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While I was planning these lectures I happened to reread Ken Wilson’s account of his

early work[1], and was struck by the parallel between string theory today and quantum

field theory thirty years ago. Then, as now, one had a good technical control over the

perturbation theory but little else. Wilson saw himself as asking the question “What is

quantum field theory?” I found it enjoyable and inspiring to read about the various models

he studied and approximations he tried (he refers to “clutching at straws”) before he found

the simple and powerful answer, that the theory is to be organized scale-by-scale rather than

graph-by-graph. That understanding made it possible to answer both problems of principle,

such as how quantum field theory is to be defined beyond perturbation theory, and practical

problems, such as how to determine the ground states and phases of quantum field theories.

In string theory today we have these same kinds of problems, and I think there is good

reason to expect that an equally powerful organizing principle remains to be found. There

are many reasons, as I will touch upon later, to believe that string theory is the correct

unification of gravity, quantum mechanics, and particle physics. It is implicit, then, that the

theory actually exists, and ‘exists’ does not mean just perturbation theory. The nature of

the organizing principle is at this point quite open, and may be very different from what we

are used to in quantum field theory.

One can ask whether the situation today in string theory is really as favorable as it was

for field theory in the early 60’s. It is difficult to know. Then, of course, we had many

more experiments to tell us how quantum field theories actually behave. To offset that,

we have today more experience and greater mathematical sophistication. As an optimist,

I make an encouraging interpretation of the history, that many of the key advances in

field theory—Wilson’s renormalization group, the discovery of spontaneously broken gauge

symmetry as the theory of the electroweak interaction, the discovery of general relativity

itself—were carried out largely by study of simple model systems and limiting behaviors,

and by considerations of internal consistency. These same tools are available in string theory

today.

My lectures divide into two parts—an introduction to string theory as we now under-

stand it, and a look at attempts to go further. For the introduction, I obviously cannot in

five lectures cover the whole of superstring theory. Given time limitations, and given the

broad range of interests among the students, I will try to focus on general principles. I

will begin with conformal field theory (2.5 lectures), which of course has condensed mat-

ter applications as well as being the central tool in string theory. Section 2 (2.5 lectures)

introduces string theory itself. Section 3 (1 lecture), on dualities and equivalences, covers

4



the steadily increasing evidence that what appear to be different string theories are in many

cases different ground states of a single theory. Section 4 (1 lecture) addresses the question

of whether ‘string field theory’ is the organizing principle we seek. In section 5 (2 lectures)

I discuss matrix models, exactly solvable string theories in low spacetime dimensions.

I should emphasize that this is a survey of many subjects rather than a review of any

single subject (for example R-duality, on which I spend half a lecture, was the subject of a

recent review [2] with nearly 300 references). I made an effort to choose references which

will be useful to the student—a combination of reviews, some original references, and some

interesting recent papers.

1 Conformal Field Theory

Much of the material in this lecture, especially the first part, is standard and can be found

in many reviews. The 1988 Les Houches lectures by Ginsparg [3] and Cardy [4] focus on

conformal field theory, the latter with emphasis on applications in statistical mechanics.

Introductions to string theory with emphasis on conformal field theory can be found in

refs. [5]-[9]. There are a number of recent books on string theory, though often with less

emphasis on conformal techniques [10]-[14] as well as a book [15] and reprint collection [16]

on conformal field theory and statistical mechanics. Those who are in no great hurry will

eventually find an expanded version of these lectures in ref. [17]. Finally I should mention

the seminal papers [18] and [19].

1.1 The Operator Product Expansion

The operator product expansion (OPE) plays a central role in this subject. I will introduce

it using the example of a free scalar field in two dimensions, X(σ1, σ2). I will focus on two

dimensions because this is the case that will be of interest for the string, and I will refer to

these two dimensions as ‘space’ though later they will be the string world-sheet and space

will be something else. The action is

S =
1

8π

∫

d2σ
{

(∂1X)2 + (∂2X)2
}

. (1.1.1)

The normalization of the field X (and so the action) is for later convenience. To be specific

I have taken two Euclidean dimensions, but almost everything, at least until we get to
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nontrivial topologies, can be continued immediately to the Minkowski case1 σ2 → −iσ0.

Expectation values are defined by the functional integral

< F [X] > =
∫

[dX] e−SF [X], (1.1.2)

where F [X] is any functional of X, such as a product of local operators.2

It is very convenient to adopt complex coordinates

z = σ1 + iσ2, z̄ = σ1 − iσ2. (1.1.3)

Define also

∂z =
1

2
(∂1 − i∂2), ∂z̄ =

1

2
(∂1 + i∂2). (1.1.4)

These have the properties ∂zz = 1, ∂z z̄ = 0, and so on. Note also that d2z = 2dσ1dσ2 from

the Jacobian, and that
∫

d2z δ2(z, z̄) = 1. I will further abbreviate ∂z to ∂ and ∂z̄ to ∂̄ when

this will not be ambiguous. For a general vector, define as above

vz = v1 + iv2, vz̄ = v1 − iv2, vz =
1

2
(v1 − iv2), vz̄ =

1

2
(v1 + iv2). (1.1.5)

For the indices 1, 2 the metric is the identity and we do not distinguish between upper and

lower, while the complex indices are raised and lowered with3

gzz̄ = gz̄z =
1

2
, gzz = gz̄z̄ = 0, gzz̄ = gz̄z = 2, gzz = gz̄z̄ = 0 (1.1.6)

The action is then

S =
1

4π

∫

d2z ∂X∂̄X, (1.1.7)

and the equation of motion is

∂∂̄X(z, z̄) = 0. (1.1.8)

The notation X(z, z̄) may seem redundant, since the value of z determines the value of z̄,

but it is useful to reserve the notation f(z) for fields whose equation of motion makes them

1Both the Euclidean and Minkowski cases should be familiar to the condensed matter audience. The
former would be relevant to classical critical phenomena in two dimensions, and the latter to quantum
critical phenomena in one dimension.

2Notice that this has not been normalized by dividing by < 1 >.
3A comment on notation: being careful to keep the Jacobian, one has d2z = 2dσ1dσ2 and d2z

√

| det g| =
dσ1dσ2. However, in the literature one very frequently finds d2z used to mean dσ1dσ2.
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analytic in z. For example, it follows at once from the equation of motion (1.1.8) that ∂X is

analytic and that ∂̄X is antianalytic (analytic in z̄), hence the notations ∂X(z) and ∂̄X(z̄).

Notice that under the Minkowski continuation, an analytic field becomes left-moving, a

function only of σ0 + σ1, while an antianalytic field becomes right-moving, a function only

of σ0 − σ1.

Now, using the property of path integrals that the integral of a total derivative is zero,

we have

0 =
∫

[dX]
δ

δX(z, z̄)

{

e−SX(z′, z̄′)
}

=
∫

[dX] e−S
{

δ2(z − z′, z̄ − z̄′) +
1

2π
∂z∂z̄X(z, z̄)X(z′, z̄′)

}

= < δ2(z − z′, z̄ − z̄′) > +
1

2π
∂z∂z̄ < X(z, z̄)X(z′, z̄′) > (1.1.9)

That is, the equation of motion holds except at coincident points. Now, the same calculation

goes through if we have arbitrary additional insertions ‘. . .’ in the path integral, as long as

no other fields are at (z, z̄) or (z′, z̄′):

1

2π
∂z∂z̄ < X(z, z̄)X(z′, z̄′) . . . > = − < δ2(z − z′, z̄ − z̄′) . . . > . (1.1.10)

A relation which holds in this sense will simply be written

1

2π
∂z∂z̄X(z, z̄)X(z′, z̄′) = −δ2(z − z′, z̄ − z̄′), (1.1.11)

and will be called an operator equation. One can think of the additional fields ‘. . .’ as

preparing arbitrary initial and final states, so if one cuts the path integral open to make an

Hamiltonian description, an operator equation is simply one which holds for arbitrary matrix

elements. Note also that because of the way the path integral is constructed from iterated

time slices, any product of fields in the path integral goes over to a time-ordered product

in the Hamiltonian form. In the Hamiltonian formalism, the delta-function in eq. (1.1.11)

comes from the differentiation of the time-ordering.

Now we define a very useful combinatorial tool, normal ordering:

:X(z, z̄)X(z′, z̄′) : ≡ X(z, z̄)X(z′, z̄′) + ln |z − z′|2. (1.1.12)
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The logarithm satisfies the equation of motion (1.1.11) with the opposite sign (the action

was normalized such that this log would have coefficient 1), so that by construction

∂z∂z̄:X(z, z̄)X(z′, z̄′) : = 0. (1.1.13)

That is, the normal ordered product satisfies the naive equation of motion. This implies

that the normal ordered product is locally the sum of an analytic and antianalytic function

(a standard result from complex analysis). Thus it can be Taylor expanded, and so from the

definition (1.1.12) we have (putting one operator at the origin for convenience)

X(z, z̄)X(0, 0) = − ln |z|2 + :X2(0, 0) : + z :X∂X(0, 0) : + z̄ :X∂̄X(0, 0) : + . . . . (1.1.14)

This is an operator equation, in the same sense as the preceding equations.

Eq. (1.1.14) is our first example of an operator product expansion. For a general expec-

tation value involving X(z, z̄)X(0, 0) and other fields, it gives the small-z behavior as a sum

of terms, each of which is a known function of z times the expectation values of a single

local operator. For a general field theory, denote a complete set of local operators for a field

theory by Ai. The OPE then takes the general form

Ai(z, z̄)Aj(0, 0) =
∑

k

ckij(z, z̄)Ak(0, 0). (1.1.15)

Later in section 1 I will give a simple derivation of the OPE (1.1.15), and of a rather broad

generalization of it. OPE’s are frequently used in particle and condensed matter physics as

asymptotic expansions, the first few terms giving the dominant behavior at small z. However,

I will argue that, at least in conformally invariant theories, the OPE is actually a convergent

series. The radius of convergence is given by the distance to the nearest other operator in

the path integral. Because of this the coefficient functions ckij(z, z̄), which as we will see

must satisfy various further conditions, will enable us to reconstruct the entire field theory.

Exercise: The expectation value4 < X(z1, z̄1)X(z2, z̄2)X(z3, z̄3)X(z4, z̄4) > is given by the

sum over all Wick contractions with the propagator − ln |zi−zj |2. Compare the asymptotics

as z1 → z2 from the OPE (1.1.14) with the asymptotics of the exact expression. Verify that

the expansion in z1 − z2 has the stated radius of convergence.

4To be precise, expectation values of X(z, z̄) generally suffer from an infrared divergence on the plane.
This is a distraction which we ignore by some implicit long-distance regulator. In practice one is always
interested in ‘good’ operators such as derivatives or exponentials of X , which have well-defined expectation
values.
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The various operators on the right-hand side of the OPE (1.1.14) involve products of

fields at the same point. Usually in quantum field theory such a product is divergent and

must be appropriately cut off and renormalized, but here the normal ordering renders it

well-defined. Normal ordering is thus a convenient way to define composite operators in

free field theory. It is of little use in most interacting field theories, because these have

additional divergences from interaction vertices approaching the composite operator or one

another. But many of the conformal field theories that we will be interested in are free, and

many others can be related to free field theories, so it will be worthwhile to develop normal

ordering somewhat further.

