called the "Curie law" and was established by

Pierre Curie.  We see that the collection of gas molecules
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has a small net magnetic moment pointed along H
≥
.  Such

behavior is called paramagnetism.

(b) Calculate  <µ
≥
 >T without the weak-field

approximation. [Take the z-axis along  H
≥
, so that  µ

≥.H
≥

= µH cosθ . Then  < µx > = < µy > = 0 , but

< µz >  =  
µ∫dΩ cosθ eβµHcosθ

∫dΩeβµHcosθ
 ,

where  dΩ  is the element of solid angle. Plot

(qualitatively) your result for < µz > as a function of H.

Find the limits,

lim
H§0 

< µz >T  = ?,

lim
H§∞ 

< µz >T  = ?.

and give a physical interpretation of these two limits.

[Hint: The top integral can be done by considering the

derivative of the denominator with respect to  β. The

answer to (b) is

< µz >T  = µ ( coth(µβH) - 
1

µβH
 ).]

4. Define (as in the notes)

< µz >- = average value of µ
≥
 along the z-axis,

given an initial selection of the downward

deflected beam along z'.

Find < µz >- . Does it agree with what you expect?
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5.(a)  The energy of a charge, q, moving with velocity v
≥
 in

an external electromagnetic field is (classically)

E = q Φ - 
q
c v
≥.A
≥
,

where Φ is the scalar potential and A
≥
 is the vector

potential of the electromagnetic field.  The relationship

between A
≥
 and H

≥
 is

H
≥
 = ∇

≥
 × A

≥
.

For a constant H
≥
 field in space, verify that

A
≥
 = 

1
2 H
≥
 × r

≥

is a possible form of the vector potential.  [Hint:  The

vector identity,

∇
≥
 × (a

≥
 × b

≥
) = a

≥
(∇
≥.b
≥
) - b

≥
(∇
≥.a
≥
) + (b

≥.∇
≥
)a
≥
 - (a

≥.∇
≥
)b
≥

may be of use.]

(b)  From the - 
q
c v
≥.A
≥
 term in E, identify a form for µ

≥
.

(c)  A moving charge will execute circular (or helical)

motion in a constant H
≥
 field. Using (b), show that

µ
≥
 = 

q
2mc L

≥
, where L

≥
 is the angular momentum of the particle.

Assuming the plane of the orbit is perpendicular to H
≥
, and

given that F
≥
 = q(E

≥
 + 

v
≥

c × H
≥
) is the force, does µ

≥
 with q > 0

point along H
≥
 or opposite to H

≥
?  (Extra:  Can you think of

a famous law of electromagnetism that explains this

direction?)
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6.  A well known formula of classical electromagnetism

states that (see Jackson, p. 182)

|µ
≥
|  =  

I
c A

where µ
≥
 is the magnetic moment and I (= 

dq
dt where "q" is the

charge) is the current in a circuit of area A.  Evaluate

|µ
≥
| for the classical spinning electron model in the notes

(thin spherical shell model), and show that

|µ
≥
| = - 

1
3 
eωa2

c  = (- 
e
2mc) L,

where (-e) is the electron charge and L = Iω is the

magnitude of the electronic angular momentum. [This gives

the classical gyromagnetic ratio seen in Eqn (43) of the

notes.]

7. Replace the thin-shelled spherical electron model with a

solid spherical ball of charge, throughout which the charge

is uniformly distributed.

    (a)  Find the moment of inertia of this object

(replacing (61)).

    (b)  Show that the relation between |µ
≥
| and L for this

new model is still given by

|µ
≥
|  =  - 

e
2mc L .

[Use the technique in Problem 6 above to compute |µ
≥
|.]
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8. (a)  Show that Eq.(79) of the text is equivalent to the

preceeding equation, (78).

(b)  Evaluate p(-,-) and p(+,-) from (84) in the case θ'=0.

Are the results as expected?

9. Illustrate, using Process Diagrams, the product of

measurement symbols,

 (|a'| + |a''|)|a'''| 

in the cases where

(a) a'= a"+ a"'

(b) a'+ a" = a"'

(c) a'= a" = a"'.

(Consider the case with 4 possible physical outcomes, just

to be concrete.)

10. In the two-physical-property case (a1=1, a2=-1) evaluate

eiλA

as a function of A.  [Hint: Expand eiλA in a power series

and use Eq. (112) in Ch. 1 of the notes, then sum the

resulting infinite series.]

11. In the three-physical-property case [a1=1, a2=0, a3=-1]

find

    (a)  The algebraic equation satisfied by A = Σ
i  

ai |ai|.

    (b)  |+|, |0|, |-| as functions of A.

    (c)  eiλA as a function of A using part (a).

    (d)  Give a Process Diagram interpretation to the

equation found in part (a). (Try to draw this neatly.
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Supplement your diagram with an explanation in words, if

you think this is necessary.)

12. Draw Process Diagrams representing the equations:

    (a)  (|+ -|)2 = 0

    (b)  σ13  = σ1

    (c)  σ1 σ3 = -i σ2

13. Using

 σ1  =  |- +|  +  |+ -|,  σ2  =  i(|- +|  +  |+ -|),

  σ3  =  |+| - |-|,

show

    (a)  σ2 σ3 = iσ1

    (b)  σ3 σ1 = iσ2

14. Using

          σ3 = σ3

          σ2 = -σ1 sin  φ

          σ1 = σ1 cos  φ + σ2 sin φ

    and

          σi2 = 1

          σi σj = iσk  (i, j, k cyclic)

          σi σj = -σj σi  (i =/ j)

    show

    (a)  σ1 σ2 = iσ3

    (b)  σ2 σ3 = iσ1

    (c)  σ3 σ1 = iσ2
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15. Show that

eiφ (n̂.σ≥) = cosφ +  i(n̂.σ
≥
)sinφ

where n̂ is an arbitrary unit vector (n̂2 = 1).  [Hint:  First

show that (n̂.σ
≥
)2 = 1, then expand the exponential in a

power series, remembering problem 10 above.]

16. Show that

1
2 σ
≥
  x  12 σ

≥
  =  

i
2 σ
≥
 .

Remember that (A
≥
 x B

≥
)i = ∑

j,k
 εijk Aj Bk.  [Hint:  It may be

useful to recall that

 ∑
j,k

 εijk εljk = 2δil . ]

17. Finish the equation:

∑
k=1

3

 σk σ
≥
 σk  =  ?

18. Verify the results stated in Eqs. (170), (171), (172)

of the notes.

19. Most general rotation:

U  =  eψ/2σ3  eiθ/2σ2  eiφ/2σ3 .

Components of the wavefunction:

[Ψσ3'
(ψ, θ, φ)]σ3  =  ?
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[The change in Ψ is very trivial compared to our earlier

form for [Ψσ3'
(θ, φ)]σ3.]

20. Verify that

σ−3  =  σ1 sinθ cosφ  +  σ2 sinθ sinφ  +  σ3cosθ

is produced by

σ−3  =  U-1 σ3 U,  U  =  eiθ/2σ2 eiφ/2σ3

[Hints:  Simply use the algebraic properties of the σ's,

write the exponentials in their factorial forms (e.g.,

eiφ/2σ3 = cos 
φ
2 + i σ3 sin 

φ
2 ) and do the algebra.]

21.  Just as the two physical outcome case (a1 = 1, a2 = -1)

can be used to represent spin 
1
2, the three physical outcome

case (a1 = 1, a2 = 0, a3 = -1) can be used to represent spin

one. The components of the spin vector S
≥
 can be taken as

S1  =  ih(|-0| - |0-|),

S2  =  ih(|+-| - |-+|),

S3  =  ih(|0+| - |+0|).

(a)  Show that these are Hermitian.

(b)  Show that S
≥
2 = S1

2 + S2
2 + S3

2 = 2h2.1.

(c)  Find a matrix representation for S1, S2, and S3.  Show

the matrices are Hermitian.

22. Using S
≥
 in prob.21, find the answer to

(S
≥
 x S

≥
)3  =  ?
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Deduce a general statement of which the above is an

example.

23. Still using the same S
≥
 as in the last two problems.

Solve the equation

S3 ψ  =  S3' ψ

where ψ is a column matrix and S3' = - h, 0, or h.  Use the

matrix representation for S3 you found in (c) of problem 3.

There are three solutions for ψ corresponding to the three

values of S3'.  What are their physical interpretation?

Other Problems

24. The expected classical result for the single magnet

Stern-Gerlach experiment was to find a single continuous

line of atoms on the screen positioned beyond the magnet.

magnet

+z 
a.b.

θ
Ν(θ)

screen (a.b.= arbitrary beam)

Figure 1

We now want to find an expression for the expected

classical number of atoms, N(θ), as a function of

deflection angle, θ. Do this in two parts:
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(a)  Assuming that the magnetic moments, µ
≥
, of the

particles in the arbitrary beam are randomly oriented, and

taking the +z axis along the magnet's magnetic field, show

that the number of atoms with µz = µ cosθ' relative to those

with µz = µ (i.e. at θ' = 
π
2) is given by

N(θ)

N(θ' = 
π
2)

  =  |sin θ'|,

[Hint:  Consider thin strips of area dA and dA' in the

figure shown and compare the relative number of atoms

included:

z axis

θ'

Equitorial plane

dA

µ

µ'
dA'≥

≥

(       =        )θ'
π
2

Figure 2

(b)  Now, establish a relationship between the angles θ and

θ' in Figures 1 and 2.  Use your result in part (a) to show

that

N(θ) = N(θ = 0)

 



 

1 - 

θ 2

|µ
∂H

∂z
|2 

L2

m2v4

1/2

(The symbols L, m, v, 
∂H

∂z
 are defined in the notes.)  This

gives the number of atoms deflected at angle θ relative to

the number with no deflection, θ = 0.
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25.  Finish the equality:

[σ
≥
 . a

≥
, σ
≥
 . b

≥
] = ?

[Remember [A,B] ≡ AB - BA.  a
≥
 and b

≥
 are vectors whose

components are numbers, whereas σ
≥
 = σ1î + σ2ĵ + σ3k̂, where

the σ's are operators.]

26. A beam of atoms with spin one (S3' = -h,0,h) pass

through the two Stern-Gerlach setups shown.  A polar angle

θ (relative azimuthal angle φ = 0) gives the direction of

the magnetic field in first magnet relative to the second

magnet's magnetic field.

12

S' =hS"= h

p(+,+)
a.b.

3 3

Figure 3

S3' = h is selected from the first magnet and allowed to

pass into the second magnet.

(a) Verify that the state

1

√2
( |+ > +i|0 > )

is associated with the outcome S3' = +hfrom the first

magnet. [From prob.21, The components of S
≥
 in this basis

are
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S1  =  ih(|-0| - |0-|),

S2  =  ih(|+-| - |-+|),

S3  =  ih(|0+| - |+0|).]

(b) Using the result from (a), calculate the probability

p(+,+) associated with the selection S3" = +h along the

second magnet's 3-axis.  [Remember the result of Problem

#11 for the three-physical-outcome case:

eiλA = A2 cosλ + iA sinλ + (1 - A2).

What are A and λ in this case?]

27.(a) Show that the relation,

< σ-3 ' |σ3 >* =  < σ3|σ
-
3 '  >,

implies that

p(σ3 ' ,σ3) = p(σ3,σ3 ' ).

(b) Derive the normalization condition,

|ψ+(+)|2 + |ψ+(-)|2 = 1,

where ψσ3'
(σ3) = < σ3|σ

-
3 ' > (see eq

n (209) of Chapter 1) from

the orthonormality condition,

< +-|+- > = 1.

(As usual, the bar denotes a rotated state. This is the

spin one-half case.)

28. One representation of S1,2,3 (different from that given

above) in the spin-one (three-physical outcome case) is

 S3 = h(|+| - |-|),
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S2 = 
ih

√2
(|+0| + |-0| - |0+| - |0-|),

S1 = 
h

√2
(|0-| + |-0| - |0+| - |+0|).

   (a) Find matrix representations of S1,2,3.

   (b) A beam of atoms with spin one (S3'=-h,0,h) pass

through two Stern-Gerlachs which have a relative polar

angle θ between their z-axes.

12

S' =hS"= h

p(+,+)
a.b.

3 3

Given that this angle is very small (θ << 1) and that the

probability p(+,+) is given by

p(+,+) = |< +|eiθ(S2/h)|+ >|2,

show that

p(+,+) – 1 - θ2/4.

[Hint: Expand the exponential and use the matrix

representation for S2 you found in (a).]

(c) Verify that the state

1

√2
( |+ > +i|0 > )

is associated with the outcome S3' = +hfrom the first

magnet. [The components of S
≥
 in this basis are

S1  =  ih(|-0| - |0-|),

S2  =  ih(|+-| - |-+|),
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S3  =  ih(|0+| - |+0|).]

(d) Using the result from (c), calculate the exact

probability p(+,+) associated with the selection S3" = +h

along the second magnet's 3-axis.  [Remember the result of

for the three-physical-outcome case:

eiλA = A2 cosλ + iA sinλ + (1 - A2).

What are A and λ in this case?]
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CHAPTER 2:  Free Particles in One Dimension

We started the last chapter with experimental

indications of a breakdown in classical mechanics.  We start

this chapter by citing two famous experiments that helped to

begin to construct a new picture.

It had been known since the work of H. Hertz in 1887

that electromagnetic waves incident on a metal surface can

eject electrons from that material.  This was in the context

of an experiment where he noticed a spark could jump a gap

between two metallic electrodes more easily when the gap was

illuminated.  In particular, it was established before

Einstein's explanation of the effect in 1905 that shining

light on metallic surfaces leads to ejected electrons.

Einstein's formulas were not verified until 1916 by R.A.

Millikan.  Einstein received the Nobel Prize in 1921 for this

work.

Consider the following experimental arrangement for

measuring this photoelectric effect:

light

vacuum tube

ejected electrons

+ -

variable stopping voltage
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We can shine light of varying intensities and

frequencies on the metal surface indicated; a stream of

electrons will then be emitted, some of which will strike the

other metal plate inside the vacuum tube, thus constituting a

current flow.  The classical picture of the behavior of the

electrons under such circumstances did not explain the known

facts.  In particular, it was known that there existed a

threshold frequency, dependent on the type of metal being

studied, below which no photoelectrons were emitted.  Once

this threshold frequency has been exceeded, one may then

adjust the magnitude of the stopping voltage to cancel the

photocurrent. (Let us call this voltage Vmax.)  In his

explanation of the photoelectric effect, Einstein assumed

that the incoming beam of light could be viewed as a stream

of particles traveling at the speed of light, each of which

carried an energy

E = hν (1)

where "h" is Planck's constant. Planck had originally

postulated a relation like (1) above to hold for the atoms in

the wall of a hot furnace, the so-called black body problem.*

Einstein then supposed that, based on this particle picture

of light, the maximum energy of an electron ejected from the

metal's surface could be written as

* We will deal with black body radiation again when we come to
discuss Bose-Einstein statistics in Chapter 9. There we will see that
the black body radiation law is simply a consequence of the particle
nature of light, independent of assumptions about the atoms in the
wall of the furnace.
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Tmax = hν - W (2)

Eqn (2) is based on energy conservation.  The picture

Einstein was led to was one in which the energy transferred

to an electron by the photon, hν, is used to overcome the

minimum energy necessary to remove an electron from that

metal, W, which is called the work function.

 

W

}electron
energy
levels

edge of metal

The work function, W, is not accounted for in Einstein's

theory, but is assumed to be a constant characteristic of a

particular metal.  A clear implication of (2) is that there

exists a frequency ν0, given by

ν0 = 
W
h , (3)

below which we would expect to see no ejected electrons since

the energy available to any single electron will not be large

enough to overcome that material's work function.  Now we

know that Vmax, the maximum voltage that allows a photocurrent

to flow, is related to Tmax by

eVmax = Tmax. (4)

where e is the magnitude of the charge on the electron.

Plugging (4) into (2) then gives
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Vmax = 
h
e  ν - 

W
e . (5)

Therefore, another implication of Einstein's theory is that

if we plot Vmax as a function of photon frequency, we should

see something like:

electrons
stopped

_

V

=

max

0

slope = 
h
e
_

W
h

ν
ν

The first implication above explains the threshold

frequency behavior observed in metals.  The second

implication involving Vmax was the part that was verified

later by Millikan.  Einstein's theory also agreed nicely with

another experimental observation; namely, that the

photocurrent was directly proportional to the light

intensity. This is because light intensity is proportional to

the number of light quanta, as is the number of electrons

emitted from the surface .

Another famous experiment which has added to our

understanding of a new mechanics was done by Arthur Compton

in 1923, and has since become known as the Compton effect.

Other investigators had actually performed versions of this

experiment before Compton, but had not reached his

conclusions.  A schematic representation of his setup is

shown below.
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x-ray source

wall

target
(carbon)

scattered electrons
(undetected)

detector of
scattered x-rays

θ

One can measure the intensity of the scattered x-rays as

a function of θ. In addition, we can imagine fixing the

scattering angle θ and tuning the detector to measure x-rays

of varying wavelengths.  When Compton did this, he found a

result that looked like the following:

Intensity

"primary"

"secondary"

wavelengthλ λ'

(  fixed)θ _____

That is, Compton saw two peaks in the intensity spectrum as a

function of wavelength.  The peak at λ, labeled "primary",

occurred at the same wavelength as the approximately

monochromatic source; the additional peak, labeled

"secondary", occurred with λ' > λ.  Compton explained his

results by assuming a particle picture for the x-ray beam, as
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had Einstein, and by assuming energy and momentum

conservation during the collision of the "photon", the

particle of light, and the electron.

The kinematics of this collision can be pictured as in

the following:

E' = h 'ν

incoming photon

y

x

P,T

outgoing electron

outgoing photon

p = h
λ
_

p' = h
λ
_
'

θ

φE = hν
•

One is assuming that in this frame of reference, the

electron is initially at rest.  It then acquires a momentum,

P, and kinetic energy, T, from the photon.  We know from

Einstein's special theory of relativity that the energy of a

particle of mass m and momentum p is

E = √m2c4 + p2c2 (6)

We also know from this theory that the speed of light, c, is

unattainable for any material particle; however, for a

particle with zero mass, the speed of light is the required

velocity.  Under these circumstances, which apply to the

photon, the relationship between E and p from (6) is

E = pc . (7)

Then using (1) we may write
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p = 
h

λ
 , (8)

for the photon's momentum.  (p = |p≥| here)

Writing momentum conservation in the x and y directions

for the above diagram tells us

x: p = p' cos θ + P cos φ, (9)

y: 0 = p' sin θ - P sin φ. (10)

Therefore, we have

P2 cos2 φ = (p - p' cos θ)2, (11)

P2 sin2 φ = (p' sin θ)2, (12)

Adding (11) and (12) gives

P2 = p2 + p'2 - 2pp' cos θ . (13)

We now write conservation of energy

E - E' = T, (14)

or

p - p' = 
T
c . (15)

Squaring this gives

 


 
 

T
c 

2
 = p'2 + p2 - 2pp'. (16)

Let's now subtract (16) from (13):

P2 - 
 


 
 

T
c 

2
 = 2pp'(1 - cos θ) . (17)
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The relativistic connection between P and T is not

T = 
P2

2m.  We write the relation between the electron's energy

and momentum Eqn (6) above, as

E
2
e = P

2c2 + m2c4. (18)

The definition of kinetic energy T is

Ee = T + mc
2. (19)

Substituting (19) in (18) and solving for P2 then gives

P2 = 
 


 
 

T
c 

2
 + 2Tm, (20)

or

P2 - 
 


 
 

T
c 

2
 = 2Tm. (21)

Comparing (21) and (17) we now have

2Tm = 2pp'(1 - cos θ). (22)

However, from (15), this now becomes

2mc(p - p') = 2pp'(1 - cos θ), (23)

or

 


 
 

1
p, - 

1
p  = 

1
mc (1 - cos θ). (24)

Now using (8) we find that

λ' - λ = 
h
mc (1 - cos θ). (25)

Numerically,
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h
mc = .0243Å = 2.43 × 10-10 cm, (26)

a quantity which is called the electron Compton wavelength.

The shifted wavelength, λ', corresponds to the secondary

intensity peak seen by Compton.  Compton explained the

primary peak as elastic scattering from the atom as a whole,

leading to only a very tiny shift in wavelength due to the

Carbon atom's large mass relative to the electron's.

Although a more detailed theory would be needed to explain

the complete intensity spectrum shown above, the above

experiment supplied rather convincing evidence of the

particle nature of light.*

We now know that light particles are described by

p = 
h

λ
.  Let's examine the consequence of this statement in

view of the fact that the wave nature of light results in

diffraction.

Consider the Fraunhoffer single-slit device below.

a

y

x
screen

maximum

1st minimum

Intensity

L

* The wavelength shift calculated holds for the scattering of free
electrons, but of course the electrons in an atom are bound to a
nucleus. However, because the X-ray photon energies are so much
larger than the electronic binding energy, the above treatment is
still very accurate.



2.10

Viewing the incoming light rays as a stream of

particles, we see that there is an uncertainty in the

y-position of an individual photon in passing through the

diffraction slit.  We say that

∆y = a, (27)

where "∆" means "uncertainty in."  Now, we expect to see the

first interference minimum, indicated above, when the

following conditions obtain:

a

"lower"

"upper"

sin
2
_ θa

L

θ

θ

From the above, we see that if L >> a we will have an

interference minimum between rays in the "upper" half of the

triangle and the "lower" half when

a
2 sin θ = 

λ
2 , (28)

for then they will be completely out of phase.  Now we know

that most of the photons fall within the central maximum of

the pattern.  This means, in particle terms, there is also an

uncertainty in y-momentum of individual photons passing
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through the slit.  If we define this uncertainty so as to

roughly correspond to the diffraction minimum, we have

∆py
p  ≈ 

L sin θ
L  = sin θ. (29)

Therefore

∆y ∆py ≈ a(p sin θ) = a(p 
λ
a ) = pλ. (30)

Now using p = 
h

λ
, this tells us

∆y ∆py ≈ h . (31)

The product of the uncertainties in position and

momentum of an individual photon is on the order of Planck's

constant.  Eqn (31) is an example of the Heisenberg

uncertainty principle as applied to photons.  However,

relations such as (31) also hold for material particles that

can be brought to rest in a laboratory, such as protons and

electrons.  Assuming energy and momentum conservation, the

Compton effect discussed above shows this to be true, for if

we could measure the initial and final position and momentum

of the electron, we could determine the position and momentum

of the photon to an arbitrary accuracy, contradicting (31).

A more general and rigorous statement of the uncertainty

relation for material particles like an electron, involving x

and px, will be seen (in Ch. 4) to be

∆x ∆px ≥ 
h

2 . (32)
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An illustration of (32) will be given later in the present

Chapter.

If uncertainty relations apply to electrons, then we can

immediately understand the reason for the stability of the

ground state (that is, lowest energy state) of the hydrogen

atom, which, according to classical ideas, should quickly

decay.  The electron's energy is

E = 
P≥2

2m - 
e2

r  , (33)

where p≥ and m refer to the electron's momentum and mass.  Now

the hydrogen atom's ground state has zero angular momentum,

so the p≥ in (33) can be replaced by pr, and we have

essentially a one-dimensional problem in r, the radial

coordinate.  We hypothesize that

rpr ~ h, (34)

for the hydrogen atom ground state; i.e. we suppose the

ground state is also close to being a minimum uncertainty

state.  Then using (34) in (33) gives

E = 
1
2m  


 
 

h

r 
2
 - 

e2

r  . (35)

A plot of (34) looks like the following:
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~
2m
__1 ( )

2

r
h

r
_~ - 
e

0

0

a

E

r

We find E0 by setting

∂E

∂r
 = 0, (36)

which gives

a0 = 
h
2

me2
 , (37)

and

E0 = - 
me4

2h2 (= -13.6 eV). (38)

The negative sign above means the same thing as for a

classical mechanics system - that the system is bound.  The

value for E0 above turns out to be very close to the actual

ground state energy of the real hydrogen atom.  Our

calculation above is actually a bit of a swindle because Eqn

(34) is only a rough guess.  The quantity a0 in (37) is

called the "Bohr radius" and is numerically equal to .53Å

(1Å = 10-8 cm).  Thus the uncertainty principle implies the

existence of a ground state and gives a rough value of the

associated binding energy.
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The famous Bohr model from which the above name derives

was a significant step forward in our understanding of atomic

systems and yields an important insight into the nature of

such systems.  One way to recover the content of this model

is to assume that the relation (8), written above for the

photon, holds also for electrons and other material

particles.  That is, we are assuming a wave-like nature for

entities we usually think of as particles, just as we

previously were led to assume both wave and particle

characteristics for light.  If indeed objects such as

electrons have wave characteristics, then they should exhibit

constructive and destructive interference under appropriate

circumstances.  Consider therefore a simplified model of a

wave-like electron trying to fit in the circular orbit shown.

an
•

In order for the electron wave to avoid a situation

where destructive interference would not permit it to persist

in a stable configuration, we should have
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2πan = nλ, (39)

where n = 1,2,3,... We then have

an = n 
λ

2π
 = n 

h

p . (40)

Multiplying both sides of this by p, we get another

interpretation of (39) from

anp = nh. (41)

The left hand side of (39) represents orbital angular

momentum, which the right hand side now says is quantized in

units of h.  Minimizing the energy

E = 
p≥2

2m - 
e2

an
 ,

  = 
1
2m  


 
 

nh
an

 
2
 - 

e2

an
 , (42)

with respect to an, we find that

∂E

∂an
 = 0 = - 

n2h2

ma
3
n

 + 
e2

a
2
n

 , (43)

so that

an = 
n2h2

me2
 . (44)

Plugging this back into (40) now gives

En = - 
e2

2an
 = - 

me4

2n2h2 . (45)
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Setting n = 1 in (45) just gives (38) above.  The energy

levels in (45) agree closely with what is seen

experimentally.  The Bohr model leads us to believe that

material particles can also have wave-like characteristics.

Thus, the stability of the system is guaranteed by the

uncertainty priciple and the disceteness of the energy levels

is due to the assumed wave nature of particles.  The ultimate

verification of such a hypothesis would be to actually

observe the effects of diffraction on a beam of supposedly

particle-like electrons.  That such a phenomenon can exist

was hypothesized by Louis DeBroglie in his doctoral

dissertation (1925), and this was experimentally verified by

Davisson and Germer (1927).  The wavelength associated with

electrons (called their deBroglie wavelength) according to

(8), which we originally applied only to photons, would in

most instances be very tiny.  For this reason Davisson and

Germer needed the close spacing of the atomic planes of a

crystal to see electron diffraction take place.

The model Bohr presented of the behavior of the electron

in a hydrogen atom is correct in its perception of the wave

nature of particles, but is wrong in the assignment of the

planetary-like orbits to electrons.  In fact, as pointed out

earlier, the hydrogen atom ground state actually has zero

angular momentum, as opposed to the single unit of h assigned

to it by (39) above.

Our minds may rebel at the thought of something that

shares both wave and particle characteristics.  This seems
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like a paradox.  It remains an experimental fact, however,

that electrons and photons show either aspect under

appropriately designed circumstances.  We must, therefore,

think of particle and wave characteristics as being not

paradoxical, but complementary.  This is the essence of what

is called Bohr's Principle of Complementary.

We will have to build this dualism into the structure of

the theory we hope to construct.  The next step we take in

this direction is the realization that the appropriate

mathematical tool to use in order to do this is the Fourier

transform.

Leaving physics behind a minute and specializing to a

single dimension, let us inquire into the Fourier transform

of a function that looks like the following:

• •

•

0
k

2 kδ

|g(k)|2

That is, we are Fourier transforming a function g(k) that is

nonzero only when

-δk ~< k ~< δk. (46)

We define the Fourier transform of g(k) to be
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f(x) = 
1

√2π
 

 ⌡
⌠
-∞

∞
g(k)eikx dk. (47)

We ask:  what will be the magnitude of the resulting

function, |f(x)|2, look like?  We answer this question as

follows:

  Choose x such that: eikx is: |f(x)|2 value is:

xδk << 1   ~1 maximum

xδk ~ 1 e-i to ei lowered because of

(1/π of a phase rot.) partial destructive 
interference

xδk >> 1  rapidly small because of
oscillating strong destructive
phase interference

Qualitatively then, we would expect |f(x)|2 to look

like:

• •

•

0
x

2 xδ
|f(x)|2

where

δxδk ≈ 1. (48)
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Of course, the detailed appearance of |f(x)|2 depends on

the exact mathematical form we assume for g(k).  To get some

experience, let us do a specific example.  Let

g(k) = e-αk
2
 , (49)

which is a Gaussian centered around k = 0.  Then f(x) is

given by

   

 f(x) = 
2π

1  ∫
-∞

∞
  e-αk

2

 eikx  dk.      (50)

We can write

   

 -αk
2
 + ikx = -α

 


k - 

2α
ix  




2

 - 
4α
x2  . (51)

This is called "completing the square."  Then (50) reads

     

 f(x) = 
2π

1  e-x
2/4α ∫−∞

∞
  e-α(

k - ix/2α)
2

 dk. (52)

Now it is justified to let k' = k - 
ix

2α
 and still keep the

integral along the real axis.  The remaining integral we must

do is

 ⌡
⌠
−∞

∞ e-αk'
2 
dk' = 

1

√α
 

 ⌡
⌠
−∞

∞ e-x
2
 dx ≡ 

I

√α
 . (53)

I2 can be evaluated as follows:

I2 = 
 ⌡
⌠
−∞

∞  dxe-x
2
 

 ⌡
⌠
−∞

∞  dye-y
2
 = 

 ⌡
⌠
−∞

∞  dxdy e-(x
2 + y2)

         = 
 ⌡
⌠
0

∞ rdr 
 ⌡
⌠
0

2π dθe-r
2
 = π 

 ⌡
⌠
0

∞ dr2e-r
2
 = π. (54)
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Therefore I = 
 ⌡
⌠
−∞

∞  e-x
2
dx = √π , and we have

f(x) = 
1

√2π
 e-x

2/4α √π

α
 = 

1

√2α
 e-x

2/4α . (55)

(In this special example f(x) turns out to be real, but in

general it is complex.)  Eqn (55) has the advertised

properties.  That is, the width of the Gaussian in k-space is

 δk ≈ 
2 α
1  (this makes 

 


 

g(k = 0

g(k = 
2 α
1  




2

  = e-1/2) while the width
)

)

of the x-space Gaussian, in the same sense, is δx ≈ √α .

Therefore, the product of these two widths is

δxδk ≈ √α ⋅ 
1

2√α
 = 

1
2 . (56)

Thus, we can make δx or δk separately as small as we wish,

but then the other distribution will be spread out so as to

satisfy (56).

The argument leading to (56) was mathematical.  The

argument leading to (31) was a physical one.  We now realize,

however, that the uncertainty product in (31) will be

guaranteed to hold if we were to identify

k = 
Px
h
 , (57)

because then (56) would read (compare with (32) above)

∆x∆px ≈ 
h

2 , (58)
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where we are now interpreting the x and px distribution

widths as uncertainties, for which we use the "∆" symbol.

Thus, the Fourier transform plus the identification (57)

accomplishes the goal of insuring that uncertainty relations

involving position and momenta are built into the theory.

Eqn (47) says that the f(x) distribution function or

"wave packet" is actually a superposition of functions given

by eikx with continuous k-values.  Notice that (k can be a

positive or negative quantity)

eik(x+2π/|k|) = eikx, (59)

which says that eikx is a periodic function with a wavelength

2π
|k| .  The following graphs display the real and imaginary

parts of eikx as a function of x.

xx

Re(eikx) Im(
ikx

)e
2π

k k

2π

The relation k = 
px
h
 is consistent with the statement

that 
2π
|k| repesents a particle wavelength since

λ = 
2π
|k| = 

2πh
|px|

 = 
h

|px|
, (60)
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which gives back the previous form of the DeBroglie

wavelength. The function eikx (or eik
→

 . x
→

 in 3 dimensions) is

usually called a "plane wave" because points of constant

phase of this function form a plane in 3 dimensions.

Still dealing with only a single spatial dimension, let

us now notice that the function (t = time)

ei(kx - ωt) ,

represents a traveling plane wave.  We can understand the

velocity of the motion by following a point of constant phase

in the wave, for which

ei(kx - ωt) = constant. (61)

As a function of time, these positions of constant phase then

must satisfy (if x=0 at t=0)

kx = ωt ⇒ x = 
ω
k t. (62)

Therefore, the phase velocity of the traveling plane wave is

just ω/k.  We then see that these phases move in the +x

direction if k > 0 and in the -x direction when k < 0.  The

quantity ω represents the angular frequency of the moving

wave.  This is easy to see by fixing the position, x.  Then

e-iωt tells us how many waves pass our observation point per

unit time.  We have

e-iω(t + 2π/ω) = e-iωt , (63)

so the period is given by the usual formula
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T = 
2π

ω
(64)

Free particles always have a positive definite angular

frequency, ω.

For photons, the deBroglie wavelength is the same as the

usual wavelength concept, and the relationship between ω and

|k| is given simply by

ω = 
E
h
 = 

|px|c

h
 = |k|c, (65)

using (1),(7), and (57).  The above relationship becomes

ω = |k
→
|c in three dimensions.  (This simple linear

relationship is strictly true only for light rays traveling

in free space.)  The phase speed is then

ω
|k| = c, (66)

as it should be.  Since 
ω
|k| is a constant independent of |k|,

the phases of all wavelengths travel at the same velocity.

The equation that describes the time propagation of free

photons is now easy to find.  Based on the above

observations, we generalize (47) to account for time

dependence.

f(x,t) = 
1

√2π
  

 ⌡

⌠

-∞

∞
g(k)ei(kx - ωt)dk, (67)

The differential equation that (67) obeys is easy to

construct.  Observe that
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1

c2
  

∂2f(x,t)

∂t2
 = 

1

√2π
 

 ⌡

⌠

-∞

∞
g(k)eik(x - ct)(-k2)dk, (68)

and that

∂2f(x,t)

∂x2
 = 

1

√2π
 

 ⌡

⌠

-∞

∞
g(k)eik(x - ct)(-k2)dk, (69)

so that

1

c2
  

∂2f(x,t)

∂t2
 = 

∂2f(x,t)

∂x2
 . (70)

Eqn(70) is called the "wave equation."  In three

dimensions the 
∂2

∂x2
 operator would be changed to ∇

→2.  (We are

ignoring the phenomenon of light polarization in this

discussion.)

Let's now go through a similar discussion for a

nonrelativistic particle in order to get the analog of

Eqn(70).  The crucial step here is the assumption that the

relation ω = 
E
h
, found to hold for photons, also holds for

material particles, where ω retains its meaning as the

deBroglie angular frequency.  This is a very reasonable

supposition since we know that for any wave motion, frequency

is a conserved quantity in time.  (Think about Snell's law,

for example).  Since energy is also conserved in the motion

of a free particle, it is natural to assume that these
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quantities are proportional.  With this hypothesis, we find

for a free nonrelativistic particle

ω =  
E
h
 = 

p
2
x

2mh = 
hk2

2m , (71)

which would read ω = 
hk
→2

2m  in three dimensions.

The equation analogous to (67) now becomes (one

dimension again)

f(x,t) = 
1

√2π
 

 ⌡
⌠

-∞

∞
g(k)ei(kx - ω(|k|)t)dk, (72)

where the relation between ω and |k| is given in (71).  The

phase speed of these particles is

ω
|k| = 

h|k|
2m  = 

|px|

2m  . (73)

This is just half of the value of the mechanical speed of

propagation, 
|px|

m  .  Therefore, we conclude that the phase

speed of deBroglie waves is not the same thing as the actual

propagation speed of the particle.  Eqn(72) also differs from

(66) in that the phases of different deBroglie wavelengths

travel at different velocities. This is called dispersion,

and it's effects in an example will be studied below.  For a

slowly varying function g(k) in (72), (corresponding, say, to

a sufficiently peaked function in position space) most of the

contribution to the rapidly varying exponential integral will

come from the integration domain
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∂(kx - ω(|k|)t)

∂k
 ≈ 0,

(this is called the stationary phase approximation) which

identifies the average particle propagation velocity as

p-x
m  = 

∂ω

∂k
 . (74)

However, remember that a given wave packet contains a

continuous range of k
→
 or p

→
 values (in three dimensions), so

that a particle's velocity can only be defined in an average

sense. The vector quantity 
∂ω

∂k
→ is called group velocity. The

group speed of light in free space is

 



 



 
∂ω

∂k
  = c, (75)

the same as its phase speed.

  Using (72) above, we find that

∂f(x,t)

∂t
 = 

1

√2π
 

 ⌡
⌠

-∞

∞
g(k)ei(kx - ω(|k|)t)  


 
-ihk2

2m  dk, (76)

and

∂2f(x,t)

∂x2
 = 

1

√2π
 

 ⌡
⌠

-∞

∞
g(k)ei(kx - ω(|k|)t)(-k2)dk, (77)

so that

ih 
∂f(x,t)

∂t
 = -

h
2

2m 
∂2f(x,t)

∂x2
 . (78)

Eqn (78) is a special case of the celebrated Schrödinger

equation written in one spatial dimension for a free

particle.
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We will now show that

ψg(x,t) =

1

(2π)1/4 √δx + 
iht

2mδx

 ⋅ exp

 




 




i
h
  



 



p
_
x - 

p
_2

2m t  -  
1

4δx
 ⋅  

 



 



x -  
p
_

m t
2

 


 
δx + 

iht

2mδx

 ,

   (79)

is a solution to (78).  The left hand side of (78) involves

∂ψg(x,t)

∂t
 , which can be written as

∂ψg(x,t)

∂t
  =

ψg(x,t)

 



 

- 

1
2  


 
ih

2mδx

 


 
δx + 

iht

2mδx

 - 
i
h
 
p
_2

2m - 
1

4δx
 

 




 




-2 



 



x - 
p
_

m t  
p
_

m

 


 
δx + 

iht

2mδx

 - 

ih

2mδx
  



 



x - 
p
_

m t
2

 


 
δx + 

iht

2mδx
2

 .

   (80)

Some necessary algebra is

- 
i
h
 
p
_2

2m + 
p
_

2mδx
 

 



 



x - 
p
_

m t

 


 
δx + 

iht

2mδx

 + 
ih

8mδx2
 

 



 



x - 
p
_

m t
2

 


 
δx + 

iht

2mδx
2
 = - 

i
2mh 

 



 

p

_
δx + 

ih

2δx
 x

2

 


 
δx + 

iht

2mδx
2 

, 

   (81)
so we can write

ih 
∂ψg(x,t)

∂t
 = 

h
2

2m ψg(x,t) 

 



 



- 
1

2
 


 
δx2 + 

iht
2m

 - 
1

h
2 

 



 

p

_
δx + 

ih

2δx
 x

2

 


 
δx + 

iht

2mδx
2 

 .

   (82)

For the other side of the equation, we find
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∂ψg(x,t)

∂x
 = ψg(x,t) 

 



 



- 
1

2δx
 

 



 



x - 
p
_

m t

 


 
δx + 

iht

2mδx

 + 
i
h
 p

_
  .   (83)

and so

∂2ψg(x,t)

∂x2
 = ψg(x,t)⋅

 



 



- 
1

2δt
 

1

 


 
δx + 

iht

2mδx

 + 
1

4δx2
 

 



 



x - 
p
_

m t
2

 


 
δx + 

iht

2mδx
2 
 - 

p
_2

h
2 - 

ip
_

2hδx
 

 



 



x - 
p
_

m t

 


 
δx + 

iht

2mδx
  

.

   (84)

We recognize the last three terms in (84) as the left hand

side of (81), apart from an overall factor.  This gives us

-
h
2

2m 
∂2ψg(x,t)

∂x2
 = -

h
2

2m  ψg(x,y)

 



 



- 
1

2
 


 
δx2 + 

iht
2m

 - 
1

h
2 

 



 

p

_
δx + 

ih

 2δx
 x 2

 


 
δx + 

iht

2mδx
2

 .

   (85)

The right hand sides of (82) and (85) are now seen to be the

same, which proves that ψg(x,t) is a solution of (78).

Let's now try to interpret this solution.  At t = 0 we

have

ψg(x,0) = 
1

√√2π δx
  exp 

 



 

 

i
h
 p

_
x - 

x2

4δx2
  ,    (86)

so

|ψg(x,0)|
2 = 

1

√2π |δx|
 exp 

 



 

- 

x2

2δx2
 .    (87)
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Eqn(87) is a Gaussian in x, as we just finished studying.  At

a time t > 0 from (79) we have

|ψg(x,t)|
2 = 

1

√2π |δx(t)|
 exp  




 



- 
(x - 

p
_

m t)
2

2δx(t)2
 ,    (88)

where we have defined

δx(t)2 ≡ δx2 + 
 


 
ht

2mδx

2

 .    (89)

Comparing (88) with (87) gives us a picture of the time

evolution of a Gaussian wave packet, which we can draw as

follows:

 

x
(p/m)t
_

p
_ |  (x,t)|

g
2

Ç

|  (x,0)|
g

2
Ç

We see that the the peak of the position-space wave

packet |ψg(x,t)|
2 moves with velocity 

p
_

m, which you will show

in an exercise is the expectation value of the wave packet's

momentum divided by mass, and thus corresponds to the usual

notion of particle velocity. In addition, it does not

maintain it's same shape but spreads in time because of

dispersion in values of momentum.  We shall see momentarily

that the magnitude squared of the momentum-space distribution
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does not change with time.  Interpreted as uncertainties,

this means that the product ∆x ∆px grows in time.  This is

consistent with the ≥ sign in the uncertainty relation (32).

The behavior of the wavepacket described by (72) is in

contrast with the function f(x,t) in (67) which obeys

f(x,0)=f(x+ct,t) (for g(k)=0, k<0) and therefore propagates

undistorted in time with a single velocity, c.

It will behoove us in what is to come to study a little

bit about Dirac delta functions now.  As stated in (45), the

Fourier transform of g(k) is defined as

f(x) = 
1

√2π
  

 ⌡

⌠

-∞

∞
g(k)eikxdk,    (90)

while the g(k) distribution can be shown to be given as

g(k) = 
1

√2π
  

 ⌡

⌠

-∞

∞
f(x)e-ikxdx, (91)

Substituting (91) in (90), we get

f(x) = 
1

√2π
  

 ⌡
⌠
-∞

∞
dkeikx 

 ⌡
⌠
-∞

∞
dx'f(x')e-ik'x'

= 
 ⌡
⌠
-∞

∞
dx'f(x')

 



 



 ⌡
⌠
-∞

∞
 
dk

(2π)
 eik(x - x')  . (92)

We define

δ(x - x') = 
 ⌡
⌠
-∞

∞ dk

(2π)
 eik(x - x'), (93)

so

f(x) = 
 ⌡
⌠
-∞

∞
dx'f(x')δ(x - x'). (94)
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Let's set x=0 in (94).  Then

f(0) = 
 ⌡
⌠
-∞

∞
dx'f(x')δ(x'). (95)

Setting f(x) = 1 in (95) tells us also that

1 = 
 ⌡

⌠

-∞

∞
dx'δ(x'). (96)

Eqn (96) tells us that the area under the curve δ(x') is

unity, but Eqn (95) tells us that the only non zero value of

δ(x') is at x' = 0.  Such a function only exists in a

limiting sense.  In this limit, δ(x') is an even function of

x' (this can be established from (93)):

δ(x') = δ(-x'). (97)

We can show various properties of the Dirac delta function

based on the above.  For example we have

δ(ay) = δ(-ay), (98)

from (97), where "a" is a constant.  Therefore we have

δ(ay) = δ(|a|y). (99)

We can now write (the integral limits are understood to

include the point y = 0)

∫dyf(y)δ(ay) = ∫dyf(y)δ(|a|y)

  = 
1
|a| ∫dzf 


 
z

|a|  δ(z) = 
1
|a| f(0). (100)
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On the other hand

1
|a| f(0) = ∫dyf(y) 


 
δ(y) 

1
|a|  , (101)

so that

δ(ay) = 
1
|a| δ(y). (102)

Eqn (102), like all identities satisfied by Dirac delta

functions, are really understood to be true in the context of

integration.  The functions f(x) above must be sufficiently

smooth, but are otherwise completely arbitrary.

The form (93) is not the only explicit representation of

the Dirac delta function.  An easy way of inventing

representations of δ(x) is to set

δ(x) = 
 ⌡
⌠
-∞

∞  
dk

(2π)
 eikx K(k), (103)

following (93) above, requiring for K(k) that

K(k) = 
 


 
~ 1, below a cutoff in |k|
 
~ 0, above a cutoff in |k| .

(104)

The Dirac delta function is then defined in the limit of the

cutoff going to infinity.

For example, consider

     

 K(k) = lim
∈→0

+
 e

-
4
∈k

2

(105)

where ∈→0+ means the limit as ∈ goes to zero through

positive values.  We then have



2.33

K(k) = 

 


 

~ 1, for k ~< 
1

√∈
 

~ 0, for k ≥ 
1

√∈

    (106)

Putting (105) into (103) and interchanging the limit and the

integral, we then find that δ(x) can be represented as

    

 δ(x) = 
π
1   lim

∈→0
+
  

∈
1  e

- ∈
x2

                   (107)

Eqn (107) is a Gaussian peaked at x = 0 which becomes

increasingly narrow as ∈→0+, but which continues to have

unit area.  Using this technique, we can construct many forms

of the Dirac delta function.

Let us return to interpreting the Gaussian wave packet

solution of the Schrödinger equation.  We already found that

the magnitude of this solution spreads in time.  The k-space

(or momentum space since k = p/h) transform of ψg(x,0) is

also a Gaussian, the absolute square of which has a width

given by

δp = 
h

2δx
 . (108)

(The width of the Gaussian is defined the same as on p.2.20

above).  We can then write

δx(t)2 = δx2 + (δvt)2, (109)

where δv ≡ 
δp
m  .  Thus, the wave packet is spreading because

of the initial velocity distribution at t = 0.  Our Gaussian
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wave packet seems to be spreading out not because the

particle itself is spreading, but because there was an

initial uncertainty in the particle's velocity.  We are being

led to the point of view that the magnitude of the function

ψg(x,t) at the point x somehow represents the probability

that the particle is in a given location.  The simplest

possible positive semi-definite quantity we can form out of a

solution ψ(x,t) of the Schrödinger equation is |ψ(x,t)|2,

(Remember, ψ(x,t) is in general complex) so we hypothesize

that:

 



The probability that the single
particle described by the wave
packet ψ(x,t) may be found
between positions x and x + dx
at time t

 = |ψ(x,t)|2dx. (110)

Thus |ψ(x,t)|2 is more properly called a probability density.

Because of the interpretation in (110), we will often require

that

 
 ⌡
⌠
-∞

∞
dx|ψ(x,t)|2 = 1, (111)

stating that the probability that the particle is somewhere

is unity.  Eqn (111) is called a normalization condition.

(We do not always explicitly require (111) for solutions of

Schrödinger's equation, as we will see.)  In order for the

integral in (111) to exist, it is clear that we must have

ψ(x,t) → 0 as |x| → ∞.  In fact, we must have |ψ(x,t)|

decreasing faster than |x|-1/2 as |x| → ∞.
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We now ask the question:  What does (111) imply for the

momentum-space distribution of the wave packet?  Referring

back to (47) above, we define the momentum-space wave packet

ψ(px) implicitly through  


 
k = 

px
h

ψ(x,0) = 
1

√2πh
  

 ⌡
⌠
-∞

∞
dpxψ(px)e

ipxx/h. (112)

In fact, we may generalize (112) to

ψ(x,t) = 
1

√2πh
  

 ⌡
⌠
-∞

∞
dpxψ(px,t)e

ipxx/h, (113)

using (67) above as a model, where we have defined (ω = 
E
h
 ,

where E = 
p
2
x

2m for a free particle)

ψ(px,t) = ψ(px)e
-iωt. (114)

From (114) it is clear that the function |ψ(px,t)|
2 is time-

independent for our Gaussian wave packet, which means it does

not spread out in time, contrary to the position-space

distribution.  Using (112) in (111), we have the statement

that at time t

∫dx|ψ(xt)|
2 = ∫dxψ(x,t)ψ∗(x,t)

= 
1

2πh
 ∫dx∫dpxψ(px,t)e

ipx/h 
∫dpx'ψ∗(px',t)e

-ipx'x/h

= ∫ ∫dpxdpx'ψ(px,t)ψ∗(px',t) 


 
1

2πh
 ∫dxe

-ix(px-px')/h . (115)
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In the above integrals and others following where the

limits of integration are not explicitly stated, we are to

understand these to be from -∞ to +∞ on both position and

momentum.  From our recent discussion of Dirac delta

functions, we realize that the above quantity in square

brackets is just a delta function in momentum,

δ(px - px') = 
1

2πh
  

 ⌡
⌠
-∞

∞
dxeix(px-px')/h . (116)

Therefore, we have

∫dx|ψ(x,t)|
2 = ∫dpx|ψ(px,t)|

2 . (117)

This result is known as Parseval's theorem.  Thus, if we

normalize using (111), Eqn(117) suggests an interpretation of

|ψ(px,t)|
2 similar to (110) above for ψ(x,t)|2:

 



The probability that the single
particle described by the wave
packet ψ(px,t) may be found with
momentum values between px and 
px + dpx at time t

 = |ψ(px,t)|
2 dpx. (118)

It is crucial for this discussion that probability be a

conserved quantity.  That is, once we have imposed (111) at

t = 0, it must continue to be true that the total probability

is one.  Our one-dimensional Schrödinger equation is

ih 
∂ψ(x,t)

∂t
 = - 

h
2

2m  
∂2ψ(x,t)

∂x2
 . (119)

The complex conjugate of this is



2.37

-ih 
∂ψ∗(x,t)

∂t
 = - 

h
2

2m  
∂2ψ∗(x,t)

∂x2
 . (120)

Using (119) and (120), we find (we suppress the arguments of

ψ(x,t))

ih 
∂

∂t
(ψ∗ψ) = ih 

 



 

∂ψ∗

∂t
 ψ + ψ∗ 

∂ψ

∂t

         = 
h
2

2m  



 

∂2ψ∗

∂x2
 ψ - ψ∗ 

∂2ψ

∂x2
. (121)

This last statement can be written as (called the

"continuity equation")

∂

∂t
 (ψ∗ψ) + 

∂

∂x
 j(x,t) = 0 (122)

where

j(x,t) = 
ih
2m  




 

∂ψ∗

∂x
 ψ - ψ∗ 

∂ψ

∂x
 , (123)

       = 
h

m Im  



 



 ψ 
∂ψ∗

∂x
 . (124)

j(x,t) is called the "probability flux" and represents the

flux or change in probability at a given position and time.

Notice from (124) that it is a real quantity, as it should

be.  Integrating Eqn (122) over all positions, we then come

to the conclusion that

∂

∂t
 

 ⌡
⌠
-∞

∞
dx|ψ(x,t)|2 = -j(x,t)|-∞

∞ . (125)
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Now we argued above that the requirement (111) on ψ(x,t)

meant that it had to decrease faster than |x|-1/2 as |x| → ∞.

This means that j(x,t) must decrease faster than |x|-2 as |x|

→ ∞, from (124).  Therefore j(x,t) vanishes at the limits x

= ± ∞ and we conclude that

∂

∂t
 

 ⌡
⌠
-∞

∞
dx|ψ(x,t)|2 = 0. (126)

Thus, the existence of the continuity equation, (122),

plus the requirement that the norm of ψ(x,t) be bounded,

(111), insures a probabilistic interpretation for |ψ(x,t)|2.

The Schrödinger equation, Eqn (119), is written as a

differential statement involving the position-space function

ψ(x,t).  The analogous statement, which can be derived using

(119) and (113) above, for the momentum-space distribution

ψ(px,t) is

ih 
∂ψ(px,t)

∂t
 = 

p
2
x

2m ψ(px,t). (127)

This is called the momentum-space Schrödinger equation.  In

the form (127) it is still referring to a free particle in a

single dimension.  The general solution to (127) is just

(114) above,

  

ψ(px,t) = (px)e
-i

px
2

2mh
t
. (128)ψ

We now try to find solutions of (119) that are

separable, i.e. that can be written in the form
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ψ(x,t) = u(x)T(t). (129)

Notice that our general solution for ψ(x,t), Eqn (113), is

not of this form.  We will give a physical interpretation of

this in a moment.  Substituting (129) into (119), we find

that

ihu(x) 
dT
dt = - 

h
2

2m  
d2u

dx2
 T(t). (130)

Dividing by u(x)T(t), we get

ih  

dT
dt
T(t) = - 

h
2

2m 

d2u

dx2

u(x) . (131)

Since x and t are independent variables, this equation can

only be satisfied if both sides are equal to a constant,

which with foresight we call E.  The solution of

ih 
dT
dt = ET(t), (132)

is

T(t) = Ce-iEt/h . (133)

The equation for u(x) is then (we may label u(x) as uE(x) if

desired)

- 
h
2

2m  
d2u

dx2
 = Eu(x). (134)

The two linearly independent solutions of (134) are of

the form

Ce±ik'x , (135)
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where k' = 
1
h
 √2mE is an undetermined positive quantity.

Thus, separable solutions to (119) are of the form

ψ(x,t) → Cei(k'x - Et/h) , Cei(-k'x - Et/h) . (136)

were E is allowed by (134) to take on all positive values.

(The solutions to (134) for E < 0 are unbounded in x and do

not lend themselves to a probabilistic interpretation.)  We

now realize that the forms (136) for ψ(x,t) result from

taking ψ(px) = C'δ(px - hk') or ψ(px) = C'δ(px + hk') in our

general solution for ψ(x,t), Eqn (113) above.  Thus the plane

waves (136) represent specific solutions to the Schrödinger

equation which have a given kinetic energy, E.  We have just

found in fact that there are two such solutions, specified by

px = ± hk' (particle moving to the left or right).  The fact

that our general solution (113) is not separable in x and t

means therefore that it is not a solution with a unique value

of E.  The Gaussian wave packet for example contained a

continuous distribution of px (and therefore E) values.  It

makes physical sense that solutions to (134) exist for all

positive values of E since the kinetic energy of a free

particle takes on positive values.  We will see in the

following chapter, however, that the generalization of (134)

that takes a quantum mechanical potential into account in

general does restrict the values of the particle's total

energy, often becoming discrete.  The equation (134) is the
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time-independent Schrödinger equation for a free particle in

one dimension.

We have succeeded in deducing a probability conserving

differential equation for a material particle that has the

position-momentum uncertainty relation built into it.  We

have done this without reference to our earlier discussion

involving spin.  However, I would now like to show that the

Schrödinger equation is a natural outgrowth of the formalism

we developed in the last chapter.  I also wish to provide the

connections between the differential equation point of view

in this chapter and the operator formalism of the prior

chapter.

The foundation on which we built the operator concept

was the existence of what we were calling a basis of

measurement symbols.  Such a basis must allow a complete

specification of all possible outcomes of a given

experimental apparatus.  This is the physical content of the

mathematical expression of the completeness concept, Eqn (91)

in Ch.1.  The basis there was discrete.  In the case of

spin 
1
2 it consisted of two states | + > and | - >.  In the case

of a free particle (considered spinless for now) an

appropriate basis would be a specification of all possible

locations or momentum values, which we assume take on

continuous values. We can imagine doing all the operations

discussed in the last chapter, selection, modulation and

transitions, but in this case on a "beam" of particles taking
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on various values of position or momenta. (A selection

experiment on particle position might be realized by a

diffraction experiment, for example.)  Therefore, in analogy

to the previous discrete specifications of completeness, we

postulate the continuum statements

∫dx'|x'> < x'| = 1, (137)

and

∫dpx' |px' > < px'| = 1, (138)

as expressing the completeness of a physical description

based upon continuous positions, Eqn (137), or momentum

values Eqn (138).  The right hand sides of (137) and (138)

are not the number one, but the unity operator.  In order to

be consistent, we must now have (we again write

< x'|⋅|x" > ≡ < x'|x" > and recognize this product is an

ordinary number)

1 = 1⋅1 = ∫dx'dx"|x'> < x'|x" > < x"|, (139)

from which we realize that

 < x'|x" > = δ(x' - x"), (140)

for then

∫dx'dx"|x'>< x'|x" >< x"| = ∫dx'|x'> ∫dx"δ(x' - x")< x"|

                        = ∫dx'|x'>< x'| = 1. (141)

Likewise, we have that

< px'|px" > = δ(px' - px") . (142)
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Eqns (140) and (142) are the expressions of

orthonormality in position and momentum space.  (Compare with

Eqn (158), Ch.1, where the Kronecker delta has just been

replaced by the Dirac delta function.)  In addition, we

expect there to be operators for position and momentum just

as before we constructed an operator for Sz.  Our model in

such a construction is Eqn (101), Ch.1, where, however, we

would expect the discrete sum there to be replaced with an

integral over continuous positions or momentums.  Thus, as a

natural outgrowth of our earlier experiences with discrete

systems, we expect a representation for position and momentum

operators by

x = ∫dx'x'|x'><x'|, (143)

and

px = ∫dpx'px'|px' >< px'|, (144)

where, in this context, the x' and px' are numbers and the x

and px are our more abstract operator quantities.  We now

check that Eqn (102) of Ch.1 above is holding:

x|x'> = (∫dx"x"|x" > < x"|)⋅|x'>

      = ∫dx"|x" > δ(x" - x')x" = x'|x'>, (145)

and

px|px' > = (∫dpx"px"|px" > < px"|)⋅|px'>

       = ∫dpx"px"|px" > δ(px" - px') = px'|px'>. (146)
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An equation of the form A|a'> = a'|a'> is called an

eigenvalue equation, the state |a'> is called an eigenvector

(or eigenket) and the number a' is called the eigenvalue.  We

first saw such forms for spin systems.  For spin 
1
2  the

eigenvectors are just |+ > and |- > and the eigenvalues of the

operator Sz are just ± 
h

2 .

Let us also assume the existence of the mathematical

adjoint operation, denoted "+", which connects our new bra

and ket states.  That is, we assume that

(|x'>)+ = < x'|, (147)

(|px'>)
+ = < px'|. (148)

Now the physical outcomes, x' and px' in (143) and (144),

represent the result of position or momentum measurements in

a one dimensional space.  They are necessarily real and this

has the consequence that

x+ = (∫dx'x'|x'> < x'|)+ = ∫dx'x'|x'> < x'| = x, (149)

px
+ = (∫dpx'px'|px' > < px'|)

+ = ∫dpx'px'|px' > < px'| = px. (150)

Such a construction always results in a physical property

which is Hermitian.  As pointed out at the end of Chapter 1,

Hermitian operators have real expectation values.  Using

(149) and (150), we then find that

< x'|x = x'< x'| , (151)
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< px'|px = px'< px'| , (152)

where we have used the adjoint in (145) and (146).  (151) and

(152) may be independently verified using the definition of x

and px, Eq
ns (143) and (144) above.  We will also refer to

equations in the form (151) and (152) as eigenvalue

equations.

We make another important realization in the development

of our x,px formalism by considering Eq
n (142).  Using the

x-representation of the unity operator, we write the left

hand side of this equation as (inserting the unit operator in

the x-basis, Eqn (137))

< px'|px" > = ∫dx'< px'|x'> < x'|px" > (153)

which, because

 < px'|x'> = (< x'|px' >)+ = < x'|px' >∗ , (154)

we can write as

< px'|px" > = ∫dx'< x'|px' >∗< x'|px" > . (155)

Therefore Eqn (142) reads

∫dx'< x'|px' >∗< x'|px" > = δ(px' - px" ). (156)

By comparing the left hand side of (156) with an explicit

representation of the delta function (see Eqn (116) above;

remember, the Dirac delta function is even in it's argument)
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1

2πh
 ∫dx'e

-ix'(px' - px")/h = δ(px' - px" ) , (157)

we see that it is consistent to choose

< x'|px' > = 
1

√2πh
 eix'px'/h . (158)

We will take (158) as the definition of the bra-ket product

< x'|px' >. We will test the consistency of this defintion

shortly.

We are now in a position to make a crucial realization.

We introduce the "Hamiltonian" operator

H = 
px
2

2m   , (159)

which is the obvious operator quantity to represent the

energy of a free particle.  In analogy to the eigenvalue

equations for spin, position and momentum, we postulate a

similar equation for H.

H|a'> = Ea'|a'>. (160)

The a' are labels of the allowed energy values Ea' .  (In the

case of the free particle, "a'" represents a continuous

label, which, in fact, it may be more convenient simply to

choose as E, the actual energy value of the particle.)  We

now multiply both sides of (160) on the left by the bra <x'|:

< x'| 
px
2

2m  |a'> = Ea'< x'|a'>. (161)
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In order to show the connection of (161) to our previous

results, consider the quantity < x'|px|a'>.  By inserting a

complete set of px'  states, we see that

< x'|px|a'> = ∫dpx' < x'|px' > < px'|px|a'>

           = 
1

√2πh
 ∫dpx' eix'px'/hpx'< px'|a'>, (162)

where we have used (152) and (158).  We may now write

   ∫dpx' eix'px'/h px'< px'|a'> = 
h

i 
∂

∂x'
 ∫dpx' eix'px'/h < px'|a' >. (163)

Working backwards, it is clear that

1

√2πh
 ∫dpx' eix'px'/h < px'|a'> = ∫dpx' < x'|px' > < px'|a'>

         = < x'|a'> . (164)

Putting (162),(163), and (164) together yields the statement

that

< x'|px|a'> = 
h

i 
∂

∂x'
 < x'|a'> . (165)

Since (165) is supposed to be true for any |a'>, this then

implies ("stripping off the |a'>")

< x'|px =  
h

i 
∂

∂x'
 < x'|. (166)

In other words, the Hilbert space operator px acting on a

position bra is the same as a differential operator, 
h

i 
∂

∂x'
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acting on the same bra.  Please do not think this means that

px = 
h

i 
∂

∂x'
 .  It only means that the Hilbert-space operator

quantity px (defined in (144) above) is replaced by the

differential operator  
h

i 
∂

∂x'
  when acting in position space.

(When px acts in momentum space, it gives the number px').  By

taking the Hermitian adjoint of (166) we then find that

px|x'> = - 
h

i 
∂

∂x'
 |x'>. (167)

(Remember, px is Hermitian.)  Likewise, by considering the

quantity < px'|x|a'>, it is possible in the same manner to show

that

< px'|x = - 
h

i 
∂

∂px'
 < px'|, (168)

and

x|px' > = 
h

i 
∂

∂px'
 | px'>. (169)

Let us test the consistency of these conclusions along

with the statement (158) above.  Consider the quantity

< x'|x|px' >.  By allowing x to act first to the left, we find

that

< x'|x|px' > = x'< x'|px' >. (170)

On the other hand, by allowing x to act first on |px' > we find

< x'|x|px' > = 
h

i < x'| 
∂

∂px'
 |px' > = 

h

i 
∂

∂px'
 < x'|px' >
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           = 
h

i 
1

√2πh
 

∂

∂px'
 eipx'x'/h = 

x'

√2πh
 eipx'x'/h

           = x'< x'|px' >. (171)

The right hand sides of (170) and (171) agree, as they should.

This confirms (158) above, up to an overall constant.

Let us now go back and apply what we have learned to

(161) above.  We now recognize that

< x'|px
2 = 

h

i 
∂

∂x'
 < x'|px = - h

2 
∂2

∂x'2
 < x'|, (172)

so that (161) reads

- 
h
2

2m 
∂2

∂x'2
 < x'|a'> = Ea' < x'|a'>. (173)

We recognize (173) as just the time-independent

Schrödinger equation, Eqn (134) above, that we originally

motivated from a wave-packet point of view.  We now see that

our wave equation and operator viewpoints will connect if we

take

ua'(x') = < x'|a'>. (174)

That is, we have come to the realization that the time-

independent Schrödinger equation is just a position-space

statement of the eigenvalue equation for the Hamiltonian, and

the functions ua'(x') are wavefunctions that express the

transition amplitude from the energy basis to the position

basis.  That is, along with a characterization of the unit
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operator in position and momentum space as in (137) and (138),

we also assume that there is also an energy characterization:*

     
 

 



 ∑
px'≥0,

  px'<0

 ∫
0

∞
 dEa' or ∑

a'

 
 


 
|a'> <a'| = 1. (175)

I am suggesting in (175) that in some occasions we will find a

discrete spectrum of energy values, Ea'.  You should go back to

the discussion Ch.1 to refresh yourself on the concept of a

wavefunction as a transition amplitude.  Also compare (174)

above with Eqn (207) of Chapter 1.

Interpreting |ua'(x')|
2 as a probability density is also

consistent with our earlier finding in the case of spin that

probabilities are the absolute squares of transition

amplitudes.  That is, we may use completeness in position

space to write energy-space orthonormality (here we assume the

energies are discrete), < a'|a" > = δa'a", as

∫dx'< a'|x'> < x'|a" > = ∫dx'ua'
∗  (x')ua"(x') = δa'a". (176)

When a' = a" we get

∫-∞
∞ dx'|ua'(x')|

2 = 1, (177)

* Comment on Eqn (175):  What we are seeing here for the first time, in
the case of the continuous energy values of the free particle, is a
case of energy degeneracy of the energy eigenkets, |a'>.  Specifying
their energy, Ea' still leaves open the question of whether the

particle has positive or negative momentum.  Thus, in the case of the
continuum statement of completeness in (175), it is necessary to add

the sum Σ
p'x≥0,p'x<0

 in order to satisfy completeness. We will talk more

about degeneracies of systems in Chapter 4.
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which is the same as (111) above when ψ(x,t) refers to an

energy eigenstate, ψ(x,t) → ua'(x)e
-iEa't/h .

When (160) above is projected into < px'|, we get

< px'| 
p
2
x

2m |a'> = Ea'< px'|a'>, (178)

⇒ Ea' = 
p'

2
x

2m  , (179)

which confirms that Ea' represents the energy of a free

particle.  The quantities < px'|a'> are the momentum space

energy wavefunctions.  The position-space energy

wavefunctions ua'(x') = < x'|a' > can be related to the

< px'|a'> by the use of momentum-space completeness:

ua'(x') = < x'|a' > = ∫dpx' < x'|px' > < px'|a'>

         = 
1

√2πh
 ∫dpx'e

ipx'x'/h < px'|a'>. (180)

Comparing (180) with (112) above, when ψ(x,0) = ua'(x), we see

that

ua'(px' ) ≡ < px'|a'>. (181)

should be interpreted as the momentum-space energy

wavefunction.

Notice that there is as yet no reference to time

development in our operator formalism, as opposed to the wave

packet discussion, where the Schrödinger equation described

the evolution in time of our Gaussian wave packet, for

example.  However, we receive an important hint on one way to



2.52

incorporate time development from Eqn (129) which tells us

how the energy eigenvalue wavefunctions ua'(x) = <x|a'> evolve

in time.  In bra-ket notation, (129) can written

< x'|a',t > = e-iEa't/h < x'|a'>, (182)

where we have defined the time-evolved state |a',t >.  But

notice that

< x'|e-iHt/h|a'> = e-iEa't/h < x'|a'>. (183)

Therefore

< x'|a',t > = < x'|e-iHt/h|a'>. (184)

Eqn (184), being true for all < x'| then implies that

|a',t > = e-iHt/h|a'>. (185)

The quantity e-iHt/h is called the time evolution

operator.  It provides the key to understanding the time

development of particle states.  We notice that this

operator, like the operators that describe rotations,is

unitary.  That is, given that H is Hermitian (which is

certainly true for the free particle where H =  
p
2
x

2m ) we have

that

(e-iHt/h)+ = eiH
+t/h = eiHt/h . (186)

Now we take the time derivative of (185).  This yields

ih 
∂

∂t
 |a',t > = H e-iHt/h|a'> = H|a',t > (187)
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By multiplication by a position bra, < x'|, and by use of

(166) above, this now reads

ih 
∂

∂t
 < x'|a',t > = - 

h
2

2m 
∂2

∂x'2
 < x'|a',t >. (188)

Eqn (188) says that the time-evolved energy eigenstate,

projected into position-space, satisfies the Schrödinger

equation.  As a continuation of our earlier notation, we will

write ua'(x',t) = < x'|a',t > = e-iEa't/h ua'(x').  (It is easy to

check that (187), projected into momentum space, gives the

momentum space Schrödinger equation with

ψ(px',t) = < px'|a',t > = e-iEa't/h ψ(px')).  The final connection

with the Schrödinger equation, (119) above, becomes complete

when we realize that this is a linear differential equation.