For products of more than 2 fields the definition (1.1.12) can be extended iteratively,

:X(z, z̄)X(z1, z̄1) . . .X(zn, z̄n) : ≡ X(z, z̄) :X(z1, z̄1) . . .X(zn, z̄n) : (1.1.16)

+
{

ln |z − z1|2 :X(z2, z̄2) . . .X(zn, z̄n) : + (n− 1) permutations
}

,

contracting each pair (omitting the pair and subtracting − ln |z − zi|2). This has the same

properties as before: the equation of motion holds inside the normal ordering, and so the

normal-ordered product is smooth. (Exercise: Show this. The simplest argument I have

found is inductive, and uses the definition twice to pull both X(z, z̄) and X(z1, z̄1) out of

the normal ordering.)

The definition (1.1.16) can be written more formally as

:X(z, z̄)F [X] : = X(z, z̄) :F [X] : +
∫

d2z′ ln |z − z′|2 δ

δX(z′, z̄′)
:F [X] :, (1.1.17)

for an arbitrary functional F [X], the integral over the functional derivative producing all

contractions. Finally, the definition of normal ordering can be written in a closed form by

the same strategy,

:F [X] : = exp
{

1

2

∫

d2z d2z′ ln |z − z′|2 δ

δX(z, z̄)

δ

δX(z′, z̄′)

}

F [X]. (1.1.18)

The exponential sums over all ways of contracting zero, one, two, or more pairs. The operator

product of two normal ordered operators can be represented compactly as

:F [X] : :G[X] : = exp
{

−
∫

d2z′ d2z′′ ln |z′ − z′′|2 δF
δX(z′, z̄′)

δG
δX(z′′, z̄′′)

}

:F [X]G[X] :,

(1.1.19)
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where δF and δG act only on the fields in F and G respectively. The expressions :F [X] : :G[X] :

and :F [X]G[X] : differ by the contractions between one field from F and one field from G,

which are then restored by the exponential. Now, for F a local operator at z1 and G a local

operator at z2, we can expand in z1 − z2 inside the normal ordering on the right to generate

the OPE. For example, one finds

:eik1X(z,z̄) : :eik2X(0,0) : = |z|2k1k2 :eik1X(z,z̄)+ik2X(0,0) :

∼ |z|2k1k2 :ei(k1+k2)X(0,0) : , (1.1.20)

since each contraction gives k1k2 ln |z|2 and the contractions exponentiate. Exponential op-

erators will be quite useful to us. Another example is

∂X(z, z̄) :eikX(0,0) : ∼ −ik
z

:eikX(0,0) : , (1.1.21)

coming from a single contraction.

1.2 Ward Identities

The action (1.1.7) has a number of important symmetries, in particular conformal invariance.

Let us first derive the Ward identities for a general symmetry. Suppose we have fields φα(σ)

with some action S[φ], and a symmetry

φ′
α(σ) = φα(σ) + ǫδφα(σ). (1.2.1)

That is, the product of the path integral measure and the weight e−S is invariant. For a path

integral with general insertion F [φ], make the change of variables (1.2.1). The invariance of

the integral under change of variables, and the invariance of the measure times e−S, give

0 =
∫

d2σ
∑

α

< δφα(σ)
δ

δφα(σ)
F [φ] > ≡ < δF [φ] > . (1.2.2)

This simply states that the general expectation value is invariant under the symmetry.

We can derive additional information from the symmetry: the existence of a conserved

current (Noether’s theorem), and Ward identities for the expectation values of the current.

Consider the following change of variables,

φ′
α(σ) = φα(σ) + ǫρ(σ)δφα(σ). (1.2.3)

10



This is not a symmetry, the transformation law being altered by the inclusion of an arbitrary

function ρ(σ). The path integral measure times e−S would be invariant if ρ were a constant, so

its variation must be proportional to the gradient ∂aρ. Making the change of variables (1.2.3)

in the path integral thus gives

0 =
∫

[dφ′] e−S[φ′] −
∫

[dφ] e−S[φ]

=
iǫ

2π

∫

[dφ] e−S[φ]
∫

d2σ ja(σ)∂aρ(σ). (1.2.4)

The unknown coefficient ja(σ) comes from the variation of the measure and the action, both

of which are local, and so it must be a local function of the fields and their derivatives.

Taking the function ρ to be nonzero only in a small region allows us to integrate by parts;

also, the identity (1.2.4) remains valid if we add arbitrary distant insertions ‘. . .’.5 We thus

derive
∂aj

a = 0 (1.2.5)

as an operator equation. This is Noether’s theorem.

Exercise: Use this to derive the classical Noether theorem in the form usually found in

textbooks. That is, assume that S[φ] =
∫

d2σ L(φ(σ), ∂aφ(σ)) and ignore the variation of

the measure. Invariance of the action implies that the variation of the Lagrangian density is

a total derivative, δL = ǫ∂µK
µ under a symmetry transformation (1.2.1). Then the classical

result is

jµ = 2πi

(

∂L

∂φα,µ

δφα −Kµ

)

. (1.2.6)

The extra factor of 2πi is conventional in conformal field theory. The derivation we have

given is the quantum version of Noether’s theorem, and assumes that the path integral can

in fact be defined in a way consistent with the symmetry.

Now to derive the Ward identity, take any closed contour C, and let ρ(σ) = 1 inside C

and 0 outside C. Also, include in the path integral some general local operator A(z0, z̄0) at a

point z0 inside C, and the usual distant insertions ‘. . .’. Proceeding as above we obtain the

operator relation

1

2π

∮

C
(dσ2j1 − dσ1j2)A(z0, z̄0) = −iδA(z0, z̄0). (1.2.7)

5Our convention is that ‘. . .’ refers to distant insertions used to prepare a general initial and final state
but which otherwise play no role, while F is a general insertion in the region of interest.
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This relates the integral of the current around any operator to the variation of the operator.

In complex coordinates, the left-hand side is

1

2πi

∮

C
(dz j − dz̄ j̄)A(z0, z̄0), (1.2.8)

where the contour runs counterclockwise and we abbreviate jz to j and jz̄ to j̄. Finally, in

conformal field theory it is usually the case that j is analytic and j̄ antianalytic, except for

singularities at the other fields, so that the integral (1.2.8) just picks out the residues. Thus,

− iδA(z0, z̄0) = Resz→z0
j(z)A(z0, z̄0) + Resz̄→z̄0

j̄(z̄)A(z0, z̄0). (1.2.9)

Here ‘Res’ and ‘Res’ pick out the coefficients of (z − z0)
−1 and (z̄ − z̄0)

−1 respectively. This

form of the Ward identity is particularly convenient in CFT.

It is important to note that Noether’s theorem and the Ward identity are local properties

that do not depend on whatever boundary conditions we might have far away, not even

whether the latter are invariant under the symmetry. In particular, since the function ρ(σ)

is nonzero only in the interior of C, the symmetry transformation need only be defined there.

1.3 Conformal Invariance

Systems at a critical point are invariant under overall rescalings of space, z → z′ = az; if the

system is also rotationally invariant, a can be complex. These transformations rescale the

metric,

ds2 = dσadσa = dzdz̄ → dz′dz̄′ = |a|2ds2. (1.3.1)

Under fairly broad conditions, a scale invariant system will also be invariant under the larger

symmetry of conformal transformations, which also will play a central role in string theory.

These are transformations z → z′(z, z̄) which rescale the metric by a position-dependent

factor:

ds2 → Ω2(z, z̄)ds2. (1.3.2)

Such a transformation will leave invariant ratios of lengths of infinitesimal vectors located

at the same point, and so also angles between them. In complex coordinates, it is easy to

see that this requires that z′ be an analytic function of z,6

z′ = f(z), z̄′ = f̄(z̄). (1.3.3)
6A antianalytic function z′ = f(z̄) also works, but changes the orientation. In most string theories,

including the ones of greatest interest, the orientation is fixed.
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A theory with this invariance is termed a conformal field theory (CFT).

The free action (1.1.7) is conformally invariant with X transforming as a scalar,

X ′(z′, z̄′) = X(z, z̄), (1.3.4)

the transformation of d2z offsetting that of the derivatives. For an infinitesimal transforma-

tion, z′ = z + ǫg(z), we have δX = −g(z)∂X − ḡ(z̄)∂̄X, and Noether’s theorem gives the

current

j(z) = ig(z)T (z), j̄(z̄) = iḡ(z̄)T̃ (z̄), (1.3.5)

where7

T (z) = −1

2
:∂X∂X :, T̃ (z̄) = −1

2
: ∂̄X∂̄X : . (1.3.6)

Because g(z) and ḡ(z̄) are linearly independent, both terms in the divergence ∂̄j − ∂j̄ must

vanish independently,

∂̄j = ∂j̄ = 0, (1.3.7)

as is indeed the case. The Noether current for a rigid translation is the energy-momentum

tensor, ja = iTabδσ
b (the i from CFT conventions), so we have

Tzz = T (z), Tz̄z̄ = T̃ (z̄), Tzz̄ = Tz̄z = 0. (1.3.8)

With the vanishing of Tzz̄ = Tz̄z, the conservation law ∂aT
a
b = 0 implies that Tzz is analytic

and Tz̄z̄ is antianalytic; this is a general result in CFT. By the way, Tzz and Tz̄z̄ are in no sense

conjugate to one another (we will see, for example, that in they act on completely different

sets of oscillator modes), so I use a tilde rather than a bar on T̃ . The transformation of X,

with the Ward identity (1.2.9), implies the operator product

T (z)X(0) =
1

z
∂X(0) + analytic, T̃ (z̄)X(0) =

1

z̄
∂̄X(0) + analytic. (1.3.9)

This is readily verified from the specific form (1.3.6), and one could have used it to derive

the form of T .

7Many students asked why T automatically came out normal-ordered. The answer is simply that in this
particular case all ways of defining the product (at least all rotationally invariant renormalizations) give the
same result; they could differ at most by a constant, but this must be zero because T transforms by a phase
under rotations. It was also asked how one knows that the measure is conformally invariant; this is evident
a posteriori because the conformal current is indeed conserved.

13



For a general operator A, the variation under rigid translation is just −δσa∂aA, which de-

termines the 1/z term in the TA OPE. We usually deal with operators which are eigenstates

of the rigid rescaling plus rotation z′ = az:

A′(z′, z̄′) = a−hā−h̃A(z, z̄). (1.3.10)

The (h, h̃) are the weights of A. The sum h + h̃ is the dimension of A, determining its

behavior under scaling, while h − h̃ is the spin, determining its behavior under rotations.

The Ward identity then gives part of the OPE,

T (z)A(0, 0) = . . .+
h

z2
A(0, 0) +

1

z
∂A(0, 0) + . . . (1.3.11)

and similarly for T̃ . A special case is a tensor or primary operator O, which transforms

under general conformal transformations as

O′(z′, z̄′) = (∂zz
′)−h(∂z̄ z̄

′)−h̃O(z, z̄). (1.3.12)

This is equivalent to the OPE

T (z)O(0, 0) =
h

z2
O(0, 0) +

1

z
∂O(0, 0) + . . . , (1.3.13)

the more singular terms in the general OPE (1.3.11) being absent. In the free X CFT, one

can check that ∂X is a tensor of weight (1, 0), ∂̄X a tensor of weight (0, 1), and : eikX : a

tensor of weight 1
2
k2, while ∂2X has weight (2, 0) but is not a tensor.

For the energy-momentum tensor with itself one finds for the free X theory

T (z)T (0) =
1

2z4
+

2

z2
T (0) +

1

z
∂T (0) + analytic, (1.3.14)

and similarly for T̃ ,8 so this is not a tensor. Rather, the OPE (1.3.14) implies the transfor-

mation law

δT (z) =
1

12
∂3

zg(z) − 2∂zg(z)T (z) − g(z)∂zT (z). (1.3.15)

8One easily sees that the T T̃ OPE is analytic. By the way, unless otherwise stated OPE’s hold only at
non-zero separation, ignoring possible delta functions. For all of the applications we will have the latter do
not matter. Occasionally it is useful to include the delta functions, but in general these depend partly on
definitions so one must be careful.
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More generally, the TT OPE in any CFT is of the form

T (z)T (0) =
c

2z4
+

2

z2
T (0) +

1

z
∂T (0) + analytic, (1.3.16)

with c a constant known as the central charge. The central charge of a free boson is 1; for

D free bosons it is D. The finite form of the transformation law (1.3.15) is

(∂zz
′)2T ′(z′) = T (z) +

c

12
{z′, z}, (1.3.17)

where {f, z} denotes the Schwarzian derivative,

{f, z} =
2∂3

zf∂zf − 3∂2
zf∂

2
zf

2∂zf∂zf
. (1.3.18)

The corresponding form holds for T̃ , possibly with a different central charge c̃.

1.4 Mode Expansions

For an analytic or antianalytic operator we can make a Laurent expansion,

T (z) =
∞
∑

m=−∞

Lm

zm+2
, T̃ (z̄) =

∞
∑

m=−∞

L̃m

z̄m+2
. (1.4.1)

The Laurent coefficients, known as the Virasoro generators, are given by the contour integrals

Lm =
∮

C

dz

2πi
zm+1T (z), L̃m = −

∮

C

dz̄

2πi
z̄m+1T̃ (z̄), (1.4.2)

where C is any contour encircling the origin. This expansion has a simple and important

interpretation [20]. Defining any monotonic time variable, one can slice open a path integral

along the constant-time curves to recover a Hamiltonian description. In particular, let ‘time’

be ln |z|, running radially outward from z = 0. This may seem odd, but is quite natural

in CFT—in terms of the conformally equivalent coordinate w defined z = e−iw, an annular

region around z = 0 becomes a cylinder, with Im(w) being the time and Re(w) being a spatial

coordinate with periodicity 2π. Thus, the radial time slicing is equivalent to quantizing the

CFT on a finite periodic space; this is what will eventually be interpreted as the quantization

of a closed string. The ‘+2’s in the exponents (1.4.1) come from the conformal transformation
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Figure 1: a) Contours centered on z = 0. b) For given z2 on contour C2, contour C1 −C3 is
contracted.

of T , so that in the w frame m just denotes the Fourier mode; for an analytic field of weight

h this becomes ‘+h’.

In the Hamiltonian form, the Virasoro generators become operators in the ordinary sense.

Since by analyticity the integrals (1.4.2) are independent of C, they are actually conserved

charges, the charges associated with the conformal transformations. It is an important fact

that the OPE of currents determines the algebra of the corresponding charges. Consider

charges Qi, i = 1, 2:

Qi{C} =
∮

C

dz

2πi
ji. (1.4.3)

Then we have
Q1{C1}Q2{C2} −Q1{C3}Q2{C2} = [Q1, Q2]{C2} (1.4.4)

The charges on the left are defined by the contours shown in fig. 1a; when we slice open

the path integral, operators are time-ordered, so the difference of contours generates the

commutator. Now, for a given point z2 on the contour C2, we can deform the difference of

the C1 and C3 contours as shown in fig. 1b, with the result

[Q1, Q2]{C2} =
∮

C2

dz2
2πi

Resz→z2
j1(z)j2(z2) (1.4.5)
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Applying this to the Virasoro generators gives the Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0. (1.4.6)

The L̃m satisfy the same algebra with central charge c̃. For the Laurent coefficients of an

analytic tensor field O of weight (h, 0), one finds from the OPE (1.3.13) the commutator

[Lm,On] = ([h− 1]m− n)Om+n. (1.4.7)

Note that commutation with L0 is diagonal and proportional to −n. Modes On for n > 0

reduce L0 and are termed lowering operators, while modes On for n < 0 increase L0 and are

termed raising operators. From the OPE (1.3.13) and the definitions, we see that a tensor

operator is annihilated by all the lowering operators,9

Ln · O = 0, n > 0. (1.4.8)

For an arbitrary operator, it follows from the OPE (1.3.11) that

L0 · A = hA, L̃0 · A = h̃A, L−1 · A = ∂A, L̃−1 · A = ∂̄A. (1.4.9)

Note that L0 + L̃0 is the generator of scale transformations, or in other words of radial time

translations. It differs from the Hamiltonian H of the cylindrical w coordinate system by an

additive constant from the non-tensor behavior of T ,

H = L0 + L̃0 −
c+ c̃

24
. (1.4.10)

Similarly, L0 − L̃0 measures the spin, and is equal to the spatial translation generator in the

w frame, up to an additive constant.

For the free X CFT, the Noether current of translations is (i∂X(z), i∂̄X(z̄)). Again,

the components are separately analytic and antianalytic, which signifies the existence of an

enlarged symmetry X → X + y(z) + ȳ(z̄). Define the modes

i∂X(z) =
∞
∑

m=−∞

αm

zm+1
, i∂̄X(z̄) =

∞
∑

m=−∞

α̃m

z̄m+1
. (1.4.11)

9Often one deals with different copies of the Virasoro algebra defined by Laurent expansions in different
coordinates z, so I like to put a ‘·’ between the generator and the operator as a reminder that the generators
are defined in the coordinate centered on the operator.
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From the OPE

i∂X(z) i∂X(0) =
1

z2
+ analytic, (1.4.12)

we have the algebra

[αm, αn] = mδm+n,0, (1.4.13)

and the same for α̃m. As expected for a free field, this is a harmonic oscillator algebra for

each mode; in terms of the usual raising and lowering operators αm ∼ √
ma, α−m ∼ √

ma†.

To generate the whole spectrum we start from a state |0, k〉 which is annihilated by the

m > 0 operators and is an eigenvector of the m = 0 operators,

αm|0, k〉 = α̃m|0, k〉 = 0, m > 0, α0|0, k〉 = α̃0|0, k〉 = k|0, k〉 . (1.4.14)

The rest of the spectrum is generated by the raising operators αm and α̃m for m < 0. Note

that the eigenvalues of α0 and α̃0 must be equal because X is single valued,
∮

(dz ∂X +

dz̄ ∂̄X) = 0; later we will relax this.

Inserting the expansion (1.4.11) into T (z) and comparing with the Laurent expansion

gives

Lm ∼ 1

2

∞
∑

n=−∞
αnαm−n. (1.4.15)

However, we must be careful about operator ordering. The Virasoro generators were defined

in terms of the normal ordering (1.1.12), while for the mode expansion it is most convenient

to use a different ordering, in which all raising operators are to the left of the lowering

operators. Both of these procedures are generally referred to as normal ordering, but they

are in general different, so we might refer to the first as ‘conformal normal ordering’ and the

latter as ‘creation-annihilation normal ordering.’ Since conformal normal order is our usual

method, we will simply refer to it as normal ordering. We could develop a dictionary between

these, but there are several ways to take a short-cut. Only for m = 0 do non-commuting

operators appear together, so we must have

L0 =
1

2
α2

0 +
∞
∑

n=1

α−nαn + A

Lm =
1

2

∞
∑

n=−∞
αnαm−n, m 6= 0. (1.4.16)

for some constant A. Now use the Virasoro algebra as follows

(L1L−1 − L−1L1)|0, 0〉 = 2L0|0, 0〉 = 2A|0, 0〉. (1.4.17)
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All terms on the left have αm with m ≥ 0 acting on |0, 0〉 and so must vanish; thus,

A = 0. (1.4.18)

Thus, a general state

α−m1
. . . α−mp

α̃−m′
1
. . . α̃−m′

q
|0, k〉 (1.4.19)

has

L0 =
1

2
k2 + L, L̃0 =

1

2
k2 + L̃ (1.4.20)

where the levels L, L̃ are the total oscillator excitation numbers,

L = m1 + . . .+mp, L̃ = m′
1 + . . .+m′

q. (1.4.21)

One needs to calculate the normal ordering constant A often, so the following heuristic-

but-correct rules are useful:

1. Add the zero point energies, 1
2
ω for each bosonic mode and −1

2
ω for each fermionic.

2. One encounters divergent sums of the form
∑∞

n=1(n− θ), the θ arising when one considers

nontrivial periodicity conditions. Define this to be

∞
∑

n=1

(n− θ) =
1

24
− 1

8
(2θ − 1)2. (1.4.22)

I will not try to justify this, but it is the value given by any conformally invariant renormal-

ization.

3. The above is correct in the cylindrical w coordinate, but for L0 we must add the non-

tensor correction c/24.

For the free boson, the modes are integer so we get one-half of the sum (1.4.22) for θ = 0,

that is − 1
24

, after step 2. This is just offset by the correction in step 3. The zero-point sum

in step 2 is a Casimir energy, from the finite spatial size. For a system of physical size l we

must scale H by 2π/l, giving (including the left-movers) the correct Casimir energy −π/6l.
For antiperiodic scalars one gets the sum with θ = 1

2
and Casimir energy π/12l.

To get the mode expansion for X, integrate the Laurent expansions (1.4.11). Define first

XL(z) = xL − iα0 ln z + i
∑

m6=0

αm

mzm
, XR(z̄) = xR − iα̃0 ln z̄ + i

∑

m6=0

α̃m

mz̄m
, (1.4.23)
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with
[xL, α0] = [xR, α̃0] = i. (1.4.24)

These give

XL(z)XL(z′) = − ln(z− z′)+analytic, XR(z̄)XR(z̄′) = − ln(z̄− z̄′)+analytic. (1.4.25)

Actually, these only hold modulo iπ as one can check, but we will not dwell on this.10 In

any case we are for the present only interested in the sum,

X(z, z̄) = XL(z) +XR(z̄), (1.4.26)

for which the OPE X(z, z̄)X(0, 0) ∼ − ln |z|2 is unambiguous.