Therefore, given the time-evolved solutions

ua'(x',t) = < x'|a',t > of the time independent Schrödinger

equation, the most general solution is (again assuming a

situation where the energies are discrete)

ψ(x',t) = ∑
a'

ua'(x',t)Ca' = ∑
a'

<x'|a',t> Ca' (189)

where the Ca' are an arbitrary set of constants.  Introducing

the notation

|ψ,t > = ∑
a'

 | a',t > Ca' (190)

for the most general linear combination of ket states, we

find that

ψ(x',t) = < x'|ψ,t >. (191)
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In the same way, projecting the general state |ψ,t >

into momentum space, the corresponding momentum-space energy

wave function is

ψ(px',t) =  ∑
a'

ua'(px',t)Ca' = ∑
a'

<px'|a',t> Ca' (192)

The quantities ψ(x',t) and ψ(px',t) are, of course, Fourier

transforms of each other, the general connection being Eqn

(113) above. An alternative treatment of time development

will be presented in Chapter 4.

In the context of our coordinate space discussion, if we

take A = A(x), expectation values are given as

< A(x) >ψ,t = < ψ,t|A(x)|ψ,t >

              = ∫dx'dx"< ψ,t|x'> < x'|A(x)|x" > < x"|ψ,t >. (193)

Now

A(x)|x" > = A(x")|x" >, (194)

and so

< x'|A(x)|x" > = A(x")< x'|x" > = A(x")δ(x' - x"), (195)

which results in

< A(x) >ψ,t = ∫dx'A(x')|ψ(x',t)|
2. (196)

Since |ψ(x',t)|2 is the probability density, we see that

< A(x) >ψ,t is obtained as a probability density - weighted

integral and is explicitly real.

In the same manner, if A = A(px), one can show that
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< A(p) >ψ,t = ∫dpx'A(px')|ψ(px',t)|
2. (197)

We have now recovered the basic dynamical equation of

wave mechanics, the Schrödinger equation, from our earlier,

spin-inspired, operator formalism.  We have done this by

applying the lessons we learned in the simpler spin case by

analogy to particles in coordinate space.  Our understanding

of the mathematics of the underlying operator formalism is

still quite incomplete.  However, we have reached a point

where, using what we have learned, we can solve some simple

one-dimensional problems in quantum mechanics.  This is what

we will do in the next Chapter.  Following that, we will try

to fill in some of the gaps in our understanding of the

operator formalism in Chapter 4.
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Problems

1. Use the uncertainty relation to show that the potential,

V(r) = 
-k
r2+ε

 , k, ε > 0,

is unstable for zero angular momentum states.  [Remember

the argument for the stability of the hydrogen atom.  Also

remember that setting 
∂Ε

∂r
 = 0 can pick out either a maximum

or a minimum.]

2.  Let's return to the original S-G setup. We found that

if δpzδz ≥ h (Eq_n (57), p.1.26 of the notes), then δφ ≥ 1,

and thus we have an intrinsic uncertainty in the phase

angle of the magnetic moment. We now recognize that the

condition δpzδz ≥ h is responsible for the diffraction or

spreading out of the atomic beam as it passes through the

slit in the wall. (See the picture on p. 1.25 of the

notes.)

     (a)  Find the approximate value of the slit width, δz,

     that causes the magnetically split S-G beam to "wash

     out" due to diffraction.  Evaluate δz numerically for

     our usual values:

           MAg = 1.79 x 10-22 gm, 
∂Η

∂z
 = 104 gauss . cm-1,

         l = 10 cm, |γ| ~~ 107 gauss-1sec-1, 
1
2 mv

2 = 
3
2 kT,

                           T = 103 °K.

     (b)  Now replace the silver atom's mass, MAg, with the

     electron's mass in this calculation.  Find the new

slit

     width, δz, which causes diffraction washout.

3. Consider a wave packet defined by (47) on p. 2.18 with

g(k) given by
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g(k) = {0, k < -KN, -K < k < K

0, K < k.

(a) Find the form f(x) and plot it.

(b) Show that a reasonable definition of δx for (a) yields

δk δx ~ 1.

(c) Find the value of N (up to a phase factor) for which

∫
−∞

∞

dx |f(x)|2 = 1.

[Hint: Think delta function.]

4. Find the momentum space wavefunction Ψg(px,0)

corresponding to the t = 0 coordinate space Gaussian wave

function Ψg(x,0), given in (86) of the notes.  What value

of px maximizes |Ψ(px,0)|2?  Show that the width of

|Ψ(px,0)|2, in the same sense as on p.2.20 of the notes, is

δpx = 
h

2δx
 .

[Partial answer: Ψg(px,0) = 
√2δx

(2πh2)1/4
exp 


 
- 

δx2

h2(p
--px)2  ]

5. Use the result of problem 2 to show the statement in the

notes, p.2.29 (below the figure).That is, show that

<px>
m  ≠ 

1
m ∫dpx px|Ψ(px,0)|2 = 

p-

m,
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and therefore that 
<px>
m  "corresponds to the usual notion of

particle velocity."

6. Starting with the coordinate space free particle

Schrodinger equation (119) of Ch. 2, show that the momentum

space Schrodinger equation is given by Eq. (127) of Ch. 2.

7.  Define (the "uncertainty in A")

∆A = √<A2>ψ - <A>
2

ψ .

For Ψg(x,o) as in the notes, Eq. (86), find:

(a)  ∆x = ?

(b)  ∆px = ?

A useful integral is

∫-∞∞  dx x2 e-αx
2 = - 

d

dα
 ∫-∞∞  dx e-αx

2

where ∫-∞∞  dx e-αx
2 = √π

α
 .

8. Show that, in addition to Eq. (197) of Ch. 2, we may

also write

<A(px)>ψ,t = ∫   dx' Ψ*(x',t) A(hi 
∂

∂x'
) Ψ(x',t),

for the expectation value of A(px) if A(px) is a power

series in px.
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Other problems

9. Consider a model of a heavy-light molecular system where

the potential energy between the attractive heavy molecule

(of infinite mass) and the light orbiting molecule (of mass

"m") is given by

V(r) = 
1
2 mω

2r2,

where "r" is the separation distance between the two

molecules and "ω" is a constant. The angular momentum of

the electrons in the Bohr atom were quantized in units of

h. Assuming that the angular momentum of the light molecule

is similarly quantized, and that only circular orbits are

possible, find:

(a) The radius, rn, of the light molecule's orbit in the nth

angular momentum state.

(b) The total energy, En, of the nth angular momentum state.

10. Given the momentum space free-particle wavefunction ("x-",

"a" are just constants) at t=0,

Ψ(px) = A 
exp(

i
h
 x- px)

 √px
2 + a2

,

(a) Find the value of the constant "A". (An overall phase

does not matter.)

(b) Find the expectation value of the momentum, <px>.

(c) Find the momentum wavefunction at all later times,

Ψ(px,t).

11. (a) Starting with the definition, <px>ψ,t = <Ψ,t|px|Ψ,t>,

show that
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<px>ψ,t = 
 ⌡

⌠

-∞

∞

dx'ψ*(x',t)
h

i 
∂ 

∂x'
 ψ(x',t).

(b) Using (a) (or any other means), also establish that

<px>ψ,t
m  = ∫

-∞

∞
dx'j(x',t),

where

j(x',t) = 
ih
2m  




 

∂ψ*

∂x
 ψ - ψ* 

∂ψ

∂x

is the probability current.

12. Use the Heisenberg uncertainty principle to estimate

the ground state energy of a one-dimensional harmonic

oscillator with energy,

E = 
p2

2m + 
1
2 mω

2x2.

13. Let's say we tried to use visible light instead of X-

rays in a Compton-like scattering experiment (photons

scattering from electrons). In this case show that the

fractional change in the frequency, ν, of the scattered

light is given approximately by

|∆ν|

ν
 ≈ 

2hν
mc2 sin

2
θ
2.

14. Given the position space free-particle wavefunction,

Ψ(x) = A exp(
i
h
 p-x - 

|x|

2δx
),

(a) Find the value of the constant "A". (An overall phase

does not matter.)
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(b) Find the average momentum of the particle (the

"expectation value" of px), <px> = <Ψ|px|Ψ>.

15. Consider the following experiment done with spin 
1
2

particles (in this case thermal neutrons would probably

work the best) on a flat table top:

"1"
"2"

S  =   /2y
' h

screen

I(B)

beam splitter

That is S'y = 
h

2 is first selected by magnet "1", then this

beam is split into two parts (with equal amplitudes) that

travel along the (equal length) paths shown.  Before reaching

the beam splitter, the particles have velocity "v" and the

beam has intensity I0.  A second magnet with a uniform

magnetic field pointing along the z-axis is also positioned

along one of the beam paths, as shown.  Assume that the beams

constructively interfere with one another at the screen when

magnet "2" is turned off, i.e. I(B=0) = I0.

(a) Show that the state which emerges from magnet "1"

(S'y = + 
h

2) is

|+-> = 
1

√2
 (|+>-i|->).

(Sz|-+> = -+ 
h

2 |-
+> as usual).
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(b) Find an expression for the time-evolved state which

emerges from magnet "2", given that H = -µ
≥.B
≥
 = -γBSz:

|+-,t> = ?

(c) Find an expression for the intensity of the beam spot,

I(B), as a function of the magnetic field of magnet "2".

I'll give you a choice of three methods:

Method 1:

|Ψ> = 
1
2 (|+

-,t> + |+->),

I(B) = I0 |<Ψ|Ψ>|2.

Method 2:

I(B) = I0 |<+
-,t|+->|2.

Method 3:

I(B) = I0 always.
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Chapter 3: Some One-Dimensional Solutions
to the Schrödinger Equation

The discussion in the last Chapter centered upon the

case of a free particle in a single space dimension.  The

Schrödinger equation can be written as

ih 
∂

∂t
 |ψ,t > = H|ψ,t >, (1)

where

H = 
p
2
x

2m . (2)

It is natural to assume that more general forms for H

are possible.  The form of (2), which is an operator

statement, is very classical looking.  We hypothesize that

the interaction of a quantum mechanical particle with an

external potential V(x) can also be represented by it's

classical form:

H = 
p
2
x

2m + V(x). (3)

The crucial thing that must be checked in writing down (3) is

that the probability density interpretation given to

|ψ(x,t)|2 in (110) of the last Chapter, which was based on

the existence of a conserved probability current, still

holds.  You will provide this check in a problem.  In

addition, the Schrödinger equation, which now reads
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ih 
∂

∂t
 ψ(x,t) = - 

h
2

2m 
∂2ψ(x,t)

∂x2
 + V(x)ψ(x,t), (4)

is still separable in space and time, which implies the time

evolution of the energy eigenvalue states is as in (185) of

Chapter 2 and that e-iHt/h is still the evolution operator.

Of course, not every V(x) in (3) has a physical

significance.  The energies of our system must be real, which

implies that

< a'|H|a'> = Ea'<a'|a'> = Ea', (5)

E∗
a
 = < a'|H|a'>∗ = < a'|H|a'>+ = < a'|H+|a'>. (6)

Comparing (5) and (6) for any state a' implies that

H+ = H (7)

For (3) this means we must have

V(x)+ = V(x). (8)

That is, the potential operator must be Hermitian.

Since the Schrödinger equation (4) is separable, we can

define a time-evolved energy eigenstate

|a',t> = e-iHt/h|a'> = |a'> e-iEa't/h, (9)

as we did in the last Chapter for the free particle.

Completeness of the |a'> (we assume a discrete form)

∑
a'

|a'> < a'| = 1, (10)
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then implies for any state |ψ > that

|ψ > = ∑
a'

|a'> < a'|ψ >. (11)

When projected into position space, this becomes (identical

to Eqn (189) of Chapter 2 at t=0)

ψ(x,0) =  ∑
a'

ua'(x)Ca' (12)

where we have learned that Ca' =  < a'|ψ >.  Since we know the

time development of the ua'(x), we then have that

ψ(x,t) =  ∑
a'

ua'(x)e
-iEa't/hCa' (13)

Eqn (13) indicates that the knowledge of the energy

eigenfunctions ua'(x) and eigenvalues Ea' provide a way of

constructing all possible functions ψ(x,t) that solve the

Schrödinger equation.  For this reason, the solution to the

time-independent Schrödinger equation

 



 



- 
h
2

2m 
d2

dx2
 + V(x)  u(x) = Eu(x), (14)

where we have included a potential V(x), is of paramount

importance in quantum mechanics.

We will study the solution to (14) above in this Chapter

for a simple set of potentials for which complete analytic

solutions are possible.  The four problems we will study here

will be:
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1. The infinite square well

2. The finite potential barrier

3. The harmonic oscillator

4. The attractive Kronig-Penney model

We will continue to limit the discussion to a single

dimension of space for now.
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1.  The infinite square well

We will take the potential to be as follows.

-a 0 a x

V(x)

That is, we are assuming V(x) = 0 for -a < x < a, but

V(x) → ∞ for |x| > a.  A consistent way of interpreting this

potential is to say that there is zero probability of the

particle to escape from the interior region of the well into

the shaded region.  This will be insured if we take the

boundary conditions

u(x)|x = ± a = 0. (15)

The easiest way to solve this problem is in the

coordinate space representation of the wavefunction.  Thus,

we need to solve

- 
h
2

2m 
d2

dx2
 u(x) = Eu(x). (16)

subject to the boundary conditions (15).  Eqn (16) can be

written as

- 
d2

dx2
 u(x) = k2u(x) (17)

where (k is now a magnitude only)



3.6

k ≡ 
 


 
 

2mE

h
2  

1/2
. (18)

We have left the usual subscript off u(x) in

anticipation of a labeling scheme for the energy eigenvalues.

Of course, the linearly independent solutions to (17) are

u(x) = A sin(kx) (19)

or

u(x) = A' cos(kx). (20)

If we apply the boundary conditions (15) to the

solutions (19), we find that this means

sin(± ka) = 0 (21)

which implies that

ka = nπ (22)

for n = 1,2,3... .  n = 0 is a trivial solution and n = -1,

-2,-3,... are not linearly independent.  Eqn (22) tells us

the allowed energy levels associated with the odd-space

wavefunctions sin(kx) are discrete:

En- = 
1
2m  


 
 

hnπ
a  

2
(23)

(The "n-" notation means the nth odd energy level).

Likewise, for the even solutions, (20), we have

cos(± ka) = 0, (24)

which means
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ka = 
 


 
n - 
1
2 π , (25)

for n = 1,2,3,... (n = 0,-1,-2,-3,... are not linearly

independent).  The energies of the even-space wavefunctions

cos(kx) are thus

En+ = 
1
2m  


 
 

h ( )n-1/2 π
a  

2

. (26)

Qualitative plots of the lowest few odd and even

wavefunctions are given below.

Odd solutions:

-a 0 a

2

E  = )2___
a
π1

2m
__

2-

n = 2

n =1 1
2m
__E  = 

2
hπ

a

h

)

(

(1-

Even solutions:

h
2

E  = )a
π1

2m
__

3+ 2

2

E  = )3
a
πh1

2m
__

2+ 2

-a 0 a

E  = 1
2m
__ hπ

2

2

a1+

n = 2

n =1

n = 3
5

)

(

(

(

The lowest energy solution is given by E1+.  If we didn't

know its exact value, we could guess it approximately from
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the uncertainty principle, assuming it is a minimum

uncertainty state.  We have that

∆px∆x ≈ h , (27)

for such a state.  If we say that ∆x ≈ 2a and that px ≈ ∆px,

then one obtains the estimate

Elowest = 
p
2
x

2m ≈ 
h
2

8ma2
 , (28)

which is to be compared with the actual value, E1+ = 
h
2π2

8ma2
.

We now wish to normalize the solutions (19) and (20).

We use the notation

un-(x) = < x|n- > = A sin(kn-x), (29)

un+(x) = < x|n+ > = A' cos(kn+x), (30)

and set

1 = < n-|n- > = ∫-a
a
dx u∗

n-
(x)un-(x,) (31)

and

1 = < n+|n+ > = ∫-a
a
dx u∗

n+
(x)un+(x), (32)

Doing the integral in (31) gives

∫-a
a
dx u∗

n-
(x)un-(x) = |A|

2a, (33)

and similarly
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∫-a
a
dx u∗

n+
(x)un+(x) = |A'|

2a. (34)

The overall phase of wavefunctions is arbitrary, so we

may choose A,A' as real and positive:

A,A' = 
1

√a
. (35)

One of the major tenants of quantum mechanics is

orthogonality of states.  Verification in the case of the

product < n-|n'+ > is easy:

< n-|n'+ > = 
1
a ∫-a

a
dx sin(kn-x) cos(kn'+x) = 0. (36)

(The integral of an odd × even = odd function over an even

interval is zero.)  The product < n+|n'+ > should also be

zero.  We can see this as follows.  (n ≠ n')

< n+|n'+ > = 
1
a ∫-a

a
dx cos (kn+x) cos (kn'+x)

 

  a
1
 

 


 

2(kn+ - kn'+)

sin [(kn+ - kn'+)x] |
-a

a

  
 



 +  
2(kn+ + kn'+)

sin [(kn+ + kn'+)x] |
-a

a

  =

 = 0 . (37)

This comes about since

akn+ =  


 
n - 
1
2 π ,

 

⇒ a(kn+ - kn'+) = (n - n')π

 
⇒ a(kn+ + kn'+) = (n + n' - 1)π, 

(38)

Likewise, one can show that < n-|n'- > = 0 for n ≠ n'.

By defining a label P that takes on values ± (labeling
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even/odd functions of x), we may summarize the statement of

orthonormality here by

< nP|n'P' > = δnn'δPP'. (39)

That the solution of the Schrödinger equation forms a

complete orthogonal set of functions is a theorem that can be

proven, so we are seeing here a special case of a very

general situation.  (We will continue to sharpen our

understanding of the mathematical meaning of completeness in

the next Chapter.).

The most general wavefunction consistent with the

boundary conditions can now be written as

|ψ > = ∑
n=1

∞

 [Cn+|n+ > + Cn-|n- >], (40)

where Cn+ and Cn- are sets of constants. These constants are

not totally arbitrary since we must have

1 = < ψ|ψ >, (41)

which means that

 ∑
n=1

∞

 [|Cn+|
2 + |Cn-|

2] = 1. (42)

Eqn (42) suggest that |CnP|
2 be interpreted as the probability

that the general state |ψ > is in the energy eigenstate |nP >.

As pointed out below Eqn (12) above, these constants are

given by Ca' = < a'|ψ >, which in this specific case means that

(see also (174) of Chapter 2)
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CnP = < nP|ψ > = ∫-a
a
dx u∗

nP
(x)ψ(x).  (43)

In an analogy with a 3-dimensional vector space, CnP is like

the projection of an arbitrary vector on a given axis or

direction.  Our interpretation of |CnP|
2 as a probability is

indeed consistent with our spin discussion of the first

Chapter, the main difference being that the number of spin

states was finite ("up" and "down" only for spin 
1
2 ), whereas

here the number of possible states, np, is infinite.  (It is

a "countable infinity" in mathematician's jargon.)

Now while the |nP > have sharp energy eigenvalues, we

should realize that |ψ > does not.  It is a coherent mixture

of states with different energies.  |ψ > does, however, have a

well-defined average energy, given by its expectation value:

< H >ψ = < ψ|H|ψ > = ∑
n'=1

∞

 [C∗
n'+

 < n'+| + C∗
n-
 < n'-|]

           ⋅ H ⋅ ∑
n=1

∞

 [Cn+|n+ > + Cn-|n- >], (44)

  = ∑
n=1

∞

 [En+|Cn+|
2 + En-|Cn-|

2]. (45)

Eqn (45) is consistent with our interpretation of |CnP|
2 as

the probability that |ψ > is in the state |nP >.

Given the energies EnP, it is easy to write down the time

evolved state |ψ,t >:

|ψ,t > = ∑
n=1

∞

 [Cn+|n+,t > + Cn-|n-,t >], (46)
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or

|ψ,t > = ∑
n=1

∞

 [Cn+|n+ >e-iEn+t/h + Cn-|n- >e-iEn-t/h]. (47)

Of course, we still have

< ψ,t|ψ,t > = ∑
n'=1

∞

 [Cn'+e
iEn'+t/h < n'+| + Cn'-e

iEn'-t/h < n'-|]

            ⋅ ∑
n=1

∞

 [Cn+e
-iEnt/h | n+ > + Cn-e

-iEn-t/h | n'- >]

       = ∑
n=1

∞

 [|Cn+|
2 + |Cn-|

2] = 1, (48)

so that probability is conserved.

The quantity P in |nP > is called "parity,"  It simply

categorizes whether a wave function is even (P = +) or odd

(P = -) under the substitution x → -x.  Let us define a

parity operator by

P|x > = |-x >. (49)

This implies that

< x|P+ = < -x|, (50)

We have that

    ←|        |→

< x|(P+-P )|x' > = < -x|x' > - < x|-x' >

                = δ(x + x') - δ(x + x') = 0. (51)

Since (51) is true for all < x|,|x' >, we have that
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P
+ = P . (52)

That is, the parity operator is Hermitian.  We then have that

< x|P |nP > = < -x|nP > = P< x|nP >. (53)

 
  unP(-x)

Since (53) is true for all < x|, we may remove it to reveal

that

P|nP > = P|nP >, (54)

⇒   < nP|P = P< nP|. (55)

We thus learn that the |nP > are eigenstates of P with

eigenvalues P.  We also notice that

PH|nP > = EnPP|nP > = PEnP|nP > , (56)

and

HP|nP > = PH|nP > = PEnP|nP >, (57)

so that

[H,P]|nP > = 0. (58)

Eqn (58) being true for all states |nP > then it means that

[H,P] = 0 . (59)

Thus, the Hamiltonian and the parity operator commute.  The

reason that (59) is significant is because we will learn in

the next Chapter that any operator which does not explicitly
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depend on time and which commutes with the Hamiltonian has

expectation values which are a constant of the motion

(assuming we are working with a conservative system.)  Thus,

the parity, P, of a state |nP > does not change with time.

We have found the energies of the infinite square well

by solving a differential equation with given boundary

conditions.  As an illustration of techniques which do not

involve the solution of a differential equation, we will now

solve for the energies of this system using operator

techniques.  First, notice that we may write

1

√a
 sin  


 
 

nπx'
a   = 

1

√a
 sin  


 


 
(n + 1)πx'

a  - 
πx'
a  

= 
1

√a
  


 


sin  


 
(n + 1)πx'

a  cos  


 
πx'

a  - sin  


 
πx'

a  cos  


 
(n + 1)πx'

a  .

(60)

Also writing

cos  


 
 

(n + 1)πx'
a  = 

a

(n + 1)π
 
d
dx ⋅ sin  


 
 

(n + 1)πx'
a  , (61)

we have that

1

√a
 sin  


 
nπx'

a  =

 
 



 



cos  


 
πx'

a  - sin  


 
πx'

a  
a

(n + 1)π
 
d
dx'  

1

√a
 sin  


 
(n + 1)πx'

a . (62)

In terms of the un-(x'), this says that
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 un-(x') =  



 



cos  


 
πx'

a  - sin  


 
πx'

a  
a

(n + 1)π
 
d
dx'  u(n+1)-(x').(63)

or

< x'|n- > = 
 



 



cos  


 
πx'

a  - sin  


 
πx'

a  
a

(n + 1)π
 
d
dx'  < x'|(n+1)- >.

(64)

Now using

< x'|x = x'< x'|, (65)

and

< x'|px = 
h

i 
∂

∂x'
 < x'|, (66)

Eqn (64) may be written as

< x'|n- > = < x'|Ln+1|(n+1)- >, (67)

where

Ln+1 = cos  


 
πx

a  - sin  


 
πx

a  
a

(n + 1)π
  
ipx
h

 . (68)

Let me emphasize that x and px in (68) are operators, not

numbers.  Since Eqn (67) is true for all < x'|, we thus have

that

|n- > = Ln+1|(n+1)- >. (69)

Similarly, we have that
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1

√a
 sin  


 
nπx'

a  = 
1

√a
 sin  


 
(n - 1)πx'

a  + 
πx'
a

  = 
1

√a
  


 


sin  


 
(n - 1)πx'

a  cos  


 
πx'

a  + sin  


 
πx'

a  cos  


 
(n - 1)πx'

a  

  = 
 



 



cos 
πx'
a  + 

a

(n - 1)π
 sin 

πx'
a  

d
dx'  

1

√a
 sin  


 
(n - 1)πx'

a .(70)

which says that

< x'|n- > = <x'|L+n-1|(n-1)- >, (71)

or

|n- > = L+n-1|(n-1)- >, (72)

where the adjoint of Ln-1 is the effective operator.  In a like

manner, for the positive parity states, we can show that

|n+ > = L+n-3/2|(n-1)+ >, (73)

|n+ > = L n+1/2|(n+1)+ >. (74)

Thus, given |1+ > or |1- >, we can generate all the higher n

states by repeated applications of L+n.  For example, we have

|3- > = L+2L
+
1|1- >, (75)

and

|4+ > = L+5/2L
+
3/2L

+
1/2|1+ >. (76)

Because we can raise or lower the n value of these states by
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repeated applications of the L+n or Ln (for various n values),

these are called "ladder" operators.

Let us say we know the ladder operators and their effect

on states, but suppose we didn't know the energy eigenvalues

of the system.  It is possible to find the energies of the

system as follows.  Let us evaluate the quantity

[H,L+n]|n- >.

This will give us the energies of the negative parity states.

To see this, it will necessary to do some operator algebra,

which should provide us good practice.  We shall have to deal

with the commutator

[H,L+n] = 
 



 



 
p2x
2m, cos  


 
πx

a  + 
a

nπ
 sin  


 
πx

a  
ipx
h

 . (77)

Before considering (77), let us work out some simpler things.

First, consider the quantity

< x'|[px,f(x)] = < x'|(pxf(x) - f(x)px). (78)

We then find that

   < x'|[px,f(x)] = 
h

i 
∂

∂x'
 (< x'|)f(x) - f(x') < x'|px

     = 
h

i f(x') 
d
dx' < x'| + 

h

i 
df(x')
dx'  < x'| - 

h

i f(x') 
d
dx' < x'|

= 
h

i 
df(x')
dx'  < x'| = 

h

i < x'| 
df(x)
dx  . (79)
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Being true for all < x'|, Eqn (79) implies that

[px,f(x)] =  
h

i 
df(x)
dx  . (80)

Likewise, one may show that

[x,f(px)] = - 
h

i 
df(px)

dpx
 . (81)

Using (80) we have

 


 


 px,cos  


 
πx

a   = ih 
π
a sin  


 
πx

a  , (82)

and

 


 


 px,sin  


 
πx

a   = -ih 
π
a cos  


 
πx

a  , (83)

for example.  Also useful are the following commutator

identities:

    [A,B] = -[B,A], (84a)

[A + B,C] = [A,C] + [B,C], (84b)

 [AB,C] = A[B,C] + [A,C]B. (84c)

Using (84c) we can now write

[H,L+n] = 
px
2m  




 



px,cos  


 
πx

a  + sin  


 
πx

a  
a

nπ
 
ipx
h

 

         + 
 



 



px,cos  


 
πx

a  + sin  


 
πx

a  
a

nπ
 
ipx
h

  
px
2m. (85)
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Using (82) and (83) this becomes

[H,L+n] = 
px
2m  


 
ih 

π
a sin  


 
πx

a  + 
1
n cos  


 
πx

a  px 

         +  


 
ih 

π
a sin  


 
πx

a  + 
1
n cos  


 
πx

a  px  
px
2m.  (86)

We want to try to combine various types of terms together.

In order to do this, let us try to move all the px operators

in (86) to the right of the factors involving x.  We must be

careful in doing this because x and px do not commute.  We

have that

px sin  


 
πx

a  = sin  


 
πx

a  px +  


 


px,sin  


 
πx

a  

           = sin  


 
πx

a  px - ih 
π
a cos  


 
πx

a  , (87)

px cos  


 
πx

a  = cos  


 
πx

a  px +  


 


px,cos  


 
πx

a  

           = cos  


 
πx

a  px + ih 
π
a sin  


 
πx

a  , (88)

Therefore, (86) can be written

[H,L+n] = 2 ⋅ 
ih
2m 

π
a sin  


 
πx

a  px + 
h
2

2m  


 
π
a

2
 cos  


 
πx

a

       + 2 ⋅ 
1
2mn cos  


 
πx

a  p
2
x + 

ih
2mn  


 
π
a  sin  


 
πx

a  px. (89)

This gives
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  [H,L+n]|n- > =  


 
h
2

2m  


 
π
a

2
 cos  


 
πx

a

    
 



+ 
h
2

m   


 
π
a  

 


 
1 + 

1
2n  sin  


 
πx

a  
ipx
h

 + 
1
mn cos  


 
πx

a  p
2
x |n- >. (90)

In the last term in Eqn (90), we may make the replacement

p
2
x|n- > = 2mEn-|n- > . (91)

As for the other terms in (90), the following consideration

will be of use.  We know that

|(n+1)- > = L+n|n- > , (92)

and

|(n-1)- > = Ln|n- > , (93)

or more explicitly

|(n+1)- > = 
 



 



cos  


 
πx

a  + 
a

nπ
 sin  


 
πx

a   
ipx
h

 |n- >, (94)

|(n-1)- > = 
 



 



cos  


 
πx

a  - 
a

nπ
 sin  


 
πx

a   
ipx
h

 |n- >. (95)

Subtracting (95) from (94) and multiplying by (
nπ
2a) gives

     


 
nπ

2a  [|(n+1)- > - |(n-1)- >] = sin  


 
πx

a  
ipx
h

 |n- >. (96)

Adding (94) and (95) gives

   
1
2 [|(n+1)- > + |(n-1)- >] = cos  


 
πx

a  |n- > . (97)
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Substituting (96) and (97) in (90) now gives

[H,L+n]|n- > =  


 
h
2

2m  


 
π
a

2
 
1
2 [|(n+1)- > + |(n-1)- >]

   + 
h
2

2m  


 
π
a

2
 

 


 
n + 
1
2  [|(n+1)-> - |(n-1)->]

 



+ 
1
n En-[|(n+1)-> + |(n-1)->] . (98)

Now, multiply on the left by < (n-1)-|.  On the left hand side

of (98) we have

< (n-1)-|[H,L+n]|n- > = <(n-1)-|HL+n - L
+
nH)|n- >

= E(n+1)-< (n-1)-|(n+1)-> - En-<(n-1)-|(n+1)->

     = 0 (99)

Explicitly evaluating the right hand side now tells us that

0 = 
h
2

2m  


 
π
a

2
 
1
2 -  

h
2

2m  


 
π
a

2
 

 


 
n + 
1
2  + 

1
n En-

     ⇒ En- = 
1
2m  


 
hπn

a

2
(100)

Thus, we have evaluated the energies of the negative parity

states simply from a knowledge of the properties of the

ladder operators.  We may similarly find the energies of the

positive parity states from the ladder operators.

Our evaluation of the negative parity energies above has

mainly been an exercise in the use of operator methods.  The
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initial solution for the energies using the coordinate space

Schrödinger equation was much easier in fact.  We will soon

look at a problem, the harmonic oscillator, where the

opposite is true.  That is, the solution of the coordinate

space differential equation is much more difficult to do than

the solution of the problem using operator methods.  We will

only use operator methods there because of this.
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2.  The finite potential barrier

The next potential we consider is shown below.

-a a x

V

V(x)

I III
II

0

We have broken the x space into three regions in which

we will separately solve the Schrödinger equation.

In regions I and III, we simply have the free space time

independent Schrödinger equation to solve.  The general

solution to

- 
h
2

2m 
d2u

dx2
 = Eu(x), (101)

can be written as

uI(x) = Ae
ik1x + Be-ik1x , (102)

uIII(x) = Ee
ik1x + Fe-ik1x , (103)

where k1 = 
√2mE
h

 .  We saw in Chapter 2 that ei(kx - wt)

represents a wave with momentum px = kh traveling in the +x

direction.  Therefore, we interpret the coefficient A in

(102) as the amplitude of a plane wave incident from the

left.  (There is no time dependence in (102) and (103)
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because we are interested in time independent or stationary

solutions in this Chapter.)  We will take as a boundary

condition the fact that the incident waves come from the

left. However, it would be wrong to conclude from this that

we could choose B = 0 here because we expect that there will

be reflected waves from the potential steps at x = ± a.

Because we are choosing only waves incident from the left we

must choose F = 0 in region III.

In region II we must solve

 - 
h
2

2m 
d2u

dx2
 = (E - V0)u(x) (104)

The solution of (104) depends on whether E > V0 or E < V0.

When E > V0, we have

uII(x) = Ce
ik2x + De-ik2x , (105)

where k2 = 
√2m(E - V0)

h
 .  Our solution so far consists of

(102), (103) (with F = 0), and (105). How are we to find the

five coefficients A,B,C,D, and E?  First, it should be clear

that one condition on these coefficients is an overall

normalization condition.  In the case of a continuum

distribution of energy values, as it should be evident is the

cases here (since there is no possibility of discrete bound

states), we can use the condition

< E'|E" > = δ(E' - E"), (106)



3.25

as applied to our right-moving waves.  (For another example

of delta-function normalization, see Eqn (142) of Chapter 2.)

Notice that (106) leads to

< E'|E" > = ∫-∞
∞
dxu∗

E'
(x)uE"(x) = δ(E' - E"),

in contradistinction to the condition of Eqn (177) of Chapter

2, which is appropriate to discrete energy levels.  Thus, we

really have only to determine 4 out of these 5 unknown

coefficients.  It will be convenient therefore to solve only

for the 4 ratios

B
A , 

C
A , 

D
A , and 

E
A .

In order to do this, we must bring out an underlying

requirement of solutions of the Schrödinger equation.  To see

this requirement, let us integrate the time independent

Schrödinger equation over an infinitesimal region surrounding

a point, x.

∫x0-ε
x0+εdx 

 



 



- 
h
2

2m 
d2u

dx2
 + V(x)u(x) = Eu(x) . (107)

Assuming a piecewise continuous potential, V(x), this says

that, in the limit that ε → 0

du
dx |+ = 

du
dx |-  , (108)

or, in words, that the first derivative of u(x) evaluated in

a limiting sense from points on the left or right of x0, is

continuous.  This eliminates something that looks like
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du
dx

x x

__

0

.

Integrating (108) again tells us that u(x) is also

continuous.  If a discontinuity in u'(x) were allowed, one

can show that we would loose our interpretation of |u(x)|2 as

a probability density.  The only exceptions to having a

continuous u'(x) come when non-stepwise continuous

potentials are considered.  We have already seen an example

of this in the infinite square well where, in fact, we have a

discontinuity in u'(x) at the edges of the well, x = ta.

Another example of a non-stepwise continuous potential where

a discontinuity in u'(x) is allowed is a delta-function

potential.  We will study such a situation shortly in the

attractive Kronig-Penny model.

For our problem, we must require the continuity of our

wavefunctions at all positions.  In particular, this means

our wavefunctions and their first derivatives must be

continuous in the neighborhood of the joining positions of

regions I, II and III.  This gives us four conditions on our

coefficients, which is just enough to determine the four

unknown ratios written down above.  At x = -a, we find that

Ae-ik1a + Beik1a = Ce-ik2a + Deik2a , (109)

from continuity of u(x), and
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Ak1e
-ik1a - Bk1e

ik1a = k2Ce
-ik2a - k2De

ik2a , (110)

from continuity of u'(x).  At x = a, we get the equations

Ceik2a + De-ik2a = Eeik1a, (111)

and

k2Ce
ik2a - k2De

-ik2a = k1Ee
ik1a, (112)

from continuity of u(x) and u'(x).  We now define the

transmission and reflection coefficients

T = 
 


 
 

E
A 

2
  . (113)

R = 
 


 
 

B
A 

2
  . (114)

We use the absolute squares of the ratios of amplitudes in

order that the results be interpretable as probabilities.

Note that

T + R = 1, (115)

as one must have if probabilities are conserved.  Solving

(109) - (112) gives us

B
A = 

i
2  




 

k2

k1
 - 

k1
k2

 e-2ik1a sin(2k2a)

cos(2k2a) - 
i
2  




 

k1

k2
 + 

k2
k1

 sin(2k2a)

 , (116)
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C
A = 

1
2  




 

1 + 

k1
k2

 e-ik2a e-ik1a

cos(2k2a) - 
i
2  




 

k1

k2
 + 

k2
k1

 sin(2k2a)

 , (117)

D
A = 

1
2  




 

1 - 

k1
k2

 e-ik1a e-ik2a

cos(2k2a) - 
i
2  




 

k1

k2
 + 

k2
k1

 sin(2k2a)

 , (118)

E
A = 

e-2ik1a

cos(2k2a) - 
i
2  




 

k1

k2
 + 

k2
k1

 sin(2k2a)

 . (119)

The transmission coefficients T and R, from (119) and (116)

respectively, are then found to be

T = 
1

cos2(2k2a) + 
1
4  




 

k1

k2
 + 

k2
k1

2
 sin2(2k2a)

 . (120)

and

R = 

1
4  




 

k2

k1
 - 

k1
k2

2
 sin2(2k2a)

cos2(2k2a) + 
1
4  




 

k1

k2
 + 

k2
k1

2
 sin2(2k2a)

 . (121)

Thus, even though in the case we are studying the plane wave

has an energy in excess of V0, the classical energy necessary

to overcome the potential barrier, there is in general a
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nonzero probability that a particle will reflect from the

barrier.

Let us examine the solution in the case E < V0 now.  The

wave function in regions I and III are as before, but now the

general solution in region II is

uII(x) = Ce
-Kx + DeKx , (122)

where K = 
√2m(V0 - E)

h
.  We notice that the only difference

now is the fact that we are working with real exponentials.

Therefore, rather than re-working out T and R from the start,

it is only necessary to make the substitution k2 →  + iK

everywhere.  We find in the E < V0 case that

T = 
1

cosh2(2Ka) - 
1
4  




 

K

k1
 - 

k1
K

2
 sinh2(2Ka)

 , (123)

and

R = 

1
4  




 

K

k1
 + 

k1
K  sinh2(2Ka)

cosh2(2Ka) + 
1
4  




 

K

k1
 - 

k1
K

2
 sinh2(2Ka)

 . (124)

Putting (120) and (123) together, we find the following

qualitative result for T(E):
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1

T(E)

E
V0

k a2 =
2
π_ 3

2
π__k a2 =πk a2 =

There are several aspects to remark upon on this graph.

The most obvious thing to observe is that T ≠ 0 even when

E < V0.  Classically, such a thing could never happen.  That

is, if we had a classical particle with an energy E < V0,

there would be zero probability that the particle would be

able to overcome the potential barrier.  It would be

prevented by energy conservation.  However, in quantum

mechanics there is an uncertainty relation for energy and

time similar to that for momentum and position.  In order to

understand its interpretation, let us go back for a moment

and consider the Gaussian free wave function in the case

< px > = p
_
 = 0 (This will not limit the generality of our

conclusions.)  We know that this wave function spreads in

time according to Eqn (88) of Chapter 2:

δx(t)2 = δx2 + 
 


 
ht

2mδx

2
 .

Therefore, the time it takes for the wavefunction to evolve

into a considerably wider form is when

htc
2mδx

 ≈ δx

or
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tc ≈ 
2mδx2

h
(125)

It is easy to show for the Gaussian that its uncertainty in

energy (using the definition in one of the problems) is just

∆E = 
h
2

4√2mδx2
  , (126)

which, with (125), can be written as

∆Etc ≈ h . (127)

Thus, if tc is large, the uncertainty in energy of the

Gaussian is quite small, and vice versa.  Eqn (127) is very

similar to the Heisenberg uncertainty principle ∆px∆x ≥ 
h

2 .

However, whereas we will see in Chapter 4 that the Heisenberg

relation can be derived since px and x are both operator

quantities, we will not be able to do the same for (127)

since the time, t, is a parameter, not an operator, in

nonrelativistic quantum mechanics.  (In relativistic

theories, both x and t are just parameters.)  Therefore, the

energy-time relation (127) is inferred rather than derived.

This does not mean it is any less applicable to the real

world, however.  Its meaning is completely general if tc is

interpreted as a correlation time between wavefunctions

during some transition that takes place.  In the case of a

particle traversing a potential barrier, this implies that

there will be an uncertainty in the energy of the particle

during the time it takes to complete its traversal.  Thus,

some components of the wavefunction will have sufficient
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energy to overcome the barrier.  This phenomenon is known as

tunneling.

The other remarkable thing about the graph of T(E) is

the fact that there is complete transmission (T = 1) when the

condition

2k2a = nπ , n = 1,2,3... (128)

is fulfilled.  That (128) leads to maxima in T(E) vs. E is

quite easy to understand.  The path difference between the

incident wave and an internally reflected wave which has

transversed the barrier and back is 4a.  These two waves will

interfere constructively whenever the path difference is an

integral multiple of the wavelength in region II.

Alternatively, the path difference of 4a leads to destructive

interference between the wave reflected at x = -a and a

reflected wave from x = a, given that the reflected wave at

x = a undergoes a phase shift of π.  However, this simple

argument does not tell us that T = 1 at these positions,

simply that we should expect local maxima there.
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3.  The harmonic oscillator

One of the most important problems in classical

mechanics is the simple harmonic oscillator, described by the

equation of motion,

 m x
..
 + kx = 0. (129)

If we integrate this equation, we get an equation for the

energy of the system:

E = 
1
2 mx

.2 + 
1
2 kx

2 (= constant). (130)

Let us study the same problem in quantum mechanics.

That is, we will take

H = 
p
2
x

2m + 
1
2 kx

2. (131)

where this is now an operator equation.  In order to simplify

life, let us introduce some new variables that will eliminate

the quantities m and k from appearing explicitly in our

equations.  First, define

ω = √k
m , (132)

and rewrite (131) as (we have divided by 
1

hω
 )

H

hω
 = 

p
2
x

2mhω
 + 

mω
2h x

2 . (133)

Now define the dimensionless variables
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H = H

hω
 , p = 

px

√mωh
 , q = √mω

h
 x . (134)

Then the eigenvalue problem we wish to solve may be written

as

H |n > = en|n > , (135)

H = 12 (p
2 + q2) , (136)

where n = 0,1,2,3,... is (initially) just a labeling of the

expected discrete energy states of this system and en =

En/hω.  Thus, we let n = 0 label the ground state, n = 1

picks out the first excited state, and so on.

We can easily verify that

[q,p] = i, (137)

for these new variables, and that

 


 
 

q + ip

√2
  

 


 
 

q - ip

√2
  = 

q2 + p2

2  + 
i
2 [p,q], (138)

⇒  H = 
 


 
 

q + ip

√2
  

 


 
 

q - ip

√2
  - 

1
2 . (139)

Let us define

A = 
q + ip

√2
 , (140)

which, since q and p are Hermitian, means that
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A+ = 
q - ip

√2
 , (141)

Therefore, we may write

H = AA+ - 12 . (142)

Now let us consider the commutator [H,A].  We have that

  [H,A] = 1

2√2
 [q2,q + ip] + 

1

2√2
 [p2,q + ip]

   = 
i

2√2
 [q2,p] + 

1

2√2
 [p2,q]

   = 
i

2√2
 {q[q,p] + [q,p]q} + 

1

2√2
 {p[p,q] + [p,q]p}

   = - 
(q + ip)

√2
  . (143)

or

[H,A] = -A. (144)

Now notice

[H,A]|n > = -A|n >  . (145)

so

H A|n > - A H |n > = -A|n > (146)

    
       en|n >

and

H (A|n >) = (en - 1)(A|n >). (147)

Therefore A|n > is also an eigenstate of H, but with a lower

value of energy than the state |n >.  Let us assume this is

just the next lowest state, |n-1 >, outside of an unknown

multiplicative constant
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A|n > = Cn|n-1 >, (148)

for n = 1,2,3,...  This implies that the energy levels of the

system are all equally spaced. We can always choose the Cn in

(148) to be real and positive by associating any phase factor

which arises with the state |n - 1 >.  Eqn (148) then implies

< n|A+ = Cn< n - 1|, (149)

from taking the adjoint of both sides.

The adjoint of (144) is

[H,A+] = A+ . (150)

Eqn (150) then implies, the the same way we derived (147),

that

H (A+|n >) = (en + 1)(A
+|n >). (151)

Therefore, A+|n > is an eigenstate of H  with the next highest

energy to |n > since we know the energy levels are equally

spaced:

A+|n > = Cn'|n+1> . (152)

There is no immediate reason why the Cn' should be real since

in picking Cn real, we defined the phase of the states.  The

operators A and A+ are seen to be ladder operators for the

states, but unlike the ladder operators for the infinite

square well, there is no dependence of the A or A+ on the

state label, n.

Now notice that
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H |n > = (AA+ - 
1
2 )|n > = Cn'A|n + 1 > - 

1
2 |n >

       = (Cn'Cn+1 - 
1
2 )|n > = en|n >. (153)

Since H  + = H , we have that the energies of the system must

be real (Remember the argument above).  Therefore, since we

chose the Cn real, the Cn' must also be real from the above.

We are assuming in this discussion that this system has

a lowest energy state, which, because of the Heisenberg

uncertainty principle has a positive value. (We estimated its

value in a problem.)  That is, we can only consistently

maintain that |0 > is the state of lowest energy if we take

A|0 > = 0, (154)

which means, from (148), that we must take

C0 = 0. (155)

Eqn (155) will be useful in a moment.

To complete this argument let us consider the quantity

Q ¿ < 0|An(A+)n|0 >. (156)

By allowing the An(A+)n operators to act one at a time to the

right, we learn that

Q = < 0|0 > C1 ... CnCn-1'  ... C0' , (157)

     
  1

or
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Q = (C1C0')(C2C1') ... (CnCn-1' ) . (158)

Now, by allowing An to act to the left while (A+)n is still

acting to the right, reveals that Q may also be written as

Q = C0' ... Cn-1'  < n|n > Cn-1'  ... C0' . (159)

      1

In writing down (159), we are using the fact that the Cn' are

real, plus the adjoint of Eqn (152), which tells us that

< n|A = Cn' < n + 1|. (160)

Thus, (159) gives us the alternate evaluation:

Q = (C0')
2(C1')

2 ... (Cn-1' )2. (161)

Comparing (158) and (161) in the case of n = 1 tells us that

C1 = C0' . (162)

Therefore, in the case n = 2, we conclude that

C2 = C1' . (163)

By induction we may show then in general that

Cn = Cn-1'  . (164)

From the equal spacing of the energy levels

en-1 = en - 1, (165)

we then have, from (153) and (164) that
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C
2
n+1 = C

2
n + 1. (166)

Using (155) in (166) now tells us that

C
2
n = n . (167)

Remember, we choose Cn to be positive so that

Cn = √n . (168)

The dimensionless energies of the system are now given as

en = C
2
n+1 - 

1
2 = n + 

1
2 . (169)

Putting the dimensions back in, we have

En = hωen  = hω(n + 
1
2). (170)

Notice that the lowest energy is nonzero, E0 = 
1
2 hω.  As

already pointed out, this is a consequence of the Heisenberg

uncertainty principle for momentum and position.  This lowest

energy of the simple harmonic oscillator is called its zero

point energy.  Actually, the zero point energy is not

observable, since the energy of a system is arbitrary up to

an additive constant. However, changes in the zero-point

energy are uniquely defined and can be observed in laboratory

experiments.

The next thing we do will be to get explicit expressions

for the coordinate space wave functions, < q'|n >.  First of

all, we know that

A+|n-1 > = √n |n >, (171)

so that we may write
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|n > = 
1

√n
 A+|n-1 > = 

1

√n
 

1

√n - 1
 (A+)2|n-2 >

    = … = 
1

√n(n - 1) … 1
 (A+)n|0 >. (172)

Therefore, we may write the energy eigenkets as

|n > = 
(A+)n

√n!
 |0 > , (173)

Since

(A+)n = 
 


 
 

q - ip

√2
 

n
 , (174)

Eqn (173) becomes

|n > = 
1

√2nn!
 (q - ip)n|0 > . (175)

Our coordinate space wavefunctions are then

un(q') = < q'|n > =  
1

√2nn!
 < q'|(q - ip)n|0 >, (176)

where the < q'| state is just a relabeling of the state < x'|.

Using our previous results from Chapter 2, we have that

< q'|q = q'< q'|, (177)

and

< q'|p = 
1
i 

∂

∂q'
 < q'| . (178)

We may now use

< q'|(q - ip)n|0 > = < q'|(q - ip)(q - ip)n-1|0 >
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             = 
 


 
q' - 

d
dq'  < q'|(q - ip)n-1|0 >

  = 
 



 

q' - 

∂

∂q'

2
 < q'|(q - ip)n-2|0 >

  = …  
 


 
q' - 

d
dq'

n
 < q'|0 >, (179)

in Eqn (176).  Therefore

un(q') =  
1

√2nn!
 

 


 
q' - 

d
dq'

n
 < q'|0 >. (180)

The question now is:  What is the ground state wavefunction

< q'|0 >?  If we can find this, then (180) gives all the rest

of the wavefunctions.  We may find this wavefunction by

solving a differential equation.  We know that A|0 > = 0, but

< q'|A|0 > = 
1

√2
 

 


 
q' + 

d
dq'  < q'|0 >, (181)

so

 


 
q' + 

d
dq'  < q'|0 > = 0. (182)

The solution to (182)

< q'|0 > = Ce-q'
2/2, (183)

where C is an unknown constant.  Normalizing this to unity,

we find

|C|2 ∫-∞
∞
dq'e-q'

2

 = |C|2√π = 1, (184)

so we may choose
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C = 
1

π1/4
 . (185)

Therefore

u0(q') = < q'|0 > =  
1

π1/4
 e-q'

2/2, (186)

and we have that

un(q') =  
1

√√π 2nn! 

 
 


 
q' - 

d
dq'

n
 e-q'

2/2. (187)

Let us simplify the result (187) a bit in order to

connect up with some standard results.  It is possible to

show that

 
 


 
d

dq'

n
 e-q'

2/2 f(q') = e-q'
2/2 

 


 
d

dq' - q'
n
 f(q'), (188)

for an arbitrary function f(q') by the use of mathematical

induction.  Now by choosing f(q') = e-q'
2/2, this means that

 
 


 
d

dq'

n
 e-q'

2

 = e-q'
2/2(-1)n 

 


 
q' - 

d
dq'

n
 e-q'

2/2. (189)

Using (189) in (180) gives us the alternate form

un(q') =   
(-1)n

√√π 2nn! 

 eq'
2/2  

 


 
d

dq'

n
 e-q'

2

. (190)

Eqn (190) is more familiar when the definition of Hermite

polynomials,

Hn(q') = (-1)
n eq'

2

 
 


 
d

dq'

n
 e-q'

2

. (191)
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is introduced.  Eqn (191) in (190) gives us

un(q') =  
1

√√π 2nn! 

  e-q'
2/2 Hn(q'). (192)

The first few Hermite polynomials are

H0 = 1, H1 = 2q', H2 = 4q'
2 - 2. (193)

The order of the nth Hermite polynomial is n.  Also, the

number of zeros in the wavefunction un(q') is also n

(excluding the points at infinity).  The first three un(q')

look like

q'

u (q')0

u (q')

q' q'

u (q')1 2

The orthonormality of the states |n > may be demonstrated

as follows.  We know that

< n|n' > = < 0| 
An

√n!
 
(A+)n'

√n'!
 |0 >. (194)
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Now we may write

A(A+)n' = (A+)n'A + [A,(A+)n']. (195)

In a problem, you will evaluate the commutator in (196) as

[A,(A+)n'] = n'(A+)n'-1. (196)

Using (195) in (194), and using A|0 > = 0, we now find

< n|n' > = 
n'

√nn'
 < 0| 

An-1

√(n - 1)!
 

(A+)n'-1

√(n' - 1)!
 |0 >

        = 
n'

√nn'
 < n-1|n'-1 > . (197)

We have three possible cases.  If n = n', then

< n|n > = < n-1|n-1 > = … = < 0|0 > = 1. (198)

However, if n > n'

< n|n' > =  
n'

√nn'
 < n-1|n'-1 > = … = constants < (n - n')|0 >,

(199)

but for n > n'

< (n - n')|0 > = < 0| 
An-n'

√(n - n')!
 |0 > = 0, (200)

so < n|n' > = 0 for n > n'.  Similarly, < n|n' > = 0 when

n < n'.  Therefore, we have shown that

< n|n' > = δnn' . (201)

In this discrete context, completeness of the energy

eigenfunctions reads
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∑
n

 |n > < n| = 1. (202)

You will find the < p'|n > wavefunctions in a problem.

We notice that here, as in the square well problem, that

the parity operator commutes with H.  We have that

< q'|P|n > = < -q'|n > = un(-q'). (203)

But since, from (191)

Hn(-q') = (-1)
n Hn(q'), (204)

we have from (192) that

un(-q') = (-1)
n un(q'). (205)

Therefore, (203) reads

< q'|P |n > = (-1)n < q'|n >. (206)

Being true for all < q'| tells us that

P|n > = (-1)n|n >. (207)

It is now easy to show that

PH|n > = P En|n > = En(-1)
n|n >, (208)

H P|n > = (-1)n|n > = (-1)n En|n >, (209)

and thus that

[H,P]|n > = 0, (210)

or, again, since this is true for all |n >, that
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[H,P] = 0 . (211)

Thus, the parity of the states un(q') does not change when

they are time-evolved.

The wavefunctions un(q') are dimensionless and

normalized so that

∫-∞
∞
dq'un(q')un(q') = 1 (212)

If we wish to work with the physically dimensionful quantity

x', then we should use the wavefunction

un(x') =  


 
mω

h

1/4 
un  




 



q' → √mω
h
 x' (213)

which is normalized so that

∫-∞
∞
dx'un(x')un(x') = 1. (214)
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4.  The Attractive Kronig-Penny Model

Next, we will study some of the physics of electrons in

conductors and insulators.  Of course, we will have to

simplify the situation a great deal in order to be able to

reduce the complexity of this problem.  The first

idealization is the reduction of the real situation to one

spatial dimension.  Then we might expect, qualitatively, the

potential experienced by a single electron in the material to

look somewhat like the following:

atom atom atom

a

V(x)

x

edge of material

Notice that the potentials are attractive, as should be

the case for electrons in the vicinity of atoms with a

positively charged core.  Also notice that the potential at

the edge of the material rises to a constant level as one is

getting further away from the attractive potentials of the

interior atoms.

Even the potential shown above is too difficult for us

to consider here.  We will make two additional

simplifications.  First, we totally ignore all surface

effects by assuming we are dealing with an infinite
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collection of atoms arrayed in one dimension.  Second, we

model the attractive Coulomb potentials by Dirac delta

function spikes.  The result is the following potential:

V(x)

-2a -a a 2a

x

We now have a well-defined potential for which we can

solve for the allowed energies.  Notice we have chosen our

zero of potential in the above figure to correspond to the

constant potential felt by the electrons in the "interior" of

the metal, away from the positions of the "atoms."  In the

following, we will restrict our attention to solving for the

allowed positive energy levels, although states with E < 0

also exist.  We will call the E > 0 states that conductance

electrons and the E < 0 states the valence electrons.

The potential in Eqn (14) above is now determined as

V(x) = - 
h
2

2m 
λ
a ∑

n=-∞

∞

 δ(x - na). (215)

The positive constant λ is dimensionless.  This follows since

the dimensions of the delta function in (215) from

∫ dx δ(x - x') = 1, (216)
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are 
 


 
 

1
length  and 

h
2

2ma has dimensions of [Energy ⋅ length].

The equation we want to solve is

- 
 



 



 
∂2

∂x2
 + 

λ
a ∑

n

 δ(x - na)  u(x) = 
2mE

h
2  u(x). (217)

Let us simplify this equation a bit by introducing the

dimensionless variable y = 
x
a so that, by using Eq

n (101) of

Chapter 2, we have

δ(x - na) = 
1
a δ(y - n). (218)

Let's also set k = 
√2mE
h

 as usual.  Then we have that

 
 



 



 
∂2

∂y2
 + λ ∑

n

 δ(y - n)  u(y) = -(ka)2u(y) (219)

for the positive energy solutions.  At any positions y ≠ n,

the solutions to

∂2

∂y2
 u(y) = -(ka)2u(y) (220)

are simply sin(kay) and cos(kay).  The general solution to

u(y) in the region (n - 1) < y < n is then given by

u(y) = An sin(ka(y - n) + Bn cos(ka(y - n)) (221)

where An and Bn are (complex) coefficients, and the phase

factors, -(ka)n, in the sine and cosine are chosen for

convenience.  We have learned that for piecewise continuous

potentials our probability interpretation for wavefunctions
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only holds if u(x) and 
du
dx are continuous functions.  Of

course here our potential contains delta functions and so

does not satisfy the condition of piecewise continuity.  What

continuity conditions must we therefore impose on the

wavefunctions for this problem?  It is clear that the

troublesome positions are the locations of the delta

functions at y = n.  In order to find the requirements on the

wavefunctions at these locations, let us repeat the argument

based on Eqn (107) above.  Here we have that

∫n-ε
n+ε
 dy 

 



 



 
 



 

∂2

∂y2
 + λ ∑ δ(y - n)  u(y) = -(ka)2u(y)  , (222)

where we have integrated over a small neighborhood around

y = n.  Then, in the limit ε → 0+ we have

 

∂u

∂y
 

y=n+
 - 

 

∂u

∂y
 

y=n-
 = -λu(n). (223)

Eqn (223), in contrast to Eqn (108), says that a

discontinuity

in 
∂u

∂y
 is required.  By integrating again, we find however

that

u(n)|+ = u(n)|- (224)

so that the wavefunctions are continuous across y = n.

Let us now apply (223) and (224) to (221).  The

condition (224) applied at y = n (between the wavefunctions
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defined in the regions (n - 1) ≤ y ≤ n and n ≤ y ≤ n + 1)

says that

Bn = -An+1 sin(ka) + Bn+1 cos(ka), (225)

while (223) implies

ka(An+1 cos(ka) - An) + kaBn+1 sin(ka) = -λBn. (226)

These last two equations require that

An+1 = An cos(ka) -  


 
 

λ
ka cos(ka) + sin(ka)  Bn, (227)

Bn+1 =  


 
cos(ka) - 

λ
ka sin(ka)  Bn + sin(ka)An, (228)

which are recursion relations for the An+1 and Bn+1 given An

and Bn.

Eqns (227) and (228) are not sufficient to complete the

description of this system.  There must be further relations

between wavefunctions in different spatial regions. Let us

notice that under the substitution x → x + a (equivalent to

y → y + 1) we have that

V(x) → V(x + a) = V(x), (229)

and

d
dx → 

d
d(x + a) = 

d
dx . (230)

This means that the differential equation we are solving,

(217), is invariant or unchanged under this substitution.  We

will therefore demand that all observables are also invariant
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under this change.  This means that the probability densities

in neighboring regions must be identical.

|u(y + 1)|2 = |u(y)|2 . (231)

This says in general that

u(y + 1) = eiφu(y), (232)

where φ is some unknown phase. (From the general form

(221),this phase can not be be y-dependent.)

We have gone as far as we can without specifying

boundary conditions.  We will use the condition

u(y + N) = u(y), (233)

where N = 1,2,3,... . (If there are are — 1023 atoms present,

there will be 108 ≈ (1023)1/3 atomic planes in any one

direction.)  These are called periodic boundary conditions.

This condition couples the electrons on one side of the

material to the other, resulting in what can be thought of as

a ring of atoms. The phase angle φ in (232) is now determined

as

eiφN = 1 (234)

⇒ φ = 
2π
N  m ,   m = 0,±1,±2,... (235)

Eqn(235) gives the dimensionless quasi-momentum values in our

model.  In terms of the coefficients in (221), this says that
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An+1 = e
iφAn , (236)

Bn+1 = e
iφBn , (237)

Let's now substitute (236) and (237) into (227) and (228)

above.  We get

eiφAn  = An cos(ka) -  


 
 

λ
ka cos(ka) + sin(ka)  Bn , (238)

eiφBn  =   


 
- 

λ
ka sin(ka) + cos(ka)  Bn + sin(ka)An. (239)

These may be put into the form

(eiφ - cos(ka))An = -  


 
 

λ
ka cos(ka) + sin(ka)  Bn , (240)

sin(ka)An = -   


 
- 

λ
ka sin(ka) + cos(ka) - e

iφ  Bn . (241)

In order for (240) and (241) to be consistent, we must

have that

eiφ - cos(ka)
sin(ka)  = 

λ
ka cos(ka) + sin(ka)

- 
λ
ka sin(ka) + cos(ka) - e

iφ 

 . (242)

This equation can be reduced to

cos φ = cos(ka) - 
λ
2 
sin(ka)

ka  . (243)

Imagine letting N → ∞ in (235).  Then φ essentially

becomes a continuous variable and cos φ can take on any value

between 1 and -1.  This is a type of dispersion relation.

This equation determines the energies of the system, given by
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E = 
(hk)2

2m , in terms of the allowed quasi-momentum values of

the system, φ.

Plots of the right hand side of (243) follow for the

cases λ < 4 and λ > 4:

1

-1

forbidden

2 kaπ

π

< 4 caseλ

1

-1

2 π

π

> 4 caseλ

forbidden

ka

Now notice that since the left hand side of Eqn (243) is

bounded by 1 and -1, there are no solutions to (243) in the

regions marked "forbidden" above.  Otherwise we have a

continuum of solutions (at least in the N → ∞ limit).  These

continuum solutions are called energy bands.  The forbidden

zones, or energy gaps, are a result of destructive

interference between waves reflected off the various delta

function potentials.  We saw such a phenomenon before in our
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discussion of the finite potential barrier, where the

transmission of the waves through the potential barrier was

reduced for some values of the momentum because of

destructive interference.  Now, the positive constant λ in

some sense represents the strength of the attractive delta

function potentials. By mapping all the quasi-momentum values

in the above figures into the interval -π ¯ φ ¯ π, we get the

so-called reduced-zone description of energy eigenstates:

< 4 caseλ

E

φ
0

− π π

> 4 caseλ

E

φ
0

− π π
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What we see in the above figures is that when the attraction

between the electrons and atoms is weak, the conductance

energy bands come all the way down to E = 0, that is, to the

top of the valence band.  We see that, however, when λ

becomes large enough that an energy gap forms between (ka) =

0 and (ka) = π.  This is a very rough model of the band

structures in conductors (λ small) and insulators (λ large).

In conductors, where the interaction between the electrons

and atoms is relatively weak, there is no energy gap and

valence electrons can easily occupy states in the conductance

band where they are able to transport charge through the

material.  On the other hand, insulators hold on tightly to

their electrons and they generally have an energy gap, as in

this simplified model.  An external electric field is then

not effective in moving electrons into the conductance band

and no flow of electricity results.  Temperature can play an

important role in exciting some electrons upward in energy

into the conductance band in some materials.  Actually,

conductors usually have a partially filled conductance band

at room temperatures and therefore conduct electricity

readily.

Of course, there are many simplifications inherent in

this one-dimensional model of the interior of conductors and

insulators.  In reality, because one is working with a finite

system instead of the infinitely long system considered

above, the continuous energy conductance bands we have found

above are in really a collection of extremely closely spaced



3.57

discrete levels.  In addition, there are effects having

specifically to do with the surface of such a material, which

we have not considered here.  The Kronig-Penny model does

correspond to reality in the illustration of the formation of

energy gaps, and it was for this reason that I have presented

it here.

We have solved the time-independent Schrödinger equation

in one spatial dimension for a variety of potentials.  We

have seen two basic types of solutions, bound state solutions

(as in the infinite square well and the simple harmonic

oscillator) and scattering solutions (as for the finite

barrier and the Kronig-Penny model).  Bound state solutions

have discrete energies and their wavefunctions can be

normalized in space.  In scattering solutions, energy values

are contiguous and the wave functions cannot be normalized in

space (there would be infinite) but instead are normalized to

a delta function in energy, say.

Generalizing from the experience we have gained in this

Chapter, we would expect to find the following classification

of energy states for the following two Examples.

{
{

free

reflecting
Scattering
states

Bound
states

x

Example 1

V(x)

V2

V1

(partial 
reflection)
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V(x)

free

reflecting

Example 2

V

V

x

2

1

scattering
states

(partial 
reflection)

free (penetrating- reflecting)

In Examples 1 or 2 for E > V2, we would expect the

particles to be "free" in the sense of having oscillatory

wave functions whose wavelengths, however, would be a

function of position, just like we saw for energies higher

than the top of the potential in the finite barrier problem.

In Example 1 when V1 < E < V2 we expect states that will

describe waves that completely reflect off of the potential

barrier which extends to x = ∞.  This does not mean, however,

that the particle will not penetrate into the right hand side

region (the shaded region) where, classically, the particle

would not be allowed to go. We saw in the finite potential

barrier problem that this indeed can happen.  However,

because the particle's wavefunction will be damped in this

region, one has a smaller probability of detecting a particle

with such an energy as we move further to the right in this

figure.  All of the particles in this case must eventually

reflect because in a steady state situation the flux of

particles at x = ∞ is zero.  In Example 2 for V1 < E < V2,
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the particle has only a finite potential barrier to overcome

and it can "tunnel" from one side of the barrier to the other

resulting in both penetration and reflection from the

barrier.  In Example 1 for E < V1 we see that the particles

are trapped in a potential well.  Then, because of

destructive interference between waves, we would expect only

a discrete set energy values to be allowed in a steady state.

In Example 2 for E < V1 we again expect complete reflection

from, but partial penetration of, the barrier.  The key to

understanding these qualitative behaviors is the wave picture

of particles as deBroglie waves that we developed in the last

Chapter.
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Problems

1. Show for the Schrodinger equation with an arbitrary

potential, V(x), that the continuity equation, Eq. (122) of

Chapter 2, still holds true (as asserted in the text on p.

3.1).  Assume that V(x) is Hermitian.

2. Show equations (84 a,b,c) of the text in Chapter 3 are

true.

3. Show for the one-dimensional square well that

<x'|n+> = <x'|Ln+1/2|(n+1)+>,

and

<x'|n+> = <x'|L
+
n-3/2|(n-1)+>.

[Since the above are true for all < x'|, they imply

|n+> = Ln+1/2|(n+1)+>,

|n+> = L
+
n-3/2|(n-1)+>.]

4. A square well wave function at t = 0 is given by

|Ψ,0> = 
1

√13
 [2|1+> + 3i|2->].

Find <P> (≠ <Ψ,t|P|Ψ,t>) as a function of time.

5. Derive the result, Eq.(119) of Ch.3, for the 
E
A

coefficient for the finite potential barrier problem

described there.

6. Find the momentum space harmonic oscillator wave

functions, Ψn(p') = <p'|n>, normalized such that
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 ⌡
⌠
-∞
∞ dp'|Ψn(p')|2 = 1.

[p' is the dimensionless position variable related to px by

p = 
px

√mwh
 .

Hint:  One way is to take Eq.(175) of Ch.3 and project it

into <p'| instead of <q'|.]

7.(a)  From

A|n> = √n|n-1>,

derive
d
dq' Hn (q') = 2n Hn-1 (q').

(b)  From

A+|n> = √n+1|n+1>,

derive

(2q' - 
d
dq') Hn(q') = Hn+1 (q').

(c)  Use (a) and (b) to show that Hn (q') satisfies the

differential equation:

(
d2

dq'2 - 2q'
d
dq' + 2n) Hn (q') = 0.

8. Find some way of showing Eq.(196) of Ch.3 holds true.

9. Consider the Kronig-Penny model with periodic repulsive

delta-function potentials, i.e., λ < 0.

  (a) Given the dispersion relation,

cosφ = cos(ka) - 
λ
2 
sin(ka)

ka ,
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draw (qualitatively) the appropriate cosφ vs. ka graph (be

sure to indicate any energy gaps):

ka

cos φ

1

-1

  (b) Give the reduced-zone energy graph corresponding to

your answer to part (a). Show at least the lowest two

energy bands:

ka
0−π π

E

  (c) Show that there are no energy eigenvalue solutions to

the part (a) dispersion relation when both λ < 0 and E < 0.

Other Problems

10. Given the harmonic oscillator eigenvalue equation,

H|n> = En|n>, where En = hω(n+
1
2) and

H = 
px2

2m + 
1
2 mω

2x2,
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  (a) Derive the position space energy eigenvalue equation

for un(x') ≡ <x'|n> ("the Schro"dinger equation in position

space").

  (b) Derive the momentum space energy eigenvalue equation

for vn(p'x) ≡ <p'x|n> ("the Schro"dinger equation in momentum

space").

  (c) Find a simple substitution of variables which changes

the differential equation in (a) into the equation in (b).

(This therefore gives vn(p'x), outside of an overall

normalization, if un(x') is known.)

11. We are given a wavefunction, ψ(x), which solves the

coordinate space Schro"dinger equation (with a piecewise

continuous potential V(x)). Assume that this ψ(x) has a kink

in it at x = x0:

ψ(x)

x0

x
.

Give a convincing mathematical argument that such a

discontinuity would imply that probability is not conserved.

(See p.3.26 of the class notes for some relevant comments.)

12. Consider the scattering problem:
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incoming wave

V0
E

I II

x

x=0

The energy, E, of the incoming particle is greater than the

top of the step potential: E > V0. The incoming particle

originates from the left (i.e., from x < 0 ). Define

k1 = 
√2m(E-V0)

h
, k2 = 

√2mE
h

 .

  (a) Write down the general solution to the energy

eigenvalue equation in Region I.

  (b) Write down the general solution to the energy

eigenvalue equation in Region II.

  (c) Show that the reflection coefficient, R, is given by

R = 
 


 
k1 - k2

k1 + k2
 
2
.

13. The Kronig-Penny model dispersion relation for negative

energies is given by:

  cosφ = cosh(κa) - 
λ
2 
sinh(κa)

κa
,

where κ = √-2mE/h.

  (a)  Draw (qualitatively) the appropriate cosφ vs. κa

graph (be sure to indicate any energy gaps; assume λ > 4):
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cos φ

1

-1

κa

  (b) Give the reduced-zone energy graph corresponding to

your answer to part (a) (again assume λ > 4):

0−π π

E-

φ

What value of φ is associated with the ground state (i.e.,

most negative) energy? Explain how to solve for this

energy. (You don't actually have to do it.)

14. Evaluate the double commutator:

[px,[px,f(x)]] = ?

15. Find the expectation value of the parity operator, P,

as a function of time, given the infinite square well

initial state:

|ψ,t=0> = 
1

√5
(2i|1+> + |1->).

16. Refers to the harmonic oscillator. Evaluate the

quantities:
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  (a) <n+2|q2|n> = ?

  (b) <n|p2|n> = ?

17. Work out the transmission coefficient, T, for a one-

dimensional Dirac delta-function potential (λ > 0), V(x) =

λh2

2m  δ(x), for a right-moving incoming wave of energy E:

I II

x0

incoming
wave

λh
2

2m
δ(x)
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Chapter 4:  More About Hilbert Space

Although we have been progressing steadily in our

understanding of the laws of nature in the microscopic

world, I have not been very systematic in the development

of the mathematics behind the physics.  I hope I have

convinced you of the utility of the bra-ket notation of

Dirac, but now I owe you a deeper discussion of the

mathematical properties of bras, kets and operators.  In

other words, I think it would be best at this stage to

consolidate our knowledge of formalism at bit before moving

on to more complicated problems.  For this reason, we will

continue our limitation to one dimensional problems here,

moving on to three dimensions in Chapter 6.

First, a technicality before we move on.  We will

formally deal here with systems that have a finite number

of degrees of freedom, like spin, but unlike the position

or momentum characterizations of a free particle.  This is

done in order to simplify the discussion.  However, we will

concern ourselves with results which are general in

character and straightforwardly carry over to position and

space measurements with obvious changes (like changing

Kronecker deltas into Dirac deltas, etc.) Technically, only

systems with an infinite number of degrees of freedom

constitute a Hilbert space. We will use the term more

loosely here to include finite systems.

Next, some words about notation and terminology.  We

will continue to let
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|a >, |a' >, |ai > (Case 1)

or

|i >, |n > (Case 2)

represent the eigenkets of some operator A. In Case 1

above, we are labeling the eigenket by the actual

eigenvalue; in Case 2 we are labeling these in some

unspecified order by an integer.  Because we are limiting

ourselves here to a finite number of states or physical

outcomes, the upper limit on all such labels is finite.

Let me also remind you of the meaning of a "basis."

When we were discussing spin 
1
2 , the basis consisted of the

states |σ3' >, σ3'  = ± 1.  A basis is a set of linearly

independent vectors in Hilbert space that completely

characterize the space in the same way that the usual unit

vectors, ê1,ê2,ê3 completely characterize 3-D space.  (When

I refer to a "vector" in Hilbert space, I mean either a bra

or a ket.)  Just as any 3-D vector v≥ may be expanded as

v
≥
 = ∑

i=1

n

 viêi, (1)

any state |ψ > may be expanded as

|ψ > = ∑
i=1

n

 Ci|xi >, (2)

where I will be using the notation |xi > to denote a basis

ket.  The Ci in (2) are some (in general) complex constants.
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We say that a basis "spans" the Hilbert space.  According

to the technical limitation we have imposed, the number of

basis states in (2) is a finite number, n.

What does linear independence of basis kets mean

mathematically?  In 3-D vector language, we say that two

nonzero vectors, v≥1 and v
≥
2, are linearly independent if

there is no constant C such that

v≥1 = Cv
≥
2. (3)

In the same way, we say that the nonnull kets |x1 > and |x2 >

are linearly independent if there is no constant C such

that

|x1 > = C|x2 >. (4)

The |xi > therefore are like vectors "pointing" in various

independent directions in Hilbert space.  (This last

sentence is a good summary of the entire content of this

Chapter.)

We will be assuming the existence of the Hermitian

conjugation operation that takes bras and kets and vice

versa.  For some arbitrary state |ψ > we have

(|ψ >)+ = < ψ|. (5)

Bras and kets are independent objects, but the existence of

a state |ψ > implies the existence of < ψ|, and the other

way around.  The relationship between these two objects is
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called "dual."  We are assuming linearity of this

operation, so that

(|ψ1 > + |ψ2 >)+ = < ψ1| + < ψ2|. (6)

When C is a complex number, we also have

(C|ψ >)
+ = C∗< ψ| = < ψ|C∗. (7)

Of course, given the state |ψ > in (2), the state < ψ| is

implied to be

< ψ| = ∑
i=1

n

 Ci∗< xi|. (8)

Given the bra < xi| and the ket |xj >, we may form two

types of quantities, the inner product, < xi|xj > (introduced

previously in Ch. 1), and the outer product, |xj > < xi|

(previously |xj xi|). Just as the elements of êi are

orthogonal in 3-D, as expressed by

êi ⋅ êj = 0,  i ≠ j, (9)

we choose a basis such that the inner product must satisfy

< xi|xj > = 0,  i ≠ j. (10)

For convenience, we often normalize the basis so that (called

an orthonormal basis)

< xi|xj > = δij ,     (all i,j) (11)

where δij is the Kronecker delta.  A vector |ψ > is said to

have a squared "length", < ψ|ψ > in Hilbert space given by
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< ψ|ψ > = ∑
i,j

 Ci∗Cj< xi|xj > = ∑
i

|Ci|
2 ≥ 0. (12)

It is in this sense that a bra or ket is said to be "nonzero"

(as below Eqn (3) above).

The outer product |xj > < xi| is another name for what we

have been calling an operator.  The most general expression

for an operator A in our finite Hilbert space is

A = ∑
i,j

 Aij|xi > < xj|. (13)

The coefficients Aij are just the elements of an n × n matrix

representation of A.  This is easy to see since

< xk|A|xl > =  ∑
i,j

 Aij < xk|xi > < xj|xl >

     = ∑ Aijδkiδjl = Akl, (14)

which is the definition of a matrix element of the operator

A.

When acting on A in Eqn (13), Hermitian conjugation has

the effect

A+ = ∑
i,j

 A∗
ij
|xj > < xi|

   = ∑
i,j

 (A∗)Tij|xi > < xj|. (15)

Thus we see that the operator statement

A = A+, (16)

is equivalent to the matrix statement
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A = (A∗)T . (17)

(The transpose and complex conjugation operations commute.)

As remarked on before in Chapter 1, we often denote the

complex transpose of a matrix as "+".  The meaning of "+" is

determined by its context.

Consider the operator product AB.  This can be written

as

AB = ∑
i,j

 Aij|xi > < xj| ⋅  ∑
k,l

 Bkl|xk > < x
l
|

   = ∑
i,j,l

 Aij(Bjl)|xi > < x
l
|. (18)

The Hermitian conjugate is given by

(AB)+ = ∑
i,j,l

 A∗
ij
B∗
jl
|xl > < xi|

      = ∑
i,j,l

 A∗
lj
B∗
ji
|xi > < xl|, (19)

whereas we also have that

B+A+ = ∑
i,j

 B∗
ji
|xi > < xj| ⋅  ∑

k,l
 A∗

lk
|xk > < xl|

      = ∑
i,j,l

 A∗
lj
B∗
ji
|xi > < xl|, (20)

which proves in general that

(AB)+ = B+A+ . (21)

This is the same rule encountered in Ch. 1.
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The operator/matrix relationship may be elaborated more

fully as follows.  We know that the product A|ψ > where A and

|ψ > are arbitrary, is another ket:

|ψ' > = A|ψ >. (22)

Using the forms (13) and (2) for A and |ψ >, we get

A|ψ > = ∑
i,j

 Aij|xi > < xj| ⋅ ∑
k

 Ck|xk >

      = ∑
i,j

 AijCj|xi > . (23)

On the other hand we know that |ψ' > is another ket and so

may be expanded in basis kets:

|ψ' > = ∑
i

 Bi|xi >. (24)

Thus, the operator-ket statement (22) is equivalent to the

matrix-vector statement

Bi =   ∑
j

 AijCj, (25)

which is often written with understood indices as

B = AC, (26)

where B and C are interpreted as column matrices.  Likewise,

given the statement

<ψ'| = < ψ|A, (27)

and the expansions

< ψ'| = ∑
i

 Bi'< xi| , (28)
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< ψ| =  ∑
i

 Ci'< xi| , (29)

the analogous matrix statement to (27) is

B' = C'A, (30)

where B' and C' are now row matrices.

Our operator-matrix analogy stands as follows:

operator ←→ matrix

     ket ←→ column matrix

     bra ←→ row matrix

        complex conjugation ⊕ ←→ complex conjugation ⊕
  bra,ket interchange          transpose

The last line gives the meaning of Hermitian conjugation in

the two cases.

The completeness relation, first seen in Eqn (91) of

Chapter 1, may be deduced in this context as follows.  A

general ket |ψ > may be expanded as in (2) above.

Multiplying on the left of (2) by < xj| and assuming

orthonormality, this tells us that the expansion coefficients

Ci in (2) are just

Ci = < xi|ψ >. (31)

Plugging this back into (2) then gives

|ψ > = ∑
i

|xi > < xi|ψ > = 
 


 
 ∑

i

|xi > < xi| |ψ > . (32)
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Since |ψ > in (32) is arbitrary, this tells us that

∑
i

|xi > < xi| = 1 . (33)

This sheds a different, more mathematical, light on the

meaning of completeness.

A distinguishing characteristic of a Hermitian operator

is that its physical outcomes, which mathematically speaking

are its eigenvalues, are real.  (We already showed at the end

of Chapter 1 that the expectation value of a Hermitian

operator is real.)  We can show this as follows.  Let |ai >

be any nonzero eigenket of A,

A|ai > = ai|ai > . (34)

Then

< ai|A|ai > = ai< ai|ai > . (35)

The adjoint of (34) is

< ai|A
+ = a∗

i
< ai|, (36)

which then gives

< ai|A
+|ai > = a∗

i
< ai|ai> . (37)

If A = A+, then (35) and (37) demand that

ai = a
∗
i
 , (38)

and the eigenvalues are real. (A quicker proof is to recall

that at the end of Ch. 1 we proved that the expectation value
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of Hermitian operators are real. Since the left hand side of

(35) is just such a quantity, and because <ai|ai> ≥ 0, we

must have that the ai are real.)

It is easy to prove that eigenkets of an Hermitian

operator corresponding to distinct eigenvalues are

orthogonal.  Eqn (34) implies that

< ai|A|aj > = aj< ai|aj > , (39)

and (36) (with A = A+, ai = a
∗
i
) implies

< ai|A|aj > = ai< ai|aj > . (40)

Therefore from (39) and (40) we have

(ai - aj)< ai|aj > = 0, (41)

which says that < ai|aj > = 0 if ai ≠ aj. (The operator A in

(39) can be visualized as operating to the right while the A

in (40) acts to the left.)

Now there are n independent basis kets |xi >.  The

eigenkets of a Hermitian operator can, of course, be expanded

in such a basis.  The number of linearly independent

eigenkets |ai > cannot exceed n, the number of basis kets,

for if they did then the |xi > would not span the space

contrary to our definition.  Therefore, the maximum number of

distinct eigenvalues is always less than or equal to n.  If

all n of them are distinct, then it is clear that we may

choose the |ai > as a (not necessarily normalized) basis for

our description.  This is a most useful result since it
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provides a means of finding a basis. However, it sometimes

occurs that the number of distinct eigenvalues is less than

n.  In this case it is not clear if we can find enough

linearly independent eigenkets of the Hermitian operator to

span the space so that we can choose them as a basis.  What I

want to explain is that even when the number of distinct

eigenvalues is less than n, the number of linearly

independent eigenkets of a Hermitian operator is still n, and

then therefore can be chosen as a basis.  I will be content

to just lay out the bare bones of this explanation since the

details involve some mathematical technicalities.  In doing

so, the connection we have found between operators and

matrices will be extremely useful.

Let us say we have a Hermitian operator A and we want

to find its eigenvalues and eigenkets.  Let A be represented

in terms of an arbitrary basis as in Eqn (13) above.  We want

to find all possible |ψ > such that

A|ψ > = a|ψ >, (42)

where "a" is an eigenvalue of A.  Expanding |ψ > in our basis

as

|ψ > = ∑
i

 yi|xi >, (43)

we know that (42) is equivalent to the matrix statement

Ay = ay. (44)

Showing the explicit matrix indices, (44) may be written as
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 ∑
k

 (Ajk - aδjk)yk = 0. (45)

It is a well-known result out of linear algebra that the

necessary and sufficient condition that (45) have a

nontrivial solution is that

det(A - aI) = 0, (46)

where "I" is the unit matrix.  Eqn (46) is called the

characteristic equation of the matrix A.  It is easily shown

that the left hand side of (46) is just a nth order

polynomial in "a", and therefore has n solutions or roots.

These roots constitute the totality of eigenvalues, ai.

After these have been found by solving (46), we find the

associated eigenvectors y(i) by solving

Ay(i) = aiy
(i). (47)

for each value ai.  (We actually went through this process

for the spin matrix σ
_

3 on pgs. 1.85 - 1.87 of these notes.)

If the n solutions to (46) are all distinct, then the

corresponding eigenkets span the space.  However, the

solution of (46) may involve repeated roots.  A root that is

repeated k times in the solution of the characteristic

equation is called a kth order degeneracy.  In this case, we

cannot use the previous argument to establish that the

nonzero eigenkets or eigenvectors of these repeated roots are

all orthogonal. However, it may be shown that the number of
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linearly independent eigenvectors corresponding to a k-fold

root of the characteristic equation of a Hermitian matrix is

exactly k (See Cushing, Applied Analytical Mathematics for

Physical Scientists, 1st edition, pp. 108-111.).  Given this

fact, this means that there will be exactly n linearly

independent eigenkets or eigenvectors, and these can now be

used as a basis.

Although we are guaranteed that the number of linearly

independent eigenkets of a Hermitian operator is n, this does

not mean that any such set will satisfy orthogonality.  Those

eigenvectors or eigenkets that correspond to distinct

eigenvalues are orthogonal from the previous argument.  We

only have to worry about the eigenvectors or eigenkets

corresponding to each kth order eigenvalue degeneracy.

However, there is a procedure, called the Schmidt

orthogonalization process, which allows us to construct an

orthogonal set of vectors or kets from any linearly

independent set.  Let us say that we have k linearly

independent vectors |yi > corresponding to the single

eigenvalue a:

A|yi > = a|yi >  , i = 1,...,k (48)

(The order of labeling of these objects is arbitrary.)  We

can construct an orthogonal set by the following procedure.

First, choose

|x1 > = |y1 >, (49)
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as the first of our orthogonal set.  |y1 > is actually any of

the original set of non-orthogonal kets.

Now form

|x2 > = |y2 > - 
< x1|y2 >

< x1|x1 >
 |x1 >. (50)

Notice that

< x1|x2 > = < x1|y2 > -  
< x1|y2 >

< x1|x1 >
 < x1|x1 > = 0. (51)

Thus, the second term in (50) has been chosen in such a way

as to remove the overlap between |x1 > and |x2 >.  The next

vector is

|x3 > = |y3 > - 
< x1|y3 >
< x1|x1 > |x1 > - 

< x2|y3 >
< x2|x2 > |x2 >. (52)

Again notice

< x1|x3 > = < x1|y3 > - 
< x1|y3 >

< x1|x1 >
 < x1|x1 > - 

< x2|y3 >
< x2|x2 > < x1|x2 >

        = 0. (53)

< x2|x3 > = < x2|y3 > - 
< x1|y3 >

< x1|x1 >
 < x2|x1 > - 

< x2|y3 >
< x2|x2 > < x2|x2 >

        = 0. (54)

In general, the procedure is to pick |x1 > = |y1 >, after which

we have

|xi > = |yi > - ∑
j=1

i-1

  
< xj|yi >
< xj|xj > |xj > , i ≥ 2. (55)

We can now normalize these, so that they will be orthonormal.



4.15

The end result of the above considerations is this:  The

eigenkets of A = A+ can all be chosen as orthonormal and

therefore represents a possible basis for the space.

The above is a very useful result.  However, the

situation is not really satisfactory yet.  We have seen that

the eigenvalues of a Hermitian operator do not necessarily

specify or classify all the eigenkets of the system, and

therefore the states of a particle, because of eigenvalue

degeneracy.  In our analogy with vectors in 3-D, this is like

labeling the unit vectors identically although we know they

are linearly independent.  The process just described which

produces an orthogonal set of kets or vectors corresponding

to the same eigenvalue has an element of arbitrariness in it

because of the random choice |x1 > = |y1 >.  It represents a

formal mathematical way of producing an orthogonal set of

basis kets, but there must be a more physical way of doing

the same thing so that known physical properties are

associated with each and every ket.  A way of doing this is

contained in the following theorem.

THEOREM: If A = A+ and B = B+, a necessary and sufficient

condition that [A,B] = 0 is that A and B posses a common

complete set of orthonormal eigenkets.

The proof of sufficiency is as follows.

We are assuming that A and B possess a common complete

set of orthonormal basis vectors, which we will label as
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|ai,bi > (some of the eigenvalues ai or bi or both may be

degenerate).  Thus

A|ai,bi > = ai|ai,bi >, (56)

B|ai,bi > = bi|ai,bi >. (57)

Then

AB|ai,bi > = biA|ai,bi > = biai|ai,bi >, (58)

BA|ai,bi > = aiB|ai,bi > = aibi|ai,bi >. (59)

Therefore

[A,B]|ai,bi > = 0. (60)

This statement holds for all i, which then implies that1

[A,B] = 0. (61)

The proof of necessity in this theorem is a little more

tricky, and will not be presented here.  (I will ask you,

however, to prove a restricted version of the necessary

condition in a problem).

Hence, if we have a situation where several of the

eigenkets have the same eigenvalue of some Hermitian operator

A, these can be chosen as eigenvectors of another Hermitian

operator B as long as [A,B] = 0.  Then, the eigenvalues of B

1 At a number of points here, and before, we have assumed that O1|x>
= O2|x> for all |x> implies that O1 = O2. Can you show this?
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may possibly serve to distinguish between them.  If B does

not completely distinguish between them, there may be another

Hermitian operator C with [C,A] = [C,B] = 0 that will do so,

and so on if the eigenkets are still not physically

distinguished from one another.  This is in fact what we

effectively did in characterizing the states of the free

particle in Chapter 2.  Just labeling the states by their

energy value did not completely distinguish between them.

However, by labeling in addition the momentum state we are

able to resolve the double degeneracy of the energy kets.

(We actually only found it necessary to label the sign of the

momentum state).  Of course, we have [H,px] = 0 so that this

is possible.  We could therefore label the states as |a',px' >

where

H|a',px' > = Ea'|a',px' > , (62)

px|a',px' > = px'|a',px' > . (63)

A minimal set of Hermitian operators A,B,C,... whose

common complete eigenkets can be characterized uniquely by

their eigenvalues is said to constitute a complete set of

observables (or operators).  Such a minimal set, however, is

not unique.  For example, in distinguishing the energy states

of the free particle, we could also have chosen P, the parity

operator to resolve the 2 fold degeneracy since we can show

that [H,P ] = 0.  These would be labeled |a',P >, say, with

P = ± 1:

H|a',P > = Ea'|a',P > , (64)
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P |a',P > = P|a',P > . (65)

The |a',px' > and |a',P > are just linear combinations of each

other. Notice that we can not choose our eigenkets to be

common to H,px and P  since P  and px do not commute.  [In

fact we can show that {P ,px} = 0, that is, the anti-

commutator of P  and px is zero.]  In this case we have that

either {H,px} or {H,P } constitute a complete set of

operators.  A common terminology is to call Hermitian

operators for which [A,B] = 0 "compatible observables."  In

terms of Process Diagrams, this says that the order in which

the operations A and B are carried out is immaterial.

The other side of the coin are Hermitian operators for

which [A,B] ≠ 0.  I will now prove an extremely important

theorem that will make more concrete some of my prior

statements concerning uncertainty relations.  Let us say that

|ψ1 > and |ψ2 > represent arbitrary kets in some finite

dimensional Hilbert space.  Let us set

|ψ > = |ψ1 > + λ|ψ2 >, (66)

where λ is some arbitrary complex number.  By (12) we have

that

< ψ|ψ > ≥ 0, (67)

so that

(< ψ1| + λ
∗ < ψ2|) ⋅ (|ψ1 > + λ|ψ2 >) ≥ 0. (68)
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Writing this out in full we get

< ψ1|ψ1 > + |λ|2 < ψ2|ψ2 > + 2Re[λ < ψ1|ψ2 >] ≥ 0, (69)

where "Re" means the real part of the argument.  Since (69)

must be true for any λ, we may choose

λ = - 
< ψ2|ψ1 >

< ψ2|ψ2 >
, (70)

assuming that |ψ2 > is a non zero ket.  Substitution of (70)

into (69) yields

< ψ1|ψ1 > + 
|< ψ2|ψ1 >|2

< ψ2|ψ2 >
 + 2Re

 



 



- 
|< ψ2|ψ1 >|2

< ψ2|ψ2 >
  ≥ 0. (71)

But the argument of Re is purely real, so (71) implies that

< ψ1|ψ1 > ≥ 
|< ψ2|ψ1 >|2

< ψ2|ψ2 >
 , (72)

or

< ψ1|ψ1 > < ψ2|ψ2 > ≥ |< ψ2|ψ1 >|2 . (73)

Eqn (73) is called the Schwartz inequality.  Let us let |ψ1 >

and |ψ2 > in (73) be given by

(A - < A >ψ)|ψ > = |ψ1 >, (74)

(B - < B >ψ)|ψ > = |ψ2 >. (75)
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where A and B are Hermitian and the expectation values < A >ψ

and < B >ψ are as usual given by

< A >ψ = < ψ|A|ψ >, (76)

< B >ψ = < ψ|B|ψ >. (77)

It is understood in (74) and (75) that in an operator context

< A >ψ = < A >ψ ⋅ 1 where "1" is the unit operator.  We choose

|ψ> to be normalized, i.e. < ψ|ψ > = 1.  Notice that

< ψ1|ψ1 > = (< ψ|(A - < A >ψ)) ((A - < A >ψ)|ψ >)

         = < ψ|(A - < Aψ >)2 |ψ >. (78)

Similarly for < ψ2|ψ2 >.  We now get that

< ψ|(A - < A >ψ)
2|ψ > < ψ|(B - < B >ψ)

2 |ψ > ≥

|< ψ|(A - < A >ψ)(B - < B >ψ)|ψ >|2. (79)

The quantities < ψ|(A - < A >ψ)
2|ψ > = < ψ1|ψ1 > and

< ψ|(B - < B >ψ)
2|ψ > = < ψ2|ψ2 > are intrinsically positive or

zero.  We now define the uncertainties in the operators A and

B in the state |ψ > (same as the definition in a problem from

Chapter 2)

∆A ≡ √< ψ|(A - < A >ψ)
2|ψ >  ≥ 0. (80)

∆B ≡ √< ψ|(B - < Bψ >)2|ψ >  ≥ 0. (81)

Since
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< ψ|< A >ψ|ψ > = < A >ψ < ψ|ψ > = < A >ψ, (82)

we may also write

 

∆A ≡ √< A2 >ψ - < A >

2

ψ ,

 

∆B ≡ √< B2 >ψ - < B >
2

ψ . 

 (83)

Now let us deal with the right hand side of Eqn (79).  We

have

< ψ|(A - < A >ψ)(B - < B >ψ)|ψ >

= < ψ|(AB - < A >ψB - A< B >ψ + < A >ψ< B >ψ)|ψ >

= < ψ|(AB - < A >ψ< B >ψ)|ψ > . (84)

By adding and subtracting the quantity 
1
2 BA, we may also

write

< ψ|(AB - < A >ψ< B >ψ)|ψ >

= < ψ|
 


 
1

2 (AB + BA) + 
1
2 (AB - BA) - < A >ψ< B >ψ |ψ >

= < ψ|
 


 
1

2 {A,B} - i 


 
 

i
2 [A,B]  - < A >ψ< B >ψ |ψ >,(85)

where we have introduced both the commutator, [A,B], and the

anticommutator, {A,B}, of A and B.  Let us define the new

operators

x = 
1
2 {A,B} - < A >ψ< B >ψ , (86)
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y = 
i
2 [A,B]. (87)

Since A and B are Hermitian, it is easy to show that x and y

are also Hermitian.  Therefore, our inequality, Eqn (79), now

reads

(∆A)2(∆B)2 ≥ |< ψ|x|ψ > - i< ψ|y|ψ >|2. (88)

Since x and y are Hermitian, we have that the expectation

values

< ψ|x|ψ > = < x >ψ , (89)

< ψ|y|ψ > = < y >ψ , (90)

are real numbers.  Therefore we must have that

|< x >ψ - i< y >ψ|
2 = < x >

2

ψ + < y >
2

ψ ≥ < y >
2

ψ , (91)

the last inequality only holding if < x >ψ = 0.  Using (91) in

(88) now gives us that

(∆A)2(∆B)2 ≥ < y >
2

ψ = < 
i
2 [A,B] >

2

ψ . (92)

Since both sides of (92) are intrinsically positive or zero,

this means that

∆A∆B ≥ |< 
i
2 [A,B] >ψ|, (93)

where the absolute value sign is used on the right hand side
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because while < y >ψ = < 
i
2 [A,B] >ψ is guaranteed real, it may

not be positive.  Eqn (93) says that if the Hermitian

operators A and B are not compatible, there will in general

be an uncertainty relation connecting them.  Eqns (73) and

(93) were derived in a situation where the dimensionality of

the Hilbert space is finite, but they also hold where the

dimensionality increases without limit.  In that case, we can

apply (93) to the incompatible observables x and px, which

tells us that

∆x∆px ≥ 
h

2 , (94)

since [x,px] = ih.  Eq
n (94) is the promised relation Eqn

(32) of Chapter 2.  It is clear that we cannot use this type

of derivation to establish the energy-time uncertainty

relation since the time is a parameter, not an operator, as I

also pointed out in Ch.3 of these notes.

One may try to turn this argument around. That is, given

operators for which

∆A∆B = 0 ( ⇒ <ψ|[A,B]|ψ> = 0) , (95)

(these are called simultaneous observables) for all states

|ψ>, does this imply that A and B are compatible, i.e., that

[A,B] = 0?  The answer to this question is affirmative.  We

can show this as follows.  Let us let o = AB - BA and let

|xi>, |xj > be any elements of a basis which spans the space.

Now we know that (95) holds for any state |ψ >.  Now consider
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|ψ > = |xi > + |xj > . (96)

Substituting (96) into (95) tells us that

  < xi|o|xi > + < xj|o|xj > + < xi|o|xj > + < xj|o|xi > = 0. (97)

But the first two terms of (97) are zero because of (95).

Thus, since we may write

< xj|o|xi > = < xi|o
+|xj >∗, (98)

and

o
+ = (AB - BA)+ = (BA - AB) = -o , (99)

we have from (97) that

< xi|o|xj > - < xi|o|xj >∗ = 0, (100)

which is the same as saying

Im(< xi|o|xj >) = 0. (101)

Likewise, consider

|ψ > = |xi > + i|xj >. (102)

Substituting (102) into (95) tells us

i< xi|o|xj > - i< xj|o|xi > = 0, (103)

which, with the use again of (98) and (99), says

i(< xi|o|xj > + < xi|o|xj >∗) = 0, (104)
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or

Re(< xi|o|xj >) = 0. (105)

Eqns. (101) and (105) together imply that

< xi|o|xj > = 0, (106)

for all i,j, so that

o = [A,B] = 0. (107)

Thus, the statement that ∆A∆B = 0 for all |ψ >, given that A

and B are Hermitian, is the same as saying [A,B] = 0.

Another way of stating this is: two Hermitian operators are

simultaneously measurable for any state if and only if they

commute.  However, if (95) holds just for some particular

states |ψ >, then AB ≠ BA in general.  Given that [A,B] ≠ 0,

the |ψ > for which the equality holds in (93) are minimum

uncertainty states called coherent states.  We saw an example

of such a state in the 1-D Gaussian wavepacket of Chapter 2.

I have pointed out an analogy between Hilbert space and

our ordinary 3-D world.  I have said that a normalized basis,

{|xi >}, is like a set of unit vectors in ordinary space.  Now

the description of a general vector in terms of orthogonal

unit vectors is not unique.  There is always the freedom of a

choice of basis.  A different choice description cannot, of

course, change the length of a vector.  If we let xi

represent the projections of an arbitrary vector upon three

orthogonal directions and x
_

i represent the projections of the
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same vector upon another set of mutually orthogonal 3-D unit

vectors, then we must have

∑
i

 x
_2
i = ∑

i

 x2i . (108)

The transformation equations relating x
_
 to x can be written

as

 



x
_

1 = x1λ11 + x2λ21 + x3λ31 ,
 

x
_

2 = x1λ12 + x2λ22 + x3λ32 ,
 

x
_

3 = x1λ13 + x2λ23 + x3λ33 , 

(109)

or more compactly as

x
_

i = ∑
j

 xjλji . (110)

The requirement (108) says that

 ∑
i,j,k

 λjiλkixjxk = ∑
i

 x2i, (111)

which is only satisfied if

 ∑
i

 λjiλki = δjk, (112)

where δjk is the Kronecker delta symbol. In matrix notation

(110) and (112) read

x
_
 = xλ, (113)

and
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λλT = 1, (114)

respectively.  Comparing (114) with the definition of λ-1,

λλ-1 = 1 (115)

means that

λT = λ-1, (116)

and (114) may also be written as

λTλ = 1. (117)

Any nonsingular transformation that satisfies (116) preserves

the length of vectors.  This includes both rotations and

inversions of the coordinates.

Now let us attempt to do the same thing for state

vectors in Hilbert space.  We have seen that the quantity

< ψ|ψ > is a real, positive quantity for non null vectors |ψ >

(Eqn (12) above). Interpreting this quantity as the square of

the "length", we require that

< ψ
_
|ψ
_

 > = < ψ|ψ > (118)

under a change of basis.  The analog of the linear

transformation (113) is

< ψ
_
| = < ψ|U (119)

where U is an operator in the Hilbert space.  Eqn (118) now

gives us that
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< ψ|UU+|ψ > = < ψ|ψ > (120)

similar to (111) above.  The requirement that (120) hold for

all states |ψ > then results in

UU+ = 1 (121)

(The reasoning that yields (121) from (120) is essentially

the same as the way we showed [A,B] = 0 follows from

< ψ|[A,B]|ψ > = 0.)  Comparison of (121) with

UU-1 = 1 (122)

tells us that

U+ = U-1 , (123)

similar to (116).  Therefore, we may also write (121) as

U+U = 1. (124)

We recognize (123) as the definition of a unitary

transformation, first seen in the discussion of spin 
1
2 in

Chapter 1.  Thus, what was seen there as a special case is

revealed as being general.  A unitary transformation

describes a change of basis that preserves the length of

state vectors in Hilbert space.  Because of the strong

analogy between real space vectors and Hilbert space vectors,

I will sometimes refer to (119) as a rotation in Hilbert

space.
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We have been regarding (113) as describing the point of

view where the x
_

i are the components of a fixed vector in a

rotated coordinate system.  This is called a passive rotation

of the vector.  However, an equally valid interpretation of

(113) is that the x
_

i represent the components of a rotated

vector in a fixed coordinate system, provided this rotation

is taken in the opposite direction to the passive one.  This

is called an active rotation of the vector.  We have also

been regarding the analogous Hilbert space statement, Eqn

(119), in a passive sense.  That is, we have taken (119) as

describing a situation where the bra vector is fixed but the

basis is rotated.  Just as for real space vectors, however,

we could just as well view (119) as an active rotation on the

bra in the opposite direction to the passive one.  I am using

the passive terminology here mainly to connect smoothly with

the discussion of unitary transformations in Chapter 1.  You

should be aware that either point of view is equally valid.

We will use the point of view that is most convenient at the

time.  Once we have chosen an interpretation, however, we

must strive for consistency.

Of course, completeness and orthonormality are preserved

under a unitary transformation.  That is, given

∑
i

|xi > < xi| = 1, (125)

and

< xi|xj > = δij, (126)
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we have that

 ∑
i

 |x
_

i > < x
_

i| = U
+ 

 


 
 ∑

i

|xi > < xi| U = 1, (127)

and

< x
_

i|x
_

j > = < xi|UU
+|xj > = δij. (128)

Hermiticity of operators is also preserved under unitary

transformations.  Given the rotation, either passive or

active, on the bra vectors as in (119), the same rotation

applied to an arbitrary operator A is

A
_
 = U+AU. (129)

(The rotation in the opposite direction is given by UAU+.)

If A = A+, then

(A
_
)+ = (U+AU)+ = U+AU = A

_
 . (130)

Also, given A|a' > = a'|a' >, we have

A
_
|a
_
' > = U+AU(U+|a' >) = a'|a

_
' >, (131)

and

< ψ
_
|A
_
|ψ
_

 > = < ψ|UU+AUU+|ψ > = < ψ|A|ψ >, (132)

so that the eigenvalues and expectation values are also

unchanged.

It is a theorem that can be proven that any unitary

operator U can be written as
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U = eiA, (133)

where A = A+. (See Merzbacher, 2nd ed., p.323).  The operator

ex is defined as

ex = 1 + x + 
x2

2  + ... = ∑
n=0

∞

 x
n

n! . (134)

From (134) it is easy to see that

(ex)+ = ex
+
, (135)

from which (133) gives us

UU+ = eiA(e-iA) = 1, (136)

as it should.  [By the way, in general we have

eAeB ≠ eA+B, (137)

when A and B do not commute.  To convince yourself of this,

just expand both sides in powers of the arguments of the

exponents.  There is an equality sign in (137) only in

general if A and B commute.]

We can use unitary transformations to represent a change

in basis due to coordinate displacements, rotations (in 2 or

more spatial dimensions) and momentum boosts.  In addition,

we will see that these transformations also provide an

alternate means of viewing the time development of a quantum

system.

As the simplest of these possibilities, let us consider

the unitary representation of coordinate displacements.  (We
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will deal with the equally simple case of velocity boosts in

a problem.)  The appropriate operator is

U = e-ix'px/h, (138)

where x' is a number (with dimensions of length) and x and px

are the usual position and momentum operators.  This unitary

transformation cannot be represented by a finite matrix since

the number of eigenvalues x' of x|x' > = x'|x' > is infinite.

We will not worry about this subtlety and will treat it as if

the space were finite.  Let us first consider the quantity

x
_
 = U+xU, (139)

with U given by (138).  In order to find the effect of U on

x, let us construct a differential equation for x
_
.  We have

that

h

i 
dx
_

dx' = e
ix'px/h [pxx - xpx]e

-ix'px/h,  (140)

where we see that the commutator [px,x] = 
h

i has arisen.  Then

we have

h

i 
dx
_

dx' = 
h

i e
ix'px/h e-ix'px/h = 

h

i , (141)

 ⇒  
dx
_

dx'  = 1. (142)

The solution to (142) is simply

x
_
 = x' + o , (143)
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where o is an unknown "constant" independent of x'.  Both

sides of (143) actually have an operator character.  We

should understand x' in (143) to mean x'1, where 1 is the

unit operator.  The value of the operator o is specified by

letting x' = 0 in (139), which means that

x
_
(x' = 0) = x, (144)

which implies that

o = x. (145)

Therefore, we have that

x + x' = eix'px/h xe-ix'px/h . (146)

The effect of this unitary transformation on coordinate

states can be found as follows.  We know from (146) that

eix"px/h x = (x + x")eix"px/h . (147)

Therefore

(< x'|eix"px/h )x = < x'|(x + x")eix"px/h

           = (< x'|eix"px/h)(x' + x"). (148)

This means that

< x'|eix"px/h = C < x' + x"|, (149)
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where C is some proportionality factor.  Because unitary

transformations preserve length in Hilbert space, we must

have |C|2 = 1.  We may then choose

< x'|eix"px/h = < x' + x"|. (150)

Therefore, the unitary operator eix"px/h generates a spatial

translation when acting on bra coordinate states.

Using (150) we can recover our previous result for

< x'|px.  To first order in δx" we have

< x'|
 



 



1 + 
δx"px
h

  = < x' + δx"|. (151)

This gives

< x'|px = 
< x' + δx"| - < x'|

δx"
  . (152)

Taking the limit of both sides of (152) as δx" → 0 now yields

< x'|px = 
h

i 
∂

∂x'
 < x'| , (153)

the same as Eqn (166) of Chapter 2.

As our second example of a unitary transformation,

consider

U(t) = eiHt/h . (154)
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We saw this operator (or rather, its adjoint) in Chapter 2

where it was termed the time evolution operator.  We saw

there that

|a',t > = e-iHt/h|a' > (155)

where |a' > is an energy eigenstate of H at t = 0 and |a',t >

is the time evolved state.  The original discussion was for

the case of a free particle.  However, the 1-D Schrödinger

equation is also separable in space and time for Hamiltonians

including a potential as in Eqn (3) of Chapter 3.  This means

that (155) describes the time evolution of energy eigenstates

in this case as well.

Let me take this opportunity to point out another way of

dealing with time evolution using the unitary operator U(t)

above.  Let us consider the expectation value of some

physical property A at time t.  This is given by

< A >ψ,t = < ψ,t|A|ψ,t > = < ψ|U(t)AU+(t)|ψ >, (156)

with U(t) given above.  This point of view assigns the time

evolution to the states.  However, from (156) we see that it

is equally valid to assign all time dependence to the

operator A.  That is, we may set

< A >ψ,t = < ψ|A(t)|ψ >, (157)

where

A(t) ≡ U(t)AU+(t). (158)



4.36

The problem now is to find the dynamical equation satisfied

by A(t) so that its time behavior can be determined.

Consider therefore the time derivative of A(t).  One finds

that

h

i 
dA(t)
dt  = U(t)[HA - AH]U+(t) + U(t) 

∂A

∂t
 U+(t). (159)

The three terms in (159) come from the time dependence in

U(t),U+(t) and a possible explicit time dependence in the

operator A.  Now we may write

U(t)[HA - AH]U+(t) = [HA(t) - A(t)H] = [H,A(t)], (160)

since in the simple case we are studying, U(t) and H commute.

The most common case is where 
∂A

∂t
 = 0.  Then (159) becomes

h

i 
dA(t)
dt  = [H,A(t)]. (161)

This is the operator equation of motion satisfied by A(t).

Eqn (161) is called the Heisenberg equation of motion.

Taking the expectation value of both sides of (161), we learn

that

h

i 
d< A(t) >ψ

dt  = < [H,A(t)] >ψ, (162)

in an arbitrary state |ψ >.

Notice that if [H,A] = 0, this implies [H,A(t)] = 0

because U(t) and H commute.  Therefore, when H and A commute,
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A is a constant of the motion.  In this case (162) gives rise

to

 
d< A(t) >ψ

dt  = 0. (163)

This says that expectation values of A are a constant in

time.  This makes sense because if A is assumed to commute

with H then it is clear that

< A(t) >ψ = < ψ|U(t)AU+(t)|ψ > = < ψ|A|ψ > = < A >ψ,

for all t.  In particular, if at t = 0 the wavefunction is an

eigenvector of A with eigenvalue a', this will continue to

hold true at a later time t. a' is called a good quantum

number and A can be chosen as one of the complete set of

observables that characterize eigenvectors.  We previously

saw an example of a constant of the motion in the parity

operator, P , in the case of the infinite square well and the

simple harmonic oscillator.  A state with a given < P >ψ

value will keep this quantity fixed in time.

The representation for U(t) in (154) is in general only

true when the Hamiltonian is not an explicit function of the

time. Other forms for the evolution operator hold when

H = H(t).  (See Sakurai's discussion in "Modern Quantum

Mechanics" on pgs. 72 and 73).  We will not deal with time

dependent Hamiltonians here.

We thus have an alternate and equivalent way of viewing

the time dynamics of quantum systems.  Previously, we were
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taking the operators as static and viewing the states |ψ > as

evolving either actively or passively in time.  This point of

view leads to the Schrödinger equation and is called the

Schrödinger picture.  We have now learned that we may instead

time-evolve the operators actively or passively and let the

states |ψ > be static.  This point of view leads to the

Heisenberg equations of motion and is called the Heisenberg

picture.

As an example of the use of the Heisenberg picture, let

us re-examine the free Gaussian wavepacket of Chapter 2.  The

peak of the Gaussian distribution |ψg(x,t)|
2 spread with time

but maintained its shape.  It's easy to check that the

expectation values of position and momentum in the

Schrödinger picture are

< x >ψ,t = 
p
_

m t, (164)

< px >ψ,t = p
_
, (165)

from which we have that

< x >ψ,t =  
< px >ψ,t

m  t. (166)

Let us try to recover (166) from the Heisenberg picture.  We

have that

h

i 
dx(t)
dt  = [H,x(t)] = U(t) 




 



 
p
2
x

2m ,x  U+(t). (167)

The commutator in (167) is
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p
2
x

2m ,x  = 
1
2m {px[px,x] + [px,x]px} = 

h

i 
px
m  . (168)

We now find

h

i 
dx(t)
dt  = 

h

i U(t) 
px
m  U

+(t) = 
h

i 
px(t)

m  , (169)

so we have the operator statement

 
dx(t)
dt  = 

px(t)

m  . (170)

Of course, we also have that

h

i 
dpx(t)

dt  = U(t)  



 



 
p
2
x

2m ,px  U
+(t) = 0, (171)

so that

dpx(t)

dt  = 0, (172)

and px(t) is a constant operator in time (px(t)=px).

Therefore from (170) we get by integration

x(t) = 
px
m  t + C, (173)

where C is a constant operator.  We know from

x(t) = U(t)xU+(t) that x(0) = x, so C = x.  Taking the

expectation value of both sides of (173) finally gives us

< x(t) >ψ = 
< px >ψ
m  t, (174)
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if < x >ψ = 0.  In (166) the time dependence of the

expectation values is in the state, whereas in (174) the time

dependence is in the operator.  We get identical results

either way.  Notice that the relation (166) was derived for a

particular wave packet, whereas (176) shows that this

relation holds for any particle wave packet as long as < x >ψ

= 0.

The commutation properties of operators are preserved in

the Heisenberg picture if these are interpreted as equal time

relations.  For any unitary transformation U(t) we have for

example

U(t)[x,px]U
+(t) = ih,

⇒  U(t)xpxU
+(t) - U(t)pxxU

+(t) = ih,

⇒  x(t)px(t) - px(t)x(t) = = ih,

⇒  [x(t),px(t)] = ih. (175)

The above application of the Heisenberg picture was to

the case of free particles.  We can go a step beyond this in

applying this formalism in the case where an unspecified

potential is present.  Let us let

H = 
p
2
x

2m + V(x), (176)

Then we have
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h

i 
dpx(t)

dt  = U(t)[H,px]U
+(t), (177)

[H,px] = [V(x),px]. (178)

From Eqn (80) of Chapter 2 recall that

[px,f(x)] = 
h

i 
df(x)
dx , (179)

which is an operator statement.  For the commutator in (178)

we have therefore

[V(x),px] = - 
h

i 
dV(x)
dx  , (180)

from which we have

 
dpx(t)

dt  = -U(t) 
dV(x)
dx  U+(x). (181)

We also have that

 
h

i 
dx(t)
dt  = U(t)[H,x]U+(t) = 

1
2m U(t)[p

2
x,x]U

+(t), (182)

where [p
2
x,x] =  

2h
i  px.  Therefore

dx(t)
dt  = 

px(t)

m , (183)

the same as (170) above.  Taking another derivative in (183)

now gives us

d2x(t)

dt2
 = 

1
m 
dpx(t)

dt  = - 
1
m U(t) 

dV(x)
dx  U+(t), (184)
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where we have used (181).  If V(x) is a power series in x,

then

U(t) 
dV(x)
dx  U+(t) =  

dV(x(t))
dx(t)  (185)

and we have

m 
d2x(t)

dt2
 = - 

dV(x(t))
dx(t) , (186)

which has the appearance of Newton's second law, but written

for operators.  We may, if we wish, take the expectation

value of both sides of (186) in an arbitrary state.  This

yields

m 
d2< x(t) >ψ

dt2
 = - < > 

dV(x(t))
dx(t)  ψ.  (187)

The analogous statement in the Schrödinger language writes

this as

m 
d2< x >ψ,t

dt2
 = - < > 

dV(x)
dx  ψ,t . (188)

Eqn (187) or (188) is called Ehrentest's theorem.  In words,

it says that the expectation value of the position operator

moves like a classical particle subjected to a "force" given

by -  < > 
dV
dx  .
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Problems

1. Prove:  In a finite Hilbert space of dimensionality N,

if the N eigenvectors of A can all be chosen orthonormal

and if the eigenvectors are all real, then A = A+ (it is

Hermitian).

2. Prove:  (Restricted form of the necessary condition for

the theorem on p.4.16, p.4.17 of the notes.)  If A and B

are Hermitian and the eigenvalues of A (or B) are all

distinct, and if [A,B] = 0, then A and B possess a common

set of orthonormal eigenkets.

3. Show for the parity operator, P, that ("{}" is the anti-

commutator)

    (a)  {P,px} = 0.

    (b)  {P,x} = 0.

    (c)  PP+ = 1.

[Hint:  P is defined by

 P|x'> = |-x'>.

An explicit representation of P is therefore

P = ∫ dx' |-x'><x'|.]

4. Prove:  If <Ψ|A|Ψ> is real for all |Ψ>, then A = A+.

(A is Hermitian.)

5. Prove:

|<Ψ1|A|Ψ2>|2 ≤ <Ψ1|A|Ψ1> <Ψ2|A|Ψ2>
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for any A = A+ such that <Ψ|A|Ψ> ≥ 0 for all |Ψ>.

Other Problems

6.(a)  For a free particle (V(x)=0) in one dimension, show

that there is an uncertainty relation connecting x (the

position operator) and x(t) (the Heisenberg time-evolved

position operator):

∆x ∆x(t) ≥ |
ht
2m|.

(b)  Express in words what this uncertainty relation means

in terms of experiments which measure a particle's

position.

7.(a) Show that (set h=1 here for simplicity)

e-ipx
'x px e

ipx'x = px + px',

where x and px are the usual position, momentum operators,

and px' is a (real) number. [Hint:  Construct a differential

equation in px'.]

(b)  Use part (a) to argue that

<px'|x = i
∂

∂px'
 <px'|.

8. One thousand neutrons are in a one-dimensional box, with

walls at x=0, x=L. At t=0, the particle's wavefunction is

ψ(x,0) = A  


 
sin(

πx
L ) - 

1
10 sin(

2πx
L ) .

  (a) Normalize ψ(x,0) and find the value of the constant

A.
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  (b) How many particles are in the interval (0,
1
2 L) at

t=0?

  (c) How many particles have energy E2 (= 
4h2π2

2mL2 ) at t=0?

  (d) Find ψ(x,t) for t>0.

9. (a) Show that

eA eB = eA+B e1/2[A,B],

given that A and B each commutes with [A,B]. [Hint: In

general, we have

eA B e-A = B + [A,B] + 
1
2! [A,[A,B]]+ 

1
3! [A,[A,[A,B]]] + 

...

.]

  (b) Use (a) to show that we may write (h = 1 again)

[eiax,eibpx] = -2iei(ax +bpx)sin(
ab
2 ),

where px and x are operators; x', a, and b are numbers.
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Chapter 5:  Two Static Approximation Methods

It is in the nature of physical systems that the closer

they are observed, the more detail there is to see;  the

closer we come to mathematically describing these additional

details, the more intricate our mathematical considerations

often then become; the more intricate the mathematical

description is, the more difficult it usually becomes to

solve our system of equations in some exact analytical way.

Sometimes, the additional physical details we wish to

incorporate into the theory are sufficiently small compared

to other quantities already in the theory that their

incorporation does not involve an entirely new solution or an

entirely new starting point but can be treated as a

perturbation of the old solution or starting point.  What I

want to talk about here are two methods for carrying out this

program.  The first technique, called time independent

perturbation theory or Rayleigh-Schrödinger perturbation

theory is mainly useful when additional small time-

independent interactions are added to a system for which an

exact analytical solution is already available.  This is

often the case in the intricate interactions that occur in

atomic and nuclear physics.  The results that it gives are

very general and are not necessarily limited to a

nonrelativistic domain. The other technique, called the WKB

or JWKB semiclassical approximation, is based upon the use of

a "classical" version of the Schrödinger equation as a new
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starting point for the description of situations where

particles are subjected to slowly varying potentials in

space.  The treatment of time independent perturbation theory

is independent of any assumptions concerning our space

dimensionality. However, we will maintain our limitation to a

single spatial dimension for purposes of simplicity in the

WKB method discussion, although that single dimension could

be, for example, the radial coordinate in a three dimensional

space, say.

Time dependent perturbation theory is also an important

subject in quantum mechanics. It comes into play mainly when

transitions from one state to another or scattering are

considered.  Unfortunately, we will not have time to cover

this important topic here.

To begin with, let us consider a Hamiltonian that is

dependent on some real parameter, λ. (It could, for example,

represent an interaction with an electric or magnetic field.)

The basic eigenvalue-eigenvector statement is given by

(H(λ) - E(λ)|Eλ > = 0, (1)

where in general the energies and the states also have a λ

dependence. (λ is simply a parameter in |Eλ >, not an

eigenvalue.) Taking the derivative of (1) with respect to λ

gives

(H - E) 
∂

∂λ
 |Eλ > + 

 



 

 

∂H

∂λ
 - 

∂E

∂λ
 |Eλ > = 0. (2)
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Now project both terms in (2) into the state < Eλ|.  Since we

know that < Eλ|(H - E) = 0, we get (Feynman-Hellman theorem)

<Eλ| 
∂H

∂λ
 |Eλ> = 

∂E

∂λ
 , (3)

which is an exact statement.  This equation is useful on

occasions when E(λ) is known and we wish to evaluate certain

operator expectation values.

We now wish to solve (2) for 
∂

∂λ
 |Eλ >.  Assuming the

inverse of the operator (H - E) exists, the general solution

is

 
∂

∂λ
 |Eλ > = iC(λ)|Eλ > + 

1
E - H  




 

 

∂H

∂λ
 - 

∂E

∂λ
 |Eλ > , (4)

where C(λ) is an arbitrary real constant.  We can see why

this term is allowed because if we try to reproduce (2) from

(4) by operating on both sides by (E - H), we see that the

term proportional to C(λ) will project to zero.  It actually

arises because of the freedom of choice of a λ-dependent

phase in the definition of the state |Eλ >.  We will put

C(λ) = 0 in the following, but this will not limit the

generality of the results.

We will now specialize to problems that have discrete,

non-degenerate energy eigenvalues.  Completeness can be

written as

∑
E'

 |E'λ > < E'λ| = 1. (5)
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Using (5) we may write

 
 



 

 

∂H

∂λ
 - 

∂E

∂λ
 |Eλ > = ∑

E'

 |E'λ > < E'λ| 
 



 

 

∂H

∂λ
 - 

∂E

∂λ
 |Eλ >, (6)

     =  ∑
E'≠E
 |E'λ > < E'λ| 

∂H

∂λ
 |Eλ > . (7)

We know by (3) above that when E' = E in the sum in (6) that

the matrix element  < Eλ| 
∂H

∂λ
 - 

∂E

∂λ
 |Eλ > vanishes.  That is why

the sum in (7) leaves out this term.  Once this single term

is eliminated, we know that the  
∂E

∂λ
 term in (6) does not

contribute because of the orthogonality of the states < E'λ|

and |Eλ >.  This term is zero and the result is then Eqn (7).

Replacing (7) in (4) gives us

 
∂

∂λ
 |Eλ > = 

1
E - H ∑

E'≠E
 |E'λ > < E'λ| 

∂H

∂λ
 |Eλ >. (8)

Now we postulate on the basis of Eqn (105) of Chapter 1

that

f(H)|E'λ > = f(E')|E'λ >, (9)

so that

(E - H)-1|E'λ > = (E - E')-1|E'λ >. (10)

Eqn (8) now becomes
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∂

∂λ
 |Eλ > = ∑

E'≠E
 |E'λ > 

< E'λ| 
∂H

∂λ
 |Eλ >

(E - E')   . (11)

Let us go back to Eqn (3) and work out the second

derivative of E(λ):

∂2E

∂λ2
 =

< Eλ| 
∂2H

∂λ2
 |Eλ > + < Eλ| 

∂H

∂λ
 

 



 

∂

∂λ
 |Eλ >  + 

 



 

∂

∂λ
 < Eλ|  

∂H

∂λ
 |Eλ >. (12)

The last two terms in (12) are in fact just complex

conjugates of each other, so that

 
∂2E

∂λ2
 = < Eλ| 

∂2H

∂λ2
 |Eλ > + 2Re

 



 



< Eλ| 
∂H

∂λ
 

 



 

 

∂

∂λ
 |Eλ >   . (13)

           
                                           Replace

Now let us use (11) in (13).  We get

 
∂2E

∂λ2
 = < Eλ| 

∂2H

∂λ2
 |Eλ > + 2 ∑

E'≠E
  

|< Eλ| 
∂H

∂λ
 |E'λ >|2

(E - E')  , (14)

where we have dropped the real part restriction because the

quantity in brackets in (13) is real.  Eqn (14) is also an

exact formula.

Now let's do a Taylor series for E(λ).  We have

(assuming the series exists)

E(λ) = E(0) + λ 
∂E(0)

∂λ
 + 

λ2

2  
∂2E(0)

∂λ2
 + ... (15)
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where the partials with respect to λ are evaluated at λ = 0.

Using (3) and (14) in (15) now reveals that

E(λ) = E(0) + λ< E| 
∂H(0)

∂λ
 |E > + 

λ2

2  < E| 
∂2H(0)

∂λ2
 |E >

 + λ2 ∑
E'≠E
 
|< E| 

∂H(0)

∂λ
 |E' >|2

(E - E') ) + ... . (16)

The result (16) is usually applied to the situation where the

Hamiltonian is given by

H = H0 + H1 . (17)

H0 represents a Hamiltonian for which an exact solution is

known and H1 represents the "perturbation."  Instead of (17)

we may formally write

H = H0 + λH1 (18)

and then evaluate the Taylor series (16) when λ = 1 to get

the effect of the perturbation H1 on the energy levels.  The

result is

E = E0 + < E0|H1|E0 > + ∑
E
0
'≠E

0

  
|< E0|H1|E0

'
 >|

2

(E0 - E0
')  + ... (19)

where I have labeled the unperturbed energies as E0.  Eq
n (19)

says the leading correction to the E0 energy level is just

the diagonal element of the pertubation matrix.  Because the

perturbation H1 appears linearly in the diagonal term, this
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is the first order correction to the energy.  The next term,

where the H1 matrix element appears squared, is the second

order correction, and so on.  Corresponding to these

corrections in the energies are corrections to the energy

wavefunctions.  However, these new wavefunctions get

complicated quite quickly and will not be examined here. (See

for example Ch.9 of Anderson, Modern Physics and Quantum

Mechanics, 1st ed.)

It sometimes happens that the leading first order

correction in (19) vanishes for certain perturbations, but

the second order term does not.  Notice that if E0 represents

the ground state energy (i.e., the lowest energy state), then

the effect of the second order correction is such as to lower

the energy of the ground state because (E0 - E0
') < 0 for all

E0
' ≠ E0 by definition.  This cannot be said for higher lying

states.  There we see that the second order correction tends

to produce a repulsion between neighboring energy levels.

The sign of the overall energy shift, however, is not

determined.

Let us examine a quantitative example of this method. We

will reexamine the simple harmonic oscillator with

dimensionless Hamiltonian

H0 = 
1
2 (p

2 + q2), (20)

and energies

E0 = n + 
1
2 ,  n = 0,1,2,... (21)
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We will take the perturbation as

H1 = γq
3,   (γ dimensionless) (22)

making the system anharmonic.  The new dimensionless energies

of the system are given approximately by

En ≈  


 
n + 
1
2   + < γq3 >n + ∑

n'≠n
  

|< n|γq3|n' >|2

(n - n') . (23)

Now, the first order energy correction vanishes in the

unperturbed states because positive and negative

position values occur symmetrically in ψ∗
n
(q')ψn(q').  Another

way of arguing this is to say that the q3 operator changes

the parity of the state |n >.  We can work out the necessary

matrix elements of q3 for the second order term as follows.

Remember that

q = 
A + A+

√2
 , (24)

where

A|n > = √n |n - 1 > , (25)

A+|n > = √n + 1 |n + 1 > . (26)

We now find successively:

  q|n > = 
1

√2
 [ ]√n |n - 1 > +  √n + 1 |n + 1 > , (27)
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  q2|n > = q[q|n >] = 
1
2 
[√n|(n - 1) |n - 2 >

  + (2n + 1)|n > + ]√(n  +  1)(n  +  2)|n  +  2  > , (28)

  q3|n > = q[q2|n >] = 
1

2√2
 [√n(n - 1)(n - 2)  |n - 3 >

  + √n (3n)|n - 1 > + √(n + 1) (3n + 3)|n + 1 >

       + ]√(n  +  1)(n  +  2)(n  +  3) |n  +  3  > .  (29)

Therefore, we have from (23) that

En ≈  


 
n + 
1
2  + 

γ2

8  
n(n - 1)(n - 2)

3  + 9n3 - 9(n + 1)3

 +  
(n + 1)(n + 2)(n + 3)

-3  , (30)

or

En =  


 
n + 
1
2  - 

γ2

8 (30n(n + 1) + 11). (31)

What has happened to the energy levels?  Notice that the

correction term in (31) is always negative, lowering all of

the energies.  This lowering in energy increases in magnitude

as n increases.  In fact, for neighboring energy levels we

have

En+1 - En = 1 - 
15
2  γ2 (n + 1). (32)

Eqn (32) implies that there is a value of n for which the

difference in energies is zero.  This is a backwards way of
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finding out that our treatment of the perturbing Hamiltonian

can hardly be valid under these conditions.  Eqn (32) shows

that our perturbative treatment of H1 must break down when

γ2n ~ 1. (33)

Why has this happened?  At higher energy levels, the system

is "sampling" larger q' (position) values.  However, for any

fixed value of γ in (22) there will be values of q' for which

γq'3 > 
1
2 q'

2 for larger q'.  Under these conditions the

"perturbation" will in fact be the dominant term in the

energy and a perturbative treatment is bound to be

inadequate.

We have left out a large class of problems in deriving

the result (19).  We have specified that the energy levels of

our systems be non-degenerate.  Many physical systems have

such degeneracies.  (The hydrogen atom is one such system we

will study next semester.)  Let us assume that we are trying

to solve for the energy levels of a Hamiltonian of the form

(17), but that there exists a k-fold degeneracy of the

unperturbed energy levels.  In addition to the unshifted

energy label, E0, there will now be another label which will

distinguish between these k states.  Let's label such a state

as |E0a > where a = 1,...,k.  Of course the point is to find a

representation which diagonalizes the full Hamiltonian, H =

H0 + H1, the diagonal elements being the energy eigenvalues.

Now, it is reasonable (and justifiable) to assume that the

first order effect on the k members of the unperturbed
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(degenerate) energy spectrum will just come from those states

which are elements of the degenerate subspace; that is, we

neglect the effect of any "distant" energy states. If this is

so, then it is only necessary to diagonalize the

perturbation, H1, in the degenerate subspace. Then, the

shifted energy levels will of course be given by

Ea = E0 + < E0a|H1|E0a > , (34)

where  < E0a|H1|E0a > is just the eigenvalue corresponding to

the eigenvector labeled by "a". Thus, this is just a standard

eigenvalue/eigenvector problem, but carried out entirely

within the originally k-fold degenerate subspace. Then, if

the diagonal elements of this matrix are all distinct, the

degeneracy will have been lifted and we will have k distinct

energy levels where before there was only one.  In this case

one can then proceed to second order perturbation theory in a

standard fashion, using the newly determined distinct

eigenfunctions.  However, It may happen that not all the

diagonal elements are distinct after H1 is diagonalized, that

some energy degeneracies remain. In order to proceed beyond

this point in perturbation theory, it is necessary to use

second-order degenerate perturbation theory (which takes into

account the effects of "distant" states).  We will not pursue

this subject further here as it occurs rather infrequently.

(See Gottfried, Quantum Mechamics, problem 1, p.397 for a

good problem along these lines.)
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Let us now move on to talk about another useful

approximation method:  the WKB semi-classical approximation.

The Schrödinger equation for an arbitrary potential in one

spatial dimension is

 



 



- 
h
2

2m 
d2

dx2
 + V(x)  u(x) = Eu(x), (35)

or

 



 



 
d2

dx2
 + 

2m

h
2 (E - V(x))  u(x) = 0. (36)

When we were solving (35) or (36) for flat potentials, as in

the finite potential barrier problem, we defined the constant

(for E > V0, say)

k2 = 
2m

h
2 (E - V0), (37)

for which the solutions to the Schrödinger equation were

u(x) ~ e±ikx. (38)

The wave number, k, is related to the deBroglie wavelength by

k = 
2π

λ
 = 

1

λ-
 . (39)

Following this lead, let us define a position dependent

wavenumber by

k2(x) ≡ 
2m

h
2 (E - V(x)) (40)
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when (E - V(x)) > 0.  If we think of the potential V(x) in

(39) as changing sufficiently slowly with x, then we might

expect to get solutions of the form

u(x) ~ e±i∫
xdx'k(x'), (41)

where the lower limit on the integral is not yet specified.

With this u(x) we have*

1
i 

d
dx u(x) = ± k(x)u(x), (42)

and therefore

d2

dx2
 u(x) = -k2(x)u(x) ± i 

dk(x)
dx  u(x), (43)

which is just (36) if

1

k2(x)
 | dk(x)dx  | << 1, (44)

or, using an obvious definition of λ-(x):

| dλ
-(x)
dx  | << 1. (45)

In words, Eqn (45) says that the change in the reduced

wavelength because of the varying potential must be small

compared to a change in x.  This should be the case in many

semi-classical applications where the particle energies are

large compared to the potential.

* Here we are using the rule (Leibnitz)

    
d
dt
 ∫a(t)

b(t)
f(x)dx = f[b(t)] 

db
dt
 - f[a(t)] 

da
dt
 .
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To improve upon (41), let us define a new slowly varying

wavefunction φ(x) such that

u(x) = e±i∫
xdx'k(x')φ(x). (46)

We then have

d
dx u(x) = e

±i∫xdx'k(x')

 


 
 

d
dx ± ik(x)  φ(x). (47)

and similarly for the second derivative.  The Schrödinger

equation now takes the form

 


 
 

 


 
 

d
dx ± 2ik(x)  


 
d

dx  ± i 
dk(x)
dx  φ(x) = 0, (48)

which is still exact.  Since φ(x) is supposedly a slowly

varying function of x, let us neglect the second derivative

term in (48).  Then we have

dφ
dx

φ
 + 

1
2 

dk
dx
k  = 0. (49)

Integrating indefinitely gives

φ(x) = 
C

√k(x)
 , (50)

where C is an unspecified constant.  Thus, we have

approximately that

u(x) _~  
C

√k(x)
 e±i∫

xdx'k(x'), (51)
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for (E - V(x)) > 0.  The + sign in (51) represents a wave

traveling to the right and the minus sign a wave traveling to

the left.

Now let us think about the case (E - V(x)) < 0.  We know

that classical particles cannot penetrate into such regions

because they have insufficient energy.  Quantum mechanically,

however, we know that nonzero wavefunctions are allowed and

that they are given by real exponentials.  We saw that these

solutions are given by making the substitution k → ± iK

where

K = 
√2m(V0 - E)

h
 .  Letting K(x) =  

√2m(V(x) - E)
h

  in (51), we

find the WKB solutions

u(x) = 
C'

√K(x)
 e±∫

xdx'K(x'), (52)

valid for (E - V(x)) < 0.