1.5 States and Operators

Radial quantization gives rise to a natural isomorphism between the state space of the CFT,

in a periodic spatial dimension, and the space of local operators. Consider the path integral

with a local operator A at the origin, no other operators inside the unit circle |z| = 1, and

unspecified operators and boundary conditions outside. Cutting open the path integral on

the unit circle represents the path integral as an inner product 〈ψout|ψin〉, where |ψin〉 is the

incoming state produced by the path integral at |z| < 1 and |ψout〉 is the outgoing state

produced by the path integral at |z| > 1. More explicitly, separate the path integral over

fields φ into an integral over the fields outside the circle, inside the circle, and on the circle

itself; call these last φB. The outside integral produces a result ψout(φB), and the inside

integral a result ψin(φB), leaving

∫

[dφB]ψout(φB)ψin(φB) . (1.5.1)

The incoming state depends on A, so we denote it more explicitly as |ψA〉. This is the

mapping from operators to states. That is, integrating over the fields on the unit disk, with

fixed boundary values φB and with an operator A at the origin, produces a result ψA(φB),

which is a state in the Schrodinger representation. The mapping from operators to states

is given by the path integral on the unit disk. To see the inverse, take a state |ψ〉 to be an

eigenstate of L0 and L̃0. Since L0 + L̃0 is the radial Hamiltonian, inserting |ψ〉 on the unit

10But it means that one sometimes need to introduce ‘cocycles’ to fix the phases of exponential operators.
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A

Figure 2: a) World-sheet (shaded) with state |ψA〉 on the boundary circle, acted upon by
Q. b) Equivalent picture: the unit disk with operator A has been sewn in along the dotted
line, and Q contracted around the operator.

circle is equivalent to inserting r−L0−L̃0|ψ〉 on a circle of radius r. Taking r to be infinitesimal

defines a local operator which is equivalent to |ψ〉 on the unit circle.

Exercise: This all sounds a bit abstract, so here is a calculation one can do explicitly. The

ground state of the free scalar is e−
∑

∞

m=1
mXmX−m/2, where Xm are the Fourier modes of X

on the circle. Derive this by canonical quantization of the modes, writing them in terms of

Xm and ∂/∂Xm. Obtain it also by evaluating the path integral on the unit disk with X fixed

on the boundary and no operator insertions. Thus the ground state corresponds to the unit

operator.

Usually one does not actually evaluate a path integral as above, but uses indirect argu-

ments. Note that if Q is any conserved charge, the state Q|ψA〉 corresponds to the operator

Q ·A, as shown in fig. 2. Now, in the free theory consider the case that A is the unit operator

and let

Q = αm =
∮

C

dz

2π
zm∂X, m ≥ 0. (1.5.2)

With no operators inside the disk, ∂X is analytic and the integral vanishes for m ≥ 0. Thus,

αm|ψ1〉 = 0, m ≥ 0, which establishes

1 ↔ |0, 0〉 (1.5.3)
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as found directly in the exercise. Proceeding as above one finds

:eikX : ↔ |0, k〉, (1.5.4)

and for the raising operators, evaluating the contour integral (1.5.2) for m < 0 gives

i
1

(k − 1)!
∂kX ↔ α−k, k ≥ 1 , (1.5.5)

and in parallel for the tilded modes. That is, the state obtained by acting with raising oper-

ators on (1.5.4) is given by the product of the exponential with the corresponding derivatives

of X; the product automatically comes out normal ordered.

The state corresponding to a tensor field O satisfies

Lm|ψO〉 = 0, m > 0. (1.5.6)

This is known as a highest weight or primary state. For almost all purposes one is interested

in highest-weight representations of the Virasoro algebra, built by acting on a given highest

weight state with the Lm, m < 0.

The state-operator mapping gives a simple derivation of the OPE, shown in fig. 3.

Consider the product Ai(z, z̄)Aj(0, 0), |z| < 1. Integrating the fields inside the unit cir-

cle generates a state on the unit circle, which we might call |ψij,z,z̄〉. Expand in a complete

set,

|ψij,z,z̄〉 =
∑

k

ckij(z, z̄)|ψk〉. (1.5.7)

Finally use the mapping to replace |ψk〉 on the unit circle with Ak at the origin, giving

the general OPE (1.1.15). The claimed convergence is just the usual convergence of a com-

plete set in quantum mechanics. The construction is possible as long as there are no other

operators with |z′| ≤ |z|, so that we can cut on a circle of radius |z| + ǫ.

Incidentally, applying a rigid rotation and scaling to both sides of the general OPE

determines the z-dependence of the coefficient functions,

Ai(z, z̄)Aj(0, 0) =
∑

k

zhk−hi−hj z̄h̃k−h̃i−h̃jckijAk(0, 0). (1.5.8)

From the full conformal symmetry one learns much more: all the ckij are determined in terms

of those of the primary fields.
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Figure 3: a) World-sheet with two local operators. b) Integration over fields on the interior
of the disk produces boundary state |ψij,z,z̄〉. c) Sewing in a disk with the corresponding
local operator. Expanding in operators of definite weight gives the OPE.

For three operators, Ai(0)Aj(1)Ak(z), the regions of convergence of the z → 0 and z → 1

OPE’s (|z| < 1 and |1−z| < 1) overlap. The coefficient of Am in the triple product can then

be written as a sum involving clikc
m

lj or as a sum involving cljkc
m

li. Associativity requires

these sums to be equal; this is represented schematically in fig. 4.

A unitary CFT is one that has a positive inner product 〈〈 | 〉; the double bracket is to

distinguish it from a different inner product to be defined later. Also, it is required that
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Figure 4: Schematic picture of OPE associativity.

L†
m = L−m, L̃†

m = L̃−m. The X CFT is unitary with

〈〈0, k|0, k′〉 = 2πδ(k − k′) (1.5.9)

and α†
m = α−m, α̃†

m = α̃−m; this implicitly defines the inner product of all higher states.

Unitary CFT’s are highly constrained; I will derive here a few of the basic results, and

mention others later.

The first constraint is that any state in a unitary highest weight representation must

have h, h̃ ≥ 0. Consider first the highest weight state itself, |O〉. The Virasoro algebra gives

2hO〈〈O|O〉 = 2〈〈O|L0|O〉 = 〈〈O|[L1, L−1]|O〉 = ‖L−1|O〉‖2 ≥ 0, (1.5.10)

so hO ≥ 0. All other states in the representation, obtained by acting with the raising

generators, have higher weight so the result follows. It also follows that if hO = 0 then

L−1 · O = L̃−1 · O. The relation (1.4.9) thus implies that O is independent of position;

general principle of quantum field theory then require O to be a c-number. That is, the unit

operator is the only (0,0) operator. In a similar way, one finds that an operator in a unitary

CFT is analytic if and only if h̃ = 0, and antianalytic if and only if h = 0.

Exercise: Using the above argument with the commutator [Ln, L−n], show that c, c̃ ≥ 0 in

a unitary CFT. In fact, the only CFT with c = 0 is the trivial one, Ln = 0.
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1.6 Other CFT’s

Now we describe briefly several other CFT’s of interest. The first is given by the same

action (1.1.7) as the earlier X theory, but with energy-momentum tensor [21]

T (z) = −1

2
:∂X∂X : +

Q

2
∂2X, T̃ (z̄) = −1

2
: ∂̄X∂̄X : +

Q

2
∂̄2X. (1.6.1)

The TT operator product is still of the general form (1.3.16), but now has central charge

c = 1 + 3Q2. The change in T means that X is no longer a scalar,

δX = −(g∂X + ḡ∂̄X) − Q

2
(∂g + ∂̄ḡ). (1.6.2)

Exponentials : eikX : are still tensors, but with weight 1
2
(k2 + ikQ). One notable change

is in the state-operator mapping. The translation current j = i∂X is no longer a tensor,

δj = −g∂j − j∂g − iQ∂2g/2. The finite form is11

(∂zz
′)jz′(z

′) = jz(z) −
iQ

2

∂2
zz

′

∂zz′
. (1.6.3)

Applied to the cylinder frame z′ = w = i ln z this gives

1

2πi

∫

dw jw = α0 +
iQ

2
. (1.6.4)

Thus a state |0, k〉 which whose canonical momentum (defined on the left) is k corresponds

to the operator

:eikX+QX/2 : . (1.6.5)

Note that iα0 just picks out the exponent of the operator, so α0 = k − iQ/2.

The mode expansion of the m 6= 0 generators is

Lm =
1

2

∞
∑

n=−∞
αnαm−n +

iQ

2
(m+ 1)αm, m 6= 0, (1.6.6)

11To derive this, and the finite transformation (1.3.17) of T , you can first write the most general form
which has the correct infinitesimal limit and is appropriately homogeneous in z and z′ indices, and fix the
few resulting constants by requiring proper composition under z → z′ → z′′.
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the last term coming from the ∂2X term in T . For m = 0 the result is

L0 =
1

8
(2α0 + iQ)2 +

Q2

8
+

∞
∑

n=1

αµ
−nαµ,n

=
1

2
k2 +

Q2

8
+

∞
∑

n=1

αµ
−nαµ,n. (1.6.7)

The constant in the first line can be obtained from the z−2 term in the OPE of T with the
vertex operator (1.6.5); this is a quick way to derive or to check normal-ordering constants.

In the second line, expressed in terms of the ‘canonical’ momentum k it agrees with our

heuristic rules.

This CFT has a number of applications in string theory, some of which we will encounter.

Let me also mention a slight variation,

T (z) = −1

2
:∂X∂X : + i

κ

2
∂2X, T̃ (z̄) = −1

2
: ∂̄X∂̄X : − i

κ

2
∂̄2X, (1.6.8)

with central charge c = 1 − 3κ2. With the earlier transformation (1.6.2), the variation of

X contains a constant piece under rigid scale transformations (g a real constant). In other

words, one can regard X as the Goldstone boson of spontaneously broken scale invariance.

For the theory (1.6.8), the variation of X contains a constant piece under rigid rotations (g

an imaginary constant), and X is the Goldstone boson of spontaneously broken rotational

invariance. This is not directly relevant to string theory (the i in the energy-momentum

tensor makes the theory non-unitary) but occurs for real membranes (where the unitarity

condition is not relevant because both dimensions are spatial). In particular the CFT (1.6.8)

describes hexatic membranes,12 in which the rotational symmetry is broken to Z6. The

unbroken discrete symmetry plays an indirect role in forbidding certain nonlinear couplings

between the Goldstone boson X and the membrane coordinates.

Another simple variation on the free boson is to make it periodic, but we leave this until

section 3 where we will discuss some interesting features.