We now have formulas for slowly varying potentials when

(E - V(x)) <
> 0.  However, the basis for the WKB description

of wavefunctions breaks down near classical turning points,

i.e., positions near where (E - V(x)) = 0.  Consider a

deBroglie wave of energy  Ε impinging on a potential barrier

from the left, as shown below.
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exponential
  decay

E

u(x)

V(x)

xx
1

In this situation, we see that the local reduced wavelength,

λ-(x), becomes infinite at x = x1, and the condition (45) is

violated.  However, we do have approximate solutions far to

the left and right of the turning point in Eqn (51) and (52),

respectively.  It is a question of trying to approximately

solve the Schrödinger equation in the vicinity of the turning

point and then matching this middle wavefunction to the WKB

solutions on either side.  The approximate Schrödinger

equation near the turning point is given by assuming an

expansion of the potential

V(x) ≈ E + (x - x1) 
∂V

∂x
 |x=x1

(53)

near x = x1.  Then the Schrödinger equation becomes

 



 



 
d2

dx2
 + 

2m

h
2 (x - x1) 

∂V

∂x
 |x=x1

  u(x) = 0.  (54)

The details of the mathematics that describe the solution of

this equation and the matching of wavefunctions and their

first derivatives at the turning points will not be recorded
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here.  (See Merzbacher, Quantum Mechanics, Ch. 7, for

example).  The results of such an analysis tells us that the

connections between wavefunctions in the two regions are

given by:

    x < x1       x > x1

  
1

√k(x)
 2 cos 

 



 



 ∫x1
x
dx'k(x') + 

π
4   ¶    

1

√K(x)
 e-∫x1

x dx'K(x'), (55)

  
1

√k(x)
 sin 

 



 



 ∫x1
x
dx'k(x') + 

π
4     ¶ - 

1

√K(x)
 e∫x1

x dx'K(x'). (56)

Likewise, if we have a situation as in:

E

u(x)

V(x)

xx
0

exponential
  decay

then we have the connections

    x > x0       x < x0

  
1

√k(x)
 2 cos 

 



 



 ∫x0
x
dx'k(x') - 

π
4    ¶   

1

√K(x)
 e-∫ x

x
0 dx'K(x'),(57)

 - 
1

√k(x)
 sin 

 



 



 ∫x0
x
dx'k(x') - 

π
4     ¶  

1

√K(x)
 e∫ x

x
0 dx'K(x'). (58)
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These sets of equations are called the WKB connection

formulas.  The double arrows mean a solution of one form in

the given spatial region corresponds to the other form in the

neighboring region.

There are several interesting applications of these

formulas.  One of these comes from considering the situation

in the following figure:

exponential
  decayE

I II III
V(x)

xx1 x2

Here we are imagining an incident wave from the left

impinging on the potential but having insufficient energy

classically to overcome the barrier.  However in quantum

mechanics we know that there will be a finite probability

that the particle reaches the region to the right of x = x2

because of tunneling.  Because of (51) and (52) the

approximate solutions in regions I and III are:

uI(x) = 
A

√k(x)
 cos 

 



 



 ∫x1
x
dx'k(x') + 

π
4 

+ 
B

√k(x)
 sin 

 



 



 ∫x1
x
dx'k(x') + 

π
4 , (59)
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uIII(x) = 
E

√k(x)
 cos 

 



 



 ∫x2
x
dx'k(x') - 

π
4 

+ 
F

√k(x)
 sin 

 



 



 ∫x2
x
dx'k(x') - 

π
4 . (60)

Our requirement of waves impinging from the left requires

F = iE since uIII(x) must be of the form of (51) with the

upper, positive sign.  Now, instead of matching wavefunctions

and their first derivatives at x = x1 and x2, it is only

necessary to use the connection formulas.  Again, an overall

normalization determines one of the constants, so we can, for

example, divide everything through by A to isolate two

ratios, 
E
A and 

B
A .  We must use the connection formulas from

regions I and III to get two expressions for uII(x).

Requiring consistency of these two expressions gives us the

ratios
E
A = 

i

2θ
 , (61)

and
B
A = 

-i

4θ2
 , (62)

where

θ ≡ e∫x1
x
2 dx'K(x'). (63)

Now the transmission coefficient is defined as the ratio of

the absolute square of the coefficients of the right-

traveling waves in regions III to I.  One can show that this

means
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T = 

 



 



 
-2i 

E
A

(1 - i 
B
A)

2

 . (64)

Applying (64) to the barrier problem of Chapter 3, we find

T = e-4Ka, (65)

where we have neglected the - 
1

4θ2 term in the denominator of

(64) for Ka >> 1.  Eqn (123) of Chapter 3 gives

T = 

 



 

 

1

1 - 
1
4  




 

 

K
k1
 - 

k1
K  

2
  e-4Ka, (65)

in the same limit.  We see that the WKB method got the

exponential part of T correct, but has missed the overall

constant in front.  However, a rectangular potential does not

satisfy well the WKB requirement for a slowly varying

potential.

Another application of the WKB method is to get

approximate bound state energies.  Let us say that our

potential looks like:

I II III

E

xx
1 x

2

V(x)
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The energy specified corresponds to a bound state.  In

region I we must have an exponentially decreasing

wavefunction:

uI(x) =  
C

√k(x)
 e-∫ x

x
1 dx'K(x'). (66)

By the connection formula (57), the solution in region II is

uII(x) =  
C

√k(x)
 2 cos 

 



 



 ∫x1
x
dx'k(x') - 

π
4 . (67)

On the other hand, we must also have a decreasing exponential

solution in region III:

uIII(x) =  
C'

√k(x)
 e-∫x2

x

 dx'K(x'). (68)

Using the connection formula (55) this then gives

uII(x) =  
C'

√k(x)
 2 cos 

 



 



 ∫x2
x
dx'k(x') + 

π
4 . (69)

We see that (67) and (69) are only compatible when

∫x1
x2
dx'k(x') = 

 


 
n + 
1
2  π. (70)

and

C
C' = (-1)

n , (71)

where n = 0,1,2,...  Eqn (70) determines approximately the

bound state energies of the system.

Let us apply (70) to the infinite square well of Chapter

3, although rigorously we have no right to do this for such a
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discontinuous potential. Using the notation of Chapter 3, we

find that

ka = 
π
2  


 
n + 
1
2  , n = 0,1,2,... (72)

⇒ E = 
h
2

2m  




 




 

π 
 


 
n + 
1
2

2a   

2

 . (73)

Eqns (22) and (25) of Chapter 3 can be combined to read

ka = 
π
2 (n + 1), n = 0,1,2,... . (74)

⇒ E = 
h
2

2m  


 
 

π ( )n + 1
2a  

2

 . (75)

for the exact energies.  We see that (73) has underestimated

the energies by an amount that decreases as n increases.

This makes sense since increasing n is in the direction of

classical energies where the WKB method is supposed to work

best.

The constant 
π
2 on the right of (70) is special to bound

states in one dimension.  In general, the value of this

constant depends on the boundary conditions on the variable

being studied.  For the radial variable in a three

dimensional space this constant is zero.
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Problems

1. Given the harmonic oscillator Hamiltonian,

H = 
px
2

2m + 
1
2 mω

2x2

and energies,

En = hω(n+
1
2), n = 0,1,2,...,

evaluate <x2>n using Eq.(3) of Ch.5.  [Hint: Carefully

choose the parameter λ to be one of the constants in H

above.]

2.  Prove that the constant C(λ) in Eq.(4), Ch.5, is real.

3.  Show Eqs.(61,62) of Ch.5.

Other problems

4. Consider a harmonic oscillator potential with a small

bump at its bottom:

V0

-a     a

H = 
px
2

2m + 
1
2mω

2x2 + V(x),
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V(x) = 
 

 V0, |x|≤a
0, elsewhere.

Make the simplifying assumption that a2 << 
h

mω
 in this

problem.  The unperturbed energy eigenfunctions for this

problem are (see (213) of Chapter 3)

un(x) = (
mω
h
)1/4 

1

√√π 2nn!

 e-mωx
2/2h Hn(√mω

h
x),

and the unperturbed energies are:

En = hω(n+
1
2), n = 0,1,2,...

    (a)  Find the first order effect of this perturbation

on the lowest energy state:

En'=0 = 
hω
2  + ?.

    (b)  Find the first order effect of this perturbation

on the expectation value of x2:

<x2>n=0 = 
h

2mω
 + ?.

[Notice, we do not know what the new eigenstates are.]

5.The eigenvalue equation for a system with a discrete,

nondegenerate and complete set of states may be written

formally as (Dirac notation; assume <ψn|ψn> = 1)

H0 |ψn> = En |ψn>,

where H0 is the unperturbed Hamiltonian and the old

eigenenergies are given by En. A small potential, ∆V, is

added to H0, H = H0 + ∆V. Show that the new ground state

eigenvector, |ψ>, is given approximately by
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|ψ> ≈ |ψ0> + ∑
n=1

 |ψn> 
<ψn|∆V|ψ0>
(E0-En)

.

6. Consider adding to the one-dimensional Hamiltonian,

H0 = 
px
2

2m + V(x),

where the potential V(x) is an even function of x (V(x) =

V(-x)) the perturbation (γ = constant)

H1 = γ x.

(Physically, this could represent adding an electric
field.)

(a)  On the basis of some physical property, argue that

the new energies, to lowest order in γ, must be given by

E
n
 = E(0)

n
 + α

n
γ 2,

where the αn are constants and E(0)n  are the unperturbed

energies. (Notice there is no linear term ~ γ in En.)

(b)  Show that the constants α 
n
 are given by the sum

α
n
 = 

n'≠ n
Σ |<n|x|n'>|2

E(0)
n
-E(0)

n'
.

(c)  Evaluate α
n
 for the ground state (n=0) of an

harmonic oscillator. The energies are E(0)
n
 = hω(n+1

2
). [Hint:

Remember that (pages 3.34 and 3.35 of the notes)

x = 
 


 
h

mω

1/2
 
A + A†

√2
,

where

A|n > = √n |n-1 >,

A†|n > = √n+1 |n+1 >.]
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CHAPTER SIX:  Generalization to Three Dimensions

First step:  generalize some obvious results to 3-D.

Starting point:  "grab bag" of results.

x≥|x≥' > = x≥' |x≥' > ,       p≥|p≥' > = p≥' |p≥' >. (1)

The Cartesian bases (we will also encounter a spherical

basis) |x≥' > and |p≥' > are direct products of the basis states

in the three orthogonal directions:  (One sometimes writes

|x≥'> = |x1' > ⊗ |x2' >  ⊗ |x3' > .)

 



 
|x≥'> = |x1'>|x2'>|x3'>,  |p≥'> = |p1'>|p2'>|p3'>

     ≡ |x1',x2',x3'>          ≡ |p1',p2',p3'>
 (2)

(I will try to consistently label the three orthogonal space

directions as 1, 2 and 3 rather than as x, y and z from now

on.)  We also have (see (158) of Ch. 2)

< x≥'|p≥' > = 
1

(2πh)3/2
 eix

≥' ⋅ p≥'/h, (3)

< x≥'|x≥" > = δ3(x≥' - x≥"), < p≥'|p≥" > = δ3(p≥' - p≥"), (4)

where

 



 
δ3(x≥' - x≥") = δ(x1' - x1")δ(x2' - x2")δ(x3' - x3"),

δ3(p≥' - p≥") = δ(p1' - p1")δ(p2' - p2")δ(p3' - p3"). 
(5)

Also

1 = ∫d3x'|x≥' > < x≥'|,   1 =  ∫d3p'|p≥' > < p≥'|, (6)
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with

d3x' = dx1'dx2'dx3',   d
3p' = dp1'dp2'dp3'. (7)

The formal energy eignevalue problem is still stated as

H|a'> = Ea'|a'>, (8)

where the |a' > are a complete, orthogonal set of states:

∑
a'

 |a' > < a'| = 1,   < a'|a" > = δa'a" . (9)

(Eqn (9) assumes the energy eigenvalues are discrete and

nondegenerate.  What would the analogous equations in the

more general situation look like?)  Wavefunctions are given

by the projections (see (174) of Ch. 2)

ua'(x
≥') = < x≥'|a'>, (10)

which satisfy (using (6))

 ∫d3x u∗
a'
(x≥)ua'(x

≥) = 1. (11)

Eqn (11) tells us the engineering dimensions of the ua'(x
≥) are

[ua'(x
≥)] ~ [length]-3/2 . (12)

For continuous spectra, we usually use a momentum rather

than an energy basis to completely specify the state of the

particle.  Then defining*

* Many books use uk≥(x
≥
) ¿ h3/2 up≥(x

≥
) as the momentum eigenfunction, in

which case it is dimensionless.
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up≥(x
≥) = <x≥'|p≥ > , (13)

we have (again from (6))

∫d3x u*p≥(x
≥)u

p'
≥(x
≥) = δ3(p≥ - p≥') . (14)

We will limit ourselves to consideration of Hamiltonians

of the form

H = 
p≥2

2m + V(x
≥) . (15)

The form of the potential, V(x≥), will determine the nature of

the spatial basis to be used.  For example, for

V(x≥) = F(x1) + F(x2) + F(x3) (as for the 3-D harmonic

oscillator) we would use a Cartesian basis; for V(x≥) = V(r),

where r = |x≥|, one would use a spherical basis.  We must use

a basis in which the time independent Schrödinger equation

separates; for example ua'(x
≥) = u1(x1)u2(x2)u3(x3) in Cartesian

coordinates or ua'(x
≥) = u1(r)u2(θ)u3(φ) in spherical

coordinates.  The time independent Schrödinger equation is,

of course, just Eqn (8) projected into an explicit basis.

We will continue to assume that

[xi,pi] = ih (16)

for each i = 1,2,3, where xi and pi are operators.  However,

what about [xi,xj] for i ≠ j?  In the Cartesian basis

[x1,x2]|x
≥' > = (x1x2 - x2x1)|x1',x2',x3' > = 0 (17)
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Since (17) is true for any |x≥' >,

  ⇒ [x1,x2] = 0 . (18)

Similarly  [x2,x3] = [x1,x3] = 0.  Therefore

[xi,xj] = 0 . (19)

for all i,j.  We learned before in Ch.4 that [A,B] is a

measure of the "compatibility" of the operators A and B.  Eqn

(19) above tells us that measurements of xi do not limit the

precision of measurements of xj (i ≠ j) for a particle.  Thus

the xi are simultaneously measurable for all states.

Let us generalize the unitary displacement operator we

had before, also in Ch.4:

< x1'|e
ix1"p1/h = < x1' + x1"| . (20)

Now we have

< x1',x2',x3'|e
ix1"p1/h = < x1' + x1",x2',x3'|, (21)

and similarly for displacements in the 2 and 3 directions.

Now consider the following displacements:

x1' + x1",x2' + x2",x3'

path 2

path 1
•

•

•

•
x1',x2',x3' x1' + x1",x2',x3'
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We may get from (x1',x2',x3') to (x1' + x1",x2' + x2",x3') along

paths 1 or 2.  Along path 1

< x1',x2',x3'|e
ix2"p2/h eix1"p1/h = < x1' + x1",x2' + x2",x3'| . (22)

Along path 2:

< x1',x2',x3'|e
ix1"p1/h eix2"p2/h = < x1' + x1",x2' + x2",x3'| . (23)

The equivalence of these two operators tells us that

[p1,p2] = 0. (24)

This can obviously be done for the sets (p2,p3) and (p1,p3)

also.  The conclusion is

[pi,pj] = 0. (25)

for all i,j.  Thus the  pi are simultaneously measurable in

all states.  Notice that since (25) is true, we have

eix1'p1/h eix2'p2/h eix3'p3/h = eix
≥'  ⋅ p≥/h , (26)

so that a general displacement can be written as

< x≥'|eix
≥"  ⋅ p≥/h = < x≥' +  x≥"|. (27)

What about mixed objects like [x1,p2]?  Consider the

infinitesimal change

< x≥'|(1 + idx≥" ⋅ p≥/h) = < x≥' + dx≥"| . (28)

Multiplying both sides by the operator x≥, we have
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< x≥'|(1 + idx≥" ⋅ p≥/h)x≥ = < x≥' + dx≥"|( x≥' + dx≥"). (29)

Now do these two operations in the opposite order:

< x≥'|x≥(1 + idx≥" ⋅ p≥/h) = < x≥'|(1 + idx≥" ⋅ p≥/h) x≥'

      = < x≥' + dx≥"| x≥'. (30)

Therefore, we have that

< x≥'|[(1 + idx≥" ⋅ p≥/h),x≥] = < x≥' + dx≥"|dx≥", (31)

⇒ < x≥'|
i
h
 [dx≥" ⋅ p≥,x≥] = < x≥'|dx≥", (32)

⇒ 
i
h
 [dx≥" ⋅ p≥,x≥] = dx≥". (33)

This statement becomes more transparent in component

language:

i
h
 ∑

k

 dxk"[pk,xj] = dxj", (34)

⇒ [pk,xj] = 
h

i δkj. (35)

From the 1-D statement,

< x'|eix"px/h = < x' + x"|, (36)

I derived the result (Ch. 4, Eqn (153))

< x'|px = 
h

i 
∂

∂x'
 < x'|. (37)

Likewise in our 3-D Cartesian basis given Eqn (27) above, it

is easy to show that
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< x≥'| p≥ = 
h

i ∇
≥
'< x≥'|, (38)

where ∇
≥
' is the usual gradient (differential) operator:

 ∇
≥
' = ∑

i

 êi 
∂

∂xi'
 . (39)

Likewise one can show that

< p≥'|x≥ = - 
h

i ∇
≥
p' < p≥'|, (40)

where

 ∇
≥
p' =  ∑

i

 êi 
∂

∂pi'
 . (41)

Let us apply our Cartesian basis to a simple problem in

3-D.  Consider the infinite 3-D square well:

1

3

2
0

(a,a,-a)

(Origin at
 center)

V = 0  inside -a ≤ x1 ≤ a

V = +∞ outside -a ≤ x2 ≤ a
-a ≤ x3 ≤ a

The B.C. are

 



 

u(±a,x2,x3) = 0,
u(x1,±a,x3) = 0,
u(x1,x2,±a) = 0. 

 (42)
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(In other words u|surface = 0). Projected into the Cartesian

basis, the energy eigenvalue condition H|a'> = Ea'|a'> becomes

- 
h
2

2m 
 



 



 
∂2

∂x
2
1

 + 
∂2

∂x
2
2

 + 
∂2

∂x
2
3

  ua'(x
≥) = Ea'ua'(x

≥). (43)

This is obviously separable in x1, x2 and x3.  Let

ua'(x
≥) = u1(x1)u2(x2)u3(x3). (44)

Then (43) may be put into the form 
 



 



u1" ≡ 
∂2u

∂x
2
1

 , etc.

u1"

u1
 + 

u2"

u2
 + 

u3"

u3
 = - 

2mEa'
h
2  , (45)

which means we may set

 



 

- 
h
2

2m u1" = E1u1(x1),

- 
h
2

2m u2" = E2u2(x2),

- 
h
2

2m u3" = E3u3(x3), 

 (46)

where

E1 + E2 + E3 = Ea'. (47)

Eqns (46) and the B.C. (42) insure that the solution in each

direction is identical to the one-dimensional case solved in

Ch. 3.  Let me remind you of these solutions:

un-(x) = < x|n- > = 
1

√a
 sin(kn-x), (48)

un+(x) = < x|n+ > = 
1

√a
 cos(kn+x), (49)

where
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n = 1,2,3,... 

 

kn- = 

nπ
a     (50)

 

kn+ = 
(n - 1/2)π

a     (51)

and E = 
h
2k2

2m  .  Thus in 3-D, the solutions are

ua'(x
≥) ≡ < x≥'|a' > = < x1|E1 > < x2|E2 > < x3|E3 >

   = un1P1(x1)un2P2(x2)un3P3(x3), (52)

where each of the uniPi are given in (48) and (49) with P1,2,3 =

± giving the parities of the state.  Eqn (47) says that the

total energy is given by the sum of the E1, E2 and E3

eigenenergies.  This means that there are energy

degeneracies.  For example, consider energy levels for which

P1 = P2 = P3 = -,

E- = 
π2h2

2ma2
 (n

2
1 + n

2
2 + n

2
3). (53)

Although the lowest energy above is specified by n1 = n2 = n3

= 1, the first excited state can be given as (n1 = 2, n2 = 1,

n3 = 1), (n1 = 1, n2 = 2, n3 = 1) or (n1 = 1, n2 = 1, n3 = 2).

Can you find a complete set of commuting operators that

uniquely specify the independent states?

A much more useful coordinate basis in physics is a

spherical basis in which the position of a particle is

specified by the three numbers r, θ, φ:

< x1',x2',x3'| → < r,θ,φ|. (54)
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Based on what we have seen before, we expect that

1 = ∫ d3r|r,θ,φ > < r,θ,φ|, (55)

where

d3r = r2 sin θ drdθdφ. (56)

The range of these variables is as usual

 



 

r: 0 → ∞,

θ: 0 → π,

φ: 0 → 2π,  

(57)

which picks out all points in coordinate space.

Just as the 3-D Cartesian basis,

< x1',x2',x3'| = < x1'|< x2'|< x3'|, (58)

is a direct product of three Hilbert spaces, we expect that

the spherical basis,

 < r,θ,φ| = < r|< θ|< φ|, (59)

is also a direct product of separate Hilbert spaces.  And

just as we have completeness in each Cartesian subspace,

 



 

1x1 = ∫-∞
∞ dx1'|x1'  >  <  x 1'|,

1x2 = ∫
 dx2'|x2'  >  <  x 2'|,

1x3 = ∫
 dx3'|x3'  >  <  x 3'|,  

(60)

we demand that
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1r = ∫0
∞
drr2|r > < r|,

1θ = ∫0
π dθ sin θ |θ > < θ|,

1φ = ∫0
2π dφ|φ > < φ|,

 (61)

so that

1 = 11 ⋅ 1θ ⋅ 1φ = ∫d3r|r,θ,φ > < r,θ,φ| . (62)

We will label the angular position as

|n̂ > ≡ |θ,φ >. (63)

3

r

2
n

φ

θ

1

^

≥

where n̂ is a unit vector pointing in the r≥ direction.  Of

course, there are many other bases possible, corresponding to

cylindrical coordinates, elliptical coordinates, etc.  It's

clear that we have to be consistent in a given problem to

stick with an initial choice, but other than this one is free

to switch between various bases in order to simplify

derivations and expressions. I will generally use |x≥ > to

denote a Cartesian basis and |r≥ > to denote a spherical one.
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Let us now introduce the quantum mechanical operator

representing orbital angular momentum* :

L≥ ≡ x≥  × p≥. (64)

Component-wise, we have

 



L1 = x2p3 - x3p2,
 
L2 = x3p1 - x1p3,
 
L3 = x1p2 - x2p1. 

 (65)

Notice that since [xi,pj] = 0 (i ≠ j), the order of the

operators in (65) does not matter.  Also notice that

L≥+ = L≥, (66)

i.e., it is Hermitian and therefore has real eigenvalues.

The various Li do not commute.  To see this, consider

[L1,L2] = [x2p3 - x3p2,x3p1 - x1p3]

        = [x2p3,x3p1] + [x3p2,x1p3]

  = x2p1[p3,x3] + p2x1[x3,p3]

       = ih(x1p2 - x2p1) = ihL3. (67)

Likewise

[L1,L3] = -ihL2, (68)

[L2,L3] = ihL1. (69)

* This is surely the classical form of the angular momentum, but an

equivalent classical form is L
≥
 = - p

≥
 × x

≥
. Luckily, both of these

produce the same quantum mechanical operator since only orthogonal

components of x
≥
, p
≥
 are multiplied together. This is not always the

case, however, and sometimes gives rise to "operator-ordering
ambiguities".
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It can be confirmed that

[Li,Lj] = ih∑
k

 εijk Lk . (70)

is the general statement.  ( εijk is the usual permutation

symbol which is completely antisymmetric).  This shows that

the three components, Li, are mutually incompatible

observables.  A quantum mechanical state can not, for

example, be in an eigenstate of both L1 and L2.  (There is one

exception to this satement that we will discuss.)  This is

distinctly different from linear momentum for which we have

seen

[pi,pj] = 0, (71)

for all i,j.

We will now try to find the effect of the Li on a state

|x≥' >.  Consider

 


 
1 - i  


 
 

δφ
h
  L3 |x

≥' > =  


 
1 - i  


 
 

δφ
h
 (p2x1' - p1x2') |x≥' >, (72)

where δφ is a positive, infinetismal quantity.  Remember that

eix
≥"  ⋅ p≥/h|x≥' > = |x≥' +  x≥" >. (73)

Let's choose  x≥" = (-δx",0,0) where δx" is also a positive,

infinitesimal quantity.  Then (73) implies that

 


 
1 + i 

δx"
h

 p1 |x
≥' > = |x1' - δx",x2',x3' >. (74)

Likewise for  x≥" = (0,δx",0) we get
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1 - i 

δx"
h

 p2 |x
≥' > = |x1',x2' + δx",x3' >. (75)

Since we may write

 


 
1 - i  


 
δφ

h
 L3  =  


 
1 - i  


 
δφ

h
 x1'p2  


 
1 + i  


 
δφ

h
 x2'p1 , (76)

(because δφ is infinetismal) we get that

 


 
1 - i  


 
δφ

h
 L3  |x

≥' > = |x1' - δφx2',x2' + δφx1',x3' > (77)

The right hand side of (77) reveals that a rotation

about the 3-axis has been performed.  (See the following

figure.)  We are adopting the convention that this represents

an active rotation of the physical system itself (rather than

a passive rotation of the coordinate system in the opposite

direction.)  The rotation shown is defined to have δφ > 0.

•

•

δφ

δφ δφ(x' -   x',x' +   x',x')1 2 12 3

(x',x',x')1 2 3

2

1

I have used the Cartesian basis to make these

conclusions.  In terms of a spherical basis, the effect of

this operator is clearly

 


 
1 - i  


 
δφ

h
 L3  |r,θ,φ > = |r,θ,φ + δφ >. (78)
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Since δφ is infinitesimal, we have

|r,θ,φ + δφ > = |r,θ,φ > + δφ 
∂

∂φ
 |r,θ,φ >. (79)

Matching the coefficient of δφ on both sides of (78), we

conclude that

L3|r,θ,φ > = ih 
∂

∂φ
 |r,θ,φ >, (80)

or since r and θ play no role here, that

L3|φ > = ih 
∂

∂φ
 |φ >. (81)

Equivalently,

< φ|L3 = -ih 
∂

∂φ
 < φ|. (82)

Finite relations can also be produced using L3.  Any

finite rotation, φ, can always be imagined to consist of N

identical partial rotations by an amount 
φ
N . But in the limit

N → ∞ each of these partial rotations becomes infinitesimal.

Thus, a finite rotation is accomplished by

lim
N→∞

  


 
1 - i  


 
φ/N

h
 L3 

N

 .

Applying the formula

lim
N→∞

 
 


 
1 + 
x
N

N

 = ex, (83)

to the above gives
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lim
N→∞

  


 
1 - i  


 
φ/N

h
 L3 

N

 = e-iL3φ/h, (84)

as the operator which performs finite rotations about the

third axis.  That is

e-iL3φ'/h|r,θ,φ > = |r,θ,φ + φ' >. (85)

Since L3 is Hermitian, we recognize e
±iL3φ/h as a unitary

operator.  L3 is called the generator of rotations about the

third axis.

We will now find the effect of L1 and L2 on the < r≥|

basis by a more cookbook-type approach.  We have that

< r≥| L≥ = < r≥| x≥ × p≥ = < r≥| r≥ × p≥

 = r≥ × (< r≥| p≥) = r≥ ×  


 
 

h

i ∇
≥
r < r≥| . (86)

Now since our basis is spherical, the gradient operator must

be stated in spherical variables (which is symbolized by ∇≥r):

∇
≥
r = êr 

∂

∂r
 + êφ 

1

r sin θ
 
∂

∂φ
 + êθ 

1
r 

∂

∂θ
 , (87)

where êr, êφ and êθ are unit vectors pointing in the

instantaneous r, φ and θ directions.

3

1

2

r

êr
êφ

êθ

φ

θ
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The picture informs us that

 

êr × êθ = êφ ,

êθ × êφ = êr ,

êφ × êr = êθ ,

  (88)

so that

< r≥| L≥ =  
h

i  



 



 êφ 
∂

∂θ
 - êθ 

1

sin θ
 
∂

∂φ
  < r≥|. (89)

The êr, êθ and êφ can be related to unit vectors along

ê1, ê2, and ê3, in the above figure by

êr = sin θ cos φ ê1 + sin θ sin φ ê2 + cos θ ê3, (90)

êφ = -sin φ ê1 + cos φ ê2 . (91)

êθ = cos θ cos φ ê1 + cos θ sin φ ê2 - sin θ ê3, (92)

so when the basis in (89) is expressed in terms of the êi, we

find

< r≥| L1 = 
h

i  



 

-sin φ 

∂

∂θ
 - cos φ cot θ 

∂

∂φ
 < r≥|, (93)

< r≥| L2 = 
h

i  



 

cos φ 

∂

∂θ
 - sin φ cot θ 

∂

∂φ
 < r≥|, (94)

< r≥| L3 = 
h

i 
∂

∂φ
 < r≥|. (95)

Eqn (95) is, of course, consistent with (82) above.  We can

also show from the above that
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   < r≥| L≥2 = < r≥| ( )L
2
1 + L

2
2 + L

2
3

           = -h2

 



 



 
1

sin2 θ
 
∂2

∂φ2
 + 

1

sin θ
 
∂

∂θ
 

 



 

sin θ 

∂

∂θ
   < r≥|, (96)

     ≡ L
2
op < r≥|. (97)

where we have defined the differential operator (as opposed

to the Hilbert space operator,  L≥2)

L
2
op = -h

2

 



 



 
1

sin2 θ
 
∂2

∂φ2
 + 

1

sin θ
 
∂

∂θ
 

 



 

sin θ 

∂

∂θ
   . (98)

Apart from an overall factor of - 
1

r2h2, this is just seen to

be the angular part of the ∇≥
2
r operator. Eqns (93) - (95)

could also have been stated in terms of the angular basis < n̂|

since the purely radial part of the basis plays no role in

these considerations.  These results will be useful in a

moment.

I will now prove a useful identity for  L≥2.  We know that

Li = ∑
j,k

 εijkxjpk, (99)

where the order of the operators xj,pk does not matter since

[xj,pk] = 0 for j ≠ k.  Therefore,

 L≥2 = ∑
i

 L2i = ∑
i

 
 



 

∑

j,k

 εijkxjpk ∑
l,m

 εilmxlpm

= ∑
j,k,l,m

  
 


 
∑

i

 εijkεilm  xjpkxlpm. (100)

One has
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∑
i

 εijkεilm = (δkmδjl - δklδjm), (101)

so that we may write

pkxl

       

L≥2= ∑
j,k,l,m

 ( )δjlδkmxj(xlpk - ihδlk)pm - δklδjmxjpk(pmxl + ihδml) (102)

                 
                                               x

l
pm

or

L≥2 = x≥2p≥2 - 2ihx≥ ⋅p≥ - (x≥ ⋅p≥)(p≥ ⋅x≥). (103)

But (can you show it?)

p≥ ⋅x≥ = x≥ ⋅p≥ - 3ih, (104)

so

L≥2 = x≥2p≥2 - (x≥ ⋅p≥)2 + ihx≥ ⋅p≥. (105)

Notice that if x≥ and p≥ were regarded as numbers, the last

term in (105) would not be present.

Now we can try to construct the differential equation

implied by

H|a'> = Ea'|a'>, (106)

in a problem with spherical symmetry, H = 
p≥2

2m + V(r).  Project

both sides of (106) into the spherical basis < r≥|:   

< r≥|H|a'> =  Ea'< r≥|a'>, (107)
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⇒ < r≥| 
p≥2

2m |a'> + V(r)< r≥|a'> = Ea'< r≥|a'>, (108)

where ua'(r
≥) = < r≥|a'>.  We now have from (105) that

< r≥|x≥2p≥2|a'> = < r≥|L≥2|a'> + < r≥|( x≥ ⋅ p≥)2|a'>

     - ih < r≥| x≥ ⋅ p≥|a'>. (109)

We have that

  < r≥|x≥ ⋅p≥|a'> = r≥ ⋅ (< r≥|p≥|a'>) = r≥ ⋅  


 
 

h

i ∇
≥
r < r

≥|a'> . (110)

with ∇
≥
r given by (87) above.  Therefore

< r≥|x≥ ⋅p≥|a'> = 
h

i r 
∂

∂r
 < r≥|a'> = 

h

i r 
∂

∂r
 ua'(r

≥). (111)

Likewise

 < r≥|(x≥ ⋅p≥)2|a'> = < r≥|(x≥ ⋅p≥)(x≥ ⋅p≥)|a'>

           = 
 



 

h

i r 
∂

∂r  



 

h

i r 
∂

∂r
 < r≥|a'>

 = -h2 
 



 

r2 

∂2

∂r2
 + r 

∂

∂r
 ua'(r

≥) , (112)

and

< r≥|x≥2p≥2|a'> = r2 < r≥|p≥2|a'> . (113)

Using (111), (112) and (113) in (109), we find that (dividing

by r2 )

   < r≥|p≥2|a' > =  -h2 
 



 

∂2

∂r2
 + 

2
r 

∂

∂r
 ua'(r

≥) + 
1

r2
 < r≥|L≥2|a' >. (114)

Now using (97), we get
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< r≥|p≥2|a' > = 
 



 



- 
h
2

r2
 
∂

∂r
 

 



 

r2 

∂

∂r
 + 

Lop
2

r2
 ua'(r

≥). (115)

Since

< r≥|p≥2|a' > = -h2 ∇
≥2
r ua'(r

≥), (116)

all we have really accomplished in (115) is to find an

explicit expression for the ∇
≥2
r operator in spherical

coordinates (in an especially interesting way, however.) So,

using (98):

∇
≥2
r = 

1

r2
 
∂

∂r
 

 



 

r2 

∂

∂r
 + 

1

r2 sin2 θ
 
∂2

∂φ2
 + 

1

r2 sin θ
 
∂

∂θ
 

 



 

sin θ 

∂

∂θ
.(117)

Therefore, returning to (108), we have the explicit radial

Schrödinger equation:

   
 



 



- 
h
2

2mr2
 

 



 

∂

∂r
 

 



 

r2 

∂

∂r
 -  




 

L≥op

h

2
 + V(r)  ua'(r

≥) = Ea'ua'(r
≥). (118)

We could now proceed in a standard way to separate variables

in (118) and find the eigenvalues and eigenvectors of the

angular part of the problem using purely differential

operator techniques (See, for example, Merzbacher, p.178 and

on).  Instead, let us proceed by considering what the set of

quantum numbers {a'} above consists of.  Notice

 

<  r≥'|V(r)L≥ = V(r') < r≥'|L≥ = V(r')L≥op < r≥'| , 

<  r≥'|L≥V(r) = L≥opV(r') < r≥'| = V(r')L≥op < r≥'|.
 (119)

Therefore
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[L≥,V(r)] = 0. (120)

Also we have that

  [ ]p≥2,Lj  = 

 



 

 ∑

i

 p2i, ∑
k,l

 εjklxkpl  = ∑
i,k,l

 [ ]p
2
i,xkpl εjkl. (121)

Now

[p
2
i,xkpl] = pi[pi,xkpl] + [pi,xkpl]pi

= pi(xk[pi,pl] + [pi,xk]pl) + (xk[pi,pl] + [pi,xk]pl)pi (122)

            

    0        
h

i δik    0       
h

i δik

so that

[p
2
i,xkpl] = 2 

h

i piplδik. (123)

Using this in (121) gives

[p≥2,Lj] = ∑
i,k,l

 εjkl 2 
h

i p1plδik = 2 
h

i ∑
k,l

 εjkl  pkpl. (124)

Notice in (124) we have an object which is symmetric in two

summed indices (k,l) multiplied into an object which is

antisymmetric in the same two indices.  The result is zero.

We can see this in general as follows.  Let's say we have the

2 index objects Aij and Bij and that

 



Aij = -Aji ,
 
and
 
Bij = Bji .

 (125)

Then we have
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∑
i,j

 AijBij = - ∑
i,j

 AjiBji . (126)

But since we are free to rename our indices, this means

∑
i,j

 AijBij = - ∑
i,j

 AijBij . (127)

Anything which is equal to minus itself is zero, and so it is

for the right hand side of (124):

[p≥2,L≥] = 0. (128)

so since H = 
p≥2

2m + V(r), (120) and (128) imply

[H,L≥] = 0. (129)

Thus the L≥ gives rise to good quantum numbers (See discussion

in Ch.4).  Eqn (129) implies of course that

[H,L≥2] = 0. (130)

What's more

[L≥2,Li] = 
 


 
∑

j

 L2j,Li  = ∑
j

 (Lj[Lj,Li] + [Lj,Li]Lj), (131)

and using (70) above we get

[L≥2,Li] = ih ∑
j,k

 εjik(LjLk + LkLj). (132)

This is again a situation in which a sum over two indices

(j,k) is being performed on a symmetric object

[(LjLk + LkLj)] and an antisymmetric one (εjik).  Therefore

[L≥2,L≥] = 0. (133)
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Now one of the theorems I talked about, and partially

proved in Ch.4, said essentially that:  (A = A+, B = B+)

A,B possess a common
complete set of   ⇔ [A,B] = 0.
orthonormal eigenkets

Therefore from (129), (130) and (133) I may choose to

characterize the set of quantum numbers {a'} in (118) (which

is just an explicit version of (106) in a spherical basis) as

eigenvalues of the set,

{H,L≥2,L3} .

I could not, for example, add L1 or L2 to this list since

[L1,2,L3] ≠ 0.  I did not have to choose L3 in the above set;

L1 or L2 would have done just as well. However, the choice of

L3 is simpler and conventional.  The above represent a

complete set for a spinless particle subjected to a

spherically symmetric potential.  (This is very nearly the

case for an electron in the hydrogen atom.)

Thus, given the above choice of commuting observables,

we take

|a' > = |n,a,b >, (134)

where n is a radial quantum number which depends on the

nature of the potential (more about this later), and "a" and

"b" are eigenvalues of L≥2 and L3:

L≥2|a,b > = h2a|a,b >, (135)
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L3|a,b > = hb|a,b >, (136)

where factors of h have been inserted for convenience.

(a and b are real since L≥2 and L3 are Hermitian.)

Let us find the eigenvalues and eigenvectors of L≥2 and

L3.  Let us introduce

L± = L1 ± iL2, (137)

L
+
+ = L- . (not Hermitian) (138)

We can now show that

[L+,L-] = 2hL3, (139)

[L3,L±] = ±hL±. (140)

Also

[L≥2,L±] = 0 (141)

is obvious.  Now consider

L3(L±|a,b >) = L±(L3 ± h)|a,b >

       = h(b ± 1)(L± |a,b >), (142)

and

L≥2(L±|a,b >) = L±h
2a|a,b > = h2a(L±|a,b >). (143)

Therefore, the L± are ladder operators in the "b" space; they

raise or lower the value of this quantum number by one unit

(similar to the operators A and A+ in the harmonic oscillator

problem.).  The conclusion is that
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L
¶
|a,b > = C

¶
|a,b ± 1 >, (144)

or

< a,b|L
•
 = C∗

¶
< a,b ± 1|, (145)

where the C± are unknown constants.

Now we have that

L-L+ = (L1 - iL2)(L1 + iL2)

    = L
2
1 + L

2
2 + i[L1,L2]

    = L≥2 - L
2
3 - hL3 (146)

so that

L-L+|a,b > = (h2a - h2b2 - h(hb))|a,b >

               = h2[a - b(b + 1)]|a,b > (147)

But since

< a,b|L-L+|a,b > = |C+|
2, (148)

we have

|C+|
2 = h2[a - b(b + 1)]. (149)

We choose the arbitrary phase to be such that

C+ = h√a - b(b + 1)  . (150)

Likewise

L+L- = L
≥2 - L

2
3 + hL3 , (151)

so that



6.27

L+L-|a,b > = h2[a - b(b - 1)]|a,b > , (152)

and since

|C-|
2 = < a,b|L+L-|a,b >, (153)

we have

|C-|
2 = h2[a - b(b - 1)], (154)

so

C- = e
iφ
h√a - b(b - 1), (155)

where φ is an unknown phase.  Actually φ is fixed from our

previous choice for C+ in (150).  To see this consider

L+[L-|a,b > = eiφh√a - b(b - 1) |a,b  −  1>] , (156)

⇒ L+L-|a,b > = eiφh2√a - b(b - 1) √a - (b - 1)b |a,b >

           = eiφh2[a - b(b - 1)]|a,b > . (157)

Comparing (157) with (152) implies that eiφ = 1.  Therefore,

we have found that

L±|a,b > = h√a - b(b ± 1) |a,b ± 1 > . (158)

Now, what are the allowed values of a and b?  We can

easily show that the expectation value of the square of a

Hermitian operator is always nonnegative.  Therefore since

L
2
1 + L

2
2 = L

≥2 - L
2
3, (159)

we have
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(L
2
1 + L

2
2)|a,b > = h2(a - b2)|a,b >, (160)

and since, when multiplying on the left by < a,b|, the left

hand side of (160) is guaranteed to be nonnegative, we have

that

a - b2 ≥ 0. (161)

Now we know that the L± raise or lower the value of "b" in

|a,b > by ±1 unit while keeping the value of "a" unchanged.

Hence, for a fixed "a" value, we have

-√a ≤ b ≤ √a. (162)

Therefore, for a given "a" value there is a largest value of

"b"; let us call this bmax (bmax does not necessarily equal √a

since there may exist more restrictive conditions.  (162)

only shows b is bounded.)  Thus by definition we must have

L+|a,bmax > = 0. (163)

Likewise call the minimum value of b, for a given "a",bmin.

Therefore

L-|a,bmin > = 0. (164)

From (146) and (151) we have

L• L¶ = L
≥2 - L3(L3 ± h). (165)

Thus, applying (165) to (163) and (164), we find
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L-L+|a,bmax > = h2[a - bmax(bmax + 1)]|a,bmax > = 0,
 
L+L-|a,bmin > = h2[a - bmin(bmin - 1)]|a,bmin > = 0. 

(166)

The equations (166) together imply that

bmax(bmax + 1) = bmin(bmin - 1) , (167)

or

(bmax + bmin)(bmax - bmin + 1) = 0. (168)

But since bmax ≥ bmin, we get that

bmax = -bmin. (169)

Let us say it takes 2l steps (2l is a positive or zero

integer) to go from b = bmin to b = bmax in steps of one:

bmax = bmin + 2l, (170)

where the possible l values are

       X   X

l = 0 
1
2,1,

3
2,... (171)

(The reason for the "X" above l = 
1
2,
3
2,... will be discussed

shortly).  Then because bmin = -bmax, we have

bmax = l, (172)

and from either of Eqns (166), we get

a = l(l + 1). (173)

So, for a given l value, we have the possible "b" values:
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   b = bmin,bmin + 1,...,bmax - 1,bmax 
 
or
 
   b = -l,-l + 1,...,l - 1,l

(174)

It is more conventional to relabel "b" as "m", called the

"magnetic quantum number."  As an example, let us choose l=3.

Then m can take on 2l + 1 = 7 values:

l = 3 

 


 

___ m = 3     ↓ L-
___   2
___   1
___   0
___  -1
___  -2
___  -3       ↑ L+

 

There is a subtlety involved in the labeling of the

eigenstates of L≥2 and L3.  Since L
≥2 and L3 commute (and

therefore are simultaneously measurable), we may regard the

state |l,m > as a type of direct product, which would seem to

imply that

|l,m > ˜ |l > ⊗ |m >.

However, because L≥2 does not project entirely into θ space

(see (93) and (94) above), the value of m enters the

eigenvalue equation for L≥2 (see Eqn (188) below).  Therefore,

we will define*

       projects into  projects into
     θ space    φ space

      |l,m > ≡  |l(m) >    ⊗     |m >,

* Technically speaking, these states are separable but not true
direct products.
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|l,m > is just a way of labelling the more proper object on

the right hand side.  The l(m) notation is supposed to

indicate that "l" is the quantum number associated with the θ

eigenvalue equation, but that "m" enters this equation as a

parameter.  The same sort of subtlety affects the labeling of

the Hilbert space description of the radial eigenstates; that

is, the value of l enters the radial eigenvalue equation (see

Eqn (253) below), and we shall define

|n,l,m > ≡ |n(l) > ⊗ |l,m >.

These Hilbert spaces are such that

< r,θ,φ|n,l,m > = < r|n(l) > < θ|l(m) > < φ|m >

     = unl(r)ulm(θ)um(φ).

The eigenvalue equations for um(φ), ulm(θ) and unl(r) are given

by (180), (188) and (253) below, respectively.

Let us relabel our states as

|a,b > → |l,m >. (175)

We have therefore found the eigenvalues of L≥2 and L3 as

L≥2|l,m > = h2
l(l + 1)|l,m >, (176)

L3|l,m > = hm|l,m >, (177)

and

L±|l,m > = h√(l • m)(l ¶ m + 1) |l,m ± 1 >. (178)
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Actually, "half-integer" values of l(l = 
1
2 ,

3
2 ,

5
2 ,...)

are not allowed.  One way to see this is as follows.  The

eigenvalue equation for L3 is

L3|m > = mh|m >. (179)

Projecting both sides of (179) into < φ| and calling

Um(φ) = < φ|m >, we get

h

i 
∂

∂φ
 um(φ) = mhum(φ). (180)

The solution to (180) is

um(φ) = 
1

√2π
 eimφ, (181)

which is normalized so that

∫0
2π
 dφ|um|

2 = 1 . (182)

Now consider half-integer values of l.  From (181) it would

seem that

< φ|m > = 
1

√2π
  eimφ, (183)

where m is also required, by (174), to take on half-integer

values.  Therefore given (183) we have

< φ + 2π|m > = - 
1

√2π
  eimφ . (184)

But < φ| and < φ + 2π| pick out the same point in coordinate

space.  Therefore, the spatial wavefunctions of half-integer
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l are not single valued, a condition we must require for the

transformation between the |φ > and |m > bases.

There are other arguments as to why half-integer l

values are not allowed.  The end result is to limit l to the

values

l = 0,1,2,3

and m to

m = -l,-l + 1,...,l - 1,l

(2l + 1 values) for each l.

Now we know the eigenvalues of L≥2 and L3.  We would like

to find the explicit eigenvectors also.  We write (the Y
lm are

called "spherical harmonics")

Y
lm(θ,φ) ≡ < θ,φ|l,m >

        = < θ|l(m) > < φ|m >

   ≡ u
lm(θ)um(φ). (185)

The eigenvalue equation for um(φ) is written down in (180),

and it's normalized solution is (181).  The eigenvalue

equation for u
lm(θ) comes from

L≥2|l,m > = h2
l(l + 1)|l,m >. (186)

We have to start out with |l,m > in (186) (and not |l(m )>)

since we don't know the effect of L≥2 on < θ| but only on <

θ,φ| from (97) and (98).

Projected into < θ,φ| space (using (97) and (98) above

gives
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- 
 



 



 
1

sin2θ
 
∂2

∂φ2
 + 

1

sin θ
 
∂

∂θ
 

 



 

sin θ 

∂

∂θ
   u

lm(θ)um(φ)

= l(l + 1)u
lm(θ)um(φ), (187)

or, making the replacement 
∂2

∂φ2
 → -m2 from (180), and then

dividing both sides by um(φ), we get

- 
 



 

-m2

sin2θ
 + 

1

sin θ
 
∂

∂θ
 

 



 

sin θ 

∂

∂θ
   u

lm(θ) = l(l + 1)ulm(θ). (188)

The solution to this equation determines the eignevectors

u
lm(θ).

Rather than trying to solve (188) directly, we will

generate the solutions by operator techniques, using the

ladder operators L±.  We can construct all of the |l,m > by

considering |l,l > and then applying L-  (l - m) times:

(L-)
l-m|l,l > = h√ 2l (L-)

(l-m)-1|l,l - 1 >

 = h2√ 2l √(2l - 1)2 (L-)
(l-m)-2|l,l - 2  >

      = h3√ 2l √(2l - 1)2 √(2l - 2)3(L-)
(l-m)-3|l,l - 3 >, (189)

or, in general, after (l - m) applications of L-:

(L-)
(l-m)|l,l >

= (h)l-m√ 2l √(2l - 1)2 … √(2l - (l - m -1))(l - m)  |l,m >.

(190)

             
   (l - m factors)



6.35

Let's look at some of the individual pieces that make up the

overall factor in (190).  We recognize the combination,

(2l)(2l -1) … (2l - (l - m - 1))

    
   (l + m + 1)

in (190), which we can write as

(2l)(2l -1) … (2)(1)

(l + m)(l + m - 1) … (2)(1)
 = 

(2l)!

(l + m)!
 . (191)

We also have the combination

(1)(2)…(l - m) = (l - m)! . (192)

Therefore, we may write (190) as

(L-)
l-m|l,l > = (h)l-m √(2l)!(l - m)!

(l  +  m)!  
   |l,m >,  (193)

or, solving for |l,m >:

|l,m > = 
1

(h)l-m
  √(l + m)!

(2l)!(l - m)! 
  (L-)

l-m|l,l >. (194)

I remind you of the effect of L1 and L2 (compare with (93) and

(94); here I am using the < n̂| = < θ,φ| notation):

< n̂|L1 = 
h

i  



 

-sin φ 

∂

∂θ
 - cos φ cot θ 

∂

∂φ
 < n̂|, (195)

< n̂|L2 = 
h

i  



 

cos φ 

∂

∂θ
 - sin φ cot θ 

∂

∂φ
 < n̂|. (196)
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So therefore

< n̂|L+ =

           ieiφ                  eiφ

         
h

i  



 

(-sin φ + i cos φ)

∂

∂θ
  -(cos φ + i sin φ)cot θ 

∂

∂φ
 < n̂|,(197)

or

< n̂|L+ = he
iφ 

 



 

∂

∂θ
 + i cot θ 

∂

∂φ
 < n̂|. (198)

Also

< n̂|L- =

h

i  



 

(-sin φ - i cos φ) 

∂

∂θ
 - (cos φ - i sin φ)cot θ 

∂

∂φ
 < n̂|.(199)

or

< n̂|L- = -he
-iφ 

 



 

∂

∂θ
 - i cot θ 

∂

∂φ
 < n̂|. (200)

Now consider

< n̂|L-|l,m > = -he-iφ 
 



 

∂

∂θ
 - i cot θ 

∂

∂φ
 < n̂|l,m >. (201)

where < n̂|l,m > = Y
lm( n̂).  We know that

Y
lm(θ,φ) = ulm(θ) 

1

√2π
 eimφ, (202)

where m = 0,±1,±2,...,±l (2l + 1 values).  Therefore
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< n̂|L-|l,m > = - 
h

√2π
  ei(m-1)φ 

 


 
d

dθ
 + m cot θ  u

lm(θ). (203)

Consider the identity:

(sin θ)1-m 
d

d cos θ
  [(sin θ)m F(θ)]

= (sin θ)1-m 
dθ

dcos θ
     

d

dθ
 [(sin θ)m F(θ)]

             

            - 
1

sin θ
    (sin θ)m  

dF(θ)

dθ
 + m(sinθ)m-1cos θ F(θ)

 = - 
 


 
d

dθ
 + m cot θ  F(θ). (204)

But the right hand side of (204) is the same as the structure

in (203), so we may make the replacement

< n̂|L-|l,m > =

 
h

√2π
  ei(m-1)φ sin(θ)1-m 

d

d cos θ
 [(sin θ)m u

lm(θ)]. (205)

Now consider

< n̂|L-L-|l,m > = -he-iφ 

 



 

∂

∂θ
 - i cot θ 

∂

∂φ
 < n̂|L-|l,m >

              =  
-(h)2

√2π
  ei(m-2)φ 

 


 
d

dθ
 + (m - 1)cot θ

       . 
 


 
(sin θ)1-m 

d

d cos θ
 ( )(sin θ)mu

lm(θ)  . (206)

Employing (204) again in (206) (with m → m - 1) gives
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< n̂|(L-)
2|l,m >

   = 
(h)2

√2π
  ei(m-2)φ (sin θ)2-m 

d2

d cos θ2
 [ ](sin θ)mu

lm(θ) . (207)

Seeing the pattern that seems to have developed, we may now

prove by induction that

< n̂|(L-)
k|l,m >

  = 
(h)k

√2π
 ei(m-k)φ (sin θ)k-m 

 


 
d

d cos θ

k

 [ ](sin θ)mu
lm(θ) . (208)

Let's set m = l and k = l - m in (208):

< n̂|(L-)
l-m|l,l >

    = 
(h)l-m

√2π
 eimφ (sin θ)-m 

 


 
d

d cos θ

l-m

 [ ](sin θ)lu
ll
(θ) . (209)

But from (194)

   < n̂|l,m > = (h)m-l √(l + m)!

(2l)!(l - m)! 
  < n̂|(L-)

l-m|l,l >, (210)

and so we find (Y
lm(n̂) ≡ < n̂|l,m >)

  Y
lm(θ,φ) = 

eimφ

√2π
 √(l + m)!

(2l)!(l - m)! 
 (sin θ)-m 

 


 
d

d cos θ

l-m

[ ](sin θ)lu
ll
(θ) . (211)
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Therefore, we will have a general expression for all the

Y
lm(n̂) if we can find the explicit expression for ull(θ).  Now

remember that

L+|l,l > = 0, (212)

so that

< n̂|L+|l,l > = heiφ 

 



 

∂

∂θ
 + i cot θ 

∂

∂φ
 < n̂|l,l >, (213)

                    

                                       
eilφ

√2π
 u

ll
(θ)

which gives us the first order differential equation:

 


 
d

dθ
 - l cot θ  u

ll
(θ) = 0. (214)

It's easy to check that the solution to (214) is

u
ll
(θ) = C

l
(sin θ)l . (215)

(Do it.)  C
l
 is an unknown constant which is determined by

the normalization condition

∫dΩn̂
 



 



u
ll
(θ) 

eilφ

√2π
 

2

 = 1. (216)

(Eqn (216) can be viewed as saying the probability of seeing

the particle somewhere in angular space is unity.)

Explicitly, this gives
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|C
l
|2 ∫0

π
 dθ sin θ sin2l  θ = 1, (217)

or

|C
l
|2 ∫-1

1
 d(cos θ)sin2l  θ = 1, . (218)

Setting

x = cos θ (219)

we then get

|C
l
|2 ∫-1

1
(dx)(1 - x2)l = 1. (220)

The integral in (220) can be done by parts (this will be a

homework problem) to yield

|C
l
|2 

 



 



2 
(2ll!)2

(2l + 1)!
 = 1. (221)

It is conventional to choose the phase such that

C
l
 = 

(-1)l

2ll!
 √(2l + 1)!

2  , (222)

and so

u
ll
(θ) = 

(-1)l

2ll!
 √(2l + 1)!

2  sinl θ . (223)

Using (223) in (211) now gives the general result

Y
lm(θ,φ) = 

(-1)leimφ

2ll!
 √

(2l + 1)(l + m)!

4π(l - m)!
  (sin θ)-m
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× 
 


 
d

d cos θ
l-m [(sin θ)2l]. (224)

Because of the normalization of the spherical basis, Eqn(62),

we have

< l',m'|[ ]∫dΩn̂|n̂  >  <  n̂| = 1 |l,m >, (225)

which means that

∫dΩn̂Y
∗
l'm'

(n̂)Y
lm(n̂) = δll'δmm' . (226)

Eqn (226) is completeness for spherical harmonics in angular

space.  We also have

< n̂|
 



 

∑

l,m

 |l,m > < l,m| = 1 | n̂'> , (227)

or

∑
l,m

 Y
lm(n̂)Y

∗
lm
(n̂') = < n̂|n̂'>, (228)

which expresses completeness of the |l,m > basis states.  The

< n̂|n̂'> is a spherical Dirac delta function.  We can get an

explicit form for it by requiring that

   1n̂ = ∫ dΩn̂|n̂ > < n̂|∫ dΩn̂'|n̂'> < n̂'|,

= ∫ dΩn̂dΩn̂'|n̂ > < n̂|n̂'> < n̂'|,

= ∫ d(cos θ)d(cos θ')dφdφ'|θ,φ > < θ,φ|θ',φ' > <θ',φ'|.(229)
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Comparing this with the original expression

 1n̂ =  ∫ d(cos θ)dφ|θ,φ > < θ,φ| , (230)

means that we may take

< n̂|n̂'> = δ(cos θ - cos θ')δ(φ - φ'). (231)

[Using the delta function rule (see Jackson, p.30)

δ(f(x)) = ∑
i

 1

 


 
df

dx (xi)
 δ(x - xi),

where the sum is over the simple zeros of f(x), located at

x = xi, we may write

δ(cos θ - cos θ') = 
1

sin θ'
 δ(θ - θ'),

where both θ and θ' are assumed to be in the range from 0 to

π.]  Therefore

  ∑
l=0

∞

 ∑
m=l

l

 Y
lm(θ,φ)Y

∗
lm
(θ',φ') = δ(cos θ - cos θ')δ(φ - φ'). (232)

[Notice we haven't really proven either (226) or (232); the

proofs require more sophisticated analysis.]  A useful

connection is

Y
l0(θ,φ) = 

(-1)l

2ll!
 √

(2l + 1)

4π
 

 


 
d

d cos θ

l

 (sin θ)2l
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              = √
(2l + 1)

4π
  P

l
(cos θ), (233)

where P
l
(x) is called a "Legendre polynomial."  (Notice that

when m = 0, there is no φ dependence in Y
l0(θ,φ).)  By

definition then

P
l
(x) = 

1

2ll!
 

 


 
d

dx

l

 (x2 - 1)l . (234)

I am not going to go through all of the explicit steps,

but in the same way that I showed (194) to be true by

operating (l - m) times with L- on |l,l > to give |l,m >, we

can also start at the other end and operate (l + m) times

with L+ on |l,-l > to give |l,m >.  The result is

|l,m > = (h)-(l+m) √(l - m)!

(2l)!(l + m)!
  (L+)

l+m |l,-l >. (235)

We can also show that

   < n̂|(L+)
l+m |l,-l > = 

(h)(l+m)

√2π
 (-1)l+m eimφ

     . (sin θ)m 
 


 
d

d cos θ

l+m
 [ ](sin θ)l u

l-l(θ) . (236)

From our earlier Y
lm(θ,φ) expression, (224), we can show that

Y
l-l(θ,φ) = 

e-ilφ

2ll!
 √

(2l + 1)!

4π
  (sin θ)l , (237)

from which we can identify
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u
l-l(θ) = 

1

2ll!
 √(2l + 1)!

2   (sin θ)l . (238)

(Notice that unlike (223) there is no factor of (-1)l here.)

The above steps then lead in the same manner as before to the

alternate expression

Y
lm(θ,φ) = 

(-1)
m+l

eimφ

2ll!
 √

(2l + 1)(l - m)!

4π(l + m)!
 (sin θ)m

. 
 


 
d

d cos θ

l+m
 [ ](sin θ)2l  . (239)

You should now go back to Eqn (224) and carefully compare it

to (239) above.)  By using the expression (224) when m ≥ 0

and the expression (239) when m ≤ 0, one may also write, for

example

Y
lm(θ,φ) = 

(-1)
(m-|m|)/2

(-1)
l

2ll!
 eimφ √

(2l + 1)(l + |m|)!

4π(l - |m|)!

× (sin θ)-|m| 
 


 
d

d cos θ

l-|m|
 [ ](sin θ)2l  . (240)

We can read off from (240) the symmetry property

(-1)mY
l-m(θ,-φ) = Ylm(θ,φ) , (241)

but since

Y
∗
lm
(θ,φ) = Y

lm(θ,-φ) , (242)

we may write (241) as
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(-1)mY
∗
l-m
(θ,φ) = Y

lm(θ,φ) . (243)

We can tie this discussion into the parity operator

(introduced in Chapter 3) for which, by definition

< n̂|P = < -n̂| , (244)

where we may take

< n̂| = 
 

< π - θ,φ + π|, if φ < π

< π - θ,φ - π|, if φ ≥ π  .
    (245)

Now we have that

cos(π - θ) = -cos θ,

sin(π - θ) = sin θ, (246)

which helps us to see from (240) that

Y
lm(π - θ,φ ± π) = Ylm(θ,φ)e

±imπ(-1)l-|m|. (247)

          
     (-1)l

Therefore

< n̂|P |l,m > = < -n̂|l,m > = (-1)l< n̂|l,m >. (248)

Since (248) is true for all < n̂|, we have that

P |l,m > = (-1)l|l,m > . (249)

The words that go with Eqn (249) say "the parity of the state

|l,m > is (-1)l."
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We now return to the Schrödinger equation in spherical

coordinates, Eqn (118).  We now know that

ua'(r
≥) = unl(r)Ylm(θ,φ), (250)

and also that

L
2
op < n̂|l,m > = < n̂|L≥2|l,m > = h2

l(l + 1)< n̂|l,m >, (251)

or

L
2
opYlm(θ,φ) = h

2
l(l + 1)Y

lm(θ,φ), (252)

so that (118) is equivalent to

  
 



 



- 
h
2

2mr2
 

 



 

∂

∂r
 

 



 

r2 

∂

∂r
 - l(l + 1)  + V(r) unl(r) = Enlunl(r). (253)

Notice that the magnetic quantum number, m, does not enter in

(253).  This equation determines the energy levels of the

system; therefore, the energies are independent of m for a

problem with spherical symmetry and we have a 2l + 1 fold

degeneracy (at least) of each energy level labeled by (nl).

Also note that, as stated earlier, l enters this equation

simply as a parameter; the quantum number determined by this

equation is "n".  In the next chapter we will examine

solutions to (253) for various forms for the potential V(r).
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Problems

1. Answer the question in the notes, bottom of page 6.9.

2. Using expressions (93)-(95) of the notes, show that (96)

is true.

3.(a) Given an operator U with the properties

[L
≥
2,U] = 0

[L3,U] = -lhU,

    show that

U|l,l> = const.|l,0>.

(b) Given an operator V with the properties

[L+,V] = 0

[L3,V] = hV,

    show that

V|l,l> = const.|l+1,l+1>.

(c) Given an operator W with the properties,

[L-,W] = 0,

[L3,W] = - hW,

find:
W|l,-l > = ?

4. Show Eq.(139) and Eq.(140) of the text (Ch.6).

5. Do the integral in Eq.(220) of Ch.6 of the notes.

6. Using Eq.(224) of Ch.6, write out the explicit forms for

the spherical harmonics:

Y00, Y11, Y10, Y1-1.
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7. Prove:  The expectation value of the square of a

Hermitian operator is nonnegative.  (I used this on p.6.27

of the notes.  This is essentially a one-line proof.)

8. Prove Eq.(208) of Ch.6 by induction. (That is, assume it

is true for k, and use this to show it then holds for the

k+1 case.)

Other Problems

9. The wavefunction of a bound particle is given by

Ψ(r
≥
,0) = xzΨ(r),

where r = |r
≥
|.

    (a)  If L
≥
2 is measured at t = 0, what value is found?

    (b)  What possible values of Lz will measurement find at

t = 0, and with what probability will they occur? [Hint:

See Table 9.1, p.369, of Liboff.]

10.(a)  Evaluate:

[L3,φ] = ?

(φ is an operator whose eigenvalue is the spherical

azimuthal angle:

φ|φ'> = φ'|φ'>.)

    (b)  Apply (a) to evaluate the quantity:

e-iL3φ'/h φ eiL3φ'/h = ?
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(φ' is a number.) [If you can't figure out part (a), I will

give you the answer, but you will then get no credit for

(a).]

Other problems

11. Assume a particle has an orbital angular momentum with

L3' = hm and (L
≥
2)' = h2l(l + 1). Show that in this state:

    (a)               <Lx> = <Ly> = 0,

    (b)        <Lx
2> = <Ly

2> = 
1
2h

2(l(l + 1) - m2).

12. Can one measure a particle's momentum, p≥, and angular

momentum, L
≥
, along the same coordinate axis simultaneously?

What quantity must I compute in order to answer this

question? Compute it!
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CHAPTER 7:  The Three Dimensional Radial Equation

Let us recap the situation.  We started out as usual by

projecting

H|a' > = Ea'|a' >, (1)

where

H = 
p≥2

2m + V(r), (2)

into a spherical basis:

< r≥|  



 



 
p≥2

2m + V(r)  |a' > = Ea'< r≥|a' >. (3)

Using the definition

ua'(r
≥) ≡ < r≥|a' >, (4)

and the result

< r≥|p≥2|a' > = 
 



 



- 
h
2

r2
 
∂

∂r
 

 



 

r2 

∂

∂r
 + 

L
2
op

r2
 ua'(r

≥), (5)

we got

   
 



 



- 
h
2

2mr2
 

 



 

∂

∂r
 

 



 

r2 

∂

∂r
 - 

 



 

L

2
op

h
2  + V(r)  ua'(r

≥) = Ea'ua'(r
≥).  (6)

We know the solution to (6) can be written

ua'(r
≥) = unl(r)Ylm(θ,φ). (7)

and the radial eigenvalue equation we are to solve is
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- 
h
2

2mr2
 

 



 

∂

∂r
 

 



 

r2 

∂

∂r
 - l(l + 1)  + V(r)  unl(r) = Enlunl(r). (8)

We can cast this equation into a more convenient form by

introducing

unl(r) = 
Rnl(r)

r  , (9)

for which we get

  
 



 



- 
h
2

2m  



 

d2

dr2
 - 

l(l + 1)

r2
 + V(r)  Rnl(r) = EnlRnl(r). (10)

In this form, the radial 3-D eigenequation looks very much

like a 1-D problem (see Eqn (14) of Chapter 3) with an

effective potential

Veff(r) = 

 


 
V(r) + 

h
2

2m  
l(l + 1)

r2
  , r > 0

 
 ∞     , r ≤ 0 . 

    (11)

The "centrifugal energy" term, 
h
2

2m  
l(l + 1)

r2
, should be

familiar to you from clasical mechanics, where it has the

form 
l
≥2

2mr2
  where l

≥

 is the classical relative angular

momentum.  If this were a one dimensional problem, the fact

that the potential becomes infinite at r = 0 would imply that

the particle would be unable to penetrate to the r < 0 region

and we would expect that
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R(0) = 0, (12)

would be the correct boundary condition.  Actually, the

correct boundary condition (based upon the requirement that H

be Hermitian) is somewhat more complicated.  Eqn (12) will be

sufficient for our purposes here.  (For more discussion see

Merzbacher, 2nd ed., p.201.)

We are going to discuss the solution to Eqn (8) in the

following 5 situations:

(a)  The free particle, V(r) = 0.

(b) The infinite spherical well,

V(r) = 
 


 
 ∞  , r ≥ a
 
 0  , r < a . 

(c) The "deuteron" (really a finite potential well),

V(r) = 
 


 
 0   , r ≥ a
 
-V0  , r < a . 

(d) The Coulomb problem

V(r) = - 
Ze2

r  .

(e) A combination of (b) and (d) I call the "confined 

Coulombic model" where

V(r) = 

 


 

 ∞   , r ≥ a
 

- 
ξ
r  , r < a . 
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(a)  The Free Particle

The description of a free particle in spherical

coordinates is not trivial.  We talked extensively about the

description of the 1-D free particle in Chapter 2.  The

solution to the 1-D time-independent Schrödinger equation

- 
h
2

2m  
d2upx'(x)

dx2
 = Eupx'(x) (13)

with upx'(x) = < x|px' > subject to the normalization

 

    ∫-∞

∞
dpx'|px'  >  <  p x'| = 1,

 

 ⇒ ∫-∞
∞
dpx'upx'(x)u

*
px'
(x') = δ(x - x'), 

(14)

is just

upx'(x) = 
1

√2πh
 eixpx'/h , (15)

where px' > 0 solutions represent particles moving in the +x

direction, and similarly for px' < 0. [We could also, if we

wish, adopt the energy normalization condition (recall Eqn

(175) of Chapter 2)

 ∑
px'  0
p
x'< 0

   ∫0
∞
  dE|E > < E| = 1 ,

˘

  

 ∑
px'  0
px'< 0

   ∫0
∞
  dE u

E
(x)u

E
∗(x') = δ(x - x'), ⇒

˘

which gives
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uE(x) = 
m

h√2πk
 . 

 

 e

ikx , px > 0
 
 e-ikx , px < 0 .]

In spherical coordinates, we want to find solutions to

(we relabel n → k in this problem)

- 
h
2

2m  



 

d2

dr2
 - 

l(l + 1)

r2
 Rkl(r) = ± 

h
2k2

2m  Rkl(r), (16)

subject to the boundary condition (12) and where l = 0,1,2,... .

We have defined

k ≡ 
√2mE
h

 . (17)

The ± sign on the right hand side of (16) corresponds to

E = ± 
h
2k2

2m  ; that is, to whether E is positive or negative.

Defining a new dimensionless variable

p ≡ kr, (18)

we may write (16) as

 



 

d2

dp2
 - 

l(l + 1)

p2
 ± 1  Rkl(p) = 0 . (19)

We can eliminate the possibility of negative energies here.

Consider the case l = 0, E < 0:

 



 

d2

dp2
 - 1  Rkl(p) = 0 (20)
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The solutions to (20) are real exponentials:

Rkl(p) ~ e
±p . (21)

But these solutions do not satisfy the boundary condition

(12).  Similarly for the other l ≠ 0 values.  Thus, the

physically relevant solutions in this problem have E ≥ 0 and

the equation we must solve is (except for E = 0 exactly)

 



 

d2

dp2
 - 

l(l + 1)

p2
 + 1  Rkl(p) = 0 . (22)

Let us look at the l = 0 case of Eqn (22):

 



 

d2

dp2
 + 1  Rk0(p) = 0. (23)

The solutions to (23) are of course

Rk0(p) ~ sin p, cos p. (24)

However, only the first possibility on the right satisfies

the boundary condition (12).

In order to find the solutions for l ≠ 0, let us define

Rkl(p) ≡ (-1)
lpl+1Xkl(p). (25)

Let us find the equation that Xkl(p) satisfies.  We have that

dRkl
dp  = (-1)l 

 



 



(l + 1)plXkl + p
l+1 

dXkl
dp   , (26)

and
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d2Rkl

dp2
 = (-1)l 

 



 



(l + 1)pl-1Xkl + 2(l + 1)p
l 
dXl
dp + p

l+1 
d2Xkl

dp2
 . (27)

Therefore, we have

 



 

d2

dp2
 - 

l(l + 1)

p2
 + 1  Rkl(p)

= (-1)l 
 


l(l + 1)pl-1Xkl + 2(l + 1)p

l 
dXkl
dp

                
 



+ pl+1 
d2Xkl

dp2
 - 

l(l + 1)

p2
 pl+1Xkl + p

l+1Xkl

 = (-1)lpl+1 
 



 

d2Xkl

dp2
 + 

2(l + 1)

p  
dXkl
dp  + Xkl  . (28)

Thus, the equation satisfied by Xkl is

 



 

d2

dp2
 + 

2(l + 1)

p  
d
dp + 1  Xkl(p) = 0 . (29)

Differentiating Eqn (29) yields

Xkl''' + 
2(l + 1)

p  Xkl" - 
2(l + 1)

p2
 Xkl'  + Xkl'  = 0, (30)

where the primes denote differentiation with respect to p.

Now let's substitute
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Xkl'  = pψkl ,

 
Xkl" = ψkl + p ψkl'  , 

 
Xkl''' = 2ψkl'  + pψkl" , 

(31)

into (30).  We get

( )2ψkl'  + pψkl"  + 
2(l + 1)

p  ( )ψkl + p ψkl'

- 
2(l + 1)

p2
 (pψkl) + pψkl = 0, (32)

or

ψkl" + 
2(l + 2)

p  ψkl'  + ψl = 0. (33)

Comparing with Eqn (29) above, we thus conclude that we

may choose

ψkl(p) = Xkl+1(p). (34)

From the first of Eqns (31) we then have

Xkl+1(p) = 
1
p 

d
dp Xkl(p). (35)

Therefore by induction

Xkl(p) =  


 
1

p 
d
dp

l
 Xk0(p). (36)

This impies that (from Eqn (25))

Rkl(p) = (-1)
lpl+1 

 


 
1

p 
d
dp

l
 Xk0(p). (37)
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But from (24) and (25) (for l = 0) we have

Xk0(p) ~ 
sin p
p  . (38)

Eqn (38) and (37) determine, outside of normalization, the

full set of solutions to (22) with the boundary condition

(12).  To connect to standard definitions, let us introduce

the "spherical Bessel functions", jl(p) (which are solutions

of (8)):

jl(p) ≡ (-p)
l 

 


 
1

p 
d
dp

l
 
 


 
sin p

p  . (39)

The first few jl are illustrated in the top part of Figure

10.3, p.410 of the book, Introductory Quantum Mechanics, by

Liboff.  (Notice that j0(x) goes to unity as x goes to zero.)

What we have accomplished is to solve Eqn (8)

  - 
h
2

2m 
 



 

1

r2
 
∂

∂r
 

 



 

r2 

∂

∂r
 - 

l(l + 1)

r2
 ukl(r) = 

h
2k2

2m  ukl(r). (40)

subject to the boundary condition (12).  More abstractly,

since (strictly speaking, the rhs is < r|k(l) >)

ukl(r) = < r|kl >, (41)

Eqn (40) is equivalent to

< r| 
 



 

p

2
r

2m + 
h
2
l(l + 1)

2mr2
 |kl > = 

h
2k2

2m  < r|kl >, (42)
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where we have defined the Hilbert space operator pr (the same

as in the homework)

< r|pr ≡ 
h

i 
1
r 

∂

∂r
 r < r| . (43)

Since (42) is true for all < r| (except possibly at r = 0) we

then get

 



 

pr

2

2m + 
h
2
l(l + 1)

2mr2
 |kl > = 

h
2k2

2m  |kl >. (44)

as the abstract equation that |kl > satisfies.  Notice that

for a given value of k (and therefore the energy, E) there is

an infinite degeneracy in l and m.  Physically, this

corresponds to the fact that a particle with a given energy

in 3-D has an infinite number of directions in which to

travel, as opposed to the 2-fold degeneracy in 1-D space.

The |kl > are assumed to give a complete description and

so we assume

∫0
∞
dkk2|kl > < kl| = 1r (45)

for each l value.  Other normalizations of the states |kl >

are possible.  Eqn (45) is written down in anology to the

first of Eqns (61) of the last Chapter, just like

∫dp1|p1 > < p1| = 1 is the momentum space version of

∫dx1|x1 > < x1| = 1.  The consequence of (45) is that
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1r ⋅ 1r = ∫dk'k'2|k'l > < k'l|∫dkk2|kl > < kl|

  = ∫dk'dk k'2k2|k'l > < k'l|kl > < kl|. (46)

Comparison of (46) and (45) reveals that

< k'l|kl > = 
1

k2
 δ(k - k') . (47)

In the same way from

1r =  ∫drr2|r > < r| (48)

we get

< r'|r > =  
1

r2
 δ(r - r') . (49)

Thus, the complete set of radial and angular eigenkets for

the free particle is given by:

|k,l,m > ≡ 
r-space
|kl >  ⊗ 

θ-space
|l(m) > ⊗ 

φ-space
|m >  .

 



 

  0 < k < ∞

l = 0,1,2,...

m = -l,...,l 

Of course, as pointed out at the beginning of this

Chapter there is the alternate complete set,

 |p1',p2',p3' > ≡ |p1' > ⊗ |p2' > ⊗ |p3' >, (-∞ < p1',p2',p3' < ∞)

based upon a Cartesian description.  Because both sets are

complete, they should be expandable in terms of each other.

That is, a Cartesian plane wave should be expressable in

spherical harmonies, and vice versa.  We will not attempt to

show this here, but this subject is covered in more advanced
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treatments.  (See for example Gottfried, 1st ed., p.91

onward.)

If we adopt (45) as our normalization (similar to Eqn

(14) above in the 1-D case) then we require

 

   < r|

 


 
∫0

∞
dkk2|kl > < kl| = 1 |r' >

 

⇒ ∫0
∞
dkk2ukl(r)u

∗
kl
(r') = 

1

r2
 δ(r - r')

 . (50)

We have found that

ukl(r) = Cljl(kr) (51)

where Cl is an unknown normalization factor.  Putting (51)

into (50) gives

∫0
∞
dkk2|Cl|

2jl(kr)jl(kr') = 
1

r2
 δ(r - r'). (52)

Eqn (52) determines the normalization factor Cl.  The Cl

cannot be a function of k since by the normalization

condition (50) the ukl(r) are dimensionless.  In order to get

an explicit expression, it is necessary to perform the

integration of the left of (52).  The mathematics involved in

doing this is beyond the level of this class.  I will simply

quote the necessary result:

∫0
∞
dkk2jl(kr)jl(kr') = 

π

2r2
 δ(r - r'). (53)
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(You will, however, be asked to confirm the above result for

the l = 0 case.  Eqn (53) is, mathematically, only true for

the case r,r' > 0.)

Comparing (53) and (52), we find that

|Cl|
2 = 

2

π
 , (54)

for which we choose

Cl = √2

π
 . (55)

This implies finally that

ukl(r) = √2

π
  jl(kr). (56)

The complete free particle wavefunction is then

uklm(r
≥) = √2

π
  jl(kr)Ylm(θ,φ). (57)

The entire content of their completeness can be stated as

< r|
 



 

∫dk k2∑

l,m

 |k,l,m > < k,l,m| = 1 |r' > ,

⇒ ∫0
∞
dk k2∑

l,m

 uklm(r
≥)u

∗
klm
(r≥') = δ(r≥ - r≥), (58)

and as

< kl',l',m'|[ ]∫d3r|r≥  >  <  r≥| = 1 |kl,l,m > ,

     ⇒ ∫d3r u∗k'l'm'(r
≥)uklm(r

≥) = δll'δmm' 
1

k2
 δ(k - k'). (59)

(b) The Infinite Spherical Well

The solutions for the free particle resulted in a

continuous spectrum, as it should.  We now imagine putting a
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particle into a spherical well that has a potential which

rises to ∞ at the surface.  This means the particle is

trapped in the region r < a and has zero probability of

escaping from this spherical region.  In the 1-D case we

subjected the free particle solutions,

u(x) ~ sin(kx),cos(kx),

to the boundary conditions

u(x)|x = ±a = 0, (60)

to find the allowed energies.  We do a similar thing here in

our radial 3-D description.  The free particle solutions are

given by (57), and our boundary condition

u(r≥)|r = a = 0, (61)

determines the energy levels as being solutions of

jl(ka) = 0. (62)

Eqn (62) allows only certain discrete values of ka as

solutions.  These are called zeros of the Bessel junction

jl(ka).  Let's look at the l = 0 case:

j0(ka) = 0, (63)

⇒
sin(ka)

ka  = 0,

⇒ ka = nπ, n = 1,2,3,... (64)

In the l = 1 case, however, we have

j1(ka) = 0, (65)

⇒ sin(ka) = (ka)cos(ka).
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The transcendental Eqn (65) can be solved numerically to

yield approximately

ka = 4.493,7.725,10.90,... (66)

for the first three zeros.  Tables of the zeros of Bessel

functions are, for example, published in the National Bureau

of Standards, Handbook of Mathematical Functions.  The

energies of these states are then given by

E = 
h
2(ka)2

2ma2
 . (67)

A convenient label that catagorizes the solutions is the

number of nodes (or zeros) in the radial wavefunction (for

r ≠ 0).  The lowest energy solution for each l value has a

single node at r = a (the surface).  The next highest energy

solution has two nodes, the next has three nodes, and so on.

We will use n = 1,2,3,... to label these solutions. (Notice

that only in the case l = 0 is ka proportional to n.)

Defining

unl(r) ≡ Nljl(knr), (68)

where kn represents a solution with n nodes and N is a

normalization factor determined by

∫0
a
drr2|unl(r)|

2 = 1, (69)

we may give a schematic representation of these wavefunctions

as below:
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r = 0 r = a

= 0,n = 2l

u (r)
ln

= 0,n = 1l

= 1,n = 1l

= 1,n = 2l

(Notice that only for l = 0 states is unl(0) ≠ 0.)  The

normalization factor in (68) can be shown to be given by

N
2
l = 

2

a3j
2
l+1(kna)

 . (70)

Some conventional terminology to denote these states is given below.

 



l = 0  s state  "sharp"

 
l = 1  p state  "principle"

 
l = 2  d state  "diffuse"

 
l = 3  f state 

 
from the days of 
exp'l spectral analysis.

For l = 4,5,..., the letter designation becomes alphabetical.

In addition, one also sees the notation:

l = 0, n = 1:  1s shell

l = 0, n = 2:  2s shell

l = 1, n = 1:  1p shell

l = 1, n = 2:  2p shell .
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This is called spectroscopic notation.  The number in front

of the letter in this case is just n, the number of radial

(r ≠ 0) nodes.  It also indicates the energy level order.

That is, the 1s state is the lowest energy l = 0 state, the

2s state has the next highest energy for l = 0, and so on.

Since the energies of the states are proportional to the

dimensionless quantity (ka)2, a listing of the first few

levels gives an idea of the separations involved.

State         1s               1p              1d              2s             1f

(ka)2 9.87 20.14 33.21 39.48 48.83

 2p               1g              2d              1h             3s

59.68 66.96 82.72 87.53 88.83

Each energy level, of course, is in general degenerate:

remember the (2l + 1) degeneracy in m of the lth level.

One of the reasons the spherical well is so interesting

is because it turns out to represent a crude, and yet fairly

accurate, model of the nucleus.  Such models assume that the

interaction between a single nucleon (either a proton or

neutron) and all the other nucleons can be represented by an

external potential, V(r).  This is called the single-particle

or shell model of the nucleus and is described in all

introductory nuclear physics books.  This picture is, of

course, a gross phenomenological oversimpification, but such

simplifications are in fact necessary because of the extreme

complexity of the problem.  The ultimate justification for

the assumption that the nucleons move practically independent
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of one another is due to a property of matter we will study

more in Chapter 9.

Using the assumption that we can only place two neutrons

and two protons in each energy level, we can calculate the

number of nucleons held by each shell.  This assumption is

completely mysterious at this point but will be explained when

we come to Chapter 9.  The assumption of two electrons per

energy level in atomic spectroscopy was known by early workers

as "zweideutigkut," which is German for "two-valuedness."

shell # protons(Z) # neutrons(N) additive
                        = 2(2l + 1)        = 2(2l + 1)       total

1s (l = 0)  2  2 2

1p (l = 1)  6  6 2 + 6 = 8

1d (l = 2) 10 10 8 + 10 = 18

2s (l = 0)  2  2 18 + 2 = 20

1f (l = 3) 14 14 20 + 14 = 34

2p (l = 1)  6  6 34 + 6 = 40

1g (l = 4) 18 18 40 + 18 = 58

Because of the fact that jumps in energy occur when a given

shell is filled, we might expect that nuclei with Z or N equal

to the numbers in the right hand column above should be

particularly stable.  This is similar to the closed-shell effect

for the Nobel gases in atomic physics.  On the basis of the

above simple model then, we might exect to have particularly

stable nuclei whenever Z or N equals:

2,8,18,20,34,40,58,...

Instead, experiment shows that the favored stable nuclei have Z

or N equal to:
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2,8,20,28,50,82, and 126.

These Z values correspond to helium, oxygen, calcium, nickel,

tin and lead nuclei.  (A Z = 126 nucleus is experimentally

unknown.)  These are called the nuclear "magic numbers."  Nuclei

which have both Z and N equal to a magic number are especially

stable.  An example is a type of calcium nucleus:

20(= Z)
  Ca40(= Z + N = A) .

The Z value determines which element, but each element can have

a number of N values, called isotopes.

Of course, the assumption of an infinite spherical

potential is partly to blame for the fact that the above set of

predicted and observed magic numbers do not agree.  A more

realistic model is to assume some sort of finite potential well.

(We will study this possibility briefly when the deuteron is

discussed.)  This is important to allow for the known

exponential tail in the nucleon distribution rather than a sharp

cutoff at some spherical radius, a.  Another important

ingredient in a successful theory of the atomic nucleus is an

assumption known as LS coupling or spin-orbit coupling.  This

phenomenon will be explained when we come to the hydrogen atom.

The end result of such calculations is an energy level diagram,

which is actually different for each nuclear isotype.  A

schematic representation of such an energy level diagram will be

passed out in class. The spectroscopic notation on the right

hand side of this figure (in the case of ls coupling) has not

been explained yet.
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A real, fundamental theory of strong interactions has

existed since about 1972 and is called Quantum Chromodynamics

(QCD).  The reason it took such a long time to uncover this

theory is because the observed particles in a nucleus, the

proton and neutron, are actually composite objects made up of 3

quarks.  Just as the relativistic field theory Quantum

Electrodynamics (QED) describes the interactions of electrons

and photons (particles of light), QCD describes the interactions

of quarks and other force-mediating particles called gluons.  It

is mentally comforting to know that a fundamental theory of

nuclear forces is known.  However, QCD is actually of little

practical value in most nuclear physics problems because of the

extreme complexity of the systems involved. However, it is

extremely gratifying to know that the true, underlying physics

is known.

(c)  The "Deuteron"

Up to the present, we have only been investigating the

behavior of a single, isolated particle subject to some

simple external potential.  More realistically, the simpliest

sytems in nature are two particle systems.  Continuing the

above discussion of the atomic nucleus, we will concentrate

here on a phenomenological description of the simpliest

nuclear subsystem, the deuteron, which consists of a single

proton and neutron.  Of course, from the more fundamental

point of view of quark dynamics, this is already an extremely

complicated system consisting of six quarks.  In order to get
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a practical description, we will ignore this reality and

treat the neutron and proton as fundamental objects.  Physics

is a multi-layered discipline.  It turns out for many

applications that we can ignore the deeper layers of reality

(usually at higher energies) if we wish to describe a system

at some reasonable level of accuracy.

Since we are considering a system consisting of two

independent particles, it is reasonable to suppose we can

introduce independent position and momentum operators for

each particle.  That is, we introduce momentum operators

p≥1,p
≥

2 and position operators x
≥

1,x
≥

2 such that

[p≥α,p
≥

β] = 0, [x
≥

α,x
≥

β] = 0 (71)

where α and β are now particle labels.  Our direct product

states can be taken as

|p≥1
',p≥2

' > = |p≥1
' > ⊗ |p≥2

' > , (72)

|x≥1
',x≥2

' > = |x≥1
' > ⊗ |x≥2

' > . (73)

We will also assume that position and momentum operators from

different particles commute,

[piα,xjβ] = 
h

i δijδαβ . (74)

Just as in classical dynamics, we can imagine

introducing a different set of coordinates, based on the

center of mass of the system, that is useful to locate the

positions of our two particles.  Given particles at positions
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x≥1
' and x≥2

'  relative to a fixed coordinate system, we can also

locate their positions given the center of mass vector X
≥
' and

relative position x≥'.  The relationship between these

coordinates is illustrated below:

•

•

X' CM≥

x'≥

•

•

x'
≥

1

x'≥
2

Based upon these relationships, we define operators for these

quantities as follows

x≥ = x≥1 - x
≥

2 , (75)

X
≥
 = 

m1x
≥

1 + m2x
≥

2

(m1 + m2)
 . (76)

Just as we introduced a new basis to represent a

particle's position in spherical coordinates, we imagine an

alternate description based upon knowledge of X
≥
' and x≥':

< x≥1
',x≥2

'| → < x≥',X
≥
'| . (77)

Such a description is only allowed if x≥' and X
≥
' may be

simultaneously measured, that is, if x≥ and X
≥
 commute.  This

is easy to show using (71):

[Xi,xj] =  



 

(m1xi1 + m2xi2)

(m1 + m2)
 , xj1 - xj2  = 0 (78)

Thus we may take



7.23

< x≥',X
≥
'| = < x≥'|< X

≥
'| (79)

where we define (we imagine Cartesian bases for now)

< x≥'| x≥ = < x≥'| x≥' , (80)

< X
≥
'|X
≥
 = < X

≥
'|X
≥
' . (81)

Along with this coordinate description, we introduce center

of mass momentum operators

P
≥
 = p≥1 + p

≥

2 , (82)

p≥ = 
m2p
≥

1 - m1p
≥

2

(m1 + m2)
 . (83)

We have

[pi,Pj] =  



 

m2pi1 - m2pi2

(m1 + m2)
 , pj1 - pj2  = 0, (84)

from Eqn (71).  Therefore, a new momentum description

< p≥1
',p≥2

'| → < p≥',P
≥
'| . (85)

where

< p≥',P
≥
'| = < p≥'| < P

≥
'| , (86)

and

< p≥'|p≥ = < p≥'|p≥' , (87)

< P
≥
'|P
≥
 = < P

≥
'|P
≥
' , (88)
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is allowed.  We assume both the CM coordinate description,

Eqn (79), and the CM momentum description, Eqn (86), are

complete.

Based upon (74), we also have that

[Pi,xj] = [Xi,pj] = 0 . (89)

However, we will also get

   [Pi,Xj] =  



 



pi1 + pi2, 
m1xj1 + m2xj2
(m1 + m2)

     = 
m1

m1 + m2
 [pi1,xj1] + 

m2
m1 + m2

 [pi2,xj2] = 
h

i δij , (90)

   [pi,xj] =  



 

m2pi1 - m1pi2

(m1 + m2)
 ,xj1 - xj2

     = 
m2

m1 + m2
 [pi1,xj1] + 

m1
m1 + m2

 [pi2,xj2] = 
h

i δij , (91)

Based upon (90) and (91) we may show that

< X
≥
'|P
≥
 = 

h

i ∇
≥

X' < X
≥
'| , (92)

< x≥'|p≥ = 
h

i ∇
≥

x' < x≥'| . (93)

by reasoning similar to that in Chapter 4 leading up to Eqn

(153).

Solving for p≥1 and p
≥

2 from (82) and (83), we find

p≥1 = 
m1

m1 + m2
 P
≥
 + p≥ , (94)

p≥2 = 
m2

m1 + m2
 P
≥
 - p≥ , (95)
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so that for the kinetic energy we get

  

 
2m

1

p≥
1
2

 + 
2m

2

p≥ 2
2

 = 
2M

P≥
2

 + 
2µ

p≥ 2

(96)

where M = m1 + m2 and µ = 
m1m2
M  (the usual formula for reduced

mass).  Assuming the interaction of the two particles depends

only upon the distance between the two particles, the

Hamiltonian becomes

    

 H        = 
2M

P≥
2

 + 
2µ

p≥ 2 

+ V(r) (97)

where, in a spherical coordinate description, "r" represents

an operator giving the magnitude of the distance between the

particles.  Let's call

Hext = 
P
≥2

2M  , (98)

and

Hint = 
p≥2

2µ
 + V(r) . (99)

Notice that

         

 [Hext,Hint] = 

 


 
2M
P≥
2

 , 
2µ
p≥
2

 + V(r)

 


 = 0 ,            (100)

so that our system can be taken to have simultaneous

eigenvalues of Hext and Hint.  The eigenvalue equation for Hext

is just

   Hext |P
≥
'> = 

P'≥ 2

2M  |P
≥
'>, (101)
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so that

< X
≥
'|Hext|P

≥
'> = 

P'≥ 2

2M  < X
≥
'|P
≥
'>, (102)

or

- 
h
2

2M ∇
≥2
X'uP≥'(X

≥
') = 

P'≥ 2

2M  uP
≥
'(X
≥
'), (103)

where uP≥'(X
≥
') = < X

≥
'|P
≥
'> and we have used Eqn (92) above.  The

solution to (103) is just

uP≥'(X
≥
') = 

1

(2πh)3/2
 eiP

≥
'⋅X
≥
'/h, (104)

that is, just free particle plane waves normalized such that

∫d3X u∗
P
≥
'
(X
≥
)uP≥"(X

≥
) = δ(P≥' - P

≥
"), (105)

as usual.  This shows that the center of mass of the system

behaves like a free particle, taking on continuous energy

values.

The interesting part of the two body problem is the

eigenvalue equation for Hint.  We switch to a spherical polar

description for this sector

< x≥'| → < r≥| , (106)

and write the eigenvalue equation as

< r≥|Hint|a' > = Ea'< r≥|a' > , (107)

or using the form, Eqn (99), for Hint , we have
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- 
h
2

2µ
 ∇
≥2
r + V(r)  ua'(r

≥) = Ea'ua'(r
≥), (108)

where ua'(r
≥) = < r≥|a' >.  This is of the same form as the one-

body Schrödinger equation we have already considered, except

that m is replaced by µ.

The above has been a short introduction to two-body

formalism and has not been directed toward the deuteron

problem as such. Let me now recite some of the known

experimental facts concerning the deuteron.  It has been

determined that the binding energy of the deuteron is

E = -2.226 Mev. (109)

[Remember that

1ev = energy given to an electronic
 charge accelerated through 1 volt

 or

1ev = 1.602 × 10-12 erg.

We have 1Mev = 106 ev, of course.  Since energies can be

measured in Mev, mass can be measured in units of Mev/c2.]

Eqn (109) implies that it takes 2.226 Mev of energy to

separate the proton and neutron in deuterium to infinity.  In

addition, it is known that there are no excited energy states

of the deuteron, that is, there is only a single bound state

of this system.  One (non-fundamental) theory says the force

between nucleons (or at least the long range part of the

potential) is due to pion exchange between them.  The energy-

time uncertainty principle (Ch. 3) reads
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∆Etc ≈ h (110)

The energy of a system of two nucleons fluctuates when we

consider events that take place over short periods of time.

Because of this, one nucleon can spontaneously give rise to

another particle, called a pion, which has a mass

mπ+ -~ 140 Mev/c
2 . (111)

Setting ∆E = mπ+c
2, then we learn from (110) that this pion is

allowed to "live" during a time

tc ≈ 
h

mπ+c
2 . (112)

If we assume this emitted pion travels close to the speed of

light, we see that it has a range of

ctc ≈ 
h

mπ+c
 . (113)

The right hand side of (113) is just the pion's reduced

Compton wavelength (see Ch. 2) which has a numerical value of

 
h

mπ+c
  ≈ 1.43 × 10-15 m = 1.43 fm (114)

(1 fermi = 10-15 m = 10-15 cm).

A useful numerical relationship easily memorized is

1fm-1 = (197.3 Mev)/hc.

Therefore, if the second nucleon is within this appropriate

range, the pion can be reabsorbed by it and a force between

the two nucleons can be transmitted.  This picture of the

origin of the strong nuclear force is due to Hidiki Yukawa.
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It seems to explain the short range of the strong nuclear

force.  In its details it cannot be completely correct since

we now know that all of these particles, protons, neutrons

and pions, are made up of more fundamental objects.  (In the

simpliest possible interpretation, a pion is just a bound

state of a quark and an anti-quark.)  The emitted and

absorbed pion in the discussion is called a "virtual"

particle.  The extent to which this picture can be relied

upon is currently a matter of debate in nuclear physics.

Assuming a spherically symmetric force the radial equation

we need to solve is (just Eqn (10) above with

m → µ).  (I will sometimes leave the quantum number labels off

of the radial eigenfunctions until it is clear what they are.)

 



 



- 
h
2

2µ
 

 



 

d2

dr2
 - 

l(l + 1)

r2
 + V(r)  R(r) = ER(r). (115)

What about the potential, V(r)?  The remarks about the range of

the nuclear force suggests the simpliest possible picture below:

V(r)

I II

a r

-V
0

That is

V(r) = 
 


 
  0, r ≥ a
 
-V0, r < a .

(116)
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We expect that the well radius, a, is on the order of

1.43 fm.  In order to produce a binding energy of about 2.2

Mev, and to have only a single bound state, what should the

well depth, V0, be?

We have labeled the region of space with r ≤ a as "I"

and r ≥ a as "II" in the above figure.  In I we need to solve

- 
h
2

2µ
 

 



 

d2

dr2
 - 

l(l + 1)

r2
 R(r) = (E + V0)R(r) . (117)

This is the same form as the free particle problem (Eqn (16)

above) except that E → E + V0 here.  Following the same

reasoning as before, we learn that E + V0 must be a positive

quantity and that the solutions are of the form jl(Ka) where

K ≡ 
√2µ(E + V0)

h
 . (118)

In the region labeled as II, we must instead solve

- 
h
2

2µ
 

 



 

d2

dr2
 - 

l(l + 1)

r2
 R(r) = ER(r) , (119)

but now because we are specifically interested in a bound

state we require E < 0.  (There are also E > 0 solutions.

These describe scattering.)  In order to find the appropriate

solutions to (119) in this case, let us for the moment

specialize to l = 0.  In dimensionless form with

 



ρ ≡ K'r,
 

K' ≡ 
√-2µE
h

 = 
√2µ|E|
h

,   

(120)
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the l = 0 version of (119) reads

 



 

d2

dρ2
 - 1  R(ρ) = 0. (121)

We encountered this equation before ((20) above) and found

that its solutions were of the form

R(ρ) ~ e±ρ . (122)

These were discarded because at the origin they do not obey

(12).  However, we are now solving (121) in region II, which

does not include the origin.  Region II does, however,

include spatial infinity where the wavefunction must vanish,

R(∞) = 0 . (123)

This is actually a necessary but not sufficient condition

that the wavefunction must satisfy.  The real requirement on

the wavefunction is that it be square integrable, which here

means that R(ρ) must fall off faster than ρ-1/2 as ρ → ∞.

(See the similar 1-D discussion on p.2.33.)  The condition

(123) applied to (122) is enough to pick out the unique

solution

R(ρ) ~ e-ρ . (124)

This brings the present discussion up to the same point as

the free particle discussion leading to the unique solution

Rk0(ρ) ~ sin ρ.  We can repeat the rest of that discussion,

which leads to the solutions of the form (see Eqn (37))

ρl+1 
 


 
 

1

ρ
 
d

dρ
 

l
 Xl=0(ρ) . (125)
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Before, for the free particle we had Xl=0(ρ) ~ 
sin ρ

ρ
, which

lead to the use of the spherical Bessel functions

jl(ρ) = (-ρ)
l 

 


 
 

1

ρ
 
d

dρ
 

l
 
 



 

sin ρ

ρ
 , (126)

as solutions of the radial equation.  However, in this case

we have Xl=0(ρ) ~ 
e-ρ

ρ
, and we can take our solutions to be

proportional to the spherical Hankel functions of the first

kind (with imaginary arguments), h
(1)

l (iρ), defined as:

h
(1)

l (iρ) ≡ -(iρ)l 
 


 
 

1

ρ
 
d

dρ
 

l
 
 



 

e-ρ

ρ
 . (127)

Of course, the solutions in Regions I and II have to be

joined smoothly, which means in this case that R(ρ) and its

first derivative must connect continuously at r = a.  These

conditions arise here in 3 dimensions completely analogously

to the continuity conditions discussed in the notes on pgs.

3.25, 3.26 for 1-D.  Therefore, our explicit solutions are (A

and B are normalization constants)

u(r) = 

 


 

Ajl(Kr),    r ≤ a

 

Bh
(1)
l (iK'r), r ≥ a

    (128)

and our requirements of continuity in u(r) and u'(r) at r = a

read:

Ajl(Ka) = Bh
(1)
l (iK'a), (129)
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Ajl
'(Ka) = Bh

(1)'
l (iK'a). (130)

Dividing (130) by (129) gives us the statement

jl
'(Ka)

jl(Ka)
 = 

h
(1)'
l (iK'a)

h
(1)
l (iK'a)

  . (131)

Eqn (131) is the eigenvalue equation for the energies, and

for finite well depth, V0, has only a finite number of

solutions.  Let us explicitly investigate (131) in the case

l = 0.  Since

j0(Ka) = 
sin Ka
Ka  , (132)

h
(1)
0 (iK'a) = - 

e-K'a

K'a  , (133)

eqn (131) reads

 




 
 


 
 

sin Kr
r  '

 


 
 

sin Kr
r   

 

r=a

 = 

 




 
 


 
 

e-K'r

r  '

 


 
 

e-K'r

r   

 

r=a

 (134)

or
(Ka)cot Ka = -(K'a) (135)

Notice also that from (118) and (120)

(Ka)2 + (K'a)2 = 
2µV0a

2

h
2  . (136)

Therefore, we may solve the eigenvalue problem, given a value

of V0, by plotting (135) and (136) simultaneously on axes

labeled by (Ka) and (K'a).  This is done below.
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•

(K'a)

K'a = -Ka cot Ka

solution

(Ka) +(K'a)  ______2 2

h2

2 V a0µ 2

=

/2π 3 /2 (Ka)π 2ππ

infinite well solutions
     eq (64)

circle

Notice that, based upon the above figure, we can determine

the number of bound s-states for a given well depth quite

easily.  When we have, for example

2µV0a
2

h
2  <  


 
 

π
2 

2

, (137)

then there will be no bound s-states because the two sets of

curves in the figure never intersect.  If

  


 
 

π
2 

2

 < 
2µV0a

2

h
2  <  


 
 

3π
2  

2

, (138)

there will be a single bound s-state. In general it is easy

to see that

 
 


 
n - 

1
2 

2

 π2 < 
2µV0a

2

h
2  < 

 


 
n + 

1
2 

2

 π2, (139)
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is the condition on the well depth such that n bound s-states

exist.  Of course for the deuteron we would like to choose V0

such that a single bound state exists.  This would seem to

mean that we should require (138) to hold for the well depth,

V0.  However, this is only a condition to have a single bound

s-state; there can also be bound states with l = 1,2,3...

One can show that the first l = 1 state becomes bound when

 
2µV0a

2

h
2  > π2 . (140)

One can also show that, if (V0)l represents the minimum well

depth to bind a state of angular momentum l, then

(V0)0 < (V0)1 < (V0)2 ... (141)

This is actually the converse of a theorem for energies that

appears in a problem in Quantum Mechanics, V.I, 1st ed.,

p.367 by Messiah.  (The theorem in Messiah is easily proved

by considering that l
≥2/2µ is a positive definite operator.)

Thus, the condition to produce a single bound state is

  


 
 

π
2 

2

 < 
2µV0a

2

h
2  < π2. (142)

In terms of our estimate that a -~ 1.43 fm, eqn (81) says that

(µ -~ 1/2 mproton, mproton = 940 Mev/c
2).

52 Mev < V0 < 206 Mev. (143)

According to our simple theory, this single bound state

must have l = 0.  In reality, because the neutron-proton
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potential is not exactly spherically symmetric (because of

the so-called tensor force), the deuteron is actually a

mixture of l = 0 and a small amount of l = 2.  (The angular

momentum L
≥2 does not give rise to a good quantum number.)

The wave function of the lowest bound s-state looks

like:

ru(r) I II

a r

Notice the exponential tail in the classically excluded

Region II.

We have not found explicit formulas for the

normalization factors A and B in (128), but they are, as

usual, determined from

∫0
∞
drr2|u(r)|2 = 1 . (144)

Counting the point at infinity as a node (since u(r) = 0

there), the lowest bound s-state has one radial node, the

next highest (if bound) has two nodes, and so on.  Similarly

for the higher l values.  Therefore, the bound state quantum

numbers can be taken to be nl, where n represents the number

of radial nodes, as in the infinite spherical well also.

This is the first explicit case we have studied where the

eigenenergies an have both a discrete (E < 0) and a

continuous (E > 0) spectrum.  We will not study the
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scattering solutions.  Suffice it to say that if we desired

to write completeness for these sets of radial wavefunctions,

we would have to have both a discrete sum over the bound

states as well as an integral over the scattering states as

in

∑
bound

|nl > < nl| + ∫0
a
dkk2|kl > < kl| = 1 . (145)

(k has the same meaning above as in the free particle

problem.)

Of course the model considered here for the deuteron is

very crude and cannot fit all the experimental facts.  In

particular, the characterization of the potential as a finite

spherical well with the estimates (114) and (143) is quite

crude.  Better models are based upon the use of a potential

which turns repulsive at small enough distances (the "hard

core"), have an exponential tail at large distances (to

simulate the finite range pion exchange potential), and

include the previously mentioned tensor force.

(d) The Coulomb Problem

The static potential between two electric charges e1 and

e2 is

V(r) = 
e1e2
r   , (146)

where r is the distance between them.  If we take e1 = -e and

e2 = Ze (e = |e| is the magnitude of charge on an electron)

we have
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V(r) = - 
Ze2

r   . (147)

"Z" is the number of protons in the atomic nucleus.  Such a

potential describes "Hydrogen-like" systems.  The radial

eigenvalue equation is given by (115) above:

 



 



 
h
2

2µ
 

 



 



- 
d2

dr2
 + 

l(l + 1)

r2
  - 

Ze2

r   R(r) = ER(r). (148)

Let us consider solutions to (148) in the neighborhood of

r = 0.  For r sufficiently small, the equation R(r) satisfies

is

 



 



- 
d2

dr2
 + 

l(l + 1)

r2
  R(r) ≈ 0 . (149)

Actually, any potential such that 
r→0
lim r2V(r) = 0 will satisfy

(149) near r = 0.  (This includes all the cases that will be

studied in this Chapter.)  Let us try a power law solution to

(149):
u(r) = Cra . (150)

This implies that

a(a - 1) = l(l + 1) . (151)

We therefore have two possible solutions:

a = l + 1, -l (152)

The solutions ~ 
1

rl
 do not satisfy the boundary condition (12)

above.  Therefore near the origin, we expect the R(r)
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function to behave like rl+1 .  Actually, for the Coulomb

potential the l = 0 case has to be handled separately to

confirm that R(r) ~ r near the origin.  For the l = 0 case we

have

 



 



 
h
2

2µ
 
d2

dr2
 + 

Ze2

r   R(r) ≈ 0 (153)

near the origin.  Assuming R(r) = Cr in this vicinity, the

first order correction is then determined by

 
d2Rcorr.(r)

dr2
  -~ - 

2Z
a0r

 (Cr) (154)

where a0 = 
h
2

µe2
 .  (The "Bohr radius" of eqn (30) of chapter 2,

but with m → µ.)  The correction induced by (154) is clearly

of order r2, giving us

R(r) -~ Cr  


 
1 - 

Zr
a0
 (155)

Clearly, this process of correcting the lowest order solution

can be continued to higher orders, showing that the

assumption R(r) ≈ Cr is self-consistent.

Now let us consider the opposite extreme, r → ∞ in

(148).  In this case we expect that

- 
h
2

2µ
 
d2R(r)

dr2
 ≈ ER(r) . (156)

We will choose to look at the bound state solutions for which

E = -|E|.  (Scattering solutions also exist for E > 0 as for

the deuteron.)  The solutions to (156) are of the form
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R(r) ~ e-kr,ekr . (157)

Only the first possibility statisfies the boundary condition,

(123).  (k = 
√2µ|E|
h

 , as usual.)  Summing up what we have

learned about solutions to (148), we can state that:

 



 
r → 0:  R(r) ~ rl+1

 
r → ∞:  R(r) ~ e-kr

 (158)

Based upon (158), we guess for the l = 0 wavefunction that

R(r) = Cre-kr (159)

Substituting (159) into (148), we learn that we indeed have a

solution if

k = 
Z
a0
 . (160)

Expressing k in terms of E, we can show that this means

E = - 
h2Z2

2µa
2
0

 = - 
µe4Z2

2h2  . (161)

We estimated this result before in Chapter 2, p.2.13 when

Z = 1.  The only difference between the above and our

previous estimate is the use of the reduced mass, µ, in place

of the electron mass, m.  A conventional way of stating the

energy of atomic states is to give the E/hc value, which has

units of inverse distance.  The result (161) gives for

Hydrogen

 


 
E

hc theory
 = 109677.6 ± .9 cm-1 , (162)
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whereas experiment tells us (1971, Masui)

 


 
E

nc expt
 = 109677.587 ± .005 cm-1 . (163)

The agreement is quite good.  The error bars in (162) come

from uncertainites in the values of the fundamental constants

that come into eqn (161).  (I used some older numbers from

E.R. Cohen and B.N. Taylor, The 1973 Least-Squares Adjustment

of the Fundamental Constants, to get (162).  There are higher

order corrections to (162) from relativistic effects I have

not included.  The result (163) is also an older experimental

result I got from the same reference.)  To normalize the

result (159) we demand that

1 = ∫0
∞
drR2(r) = C2 ∫0

∞
drr2e-2Zr/a0, (164)

but

 ∫0
∞
dxx2e-ax = 2a-3, (165)

so that

C = 2 
 


 
 

Z
a0
 

3/2
 . (166)

Therefore

u(r) = R(r)r-1 = 2 
 


 
 

Z
a0
 

3/2
 e-Zr/a0. (167)

The full l = 0 wavefunction 
 



 

 Y00 = 

1

√4π
  is

u(r)Y00 = 
1

√π
 

 


 
 

Z
a0
 

3/2
 e-Zr/a0 . (168)



7.42

We will now solve for the wavefunctions in general.  We

will do this using a method I learned about from Julian

Schwinger.  We begin in a seemingly strange place.  Let us

remind ourselves of the basic facts concerning the one

dimensional harmonic oscillator (covered in Chapter 3, p.

3.33 onward).  The Hamiltonian is

H = 
p
2
x

2m + 
1
2 mω

2x2 . (169)

By introducing dimensionless variables

 





 

H = H

hω
 ,

 

p = 
px

√mωh
 ,

 

q = √mω
h
 x , 

(170)

the Hamiltonian becomes

H = 12 (p
2 + q2). (171)

The eigenvalue equation is 
 


 
<q|p = 

1
i 

d
dq <q|

 



 



- 
1
2 

d2

dq2
 + 

1
2 q

2  un(q) = Enun(q), (172)

where

En =  


 
n + 
1
2  , n = 0,1,2,... (173)
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The normalization we chose was (see the comments in Ch.3

about switching variables to x instead of q)

∫-∞
∞
dq'un(q')un(q') = 1, (174)

and we found explicitly that

un(q) = 
1

√√π 2nn!

 eq
2/2 

 


 
- 

d
dq

n
 e-q

2
 . (175)

A Taylor series for a general function f(q) may be written

f(q + q') = ∑
n=0

∞

 1n!  



 

q' 

∂

∂q

n

 f(q). (176)

Now multiply both sides of (175) by 
λn

√n!
 (where λ is a real

number) and sum over n:

∑
n=0

∞

 
λn

√n!
 un(q) = 

1

π1/4
 eq

2/2 ∑
n=0

∞

 1n!  



 



- 
λ

√2
 
d
dq 

n

 e-q
2
 . (177)

Comparing the rhs of (177) to the lhs side of (176) we can

identify q' = - 
λ

√2
 , and we find that

∑
n=0

∞

 
λn

√n!
 un(q) = 

1

π1/4
 eq

2/2 e-(q - λ/√2)2 , (178)

   = 
1

π1/4
 e-q

2/2 + √2 λq - λ2/2 . (179)

The right hand side of (178) or (179) is called a

generating function for the un(q) because by doing a

specified mathematical operation, we may generate all the
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un(q)'s.  Reversing the reasoning that lead to these results,

we find that that mathematical operation is

un(q) = 
1

π1/4
 
1

√n!
 

 


 
d

dλ

n
 |[ ]e-q

2/2 + √2 λq - λ2/2
λ=0 . (180)

Now that we have that under our belts, let's consider

the two-dimensional harmonic oscillator.  Using the same

dimensionless form as before, our Hamiltonian is

H = 12 (p
2
1 + p

2
2) + (q

2
1 + q

2
2) . (181)

Defining

H 1 = 
1
2 (p

2
1 + q

2
1), H 2 = 

1
2 (p

2
2 + q

2
2) (182)

we easily see that

[H 1,H 2] = 0. (183)

The simultaneous eigenkets of H 1 and H 2 are

|n1,n2 > = |n1 > ⊗ |n2 > (184)

where

 

H 1|n1 > =  


 
n1 + 
1
2 |n1 > 

 

H 2|n2> =  


 
n2 + 
1
2 |n2 > 

(185)

so that (n1,n2 = 0,1,2,... independently)

H |n1,n2 > = (n1 + n2 + 1)|n1,n2 > (186)
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Calling n = n1 + n2, the energy degeneracy of the energy level

labelled by n is clearly n + 1.  The eigenvalue equation

(186) projected into a coordinate basis is:

 



 



-
1
2 

 



 

∂2

∂q
2
1

 + 
∂2

∂q
2
2

 + 
1
2 (q

2
1 + q

2
2) un1n2(q1,q2) = (n + 1)un1n2(q1,q2), (187)

where of course

< q1,q2|n1,n2 > = < q1|n1 > < q2|n2 > , (188)

or

un1n2(q1,q2) = un1(q1)un2(q2) . (189)

Let us now do the same thing for the two dimensional harmonic

oscillator as we just got through doing for the one

dimensional case, that is, find a generating function for the

wavefunctions.  It is now easy to see that the statement

analogous to (179) is

∑
n
1
,n

2
=0

∞

  
λ 1
n1λ 2

n2

√n1!n2!
 un1n2(q1,q2)

= 
1

√π
 exp 

 


 
-

1
2 ( )q1

2
 + q2

2
 + √2 (q1λ1 + q2λ2) - 

1
2 ( )λ1

2
 + λ2

2 . (190)

Although these wavefunctions are a complete solution to the

problem, we wish to find the eigenfunctions in terms of the

plane polar coordinates ρ and φ, defined in the diagram, in

preparation for solving the Coulomb problem.
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•ρ
φq

2

q
1

The transformation equations are

 



 

q1 = ρ cos φ 
 
q2 = ρ sin φ 

 . (191)

(In terms of the physical coordinates x1 and x2,

ρ2 = 
mω
h
 ( )x1

2
 + x2

2 .)  Let us introduce the complex numbers,

 



 

λ+ = 
1

√2
 (λ1 - iλ2),

 

λ- = 
1

√2
 (λ1 + iλ2). 

(192)

Notice that λ∗
+
 = λ- and that

λ+λ- = 
1
2 ( )λ1

2
 + λ2

2 . (193)

The generating function (190) can be written in terms of ρ

and φ as

 
1

√π
 exp 

 


 
-

1
2 ( )q1

2
 + q2

2
 + √2 (λ1q1 + λ2q2) - 

1
2 ( )λ1

2
 + λ2

2

= 
1

√π
 exp 

 


 
-

1
2 ρ

2 + ρ( )λ+e
iφ + λ-e

-iφ  - λ+λ- (194)

By expanding the left hand side of (194) in a Taylor series

in λ1 and λ2, we have learned that the coefficients, outside

of a numerical factor, are the wavefunctions in the q1,q2
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basis.  We now do the same thing in λ+ and λ-.  That is, we

expand the right hand side of (194) in powers of λ+ and λ-,

thereby defining a complete set of solutions in the ρ,φ

basis:

1

√π
 exp

 


 
- 

1
2 ρ

2 + ρ(λ+e
iφ + λ-e

-iφ) - λ+λ-

≡ ∑
n
+
,n

-
=0

∞
  

λ
n+

+
λ
n-

-

√n+!n-!
 un+n-(ρ,φ). (195)

Since the left hand side of (195) is equal to the right hand

side of (190), we have that

∑
n
1
,n

2
=0

∞
  

λ
n1

1
λ
n2

2

√n1!n2!
 un1n2(q1,q2) = ∑

n
+
,n

-
=0

∞
  

λ
n+

+
λ
n-

-

√n+!n-!
 un+n-(ρ,φ). (196)

But, actually, we can say more than this.  Let us imagine

picking out all the terms of the left of (196) such that n1 +

n2 = n, where n is fixed.  (There will be n + 1 such terms.)

These terms must be equal to the terms on the right of (196)

such that n+ + n- = n also, since λ+ and λ- are just linear

combinations of λ1 and λ2.  Therefore, we have the more

specific statement that

∑
n
1
+n

2
=n

  
λ
n1

1
λ
n2

2

√n1!n2!
 un1n2(q1,q2) = ∑

n
+
+n

-
=n

  
λ
n+

+
λ
n-

-

√n+!n-!
 un+n-(ρ,φ). (197)

(The notation, ∑
n
1
+n

2
=n

 , means to sum over all values of

n1,n2 = 0,1,2,... such that n1 + n2 = n, where n is fixed.)

Eqn (197) says that the un1n2(q1,q2) and the un+n-(ρ,φ) are just
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linear combinations of each other.  Since we know that the

un1n2(q1,q2) represent a complete set of basis functions, it

follows that the un+n-(ρ,φ) are also a complete set, but in a

different coordinate basis.  Although we know that the

un+n(ρ,φ) are complete, they may not be orthonormal.  I prove

in the Appendix to this Chapter that they actually are

orthonormal.

We now will find explicit expressions for the un+n-.  By

operating on both sides of (195) with 
1

√n+!
 

 



 

d

dλ+

n
+ , evaluated

at λ+ = 0, we get

∑
n
-
=0

∞

 
λ -
n-

√n-!
 un+n- = 

1

√πn+!
 exp

 


 
- 

1
2 ρ

2 + ρe-iφλ- (ρe
iφ - λ-)

n+ . (198)

Now we operate with 
1

√n-!
 

 



 

d

dλ-

n-
 , evaluated at λ- = 0, on both

sides of (198) to get

un+n- = 
1

√πn+!n-!
 e-1/2 ρ2 

 



 

d

dλ-

n-[ ]eρe
-iφλ- (ρeiφ - λ-)

n+ |
λ-=0

. (199)

Let us start to simplify this expression by defining a new

parameter z such that

λ- = ρe
iφ(1 - z). (200)

Replacing λ- by z in (199), we get
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un+n- = 
1

√πn+!n-!
 e-1/2 ρ2 

 



 

- 

1

(ρeiφ)
 
d
dz

n- [ ]eρ
2(1-z)(ρeiφz)n+ |

z=1

    = 
1

√πn+!n-!
 e1/2 ρ2(ρeiφ)n+-n- 

 


 
- 

d
dz

n- [ ]e-zρ
2

zn+ |
z=1

. (201)

Notice that we may write

 


 
- 

d
dz

n- [ ]zn+e-ρ
2z |

z=1
 = ρ-2n+ 

 


 
- 

d
dz

n- [ ](ρ2z)n+e-ρ
2z |

z=1

           = ρ2(n- - n+)
 


 
- 

d

d(ρ2z)

n- [ ](ρ2z)n+e-ρ
2z |

z=1
 (202)

We can now set z = 1 in the last expression to get

   
 


 
- 

d
dz

n- [ ]zn+e-ρ
2z |

z=1
 = ρ2(n- - n+)

 


 
- 

d

dρ2
n- [ ]ρ2n+e-ρ

2

. (203)

Our simplified expression for un+n- is

un+n-(ρ,φ) = 
1

√πn+!n-!
 ei(n+-n-)φρn--n+ e1/2ρ

2

 


 
- 

d

dρ2
n- [ ]ρ2n+e-ρ

2
.(204)

Let us introduce the quantity

Lα
k
(x) ≡ x-αex 

1
k!  


 
d

dx
k[ ]xk+αe-x  , (205)

where k is an integer (0,1,2,..) and α is an arbitrary real

quantity.  These are called Laguerre polynomials when α = 0

or associated Laguerre polynomials for α ≠ 0. (They are
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polynomials of order k.) We can write our un+n- functions in

terms of them as follows:

un+n-(ρ,φ) = 
1

√2π 
 ei(n+-n-)φ Pn+n-(ρ) , (206)

where

Pn+n-(ρ) = √2 
n-!

n+!
 e-ρ

2/2(-1)n- ρn+-n- L
n+-n-
n-

(ρ2) . (207)

The quantity 
1

√2π 
 ei(n+-n-)φ  in (206) is the two dimensional

analog of the spherical harmonics.  Notice also that the

argument of the Laguerre function is ρ2, not ρ.  The

associated Laguerre polynomials have the symmetry property

that

Lα
k
(x) = 

(α + k)!
k!  (-1)αx-α L

-α

α+k(x) , (208)

as long as k = 0,1,2,... and α = -k,-k + 1,-k + 2,... . Using

(208) in (207), we get an alternative form for Pn+n-(ρ):

Pn+n-(ρ) = √2 
n+!

n-!
 e-ρ

2/2(-1)n+ ρn--n+ L
n--n+
n+

 (ρ2) . (209)

Just like when we had two alternative expressions for the

Ylm(θ,φ) and combined them into a third, more convenient,

expression, we now do the same thing here with the

alternative expressions (207) and (209).  We choose to use

(207) when n+ - n- ≥ 0 and (209) when n+ - n- ≤ 0.  We can now

write
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 Pn+n-(ρ) = 2 
 

 2

n+ + n- + 
2

|n+ - n-| 


!

 

 2

n+ + n -
 - 

2

|n+ - n -| 


!
  e

-ρ2/2
(-1) 2

n++n-
 - 

2

|n+-n-|

  

             

 × ρ
|n+-n-|  L

2

n++n-
 - 

2

|n+-n-|

|n+-n-|
  (ρ2)                 (210)

The expression (210) is somewhat awkward.  Let us define

 



 

m = n+ - n-,
 

nr = 
n+ + n-

2  - 
|m|
2 ,  

(211)

and relabel Pn+n- as Pnrm.  We find

Pnrm(ρ) = √2 
nr!

(nr + |m|)!
  e-ρ

2/2(-1)nr ρ|m| L
|m|
n
r
(ρ2) . (212)

The quantum number nr gives the number of nodes or zeros in

L
|m|
n
r
(ρ2) (or Pnrm(ρ)) (excluding the point at infinity).  (We

labeled the radial wavefunctions of the finite or infinite

spherical wells in the same way.)  Our relabeled, complete

radial wavefunctions are thus

unrm(ρ,φ) = 
1

√2π 
 eimφ Pnrm(ρ), (213)

with Pnrm(ρ) given above.

We now have two different basis sets in which to

uniquely characterize the states of our two dimensional

system.  The explicit forms for the Cartesian wavefunctions

are given in (175) and (189) above, and their quantum numbers

are n1 and n2 where each can take on the values 0,1,2,...
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independently.  Likewise, the explicit radial wavefunctions

are given in (212) and (213), and their quantum numbers are

specified by nr and m, where nr = 0,1,2,... and m is any

positive or negative integer (or zero).  Thus, our Hilbert

space is spanned either by the basis

|n1,n2 >,

which has energies

H|n1,n2 > = hω(n1 + n2 + 1)|n1,n2 >, (214)

or by the basis

|nr,m >,

which has energies

H|nr,m > = hω(2nr + |m| + 1)|nr,m > . (215)

(We have from (197) above that n+ + n- = 2nr + |m|

characterizes the energy of the states.)  Although both

characterizations are complete, in general there is not a

one-to-one correspondence between thse different basis states

because of the degeneracies in energy.  In either

characterization, the possible energies of the system are

E = hω(n + 1) where n = 0,1,2,..., and the degeneracy of the

nth  level is given by n + 1.  An explicit energy diagram of

the different basis states is given below.

Cartesian basis Radial basis

n1 = 0, n2 = 2 nr = 0, m = 2
n1 = 1, n2 = 1 nr = 0, m = -2

n1 = 2, n2 = 0_____________ E = 3hω nr = 1, m = 0_____________
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n1 = 0, n2 = 1 nr = 0, m = 1

n1 = 1, n2 = 0_____________ E = 2hω nr = 0, m = -1_____________

n1 = n2 = 0___________ E = hω nr = m = 0__________

In general, the (n + 1) Cartesian or radial states for

which E = hω(n + 1) are linear combinations of each other.

These are given by Eqn (197) above.  (There is, of course, a

one-to-one correspondence between the two nondegenerate

ground states.)

Just to get a feeling for the correspondence of the two

sets of states, let's work some of the relationships out

explicitly.  The Cartesian basis ground state is given by

u00(q1,q2) = u0(q1)u0(q2), (216)

where (from (175))

u0(q) = 
1

π1/4
 e-q

2/2. (217)

Therefore

u00(q1,q2) = 
1

√π
 e-(q1

2 + q2
2)/2

    
 



 

= 

1

√π
 e-ρ

2/2 , (218)

On the other had we have

u00(ρ,φ) = 
1

√π
 e-ρ

2/2 L
0
0(ρ

2), (219)

but it's easy to show that

 Lα
0
(ρ2) = 1, (220)

for any α, so that
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u00(ρ,φ) = 
1

√π
 e-ρ

2/2. (221)

Eqns (218) and (221) are identical.

For the E = 2hω energy level we have the linearly

independent Cartesian set

 



 

u10(q1,q2) = u1(q1)u0(q2) ,  
 
u01(q1,q2) = u0(q1)u1(q2) .

(222)

From (175) we have that

u1(q) = 
√2
π1/4

 qe-q
2/2, (223)

so that

 








u10(q1,q2) = √2

π
  q1e

-(q1
2 + q2

2)/2

 

          
 



 



= √2

π
  ρ cos φ e-ρ

2/2 ,

 

u01(q1,q2) = √2

π
  q2e

-(q1
2 + q2

2)/2

 

          
 



 



= √2

π
  ρ sin φ e-ρ

2/2 .  

(224)

The radial basis set is
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u01(ρ,φ) = 
1

√2π 
 eiφ √2 e-ρ

2/2 ρL
1
0(ρ

2),  

 

         = 
1

√π
 ρeiφ e-ρ

2/2, 

 

 u0-1(ρ,φ) = 
1

√2π 
 e-iφ √2 e-ρ

2/2 ρL
1
0(ρ

2),  

 

          = 
1

√π
 ρe-iφ e-ρ

2/2.

(225)

The relationship between these two sets is given by (197)

with n = 1:

∑
n
1
+n

2
=1

  
λ 1
n1 λ 2

n2

√n1!n2!
 un1n2 = ∑

n
+
+n

-
=1

  
λ +
n+ λ -

n-

√n+!n-!
 unrm , (226)

which gives

λ1u10(q1,q2) + λ2u0(q1,q2) = λ+u01(ρ,φ) + λ-u0-1(ρ,φ). (227)

However, expressing λ+ and λ- in terms of λ1 and λ2 using

(192) and matching coefficients of λ1 and λ2 on both sides of

(227), we find that

 

u10(q1,q2) = 

1

√2
 (u01(ρ,φ) + u0-1(ρ,φ)),  

 

u01(q1,q2) = 
i

√2
 (u0-1(ρ,φ) - u01(ρ,φ)). 

(228)

Plugging in our explicit expressions above, we see that

equations (228) are identically satisfied.
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What explicit equations do the unrm(ρ,φ) solve?  Our two

dimensional Schrödinger equation reads

 
 



 



- 
1
2  




 

∂2

∂q1
2 + 

∂2

∂q2
2  + 

1
2 ( )q1

2 + q2
2  un1n2 = (n1 + n2 + 1)un1n2, (229)

in Cartesian coordinates.  We change variables to ρ and φ:

 



∂2

∂q1
2 + 

∂2

∂q2
2 = 

∂2

∂ρ2
 + 

1

ρ
 
∂

∂ρ
 + 

1

ρ2
 
∂2

∂φ2
 , 

 

  q
2
1 + q

2
2 = ρ

2 .

 (230)

The unrm(ρ,φ) satisfy

 



 



- 
1
2  




 

 

∂2

∂ρ2
 + 

1

ρ
 
∂

∂ρ
 + 

1

ρ2
 
∂2

∂φ2
 + 

1
2 ρ

2  unrm = (2nr + |m| + 1)unrm. (231)

The variables φ and ρ separate in (231) and according to

(213) we may replace

1

ρ2
 
∂2

∂φ2
 → - 

m2

ρ2
 . (232)

In (231) we also replace unrm(ρ,φ) by Pnrm(ρ).  Thus Pnrm(ρ)

satisfies

 



 



- 
1
2  




 

d2

dρ2
 + 

1

ρ
 
d

dρ
 - 

m2

ρ2
 + 

1
2 ρ

2  Pnrm(ρ) = (2nr + |m| + 1)Pnrm(ρ),(233)

or
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d2

dρ2
 + 

1

ρ
 
d

dρ
 - 

m2

ρ2
 + 2(2nr + |m| + 1) - ρ

2  Pnrm(ρ) = 0.  (234)

Let's now come to the point.  The Coulomb problem, eqn (148),

can be cast into the form:

 



 

d2

dr2
 - 

l(l + 1)

r2
 + 

2Z
a0r

 - 
2µ

h
2 |E|  R(r) = 0, (235)

where we have set E = -|E| for bound states.  In order to

establish a connection between eqns (234) and (235), let us

let

ρ2 = λr (236)

in the two dimensional oscillator equation.  It is easy to

establish that

 



 

d2

dρ2
 = 

4

λ
 

 



 

1

2 
d
dr + r 

d2

dr2
,

 
1

ρ
 
d

dρ
 = 

2

λ
 
d
dr.

(237)

Then, multiplying by 
λ
4r , we find that (234) may be cast into

the form

 
 



 

d2

dr2
 + 

1
r 

d
dr - 

m2

4r2
 + 

λ(2nr + |m| + 1)
2r  - 

λ2

4  Pnrm( )√λr = 0.(238)

Eqn (238) is of the same form of (235) except for the 
1
r 

d
dr

term.  We can get rid of it by writing the equation satisfied

by √r Pnrm:
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d2

dr2
 - 

m2 - 1

4r2
 + 

λ(2nr + |m| + 1)
2r  - 

λ2

4  [ ]√r Pnrm( )√λr = 0.

(239)

Casting our eyes back upon (235), we see that since we know

the explicit solutions to (239), we can also work out the

solutions to (235) given the following correspondence:

2-D oscillator Coulomb

(m2 - 1)/4 l(l + 1)

λ(2nr + |m| + 1)/2 2Z/a0

λ2/4 2µ|E|/h2

The first line above tells us what |m| corresponds to, the

last two lines tell us what λ and nr correspond to.  Thus,

from the first line we get

m2 → 4l(l + 1) + 1 = (2l + 1)2  ,

so that

|m| → |2l + 1| = 2l + 1. (240)

The arrow symbol "→" means "corresponds to".  We should view

(240) simply as a correspondence between parameters; that is,

as far as eqns (235) and (239) are concerned, |m| and l are

just parameters which can take on any values.  (Separate

eigenvalue equations determine the values of m and l.)  From

the third line of the correspondence, we get

λ → 
√8µ|E|
h

  . (241)
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(λ must, from (236), be a positive quantity.)  Then, from the

second line above, we get

λnr → 
2Z
a0
 - (l + 1)λ

from (240).  Then, using (241), we find the correspondence

nr → 
2Zh

a0√8µ|E|
 - (l + 1). (242)

Now, according to the L
≥2 eigenvalue equation, Eqn (188) of

Chapter 6, l takes on values 0,1,2,... .  Also, nr is required

by its eigenvalue equation (either (234), (238) or (239)) to

take on values 0,1,2,... also.  Therefore, the quantity

2Zh

a0√2µ|E|
 is also restricted to integer values such (242) is

satisfied.  In other words we have (n = nr + l + 1)

2Zh

a0√8µ|E|
 = n (243)

where, for a fixed l, we must have n ≥ l + 1 for the integer

n (i.e., nr ≥ 0).  Eq
n (243) determines the energy levels of

the Coulomb problem!  Solving for E, we get

E = -|E| = - 
Z2h2

2µa0
2n2

 , (244)

         = - 
Z2e2

2a0n
2 . (245)
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The integer n is called the principal quantum number since it

completely determines the energy value.  Reinserting n into

(241) and (242), we find that the complete correspondence

between the two dimensional harmonic oscillator and the

(three dimensional) Coulomb problem is specified by

 



 

|m| → 2l + 1,

 

λ → 
2Z
a0n

 ,

 
nr → n - (l + 1). 

(246)

The result (246) is very useful because it is only

necessary to make the above substitutions in the quantity

√r Pnrm( )√λr  (see eqn (239)) to read off the Coulomb radial

eigenfunctions.  (The angular eigenfunctions are, of course,

just the Ylm(θ,φ) as in any central force problem.)  Making

the substitutions (246) into the explicit form for Pnrm, Eq
n

(212), we find for these eigenfunctions

Rnl(r) = N √a0n

Z  
(n - l - 1)!

(n + l)!
  (-1)n-l-1 e-Zr/a0n

   × 
 


 
2Zr

a0n

l+1
 L

2l+1

n-l-1  


 
2Zr

a0n
. (247)

N is an unknown normalization constant which will be

evaluated shortly.  The phase factor (-1)n-l-1 is unimportant

and may be discarded if desired.  (Because of the symmetry
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property (208), there is an alternate form of these

wavefunctions that can be written down.)

We can evaluate the constant N as follows.  We require

that (remember that u(r) = R(r)/r from (9))

∫0
∞
dr|Rnl(r)|

2 = 1 . (248)

We may also effectively evaluate the integral on the left

hand side of (248) by appealing to the two dimensional

harmonic oscillator.

Consider the integral

I ≡ ∫0
∞
dρρ3(Pnrm(ρ))

2 . (249)

This integral may be evaluated using the result (3) from

Chapter 5:

〈 〉∂H

∂λ
 

E

 = 
∂E

∂λ
 . (250)

The two dimensional harmonic oscillator Hamiltonian is

H = 
p1
2 + p2

2

2m  + 
mω2

2  ( )x1
2 + x2

2 , (251)

and our orthonormality condition was (see Eqns (A11) of the

Appendix and (206) above)

∫0
∞
dρρ Pnrm(ρ)Pnr'm'(ρ) = δnrnr'δmm' (252)

when expressed in polar coordintes.  (Remember,
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ρ2 = 
mω
h
 ( )x1

2 + x2
2 ).  Picking λ = ω for use in (250), we find

that

1
h
 〈 〉∂H

∂ω
 

nrm

 = 〈 〉ρ2 

nrm

(253)

but

〈 〉ρ2 

nrm

 = I, (254)

and

1
h
 
∂E

∂ω
 = (2nr + |m| + 1). (255)

Putting (253), (254) and  (255) together, we find explicitly

that

∫0
∞
dρρ3(Pnrm(ρ))

2 = 2nr + |m| + 1 . (256)

Now making the substitutions ρ = (λr)1/2 and (246) into (256),

we get the statement that

1
2  


 
2Z

a0n

2
 ∫0

∞
drr 

 



 



P
m=l+1
nr=n-(l+1)

 
 



 

√2Zra0n
 

2
 = 2n . (257)

However, in (247) we have defined

Rnl(r) ≡ Nr
1/2 P

m=l+1
nr=n-(l+1)

 
 



 

√2Zra0n
 , (258)

so that (257) implies that
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∫0
∞
drR

2
nl(r) = 

nN2

 


 
Z

a0n
2
 . (259)

In order to reconcile (259) with (248) we can choose

N = 
Z

a0n
3/2 . (260)

Thus, the fully normalized radial Coulomb wavefunctions are

determined as:

Rnl(r) = √Z

a0n
2 
(n - l - 1)!

(n + l)!
  (-1)n-l-1 e-Zr/a0n

× 
 


 
2Zr

a0n
l+1 L

2l+1

n-l-1  


 
2Zr

a0n
 , (261)

and the three dimensional wavefunctions are

unlm(r
≥) = 

Rnl(r)

r  Ylm(θ,φ) . (262)

They satisfy orthonormality:

∫d3r u*nlm(r≥)un'l'm'(r≥) = δnn'δll'δmm' . (263)

However, because there are scattering solutions (E > 0) that

we have not included, the set in (262) is not complete.