Another family of free CFT’s involves two anticommuting fields with action

S =
1

2π

∫

d2z {b∂̄c+ b̃∂c̃}. (1.6.9)

12I would like to thank Mark Bowick and Phil Nelson for educating me on this subject.
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The equations of motion are

∂̄c(z) = ∂̄b(z) = ∂c̃(z̄) = ∂b̃(z̄) = 0, (1.6.10)

so the fields are respectively analytic and antianalytic. The operator products are readily

found as before, with appropriate attention to the order of anticommuting variables,

b(z)c(0) ∼ 1

z
, c(z)b(0) ∼ 1

z
, b̃(z̄)c̃(0) ∼ 1

z̄
, c̃(z̄)b̃(0) ∼ 1

z̄
. (1.6.11)

We focus again on the analytic part; in fact the action (1.6.9) is a sum, and can be

regarded as two independent CFT’s. The action is conformally invariant if b is a (λ, 0)

tensor, and c a (1 − λ, 0) tensor; by interchange of b and c we can assume λ positive. The

corresponding energy-momentum tensor is

T (z) =:(∂b)c : −λ :∂(bc) : . (1.6.12)

One finds that the TT OPE has the usual form with

c = −3(2λ− 1)2 + 1. (1.6.13)

The fields have the usual Laurent expansions

b(z) =
∞
∑

m=−∞

bm
zm+λ

, c(z) =
∞
∑

m=−∞

cm
zm+1−λ

, (1.6.14)

giving rise to the anticommutator

{bm, cn} = δm+n,0. (1.6.15)

Also, {cm, cn} = {bm, bn} = 0. Because of the m = 0 modes there are two natural ground

states, |↑〉 and |↓〉. Both are annihilated by bm and cm for m > 0, while

b0|↓〉 = 0, c0|↑〉 = 0. (1.6.16)

These are related |↑〉 = c0|↓〉, |↓〉 = b0|↑〉. With the antianalytic theory included, there are

also the zero modes b̃0 and c̃0 and so four ground states—|↓↓〉, etc.
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The Virasoro generators in terms of the modes are

L0 =
∞
∑

n=1

n(b−ncn + c−nbn) − λ(λ− 1)

2

Lm =
∞
∑

n=−∞
{λm− n}bncm−n, m 6= 0 . (1.6.17)

The ordering constant is found as before. Two sets (b and c) of integer anticommuting modes

give 1
12

at step 2, and the central charge correction then gives the result above.

The state-operator mapping is a little tricky. Let λ be an integer, so that the Laurent

expansion (1.6.14) has no branch cut. For the unit operator the fields are analytic at the

origin, so

bm|ψ1〉 = 0, m ≥ 1 − λ, cm|ψ1〉 = 0, m ≥ λ. (1.6.18)

Thus, the unit state is in general not one of the ground states, but rather

|ψ1〉 = b−1b−2 . . . b1−λ|↓〉, (1.6.19)

up to normalization. Also, we have the dictionary

b−m ↔ 1

(m− λ)!
∂m−λb, c−m ↔ 1

(m+ λ− 1)!
∂m+λ−1c. (1.6.20)

Thus we have, taking the value λ = 2 which will be relevant later,

|↓〉 = c1|ψ1〉 ↔ c, |↑〉 = c0c1|ψ1〉 ↔ ∂c c. (1.6.21)

The bc theory has a conserved current j = : cb :, called ghost number, which counts the

number of c’s minus the number of b’s. In the cylindrical w frame the vacua have average

ghost number zero, so −1
2

for | ↓〉 and +1
2

for | ↑〉. The ghost numbers of the corresponding

operators are λ − 1 and λ, as we see from the example (1.6.21). As in the case of the

momentum (1.6.4), the difference arises because the current is not a tensor.

For the special case λ = 1
2
, b and c have the same weight and the bc system can be split

in two in a conformally invariant way, b = (ψ1 + iψ2)/
√

2, c = (ψ1 − iψ2)/
√

2, and

S =
1

2π

∫

d2z b∂̄c =
1

4π

∫

d2z
{

ψ1∂̄ψ1 + ψ2∂̄ψ2

}

. (1.6.22)
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Each ψ theory has central charge 1
2
. The antianalytic theory separates in the same way. We

will refer to these as Majorana (real) fermions, because it is a unitary CFT with ψ†
m = ψ−m.

Another family of CFT’s differs from the bc system only in that the fields commute. The

action is

S =
1

2π

∫

d2z β∂̄γ . (1.6.23)

The fields β and γ are analytic by the equations of motion; as usual there is a corresponding

antianalytic theory. Because the statistics are changed, some signs in operator products are

different,

β(z)γ(0) ∼ −1

z
, γ(z)β(0) ∼ 1

z
. (1.6.24)

The action is conformally invariant with β a weight (λ, 0) tensor and γ a (1 − λ, 0) tensor.

The energy-momentum tensor is

T (z) = :(∂β)γ : −λ :∂(βγ) : . (1.6.25)

The central charge has the opposite sign relative to the bc system because of the changed

statistics,

c = 3(2λ− 1)2 − 1. (1.6.26)

All of the above are free field theories. A simple interacting theory is the non-linear sigma

model [22]-[24], consisting of D scalars Xµ with a field-dependent kinetic term,

S =
1

4π

∫

d2z
{

Gµν(X) + iBµν(X)
}

∂Xµ∂̄Xν , (1.6.27)

with Gµν = Gνµ and Bµν = −Bνµ. Effectively the scalars define a curved field space, with

Gµν the metric on the space. The path integral is no longer gaussian, but when Gµν(X)

and Bµν(X) are slowly varying the interactions are weak and there is a small parameter.

The action is naively conformally invariant, but a one-loop calculation reveals an anomaly

(obviously this is closely related to the β-function for rigid scale transformations),

Tzz̄ =
{

− 2Rµν +
1

2
HµσρHν

σρ + ∇σHσµν

}

∂Xµ∂̄Xν . (1.6.28)

Here Rµν is the Ricci curvature built from Gµν (I am using boldface to distinguish it from

the two-dimensional curvature to appear later), ∇σ denotes the covariant derivative in this

metric, and

Hσµν = ∂σBµν + ∂µBνσ + ∂νBσµ. (1.6.29)
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To this order, any Ricci-flat space with Bµν = 0 gives a CFT. At higher order these con-

ditions receive corrections. Other solutions involve cancellations between terms in (1.6.28).

A three dimensional example is the 3-sphere with a round metric of radius r, and with

Hσµν =
4q

r3
ǫσµν (1.6.30)

proportional to the antisymmetric three-tensor. By symmetry, the first two terms in Tzz̄ are

proportional to Gµν∂X
µ∂̄Xν and the third vanishes. Thus Tzz̄ vanishes for an appropriate

relation between the constants, r4 = 4q2. There is one subtlety. Locally the form (1.6.30)

is compatible with the definition (1.6.29) but not globally. This configuration is the analog

of a magnetic monopole, with the gauge potential Bµν now having two indices and the field

strength Hσµν . Then Bµν must have a ‘Dirac string’ singularity, which is invisible to the

string if the field strength is appropriately quantized; I have normalized q just such that

it must be an integer. So this defines a discrete series of models. The one-loop correction

to the central charge is c = 3 − 6/|q| + O(1/q2). The 3-sphere is the SU(2) group space,

and the theory just described is the SU(2) Wess-Zumino-Witten (WZW) model [25]-[27] at

level q. It can be generalized to any Lie group. Although this discussion is based on the

one-loop approximation, which is accurate for large r (small gradients) and so for large q,

these models can also be constructed exactly, as will be discussed further shortly.

For c < 1, it can be shown that unitary CFT’s can exist only at the special values [18], [28]

c = 1 − 6

m(m+ 1)
, m = 2, 3, . . . . (1.6.31)

These are the unitary minimal models, and can be solved using conformal symmetry alone.

The point is that for c < 1 the representations are all degenerate, certain linear combinations

of raising operators annihilating the highest weight state, which gives rise to differential

equations for the expectation value of the corresponding tensor operator. These CFT’s have

a Z2 symmetry and m− 2 relevant operators, and correspond to interesting critical systems:

m = 3 to the Ising model (note that c = 1
2

corresponds to the free fermion), m = 4 to the

tricritical Ising model, m = 5 to a multicritical Z2 Ising model but also to the three-state

Potts model, and so on.

This gives a survey of the main categories of conformal field theory, including some CFT’s

that will be of specific interest to us later on. It is familiar that there are many equivalences

between different two dimensional field theories. For example, the ordinary free boson is
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equivalent to a free fermion, which is the same as the bc system at λ = 1
2
. The bosonization

dictionary is

b ≡ :eiX : , c ≡ :e−iX : (1.6.32)

In fact this extends to the general bc and X CFT’s, with complex Q = i(1−2λ). The reader

can check that the weights of b and c, and the central charge, then match. There is also a

rewriting of β and γ in terms of exponentials, which is more complicated but useful in the

superstring. All of these subjects are covered in ref. [19]. As a further example, the level 1

SU(2) WZW model, which we have described in terms of three bosons, can also be written in

terms of a single free boson; the level 2 SU(2) WZW model can be written in terms of three

Majorana fermions; these will be explained further in the next section. The minimal models

are related to the free X theory with Q such as to give the appropriate central charge [29],

but this is somewhat indirect.

1.7 Other Algebras

The Virasoro algebra is just one of several important infinite dimensional algebras. Another

is obtained from T (z) plus any number of analytic (1, 0) tensors ja(z). The constraints

obtained at the end of section 1.5 imply that if the algebra is to have unitary representations

the jj OPE can only take the form

ja(z)jb(0) ∼ kab

z2
+ i

fab
c

z
jc(0). (1.7.1)

The corresponding Laurent expansion is

ja(z) =
∞
∑

m=−∞

ja
m

zm+1
, (1.7.2)

and the corresponding algebra

[ja
m, j

b
n] = mkabδm+n,0 + ifab

cj
c
m+n. (1.7.3)

This is known variously as a current algebra, an affine Lie algebra, or sometimes as a Kac-

Moody algebra; for general references see [30], [26] and [27]. The m = n = 0 modes form

an ordinary Lie algebra g with structure constants fab
c. The latter must therefore satisfy

the Jacobi identity; another Jacobi identity implies that kab is g-invariant. The energy-

momentum tensor can be shown to separate into a piece built from the current (the Sugawara
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construction) and a piece commuting with the current. The CFT is thus a product of a part

determined by the symmetry and a part independent of the symmetry.

For a single Abelian current we already have the example of the free X theory. The next

simplest case is SU(2),

[ja
m, j

b
n] = mkδabδm+n,0 + i

√
2ǫabcjc

m+n. (1.7.4)

The value of k must be an integer, and non-negative in a unitary theory.

Exercise: Construct an SU(2) algebra containing (j1 + ij2)1 and (j1 − ij2)−1, and use it to

show that k is an integer.