We can connect with our earlier special solution for the

ground state (eqn (168)) now by putting n = 1, l = 0 in (262)

and (261).  We get

u100(r
≥) = 2 

 


 
Z

a0

3/2 e-Zr/a0 L
1
0 

1

√4π
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        = 
1

√π
 

 


 
Z

a0

3/2 e-Zr/a0 , (264)

exactly as we had before.

Notice that since the energy levels, Eqn (245), are

given by n alone, we now have a degeneracy in both m and l

for the Coulomb potential.  This is called an accidental

degeneracy.  (This term seems to be reserved for situations

where the dynamics and not the symmetry determines the

degeneracy.  Remember, it was the fact that we are working

with a spherically symmetric central force that caused the m

degeneracy.)  Because l + 1 ≤ n, we have the following

classifications of the first few energy levels:

n l   notation   #states   total

1 0 1s 1 1

2 0 2s 1 4
1 2p 3

3 0 3s 1
1 3p 3 9
2 3d 5

. . .

. . .

. . .

One can easily show that the degeneracy of the nth energy

level is n2.  Schematically, the Coulomb energy levels look

as follows:
 



 

ω0 = 

Z2e4

2h4 

continuous { XXXXXXXXXXXXXXXXXXXX E = 0
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discrete 

 



____________________ E3 = -ω0/9 
____________________ E3 = -ω0/4
 
 
 
 
____________________ E1 = -ω0

Using the same mysterious "zweideutigheit" rule as

before, applied to electrons now, ("at most two electrons to

each energy level") we can, on the basis of the Coulomb

solution (neglecting the repulsive interactions of the

electrons among themselves), begin to get a crude idea of the

structure of atomic energy levels.  We use the spectroscopic

notation introduced before with the addition of a superscript

to tell us how many electrons are in a given atomic shell.

(The principle quantum number, n, does not represent the

number of nodes in the radial wavefunction here but simply

indicates the ordering of the energy levels for an ideal

hydrogen atom.  The actual number of radial nodes is given by

n - l - 1 since the wavefunction (262) is proportional to

e-Zr/a0n L
2l+1

n-l-1  


 
2Zr

a0n
 .  (I am not counting the point at r = ∞ as

a node.)  The atomic configurations of the first 19 elements

are given below.

Element  Z  total config  last electron

H  1   1s 1s
He (inert)  2   (1s)2 1s
Li  3 He(2s) 2s
Be  4 He(2s)2 2s
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B  5 Be(2p) 2p
C  6 Be(2p)2 2p
N  7 Be(2p)3 2p
0  8 Be(2p)4 2p
F  9 Be(2p)5 2p
Ne (inert) 10 Be(2p)6 2p
Na 11 Ne(3s) 3s
Mg 12 Ne(3s)2 3s
Al 13 Mg(3p) 3p
Si 14 Mg(3p)2 3p
P 15 Mg(3p)3 3p
S 16 Mg(3p)4 3p
Cl 17 Mg(3p)5 3p
Ar (inert) 18 Mg(3p)6 3p
K 19 Ar(4s) 4s

There are obviously regularities in the order in which these

energy levels are filled.  In order to try to explain these, I

will refer to a schematic energy level diagram.  (Also to be

passed out in class.)

Notice from the list on the previous page that the 2s

shell is filled before the 2p shell and the 3s shell is

filled before the 3p shell.  These facts are also brought out

in the above mentioned energy level diagram.  In our ideal

Coulomb solution, the 2s,2p and the 3s,3p energy levels are

degenerate.  In real atoms, with their complicated

interactions between the many particles involved, these

energy degeneracies are split.  We can get a qualitative idea

of the ordering of the split levels from the following

considerations.  If we imagine adding electrons to an atomic

nucleus with a fixed charge, the first electrons added will

be the most strongly bound and therefore will tend to have

wavefunctions that are largest near the nucleus.  As more
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loosely bound electrons are added, the inner electrons tend

to shield some of the nucleus' electric charge from the outer

electrons.  Loosely speaking, this means that for electrons

in outer shells, a wavefunction which has a larger magnitude

near the nucleus will, in effect, sample a larger attractive

central charge.  Thus, the 2s energy levels will be filled

before the 2p shell since on the average the 2s electron's

wavefunction has a smaller separation from the nucleus than

the 2p electron does.  Likewise for the 3s and 3p energy

levels.  These splittings are between levels which have the

same value of n.  This shielding effect eventually means that

some energy levels with higher values of n will fill up

before levels with a lower n value.  The first example of

this is Potassium (K) in which the outer electron is in a 4s

state rather than 3d.

It is the order in filling up atomic shells that puts

the "Period" in the Periodic Table.  Obviously, there are

many other things to observe about the atomic structure of

the various elements, but we will not dwell on them here.  We

will, however, have more to say about the energy levels of

the real hydrogen atom in the next chapter.

(e)  The "Confined Coulombic Model"

Let us contrast the schematic energy level diagrams

found in the Coulomb and infinite spherical well cases.

Plotting the energies and the assumed potentials
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simultaneously, we get the following diagrams.  (We

generalize the Coulomb solution to the form V(r) = - 
ξ
r ; let

us keep an open mind as to the meaning of the constant ξ.)

confining wall

ra
2s,2p

2s

1d

1p

1s

V(r)
V(r)

r

continuum

- r
ξ_1s

Coulomb infinite spherical well

In the Coulomb case, we must supply the boundary

condition that R(r) 
r→∞
→  0, and in the infinite spherical well

case we must require that R(a) = 0.  For both we have that

R(0) = 0.  In the Coulomb problem, the discrete energies,

which are negative, are given by (Eqn (245) with Ze2 → ξ)

En = - 
ξ2µ

2h2n2
 . (265)

In the infinite well case the energies are positive and are

given by (eqn (67)).

E = 
h
2(ka)2

2ma2
 , (266)

where the dimensionless quantity ka is given by the condition

(62). We used the infinite spherical well as a starting point
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for describing nuclear dynamics and we developed the Coulomb

solution as a way to begin to understand some physics of

atomic systems.  I would like to point out now that there is

a way of connecting these two seemingly different situations

as special cases of another model, which I am calling the

confined Coulombic model.  The assumed potential of this

composite model looks as follows.

- r
ξ_

Just like the spherical well problem, we are imagining an

infinite confining wall to exist at r = a, where we will

assume that the radial wavefunction vanishes, R(a) = 0.

Inside the wall, instead of there being a flat potential, we

are postulating an attractive Coulombic potential,

V(r) = - 
ξ
r.  Because of the confining boundary condition, we

expect that the eigenenergies will always be discrete like the

spherical well.  Then, in the limit a → ∞, we would also

expect that the allowed energies become more Coulomb-like.

That is, even though for "a" large but finite, although the

E > 0 energies remain discrete, they should become denser.

Likewise, the E < 0 discrete states will be better and better

reproduced as "a" becomes larger.  On the other hand, as "a"
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becomes smaller we would expect that the energies of the

states to be essentially due to the kinetic energy of

confinement.  That is, as we squeeze a quantum mechanical

particle into a smaller volume we would, as a consequence of

having decreased the particle's position uncertainty, also

expect that the particle's momentum (and energy) to increase.

This means, for small enough "a", that the value of the

energies will be essentially independent of the Coulomb

potential and will approach the infinite spherical well

energies arbitrarily closely.  We may well ask what use this

model is in the real physical world; I will touch upon this

later.

The equation we need to solve is eqn (10),

 



 



- 
h
2

2m  



 

d2

dr2
 - 

l(l + 1)

r2
 + V(r)  R(r) = ER(r), (267)

where the potential is

V(r) = 

 


 

∞,    r ≥ a
 

- 
ξ
r , r < a ,

(268)

and the boundary conditions are, essentially, that R(0) = 0

and R(a) = 0.  In general, there are both positive and

negative energy solutions to eqn (267).  (However, if the

confinement radius becomes small enough, there will only be

positive energy solutions.)  We will only examine the E > 0
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solutions here.  Defining ρ = kr with k = √2mEh  as usual, we

may cast (267) into the form

 



 

d2

dρ2
 - 

l(l + 1)

ρ2
 + 

ξk

Eρ
 + 1  R(ρ) = 0 (269)

We can cast (269) into a more standard form by defining a

function ω(ρ) such that

R(ρ) = ρl+1e-iρω(ρ). (270)

We can now work out the first and second derivative as

follows:

dR

dρ
 = ρl+1e-iρ

 



 

(l + 1)

ρ
 ω - iω + 

dω

dρ
 , (271)

d2R

dρ2
 = 

ρl+1e-iρ
 



 

l(l + 1)

ρ2
 ω - 

2i(l + 1)

ρ
 ω - ω + 

2(l + 1)

ρ
 
dω

dρ
 - 2i 

dω

dρ
 + 

d2ω

dρ2
.

(272)

The differential equation satisfied by ω(ρ) can

therefore be written

d2ω

dρ2
 + 2 

 



 

(l + 1)

ρ
 - i  

dω

dρ
 + 

 



 



 
ξk

Eρ
 - 

2i(l + 1)

ρ
 ω  = 0. (273)

We now define a new x such that x = iρ.  Eqn (273) can

now be written
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 - 
d2ω

dx2
 + 2 

 



 

-(l + 1)

x  + 1  
dω
dx +  




 



 
iξk
Ex  + 

2(l + 1)

x  ω = 0. (274)

or as

x
2 
d2ω

dx2
 + (l + 1 - x) 

dω
dx +  


 
-(l + 1) - 

iξk
2E  ω = 0. (275)

We compare (275) with the differential equation satisfied by

the confluent hypergeometric functions:

z 
d2F

dz2
 + (b - z) 

dF
dz - aF = 0. (276)

One often writes the solution to (276) as F(a,b,z).  The

solution to (276) which is finite at z = 0 is given by the

series solution

F(a,b,z) = 1 + 
az
b  + 

a(a + 1)z2

b(b + 1)2! + 
a(a + 1)(a + 2)
b(b + 1)(b + 2) 

z3

3! + ... (277)

It is understood in (277) that b is not zero or a negative

integer; F(a,b,z) is undefined for these values.  Because

(276) is a second order differential equation, there is

another, linearly independent solution which, however, we

will not be interested in because it will not be able to

satisfy the boundary condition R(0) = 0.  There is a more

compact notation for writing (277).  Let us define

 



 

(a)n ≡ a(a + 1)(a + 2) … (a + n - 1), 
 
(a)0 ≡ 1.

(278)

Then, (277) can be written as
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F(a,b,z) = ∑
n=0

∞

 
(a)nz

n

(b)nn!
 . (279)

The equations (275) and (276) become identical upon making

the identifications

 



 

z = 2x, 

a = l + 1 + 
iξk
2E  ,

b = 2l + 2.

(280)

The solution to (273) is therefore of the form

ω(ρ) = CF  


 


l + 1 + 
iξk
2E  , 2l + 2, 2iρ , (281)

and the radial wavefunction, R(r) for this problem looks like

R(r) = N(kr)l+1e-ikrF  


 


l + 1 + 
iξk
2E  , 2l + 2, 2ikr . (282)

(Amazingly, the function e-ikrF  


 


l + 1 + 
iξk
2E  , 2l + 2, 2ikr  is

completely real!)  The quantity N is the normalization

factor, which we will not determine here.  The condition that

determines the positive energy levels, similar to, but more

complicated than (62), is thus

e-ikaF  


 


l + 1 + 
iξk
2E  , 2l + 2, 2ika  = 0. (283)

Unfortunately, the energy eigenvalue condition cannot be

simplified more than this.  Now there are two dimensionless

quantities in the arguments of F in (283).  Taking ka as one

of these quantities, since we may write

ξk
2E = 

(ξma/h2)
ka  , (284)
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we learn that ξma/h2 is the other dimensionless quantity.

Choosing a value of ξma/h2, Eqn (283) then determines the

possible values of ka, and therefore the energies.

Qualitatively, a plot of ka as a function of ξma/h2, looks

like the following for the 1s state:

3.0

2.0

1.0

ka

1 2

infinite 
slope

ma /ç h
2

The place where ka = 0 in this graph is where the condition

(283) specializes to k → 0.  In fact, one can show that

(just use the form (279) above)

k→0
lim F  


 


l + 1 + i 
ξm/h2

k  , 2l + 2, 2ika  →

 (2l +1)!J2l+1  



 



2 √2maξh
2  

 



 

2maξ

h
2

-l-1/2
, (285)

where Jn(x)  (n = 2l + 1 and x = 2 √2maξh
2  above) is a Bessel

function of order n.  Do not get them confused with the

earlier spherical Bessel functions we discussed in the free

particle and spherical well cases.  The relationship between

these two types of Bessel functions is given by
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jn(x) = √ π
2x  Jn+1/2(x). (286)

A formula for the Bessel function Jn(x) is

Jn(x) =  


 
1

2 x
n
 ∑
k=0

∞

 
 


 
- 

1
4 x

2 k

k!(n + k)!  . (287)

A more general formula for the order n not restricted to zero

or positive integers is also available (eq. 9.1.10 of the

National Bureau of Standards), but will not be dealt with

here.  Thus, the condition (283), restricted to k = 0 (that

is, solutions with exactly zero energy) becomes

J2l+1 



 



2 √2maξh
2   = 0.          (288)

The first zero of J1(x) for x ≠ 0 occurs when

x = 3.83171... (289)

which means the curve in the above figure crosses the 
ξma

h
2

axis when

maξ

h
2  = 1.83525... (290)

One can also show that the slope on this graph at this point

becomes infinite.  (This fact is true in general for the

other energy states.)

As stated at the beginning of this section, the confined

Coulombic model provides a connection between the Coulomb and
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spherical well solutions in the limits a → ∞ and a → 0,

respectively.  Since we are working with E > 0 here, let us

consider the a → 0 limit of the eigenvalue condition (283).

Let us imagine fixing the values of m and ξ in the a → 0

limit.  Then we have that

a→0
lim 

maξ

h
2  = 0, (291)

but from the qualitative behavior seen in the above graph, we

would expect that

a→0
lim ka = fixed number. (292)

(Can you understand why Eqn (292) is really just a statement

of the uncertainty relation in the small "a" limit for this

system?)  This equation may seem somewhat mysterious to you

until you realize that k is actually an implicit function of

"a"; the eigenvalue condition (283) determines this

dependence.  Thus, when a is made small enough to make

ξma

h
2  << ka, (293)

(the system does not have to become relativistic to do this),

then we get

a→0
lim F  


 


l + 1 + 
iξma/h2

ka  , 2l + 2, 2ika  → F(l + 1,2l + 2, 2ika).

(294)

However, from an identity, Eqn  13.6.4 of the NBS handbook,

we have
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F(l + 1,2l + 2, 2ika) = Γ
 


 
3

2 + l eika
 


 
1

2 ka
-l-1/2  

 


 
2ka

π
1/2 jl(ka). (295)

Γ(x) (where x = 
3
2 + l above) is a famous classical function

called the gamma function.  Its form and value are immaterial

for the argument here except to say that Γ(x) ≠ 0 for x > 0.

Thus, we learn that in the small "a" limit that the

eigenvalue condition just becomes

jl(ka) = 0. (296)

This constitutes the recovery of the result (62) for the

infinite spherical well.  One can also show, although it

won't be done here, that the a → ∞ limit of the eigenvalue

condition for E < 0 (which is slightly different from (283)

above) gives back the Coulomb energies.

Since one is able to recover the bound state Coulomb

energies or the infinite spherical well energies as special

cases of this model, this means there must be a one-to-one

correspondence between these levels.  It is easy to establish

what this correspondence is, based upon the values of l, the

angular momentum quantum number, and the number of nodes in

the radial wavefunctions, neither of which can change as the

confinement radius is adjusted.  Remembering that the number

of nodes in the radial Coulomb wavefunctions is given by

n - l (where "n" is the principle quantum number), we get the

following correspondence between the E < 0 Coulomb bound

states and the E > 0 infinite spherical well solutions.

(Remember, the number in front of the spectroscopic letter in
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the Coulomb case gives the value of the principle quantum

number, while the number preceeding the letter in the

infinite well case just tells us the number of radial nodes.)

Coulomb           infinite well

   4f                   3s
    

   3d                   2p
   3p                   1f
   3s                   2s
   2p                   1d
   2s                   1p
   1s                   1s

.

.

.
.
.
.

{
{degenerate

degenerate

There are many other aspects to this problem that I

haven't addressed here.  I will stop with my short survey of

this model here, except to point out the type of system this

model is supposed to portray.  Earlier, I mentioned quarks as

being the building blocks of protons and neutrons.

Experimentally, 5 types of quarks are known (really 15 types

of quarks if we count the fact that each quark has a three-

fold symmetry called "color").  They are called up (u), down

(d), strange (s), charmed (c), and bottom (b).  (A sixth type

of quark, top (t), is not known experimentally, but is

necessary theoretically).  These are listed in the order of

their masses; the u quark has the lightest mass and the b

quark is the most massive.  The concept of the "mass" of a

quark is a somewhat fuzzy concept because isolated quarks are

never seen in nature.  This fact of nature is called

confinement.  The model presented here is a crude mock-up of

some quark systems which consist of a heavy quark (say, c or
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b type) and a light quark (u or d).  (Actually, these systems

consist of a quark-antiquark pair, but the antiquark has the

identical mass of the same type of quark.)  The infinite

potential barrier in the model presented is a way of

mimmicking the confinement of quarks, while the Coulomb

potential in the interior is a way of modeling the short

range gluon interactions between the quarks.  In this model,

the heavy quark, relatively unaffected by the dynamics of its

light partner, resides in the center of the spherical well,

giving rise to the Coulomb potential.  The model given above

is, of course, nonrelativistic.  A relativistic version,

based upon solution of the Dirac equation, provides a more

realistic description of such systems.

I close this epic chapter with a copy of a paper on

energy level displacements in this model.  This is purely for

your amusement.

APPENDIX A

I will derive here the orthonormalization condition on

the un+n-(ρ,φ), alluded to on p.48 of the present Chapter.  We

start out with the generating function result, eqn (195):

∑
n
+
,n

-
=0

∞

  
λ +
n+λ -

n-

√n+!n-!
 un+n- = 

1

√π
 exp

 


 
-

1
2 ρ

2 + ρ( )λ+e
iφ + λ-e

-iφ  - λ+λ- . 

(A1)

I now multiply (A1) by its complex conjugate, except that λ+

and λ- are replaced by the independent parameters λ+
' and λ-

' .

I also integrate:
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 ∑
n+,n-=0

∞
 

 
n+',n-'=0

 
n+!n-!n+'!n-'!

λ+
n+λ-

n-
λ-'
n+'λ+

'n-'

  ∫d
2
q un+ n- un+'n-'

∗  

= 
1

π
 ∫d2q exp[ ]-ρ2 + ρ( )(λ+ + λ+

')eiφ + (λ- + λ-
')e-iφ  - λ+λ- - λ+

'λ-
' .

(A2)

I now change variables in the integral on the right in (A2)

from ρ,φ to q1,q2 in order to do the integral.  I get:

(r.h.s. of (A2)) = 
1

π
 ∫dq1dq2

exp[ ]-(q
2
1 + q

2
2)+(λ+ + λ+

')(q1 + iq2)+(λ- + λ-
')(q1 - iq2)- λ+λ-- λ+

'λ-
' .

(A3)

I now complete the square in q1 in order to do the integral:

-q
2
1 + q1(λ+ + λ- + λ+

' + λ-
')

= -(q1 - 
1
2 (λ+ + λ- + λ+

' + λ-
'))2 +  

1
4 (λ+ + λ- + λ+

' + λ-
')2

(A4)

The relevant q1 part of the integral in (A3) is

∫-∞
∞ dq1 exp[ ]-q

2
1 + q1( )λ+ + λ- + λ+

' + λ-
'

= ∫-∞
∞
dxe-x

2
 exp

 


 
1

4 ( )λ+ + λ- + λ+
' + λ-

' 2 . (A5)

           

     √π
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Similarly for q2:

∫-∞
∞ dq2 exp[ ]-q

2
2 + iq2( )λ+ + λ+

' - λ- - λ-
'

= ∫-∞
∞
dxe-x

2
 exp

 


 
-

1
4 ( )λ+ + λ+

' - λ- - λ-
' 2 . (A6)

           

     √π

Thus, we have

(r.h.s of (A2))

= exp
 
1
4( )λ+ + λ+

' + λ- + λ-
' 2

 

 
- 

1
4( )λ+ + λ+

' - λ- - λ-
' 2

 - λ+λ- - λ+
'λ-
' , (A7)

= exp[ ]λ+λ-
' + λ+

'λ- . (A8)

We may expand (A8) as

exp[ ]λ+λ-
' + λ+

'λ-  = ∑
n-=0
n
+
=0

∞

 
(λ+λ-

' )n+

n+!
 
(λ+
'λ-)

n-

n-!
 . (A9)

Our results up to this point can be summarized as

 ∑
n+,n-=0

∞
 

 
n+',n-'=0

 
n+!n-!n+'!n-'!

λ+
n+λ-

n+
λ-

' n-
'

λ+
'n-'

  ∫d
2
q un+n- un+'n-'

∗  = ∑
n+,n-=0

∞
   

n+!n-!

λ+
n+ λ-

'n+ λ-
n-

 λ+
'n-

  (A10)

Comparing equal powers of λ+, λ-
', λ-, λ+

' on either side of

(A10), we get that

∫d2q un+n- u
*
n
+
'
 
n
-
' = δn+

 
n
+
'δn-

 
n
-
'. (A11)
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This is the desired result.  This result is useful when we

normalize the Coulomb wave function in (252) of the present

Chapter.
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Problems

1. The Hamiltonian of a three-dimensional harmonic

oscillator is

H = 
px
2 + py

2 + pz
2

2m  + 
1
2 mω

2(x2 + y2 + z2).

(a) Given the wavefunction and energy levels of the one-

dimensional harmonic oscillator as given in Ch. 3 of

the notes, find the wavefunctions and allowed energies

for the three dimensional case. [Hint: The Schrodinger

equation is separable in the three dimensions. Just

use, don't re-do, the Ch. 3 calculation.]

(b) What is the degree of degeneracy of the first three

energy levels?

(c) Find a formula which expresses the degree of degeneracy

of the nth energy level. [Hint: The summation formula,

∑
i=1

n
 i= 

n
2 (n+1),

is useful here.]

2. Get explicit forms for j0(p), j1(p), and j2(p) from Eq.

7.39 of the script.

3. Using the form Eq. 7.39, derive the recurrence relation

djl(x)

dx  = -jl+1(x) + 
l

x jl(x).

4. Verify Eq. 7.53 in the case l=0.  [Hint: Consider the

quantity [δ(r-r') - δ(r+r')] where
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δ(r-r') ≠ 
1

2π
 ∫
-∞

∞

 dk eik(r-r').]

5. This will be a rather long problem that will, hopefully,

lead you to result Eq.(70) of Ch.7 in the notes.  The

radial eigenvalue equation in spherical coordinates is (R =

r u(r))

  - 
h2

2m [R
" - 

l(l+1)

r2  R] + V(r)R = E R.         (1)

    (a)  First, take the derivative of (1) with respect to

E and multiply by R; call this (2).  Then multiply (1) by

∂R/∂E and call this (3). Subtract (2) - (3) to get

                  - 
h2

2m [R 
∂R"

∂E
 - R" 

∂R

∂E
] = R2. (4)

    (b)  Considering that the radial normalization

condition for the finite spherical well is (assume R is

real)

                        ∫
0

a

 dr R2 = 1,           (5)

show that (4) implies

                - 
h2

2m [R' 
∂R

∂E
 - R 

∂R'

∂E
]|r=a = 1,          (6)

given that R(0) = 0 and that R'(0) is finite.

    (c)  Now assuming (N(E) real)

                    R(r) = N(E)jl(knr)r, (7)

where kn (= √2mE/h) is determined by

    jl(kna) = 0, (8)
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show that (6) specializes to

                  
N2a3

2  (
djl(x)

dx )2|x=kna = 1. (9)

    (d)  Now, using the recursion relation from prob.2

above, show that (9) gives

                     N2 = 
2

a3 jl+1
2  (kna)

 , (10)

when (8) is also used.

6. Check out the result (10) of the last problem by finding
N2 explicitly for l = 0 by doing the normalization integral

explicitly.  Compare with (10) specialized to l = 0.

7. Show for the two body problem that

L
≥
 = L

≥

cm + l
≥
,

where

                    L
≥
 = x1

≥
 x p1

≥
 + x2

≥
 x p2

≥
,

(1,2 are particle labels)

L
≥

cm = X
≥
 x P

≥
,

l
≥
 = x

≥
 x p

≥
.

All these quantities are operators.

8. Using the definitions in prob.1 above, show that

[(Lcm)i,lj] = 0,

so that these two quantities may be specified

simultaneously.
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9. Show that the l = 1 eigenvalue equation (131) of Ch.7

can be written as

1

(κ'a)2
 + 

1

(κ'a)
 = - 

1

(κa)2
 + 

cot(κa)

(κa)
.

Argue on the basis of this equation that the well depth
that binds the first l = 1 state is (see Eq.(140) of the

notes)

2µV0a2

h2  = π2.

10. Find the normalization factors A and B (in Eq.(128))
for the l = 0 deuteron bound state. Show that

|A|2 = 
2κ'

1+κ'a
 ,

|B|2 = 
2κ'(sin κa) e2κ'a

1+κ'a
 .

Be sure to require continuity in u(r) at r=a.

11. Show that:

∑
n=0

∞

  
λnn

√n!
  un(q) = λ(√2q - λ)

1

π1/4
 e-q

2/2 + √2 λ q - λ2/2

12. (a) Show by induction that

(
d
dx)

n e-x f(x) = e-x (
d
dx - 1)

n f(x)

for an arbitrary function f(x).

    (b) Using (a) and given (Ln(x) ≡ Ln(0)(x))

Ln(x) = 
ex

n! (
d
dx)

n e-x xn,
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show that

Ln(x) = 
1
n! (

d
dx - 1)

n xn.

    (c) Using the binomial theorem, show that the result in

(b) then implies

Ln(x) = ∑
k=0

n
 
(-1)k n! xk

(k!)2 (n-k)!
 .

13. (a) Show by induction that

(
d
dx - 1)

n+1 x f(x) = x(
d
dx - 1)

n+1 f(x) + (n+1)(
d
dx - 1)

n f(x).

    (b) Using (a), and given that

Ln+1(x) = 
1

(n+1)! (
d
dx - 1)

n+1 x xn,

show that

(n+1)(Ln+1 - Ln) = x (
d
dx - 1)Ln.

14. (a) Show that

d
dx (Ln+1 - Ln) + Ln = 0.

[Hint: We can write

     Ln+1 = 
1

(n+1)! (
d
dx - 1)

n (
d
dx - 1)x

n+1.]

    (b) Using 14(a) and 13(b), now show that Ln(x) satisfies

the differential equation

(x 
d2

dx2
 + (1-x) 

d
dx + n)Ln(x) = 0.



7.88

15. (a) Write down the radial equation for the 3-

dimensional harmonic oscillator.  By introducing the

dimensionless variable ρ = (
mω
h
)1/2r, show that this equation

may be put into the form (V(r) = 
1
2mω

2r2 = 
1
2hωρ

2)

[
d2

dρ2
 - 

l(l+1)

ρ2
 - ρ 2 + 2(n+

3
2)] Rnl(ρ) = 0.

    (b)  Starting with (7.234), show that the 2-dimensional

harmonic oscillator radial equation may be written as (ρ 2 =

mω
h
 (x2+y2))

[
d2

dρ2
 - 

(m2-
1
4)

ρ2
 + 2(|m|+2nr+1) - ρ2] [√ρ Pnrm(ρ)] = 0.

Establish the correspondences between the various quantum

numbers in the two cases.  Then, based upon the explicit
form Pnrm(ρ), given in Eq.(7.212) of the notes, write down

the implied form for the 3-D wavefunction Rnl(ρ). (Do not

worry about the normalization of the Rnl(ρ).)

16. In the text I used the relation

< 
∂H

∂λ
 >E = 

∂E

∂λ
 ,

to evaluate an integral necessary to normalize the Coulomb

solutions.  Apply the same technique to the Coulomb

Hamiltonian,

H = 
p≥2

2µ
 - 

Ze2

r ,
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to show that

< 
1
r >E = 

Z
a0n2

 .

17. Find the E < 0 eigenvalue condition for the confined

Coulombic model. (This replaces Eq.(283) for E > 0.)

18. The first zero of the Bessel function J1(x) occurs at

x = 3.83171....  Look up the next 3 zeros of this function.

Give a physical interpretation of these zeros in the

context of the confined Coulombic model.

Other Problems

19. A free particle wavefunction is given at t=0 by the ket
(I am using the |k,l,m> notation in my notes),

|ψ(k),0> ≠ C1|k,0,0> + 
C2
√5

 (|2k,1,0> + 2i|2k,1,1>).

    (a)  What is <r
≥
|ψ(k),0>?  (Write it out as explicitly

as possible as a function of r, φ, θ.)

    (b)  What is |ψ(k),t>?

    (c)  What is the expectation value of the energy for

this particle?

    (d)  What possible values of Lz will measurement find at

t=0, and with what probabilities?

[Please show some intermediate steps or explain your

reasoning in reaching your answers in parts (c) and (d).]

20. Use the differential relation (assume true),

d
dx Lp+1

q-1(x) = - L
p
q(x),
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to show that the Laguerre polynomials (my definition)

L
p
q(x) ≠ 

x-q

p! e
x (

d
dx)

p xp+q e-x,

are related to the alternate definition (Liboff's)

L
p
q(x) ≠ (-1)q (

d
dx)

q L
q+p
0 (x),

L
n
0(x) ≠ ex (

d
dx)

n xn e-x,

by the equation:

L
p
q(x) = 

L
p
q(x)

(p+q)! .

21. (a) Derive the energy eigenvalue condition (E < 0) for
the l=1 state of a finite spherical well of radius "a".

-V0

0

E

r

a

( V0 )> 0

Use the definitions κ' = √-2mE/h, κ = √2m(E+V0)/h, and

simplify your expression as much as possible.
    (b)  Write down the l=1 infinite square well (V(r) = 0,

r < a; V(r) = ∞, r ≥ a) energy eigenvalue condition (E > 0)

as a function of k = √2mE/h and "a".

    (c)  By taking some appropriate limit, show how the

expression in (a) reduces to the (b) eigenvalue condition.

(Make the finite square well become infinite.)
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22. Within the confined Coulombic model, use the Heisenberg

uncertainty principle to estimate the confinement radius, rc,

which raises the energy of the 1s state of hydrogen,

originally E1s = - 
ξ2m
2h2 for a . ∞, to E1s = 0.

(Consider ξ and m fixed parameters.) Compare your estimate

with the exact answer, given somewhere in the text.( Where

is it, where is it??)

23. Find the value of the expectation value of r in the
state where l=n-1 (it's maximum value). That is, show that

<n,l=n-1|r|n,l=n-1> = a0n(n + 
1
2),

where a0 is the Bohr radius. [Hints: The explicit
normalization condition for the radial part of the l=n-1

hydrogenic type wavefunctions is given on p.438 of Liboff

as

∫
0

∞

 dr r2|Rn,l=n-1(r)|2 = ∫
0

∞

 dr r2n 
 


 
2Z

a0n

2n+1
exp

 


 
- 

2Zr
a0n

 
1

2n[(2n-1)!]

= 1.

The integral we want is

<n,l=n-1|r|n,l=n-1> = ∫
0

∞

 dr r3|Rn,l=n-1(r)|2.

The hint is to generate the integral we want by taking a

derivative.]

24. Find an alternate form of the hydrogenic wavefunctions

given in equation (261) (p. 7.62) of the notes. Do this by

going back to p. 7.50 of the notes and using the following

procedure:

1) Get an expression equivalent to (210) by using (209)

when n+ - n- ≥ 0, and (207) when n+ - n- ≤ 0.
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2) In your expression change to the new quantum numbers nr

and m given in (211).

3) Use the relations (258) and (260) in the notes to find
the new form of Rnl(r).

25. The three dimensional harmonic oscillator differential

equation was given in the problem set as (V(r) = 
1
2mω

2r2 =

1
2hωρ

2 where ρ = (
mω
h
)1/2r)

[
d2

dρ2
 - 

l(l+1)

ρ2
 - ρ 2 + 2(n+

3
2)]Rnl(ρ) = 0.

Find the approximate ρ-dependence of Rnl(ρ):

(a) near the origin, ρ << 1,

and

(b) far from the origin, ρ  >> 1.
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CHAPTER 8:  Addition of Angular Momenta

Let me remind you of the commutation properties

associated with spin 
1
2 .  There were four independent

operators in this case, which we chose to be the unit symbol

1, and the three σi given by

 



 

σ1 = |- > < +| + |+ > < -|,
 
σ2 = i(|- > < +| - |+ > < -|),
 
σ3 = |+ > < +| - |- > < -|.

(1)

They have the properties that (Eqns (131)-(133) of Chapter 1)

 



 

σ
2
k = 1          (k = 1,2,3),

σkσl = -σlσk     (k ≠ l),

σkσl = iσm      (k,l,m cyclic).

(2)

I later asserted that the entire content of their algebra,

given in (2), is combined in the statement that (Ch.1, Eqn

(149))

σiσj = 1δij + i ∑
k

εijkσk. (3)

An immediate consequence of (3) is

[σi,σj] = 2i ∑
k

εijkσk. (4)

The "crucial connection" that allowed us to tie our Process

Diagram formalism to the real world property of electron spin

was (Eqn (134) of Ch.1)
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Si = 
h

2 σi . (5)

In terms of the Si, the commutation relation (4) reads

[Si,Sj] = ih∑
k

εijkSk. (6)

These relations are exactly of the same form as the

commutation relations, given by Eqn (70) of Chapter 6, for

orbital angular momentum:

[Li,Lj] = ih∑
k

εijkLk. (7)

Remember, these commutation relations lead directly to the

statements

 



 
L
≥2|l,m > = h2

l(l + 1)|l,m >,

 
L3|l,m > = hm|l,m >.

(8)

The physical picture associated with the statements in (8) is

that of an orbiting particle (or an orbiting system of two

particles).  The allowed values of l are l = 0,1,2,... .  The

cases l = 
1
2 , 

3
2 , 

5
2 ,... were not consistent with the

requirement

< φ| = < φ + 2π| . (9)

Because the spin operators, Si, satisfy the same commutation

properties as the Li, we must have analogous statements to

(8) for S
≥2 and S3.  Of course we know that

S
≥2 = S

2
1 + S

2
2 + S

2
3 = 

h
2

4  ( )σ
2
1 + σ

2
2 + σ

2
3  = 

3h2

4  1, (10)
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from (3), and that

S3|σ3
'> = 

h

2 σ3|σ3
'> =  

h

2 σ3
'|σ3

'>, (11)

where σ3
' = ± 1.  Relabeling our states by mS = 

1
2 σ3

' = ± 
1
2,

Eqns (10) and (11) lead to

 



 
S
≥2|mS > = h

2

 


 
3
4 |ms >,

 
S3|mS > = hmS|mS >.

(12)

The structure of these equations is the same as (8) above for

l = 
1
2 .  Now, however, since the origin of spin is an

intrinsic internal property of the particle, the requirement

(9) is not relevant.  Thus, although there are no systems in

nature for which l = 
1
2 , 

3
2 , 

5
2 ,..., there are no such

restrictions on the value of the spin angular momentum.

Generalizing (12), we expect realizations in nature of

particle spins such that

 



 
S
≥2|S,mS > = h

2S(S + 1]|S,ms >,
 
S3|S,mS > = hmS|S,mS >,

(13)

where S = 0, 
1
2 , 1 , 

3
2 , 2 ,... .  In terms of Process

Diagrams, S = 
1
2 represents the two physical outcome case,

S = 1 represents the three outcome case, and so on.  Only the

lower intrinsic spin values seem to be realized by

fundamental particles in nature.
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Electrons and quarks have spin 
1
2  


 
S = 

1
2 in (13) .  It is

not presently known whether they are truly fundamental

objects without composite structure or whether they are also

non-elementary objects.  Many particles which were originally

thought to be fundamental are now known to be composite.  For

example, the proton is a composite structure containing three

quarks.  The total angular momentum of this particle, which

involves both the intrinsic spin of the quarks as well as the

relative angular momentum between them, is measured to be

1
2.  In order to begin to understand such composite objects,

it is necessary to learn how to combine or add the angular

momenta of the subsystems.

Consider two systems which possess angular momentum

states given by

System 1:  |j1,m1 >,

System 2:  |j2,m2 >,

where we consider all possible values j1,j2 = 0,
1
2,1,

3
2,... .

It is immaterial for this discussion whether this angular

momentum is due to spin or orbital motion.  An obvious basis

for the description of this composite system is given by a

direct product,

|j1,j2;m1,m2 > = |j1,m1 >|j2,m2 >. (14)
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A complete set of operators whose eigenvalues completely

characterize this state are just given by J
≥2
1, J1z, J

≥2
2, J2z, for

which, of course,

 



J

≥2
1|j1,j2;m1,m2 > = h

2j1(j1 + 1)|j1,j2;m1,m2 >,
 
J1z|j1,j2;m1,m2 > = hm1|j1,j2;m1,m2 >,
 

J
≥2
2|j1,j2;m1,m2 > = h

2j2(j2 + 1)|j1,j2;m1,m2 >,
 
J2z|j1,j2;m1,m2 > = hm2|j1,j2;m1,m2 >.

 (15)

(I will often label Cartesian components "x,y,z" in this

Chapter for clarity.)  Since our composite state is just a

direct product of the individual states, it follows that ("1"

and "2" are the particle labels)

[J1i,J2j] = 0. (16)

We can imagine a situation where a measurement on

systems 1 and 2 is less convenient than a measurement on the

total system.  There should be a more appropriate description

for such a characterization.  Let us define the operator

J
≥
 = J

≥
1 + J

≥
2, (17)

(which really means  J
≥
 = J

≥
1 ⊗ 1 + 1 ⊗ J

≥
2) and call it the

"total angular momentum."  Then, if the components J1i and J2i

separately satisfy the commutation relations (like L
≥
 or S

≥
)

 



[J1i,J1j] = ih∑
k

εijkJ1k,

 

[J2i,J2j] = ih∑
k

εijkJ2k,
(18)
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we also have that the total angular momentum components

satisfy the same relations (if Eqn (16) holds):

[Ji,Jj] = ih∑
k

εijkJk. (19)

A consequence of (19) is that we may characterize the

composite states of the total system by the eigenvalues of J
≥2

and Jz, just as the commutation relations (7) lead to Eq
n (8).

Therefore, we postulate the existence of an alternate set of

states |j1,j2;j,m > such that

 

J

≥2|j1,j2;j,m > = h
2j(j + 1)|j1,j2;j,m >,

 
Jz|j1,j2;j,m > = hm|j1,j2;j,m >.

(20)

The notation used anticipates the fact that the operators J
≥2
1

and J
≥2
2 commute with  J

≥2 and Jz; i.e., that

 

[J

≥
1,2,J

≥2] = 0,
 

[J
≥2
1,2,Jz] = 0.

(21)

Thus, the eigenvalues of  J
≥
, Jz, J

≥2
1 and J

≥2
2 can all be

specified simultaneously.  These operators represent an

alternate complete set of operators that can be used to

characterize the system.

Given the values of j1 and j2, the statement of

completeness for the |j1,j2;m1,m2 > basis is

 ∑
m
1
,m

2

|j1,j2;m1,m2 > < j1,j2;m1,m2| = 1. (22)

In more detail, this means that
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 ∑
m
1

|j1,m1 > < j1,m1| ∑
m
2

|j2,m2 > < j2,m2| = 11 ⋅ 12. (23)

Using (22) then, we can formally express a basis state

|j1,j2;jm > in terms of the |j1,j2;m1,m2 > states:

   |j1,j2;j,m > = ∑
m
1
,m

2

|j1,j2;m1,m2 > < j1,j2;m1,m2|j1,j2;j,m >. (24)

The quantities < j1,j2;m1,m2|j1,j2;j,m > are called the

"Clebsch-Gordon" coefficients.  We will work out the values

of some of these quantities in some special cases a little

later.

Now we ask:  What are the relationships between the

quantum numbers j1, j2, m1 and m2 (which specify the

eigenvalues of the J
≥2
1, J

≥2
2, J1z, J2z set of operators) and the

quantum numbers j and m?  We know that

Jz = J1z + J2z, (25)

from taking the z-component of (17).  We therefore can write

< j1,j2;j,m|Jz - J1z - J2z|j1,j2;m1,m2 > = 0. (26)

Allowing J1z and J2z to act to the right and Jz to act to the

left, we then get

(m - m1 - m2)< j1,j2;jm|j1,j2;m1,m2 > = 0. (27)

That is, for all states that have a nonzero overlap,

< j1,j2;j,m|j1,j2;m1,m2 > ≠ 0, we must have that
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m = m1 + m2. (28)

Thus, the quantized z-components of the individual angular

momenta add to give the total value, m.  This is not

surprising if we imagine the operator equation (17) to be a

vector statement for numbers rather than a relation between

operators.  Now remember that m1 and m2 can only take on

values separated by integer intervals between j1 and -j1 or j2

and -j2, respectively.  That is:

m1 = j1,j1 - 1,...,-j1 + 1,-j1    (2j1 + 1 values),

m2 = j2,j2 - 1,...,-j2 + 1,-j2    (2j2 + 1 values).

Thus the maximum positive values, for fixed j1 and j2, are

(m1)max = j1, (m2)max = j2. (29)

Eqn (29) then implies

(m)max = j1 + j2. (30)

One can show that the state associated with (m)max = j1 + j2

has j  = j1 + j2 also.  This corresponds to the maximum value

of j.  The next lowest value of j that is conceivable would

be j = j1 + j2 - 
1
2.  However, such a state would have

m = j1 + j2 - 
1
2,j1 + j2 - 

3
2,...,-j1-j2 + 

1
2, none of which are

consistent with m = m1 + m2.  The only allowed values of j

appear to be

j = j1 + j2,j1 + j2 - 1,j1 + j2 -2,... . (31)
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What is the lower limit of this process?  We require that the

number of states in each basis (for given j1,j2 values) be the

same.  In the |j1,j2;m1,m2 > basis, the number of distinct

quantum states is given by (2j1 + 1)(2j2 + 1) by counting the

allowed values of m1 and m2.  This must also be the number of

states in the |j1,j2;j,m > basis.  Fixing the value of j in

|j1,j2;j,m >, we have (2j + 1) m values.  Therefore, we

require

∑
j=j

min

j
max

(2j + 1) = (2j1 + 1)(2j2 + 1) (32)

where jmax = j1 + j2, but jmin is unknown.  We will try to

solve (32) for jmin.  We can always write

∑
j=j

min

j
max

j = ∑
j=1

j
max

j - ∑
j=1

j
min

-1

j . (33)

Using the fact that

∑
i=1

n

i = 
1
2 n(n + 1), (34)

we then find that (we are covering the jmax,min = integer case

here; try to construct the analagous statements when jmax,min

are half-integers)

∑
j=j

min

j
max

j = 
1
2 jmax(jmax + 1) - 

1
2 (jmin - 1)jmin

 =  
1
2 [ ]j

2
max + jmax - j

2
min + jmin  . (35)

We therefore get
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∑
j=j

min

j
max

(2j + 1) = j
2
max + 2jmax - j

2
min + 1. (36)

Setting (36) equal to (2j1 + 1)(2j2 + 1) and solving for j
2
min,

we now find that

j
2
min = 1 - (2j1 + 1)(2j2 + 1) + 2(j1 + j2) + (j1 + j2)

2

    = (j1 - j2)
2. (37)

Since jmin must be a positive number, we can then write

jmin = |j1 - j2|. (38)

Thus, the sum in (32) is such that

|j1 - j2| ≤ j ≤ j1 + j2, (39)

which is called the "triangle inequality."  This result is

also not surprising if we think of j1 and j2 as being the

"magnitudes" of the "vectors" J
≥
1 and J

≥
2.  Then the case

j = j1 + j2 would correspond to J
≥
1 and J

≥
2 being "parallel"

while j = |j1 - j2| would be associated with J
≥
1 and J

≥
2 being

"antiparallel".

Now that we understand how the quantum numbers j and m

arise (given fixed j1 and j2 values), we can write the

statement of completeness in the |j1,j2;j,m > basis which is

is analogous to (22).  It is

∑
j=|j

1
-j

2
|

j
1
+j

2

  ∑
m=-j

j

|j1,j2;j,m > < j1,j2;j,m| = 1 . (40)
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As a concrete example of the relationships between these

two bases, let us consider the simple case of adding the

angular momenta of two spin 
1
2 objects.  That is, we set

j1 = 
1
2 and j2 = 

1
2 .  The four states that arise in the

|j1,j2;m1,m2 > basis are (I denote the state |12,
1
2;m1,m2 > as

|m1,m2 > for convenience in this context):

|12,
1
2 > , |-12,-

1
2 >,

|-12,
1
2 > , |12,-

1
2 >.

The four states in the  |j1,j2;j,m > basis are (the state

|12,
1
2;j,m > is denoted here by |j,m >):

j = 1 

 


 

|1,1 >
 
|1,0 >
 
|1,-1 >

  j = 0 |0,0 > .

These states must be linear combinations of each other.  In

order to find the explicit connections between them, let us

recall some of the results of Chapter 6.  We introduced there

the operators L¶ = Lx ± iLy and found that these were raising

(L+) or lowering (L-) operators on the quantum number m in

the state |l,m >.  These results depended only on the

commutation properties of the Li. Now since the total angular

momentum operators, Ji, satisfy the same algebra, we have

identical results for the |j,m >.  That is, introducing

J¶ = Jx ¶ iJy   (Jx = J1x + J2x, Jy = J1y + J2y), (41)

we then have
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J¶|j,m > = h√(j • m)(j ¶ m + 1) |j,m ¶ 1 >, (42)

and similarly for J1¶ = J1x ¶ iJ1y on |j1,m1 > and

J2¶ = J2x ¶ iJ2y on |j2,m2 >.

Going back to (24) and choosing m = j1 + j2 (it's maximum

value), we see that the sum on the right is only a single

term, and we get

|1,1 > = |12,
1
2 > < 12,

1
2|1,1 >.   (43)

The Clebsch-Gordon coefficient < 12,
1
2|1,1 > can be set equal to

one, in order to maintain the usual normalization conditions

on the states.  Now let us apply the operator J- = J1- + J2-

to both sides of (43):

⇒ √(1 + 1)(1 - 1 + 1) |1,0 >

= √ 


 
1

2 + 
1
2  


 
1

2 - 
1
2 + 1  |-12,

1
2 > +  √ 


 
1

2 + 
1
2  


 
1

2 - 
1
2 + 1  |12,-

1
2 >

⇒ |1,0 > = 
1

√2
 

 


 
|-12,

1
2 > + |12,-

1
2 >  . (44)

Now apply it again to both sides of (44):

⇒ √(1 + 0)(1 - 0 + 1) |1,-1 >

= 
1

√2
 

 



 



√ 


 
1

2 + 
1
2  


 
1

2 - 
1
2 + 1  |-12,-

1
2 > + √ 


 
1

2 + 
1
2  


 
1

2 - 
1
2 + 1  |-12,-

1
2 >
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⇒ |1,-1 > = |-12,-
1
2 > . (45)

We could also have started with (45) and applied

J+ = J1+ + J2+ to deduce (44) and (43).

The state |0,0 > is not yet determined.  Given that

m = m1 + m2, its most general form in this case is

|0,0 > = C1|-
1
2,
1
2 > + C2|

1
2,-

1
2 > . (46)

Now the states |0,0 > and |1,0 > must be orthogonal.  This

means that

< 1,0|0,0 > = 
1

√2 
 

 


 
C1 < -

1
2,
1
2|-

1
2,
1
2 > + C2 < 

1
2,-

1
2|

1
2,-

1
2 >

⇒ 0 = 
1

√2 
 [ ]C1 + C2

⇒ C1 = -C2 (47)

If we then normalize such that < 0,0|0,0 > = 1 we can then

choose C1 =  
1

√2 
 , and we get finally

|0,0 > = 
1

√2 
 

 


 
|12,-

1
2 > - |-12,

1
2 >  . (48)

Collecting our results together, we have

 





 

|1,1 > = |12,
1
2 >,

 

|1,0 > = 
1

√2  


 
|-12,

1
2 > + |12,-

1
2 > ,

 

|1,-1 > = |-12,-
1
2 >,

(49)
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for the j = 1 states (which are called the "triplet" states

because m takes on 3 values) and

|0,0 > = 
1

√2 
 

 


 
|12,-

1
2 > - |-12,

1
2 > , (50)

for the j = 0 state (called a "singlet" for obvious reasons).

It is now easy to show, for this same system of two spin

1
2 objects, that the statements of completeness in (22) and

(40) are equivalent.

Since either basis set is complete, there is no reason

at this point to prefer one description of the composite

system to the other.  However, when a Hamiltonian is

specified for the system, there is in general no reason why

the individual third components should be conserved.  This

would be expressed by [H,J1z] ≠ 0 and [H,J2z] ≠ 0.  We would

only expect in general that the total third component would

be a constant of the motion, i.e., that [H,Jz] = 0.  Thus,

the |j1,j2;j,m > states are usually the more relevant ones for

interacting composite systems.

In order to investigate this point some more, let's now

examine the addition of an orbital and a spin 
1
2______ angular

momentum.  This is the situation that occurs in the hydrogen

atom.  We set J
≥
1 = L

≥
 and J

≥
2 = S

≥
, so that

J
≥
 = L

≥
 + S

≥
. (51)
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To set the notation, I list the mathematical properties of

these operators:

[Li,Sj] = 0, (52)

L
≥2|l,m

l
 > = h2

l(l + 1)|l,m
l
 >, (53)

L3|l,ml > = hm
l
|l,m

l
 >, (54)

S
≥2|ms > = 

3h2

4  |ms >, (55)

S3|ms > = hms|ms >. (56)

(I have gone back to a numeric labelling of the Cartesian

components.)  The composite state, an eigenfunction of L
≥2,

S
≥2, L3, and S3 will be denoted as follows:

|m
l
 ,ms > ≡ |l,m

l
 >|ms >. (57)

The number of such states, for fixed l value, is 2(2l + 1).

The properties of the states of total angular momentum are,

of course

J
≥2|j,m > = h2j(j + 1)|j,m >, (58)

J3|j,m > = hm|j,m >, (59)

where, by the triangle inequality, we have for the allowed

values of j,

 



 

j = l - 
1
2 or l + 

1
2 , l > 0

 

j = 
1
2              , l = 0.

(60)



8.16

The number of states is also 2(2l + 1) for these two cases:

   

 



 

# states = 
 


 
2

 


 
l - 
1
2  + 1  + 

 


 
2

 


 
l + 
1
2  + 1 , l > 0

 
# states = 2,                             l = 0 .

 (61)

The |j,m  > are eigenfunctions of L
≥2 and S

≥2 also in addition to

J
≥2 and J3.

We start out our investigation of the relationship

between two sets of states by writing down the most general

possible connection given that m = m
l
 + mS:

|l + 
1
2,m > = C1|m - 

1
2,
1
2 > + C2|m + 

1
2,-

1
2 > , (62)

|l - 
1
2,m > = C3|m - 

1
2,
1
2 > + C4|m + 

1
2,-

1
2 > . (63)

The normalization conditions

< l + 
1
2,m| l + 

1
2,m > = < l - 

1
2,m| l - 

1
2,m > = 1,

give (we can choose all these constants real)

C
2
1 + C

2
2 = 1, (64)

C
2
3 + C

2
4 = 1. (65)

These mean that we may set

C1 = cos α, C2 = sin α, (66)

C3 = cos β, C4 = sin β. (67)

We must also have < l + 
1
2,m| l - 

1
2,m > = 0 (the states are

orthogonal), which means that
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cos α cos β + sin α sin β = 0 (68)

or

cos(α - β ) = 0. (69)

Choosing

β = α + 
π
2 (70)

(this makes C3 = -sin α and C4 = cos α) will satisfy (69).

Thus, we now only have one undetermined constant, say cos α,

to determine.

In order to determine this remaining constant, let's use

the raising and lowering operators already introduced when we

added two spin 
1
2 angular momenta.  We have, of course, that

J
≥2 = L

≥2 + S
≥2 + 2L

≥
 ⋅ S
≥
. (71)

(We can write L
≥

 ⋅ S
≥
 = S

≥
 ⋅ L
≥
 here since all components of L

≥
 and

S
≥
 commute.)  We can then derive the result that

2L
≥

 ⋅ S
≥
 = 2L3S3 + L+S- + L-S+ , (72)

where, as usual

 

L± = L1 ± iL2,

 
S± = S1 ± iS2.

 (73)

Now operating on both sides of (62) with J
≥2, we find that

 


 
l + 
3
2  


 
l + 
1
2  |l + 

1
2,m >
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= cos α
 


 


l(l + 1) + 
3
4 + 2 


 
m - 
1
2
1
2  |m - 

1
2 , 

1
2  >

+ cos α
 



 



√ 


 
l - m + 
1
2  


 
l + m + 
1
2  √ 


 
1

2 + 
1
2  


 
1

2 - 
1
2 + 1   |m + 

1
2,-

1
2  >

+ sin α
 


 


l(l + 1) + 
3
4 + 2 


 
m + 
1
2  


 
- 
1
2   |m + 

1
2,-

1
2  >

+ sin α
 



 



√ 


 
l + m + 
1
2  


 
l - m + 
1
2  √ 


 
1

2 + 
1
2  


 
1

2 - 
1
2 + 1   |m - 

1
2,
1
2  >.

(74)

More simply, this is the same as (dividing both sides by

 


 
l + 
3
2  


 
l + 
1
2 )

|l + 
1
2,m >

= 
|m - 

1
2,
1
2 >

 


 
l + 
3
2  


 
l + 
1
2

 
 



 



cos α
 


 


l(l + 1) + 
1
4 + m  + sin α

 



 



√ 


 
l + 
1
2

2 - m2   

+ 
|m + 

1
2,-

1
2 >

 


 
l + 
3
2  


 
l + 
1
2

 
 



 



sin α
 


 


l(l + 1) + 
1
4 - m  + cos α

 



 



√ 


 
l + 
1
2

2 - m2   .

(75)

Comparing (75) with the starting point, Eqn (62), since the

left hand sides of these equations are identical, we have

that (remember C1 = cos α, C2 = sin α)

cos α = 
cos α

 


 


l(l + 1) + 
1
4 + m  + sin α √ 


 
l + 
1
2

2 - m2

 


 
l + 
3
2  


 
l + 
1
2  

 , (76)
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sin α = 
sin α

 


 


l(l + 1) + 
1
4 - m  + cos α √ 


 
l + 
1
2

2 - m2

 


 
l + 
3
2  


 
l + 
1
2  

 . (77)

We will only need one of these equations to solve for cos α

or sin α.  Dividing both sides of (76) by cos α and then

solving for tan α gives

tan α = 
 


 
l + 
3
2  


 
l + 
1
2  - 

 


 


l(l + 1) + 
1
4 + m

√ 


 
l + 
1
2

2 - m2 

 . (78)

We can simplify this to

tan α = 
l - m + 

1
2

√ 


 
l + 
1
2

2 - m2 

 = √l + 
1
2 - m

l + 
1
2 + m

  . (79)

Solving for cos α then, we get

cos2α = 
1

1 + tan2 α
 = 

l + 
1
2 + m

2l + 1
 , (80)

⇒ cos α = √l + 
1
2 + m

2l + 1
  , (81)

where, by convention, we choose the positive root. (Eqn (70)

is another conventional choice.)  Given (81), we then get

sin α = √l + 
1
2 - m

2l + 1
  , (82)
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where the positive root is now determined because tan α ≥ 0

from (79) and we have chosen cos α ≥ 0 in (81).  Our explicit

connections between the states of the total angular momentum

and composite orbital/spin states are therefore

|l + 
1
2,m > = √l + 

1
2 + m

2l + 1
  |m - 

1
2,
1
2 >

+ √l + 
1
2 - m

2l + 1
   |m + 

1
2,-

1
2 > , (83)

|l - 
1
2,m > = - √l + 

1
2 - m

2l + 1
  |m - 

1
2,
1
2 >

+ √l + 
1
2 + m

2l + 1
   |m + 

1
2,-

1
2 > . (84)

By projecting these kets into the spin/angular space

< θ,φ,mS| and using the explicit matrix representation of spin
1
2 talked about on pgs. 1.85-1.87 of the notes, Eq

ns (83) and

(84) are seen to be equivalent to

y
j=l+1/2,m

l
(θ,φ) = √l + 

1
2 + m

2l + 1
  y

l,m-1/2(θ,φ)ψ+

    +  √l + 
1
2 - m

2l + 1
  y

l,m+1/2(θ,φ)ψ- , (85)

y
j=l-1/2,m

l
(θ,φ) = - √l + 

1
2 - m

2l + 1
  y

l,m-1/2(θ,φ)ψ+
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+  √l + 
1
2 + m

2l + 1
  y

l,m+1/2(θ,φ)ψ- , (86)

where we have defined

 


 


y
j=l±1/2,m

l
(θ,φ)

mS
 = < θ,φ,mS|l ± 

1
2,m > (87)

where the two values of mS = ± 
1
2 are being used as matrix row

labels.  (We associate mS = 
1
2 with the top row and mS = -

1
2

with the bottom row.)  The ψ± are the column matrices (as in

Eqn (211), Chapter 1)

ψ+ = ( )10 , ψ- = ( )01 . (88)

More compactly, both (85) and (86) may be written as

y
j=l¶1/2,m

l
(θ,φ) = 

mS =  
1
2

 

mS = -
1
2

 

 





 





± √l + 
1
2 ¶ m

2l + 1
  y

l,m-1/2(θ,φ)

 

  √l + 
1
2 • m

2l + 1
  y

l,m+1/2(θ,φ) 

. (89)

The top signs go with the case j = l + 
1
2 and the bottom signs

with j = l - 
1
2 .  The y

j,m
l (θ,φ) are called spin-angle functions.

We now have two complete sets of eigenfunctions in which

to describe a situation where spin 
1
2 and orbital angular

momentum are being added.  The set |l,s;m
l
,ms > (S = 

1
2 here) is

an eigenvector of L
≥2, S

≥2, L3 and S3.  The other set, denoted
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as |l,s;j,m > and giving rise to the spin-angle functions

above, are eigenvectors of J
≥2, L

≥2, S
≥2,and J3.  Which set

should we use in a given problem?  Mathematically, it doesn't

matter, but computationally it makes a lot of difference.

Let us go back to the problem of the hydrogen atom in order

to get some experience in these matters.  The following

considerations will be illustrative of both the use of spin-

angle basis states as well as the perturbation theory

development in Chapter 5.

First, let us get a sense of the speed involved in the

motion of an electron in the hydrogen atom ground state.  The

Bohr radius is

a0 = 
h
2

me2
 . (90)

I argued back in Chapter 2, Eqn (34), that from the

uncertainty principle

pra0 ~ h , (91)

for the ground state. Setting pr = mv and solving for v from

(90) and (91) then gives

v
c ~ 

e2

hc . (92)

We came upon the constant α = 
e2

hc back on page 1.29 where it

was called the "fine structure constant."  It is a pure

number with the approximate value
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α = 
1

137.036 . (93)

The result (92) implies a small relativistic correction to

the energy levels calculated in Chapter 7, the so-called

"fine structure."

The relativistic kinetic energy is

E2 = p≥2c2 + m2c4 , (94)

from which we find that

E - mc2 ≈ 
p2

2m - 
1

2mc2
  



 

p≥2

2m

2

. (95)

The first term is the usual kinetic energy term and the

second represents the lowest order relativistic correction.

From (92) we would expect this correction to be of the order

1

2mc2 



 

p≥2

2m

2

p≥2

2m

  ~ 
 


 
v
c

2 ~ α2, (96)

relative to the unperturbed ground state energy.

There is another correction to the hydrogen atom energy

levels of the same order of magnitude.  It comes about

because the electron, moving in the electric field of the

nucleus, experiences an effective magnetic field given by

(this comes from Maxwell's equations)

H
≥
eff = - 

v≥

c × E
≥
 , (97)
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where the electric field, E
≥
, is

E
≥
 = - ∇

≥
φ(r). (98)

φ(r) is the (central) electrostatic potential, which in the

case of the Coulomb law, is given by

φ(r) = 
Ze
r . (99)

(We imagine Z protons in the nucleus; "e" is the magnitude of

the electron's charge.)  The electron's magnetic moment is

given by Eqns (42) and (44) of Chapter 1:

µ≥ = - 
e
mc S

≥
 . (100)

(The relation (100) is in fact not exactly true but has some

small corrections, the most important of which was calculated

by Julian Schwinger.)  Given (97) and (100), it is reasonable

to expect that there will be an interation of the form

-µ≥ ⋅H
≥
eff. (See Eq

n (29) of Chapter 1).  Now, using (97), (98)

and (100), one can show that this interaction can be written

as

-µ≥  ⋅ H
≥
eff = - 

e

m2c2
 
1
r 
dφ
dr (L

≥
 ⋅ S
≥
), (101)

where we have used the classical form L
≥
 = r≥ × (mv≥).  The

result (101) is actually too large by a factor of two.  The

reason is that we have not been careful in using the correct

relativistic kinematics in evaluating the interaction.  The
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extra necessary factor of 
1
2 is called the "Thomas precession

factor" (after the English physicist L. H. Thomas).  It is

difficult to justify kinematically but extremely easy to

recover from the Dirac equation, which is the relativistic

equation satisfied by electrons.  An interaction of the form

of (101) says that the electron's spin will interact with its

own angular momentum.  Such an effect is called L-S coupling.

(This is the same L-S coupling mentioned in the deuteron

discussion in Chapter 7.)

In the above discussion, the quantities p≥, L
≥
, S
≥
, etc.

are classical quantities.  As usual we replace these

quantities by their quantum mechanical operators.  (Notice

that L
≥

 ⋅ S
≥
 = S

≥
 ⋅ L
≥
 for S

≥
, L
≥
 as operators so there is no

ambiguity in the replacement.)  Therefore, we write our

slightly corrected hydrogen atom Hamiltonian as

H = H0 + Hrel + HLS (102)

where H0 = 
p≥2

2µ
 - 

Ze2

r  was the original Hamiltonian, and Hrel and

HLS are given by (letting m → µ where appropriate makes

little difference here)

Hrel = - 
1

2mc2
  



 

p≥2

2m

2

, (103)

HLS = - 
e

2m2c2
 
1
r 
dφ
dr (L

≥
 ⋅ S
≥
). (104)
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The only thing to do with Hrel and HLS is to treat them as

perturbations as in the development in Chapter 5.  We must

use the degenerate perturbation theory outlined there since,

in fact, each energy level specified by n has a 2n2-fold

degeneracy.  (The factor of two comes from considering the

two values of electron spin, ms = ± 
1
2 .)  From Eq

n (34) of

Chapter 5, the perturbed energy levels are given by

Ea = E0 + < E0a|H1|E0a > (105)

to first order.  Remember, the label "a" in (105) was used to

distinguish between states with the same energy.  Remember

also that the basis to be used in (105) was one in which the

perturbing Hamiltonian, H1, is diagonal in the degenerate

subspace specified by a.

In our case, this degenerate subspace is the one

specified by the quantum numbers l, m
l
 and ms from the

complete set {L
≥2,S

≥2,L3,S3} or the quantum numbers l, j and m

from the alternate set {J
≥2,L

≥2,S
≥2,J3}.  (The radial states

differing by the principle quantum number n are never

degenerate.)  Now Hrel commutes with all of the operators in

both sets.  The other perturbation, HLS, fails to commute with

all of the operators in {L
≥2,S

≥2,L3,S3} and its perturbation

matrix is not diagonal in this set.  However, the

perturbation Hrel + HLS is diagonal in the set {J
≥2,L

≥2,S
≥2,J3}

and we may use (105) directly to find the new energies.  If,

for example, one were unaware of the |l,s;j,m > set of states,
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we could still find the first order perturbed energies, but

we couldn't start with Eqn (105) above.  We would be forced

to diagonalize the perturbation in the

|l,s;m
l
,ms > basis.  This would essentially repeat the work we

already did in finding the explicit relationship between the

two basis sets.  This would eventually give us the same

answers but with a lot of redundant work.  As Sakurai says in

Modern Quantum Mechanics:  "You have to be either a fool or a

masochist to use the Lz,Sz eigenkets as base kets for this

problem."

We thus have for the perturbative energy shifts

∆Enlsjm = < nlsjm|(Hrel + HLS)|nlsjm >, (106)

where we are defining the separable state

|nlsjm > ≡ |nl > ⊗ |l,s;j,m > . (107)

The |nl > provide the hydrogen atom radial basis found in

Chapter 7:

Rnl(r)

r  = unl(r) = < r|nl > . (108)

Now we know that (I continue to ignore in this Chapter the

distinction between m and µ)

 



 

p≥2

2m - 
Ze2

r  |nlsjm > = En|nlsjm >, (109)

gives the unperturbed energy eigenvalues.  Therefore
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p≥2

2m |nlsjm > =  


 
En + 

Ze2

r  |nlsjm >, (110)

which implies that

< nlsjm|Hrel|nlsjm > = < nlsjm|- 
1

2mc2
  


 
En + 

Ze2

r

2

 |nlsjm >

= -  
1

2mc2
 < nl| 


 
En + 

Ze2

r

2

 |nl >. (111)

In order to evaluate (111), we will need to know the

expectation values < >1r nl
 and < >1r2 nl

 .  Actually, from a

homework problem in the last Chapter, we know that

< >1r nl
 = 

Z

a0n
2 . (112)

We can use the same technique as displayed in this problem

(and the discussion of normalization of the hydrogen atom

eigenfunctions in Chapter 7) to also find  < >1r2 nl
 . Our

unperturbed Hamiltonian in the radial eigenspace can be

written as

H = 
p2r
2m + 

h
2
l(l + 1)

2mr2
 - 

Ze2

r (113)

with the pr operator defined as in Eq
n (43) of Chapter 7.

Then, choosing λ = l in Eqn (3) of Chapter 5, we get that

< >∂H∂l nl
 = 

∂En
∂l

 = 
∂

∂l
 

 



 

- 

Z2h2

2ma20(nr + l + 1)
2  , (114)
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⇒  < >h
2(2l + 1)

2mr2 nl
 = 

Z2h2

a20n
3 , (115)

⇒  < >1r2 nl
 = 

Z2

a20
 

1

 


 
l + 
1
2 n3

 . (116)

Putting the pieces together, we finally evaluate

< nl|Hrel|nl > = - 
1

2mc2
 

 



 

Z2e2

a0n
2

2
 

 



 

n

l + 
1
2

 - 
3
4

        = 
Z2En
n2

 α2 

 



 

n

l + 
1
2

 - 
3
4 . (117)

Thus, we have from (117) (for n = 1, Z = 1) that

<Hrel>00
E0

 ~ α2, (118)

confirming (96) above.