The Sugawara central charge is c = 3k/(k + 2). The SU(2) WZW model just discussed has

k = |q|. The case k = 1 can also be realized in terms of a single free scalar as

j1 =
√

2 :cos
√

2X : , j2 = −
√

2 :sin
√

2X : , j3 = i∂X . (1.7.5)

The case k = 2 can also be realized in terms of three Majorana fermions, ja = iǫabcψbψc/
√

2.

The energy momentum tensor together with a weight (3
2
, 0) tensor current (supercurrent)

TF form the N = 1 superconformal algebra [31], [32]. The TFTF OPE is

TF (z)TF (0) ∼ 2c

3z3
+

2

z
T (0); (1.7.6)

TTF has the usual tensor form (1.3.13). A simple realization is in terms of a free scalar X

and a Majorana fermion ψ,

TF = iX∂ψ, T = −1

2
(:∂X∂X : + :ψ∂ψ : ). (1.7.7)

With the Laurent expansions

TF (z) =
∞
∑

r=−∞

Gr

zr+3/2
, ψ(z) =

∞
∑

r=−∞

ψr

zr+1/2
, (1.7.8)

the algebra is

{Gr, Gs} = 2Lr+s +
c

12
(4r2 − 1)δr+s,0 . (1.7.9)

The central charge must be the same is in the TT OPE, by the Jacobi identity. Note that for

r running over integers, the fields (1.7.8) have branch cuts at the origin, but the correspond-

ing fields in the cylindrical w frame are periodic due to the tensor transformation (∂w/∂z)h.
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This is the Ramond sector. Antiperiodic boundary conditions on ψ and TF in the w frame

are also possible; this is the Neveu-Schwarz sector. All of the above goes through with r

running over integers-plus-1
2
, and the fields in the z frame are single valued in this sector.

Exercise: Work out the expansions of Lm and Gr in terms of the modes of X and ψ. [An-

swer: the normal-ordering constant is 0 in the Neveu-Schwarz sector and 1
16

in the Ramond

sector.]

The operators corresponding to Ramond-sector states thus produce branch cuts in the

fermionic fields, and are known as spin fields. They are most easily described using bosoniza-

tion. With two copies of the free representation (1.7.7), the bosonization is (ψ1± iψ2)/
√

2 =

:e±iX : . There are two Ramond ground states, which correspond to the operators :e±iX/2 :.

Observe that this has the necessary branch cut with ψ1, ψ2, and also that its weight, 1
8

= 2 1
16

,

agrees with the exercise.

The energy-momentum tensor with two (3
2
, 0) tensors T±

F plus a (1, 0) current j form the

N = 2 superconformal algebra [33]

T+
F (z)T−

F (0) ∼ 2c

3z3
+

1

z2
j(0) +

2

z
T (0) +

1

2z
∂j(0),

j(z)T±
F (0) ∼ ±1

z
T±

F (0), (1.7.10)

with T+
F T

+
F and T−

F T
−
F analytic. This can be generalized to N supercurrents, leading to an

algebra with weights 2, 3
2
, . . . , 2 − 1

2
N . From the earlier discussion we see that there are no

unitary representations for N > 4. There is one N = 3 algebra and two distinct N = 4

algebras [33],[34].

These are the algebras which play a central role in string theory, but many others arise in

various CFT’s. I will briefly discuss some higher-spin algebras, which have a number of in-

teresting applications (for reviews of the various linear and nonlinear higher spin algebras see

refs. [35],[36]). The free scalar action (1.1.7) actually has an enormous amount of symmetry,

but let us in particular pick out

δX(z, z̄) = −
∞
∑

l=0

gl(z)(∂X(z))l+1, l = 0, 1, . . . (1.7.11)

The Noether currents

V l(z) = − 1

l + 2
:(∂X(z))l+2 : (1.7.12)

33



have spins l + 2. Making the usual Laurent expansion, one finds the w∞ algebra

[V i
m, V

j
n ] =

(

[j + 1]m− [i+ 1]n
)

V i+j
m+n. (1.7.13)

The l = 0 generators are just the usual Virasoro algebra. There are a number of related

algebras. Adding in the l = −1 generators (which are just the modes of the translation

current) defines the w1+∞ algebra. Another algebra with the same spin content as w∞ but a

more complicated commutator is W∞; w∞ can be obtained as a limit (contraction) of W∞.

These algebras have a simple and useful realization in terms of the classical and quantum

mechanics of a particle in one dimension:

V i
m ≡ 1

4
(p+ x)i+m+1(p− x)i−m+1. (1.7.14)

The Poisson bracket algebra of these is the wedge subalgebra (m ≤ i + 1) of w∞; the

commutator algebra is the wedge subalgebra of W∞. In the literature one must beware of

differing notations and conventions.

All of these algebras have supersymmetric extensions, with generators of half-integral

spins. There are also various algebras with a finite number of higher weights. One family is

WN , closely related to W∞, with weights up to N . The commutator of two weight-3 currents

in W∞ contains the weight-4 current. In W3 this is not an independent current but the

square of T (z), so the algebra is nonlinear.

1.8 Riemann Surfaces

Thus far we have focussed on local properties, without regard to the global structure or

boundary conditions. For string theory we will be interested in conformal field theories on

closed manifolds. The appropriate manifold for a two-dimensional CFT to live on is a two-

dimensional complex manifold, a Riemann surface. One can imagine this as being built up

from patches, patch i having a coordinate z(i) which runs over some portion of the complex

plane. If patches i and j overlap, there is a relation between the coordinates,

z(j) = fij(z
(i)) (1.8.1)

with fij an analytic function. Two Riemann surfaces are equivalent if there is a mapping

between them such that the coordinates on one are analytic functions of the coordinates on

the other. This is entirely parallel to the definition of a differentiable manifold, but it has
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more structure—the manifold comes with a local notion of analyticity. Since in a CFT each

field has a specific transformation law under analytic changes of coordinates, the transition

function (1.8.1) is just the information needed to extend the field from patch to patch.

A simple example is the sphere, which we can imagine as built from two copies of the

complex plane, with coordinates z and u, with the mapping

u = −1

z
. (1.8.2)

The z coordinate cannot quite cover the sphere, the point at infinity being missing. All

Riemann surfaces with the topology of the sphere are equivalent. For future reference let us

note that the sphere has a group of globally defined conformal transformations (conformal

Killing transformations), which in the z patch take

z′ =
αz + β

γz + δ
, (1.8.3)

where α, β, γ and δ are complex parameters which can be chosen such that αδ − βγ = 1.

This is the Möbius group.

The next Riemann surface is the torus. Rather than build it from patches it is most

convenient to describe it as in fig. 5 by taking a single copy z of the complex plane and

identifying points

z ∼= z + 2π ∼= z + 2πτ, (1.8.4)

producing a parallelogram-shaped region with opposite edges identified. Different values of

τ in general define inequivalent Riemann surfaces; τ is known as a modulus for the complex

structure on the torus. However, there are some equivalences: τ , −τ , τ + 1, and −1/τ

generate the same group of transformations of the complex plane and so the same surface

(to see the last of these, let z = −z′τ). So we may restrict to Im(τ) > 0 and moreover

identify

τ ∼ τ + 1 ∼ −1

τ
. (1.8.5)

These generate the modular group

τ ′ =
aτ + b

cτ + d
, (1.8.6)

where now a, b, c, d are integers such that ad − bc = 1. A fundamental region for this is

given by |τ | ≥ 1, Re(τ) ≤ 1
2
, shown in fig. 6. This is the moduli space for the torus: every
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z

2π

2πτ

a a'

b

b'

0

2π(τ+1)

Figure 5: The torus by periodic identification of the complex plane. Points identified with
the origin are indicated. Edges a and a′ are identified, as are edges b and b′.

τ
1
2−−

I I'

II II'

i

1
2−

Figure 6: The standard fundamental region for the modulus τ of the torus. Identifying
boundaries I and I′, and II and II′, produces the moduli space for the torus. Note that this
is a closed space except for the limit Im(τ) → ∞.
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Riemann surface with this topology is equivalent to one with τ in this region. The torus also

has a conformal Killing transformation, z → z + α.

Notice the similarity between the transformations (1.8.3) and (1.8.6), differing only in

whether the parameters are complex numbers or integers. You can check that successive

transformations compose like matrix multiplication, so these are the groups SL(2, C) and

SL(2, Z) respectively (2× 2 matrices of determinant one).13 We will meet SL(2, Z) again in

a different physical context.

Any closed oriented oriented two-dimensional surface can be obtained by adding h handles

to the sphere; h is the genus. It is often useful to think of higher genus surfaces built up

from lower via the plumbing fixture construction. This essential idea is developed in many

places, but my lectures have been most influenced by the approach in refs [37]-[40]. Let z(1)

and z(2) be coordinates in two patches, which may be on the same Riemann surface or on

different Riemann surfaces. For complex q, cut out the circles |z(1)|, |z(2)| < (1− ǫ)|q|1/2 and

identify points on the cut surfaces such that

z(1)z(2) = q, (1.8.7)

as shown in fig. 7. If z(1) and z(2) are on the same surface, this adds a handle. The genus-h

surface can be constructed from the sphere by applying this h times. The number of complex

parameters in the construction is 3h, being q and the position of each end for each handle,

minus 3 from an overcounting due to the Möbius group, leaving 3h− 3 which is the correct

number of complex moduli. An index theorem states that the number of complex moduli

minus the number of conformal Killing transformations is 3h− 3, as we indeed have in each
case.

Note that for q < 1 the region between the circles |z(1)| = 1 and |z(2)| = 1 is conformal

to the cylindrical region

0 < Im(w) < 2π ln(1/|q|), w ∼= w + 2π, (1.8.8)

which becomes long in the limit q → 0.

Just as conformal transformations can be described as the most general coordinate trans-

formation which leave dz invariant up to local multiplication, there is a geometric interpre-

tation for the superconformal transformations. The N = 1 algebra, for example, can be de-

scribed in terms of a space with two ordinary and two anticommuting coordinates (z, z̄, θ, θ̄)
13To be entirely precise, flipping the signs of α, β, γ, δ or a, b, c, d gives the same transformation, so we

have SL(2, C)/Z2 and SL(2, Z)/Z2 respectively.
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a)

b)

Figure 7: Plumbing fixture construction. Identifying annular regions as in (a) produces the
sewn surface (b).

as the space of transformations which leave dz + iθdθ invariant up to local multiplication.

Super-Riemann surfaces can be defined as above by patching. The genus-h Riemann surface

for h ≥ 2 has 3h− 3 commuting and 2h− 2 anticommuting complex moduli.

1.9 CFT on Riemann Surfaces

On this large subject I will give here only a few examples and remarks that will be useful

later. A tensor O of weight (h, h̃) transforms as O(u) = O(z)z2hz̄2h̃ from the z to u patch on

the sphere. It must be smooth at u = 0, so in the z frame we have

< Oz(z, z̄) . . . >S2
∼ z−2hz̄−2h̃, z → ∞ (1.9.1)
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An expectation value which illustrates this, and will be useful later, is (all operators implicitly

in the z-frame unless noted)

<:eik1X(z1,z̄1) : :eik2X(z2,z̄2) : . . . :eiknX(zn,z̄n) :>S2
= 2πδ(k1 + . . .+kn)

∏

i<j

|zi − zj |2kikj , (1.9.2)

obtained but summing over all graphs with the propagator − ln |zi − zj |2. Using momentum

conservation one finds the appropriate behavior |zi|−2k2
i as zi → ∞.

Another example involves the bc system, specializing to the most important case λ = 2.

Consider an expectation value with some product of local operators, surrounded by a line

integral

1

2πi

∮

dzjz (1.9.3)

where j =:cb :. Contracting C down around the operators and using the OPE gives Nc −Nb

for the contour integral, counting the total net ghost number of the operators. We have

previously noted that j is not a tensor, and one finds that the contour integral above is equal

to
1

2πi

∮

duju + 3. (1.9.4)

Now, we can contract contour C to zero in the u patch, so it must be that Nc −Nb = 3 for

a nonvanishing correlator.

Exercise: Using the construction of the genus h surface from the sphere vis h plumbing

fixtures, show that Nc −Nb must be 3h− 3.

The simplest one is

< c(z1)c(z2)c(z3)c̃(z4)c̃(z5)c̃(z6) >S2
= z12z13z23z̄45z̄46z̄56, (1.9.5)

which is completely determined, except for normalization that we fix by hand, by the re-

quirement that it be analytic, that it be odd under exchange of anticommuting fields, and

that it go as z2
i or z̄2

i at infinity, c being weight (−1, 0) and c̃ being (0,−1).

Now something more abstract: consider the general two-point function

< A′
i(∞,∞)Aj(0, 0) >S2

= 〈ψi|ψj〉 = Gij (1.9.6)

where I use a slightly wrong notation: (∞,∞) denotes the point z = ∞ (u = 0) but the

prime denote the u frame for the operator. Recall the state-operator mapping. The operator

Aj(0, 0) is equivalent to removing the disk |z| < 1 and inserting the state |ψj〉; the operator

39



A′
i(∞,∞) is equivalent to removing the disk |u| < 1 (|z| > 1) and inserting the state |ψj〉.

All that is left of the sphere is the overlap of the two states. It is also useful to regard this

as a metric Gij on the space of operators, the Zamolodchikov metric. Note that the path

integral (1.9.6) does not include conjugation, so if there is a Hermitean inner product 〈〈 | 〉
these must be related

〈〈ψi|ψj〉 = 〈ψ∗
i |ψj〉 , (1.9.7)

where ∗ is some operation of conjugation. For the free scalar theory, whose Hermitean

inner product has already been given, ∗ just takes k → −k and conjugates explicit complex

numbers.

Similarly for the three-point function, the operator product expansion plus the defini-

tion (1.9.6) give

< A′
i(∞,∞)Ak(z, z̄)Aj(0, 0) >S2

= 〈ψi|Ak(z, z̄)|ψj〉

= zhl−hk−hj z̄h̃l−h̃k−h̃jGilc
l
kj = zhl−hk−hj z̄h̃l−h̃k−h̃jcikj. (1.9.8)

This relates the three-point expectation value on the sphere to a matrix element and then

to an OPE coefficient.

The torus has a simple canonical interpretation: propagate a state forward by 2πIm(τ)

and spatially by 2πRe(τ) and then sum over all states, giving the partition function

< 1 >T2(τ) = Tr
(

e2πiτ(L0−c/24)e−2πiτ̄(L̃0−c̃/24)
)

, (1.9.9)

where the additive constant is as in eq. (1.4.10). This must be invariant under the modular

group. Let us point out just one interesting consequence [41]. In a unitary theory the

operator of lowest weight is the (0, 0) unit operator, so

< 1 >T2(τ) ∼ eπ(c+c̃)Im(τ)/12, τ → i∞. (1.9.10)

The modular transformation τ → −1/τ then gives

< 1 >T2(τ) ∼ eπ(c+c̃)/12Im(τ), τ → i0. (1.9.11)

The latter partition function is dominated by the states of high weight and is a measure of

the density of these states. We see that this is governed by the central charge, generalizing

the result that c counts free scalars.
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Figure 8: a) Path integral on sewn surface of fig. 7 written in terms of a sum over intermediate
states. b) Each state replaced by disk with local operator.

We have described the general Riemann surface implicitly in terms of the plumbing

fixture, and there is a corresponding construction for CFT’s on the surface (again, I follow

refs. [18], [37]-[40]). Taking first q = 1, sewing the path integrals together is equivalent to

inserting a complete set of states. As shown in fig. 8, each can be replaced with a disk plus

vertex operator. Including the radial evolution for general q we have

< . . .1 . . .2 >M =
∑

ij

q−hi q̄−h̃i < . . .1 Ai >M1
< . . .2 Ai >M2

, (1.9.12)

where M is sewn from M1,2, the operators are inserted at the origins of the z(1,2) frames,

and indices are raised with the inverse of the metric (1.9.6).14

14The one thing which is not obvious here is the metric to use. You can check the result by applying it to
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a) b)

c)

Figure 9: Some sewing constructions of the genus-two surface with four operators. Each
vertex is a sphere with three operators, and each internal line represents the sewing con-
struction.

By sewing in this way, an expectation value with any number of operators on a general

genus surface can be related to the three-point function on the sphere. For example, fig. 9

shows three of the many ways to construct the genus-two surface with four operators. There

is one complex modulus q for each handle, or 7 in all here, corresponding to the 3h− 3 = 3

moduli for the surface plus the positions of the four operators. As a consequence, the OPE

coefficients cij
k implicitly determine all expectation values, and two CFT’s with the same

OPE (and same operator identified as T (z)) are the same. However, the cij
k are not arbitrary

because the various methods of constructing a given surface must agree. For example, the

constructions of fig. 9a and 9b differ only by a single move described earlier corresponding to

associativity of the OPE, and by further associativity moves one gets fig. 9c. The amplitudes

must also be modular invariant. In fig. 9c we see that the amplitude has been factorized into

a tree amplitude times one-loop one-point amplitudes, so modular invariance of the latter is

sew two spheres together, with . . .1 and . . .2 each being a single local operator, to get the sphere with two
local operators.
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sufficient. It can be shown generally that all constructions agree and are modular invariant

given two conditions [40]: associativity of the OPE and modular invariance of the torus with

one local operator (which constrains sums involving cij
j).

The classification of all CFT’s can thus be reduced to the algebraic problem of finding

all sets cij
k satisfying the constraints of conformal invariance plus these two conditions. This

program, the conformal bootstrap [18], has been carried out only for cases where conformal

invariance (or some extension thereof) is sufficient to reduce the number of independent cij
k

to a finite number—these are known as rational conformal field theories.

My description of higher-genus surfaces and the CFT’s on them has been rather implicit,

using the sewing construction. This is well-suited for my purpose, which is to understand

the general properties of amplitudes. For treatments from a more explicit point of view see

refs. [42], [43].

Unoriented surfaces, and surfaces with boundary, are also of interest. In particular,

CFT’s with boundary have many interesting condensed matter applications. I do not have

time for a detailed discussion, but will make a few comments about boundaries. Taking

coordinates such that the boundary is Im(z) = 0 and the interior is Im(z) > 0, the condition

that the energy-momentum be conserved at the boundary is

T (z) = T̃ (z), Im(z) = 0. (1.9.13)

It is convenient to use the doubling trick, extending T into the lower half-plane by defining

T (z) = T̃ (z̄), Im(z) < 0. (1.9.14)

The boundary conditions plus conservation of T and T̃ are all implied by the analyticity

of the extended T . Then T and T̃ together can be expanded in terms of a single Virasoro

algebra, the first of equations (1.4.1). The doubling trick is also useful for free fields. For

free scalar with Neumann boundary conditions, ∂nX = 0, the mode expansion is

X(z, z̄) = XL(z) +XL(z̄), (1.9.15)

with

XL(z) =
x

2
+ iα0 ln z − i

∑

m6=0

αm

mzm
. (1.9.16)

There is a factor of 2 difference from the earlier (1.4.23); with this, x is the mean value of

X at time |z| = 1. The commutator [x, α0] is found to be 2i, so α0 = 2k where k is the

conjugate to x. The leading surfaces with boundary are the disk and annulus.
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a) b) c)

Figure 10: a) Two particles propagating freely. b) Correction from one-graviton exchange.
c) Correction from two-graviton exchange.

2 String Theory

2.1 Why Strings?

The main clue that leads us to string theory is the short-distance problem of quantum gravity.

Figure 10 shows some process, say two particles propagating, and corrections due to one-

graviton exchange and two-graviton exchange. The one graviton exchange is proportional

to Newton’s constant GN, which with h̄ = c = 1 has units of length2 or mass−2: GN =

M−2
P where the Planck mass MP = 1.2 × 1019GeV. The dimensionless ratio of the one-

graviton correction to the original amplitude must then be of order E2/M2
P, where E is the

characteristic energy of the process. This is thus an irrelevant coupling, growing weaker

at long distance, and in particular is negligible at particle physics energies of hundreds of

GeV. By the same token, the coupling grows stronger at high energy and at E > MP

perturbation theory breaks down. This shows up as the nonrenormalizability of the theory:

the two-graviton correction (c) is of order

M−4
P

∫ ∞
dE ′E ′3 (2.1.1)

where E ′ is the energy of the virtual intermediate state, and so diverges if the theory is

extrapolated to arbitrarily high energies.

There are two main possibilities. The first is that the theory has a nontrivial ultraviolet

fixed point and is fine at high energy, the divergences being an artifact of naive perturbation
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theory. The second is that there is new physics at some energy and the extrapolation of the

low energy theory beyond this point is invalid.

The existence of a nontrivial fixed point is hard to determine. One of the usual tools,

Monte Carlo simulation, is extremely difficult because of the need to retain coordinate in-

variance in the discretized theory. Expansion around the critical dimension d = 2 indicates

a nontrivial UV fixed point when gravity is coupled to certain kinds of matter, but it is

impossible to say whether this persists to d = 4.1

The more common expectation, based in part on experience (such as the weak inter-

action), is that the nonrenormalizability indicates a breakdown of the theory, and that at

short distances we will find a new theory in which the interaction is spread out in space-

time in some way that cuts off the divergence. At this point the condensed matter half of

the audience is thinking, “OK, so put the thing on a lattice.” But it is not so easy. We

know that Lorentz invariance holds to very good approximation in the low energy theory,

and that means that if we spread the interaction in space we spread it in time as well,

with consequent loss of causality or unitarity. Moreover we know that we have local coordi-

nate invariance in nature—this makes it even harder to spread the interaction out without

producing inconsistencies.