We also have that

J
≥2 = (L

≥
 + S

≥
)2 = L

≥2 + S
≥2 + 2L

≥
 ⋅ S
≥
, (119)

and therefore

L
≥

 ⋅ S
≥
 = 

1
2 (J

≥2 - L
≥2 - S

≥2), (120)

⇒ L
≥

 ⋅ S
≥
|l,s;j,m >= 

h
2

2  
 


 
j(j + 1) - l(l + 1) - 
3
4 |l,s;j,m >. (121)

This allows us to write

< nlsjm|HLS|nlsjm > =
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- 
eh2

4m2c2
 

 


 
j(j + 1) - l(l + 1) - 
3
4  < nl| 

1
r 
dφ
dr |nl >. (122)

Since φ(r) = 
Ze
r  (Eqn (99)) for the Coulomb potential, we need

to find < >1r3 nl
 in (122).  There is an easy way of doing

this.  Again, from Eqn (43) of Chapter 7

< r|pr = 
h

i 
1
r 

∂

∂r
 r< r|. (123)

Therefore, for any function f(r) we have (I am not being

careful to distinguish the use of "r" as an operator or

eigenvalue here)

< r|prf(r) = 
h

i 
1
r 

∂

∂r
 (r< r|f(r))

     =  
h

i  



 

f(r)

r  < r| + f(r) 
∂

∂r
 < r| + f'(r) < r| , (124)

and

< r|f(r)pr = 
h

i f(r)  



 

1

r < r| + 
∂

∂r
 < r| , (125)

which implies that

< r|[pr,f(r)] =  
h

i 
∂f(r)

∂r
 < r|, (126)

⇒ [pr,f(r)] =  
h

i 
∂f(r)

∂r
 . (127)
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If we now take f(r) = H 
 



 



= 
p2r
2m + 

h
2
l(l + 1)

2mr2
 - 

Ze2

r , and

evaluate the expectation value of the left hand side of

(127), we get

< nl|[pr,H]|nl > = < nl|prH - Hpr|nl >

         = (En - En)< nl|pr|nl > = 0. (128)

Since

< >∂H

∂r nl
 = - 

h
2
l(l + 1)

m  < >1r3 nl
 + Ze2 < >1r2 nl

, (129)

one has that

 < >1r3 nl
 =  

Ze2n

h
2
l(l + 1)

 < >1r2 nl
 , (130)

or using (116) above, that

 < >1r3 nl
 = 

 


 
Z

na0

3
 

1

l
 


 
l + 
1
2 (l + 1)

 . (131)

Notice that the expectation value in (131) diverges if we set

l = 0.  It is easy to understand how this comes about.  We

found in Ch.7 that near the origin, the radial function R(r)

behaved as R(r) ~ rl+1.  Therefore for the integral in (131)

we have when l = 0

lim
r→0

 
R2(r)

r3
 ~ 

1
r . (132)
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The integral of r-1 diverges logarithmically when the lower

limit is r = 0.  Therefore, the perturbative treatment given

here breaks down for s-states.

We now have that

< nlsjm|HLS|nlsjm > = - 
Z2En
2n  α2 

 


 
j(j + 1) - l(l + 1) - 
3
4

l
 


 
l + 
1
2 (l + 1)

 , (133)

confirming that the order of magnitude of the energy shift

from HLS is the same as from Hrel.  Since

 


 
j(j + 1) - l(l + 1) - 
3
4

l
 


 
l + 
1
2 (l + 1)

 = 

 




 

  
1

 


 
l + 
1
2  


 
j + 
1
2

 , j = l + 
1
2

 

- 
1

 


 
l + 
1
2  


 
j + 
1
2

 , j = l - 
1
2

 

(134)

we can combine (117) and (133) together as (top sign is for

j = l + 
1
2 , bottom sign is for j = l - 

1
2 )

∆Enj = 
Z2En
n2

 α2 

 




 


n

l + 
1
2

 • 
n

2
 


 
l + 
1
2  


 
j + 
1
2

 - 
3
4

    = 
Z2En
n2

 α2 

 



 

n

j + 
1
2

 - 
3
4 . (135)

Eqn (135) is our final result for the fine structure

splitting in a Coulomb field and holds for both cases,
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j = l ± 
1
2 .  These levels, which before were degenerate, are

now split by a small amount.  For the n = 2, l = 0,1 levels

(the 2s,2p states), we have the following energy diagram:

before

perturbation

2p(j=
3
2)

  2s,2p(j=
3
2)

_______________
   (8 states)

after perturbation

2p(j=
3
2) (4 states)

_______________

2s,2p (j=
1
2) (4 states)

_______________

Actually, one can show that (135), even in the case of l = 0,

is also a result of the Dirac theory, at least to order α2.

It was shown experimentally in the hydrogen atom that the

2s
 


 
j = 
1
2  and 2p

 


 
j = 
1
2  levels are actually split by a small

amount.  The same person who discovered this effect, Willis

Lamb, was also the first person to publish the correct

quantum mechanical derivation of the effect, which is called

the Lamb shift. (Ask me to tell you about the famous footnote

number 13 in Feynman's Lamb shift paper.)
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Problems

1. Show for J
≥
 = J

≥
1 + J

≥
2 ([J1i,J2j] = 0) that (see Eqs.(21) of

Ch. 8)

    (a)  [J1
≥ 2

, J
≥2
] = 0,

    (b)  [J1
≥ 2

,Jz] = 0.

2. Show that

J1
≥.J2

≥
 = J1zJ2z + 

1
2(J1+J2- + J1-J2+)

where

J1¶ ≡ J1x ¶ i J1y,

J2¶ ≡ J2x ¶ i J2y.

(Eq. (72) of Ch. 8 is a special case of this where J1
≥
 = L

≥

and J2
≥
 = S

≥
.)

3. Using Eqs. (97), (98), and (100), show (101) holds.

(All equations in Ch. 8.)

4. Given the Hamiltonian (see Eq. (104))

H = V1(r) + V2(r) L
≥.S
≥
,

which of the operators L
≥2
, S
≥2
, L3, S3 fail to commute with

H?  What is the physical meaning of this?  [Remember that

[L
≥
,V(r)] = 0, as derived in Eq. (120) of Ch. 6.]
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Other Problems

5. Suppose two l = 1 electrons (p electrons) in an atom are

found in a |1,1;2,1> state (l1 = l2 = 1; l = 2, m = 1).

    (a)  Assuming

|1,1;2,2> = |1,1>1 |1,1>2,

show that

|1,1;2,1> = √1
2 |1,1>1 |1,0>2 + √1

2 |1,0>1 |1,1>2.

    (b)  What is the probability that l1z' = h, l2z' = 0?

    (c)  Evaluate explicitly the angular-dependent

amplitude:

<θ1,φ1;θ2,φ2|1,1;2,1> = ?

6. Add j1 = 
1
2 to j2 = 

3
2.

    (a)  List the quantum numbers of the states in the

uncoupled representation.

    (b)  List the quantum numbers of the states in the

coupled representation.

    (c)  Write the coupled state |
3
2,
1
2;2,-2> in terms of

uncoupled states.

7. Imagine the electron has a small electric dipole moment

(p
≥
) in addition to its usual magnetic dipole moment (µ

≥
).

If this electric dipole is proportional to spin, p
≥
 = γp S

≥
,

then we would expect the electron in a hydrogen atom to

feel a small, additional perturbation given by

H' = -p
≥.E
≥
 = 

-Ze
r3  p

≥.r
≥
 = 

-Zeγp
r3  (S

≥.r
≥
)

(r
≥
 = xî + yĵ + zk̂)
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Calculate:

    (a)  [Sz,H'] = ?

    (b)  [Lz,H'] = ?

    (c)  [Jz,H'] = ?

On the basis of your calculation, which of these

operators gives rise to a conserved quantum number?

[Note:  Actually, there are many reasons to believe p
≥
 = 0

exactly for the electron.]

8. Suppose two l = 1 electrons (p electrons) in an atom are

found in a |1,1;2,1> state (l1 = l2 = 1; l = 2, m = 1).

    (a)  Assuming (coupled state notation: |l1,l2;l,m>)

|1,1;2,2> = |1,1>1 |1,1>2,

show that

|1,1;2,1> = √1
2 |1,1>1 |1,0>2 + √1

2 |1,0>1 |1,1>2.

    (b)  What is the probability that l1z' = h, l2z' = 0?

    (c)  Evaluate explicitly the angular-dependent

amplitude:

<θ1,φ1;θ2,φ2|1,1;2,1> = ?

9. In terms of the principal quantum number "n", there is a

2n2 degeneracy of the nth (unperturbed) energy level in the

hydrogen atom. For n=2, this means there are 8 linearly

independent states with the same energy. Specify the

quantum numbers of these 8 states using,

(a) the "uncoupled basis": |l,s;ml,ms>,

(b) the "coupled basis": |l,s;j,m>.
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10. Specify the quantum numbers of all the unperturbed
states of the hydrogen atom which have n = 3 and l = 1,

using:

(a)  the "uncoupled basis":  |l,s; ml,ms>,

(b)  the "coupled basis":  |l,s; j,m>.

(c)  An additional piece of the Hamiltonian is added to H0

(= 
p
≥
2

2m - 
Ze2

r ) which has the form,

H' = 
eBz
2mc (Lz + 2Sz),

which represents the interaction of the atomic electron

with an external magnetic field, Bz, pointing along z.  Find
the effect of H' on the degenerate n = 3, l = 1 energy

levels.  [You will have to make an appropriate choice of

basis to do this calculation.]

11. (Like Prob. 9.32 of Liboff.) Using the relations

L
≥2 = L

≥
1
2 + L

≥
2
2 + 2L

≥
1
.L
≥
2,

L
≥
1
.L
≥
2= 

1
2(L1+L2- + L1-L2+) + L1zL2z,

verify the l,m values of the following coupled angular

momentum eigenstate for two p electrons (the coupled state

notation is the same as in problem 9 above, which is

different from Liboff):

|2,0;1,1> = √1
6|1,1>1|1,-1>2 + √2

3|1,0>1|1,0>2 + √1
6|1,-1>1|1,1>2,

12. Prove that the coupled state |j1,j2;j,m> corresponding

to m = j1+j2 (it's maximum value) has j=j1+j2. Do this as

follows.
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(a) First, argue that

<j1,j2;j,m|J
≥2 - (J

≥
1 + J

≥
2)

2|j1,j2;m1,m2> = 0.

(b) By setting m1 = j1, m2 = j2, m = j1+j2 above, now

show that this expression is equivalent to

[j(j+1) - (j1+j2)(j1+j2+1)]<j1,j2;j,j1+j2|j1,j2;j1,j2> = 0,

and therefore conclude that j=j1+j2.



9.1

Chapter 9:  Spin and Statistics

There are two subjects mentioned previously involving

apparently unrelated phenomena that I would like to bring

back to our attention.  One is the "zweideutigkeit" of

Chapter 7.  We encountered the rule "at most two neutrons and

two protons in each energy level" in connection with the

simple model of the nucleus presented there.  We also

encountered the rule "at most two electrons to each energy

level" in the atomic model presented.  The other subject was

brought up at the very beginning of this course in regard to

experimental indications of a need for a new type of

mechanics to replace Newtonian mechanics for microscopic

systems.  We had defined the molar specific heat at constant

volume by

Cv = 
 




 




∂E
_

∂T
 
v

(1)

where E
_
 was the average internal energy per mole and T is

temperature.  We saw that the universal prediction of Dulong-

Petit,

Cv = 3R (2)

(R = kNa) did not hold for all materials, especially diamond.

The law did seem to hold true for Copper and Silver, at least

near room temperature.  However, I pointed out that there is

still a paradox associated with these materials.  If each

atom of Copper or Silver gave up one or more valence
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electrons, we would expect there to be an electronic

component to the specific heat.  This is not observed at room

temperatures.

The origin of these two mysteries can be explained, as

we will see, by a deep connection found in nature between a

particle's spin and the type of statistics obeyed by a

collection of identical particles.  Specifically, it has been

established that:

*Systems of identical particles with zero or

positive integer spin have symmetrical wave

functions and are said to obey Bose-Einstein

statistics.  Such particles are called bosons.

*Systems of identical particles with half-integer

spin have anti-symmetrical wavefunctions and are

said to obey Fermi-Dirac statistics. Such

particles are called fermions.

This connection between the spin of a particle (which

might be composite) and the wavefunction of the system is a

cornerstone of relativistic quantum mechanics.  A consistent

relativistic description in fact requires such a connection.

The connection between statistics and spin was first

formulated by Wolfgang Pauli.

What is meant by the above statements regarding

symmetrical and anti-symmetrical wavefunctions?  Let us

consider several simple examples.  First, consider a system
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of two identical particles which are, however, in distinct

quantum states.  These are individually described by the

single-particle states:

Particle 1:  |a' >1,

Particle 2:  |a" >2.

The labels a' and a" (a' ≠ a") stand for some quantum

number or set of numbers.  These could include, for example,

J
≥2, J3, energy, etc.  We have temporarily labeled the kets

associated with the first or second particle with a

subscript.   This composite state will be denoted by

|a' >1 |a" >2 ≡ |a',a" >. (3)

However, if the particles are indistinguishable, it is not

possible to know which particle is in a given state.

Therefore, another possible state of the system is specified

by:

Particle 1:  |a" >1,

Particle 2:  |a' >2.

The composite state is

|a" >1 |a' >2 ≡ |a",a' >. (4)

The true physical composite state of the system, which can be

neither (3) or (4) since they distinguish between the

particles, must somehow be a mixture of these two

possibilities.  Quantum mechanics says that the physically

realizable states of such a system depends upon the spin of
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the particles involved.  If we are dealing with two identical

bosons, the true composite state would be symmetric under the

interchange of particle labels:

1

√2
 (|a',a" > + |a",a' >) .

If we are dealing with two identical fermions, the state

would be anti-symmetric under label interchange:

1

√2
 (|a',a" > - |a",a' >) .

The factors of 
1

√2
 above are included for normalization.

There is also, of course, an arbitrary overall phase

involved.

Now let us consider the case of three identical

particles, two of which are in a quantum state a', the other

being in a state described by a".  The possible states of the

system are:

|a',a',a" >, |a',a",a' >, |a",a',a' > .

The bosonic composite state associated with this example is

just

 a'a"

|2,1 >b ≡ 
1

√3
 (|a',a',a" > + |a',a",a' > + |a",a',a' >) .

This state is symmetric under the interchange of any two

particle labels. When we try to construct an antisymmetrical

combination for this example, we discover that it can not be

done. This is in fact what will happen any time more than one
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particle is in a given state. One can not build a completely

antisymmetric state (under the interchange of any two

particle labels) from composite states which themselves are

already partly symmetric. Physically, for a system of

identical fermions, this means at most one fermion can occupy

a given state of the system. This simple fact has enormous

consequences in nature, and is intimately related to the

"zweideutigkeit" and suppressed electronic component of

specific heat phenomena discussed above.

As a last example, consider a state of three particles

in three different quantum states given by a', a" and a"'.

The possible distinct combinations are six in number:

|a',a",a"' >, |a",a',a"' >, |a',a"',a" >,

|a",a"',a' >, |a"',a',a" >, |a"',a",a' >.

The completely symmetric and antisymmetric combinations

appropriate to a system of bosons or fermions, respectively,

are given by: (overall phases are not important)

 a'a"a"'

|1,1,1 >b ≡ 
1

√6
 (|a',a",a"' > + |a",a',a"' > + |a',a"',a" >)

+ (|a",a"',a' > + |a"',a',a" > + |a"',a",a' >),

and

 a'a"a"'

|1,1,1 >f ≡ 
1

√6
 (|a',a",a"' > - |a",a',a"' > - |a',a"',a" >)

+ (|a",a"',a' > + |a"',a',a" > - |a"',a",a' >) .
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One can recover the results of the previous example of a

symmetric combination of three identical particles in two

quantum states a' and a" by setting a"' = a' in the first of

these.  However, when we try to set two quantum states equal

in the anti-symmetric combination, we get a complete

cancellation of terms, telling us that in fact no such state

exists.  The number of possible states of "n" particles in

"g" separate single-particle quantum states is given by the

expressions

    
(g + n - 1)!
n! (g-1)!  for bosons

and
(g)!

n! (g-n)! for fermions.

Can you find a way of motivating these expressions? (Notice

that the fermion expression makes no sense for n > g.)

Notice in the above examples we are normalizing these

states consistently.  The normalization factors are just

given by the inverse of the square root of the number of

distinct terms in the sums.  If we let ni = number of

particles in quantum state i, and we let n = ∑
i

ni be

the total number of particles in the system, then clearly we

have that

# terms in F-D state = n!, (5)

and the normalization factor for a system of n fermions will

be 
1

√n!
 .  For bosons we can show
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# terms in B-E state = 
n!

∏
i

ni!
 . (6)

Notice that

n!

∏
i

ni!
 ≤ n! . (7)

The only time the equality holds is when ni = 1 for all i.

Eqn (6) is a consequence of the grouping that occurs when ni

originally distinct particles are forced to be in a symmetric

state.  For example, the symmetric state of three particles

in distinct states involves 3! = 6 terms, as above.  When two

of the particles occupy the same state, however, we get an

expression with 
3!
2! = 3 terms, which is just specified by (6)

with n = 3, n1 = 2, n2 = 1.  (n = n1 + n2).  Generalizing

these results, one can show that the symmetric state of n

identical bosons, with quantum state occupation numbers ni,

is given by the somewhat sketchy expression,

                                   n1        n2

          

 



 

n!

∏
i

ni!
-1/2 ∑

distinct
permutations

    |a1,a1,...,a2,a2,...,... >,

whereas for fermions it is given by the completely

antisymmetric expression,
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1

√n!
 det 

 



 

|a1>1 |a1>2  ...  a1>n

 
|a2>1 |a2>2  ...  a2>n
 

  ::    
:
:          

:
:

 .

(Technically speaking, these expressions assume that the

number of allowed states of the composite system is finite.)

We may view these general expressions for boson or

fermion wavefunctions as defining a new set of basis states.

Instead of talking about the physical attributes of particles

labeled as 1,2,3,...,n, one now talks about having a system

of n1 particles of type 1, n2 particles of type 2, etc., with

∑
i

ni = n1.  That is, instead of specifying the properties of

numbered particles, we count the number of particles with a

specified property.  We will call this new basis a particle

occupation basis.  It will be denoted as:

|n1,n2,n3,... >.

It will be assumed to be complete in the usual sense,

∑
n
1
,n

2
,...

  |n1,n2,... > < n1,n2,...| = 1,

and is built up out of the single particle basis states as

described before.  As this form suggests, the eigenvalues of

this basis are not particle properties but particle numbers.

We define an operator, a
+
i, such that for any state

|...ni... > (the symbol "—" means "proportional to"),
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a
+
i|...ni... > — |...ni + 1... >. (8)

Taking the Hermitian conjugate of (8) and multiplying on the

right by a general state |...ni
'... >, we see that the only

non-zero result happens when ni
' = ni + 1.  This means that

ai|...ni + 1... > — |...ni... > . (9)

We supplement this with the additional definition

ai |...0i... > = 0, (10)

where 0i labels the zero-particle or vacuum state for the

particle of type i.

Since the effect of the operator a
+
i is to increase the

particle occupation number of state i by one, it is called

the creation operator.  Similarly, since from (9) we see that

ai reduces the occupation number of state i by one, it is

called the annihilation operator.  These statements are made

in the sense of a
+
i and ai acting on kets.  When acting on

bras, we have that

< ...ni...|ai  — < ...ni + 1...| , (11)

< ...ni + 1...|a
+
i  — < ...ni...| , (12)

and

< ...0i...|a
+
i  = 0, (13)

which follow by taking the Hermitian conjugate of (8), (9)

and (10).



9.10

Now from (8) and (9) we know that

a
+
i ai|...ni... >  — |...ni... >. (14)

For the state ni = 0 we have

a
+
i ai|...0i... > = 0, (15)

which follows from (10).  Based upon (14) and (15), we define

the effect of the number operator,

Ni = a
+
i ai, (16)

on the occupation basis to be

Ni|...ni... > = ni|...ni... >. (17)

There are as many such operators as there are states in the

system.  The total number operators is given by

N = ∑
i

 Ni . (18)

Its eigenvalue is n, the total number of particles in the

system.

Let us derive some commutation properties of these

quantities.  Since ai is an annihilation operator, we have

that

N ai|...ni... > = (n - 1)ai|...ni... >

               = ai(N - 1)|...ni... >. (19)

The statement (19) being true for any state |...ni... > then

implies

[ai,N] = ai. (20)
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Since we have that

N+ = 
 


 
∑

i

 a+iai
+
 = N, (21)

the adjoint of (20) is

[a
+
i,N] = -a

+
i . (22)

Now consider

Njai|...ni...nj... > = 
 



 

    nj

 
(nj - 1)

 ai|...ni...nj... >, (23)

the top result holding for i ≠ j, the bottom result for

i = j.  One can write both results at once by

Njai|...ni...nj... > = (nj - δij)ai|...ni...nj... >

    = ai(Nj - δij)|...ni...nj... >. (24)

Eqn (24) holding true for all occupation kets implies

[ai,Nj] = aiδij. (25)

This is consistent with (20) because

[ai,N] = ∑
j

 [ai,Nj] = ∑
j

 δijai = ai. (26)

Taking the adjoint of (25) gives

[a
+
i,Nj] = -a

+
iδij . (27)

Another test of consistency of these relations is to check

and see if Ni and Nj, which are assumed to have simultaneous

eigenvalues, commute:
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[Ni,Nj] = [a
+
iai,Nj] = a

+
i[ai,Nj] +  [a

+
i,Nj]ai

        = a
+
iaiδij - a

+
iaiδij = 0. (28)

We now require that

a
+
ia

+
j|...ni...nj... > = λija

+
ja

+
i|...ni...nj... >, (29)

that is, that the states produced by a
+
ia

+
j, or alternatively by

a
+
ja

+
i, be the same except for an overall normalization factor,

λij.  We assume this constant is independent of the occupation

numbers ni,nj and is symmetric in i and j.  (Such an

assumption need not be made.  See the treatment in

Merzbacher, Quantum Mechanics, 2nd edition, Ch. 20.)  Then

(29) implies

a
+
ia

+
j = λija

+
ja

+
i . (30)

Since (30) is true for all i,j, it leads to

(λij)
2 = 1. (31)

This means we have

[ai,aj] = [a
+
i,a

+
j] = 0, (32)

when λij = 1 and

{ai,aj} = {a
+
i,a

+
j} = 0, (33)

when λij = -1.  In (33) we are encountering the

anticommutator:

{A,B} = AB + BA. (34)

Now from (25) we may write
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ai(a
+
jaj) - (a

+
jaj)ai = δijai, (35)

which becomes, with the use of (32) and (33)

[ai,a
+
j]aj = δijai , (36)

when λij = 1 and

{ai,a
+
j}aj = δijai , (37)

when λij = -1.  Assuming that the action of the operators

[ai,a
+
j] and {ai,a

+
j}, when acting on states, doesn't depend on

the occupation numbers of the states in the cases λij = 1 and

λij = -1, respectively  (this assumption may also be avoided;

see Merzbacher, op. cit.), we conclude that

[ai,a
+
j] = δij , (38)

when λij = 1 and

{ai,a
+
j} = δij , (39)

when λij = -1.

Notice that the commutation properties of ai and a
+
i in

(38) and the eigenvalue-eigenvector statement for Ni = a
+
iai in

(17) are mathematically equivalent to the ladder operators A

and A+ that we defined for the harmonic oscillator in Chapter

3.  For those operators we had

[A,A+] = 1, (40)

A+A|n > = n|n >. (41)
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The difference is in the physical interpretation of these

statements.  Eqns (40) and (41) are results for the energy

levels of a single particle.  Eqns (17) and (38) refer to the

occupation numbers of a single physical state.  However,

because these mathematical systems are identical, we may take

over the results previously derived.  In particular, we

showed in Chapter 3 that

A|n > = √n |n - 1 >, (42)

A+|n > = √n + 1 |n + 1 >, (43)

and

|n > = 
(A+)n

√n!
 |0 >, (44)

where the state |0 > represents the ground state.  Similarly,

we have that

ai|...ni... > = √ni |...ni - 1... >, (45)

a
+
i|...ni... > = √ni + 1 |...ni + 1... >, (46)

and

|...ni... > =  
(a+i)

ni

√ni!
 |...0i... >, (47)

for each physical property labeled by i.  We identify this

situation (λij = 1) as the case of Bose-Einstein statistics.

The most familiar particle to which these considerations

apply is the photon, but the creation and annihilation
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operators of any zero or integer spin particle must obey the

same relations.

We have not encountered a system before for which

anticommutation relations like (33) and (39) hold.  Notice

that if i = j, (33) implies that

(a
+
i)

2 = 0. (48)

Thus, any attempt to put two or more particles in the same

quantum state fails in the case λij = -1.  We immediately

recognize this situation as describing Fermi-Dirac

statistics. We expect for this case that all the occupation

numbers, ni, of the state |...ni... > can only take on values

0 or 1.  This is confirmed from the algebra since from (39)

for i = j

aia
+
i + a

+
iai = 1, (49)

⇒ aia
+
i = 1 - Ni. (50)

Now, by multiplying on the left by Ni = a
+
iai, we learn that

Ni(1 - Ni) = 0. (51)

Applying this null operator on any state |...ni... > then

gives us that

ni = {0,1} (52)

for all i.

In order to keep things simple, we will restrict our

attention to one and two physical property systems in the
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Fermi-Dirac case.  We hypothesize that for the simplest case

of a single physical property that

a+|0 > = C1|1 >, (53)

⇒ < 0|a = C∗
1
 < 1|, (54)

and that

a|1 > = C2|0 >,

⇒ < 1|a+ = C∗
2
 < 0|. (55)

From the number operator relation

a+a|1 > = |1 > (56)

we then have that

C2C1 = 1. (57)

Multiplying (56) on the left by < 1| also gives us

|C2|
2 = 1. (58)

Both of these relations are satisfied if we choose

C1 = C2 = 1, (59)

resulting in

a+|0 > = |1 >, (60)

a|1 > = |0 >. (61)

These statements imply that

a = |0 > < 1| (62)

⇒ a+ = |1 > < 0|. (63)
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In our old language of measurement symbols, we would say that

a = |01| and a+ = |10|.  However, unlike our previous

applications, we are not specifying physical properties but

occupation numbers in the states.  Thus, this simplest

fermion system is just another manifestation of the two-

physical-outcome formalism of Chapter 1.  Using (62) and (63)

in

aa+ + a+a = 1, (64)

then reveals this as just the statement of completeness for

this two level system:

aa+ + a+a = ∑
n={0,1}

  |n > < n|. (65)

Raising the complexity a notch, we now consider a two

physical property identical fermion system.  Following the

above, we may choose

a
+
1|0,0 > = |1,0 >, (66)

a
+
2|0,0 > = |0,1 >, (67)

and

a1|1,0 > = |0,0 >, (68)

a2|0,1 > = |0,0 >. (69)

Notice that

a
+
1a

+
2 |0,0 > = -a

+
2a

+
1 |0,0 >, (70)

because of (33).  There are now two possible definitions of

the state |1,1 >:
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|1,1 > = ± a
+
2a

+
1 |0,0 >. (71)

We see that the order in which the states are raised or

lowered is of crucial importance in this case.  In general,

one may choose for identical fermions that

ai|...ni... > = 
 


 

0,            ni = 0
 
± |...0i... >, ni = 1

(72)

and therefore

a
+
i |...ni... > = 

 


 

± |...1i... >, ni = 0
 
0,            ni = 1.

(73)

(Eqns (72) and (73) preserve the statement

Ni|...ni... > = ni|...ni... > for ni = 0 or 1.)  Rather than

specifying an arbitrary (but eventually necessary) convention

to fix the signs in (72) and (73), we will find it possible

to live peaceably with this ambiguity in the present study.

(See the homework problem, however.)

Fermi-Dirac statistics explain the "zweideutigkeit" of

atomic and nuclear physics.  In the early days of atomic

spectroscopy, physicists were unaware of electron spin, and

it appeared as if an unexplained rule "two electrons per

energy level" was operating.  Actually, since electrons as

spin 
1
2 particles obey Fermi-Dirac statistics, atomic systems

are really built up with one electron per state, but the two

orientations of electron spin are very nearly degenerate in

energy.  The fact that electrons, neutrons and protons are
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all spin 
1
2 particles determines to a large extent the nature

of our universe.  If these particles had integer spin, they

would obey Bose-Einstein statistics and there would be no

restriction on the number of particles in a given state.  The

ground states of all such systems would closely resemble one

another, removing the incredible diversity seen in atomic and

nuclear systems.

Other useful quantities can be built out of the

occupation basis creation and annihilation operators.  The

total particle number operator

N = ∑
i = all states

    a+iai, (74)

can be generalized to the form

F(1) = ∑
i,j

 a+iajfij, (75)

to represent various additive single-particle properties.  We

interpret the fij as being matrix elements of some single-

particle property operator, f:

fij = < i|f|j >. (76)

For example, if we set f = H where H is the single-particle

Hamiltonian, then

fij = < i|H|j > = εiδij, (77)

and F(1) will represent the total energy operator of the

system:
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F(1)|...nk... > = 
 


 
∑

i

εini  |...nk... >. (78)

Another useful operator in this basis that can be used

to represent an additive two-particle property (like

potential energy) is of the form

F(2) = 
1
2 ∑

i,j,k,l

  a+ia
+
jakal Vijlk, (79)

where, again, the Vijlk are a set of matrix elements.  Notice

the somewhat unusual ordering of the indices on Vijlk relative

to the order of the creation and annihilation operators, as

well as the conventional factor of 
1
2 which is included to

avoid double counting because of a symmetry of the Vijlk

(upcoming in Eqn (84)).  We choose the Vijlk as matrix

elements of some two-particle operator, V,

Vijlk ≡ < i,j|V|l,k >, (80)

where as usual

 

|i,j > = |i >1 ⊗ |j >2,

 < i,j| = < i|1 ⊗ < j|2 .
(81)

We have used a two-particle basis previously in describing

the deuteron in Chapter 7.  A simple example of a two-body

operator would be V = V(r), where r is the relative distance

operator between the two particles.  (A more realistic but

also more complicated potential in that case would also

include the previously mentioned tensor force, which depends

on the relative spin orientations of the two particles.)  A
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diagrammatic way of visualizing the two-particle matrix

element Vijlk is contained in the following picture:

i

1

V

2
k

j

time

l

i,j|V| ,k  :l< >

The particle to the left has been labeled as particle 1 and

the dotted line in the diagram drawn perpendicularly to the

time axis, represents the interaction of the two particles

through the two body potential, V.  The time order of events

associated with the matrix element < i,j|V|l,k > are being

read off from right to left in this interpretation.  (The

same implicit time ordering of events occurs in our earlier

right to left interpretation of measurement symbols in

Chapter 1.  However, the time direction in the associated

Process Diagrams were also right to left, as opposed to the

bottom to top time direction choice in the above.)  This

picture of the interaction of two particles is called a

Feynman diagram and can be used to represent a weak

scattering event between two particles.  The above is

actually a nonrelativistic interpretation of such a diagram.

In the usual relativistic diagram, the interaction, V, would

not necessarily take place at a single instant in time, but

would be summed over all time intervals.
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As mentioned previously, these matrix elements satisfy

certain identities.  First of all, from the meaning of

Hermitian conjugation, we have

< i,j|V|l,k >∗ = < l,k|V+|i,j >. (82)

If V = V+ then

< i,j|V|l,k >∗ = <l,k|V|i,j >. (83)

Another identity follows from the fact that a relabeling of

identical particles (which we assume these are) does not

affect the value of the matrix element Vijlk.  Thus, under the

substitution 1 ¶ 2 we have

< i,j|V|l,k > = < j,i|V|k,l >. (84)

A diagrammatic interpretation of (83) is (only the directions

of the lines have any significance here)

i2 1

k

j

li

2 k

j

1 l

=

*

and the statement (84) can be visualized as
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i

1 2
k

j

l

i

2 1
k

j

l

=

We are imagining that the i,j,k,l include the momentum state

of the particle which, if we think of these particles as

being contained in a box, will be discrete.

We are getting closer to an application of these ideas.

Consider a gas consisting of many particles.  The

characteristics of such systems depends upon the statistics

of the particles involved.  We will study such systems under

the assumption of detailed balance.  To explain what this

means, consider an interaction between two distinguishable

particles:  (1, 1', 2 and 2' are particular distinct values

of the state variables i, j, k and l)

1

V

2

State 2 State 2'

State 1 State 1'

In the present (classical) context, the rate for this

reaction to be taking place somewhere in our gas will be

proportional to the product of the number of particles of

types 1 and 1' present,

rate(1 + 1' → 2 + 2') — n1n1' . (85)
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The rate for the reversed collision,

12

State 2State 2'

State 1State 1'

is also given by

rate(2 + 2' → 1 + 1') — n2,n2' . (86)

Detailed balance implies that

rate(1 + 1' → 2 + 2') = rate(2 + 2' → 1 + 1'). (87)

That is, in equilibrium the rates of a reaction and it's

inverse must be equal.  Assuming the same proportionality

constants in (85) and (86), this means that

n1n1' = n2n2' , (88)

which also implies

ln 
1
n1
 + ln 

1
n1'

 = ln 
1
n2
 + ln 

1
n2'

 . (89)

Eqn (89) has the appearance of a conservation law for some

scalar quantity.  It is plausible that (89) is an expression

of energy conservation for this situation.  Then, comparing

(89) with such a statement,

ε1 + ε1' = ε2 + ε2' (90)

we tentatively conclude that for any species i
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ln 
1
ni
 = α + βεi , (91)

where α and β are unknown constants, or that

ni = e
-α-βεi . (92)

Eqn (92) becomes an expression of the classical statistics of

distinguishable particles, Maxwell-Boltzmann statistics (see

Chapter 1) if we take

β = 
1
kT (93)

where k is the Boltzmann constant and T is absolute

temperature.  The quantity α in (92), called the chemical

potential, can be thought of as a scale factor fixed by the

number of particles, n, in the system:

∑
i

 ni = ∑
i

 e-α-βεi = n. (94)

Although the above argument was very sketchy, it has led

to correct conclusions about the type of statistics obeyed by

distinguishable particles.  Let us see if we can repeat it

for the two quantum mechanical cases of indistinguishable

particles.

Using V in (79) as an expression of the two-body

potential between identical particles, we relabel

F(2) → Hint = 
1
2 ∑

i,j,k,l

  a+ia
+
jakal < i,j|V|l,k >. (95)

The key to this discussion is the relation
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rate(1 → 2) — |< 2|Hint|1 >|2. (96)

which is a partial statement of what is called "Fermi's

golden rule."  (This rule comes about from time-dependent

perturbation theory, which we have not studied.) The states

< 2| and |1 > above are the appropriate particle occupation

basis states for the reaction in question. In order to find

the effect of Hint on the particle occupation states, let us

go back to our previous expressions for the effects of

creation and annihilation operators.  From (45) and (46)

a
+
2a1|n1,n2 > = √n2 + 1 √n1 |n1 - 1,n2 + 1 > (97)

for the Bose-Einstein case.  We may make a similar statement

for Fermi-Dirac statistics.  We may write both statements in

(72) as

ai|...ni... > = ± √ni |...ni - 1... > (98)

where ni = 0,1 only, and we see the usual Fermi-Dirac sign

ambiguity. In addition, (73) may be written

a
+
i|...ni... > = ± √1 - ni |...ni + 1... >. (99)

Putting (98) and (99) together we then get

a
+
2a1|n1,n2 > = ± √1 - n2 √n1 |n1 - 1,n2 + 1 >, (100)

similar to (97) for Bose-Einstein particles.  We write (97)

and (100) together as
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a
+
2a1|n1,n2 > = (S.F.) √1 ± n2 √n1 |n1 - 1,n2 + 1 >, (101)

where the top sign is taken for Bosons and the bottom sign

for fermions.  The quantity "(S.F.)" (meaning "sign factor")

is only to be considered for fermions.  Eqn (101) implies

that

a
+
2a

+
2'a1a1'|n1,n1',n2,n2' > = (S.F) √1 ± n2 √1 ± n2'

× √n1 √n1' |n1 - 1,n1' - 1,n2 + 1,n2' + 1 >. (102)

where the ± signs are to be interpreted as above.

We are now in a position to partially determine the rate

for the reaction 1 + 1' → 2 + 2':

rate(1 + 1' → 2 + 2') —

|< n1-1,n1'-1,n2+1,n2'+1|Hint|n1,n1',n2,n2' >|2. (103)

We are assuming in general that there are n1,n1',n2,n2'

particles in the distinct modes 1,1',2,2', respectively, in

the initial state.  Letting the labels i, j, k and l in (95)

take on all possible values, we have that

< n1-1,n1'-1,n2+1,n2'+1|Hint|n1,n1',n2,n2' >

= 
1
2 < n1-1,n1'-1,n2+1,n2'+1|{a

+
2a

+
2'a1a1' < 2,2'|V|1',1 >

  + a
+
2a

+
2'a1'a1 < 2,2'|V|1,1' > + a

+
2'a

+
2a1a1' < 2',2|V|1',1 >

  + a
+
2'a

+
2a1'a1 < 2',2|V|1,1' >}|n1,n1',n2,n2' >. (104)

However, from (84) we have that

< 2,2'|V|1,1' > = < 2',2|V|1',1 > (105)

and
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< 2,2'|V|1',1 > = < 2',2|V|1,1' >. (106)

Also, because we are assuming the modes 1, 1', 2, 2' are all

distinct, we easily see that

a
+
2a

+
2'a1'a1 = ± a

+
2a

+
2'a1a1' (107)

a
+
2'a

+
2a1a1' = ± a

+
2a

+
2'a1a1' (108)

where the top signs are for bosons, the bottom signs for

fermions.  For either case

a
+
2'a

+
2a1'a1 = a

+
2a

+
2'a1a1'. (109)

The expression in (104) now simplifies to

< n1-1,n1'-1,n2+1,n2'+1|Hint|n1,n1',n2,n2' >

= < n1-1,n1'-1,n2+1,n2'+1|{a
+
2a

+
2'a1a1'|n1,n1',n2,n2' >

  . [< 2,2'|V|1',1 > ± < 2,2'|V|1,1' >]}. (110)

Then, using the result (102), we get that

< n1-1,n1'-1,n2+1,n2'+1|Hint|n1,n1',n2,n2' >

= (S.F.) [< 2,2'|V|1',1 > ± < 2,2'|V|1,1' >]

. √(1 ± n2)(1 ± n2')n1n1' . (111)

Using our previous diagrammatic conventions, the quantity in

square brackets on the right of (111) may be represented by
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1 2

State 2 State 2'

State 1State 1'

1
2

State 2 State 2'

State 1State 1'

±

The figure to the right above is called a "crossed diagram"

for obvious reasons.

Now Fermi's golden rule, Eqn (103), reads:

rate(1 + 1' → 2 + 2') — |< 2,2'|V|1',1 > ± < 2,2'|V|1,1' >|2

× (1 ± n2)(1 ± n2')n1n1' . (112)

The rate for the reverse action is simply given by a

relabeling of the above:

rate(2 + 2' → 1 + 1') — |< 1,1'|V|2',2 > ± < 1,1'|V|2,2' >|2

× (1 ± n1)(1 ± n1')n2n2' . (113)

From the identities (83) and (84) we now have that

< 2,2'|V|1',1 >∗ = < 1,1'|V|2',2 >, (114)

and

< 2,2'|V|1,1' >∗ = < 1,1'|V|2,2' >, (115)

which reveals that

|< 2,2'|V|1',1 > ± < 2,2'|V|1,1' >|2

= |< 1,1'|V|2',2 > ± < 1,1'|V|2,2' >|2 . (116)
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The statement of detailed balance for this reaction, Eqn (87),

now gives us

(1 ± n2)(1 ± n2')n1n1' = (1 ± n1)(1 ± n1')n2n2' (117)

in contrast to the classical result, Eqn (88).

Assuming the same overall proportionality constant in the

rate as in the classical result, we see that B-E statistics

"encourages" the reaction relative to the classical rate,

while the minus signs associated with fermions shows that F-D

statistics "discourages" the reaction by not permitting it if

certain states are already occupied.

Performing the same mathematical steps as in the

classical case, we first write (117) as

ln
 


 
1

n1
 ± 1  + ln

 


 
1

n1'
 ± 1  = ln

 


 
1

n2
 ± 1  + ln

 


 
1

n2'
 ± 1 , (118)

which we assume is an expression of energy conservation when

the system is in equilibrium.  Thus, for each species i we now

have

ln
 


 
1

ni
 ± 1  = α + βεi (119)

which gives

ni = 
1

eα+βεi + 1
(120)

in the F-D case and

ni = 
1

eα+βεi - 1
(121)
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in the B-E case.  As before, α is fixed by the total number of

particles present and β = (kT)-1.  Notice that both (120) and

(121) go over to the classical result, (92), when α ≥ 1.  We

assume that the energies of the nonrelativistic gas particles

are given by

εi = 
p≥2i
2m . (122)

Given the results (92), (120) and (121) in the

classical, Fermi-Dirac and Bose-Einstein cases respectively,

we then have for the total number and energy of these systems

that

n = ∑
i

 ni, (123)

ε = ∑
i

 niεi. (124)

In order to evaluate these expressions, it will be

necessary to replace the sums in (123) and (124) by

approximate integrals.  First, let us enumerate exactly the

possible momentum states of an ideal gas of noninteracting

particles contained in some finite volume, V. We want to take

the boundary conditions on the wavefunctions of the particles

in the gas to be as general, and yet as simple, as possible.

Let us choose a volume such that it is in the shape of a

rectangular enclosure of volume V = L1L2L3.  A free-particle

solution to the three dimensional Schrödinger equation

- 
h
2

2m ∇
≥2u(x) = εu(x), (125)
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normalized such that

∫V
 
 d3x|u(x)|2 = 1, (126)

is given by

u(x) = 
1

L3/2
 eip

≥  ⋅ x≥ /h. (127)

We imagine that the volume V under consideration is

actually in contact with identical volumes along its

boundaries as shown below:

L1

L2

Given this situation, the appropriate boundary

conditions on the wavefunctions ui(x) are

 



 

u(x1 + L1,x2,x3) = u(x1,x2,x3)
 
u(x1,x2 + L2,x3) = u(x1,x2,x3)
 
u(x1,x2,x3 + L3) = u(x1,x2,x3). 

(128)

These are just periodic boundary conditions. (We saw these

also in the Kronig-Penney model of Chapter 3.)  They

determine the allowed momenta values in the spatial

directions.  For example, in the one-direction we must have
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p1
h
 (x1 + L1) = 

p1
h
 x1 + 2πn1. (129)

where n1 = 0,±1,±2,... .  Therefore

p1 =  


 
h

L1
 n1. (130)

Similarly in the 2 and 3 directions.  Thus, in counting such

states, the total number of integers in the range ∆n1∆n2∆n3

is given by

∆n1∆n2∆n3 = 
V

h3
 ∆p1∆p2∆p3 . (131)

If, in the expressions (123) and (124), the sums are such

that the summands vary very little over increments of n1, n2

and n3 by unity, then we may make the replacement

∑
i = all states

     → 
V

h3
 ∫d3p = 

4πV

h3
 ∫dpp2 (132)

in these expressions.  Actually, in the case of particles

with spin, the sum over all states must also include a sum

over all values of the third component of spin, S3
' = hmS.

For noninteracting particles, this just adds a numerical

factor:

∑
i = all states

     → ω 
V

h3
 ∫d3p = 

4πωV

h3
 ∫dpp2 (133)

where ω = 2S + 1 counts the number of components of S3
'.

Although the results (132) and (133) have been justified

for very particular boundary conditions that might seem
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unrealistic, it can be shown that these results are really

insensitive to the shape of the container the noninteracting

particles are placed in and the exact surface boundary

conditions as long as the average deBroglie wavelength of the

particles is small compared to the physical dimensions of the

container.  (See the discussion in Reif, Foundations of

Statistical and Thermal Physics, 1st ed., p.362 on this

point.)

We will examine the evaluation of (123) and (124), using

the replacement (133), for the cases of Maxwell-Boltzmann,

Bose-Einstein and Fermi-Dirac statistics.  (The following

treatments are, as usual, non-rigorous.)

(a)  Maxwell-Boltzmann Statistics

The expressions for n and ε are as follows:  (We set

ω = 1, appropriate for a spinless particle)

n = 
4πV

h3
 ∫0

∞
dpp2e-αe-βp

2/2m , (134)

ε = 
4πV

h3
 ∫0

∞dpp2e-αe-βp
2/2m  


 
p2

2m  . (135)

Introducing the dimensionless variable

x2 = 
βp2

2m (136)

we can write (134) and (135) as
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n
V = 

4πe-α

h3
 

 


 
2m

β
3/2 ∫0

∞
dxx2e-x

2
, (137)

ε
V = 

4πe-α

h3
 

 


 
2m

β
3/2 

1

β
 ∫0

∞
dxx4e-x

2
. (138)

We recall from Eqns (53) and (54) of Chapter 2 that

 ∫0
∞
dxe-x

2
 = 

√π
2  . (139)

Letting x2 → λx2, taking derivatives with respect to λ and

then setting λ = 0, we find that

 ∫0
∞
dxx2e-x

2
 = 

√π
4  , (140)

 ∫0
∞
dxx4e-x

2
 = 

3√π
8  . (141)

We therefore have that

n
V = e

-α 

 



 

2πm

βh2
3/2

(142)

and
ε
V = 

3

2β
 e-α 

 



 

2πm

βh2
3/2

. (143)

(142) and (143) imply

ε = 
3
2 nkT (144)

as we would expect for an ideal gas of n particles from the

equipartition theorem.  Actually, (142) is just a definition
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of eα.  Notice that the deBroglie wavelength, λ = 
h
mv , of a

particle with energy kT is given by

λ =  


 
h2

2mkT

1/2
 . (145)

Solving for eα from (142) allows us to write

eα – 
1

λ3 
 


 
n
V

(146)

Since 
n
V is just the overall particle density and λ

3 is a

volume, this says in words that

eα – 
1

(no. of particles
 in a λ3 volume)

 . (147)

This is the classical meaning of eα.  We have already

observed that the quantum results, (120) and (121), go over

to the classical Maxwell-Boltzmann case when α ≥ 1.  In terms

of particle attributes, (147) says, as we might expect, that

α ≥ 1 describes a situation where the deBroglie wavelengths

of particles overlap very little.  As a numerical example,

consider a gas of Helium atoms (m ~- 10
-24 gm) at room

temperature (T = 300°K) and a particle density approximately

equal to that of air at one atmosphere 
 


 
n

V ~- 10
19 cm-3 :

eα ≈ 105 . (148)
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(b)  Bose-Einstein Statistics

Apparently, the expressions which we must evaluate in

the Bose-Einstein case are (we continue to set ω = 1):

n = 
4πV

h3
 ∫0

∞
dpp2 

1

eα+βp
2/2m - 1

 , (149)

ε =  
4πV

h3
 ∫0

∞
dpp2 

p2

2m

eα+βp
2/2m - 1

 . (150)

We expect from the previous classical expression for eα that

we will begin to encounter quantum effects as we increase the

deBroglie wavelength overlap by decreasing the temperature.

This means lowering the value of α.  On the basis of the

expression (121), however, it is clear that α can never turn

negative.  Consider an α = -|α|; then, in a certain mode i we

would have for some energies εi

εi < 
|α|

β
 ⇒ ni < 0. (151)

A negative occupation number is certainly not physical.  Let

us therefore consider the extreme situation that α = 0.  Then

(149) becomes

n
V = 

4π

h3
 ∫0

∞
dpp2 

1

eβp
2/2m - 1

 . (152)

Some mathematical steps to reduce the integral in (152) are

as follows:
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n
V = 

4π

h3
 

 


 
2m

β

3/2
 ∫0

∞
dxx2 

1

ex
2
 - 1

 , (153)

∫0
∞
dxx2 

1

ex
2
 - 1

 = ∫0
∞
dxx2 

e-x
2

1 - e-x
2 = ∫0

∞
dxx2 ∑

n=1

∞

 e-nx
2
. (154)

Interchanging the sum and integral in the last quantity and

doing the integral (using a scaled version of (140)) then

informs us that

∑
n=1

∞

  ∫0
∞
dxx2 e-nx

2
 = 

√π
4  ∑

n=1

∞

  1

n3/2
 = 

√π
4  ζ

 


 
3
2 (155)

where the "Riemann zeta-function" is defined as (x > 1)

ζ(x) ≡ ∑
n=1

∞

  1
nx
 . (156)

In our case ζ
 


 
3
2  = 2.612... .  One finds that

n
V 
?
=  




 

2πmkT

h2
3/2

 ζ
 


 
3
2  . (157)

Eqn (157) dictates a particular relationship between the

particle density, 
n
V , and the absolute temperature when α =

0.  We would expect to be able to approach the absolute zero

of temperature to an arbitary extent.  However, once we have

lowered the temperature (and α) to the point where (157) is

satisfied, our present equations give us no further guidance

as to the behavior of the system.  Since n and V are fixed,

we may view (157) as predicting a critical temperature, Tc,
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for the vanishing (or as we will see, the approximate

vanishing) of α:

Tc ≡ 
h2

2πmk
 

 



 

n

V

ζ
 


 
3
2

2/3

 . (158)

Since we know that α ≥ 0, what happens when we try to lower

the temperature further?  To understand this, let us

reconsider the more correct discrete formula based upon

(121):

n = ∑
i

 1

eα+βεi - 1
 . (159)

In order to justify the expression (149), it was necessary to

assume that the change in the summand in (159) for

neighboring discrete momentum states was small.  This

assumption breaks down for temperature less than Tc.  As α →

0, the single term in (159) for p≥ = 0 diverges, and we must

split this term off before replacing the sum by an integral.

Thus, we replace (149) with the more correct expression

n = 
4πV

h3
 ∫0

∞
dpp2 

1

eα+βp
2/2m - 1

 + n0 , (160)

where

n0 = 
1

eα - 1
 , (161)
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represents the occupation associated with the p≥ state.  What

happens for T < Tc is that the Bose particles of the gas

begin to collect into this single state.  We may solve

approximately for n0 as follows.  From (160) we have

n0 = n - 
4πV

h3
 ∫dpp2 1

eα+βp
2/2m - 1

 . (162)

To get a first order expression for n0, we make the zero
th

order approximation that α = 0 for T ≤ Tc in the second term

of (162).  Since we already evaluated the resulting integral,

we now easily see that

n0 -~ n - V 



 

2πmkT

h2
3/2

 ζ
 


 
3
2  = n

 


 
1 - 

 


 
T

Tc

3/2
 . (163)

Thus, a macroscopic fraction of the gas occupies the single

p≥ = 0 state for T ≤ Tc.  This phenomenon is known as "Bose-

Einstein condensation".  A plot of n0(T) looks as follows:

n

T

n (T)0

Tc

Of course, the non-zero momentum state occupation numbers obey

nε≠0 = n 


 
T

Tc

3/2
(164)
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below Tc.  We do not need to modify the formula (150) for the

total energy ε since ε = 0 for the mode n0.  The assumption

that α ≤ 1 when T ≤ Tc is consistent since from (161) we have

that

α -~ 
1

n
 


 
1 - 

 


 
T

Tc

3/2  . (165)

Bose-Einstein condensation is a direct consequence of

the statistics obeyed by integer spin particles whose

available momentum states are, by assumption, changed very

little by interactions between the particles.  This is an

idealistic situation.  The question is:  Is anything like

this seen in nature?  It is known that liquid (not gaseous)

He4, which is a Bose system (A + Z = even), undergoes a

transition, called the "λ-transition", to a phase called

"Helium II" at a temperature of 2.18°K.  This new phase seems

to be made up of two components called the normal fluid and

the superfluid, similar to the n0 and nε≠0 components

described above.  If one simply substitutes the mass and

density of liquid He4 into the expression (158), one gets Tc =

3.14°K, not too far from the λ-transition temperature.  In

addition, no such transition is seen in liquid He3, an

isotope of Helium having 2 protons and 1 neutron, which obeys

Fermi-Dirac statistics (A + Z = odd).  Thus, it is tempting

to conjecture that Bose-Einstein condensation is the dominant

(but not exclusive) cause of the λ-transition in liquid He4.
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This conjecture has not yet been thoroughly confirmed

however.

Let us also calculate (150) when α -~ 0 (which we now

know occurs when T ≤ Tc).  We have

ε = 
4πV

h3
 ∫dpp2 

p2

2m

eβp
2/2m - 1

. (166)

Running through the steps similar to (153) - (157) above, we

now find that

ε = 
3
2 ζ 


 
5
2  

 



 

2πmkT

h2
3/2

VkT -~ .770 n 


 
T

Tc

3/2
kT (167)

where ζ
 


 
5
2  -~ 1.341... .  Eqn (167) has a very different

appearance from the Maxwell-Boltzmann result, Eqn (144).  The

total specific heat at constant volume is given by

CV ≡  

∂ε

∂T
 

V
 -~ 1.925  


 
T

Tc

3/2
nk (168)

which is seen to vanish at T = 0.  Thus, for an ideal gas of

weakly interacting BE particles, we expect that the specific

heat will initially rise as T increases until reaching a peak

at T = Tc.  After this, the value will level out to the

constant value, 
3
2 nk, expected at high temperatures.  There

is a discontinuity in CV at T = Tc.  (The λ−shape of this

graph is the origin for the name of this transition.)



9.43

TT

3
2
_

nk
__CV

c

The very imporatant case of Bose-Einstein statistics

applied to a gas of photons (dealt with briefly in Chapter 2

in the Compton effect) in an equilibrium temperature black-

body cavity is described in this formalism by putting α = 0.

This makes sense since we have seen that α is determined by

the (up to now) fixed number of particles present in the

system.  Now the number of particles present is not fixed,

but is determined by the temperature and size of the box, and

nothing else. Photons have spin 1, and so are described by

Eqns (149) and (150) above, but with ω = 2 (two photon

polarizations), α = 0 and the photon mode energy εp = pc,

where p is the magnitude of the photon's momentum (remember

Eqn (7) of Chapter 2.)  I will leave the treatment of this

case to you in a homework problem. We will talk more about

the photon, considered as an elementary particle, in the next

(unwritten as yet!) Chapter.

(c)  Fermi-Dirac Statistics

In general, we have (we set ω = 2, appropriate for a

spin 
1
2 particle)
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n = 
8πV

h3
 ∫0

∞
dpp2 

1

eα+βp
2/2m + 1

 , (169)

ε = 
8πV

h3
 ∫0

∞
dpp2 

p2

2m

eα+βp
2/2m + 1

 . (170)

Just as we concentrated on low temperatures in the B-E case,

we will also do so here, for this is where we expect to see

quantum effects.  Again, α is determined from the expression

for n.  Before, we argued that α had to be positive and then

evaluated the expressions for n and ε in the extreme case

that α = 0.  Here, there is no such restriction since the

expression for ni in the F-D case, Eq
n (120), is never in any

danger of turning negative.  In either the B-E or F-D case,

determining α by solving (160) or (169), respectively, is a

difficult mathematical problem.  However, the situations

simplify at low temperatures.  In the B-E case we found self-

consistently that α ≤ 1 for T ≤ Tc and saw that the particles

all piled up in the ground state, p≥ = 0, when T = 0.  We

expect a completely different situation in the F-D case at

low temperatures.  Because of the exclusion principle, no

more than a single particle may occupy a given state of the

system.  Therefore, at T = 0 we expect the identical fermions

not to accumulate in the single p≥ = 0 state, but to fill up

the lowest n states of the system with single particles.  The

occupation number, n(p), considered as a continuous function

of 
p2

2m , should appear at T = 0 as follows:
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n(p)

1

p 
2m

2__

µ
.

That is, we expect

lim
T→0

 
1

eα+βp
2/2m + 1

 = 

 


 

1, 
p2

2m < µ

 

0, 
p2

2m > µ.

(171)

The quantity µ, called the "Fermi energy", is the energy of

the highest occupied state and will be determined by the

total number of particles present.  Eqn (171) specifies that

α(T) = - 
µ
kT (172)

at low temperatures.  Given the expected profile, (171), Eqns

(169) and (170) now read (at exactly T = 0)

n =  
8πV

h3
 ∫0

PF
dpp2, (173)

εT=0 =  
8πV

h3
∫0
PF
dpp2 


 
p2

2m , (174)

where we have set 
p2F
2m = µ.  Doing the trivial integrals

results in

n = 
8πV
3  

(2mµ)3/2

h3
 , (175)
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εT=0 = 
8πV
10  

(2mµ)5/2

mh3
 = 

3
5 µ 

 


 
n
V . (176)

Eqn (175) determines µ (and also the low temperature form for

α(T) through (172)).  We get

µ = 
h2

2m  


 
3

8π
 
n
V

2/3
. (177)

We define the "Fermi temperature,"

kTF = µ. (178)

Its significance will be discussed shortly.

These results are for T = 0.  Let us now look at the

first order deviations for low temperatures.  In the

following, we will be concerned with the approximate

evaluation of integrals of the form

I = ∫0
∞
dεp 

f(εp)

eα+εp/kT + 1
(179)

given that α(T) → - 
µ
kT at low temperatures.  First, rewrite

(179) exactly as

I = ∫0
-αkT

dεpf(εp) - ∫0
-αkT

dεp 
f(εp)

1 + e-α-εp/kT
 + 

 ⌡
⌠
-αkT

∞
dεp 

f(εp)

eα+εp/kT + 1
.

(180)

In the second integral above introduce the variable x through

εp = -αkT - (kT)x; in the third integral introduce x through

εp = -αkT + (kT)x.  Doing the change of variables, we get

(still an exact result)
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I = ∫0
-αkT

dεpf(εp) - kT ∫0
-α
dx 

f(-αkT - kTx)

ex + 1

+ kT ∫0
∞
dx 

f(-αkT + kTx)

ex + 1
. (181)

Now using the fact that α(T) → -
µ
kT at low temperatures, we

replace the upper limit in the second integral by +∞ and

write

I -~  ∫0
-αkT

dεpf(εp) + kT ∫0
∞
dx
f(-αkT + kTx) - f(-αkT - kTx)

ex + 1
 .(182)

This approximation holds when α ≤ -1, or equivalently, T ≤

TF.  We now expand the functions f(-αkT + kTx) and f(-αkT -

kTx) about their values at small x.  This is allowed in (182)

because of the suppression of higher order terms by the

factor (ex + 1)-1 at large x.

[f(-αkT + kTx) - f(-αkT - kTx)] -~ 2kTxf'(-αkT) (183)

where

f'(-αkT) ≡ 
 

df(εp)

dεp εp=-αkT
 . (184)

Our integral now reads

I -~ ∫0
-αkT

dεpf(εp) + 2(kT)
2f'(-αkT) ∫0

∞
dx 

x

ex + 1
 . (185)

But

∫0
∞
dx 

x

ex + 1
 = - ∑

n=1

∞

 (-1)
n

n2
 = 

π2

12 . (186)
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The last result can be justified from the theory of Fourier

series (see Kaplan, Advanced Calculus, 2nd edition, p.487).

Therefore, we have arrived at

I  -~T ≤ TF
  ∫0

-αkT
dεpf(εp) + 

π2

6  (kT)
2 f'(-αkT). (187)

Let us apply (187) to (169) and (170).  First, we rewrite

(169) as

n = 
8π√2 m3/2V

h3
 ∫0

∞
dεp 

ε1/2p

eα+εp/kT + 1
 , (188)

where εp = 
p2

2m .  In order to use the result (187) we identify

f(εp) = ε
1/2
p  for which f'(-αkT) = 

1
2 (-αkT)

-1/2.  Plugging in, we

find that

n -~ 
8πV(2mµ)3/2

3h3
 

 



 



 
 



 

-αkT

µ

3/2
 + 

π2

8   


 
kT

µ
2 

 



 

- 

µ

αkT
1/2  . (189)

The first term on the right in (189) just reproduces the

result (175) when T = 0, as it should.  Since n and V are

fixed, (189) implies a change in the meaning of α(T).

Setting α(T) = - 
µ
kT + z where z ≤ 

µ
kT , we find self-

consistently from (189) that

α(T) -~ - 
µ
kT + 

π2

12  


 
kT

µ
 . (190)
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Raising the value of T is thus seen to increase α(T), as it

should, since α(T) ≥ 1 is the classical limit.

We may employ the same technique on (170) to show that

ε  -~ 
8πV
10  

(2mµ)5/2

mh3
 

 



 



 



 

- 

αkT

µ
5/2 + 

5π2

8  
 


 
kT

µ

2
 

 



 

- 

αkT

µ
1/2  . (191)

Since we now know the approximate form for α(T), we may

rewrite this to first order as

ε -~ 
8πV
10  

(2mµ)5/2

mh3
 

 



 



1 + 
5π2

12   


 
kT

µ

2
. (192)

Recognizing from (176) that the overall factor in (192) is

just the energy of the gas at zero temperature, we have that

ε -~ 
3
5 nµ + 

π2

4  nµ 
 


 
kT

µ
2 . (193)

We again investigate the specific heat.  We have that

CV = 
π2

2  nk
2 

 


 
T

µ
 = 

π2

2  nk  


 
T

TF
 . (194)

Thus, we see that TF sets the scale of temperatures for the

Fermi-Dirac gas.

The point of this calculation is the following.

Remember that the electrons in the Kronig-Penney model are

treated as a gas acted upon by the stationary atoms. If we

use appropriate electronic concentrations, 
n
V , in (176) and

(177), we find that (see C. Kittel, Introduction to Solid

State Physics, 4th edition, p.248 for the values used.)
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(TF)Cu = 8.12 × 104°K

 
(TF)Ag = 6.36 × 104°K

 (194)

for Copper and Silver.  Thus, the electronic component of CV

at room temperature is very small.  Qualitatively, this

effect can be understood from the following diagram which

holds at T ≤ TF.

n(p)

1

µ

kT→←

εp

From the approximate form for n(p) when T ≤ TF,

n(p) ≈  
1

e(εp-µ)/kT + 1
 , (195)

it is easy to see that the width of the region of particles

with excited energies is of order kT.  The number of

particles excited is therefore of order n(
kT

µ
) = n 

 


 
T

TF
 .  This

means the excitation energy of the gas will be  
 


 
n 

 


 
T

TF
 kT =

nk 
T2

TF
 and the specific heat will be -~ nk 


 
T

TF
, as found above.

This solves the mystery of the missing electronic component

of specific heat for these materials since the Fermi

temperature is so high compared to room temperature for these

materials.
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Problems

1. Show from the commutation relations that

Ni (ai
+ a

i
+|...0i...>) = 2(ai

+ a
i
+|...0i...>),

where Ni = ai
+ a

i
 for both FD (trivial) and BE statistics.

2. (a) Given

ai |...ni...> = Ci |...ni-1...>,

where Ci is an unknown constant, and

a
i
+ a

i
 |...ni...> = ni |...ni...>,

show that

Ci = √ni eiα,

where α is an arbitrary (real) phase.

(b)  Deduce from (a) that

a
i
+ |...ni-1...> = e-iα √ni |...ni...>.

3. For a two-physical property FD system adopt the

definition:

a
1
+ a

2
+ |0,0> = a

1
+ |0,1> = |1,1>.

    (a)  Show that

a1 = |0,0><1,0| + |0,1><1,1|,

a2 = |0,0><0,1| - |1,0><1,1|,

satisfy (66) - (69) and the above result for a
1
+ a

2
+ |0,0>.

    (b)  Show that
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a
i
a
i
+ + a

i
+a

i
 = ∑

n1,n2 = {0,1}
    |n1,n2><n1,n2|,

for either i = 1 or 2.

4. From problem 2 above we know for FD statistics that

a
i
+ |...0i...> = e-iα |...1i...>,

a
i
 |...1i...> = eiα |...0i...>.

Using the convention that eiα = 1 when the number of

occupied one-particle states with index less than i is

even, and eiα = -1 when this number is odd, evaluate:

    (a)  a
3
+ |1,0,1,0,0>=?

    (b)  a
5
+ a

1
 |1,0,1,0,0>=?

    (c)  a1a3a5a4a2 |1,1,1,1,1>=?

    (d)  a
3
+a

1
+a

4
+a

5
+a

2
+ |0,0,0,0,0>=?

The occupation numbers are given in the order:

|n1,n2,n3,n4,n5>.

5. (a) Show for both statistics:

[a
i
,a

j
+a

k
] = δijak.

Then derive

[a
i
+,a

j
+a

k
] = -δikaj

+.

by Hermitian conjugation.

    (b)  Apply part (a) to prove

[a
i
+a

j
,a

k
+a

l
] = δjkai

+a
l
 - δilak

+a
j
.

6. Evaluate:



9.53

    (a)  e-iλNaieiλN = ?

    (b)  e-iλNa
i
+eiλN = ?

where N = ∑
i

 Ni is the total number operator.

[Hint:  Differentiate these quantities in λ and solve the

resulting differential equations.]

7.  F(1) ≡ ∑
i,j
 a

i
+a

j
 <i|f|j>,

    G(1) ≡ ∑
k,l
 a

k
+a

l
 <k|g|l>.

Show (use the result of problem 1(b))

[F(1),G(1)] = ∑
i,j
 a

i
+a

j
 <i|[f,g]|j>.

8. Use (upper sign is BE, lower sign FD)

1
eα + βε • 1

 -~ e−α - βε ¶ e−2α - 2βε

when eα is large to evaluate

N = 
ωV

(2πh)3
 ∫d3p 1

eα + β(p
≥2/2m) • 1

and

E = 
ωV

(2πh)3
 ∫d3p 

p
≥
2

2m

eα + β(p
≥2/2m) • 1

approximately.  Show that

N
V -
~ ω(

mkT

2πh2
)3/2 e−α[1 ¶ 2-3/2e-α],
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E
V -
~ 
3
2 kTω(

mkT

2πh2
)3/2 e−α[1 ¶ 2-5/2e-α].

Then show that 
E
V and 

N
V are related by

E
V -
~ 
3
2 kT (

N
V) (1 • 2

-5/2e-α).

9. (a) Evaluate the integrals (for photons)

n = 
8πV
h3  ∫0

∞dpp2 
1

eβpc - 1
 ,

ε = 
8πV
h3  ∫0

∞dpp2 
pc

eβpc - 1
 .

Note that ζ(3) = 1.20206, ζ(4) = 
π4

90 .

    (b)  Show that we may also write

ε
V = ∫0

∞dν u(ν), where

u(ν) = 
8πhν3

c3  
1

ehν/kT - 1
 .

Demonstrate that in the ν → 0 and ν → ∞ limits we get:

ν → 0
lim  u(ν) = 

8πν2

c3  kT,

ν → ∞
lim  u(ν) = 

8πhν3

c3  e-hν/kT.

Other Problems

10. Consider a gas of n identical nonrelativistic fermions.

This gas, in an enclosure of volume V, is placed in a
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uniform magnetic field, Bz, pointing along the positive z-

axis.  An atom with momentum p
≥
 can have only two possible

energies:

ε(¶) = 
p
≥
2

2m ¶ λ Bz,

where λ is the atom's magnetic moment.  At exactly T = 0

(zero temperature), the occupation numbers n(¶) (associated

with the energies ε(¶)) look like (assuming λ > 0; "µ" is

the common value for the "Fermi energy"):

n(-) n(-)

n(+) n(+)

1

11

1

µ

µ

ε(−)

ε(+)

or

or

p

p

p
F
(-)

p
F
(+)

-λB z

λB z

Assuming n(¶) are given by

n(¶) = 
4πV
h3  ∫0

pF(¶)dpp2,

at T=0, show that (n = n(-) + n(+))

n(-) - n(+) -~ 
3nλBz
2VkTF

 , n -~ 
8π
3h3

 (2mµ)3/2,
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where kTF = µ. (Make the approximation |λBz| << µ.)

11. Consider fermion creation and annihilation operators a
i
+

and a
i 
for some particle property "i".

(a)  Find matrix representations for each of the following

operators (use the number basis):

(i)   a
i

(ii)  a
i
+

(iii) a
i
+ a

i

(b)  Evaluate:

(iv)  eai+ai |...ni...> = ?

(v)   eaiai+ |...ni...> = ?

12. Consider an ensemble of N one-dimensional harmonic

oscillators whose energy levels are quantized but which

obey Maxwell-Boltzmann statistics. The energy levels, as

usual, are given

En = hω(n + 
1
2).

(a) Given that the occupation number of the nth state at

temperature T is given by (β = 1/(kT))

nn = exp(-α -βEn),

find an expression for the total energy of the gas, E.

[Hints: You can eliminate α by using

N = ∑
n=0

∞
 nn.

Also, the sum

1
1-x = ∑

n=0

∞
 xn
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may be helpful. You should be able to do (b) and (c) even

if you can't do the sums in (a).]

(b) Find the specific heat of this collection of

oscillators by taking

Cv = 
∂E

∂T
|
V
,

(c) Take the limit

lim
T§∞

 Cv = ?.

[Hint: This limit should give the classical result expected

from the equipartition theorem.]

13. Consider a relativistic gas (E = pc) of N identical

Fermi-Dirac particles occupying a volume V at zero

temperature (T=0). Show that the total energy, Etot, of the

system is given by

Etot = 
(9π)2/3

4  hcN4/3V-1/3.

[Such considerations are important in stellar dynamics of

white dwarfs and neutron stars, for example.]
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Chapter 10: Connecting to the Standard Model

We have came a long way in our understanding and delineation
of the quantum aspects of our world.  It is now time to begin to
apply our quantum description to nature on the smallest scale
that can be determined with present technology. We will find a
rich, detailed set of interactions and particles which make up
the bricks and mortar of our physical world.

We have covered some of the important dynamical principles
involved, but we have not yet met the particles.  We will do so
momentarily, but first we need a way to distinguish or categorize
the particles that exist in our world.  We already know about the
dynamics associated with some of the properties of particles:
mass, parity, and spin.  However, there are also quantum
properties which derive from discrete symmetries which
characterize a particle and its interactions.  There are three
such properties I would like to discuss at this point: parity,
time reversal and charge conjugation.  First, we will become
reacquainted with the property known as parity, from a
transformation, not quantum, point of view.

I. Discrete Symmetries

Parity

  We have of course already discussed the parity operation in
this text.  The emphasis here will be on the effect of parity on
the transformation properties of quantities of quantum fields.
Start with the idea of scalar and pseudoscalar fields. Under any
orthogonal transformations:

!'(x ') = !(x ).  (a scalar field) (10.1)
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Example:  dot product.  Proof: (A'i = "
j
 aij Aj, B'i = "

k
 aik Bk)

    A '.B  = "
i
  A'i B

'
i = "

i,j,k
  aij Aj aik Bk,

= "
j,k
 

 #
$

 %
&"

i
 aij aik  Aj Bk = A .B . (10.2)

                            'ik

Another example:  (.A (if A is a vector).  There are also

pseudoscalars.  They transform as

!'(x ') = (det a) !(x ). (10.3)

The transformation of vector and pseudovector fields can be
characterized by their behavior under rogations.  Component
statement:

x'i  = "
j=1

3
 aijxj  #

$
 %
&rotate coord:  passive

rotate system:  active  . (10.4)

Matrix statement:

  
 #
)
)
$

 %
*
*
&x'1

x'2
x'3

  = 
 #
)
$

 %
*
&a11

a21
a31

a12
a22
a32

a13
a23
a33

  
 #
)
$

 %
*
&x1

x2
x3

 , (10.5)

  or  x' = ax. (10.6)

So, anything transforming as

   V'i(x')  = "
j
  aijVj(x ) ( )V(x) a vector field , (10.7)

under an active rotation is a vector.
Conditions on the aij?  Must preserve the length of vectors.
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=>  "
i
 aijaik = 'jk, (10.8)

or

aTa = 1, (10.9)

                      =>  aT = a-1   "orthogonal". (10.10)

The above condition represents 6 eqns in 9 unknowns
=> 3 aij’s are free (rotations about x,y,z axes).  Determinant:

                           completely antisymmetric

    det A = +ijk...  a1ia2ja3k...  ] (10.11)

                         
                         n indices   n factors

Take determinant of aTa = 1:

=>  (det a)2 = 1, (10.12)

=>  det a = 1    only. (10.13)

det a = 1 describes pure rotations.  What does det a = -1
describe? Example (makes a new object):

y

z

x

blue
active

=>

z

y

x

blue
red

red

A A

Given by:
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a = 
 #
)
$

 %
*
&-1

 0
 0

 0
-1
 0

 0
 0
-1

 .

Can not be done by a rotation.  It is an inversion (also
orthogonal).  Vectors change sign under a complete inversion:

v

=>

-v

There is another type of vectorial quantity which, however,
is distinguished by its behavior under inversion.

Consider (A, B vectors)

(A × B)i = "
j,k
 +ijk Aj Bk. (10.14)

Need result (problem):

"
j,k
 +ijk aj akm = (det a) "

n
 +n m ain. (10.15)

Thus

   (A'× B')i = "
j,k
 +ijk A'jB'k = "

j,k, ,m
  +ijk aj A akm Bm

= "
j,k, ,m

 +ijk aj akm A  Bm = (det a) "
n, ,m

 +n m ain A  Bm

= (det a) "
n
 ain(A × B)n. (10.16)

This type of vector (pseudovector) does not change sign under an
inversion.  It's transformation law is simply
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    V'i(x') = (det a)"
j
 aijVj(x) ( )V(x) a vector field . (10.17)

Example: angular momentum (L = (x × p)).  Choose:

a = 
 #
)
$

 %
*
&1

0
0

0
1
0

 0
 0
-1

 .

Under this a:

L'x  = -Lx,  L
'
y  = -Ly,  L

'
z  = +Lz .

mirror

x,y plane

L' into
page

L out of
page

mirror

L' L
loop

+z

Notice that since L is a pseudovector, the lack of change of sign
on the z-component under this transformation is what
distinguishes it from a vector under the same transformation.
Particle spin also behaves as a pseudovector under coordinate
transformations.

A problem at the end of the chapter illustrates the use of
parity in the properties and "selection rules" for
electromagnetic transitions.  This discrete symmetry is contained
in the more general set of relative linear coordinate
transformations, called Lorentz transformations, which preserve

only the "proper length", ,s2  c2,t2 - ,x2, between events,

rather than space and time intervals separately.  We will learn
in an upcoming section that the strong interaction, which
conserves parity, is responsible for producing bound states from
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several particles.  For example, meson states are bound states of
particles known as quarks.  These are classified by their parity,
just like atomic states.  However, not all interactions in nature
conserve parity. We will see that the weak interactions
intrinsically do not conserve parity.  This is not a small
violation for this interaction, but in some sense it is
"maximally" violated, and was difficult to confirm in the
laboratory only because of the extreme weakness of the
interaction involved.  This realization was one of the most
profound shocks to particle physics in the 20th century.

Time Reversal

A better name for this discrete symmetry is reversal of
motion.  All non-velocity dependent static forces in classical
mechanics are time-reversal invariant.  This can be seen from
Newton's law:

 -.
/
.0F = ma,

(V(x) = mx
.... ....  invariant under t -> -t (10.18)

1 if   
vx t( ) is a possible trajectory (solution), then so is   

vx t( )2

Also, if all one had in the world were electric fields any
particle trajectory would be invariant under:

  
v v
E E3 ,   t t3 2 . (10.19)

Since     
v
F =   qE

v
 =   2 (q x

v v
4( ) (10.20)

However, magnetic fields are a little trickier. Imagine a world
where (electron charge, e<0):
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S

N

j =>

Lorentz force
inward on 
electron

v v

Imagine just letting   t t3 2 ,   
v vv v3 2 .

S

N

Lorentz force 
inward on new 
axis

 
v
j 

 
 
 
2

v v  
 
 
 

v 
B 

Different 
axis X

=>
v-

Electron does not retrace former trajectory.  Let

  t t3 2 ,     
v vv v3 2 ,     

v v
j j3 2 ,    

v v
B B3 2 .

  5 Makes sense from point of view
of reversal of motion.

S

N Lorentz force 
inward on same 
axis

  2
vv  

 
 
 
2

v 
j => v-
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Formally, Maxwell's equations are invariant under

  t t3 2 ,     
v v
E E3 2 ,     

v v
B B3 2 ,   f f3 ,   

v v
j j3 2 ,     

v vv v3 2 . (10.21)

What about the Schro
........
dinger equation in this context? It is a

first order differential equation in time.  We have

i
67(x,t)

6t
 = [-

2

2m (2 + V(x)]7(x,t). (10.22)

7*(x,-t) (complex conjugate) is also a solution:

i
67*(x,-t)

6t
 = [-

2

2m (2 + V(x)]7*(x,-t). (10.23)

So we learn that if <x|8> is the t = 0 wavefunction, the time-

reversed (motion-reversed) wavefunction is given by <x|8>* =

<8|x|>.

<x|8>* 1
time-reversal <8|x>. (10.24)

From this very simple observation, we deduce that if we are to
introduce an operator which represents time reversal, it is a
very unusual object.  The reason is that an operator only takes
bras into bras and kets into kets. For example:

X = "
i,j
 |ai><aj|Xij, (10.25)

1 X|ak> = "
i
 Xik|ai>,   <ak|X = "

i
 Xkj<aj|.     (10.26a,b)

What we want to do now is more akin to an operation, rather than
an operator.  For example, we had for Hermitian conjugation (see
Ch.1, Eq.(188)),



10.9

(|8>)+ = <8|. (10.27)

Under +:

(<x|8>)+ = <8|x>. (10.28)

However, now consider the momentum space time-reversed
wavefunction.  We have (t=0),

7~8(p') = 
1

(29 )3/2
 : d3x e-ip'.x/  7~ 8(x'), (10.29)

        5 time-reversed
position wavefunction

7~8(x') = 7
~
8*(x'), (10.30)

!~8(p') = 
1

(29 )3/2
 : d3x e-ip'.x/  7~ 8*(x'),

  = !~8*(-p'). (10.31)

We have found that

<p'|8>* 1
time-reversal <8|-p>. (10.32)

   1 Time-reversal is not equivalent to "+" (dagger).

We will take the following point of view. Define the effect
of a anti-unitary operation:

base kets
 ;
<
=

  

8 8 8

> > >

( ) = =

( ) = = +

A

A

U

U

˜ ,

˜ .
    (10.33a,b)

Hermitian conjugation is one such example with U = 1. However, we
also define

No star!
    ?     ?

    C C A
1 2< + <( )8 >| |  = 

  
C C1 2˜ ˜8 >+ , (10.34)
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  8>|( )A =   8 >|  = 
  
|̃̃> 8 . (10.35)

Notice these rules imply

  8 U T( )  =   8( )T TU , (10.36)

  U
T

>( )  =   U
T T( ) > , (10.37)

and that

    U
T8( )  =   8̃ U. (10.38)

We now define the effect of the time-reversal operation on
    
vx',   

vp' eigenstates:

 

    
vx T'( ) =   

vx' ,    
vx T'( )  =   

vx' (10.39)

    
vp T'( )  =   2

vp',     
vp T'( )  =   2

vp' . (10.40)

Effect on     
v vx p, ?

  
v vx x T' '( )  =   

v vx xT' '( )  =    
v vx x' ' =     

v vx xT ' (10.41)

1   
v vx xT = . (10.42)

Similarly   
v vp pT = 2 .

Let us examine the effect of the time reversal operation on
particle states using the above formalism. The standard way of
time evolving a system for a simple time independent Hamiltonian
is

|8, 't> = 
 #
$

 %
&1-iH 't  |8>. (10.43)

Visualization (pictures after Sakurai, Fig. 4.11):
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v 

.

.

  't

 
 
 
 

v 
P 1

 
 
 
 
P 2

t=0, | >8

 
 
8, 't 1-

iH
't |8>= ( )

Change the time origin, motion reverse, and evolve backward in
time:

v 

.
.

  't

 
 
 
 

v 
P 1

 
 
 
 
P 2

-
t=0, | >T8

 8, 't 1-
iH

't= ( ) 8
T

Evolve backward, then motion reverse:

1-
iH

't( ) 8 t= 
0  80,

v 

.
.

  't  

 
 
 
 
P 2

-

  
v 
P 1

v 
- 1  P 

T
1-

iH
't( ) 8[ ]

If the system is motion reversal invariant, then we have

  8̃  
 #
$

 %
&1 + iH't  T =   8̃  

 #
$

 %
&1 + iH't  . (10.44)

For any   8̃ , this implies (H) T = H.

We are using the special rule that the complex number "i"
does not have any special transformational properties under time
reversal. There is an immediate consequence of this property,
which I will state as a theorem.
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Theorem: HT = H and the energy eigenkets   n  are

nondegenerate. Then we may always choose

  
vx n'  =   

vx n' *. (10.45)

Proof:

Given:   H n  =   E nn . Take  T:    n
T( )  =   ̃n .

1  ̃n HT =   E nn ˜ ,   1  ̃n  =   e ni'  (choose '=0), 

1  
vx n'  =   

vx n T'  =     
vx T'|( )   @ ( )n T =     ̃ 'n xv ,

         5 complex number

  1   
vx n'  =   

vx n' *.

My treatment of time reversal as an operation, rather than
an operator, is not standard. However, much of the Dirac notation
formalism developed in earlier chapters must be modified or
abandoned if we take the operator point of view. For example, the
operator point of view has 8 >A( ) B 8 >A( )  where A is the

time reversal operator. In addition, even though (H) T = H
characterizes a time reversal invariant Hamiltonian, unlike
parity there is no "conservation of time reversal quantum
number." The operation point of view makes this explicit since
there is no operator that commutes with the Hamiltonian!

Charge Conjugation

Charge conjugation refers to the act of changing particle
into anti-particles. we have not yet talked about anti-particles,
which are particle states with all additive quantum numbers
reversed in sign. (Additive quantum numbers consist of electric
charge, the various quark "flavors," such as strangeness, and the
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three types of lepton number.) Calling this operator C, it's
affect on a state with additive quantum numbers A, B, C, would be

C|A,B,C> = |-A,-B,-C>. (10.46)

Given that the electric charge, Q, is such a quantum number, one
can immediately see that these operators have the property that
they ant-commute:

  {C,Q} = 0. (10.47)

This last equation implies that no state of non-zero charge can
be an eigenstate of C. In general, this applies for any additive
charge. In addition, applying charge conjugation twice gives back
the same state, which says that

 C 2 = I. (10.48)

This equation implies that the eigenvalues of C are   ±1, for non-
degenerate states, just like parity. It is a multiplicative
quantum number, just like parity.

One particle which has no additive charge is the photon.
Changing the sign of the charge will change the sign of the
photon field, Aµ. We learn in quantum field theory that this

field may be used to create or destroy a photon. Thus, each
additional photon in a given state changes the sign of the charge
conjugation state. This quantum number will be conserved if C
commutes with the electromagnetic Hamiltonian causing the decay,
and thus the charge conjugation of the initial and finial states
are the same. The neutral pion decay,

  90 = C + C, (10.49)

implies that 
  
C
90
 = 1. This particle is never seen to decay into 3

photons. The neutral pion state is formed from the strong
interaction, and thus this is a very strong hint that the strong
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interactions also conserve charge conjugation. Other neutral
states for which charge conjugation conservation are applicable
are positronium (  e e+ 2) and so-called quarkonium states, such as

  cc (charm/anti-charm).
The following table summarizes the transformation properties

of states under the various discrete operations described above.

Table I: Summary of described discrete transformations

Parity:     
v v
J J3      ( )

v v v
J L or S= ,   

v vp p3 2 ,     
v vx x3 2 .

Time Reversal:     
v v
J J3 2 ,   

v vp p3 2 ,    
v vx x3 .

Charge conjugation:     
v v
J J3 ,   

v vp p3 ,     
v vx x3 ,

(All additive quantum numbers such as electric charge, baryon
number and the various lepton numbers change sign.)

II. Particle Zoo

In this section we will be briefly introduced to the
particles of the so-called "Standard Model" of particle physics.
Our world is remarkably and intricately made from a collection of
61 particles, some stable from decay into other fundamental
particles and some not. All of these 61 particles are now known
directly from experiment with one notable exception to be
described later. These particles can be classified according to
their types of interactions: the quarks feel the EM, strong, and
weak interactions, and the leptons participate in EM and weak
interactions. In addition, there are the particle mediators of
these interactions, the so-called gauge bosons. For a quick
picture of the types of interactions in which these particles can
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participate, see the pictorial list of allowed particle vertices
in Appendix A of the present chapter.

Let us begin first with the quarks. Quarks have spin 1/2 and
come in 6 different "flavors" as far as the strong interactions
are concerned - these have come to be called "down" (d), "up"
(u), "strange" (s), "charmed" (c), and "bottom" (b), and "top"
(t). These are presented along with their electric charges (in
units of the proton's electric charge) in Table  II. (There are
also anti-quarks, d-, u-, s-, c-, b-, and t- with the opposite
electric, color charges of their particle partners.) The reason
for the grouping of two flavors is that each combination (d,u),
(s,c) and (b,t) is considered a different "generation" or
"family." Note from the table that the electric charges in each
generation are repeated. Each flavor of quark has a unique mass,
but specifying their mass values is difficult because, as we will
see, quarks are only detected in bound states; individual quarks,
such as u or d, are never detected in the laboratory. At high
enough energies, one can define the quark masses by analyzing
certain experiments. From this method, one finds that the up
quark mass is anywhere from about 2 MeV to 4 MeV, the down quark
has a mass of from 4 MeV to 8 MeV, and the strange quark has a
mass of about 80 MeV to 130 MeV. The first three quarks are
considered "light", the last three are "heavy". The mass of the
charm quark is about 1.2 GeV, the b-quark has a mass of
approximately 4.26 GeV, while the top quark's mass is a whopping
174 GeV. Each quark also has a "baryon number", arbitrarily
assigned as 1/3, so that three quark combinations, such as the
proton or neutron, have unit baryon number. This quantum number
is conserved in all particle interactions as far as is known.
Counting up the number of quarks gives a counting of 6 (flavors)
x 3 (colors) x 2 (particle/anti-particle) = 36 particles of the
61 standard model particles.
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Table II- Quark Additive Quantum Numbers

   Flavor    Charge   Baryon Number

 

-1
3

2
3

d

u

(down)

(up) 3
1

3
1

 

-1
3

2
3

s

c

(strange)

(charmed) 3
1

3
1

 

-1
3

2
3

b

t

(bottom)

(top) 3
1

3
1

As I said above, the group of particles known as leptons
feel only the EM and weak forces. There are 6 of these particles,
just as there are 6 flavors of quarks, and they also have spin
1/2. Also, just as the (d,u), (s,c) and (b,t) combination of
quarks forms a different "generation" or "family", the leptons
are similarly grouped, but of course their electric charges are
different. There are electron and electron neutrinos, (e,De), the
muon and muon neutrono, (µ,Dµ), and the tau and tau neutrino,
(E,DE). (Again, there are also the anti-particles for each of

these.) And just like the quarks, the masses of each generation
increase (me > mµ > mE), with the possible exception of the

neutrinos, which for many years have been thought of as being
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massless. It is now known that all these particles very likely
have small, but non-zero masses. This is a subject of on-going
research. Since the neutrinos are neutral, they participate only
in weak interactions.

All the leptons in Table III are fundamental (not made up of
other particles), but not all of them are stable. For example,
the muon and tau leptons (masses of 105.6 MeV and 1.78 GeV,
respectively) decay. The primary decay mode for the muon is µ ->
e D-e Dµ. The lifetime associated with the muon is 2.2x10-6 sec.

Notice that in this decay the lepton numbers defined in the table
below are conserved. The muon has Lµ=1; this decays into
particles having Le=1 (e), Le=-1 (D-e), and Lµ=1 (Dµ).

The counting of leptons is: 6 (types) x 2 (particle/anti-
particle) = 12 of the 61. We are up to 36 + 12 = 48 of 61
particles.

All forces in nature are mediated by other particles, known
as gauge bosons. Bosons have integer spin and gauge bosons all
have spin 1. The gauge boson in electrodynamics is the photon,
the particle of light; the gauge boson in QCD is called the
gluon. These two particles are massless and travel at the speed
of light in vacuum. There are 8 such particles (see the below
discussion under QCD particle interactions). The gauge bosons of
the weak interactions are the charged W+- and the neutral Z0

bosons. Both of these particles are massive; in fact, the W+- has
a mass of about 86 times that of a proton (80.4 GeV as opposed to
.938 GeV), and the other has a mass of about 97 times times a
proton (91 GeV).

The counting of gauge bosons is: 8 (gluons) + 2 (W+-) + 1
(photon) + 1 (Z) = 12. We are up to 60 of 61 particles.
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Table III: Lepton Additive Quantum Numbers

   Lepton Charge    Le      Lµ     LE

-1e

D

1

1

(electron)

(electron neutrino)e
0 0

0

0

0

-1

D

1

1

(muon)

(muon neutrino)µ
0 0

0

0

0µ

-1

D

1

1

(tau)

(tau neutrino)E
0 0

0

0

0E

The only particle we have not mentioned yet in the standard
model is the Higgs boson. It is a spin 0 neutral scalar particle.
It's mass is not determined by the Standard model. It has not
been observed, but it's mass is now constrained by various
experiments to lie in the range of from about 65 GeV to about 114
GeV. We will have more to say about the Higgs boson in the weak
interaction section of the following particle interactions
section. There is supposedly only one Higgs boson.

These are the 61 particles of the Standard Model of particle
physics.
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III. Particle Interactions

Quantum Electrodynamics (QED)

     The basic interaction vertex in electrodynamics is shown in
the Appendix A. Quantum electrodynamics, QED, is the best knows
and most studied aspect of the Standard Model. Using Feynman
diagrams, the structure and exact properties of many processes
are straightforward to compute. For example, the Feynman diagrams
for e- C -> e- C all given to lowest order as

C

1 2

C

e-

e-

   

time

2'

1'

C

C

e2

e2

Again, remember that the vertices can come in any time ordering,
the only thing invariant is the structure or topology of the
diagram. For example,

If “1” is before “2”; e+ line
If “2” is before “1”; e- line

A similar statement can be made about the vertices 1’ and 2’ in
the right diagram. The particles which are exchanged in these
diagrams, the internal lines in the Feynman diagrams, are called
“virtual” particles. We already know a little about the range and
lifetime of such particles from the discussion in chapter 7
regarding the pion. There we learned that the Heisenberg
uncertainty principle determined these quantities, see Equations
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(7.112) and (7.113). It is similar here with the electron; it is
exchanged over an approximate range of /(mec) = 3.9x10-11 cm (the
so-called electron Compton wavelength) with a time uncertainty of
/(mec2) = 1.3x10-21 sec.

The most fundamental and stringently tested conservation law
in nature is the conservation of electric charge. This
conservation is intimately tied up with the fact that the photon,
the gauge boson of QED, is exactly massless, as we have already
pointed out. Massless particles have and important property
related to spin: the have only two degrees of freedom, rather
than the expected. 2s+1=3 m values of s=1. Formally, the range of
massless photons is infinite. It turns out that relativistic
field theory requires the spin of massless particles to only
point along the direct of motion, p, as in the opposite

direction. That is, the photon’s helicity, 
    

v v
v

s p
P
@
||

, can take only

the values + 1 or – 1. This particle property is familiar to us
as the 2 polarizations of light we know about from classical
electrodynamics. These two polarizations can be pictured a
follows. Let us say that the motion of a photon is out of the
page. Then, the two independent polarizations may be pictured as

Y

X

E

 

Y

X

E

 The left diagram has an E field vector which is instantaneously
rotating in a circular path in a counterclockwise fashion. This
is called left circular polarization and is associated with
negative helicity. Of course, we may use a linear polarization
basis to describe light beams; these are just linear combinations
of these two polarizations. We also learned in the above section
on charge conjugation that the photon has no additive quantum
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numbers. This implies that there is no such thing as an anti-
photon. The photon can be considered it's own anti-particle.

Electrodynamics provides the “glue” which makes atoms
possible and essentially all the forces which make up the
material around us. QED is so well understood that it can be used
to test or understand other forces. For example, in the early
60’s a series of experiments were done at the Stanford Linear
Acceleration Center (SLAC) involving the scattering of electrons
off of protons and neutrons. (e- N -> e- X, where "X" is
anything. This is called “inclusive” scattering). These
scattering just involved exchanging photons, are one would expect
from the theory. What physicists discovered from a careful study
is that the cross sections behaved as is the electrons were
hitting point objects within the nucleus, just as Rutherford long
ago discovered the atomic nucleus from the scattering of b-
particles (electrons). This type of interaction is called deep
inelastic scattering, and by this physicists discovered quarks.
The quarks could not be knocked out of their environment (this is
called confinement), but the electromagnetic interaction made it
clear that there were a number of point objects in photons and
neutrons. Although the quarks could hide themselves within a
hardon, they could not escape detection by the infinite-ranged
photon!

Quantum Chromodynamics (QCD)

As I said before, the theory of strong interactions is
described by QCD.  The force is mediated my the gluons and is
extremely strong compared, for example, to electromagnetism.
This force is Coulombic (~ 1r2) at small distances and distance

independent (~ constant) at large distances.  This constant
force, or tension, equivalent to about 15 tons, is what is
responsible for quark confinement.  This string can break at
large enough distances, but instead of getting two pieces of
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string, another quark/anti-quark pair emerges from the vacuum to
terminate the string ends, much like what happens to a magnet
which is broken in half.  Quarks are only seen confined, in
hadrons. The energy scales and sizes of hardons are determined by
the strength and range of this force. They are the major building
blocks, by mass, of our known physical world. Of these, the up
and down quarks dominate; most of hadronic matter is made up of
neutrons and protons, which are composed of two down-quarks and
an up-quark, or by two up-quarks and a down-quark, respectively*.
The small mass differences between up and down quarks, down being
slightly more massive than the up quarks, is responsible for
neutrons being slightly more massive than protons. (There is also
a smaller electromagnetic effect due to the charge on the proton
which raises it's energy. This also affects other particles, like
charged and neutral pions.)  Just as electrons carry electric
charge, which is absolutely conserved, quarks carry three color
charges, which are also absolutely conserved (call them green,
blue, and red). The name "color" is arbitrary, but suggestive.
Just as white light is composed of a mixture of all the colors in
the spectrum, one can make white or colorless combinations of
quarks. This can be done in two ways: combining a color with its
opposite, making a quark-anti-quark pair (mesons) or by combining
three different colored quarks (baryons). Hadronic physics is the
study of the properties and interactions of these composite
particles.

The theory of the strong interactions is called Quantum
Chromodynamics, QCD for short. As pointed out above, in all
particle theories, forces are mediated by other particles known
as gauge bosons. Bosons have integer spin - gauge bosons all have
spin 1. The gauge boson in electrodynamics is the photon, the
particle of light; the gauge boson in QCD is called the "gluon".

* There is also an admixture of all other types of quarks in
protons and neutrons. Quantum field theory tells us that
quark/anti-quark pairs of all species are continuously
appearing and disappearing in the vicinity of hadrons. These
are called "sea quarks", and they can have dramatic physical
effects, although these flavors are "hidden".
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These two particles are massless. There is one all-important
different between protons and gluons. Photons are chargeless,
whereas gluons also carry color. To see why, consider the
diagram:

blue
green

gluon

time

1 2

blue

green

. .

The gluon changes the quark color from one vertex to the other
and thus carries color also. This gluon carries the color
green/anti-blue (  gb) if vertex 1 comes before vertex 2, and
blue/anti-green (  bg) for the opposite ordering. (Remember

Feynman diagrams are agnostic on time ordering of vertices, so
this specification is really not necessary.) There are 9 such
combinations of 3 colors; however, the colorless combination,   gg

+   bb +   rr, does not correspond to a particle, so there are only
8 gluons. The basic vertices for quarks and gluons are shown in
Appendix A, where we see that unlike photons, gluons can couple
to themselves. They are also confined inside hadrons, like
quarks.

The theory of strong interactions can not be formulated and
solved in the usual field theory way of using Feynman diagrams,
as can electrodynamics or QED. QED interactions are characterized
by a particle/photon coupling strength given by the square root
of the fine structure constant, 8 = e

2

c F 
1
137 , which is small

compared to one and allows the Feynman diagrams to be summed to
very high order. For QCD, the quark-gluon vertex has an analogous
coupling strength, 8strong, which is close to one, making the

series of Feynman diagrams divergent. This coupling strength is a
function of the interaction energy and becomes smaller at high
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energies due to sea quark contributions (see the footnote on sea
quarks in proton, neutrons). Thus for high energy interactions,
Feynman diagrams are again useful. This property of the QCD
coupling strength is known as "asymptotic freedom." (This
property is used to define quark masses at high energies.)

Let us consider an unphysical world where all quarks are
"heavy". Then their motions inside hadrons would be
nonrelativistic. This is called the "quark model." This model is
an incredibly good guide to overall properties, like magnetic
moments and mass orderings. QCD does not change any of the
flavors into any of the other flavors, so the u, d, etc. quantum
numbers are conserved in strong interactions. Since the u, d
quarks are considered degenerate in mass in this model, this
gives an effective SU(2) in flavor space which is called
"isospin." The mathematics of isospin are exactly the same as the
two-valuedness property of Chapter 1, and different isospins may
be added exactly as we learned in Chapter 8. The fact that this
quantum number is conserved in the strong interactions gives us
the ratio of certain matrix elements involved in particle
interactions (see the problems at the end of the chapter). Tables
IV, V, and VI shows the flavor - spin wavefunctions of the lowest
mass particles expected in the quark model, along with their
isospin classification. (The various K mesons also have a
strangeness quarntum number which distinguishes them.)

There is a numerical method for solving QCD, called "lattice
QCD", which solves the theory directly and does not depend on the
summation of Feynman diagrams. In fact, the degrees of freedom in
quantum field theories are not the number of particles involved
(like in nonrelativistic quantum mechanics), but the points of
space and time themselves. Thus, the simplest field theory
already has an infinite number of degrees of freedom.
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Table IV: Pseudoscalar Meson Table

Mass (MeV)  Isospin SpinParity wave function

9-
+ 139.6 I=1, I3=+-1 0-    ud- (du-) x (singlet spin)

90 135.0 I=1, I3=0 0- (uu--dd-)/GH 2

I-+ 493.7 I=12, I3=
+-
1
2 0- us- (su-)

I0(I0-) 497.3 I=12, I3=
-+
1
2 0- ds- (sd-)

J 548 I=0 0- (2ss--uu--dd-)/GH 6
J' 958 I=0 0- (uu-+dd-+ss-)/GH 3

Table V: Vector Meson Table

Mass (MeV)  Isospin SpinParity wave function

K-
+ 776 I=1, I3=+-1 1-    ud- (du-) x (triplet spin)

K0 776 I=1, I3=0 1- (uu--dd-)/GH 2

IL-
+ 892 I=12, I3=

+-
1
2 1- us- (su-)

IL0(IL0-) 899 I=12, I3=
-+
1
2 1- ds- (sd-)

M 782 I=0 1- (uu--dd-)/GH 2
! 1020 N=0 1- ss-
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Table VI: Baryon Octet Table

    Mass (MeV)  Isospin wave function(+cyclic permutations)

p 938.3  I=12, I3=+
1
2
   |uud>(2|++->-|+-+>-|-++>)/3GH 2

n 939.6  I=12, I3=-
1
2
   

  2 + + 2 2 + 2 + 2 2 + +( )ddu 2 3 2/

O0 1115   I=0       uds dus2( ) + 2 + 2 2 + +( ) / 2 3
P+ 1189   I=1, I3=1      uus 2 3 2+ + 2 2 + 2 + 2 2 + +( ) /
P0 1192   I=1, I3=0     uds dus+( ) + + 2 2 + 2 + 2 2 + +( )2 6/
P2 1197   I=1, I3=-1     dds 2 3 2+ + 2 2 + 2 + 2 2 + +( )
Q0 1314   I=12, I3=+

1
2      uss + + 2 + + 2 + 2 2 + +( )2 3 2

Q2 1321   I=12, I3=-
1
2   dss + + 2 + + 2 + 2 2 + +( )2 3 2

It is this infinitude of degrees of freedom which cause many of
the divergences encountered in field theories. In order to
control this situation, imagine restricting the number of points
to a finite "lattice" of space-time points - the quark degrees of
freedom then reside at these points and interact with one another
via the gluon fields, which can be considered connections or
"links" between the points. It turns out that the entire theory
may be formulated in terms of such site-specific quark fields and
gluon links.  This lattice theory may be put into computer
language and numerical methods used to solve for specific
quantities. One important numerical technique used in this
program is called Monte Carlo.  Formally, the quantities being
measured in the lattice simulations can formally be expressed as
an integral over all the degrees of freedom of the lattice
system.  The dimensions of this integral are now very large (10's
of millions in current simulations) but finite.  The Monte Carlo
technique allows an estimation of these integrals by simply
averaging over N likely values of the integrand.  It also allows
an estimation of the likely variation in this value if the
simulation were repeated many times.  Thus, lattice simulations
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give values and error bars on physical quantities.  The error
bars may be reduced of course for a larger, more computer-time
intensive simulation, but they only fall 1/GH N, where N refers to
the number of values in the integrand which have been used in the
average.

Weak Interactions

We now come to the most interesting and complicated set of
particle interactions, the weak interactions. This theory is also
a gauge theory, like E&M (QED) and strong interactions (QCD). In
fact, it is considered unified with the electromagnetic
interaction and is often referred to as the weak-electromagnetic
gauge theory. However, because the forces are mediated by massive
particles, the W+- and the Z0, the force is extremely short ranged
from Heisenberg's uncertainty principle. Although the weak
interactions are a gauge theory, they have no associated exactly
conserved quantities like electric charge or color charge. The
reason for this is quite subtle. We will get back to this point
momentarily.

The weak interactions involve both the quarks and leptons,
and cause many types of decays of hadronic states. For example,
consider the decay p -> n e D-e.

time

d

d

u

e

d

u

u

W-

De
_

proton

neutron
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Here we see a proton entering from the left and a neutron, an
electron, and an anti-electron neutrino exiting on the right.
This occurs because of the coupling of the W- particle to both
quarks and leptons. This is called a "charged current"
interaction because of the difference in the charge of the two
other particles at the two W- vertices. The W- particle in this
diagram is virtual, the other particles can be detected in the
laboratory. The effects of the Z0 particle, on the other hand,
are much more subtle. We learned above that the photon has no
additive quantum numbers. The Z0 is also such a particle/anti-
particle combination. This means it is present where ever photons
are created or destroyed, but because of it's great mass it's
range and possible detection are extremely limited.

Although both quarks and leptons participate in the weak
interactions, they do so very differently. The quarks are of
course all massive, but the neutrinos, for all intents and
purposes, are massless. Remember our discussion of particle
helicity while discussing photons above. For a massless paricle,
whether it is a fermion or a boson (excluding spin 0), the only
allowed physical states have helicity values +- 1, representing
spin pointed along or anti-parallel to the direction of motion of
the particle. This is very different from an electron, which also
has only 2 spin degress of freedom, but these can point "up" or
"down" relative to any coordinate axis. It turns out that all
neutrinos (electron, muon, and tau) participate in interactions
as if they were completely left-handed, i.e., their spin is
pointed anti-parallel to their direction of motion. Anti-
neutrinos are right-handed. This association of left-handedness
with neutrinos and right-handedness with anti-neutrinos is
intrinsically and maximally parity-violating. In fact, the weak
interactions are known to violate all of the discrete symmetries
we learned about at the beginning of this chapter. The only
symmetry that survives is called CPT, a combined charge
conjugation, parity and time reversal.

There is a coupling constant in the weak interactions which
is analogous to the electromagnetic (proportional to GH 8) and
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strong coupling constants (GH H H H 8strong). Let us call it gW. However,
because the charged current interactions the W's are all virtual,

the effective coupling constant is actually ~ 
gw
MW2
, where MW is the

mass of the W+- particles. This is known as Fermi's coupling
constant (I have left out some numerical coefficients in the
actual value). The reason the mass of the W+- particle appears
squared in the denominator is due to the fact that 1) Feynman
diagrams take place in momentum space and 2) that instead of
Coulomb's law, ~1/r, which in momentum space is proportional to
1/(q2), an extremely massive particle behaves like a point in
space, i.e., a Dirac delta function. The Fourier transform of a
Dirac delta function is a constant in momentum space. This
constant needs to have the same physical dimensions as our 1/(q2)
function because they represent different limits of the same
function*.

How did the W+- and Z0 particles get to be so massive if the
weak interactions are just another gauge theory? It is because of
an extremely subtle field theory effect known as spontaneous
symmetry breaking. This effect depends upon the existence of the
Higgs boson, which is another of the particles without any
additive quantum numbers. It is thought that as the temperature
of the universe cooled, The Higgs particle, !, shifts it's value:
! -> !' + v, where "v" is just a number, called the vacuum

expectation value (VEV). This is just like the spntaneous
formation of little magnetic domains where the direction of the
magnetic fields of the atoms are fixed as the temperature of a

* This function in field theory is known as the particle propagator, and
has is proportional to

1
q2+MW2

,

where |q| represents the momentums allowed in a given interaction). For an
infinite ranged interaction the mass MW would be zero and we would have a
Coulomb interaction, whereas in the other limit the particle propagator
goes is replaced with MW2 and represents a point interaction. Actually the
q2 above is a four-dimenensional Lorentz dot product, but the idea is the
same.
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magnet cools. However, not only does the Higgs field (which is
originally a doublet of complex fields having a total of 4 real
components) pick out a direction in it's isospin space like a
magnet, but also picks up a VEV as it cools. This mechanism is
thought to give rise to the masses of the W+- and Z0 particles as
well as to all the quarks and leptons, via their original
couplings (vertices) to the Higgs. In fact, in one of the most
colorful phrases in particle physics, the  W+- and Z0, which were
originally massless and therefore had only 2 degrees of freedom
(two helicities) are said to "eat" the 3 lost degrees of freedom
of the Higgs, acquiring the correct 3 components for massive spin
1 particles. The left over massive particle is the physical
Higgs.

One of the most subtle effects in weak interactions is
flavor mixing. The weak and strong interactions deal with
particle flavor differently. For the quark doublets we saw above
that we had the flavor groupings, relevant to the strong
interactions:

( )ud , ( )cs , ( )tb . (10.51)

For the weak interactions, the flavor groupings are different:

( )u
d' , ( )c

s' , ( )t
b' . (10.52)

The matrix which connects these particles is called the Cabbibo-
Kobayashi-Maskawa, or CKM matrix. It is unitary and three
dimensional. That is, one has

 #
)
$

 %
*
&d'

s'
b'

 = 
 #
)
$

 %
*
&Vud,Vus,Vub

Vcd,Vcs,Vcb
Vtd,Vts,Vtb  #

)
$

 %
*
&d'

s'
b'

. (10.53)

The effects of this mixing on the interactions is too involved to
discuss here, but see Appendix B on weak flavor mixing. The
Standard Model offers no explanation for the values of the
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parameters in this matrix. In fact, it is now thought that the
same sort of mixing occurs for neutrinos as well, except there
the strong interactions are not involved.  There is strong
evidence that neutrinos have small but nonzero masses from the
observation of neutrino flavor change, which can only take place
if at least one of the neutrinos is massive. The proliferation of
parameters in these matrices is one of the reasons most
physicists do not think of the Standard Model as the final theory
in particle physics, but simply another step toward a more
fundamental theory.

That concludes our very short excursion into particle
physics. We have learned about both the principles of quantum
mechanics and how they apply to the particles around us. I hope
you now have a better appreciation for the mathematical beauty
and physical structure the natural world, which seems anything
but random.
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Appendix A: Allowed Standard Model Interactions

The generic allowed interaction vertices in Feynman diagrams
for the various Standard model interactions are shown below.  All
lines can be considered as "real" (external) or virtual
(internal). These are just the primitive "vertices" - one must
put them together to make complete Feynman diagrams representing
physical processes. Of course, individual quark, gluon lines are
confined and can not be external. The Higgs boson couplings are
not shown.

Strong: 

quark 
flavor

quark 
flavor'

g

g

g g

g
g           g

g

Leptonic    Quarkish

EM

(any charged particle):
e

e

C C

u

u
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Leptonic    Quarkish

Weak (Charged):

d

u

W+ W+
e-

v

Leptonic    Quarkish

Weak (Neutral):
o

Z
o

Z

u

u

Other Weak:   
o

Z

W

W

W

W

W

W

+

+ -

-

     W
W

+
-

C

C

W
W

+
-

C

Z0
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Appendix B: Weak Flavor Mixing

In this Appendix, I will explain more about the significance
of flavor mixing in the weak interactions. I will base this on a
very insightful article by Howard Georgi in a Physics Today
article which appeared back in April of 1988. The interesting
point made here is that the structure of flavor interactions can
be understood from a straightforward analogy with coupled
harmonic oscillators. I will try to keep my explanation mostly in
line with the concepts and ideas already introduced in these
notes, so the emphases and presentation will differ a little from
Georgi's article. I am presenting this in an Appendix because the
text does not require this coverage for the flow of ideas
encountered there and also because it is not guaranteed that all
the concepts encountered here will have had an appropriate
pedagogical introduction. Georgi's article is much more refined
than my poor presentation, and I highly recommend the original
for a more complete and expert point of view.

Our starting Hamiltonian is just

H0 = R
  

A Aj j
j

+" , (Drop const. term; called “normal ordering”)

which we recognize as Hamiltonian for the three dimensional
harmonic oscillator. There are symmetries here. Let

  
A U Aj jk k

k
3 " , (B.1)

  1 
  
A A U A Uk jk k kj

kk
j
+ + + + +3 = "" . (B.2)

H0 3 R

  
A U U Ak kj j

j k

+ +" l l
l, ,

 =  R
    

A A U Uk
k

kj j
j

+ +" "
$

#
)

&

%
*l

l
l

,
. (B.3)

U is unitary:
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U+U = 1,  1 
   

U Ukj j
j

+" l =     'kl, (B.4)

1 H0 3 

    
R A Ak k

k

+" l l
l

'
,

 = H0 : unchanged (B.5)

U is a unitary, 3x3 matrix 1 the group known as SU(3).
Actually, there is a further symmetry here.  Let

  A e Aj
i

j3 8 ,     1 3+ 2 +A e Aj
i

j
8 , (B.7)

  
H A A e e Hj j

i i

j
0 03 =+ 2" 8 8  : unchanged, (B.8)

Real Symmetry: SU(3)xU(1).  Consequence is that Nk is conserved:

[H0,Nk] = 
  
hR A A A Aj j k

j
k

+ +[ ]" , . (B.9)

We have shown in the last chapter that

  
N Nj k,[ ] =   A A A Aj j kk

+ +[ ],  = 0. (B.10)

Ch.7, prob.1 shows that the degeneracy factor for the state
nth quantum state is   

1
2 1 2n n+( ) +( ). Let's go through it here to

refresh ourselves.

   E n n n n= + + + = +hM M( ) ( )1 2 3
3
2

3
2 ,

  n n n1 2 3 0 1 2+ + = { }, , .... .

Set   n1=0 How many ways? n+1
Set   n1=1 " n

. . .

. . .

. . .
Set   n1=1 How many ways? 1
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i n n

i

n

=

+

" = + +
1

1
1
2 1 2( )( ).   (Given

  
i n n

i

n

=
" = +
1

1
2 1( ))

First few energies:

  

6

2 2 2
1 0
1 0

1 0

1 2 3

1 2 3

1 3 2

2 3 1
7
2

n n n
n n n
n n n

n n n E

= = =

= = =

= = =

= = = =

=

<

.

..

;

.

.

.

, ,
,
,

,

(others =  0)

M

  

3
1 0
1 0

1 0

1 2 3

2 1 3

3 1 2
5
2

n n n
n n n

n n n E

= = =

= = =

= = = =

=

<

.

.

;

.

.

,
,

, M   

  1 1 01 2 3n n n= = ={ ,      E = 3
2 M

Now cease to think of these as energy states.  Consider n1,
n2, n3 to be particle occupation numbers of a B.E. system.
Remember, I showed in the last chapter that the algebra of

ai and ai+ (raising and lowering operators)

for the harmonic oscillator is identical to

S and S+ (creation and annihilation operators)

for the multi-particle bosonic states. If instead n1, n2, n3 were
the particle occupation numbers of a Fermi-Dirac system, we would
have the Cartesian classification:
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FD deg. BE deg.

  E = 9
2 1 1 1M , ,    1    10

  E = 7
2 M   1 1 0, ,

        0 1 1, ,                            3          6
   1 0 1, ,

  E = 5
2 M   1 0 0, ,

  0 1 0, ,    3     3

  0 0 1, ,

  E = 3
2 0 0 0M , ,    1     1

Now introduce an interaction:

Hint = 
  
B p r B L
3 3 3 3 3
@ ×$
#

&
% = 2 @ (B.11)

Why is such a term reasonable?  I argued in Ch.8 (based upon the
Ch.1 discussion) that a magnetic field interacts with a magnetic
dipole according to

Hint =   m B
3 3
@ . (B.12)

Given a gyromagnetic ratio such that

  m L
3 3

= C , (B.13)

(
  
C =

q
mc2

 classically) then

Hint =   C B L
3 3
@ . (B.14)
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Given the harmonic oscillator raising and lowering operators

  K m=( )R2 ,

   
A

m
p i K rj j j= 2

1
2 2h hR R

, (B.15)

  
A

m
p i K rj j j

+ = +
1

2 2h hR R
, (B.16)

we can evaluate Hint = 
  
B p r
3 3 3
@ ×$
#

&
%  as (problem):

  
B p r i B A Aijk

i j k
i j k

3 3 3
@ ×$
#

&
% = " +

, ,
. (B.17)

Writing this as

Hint = 
  

A M Aj
j k

j k k
+"

,
, , (B.18)

we identify

  
M ik Bjh ijk

i
i= " + . (B.19)

Notice that

  M Mjh kj
* = 1 Hermitian.

Also notice (do the transformation again) that under

  
A U Aj jk

k
k3 " ,    A A Uj k kj

+ + +3 " , (B.20)

we have,   H H0 03  but

Hint 
    
3 + +" A U M U Ai

j h
j jk km m

,
l  

    
= +" A M A

m
m ml

l
l

,

˜ , (B.21)

where
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˜
,

M U M Um j jk
j k

kml l= +" . (B.22)

  As matrices:   ̃M U MU= + .

Since we don't get Hint 3 Hint, we have that the SU(3)
symmetry is broken by Hint.  The consequence is that the
individual   Nk are no longer conserved, just the total 

  
N Nk

k
= " .

That is, we have

[Hint,   Nj] = 
   
i B A A A Aik i k j j

i k
+ l l

l

+ +"
T

U
V
V

W

X
Y
Y

,
, ,

  
= [ ]" + +i B A A A Aik i

i k
k j j+ l

l
l

, ,
, . (B.23)

But

   
A A A A A A A Ai j k jk i i k j

+ + + +[ ] = 2, l l l' ' , (B.24)

so   i j=( )

   
A A A A A A A Aj j k jk j j k j

+ + + +[ ] = 2, l l l' ' .

1[Hint   Nj] 
    
= 2 2{ }+ +"i B A A A Aik i jk j j k j

i k
+ ' 'l l l

l, ,
,

  
= 2 +( ) B" + +i B A A A Aik i

i
j j+ l

l
l l

,
0. (B.25)

But notice, however, that

    
  j
" [Hint,  Nj] 

  
= 2 +( ) =" + +i B A A A Aij i

i j
j j+ l

l
l l

, ,
0. (B.26)
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Now let's go back to

  ̃M U MU= + . (B.27)

Can show that we can diagonalize any Hermitian matrix, M, in this
fashion.  Why do we want to do this?  Because if we can find a U
such that

  M̃ij i ij= M ' , (B.28)

then

Hint = 
    

A M A
m

m ml
l

l
+"

,
,

˜

   
3 " +Ml

l
l l

,m
A A . (B.29)

Let's find the w's for our explicit case above.

  M i=  

  

0

0

0

3 2

3 1

2 1

B B

B B

B B

2

2

2

$

#

)
)
)

&

%

*
*
*
. (B.30)

Get the w's from the characteristic equation. (See p.4.11 of this
text). We form,

det   M i2( ) =M 0, (B.31)

  1 det

  

M

M

M

B B

B B

B B

3 2

3 1

2 1

0

2

2

2

$

#

)
)
)

&

%

*
*
*

= , (B.32)

     1 2 + +( )M M3 2
1
2

2
2

3
2h B B B  = 0. (B.32)

Three solutions:
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M

M

M

1

2

3 0

=

= 2

=

=

<
..

;
.
.

r

r
B

B

,

,

.

(B.33)

Therefore

Hint = 
    

Mi
i

i iA A B A A A A" + + += 2( )r
1 1 2 2 . (B.34)

Then using 1st order perturbation theory,

<Hint> =     
r
B n n1 22( ). (B.35)

The energy levels now appear as:

(6)
E =  7

2

afterbefore

M

n =21

E =  
2

M

E =  
2

M

5

3

(3)

n =11
n =13

n =2
2

n =12
n =13

n =13

n =11

n =2
2

,

,

n =2, 3 n =1 n =12

|Z|

|Z|

|Z|

|

2

2

-

-

In general, the splitting is
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 <Hint> = 
    

M Mi
i

i i i
i

iA A N" "+ = h  = M    N N Nl lM M M+ +( )2 2 3 3 , (B.36)

(  N N N N1 2 3+ + = .)  For N = 1, the splittings are

  N1 1=   M1

  N2 1=   M2

  N3 1=   M3

For N = 2, the splittings are

  N1 2= 2   M1

  N2 2= 2   M2

  N3 2= 2   M3

  N N1 2 1= =   M M1 2+( )
  N N1 3 1= =   M M1 3+( )
  N N2 3 1= =   M M2 3+( )

Thus the new Hamiltonian is

  HA = 
  

R +( )" +Mj
j

j jA A . (B.37)

Add another interaction, HB, analogous to the first:

  
A Bi j,[ ] = 0, 

  
A Bi j, +[ ] = 0, (B.38)

  H HA B+ =

  
R RA Aj j j B Bj j j

j
A A B B+( ) + +( )[ ]+ +" M M . (B.39)

We will see that we can view the HA Hamiltonian as representing
the charge 2/3 quarks (u, c, and t), and the HB Hamiltonian as
representing the charge -1/3 quarks (d, s, and b), at least when
we are talking about the N=1 states. States are represented by:
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  N N N N N NA A A B B B1 2 3 1 2 3, , , , , . (B.40)

Now also add (we're almost there!)

  Hw =

  
W A B B Aj j j j

j

+ ++( )" , (B.41)

Notice   H Hw w
+ =( ).  If we were to drop the   M MAj Bj,  terms above, we

would have a symmetry, as follows:

  

A U A

B U B

j jk
k

k

j jk
k

k

3

3

0

/
..

-
.
.

"

"
 same   Ujk. (B.42)

Then

  Hw 3

    
W A U U B B U A Hk kj jl l j k
j k

w
+ + + ++[ ] =" l l

,
. (B.43)

This is a combined SUA+B(3) symmetry.  This has the consequence
that now only N NAi Bi+( ) is conserved.  That is (problem)

  N N HAi Bi w+[ ] =, 0. (B.44)

Now let the   MAj and   MBj both be non-zero.  The resultant full

Hamiltonian can be written

  H =

  

A B
W

W
A

Bj j

A Aj

B Bj

j

jj

+ +( )
+

+

$

#
)
)

&

%
*
*

$

#
)

&

%
*"

R

R

M

M . (B.45)

Now, it is only the total 
  
N N N NA B Ai Bi

i
+ = +( )"  that is

conserved. Let
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M̂
W

W
A Aj

B Bj
=

+

+

$

#
)
)

&

%
*
*

R

R

M

M . (B.46)

Just as before, diagonalize it to get the energies.  (Call

  R RA Aj j B Bj j+ = + =M Ma b, )

det 

  

a W

W b

j

j

2

2

$

#

)
))

&

%

*
**

=

[

[

0,   (B.47)

  
1 2 +( ) 2 + =[ [2 2 0a b W a bj j j j ,   (B.48)

  
[ =

+
± 2( ) +

a b
a b Wj j
j j2

1
2

4
2 2 .  (eigenvalues)     (B.49)

What about eigenvectors? Can verify that H can be written as

  

H
a b a b W

a b a b W
j j

j

j j j j

j j j j

j

j
= ( )

+ + +( ) +

+ 2 +( ) +

$

#

)
)
)

&

%

*
*
*

$

#
)

&

%
*

+ +"
h

2

4 0

0 4

2 2

2 2
8 >

8

>
, (B.50)

where

  8j j j j jA B+ + += +cos sinA A , (B.51)

  >j j j j jA B+ + += 2 +sin cosA A . (B.52)

The angle A is given by

   
  
tan 2 2

A =
2( )
W

j j> 8
 . (B.53)

Since
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cos

tan
2

22 1
1 2

A
Aj
j

=
+

, (B.54)

we have

  

cos2
2

2 2
2

4
Aj

j j

j j

a b

a b W
=

2( )
2( ) +

, (B.55)

   

  

cos 2
4 2 2

Aj
j j

j j

b

b
= ±

2( )
+ 2( )
8

M 8
, (Choose + sign) (B.56)

    

1 =
+ 2( )

sin 2 2

4 2 2
Aj

j jb
m

M

M 8
. (Choose - sign) (B.57)

(Must choose the above signs for the form of H written above.
Can see this in the   W 3 0 limit).  Verify this form:

  
8 8j j j j j j j j j j j j

j
a b a b W B B a b a b W+ ++ + 2( ) +
$
#
)

&
%
* + + 2 2( ) +

$
#
)

&
%
*

=
<
;

0
/
-

"
2 2 2 24 4 ,

(B.58)

 
  
8 8j j j j j j j j j j j j j jA A B B A A B B+ + + + += + + +( )cos sin cos sin2 2A A A A , (B.59)

 
  
> >j j j j j j j j j j j j j jA A B B A A B B+ + + + += + 2 +( )sin cos cos sin2 2A A A A .  (B.60)

Finish the rest up as a problem. Should get earlier expression
(problem):

  
H a A A b B B W A B B Aj j j j j j j j j j

j
= + + +( ){ }+ + + +"h . (B.61)

Remember Fermi's Golden Rule. From chapter 9,

rate ~   2 1 2T , (B.62)



10.46

for a 2->1 transition.  Let's take an example:

  
1 08 8j j= + ,  

  
1 0Bj j= +> , (B.63)

  
1 18j BjT =

    

0 0| cos sin sin cos |A A A Aj j j j k k
N

k k
N

j j j j
k

A B A A B B A B
Ak Ak

+( ) 2
$

#
)
)

&

%
*
*
2 +( )+ + + +" 123 123

.

(B.64)

(
  
N A AAk j j kj, + +[ ] = ' , 

  
N B BBk j j kj, + +[ ] = ' .) Thus

  
1 18j BjT

  
= +( ) 2 2( )+ +0 0| cos sin sin cos |A A A Aj j j j j j j jA B A B ,

  
= 2 2 +( )+ +cos sin | |A Aj j j j j jA A B B0 0 ,

  
= 2 = 2 ( )2 2cos sin sinA A Aj j j . (B.65)

Likewise, can show (problem; all i =/ j):

  
1 1 0A Ai j

T = ,
  
1 1 0B Bi j

T = ,
  
1 1 0A Bi j

T = .   (B.66)

This gives rise to the picture of interactions (take the N=1 case
again):
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allowed

(like changed 
current)

1

3

2 1

2

3

not allowed

(like neutral current)

A

A

A

B

B

B

We see that interactions involving the same generation of quark
are allowed (the charged current interactions, mediated by the W+-

bosons). However, not all the charged current interactions are
possible at this point, but only those with i=j (within each
generation). We do not yet have the small neutral current
interactions involving different generations. However, they're
not hard to model. We need only make one more change to our
Hamiltonian.

Here'e the intersting part. Let us simply change the Hw
above to

    
H W A V B B V AW j jk k j jk k

j k
= +( )+ + +"h

,
,   H HW W

+ =( ) (B.67)

where Vjk is a unitary matrix. We now have mixings of generations
involving all the charged current interactions. This would be
completely equivalent to old Hw if   M MAj Bj,  terms in   HA  and   HB are

dropped. Let

  
A V A A A Vj jk

k
k j k kj

k
3 3" "+ + +, , (B.68)

then
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H W A V V B B V V AW j jk k j jk k
j k

k j

= +

$

#

)
)
)

&

%

*
*
*

+ + + +"h
123 123l l l l

l l' '
,

,

    
= +( )+ +"hW A B B Aj j j j

j
  , old form. (B.69)

That is, without the   SU (3)A ,   SU (3)B  symmetry breaking terms, this

new form is completely equivalent to the old and would not add
anything new.  However, because of the   M MAj Bj,  terms, we now have

all charged transitions on the previous picture, even those
between different generations (i=/j). As I said, the analog of the
transitions from the >i's to the 8j's are the charged current
interactions, mediated by the W+- particles. The Vjk matrix is
analogous tp the CKM matrix in weak interactions. There are still
no direct generation-changing neutral currents (those connecting
8i and 8j or >i and >j for i=/j), but now notice the following. We

can now have transitions which look like the following;

allowed

1

3

2 1

2

3

A

A

A

B

B

B

weakly allowed

B2 is seen to be mixed into A1 and A2, which means, from the magic
of quantum mechanics, that A1 and A2 also are mixed. A "second
order transition" would first take A2 into the higher state B2,
then back down to A1. However, such transitions are doubly
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suppressed. First, this transition only occurs "indirectly" by
this two step process, and, as we saw above, the effect is
proportional to the presence of the off-diagonal elements of Vjk.
These in fact only contribute because of the presence of the

  M MAj Bj,  terms. However, it's not just that the   M MAj Bj,  terms are

there, but that they are all different that allows these small
transitions. An example of such a process in the standard Model
is K+ -> 9+ D D-, which has been observed.
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Problems for appendix B

1. Let's see if we can also understand the 12(n+1)(n+2)

degeneracy factor from the radial classification of states.  Go
back to Ch.7, prob.15.  Compared (3-D oscill.)

    

d
d

n Rn
2

2 2
2 3

2
1 2 0

K K
K K2

+
2 + +

T

U
V

W

X
Y =

l l
l

( ) ( ) ( ) ,

to (2-D oscill.)

  

d
d

m m n Pr n mr

2

2

2 14
2

22 2 1 0
K K

K K K2
2

+ + + 2
T

U
V

W

X
Y =

( ) ( ) ( ) .

Should have found:      2-D    3-D

  m
2 1

4 12 3 +( ),

  2 1 3
2n m nr + + 3 + ,

or

    m 3 +l 1
2,    

n n
r 3

2
2

.   ( , , , ,...)nr = 0 1 2 3

(a) Considering the n even and n odd cases separately, show that
the degeneracy is  12(n+1)(n+2) .

(b) Write the radial quantum numbers (n, ,m) of the E = 32 M, 52
M, 72 M states out explicitly.

2. Show

    
B p r i B A Ai j h

i j k
i j k

3 3 3
@ ×$
#

&
% = "h + , ,

, ,
.
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3. Show

  N N HAi Bi w+[ ] =, 0.

4. After the change of variables described in the text, show that
the Hamiltonian can still be written as:

    
H a A A b B B W A B B Aj j j j j j j j j j

j
= + + +( ){ }+ + + +"h .

5. Explicitly show (before the introduction of the Vjk matrix)

  1 1 08 8i iT =    i jB( )

  1 1 0B Ti Bi =    i jB( )

  1 1 08i BiT =    i jB( ).

6. Show the Feynman diagram for K+ -> 9+ D D-.
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Problems

1. Starting with the definition of the determinant of a 3x3
matrix,

(det a) = "
,m,n

 
 + mn a1 a2m a3n .

show that,

"
j,k

 
 +ijk aj akm  = det(a) "

n

 
 +n m ain .

where aij are elements of a general orthogonal transformation.

2. Considering the matrix element <s’|J .p|s’>, show that a
nonzero value implies parity nonconservation. (Hints; First
consider |s’> a good parity state, then a mixture.)

3. For the time reversal operation, show:

(a) (AB)T = BTAT.

(b)     
v vx p T×( )  =     2 ×

v vx p.

4. There is a famous and useful theorem in mathematics called the
Wigner-Eckart theorem. It generalizes the spin addition
considerations of Ch. 8, and can be applied to spin or isospin
matrix elements. (For isospin, see probs. 7, 8, and 9 below.)

<J',M'|TKq|J,M> = <JK;Mq |JK;J'M'> 
<J'|TK|J>
GHHHHH 2J+1

,

where the <J'|TK|J> is the "reduced matrix element" (independent
of M, M'), the TKq are spherical tensors (see Sakurai's Modern
Quantum Mechanics, Ch.3), and the <JK;Mq |JK;J'M'> are just the
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Clebsch-Gordon coefficients of Ch.8. This theorem immediately
implies the so-called triangle inequaltiy |J-K| <_ J' <_ J+K.

You are given the electromagnetic Hamiltonian density,

Hem = "
L,m
 "
X=(E,M)

  A(X)Lm   T Lm
(X),

where the A(E)Lm  , A
(M)
Lm  (E=electric, M=magnetic) are expansion

coefficients (A(M)00   = 0) and the T Lm
(E) , T Lm

(M) are spherical

tensors. The operators T Lm
(E,M) have the properties

9T Lm
(E) 9 = (-1)L T Lm

(E) (L >_ 0) ,

9T Lm
(M) 9 = (-1)L+1 T Lm

(M) (L >_ 1) ,

where 9 is the parity operator (9 † = 9). Consider the expectation

value (modeling static em moments):

<J,mJ,9J|Hem|J,mJ,9J>,

where mJ = J.(The states |J,mJ,9J> have good total angular
momentum, Jz, and parity.)

(a) For general J (J=0,12 ,1,
3
2 ,2,...), what is the largest L that

can contribute?
(b) For general J, how many terms in Hem give nonzero

contributions? Specify them.

Consider the more general matrix element (modeling em
transitions) where Hrad is the same as Hem but without the L=0 E

term:

<J2,mJ2,9J2|Hrad|J1,mJ1,9J1>,

(c) For general J1, J2, how many terms in Hrad give nonzero

contributions? Specify them.
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(d) Assuming the terms with smallest L give the leading
contribution, give the transition selection rules for the various
,J = |J2-J1| when 9J19J2=1 or 9J19J2=-1.

5. Particle physicists usually express dimensionful quantities in
terms of MeV (millions of electron volts), , and c. For example,

1 kg= 5.61x1029 MeV c2,

1 cm-1 = 1.97x10-11 MeV c2,

1 sec-1 = 6.58x10-22 MeV .

Using these values, convert the QCD string tension of 15
tons (1 ton = 8.9x103 Newtons) into MeV fm units.

6. Using the generalized Pauli principle, stating that the total
wavefunction, assumed to be a product of space, spin, and isospin
parts, must be anti-symmetric under the interchange of the two
nucleons, show that pp scattering can only take place in (2S+1L
notation)

1S, 3P, 1D, 3F,...

scattering states. What is the total isospin of the above states?
Note: space interchamge is the same as parity, (-1) , here.

7.(a) Use the Wigner-Eckart theorem from prob. 4 above. Define
the isospin states:

|,++> = |32 ,
3
2 >,

|,+> = |32 ,
1
2 >,

|p> = |12 ,
1
2 >,

|n> = |12 ,-
1
2 >,

|9+> = |1,1>,
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|90>= |1,0)>.

Use equation (8.42) with I,+-  = I
9
+-  + I

nuc
+-   and

|,++> = |p>|9+>

to show that

,+ = GH 1
3 |n>|9

+> + GH 2
3 |p>|9

0>.

(b) Using the given proportionality (good for the isospin parts
of wavefunctions in strong interaction decays only)

w(initial3 final) \ |<initial|final>|2,

find the decay branching ratio:

w(,+ 3 p + 90)
w(,+ 3 n + 9+)

 .

8. From isospin considerations, find the ratio of rates for the
decays indicated (see probs. 4, 7):

a) 
w(K*+  K0 + 9+)
w(K*+  K+ + 90)

  = ?, b) 
w(K*0  K+ + 9-)
w(K*0  K0 + 90)

  = ?.

The K mesons have I = 12 ; you can consider K
+ the |12 ,

1
2 > state

and K0 the |12 ,-
1
2 >.state. The K

*(892) mesons are excited states

of the K and also have I = 12 . The pion of course has I=1. I will

grade you on well you justify your derivation of the necessary
isospin coefficients using the machinery of isospin addition.

9.(a) Find the isospin decomposition of the states:

|90p>,|9+n>, and |9-n>.

[Hints: You need only use the concepts of raising and lowering
operators and orthogonality of states. See probs. 4, 7.]
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(b) Find the matrix elements

<9-n|S|9-n>, <90p|S|9+n>, and <90p|S|90p>

in terms of <32 |S|
3
2 > ] f3/2 and <

1
2 |S|

1
2 > ] f1/2.

10. Find the magnetic moment of the neutron in the quark model.
The normalized "spin up" wavefunction of the neutron can be
written as

|n,"up">= 1
GH 2 #
)
$

 %
*
&(ddu-dud)

GH 2

(|++2>2|+2+>)

GH 2
 + (ddu+dud-2udd)

GH 6
 
(|++2>+|+2+>22|2++>)

GH 6 
,

where (m is a constituent u,d quark mass)

µz = <n,"up"|(µz)op|n,"up">,

(µz)op = 
e
2mc "

i=1,2,3
  ei ^iz,

(the ^iz are the usual z-component ^  matrices working in the ith

quark space) and

ei = 
 ;.
<
.=

2
3 , u quark

- 13 , d quark
 .

11. Draw the lowest order (smallest number of vertices) Feynman
diagrams for the following processes. You will have to figure out
which interaction is responsible for each. Some of them may have
more than one topologically distinct lowest order diagram.
Consult the list of allowed vertices passed out early in the
class. For hadrons draw the Feynman diagrams at the quark level.
There are several ringers in here which can't occur; tell me
which ones they are and what conservation law they violate. If
you have trouble figuring out the nature of a reaction or decay,
looking up the rates should tell you which interaction is
responsible or dominant. (Make sure you make clear which lines
represent which particles.)
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a) e+ + C  e+ + C e) J0  9+ + 9-

b) e+ + e-  De + D- e f) P+  n + 9+

c) p + 9-  O0 + K0 g) ,+  n + 9+

d) Dµ + p  µ2 + ,++ h) µ+  e+ + De + Dµ

12. The following gives a list of particle decays which do not
occur in nature (as far as is known). In each case please give me
the physical property or reason why the reaction does not occur.
(In some cases there may be more than one reason; in this case
give me the “strongest” one.)

a) n  9+ + 9- d) P -  p-  + 90

b) µ+  e+ + De + Dµ e) O0  Q0 + 90

c) 90  3C f) J0  9+ + 9-

13. Assuming time reversal invariance, find the ratio of the
total (unpolarized) cross sections

^(p- + p  9+ + 9-)
^(9+ + 9-  p- + p)

 .

Write your answer so that it will be valid in any reference
frame.

14. Given

  

9

9

+ =

= 2

=

<
.

;
.

ud

uu dd

,

( ),0 1
2

(a) Which particle do you think is more massive, and why?



10.58

(b) For the decay pseudoscalar   903C + C , which photon amplitude
describes the final state and why? (  ̂+1,   ̂+2 are the photon
polarization vectars and   ̂k give the direction of one photon)

(i)   ̂+1
.
  ̂+2

(ii)   ̂k.(  ̂+1 x   ̂+2)
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