In fact, we know of only one way to spread out the gravitational interaction and cut off

the divergence without spoiling the consistency of the theory. That way is string theory, in

which the graviton and all other elementary particles are one-dimensional objects, strings,

rather than points as in quantum field theory. Why this should work and not anything

else is not at all obvious a priori, but as we develop the theory we will see that if we try

to make a consistent Lorentz-invariant quantum theory of strings we are led inevitably to

include gravity [45], [46], and that the short distance divergences of field theory are no longer

present.2

Perhaps we merely suffer from a lack of imagination, and there are many other consistent

theories of gravity with a short-distance cutoff. But experience has shown that the divergence

problems of quantum field theory are not easily resolved, so if we have even one solution we

1The idea that the divergence problems of quantum gravity might be solved by a resummation of pertur-
bation theory has been examined from many points of view, but let me mention in particular the approach
ref. [44] as one that will be familiar to the condensed matter audience.

2There is an intuitive answer to at least one common question: why not membranes, two- or higher-
dimensional objects? The answer is that as we spread out particles in more dimensions we reduce the
spacetime divergences, but encounter new divergences coming from the increased number of internal degrees
of freedom. One dimension appears to be the one case where both the spacetime and internal divergences
are under control. But this is far from conclusive: just as pointlike theories of gravity are still under study,
so are membrane theories, as we will mention in section 3.5.
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should take it very seriously. In the case of the weak interaction, for example, there is only

one known way to spread out the nonrenormalizable four-fermi theory consistently.3 That

way is spontaneously broken Yang-Mills theory, which did indeed turn out to be the correct

theory of the weak interaction. Indeed, we are very fortunate that consistency turns out to

be such a restrictive principle, since the unification of gravity with the other interactions

takes place at such high energy, MP, that experimental tests will be difficult and indirect.

So what else do we find, if we pursue this idea? We find that string theory fits very nicely

into the pre-existing picture of what physics beyond the Standard Model might look like.

Besides gravity, string theory necessarily incorporates a number of previous unifying ideas

(though sometimes in transmuted form): grand unification, Kaluza-Klein theory (unification

via extra dimensions), supersymmetry and extended supersymmetry. Moreover it unifies

these ideas in an elegant way, and resolves some of the problems which previously arose—

most notably difficulties of obtaining chiral (parity-violating) gauge interactions and the

renormalizability problem of Kaluza-Klein theory, which is even more severe than for four-

dimensional gravity. Further, some of the simplest string theories [47] give rise to precisely

the gauge groups and matter representations which previously arose in grand unification.

Finally, the whole subject has a unity and structure far nicer than anything I have seen or

expect to see in quantum field theory. So I am strongly of the opinion, and I think that

almost all of those who have worked in the subject would agree, that string theory is at least

a step toward the unification of gravity, quantum mechanics, and particle physics.

In this lecture and the next I will try to sketch our current understanding of the answer

to the question posed in the title. Given limits of time and the nature of the audience, I

will focus on broad dynamical issues, especially the mechanics by which string theory cuts

off gravity in a consistent way. Most notably, spacetime supersymmetry and the superstring

will be underemphasized.

There is one graph, fig. 11, that I want to show you before I launch into the introduction

to string theory. It shows how the three dimensionless gauge couplings and the dimensionless

gravitational coupling E2/M2
P depend on energy. The gauge couplings evolve slowly (loga-

rithmically); the big news of recent years is that in the minimal supersymmetric extension

of the Standard Model they meet to high accuracy at a common scale, of order 1016GeV,

3During the lecture, Prof. Zinn-Justin reminded me that there is evidence from the large-N approximation
that some four-fermi theories have nontrivial fixed points. So perhaps there is more than one way to smooth
the weak interaction—but perhaps also we should take this as an indication that, given a choice between
new physics and a nontrivial ultraviolet fixed point, nature will choose the former. At any right, given my
understanding of renormalizable field as an effective theory that emerges at long distance, I would find the
fixed point resolution very unappealing.
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Figure 11: Energy dependence of dimensionless gauge couplings α1,2,3 (running logarithmi-
cally) and αG = E2/M2

P.

giving evidence for supersymmetric grand unification [48]. The gravitational coupling starts

much smaller but grows as a power and so is just a bit late for its meeting with the oth-

ers, missing by two orders of magnitude or perhaps a little less. These extrapolations are

sensitive to assumptions about the spectrum, so perhaps all four couplings meet at a single

energy, a very grand unification. Or perhaps there is a small hierarchy of scales near the

Planck scale. But the near meeting in this minimal extrapolation suggests that nature may

have been kind and put little new physics between current energies and the Planck scale.

With the thorough exploration of the weak interaction scale in coming years, and hopefully

the discovery of supersymmetry, we will have several additional extrapolations of the same

sort and so several handles on physics near the Planck scale. Also, proton decay reaches into

the same region, and if we are lucky it will occur at a rate that will one day be seen.
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2.2 String Basics

We want to describe the dynamics of one-dimensional objects. The first thing we need is an

action, and the simplest that comes to mind is the Nambu-Goto action,4

S = − 1

2πα′ (Area of world-sheet)

= − 1

2πα′

∫

d2σ
√

− det ∂aXµ∂bXµ . (2.2.1)

This generalizes the relativistic action for a point particle, which is minus the mass times

the invariant length of the world-line. For a static string, this action reduces to minus

the length of the string times the time interval times 1/2πα′, so the latter is the string

tension. Note that in the second line we are describing the world-sheet by Xµ(σ1, σ2), using

a parameterization σa of the world-sheet, but the action is independent of the choice of

parameterization (world-sheet coordinate invariant). This will play an important role soon.

In quantum field theory we are familiar with a variety of one-dimensional objects—

magnetic flux tubes in superconductors and other spontaneously broken gauge theories,

color-electric flux tubes in QCD. Also, the classical statistical mechanics of membranes is

given by a sum over two-dimensional surfaces, and so is closely related to the quantum-

mechanical path integral for the string. In all of these cases the leading term in the action is

the tension (2.2.1). But these are all composite objects, with a thickness, and so there will

be higher-dimension terms in the action, such as a rigidity term, multiplied by powers of the

thickness. The strings I am talking about, the ‘fundamental’ strings which give rise to gravity,

are exactly one-dimensional objects, of zero thickness. Composite strings also have a large

contact interaction when they intersect; fundamental strings do not. Fundamental strings are

thus simpler than the various composite strings, simpler in particular than the hypothetical

string theory of QCD.5 Nevertheless there has been a great deal of cross-fertilization between

the theories of fundamental and composite strings.

It is useful to rewrite the action (2.2.1) in a form which removes the square root from

the derivatives. Add a world-sheet metric gab(σ) and let

SP =
1

4πα′

∫

d2σ
√
ggab∂aX

µ∂bXµ , (2.2.2)

4Indices µ, ν = 0, 1, . . .D−1 are raised and lowered with the flat-space metric ηµν = diag(−, +, +, . . . , +).
5In the coming sections I will discuss ideas that strings are in some sense composite, but not composites

of ordinary gauge fields.
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where g = det gab. This is commonly known as the Polyakov action because he emphasized

its virtues for quantization [49]. The equation of motion for the metric determines it up to

a position-dependent normalization

gab ∝ ∂aX
µ∂bXµ; (2.2.3)

inserting this back into the Polyakov action gives the Nambu action.6 Now, the Polyakov

action makes sense for either a Lorentzian metric, signature (−,+), or a Euclidean metric,

signature (+,+).7 Much of the development can be carried out in either case. These are

presumably related by a contour rotation in the integration over metrics, since the light-cone

quantization (Lorentzian) gives the same theory as the Euclidean Polyakov quantization that

I will describe. The relation between path integrals over Lorentzian and Euclidean metrics is

a complicated and confusing issue in four-dimensional gravity. It seems to work out simply

in two dimensions, though I don’t have a simple explanation of why—the demonstration

of the equivalence is rather roundabout [51]. Perhaps it is simply that there is enough

gauge symmetry to remove the metric entirely.8 In any case I will take a Euclidean metric

henceforth as defining the theory.

In addition to the two-dimensional coordinate invariance mentioned earlier (diff invari-

ance for short),

X ′(σ′) = X(σ),
∂σ′a

∂σc

∂σ′b

∂σd
g′ab(σ

′) = gcd(σ) , (2.2.4)

the Polyakov action has another local symmetry, Weyl invariance, position-dependent rescal-

ings of the metric,

g′ab(σ) = e2ω(σ)gab(σ). (2.2.5)

To proceed with the quantization we need to remove the redundancy from the local

symmetries, to fix the gauge. Noting that the metric has three components and there are

three local symmetries (two coordinates and the scale of the metric), it is natural to do this

by conditions on the metric, setting

gab(σ) = δab. (2.2.6)

6So these are classically equivalent. How about quantum-mechanically, say in a path integral? The glib
answer is that the Nambu action is hard to use in a path integral, so the way to define it is via the Polyakov
path integral. On the the other hand, ref. [50] shows an example of a composite string where the Nambu
description is more natural than the Polyakov.

7Though the Lorentzian case needs an overall minus sign and one in the square root.
8I would like to thank M. Natsuume for this suggestion.
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This is always possible at least locally. The Polyakov action (2.2.2) then reduces to D copies

of the earlier scalar action (1.1.1),9 provided that we choose units such that α′, which has

units of length-squared, is equal to 2.

It is not an accident that the gauge-fixed action is conformally invariant. Fixing the

flat metric does not fully determine the local coordinate system. From the discussion of

conformal invariance we know that if two coordinate systems are related by

σ′1 + iσ′2 = f(σ1 + iσ2) (2.2.7)

for analytic f , the metric changes only by a position-dependent rescaling, so that a Weyl

transformation restores it to its original form. In other words, the coordinate transforma-

tion (2.2.7) combined with the appropriate Weyl transformation leaves the metric in flat

gauge and so is a conformal symmetry of the flat world-sheet action.10

So the two-dimensional spacetime of the previous section is now the string world-sheet,

while spacetime is the field space where the Xµ live, the target space of the map Xµ :

world-sheet → spacetime.

2.3 The Spectrum

For a closed string, where the spatial coordinate σ1 is periodic, we can immediately use the

earlier results to write down the spectrum. We have D sets of harmonic oscillators,

[αµ
m, α

ν
n] = mδm+n,0η

µν , [α̃µ
m, α̃

ν
n] = mδm+n,0η

µν , (2.3.1)

the covariant generalization of the earlier commutator, as well as the D momenta αµ
0 = α̃µ

0 =

kµ. Starting from the states |0, k〉 which are annihilated by the m < 0 modes, we build the

spectrum by acting any number of times with the m > 0 modes. By choice of conformal

gauge, the string thus separates into a superposition of harmonic oscillators.

9To be precise, because of the Minkowski signature, the action for X0 has the opposite sign and gives a
divergent gaussian path integral. This is not problem; the path integral is implicitly defined by the Euclidean
rotation X0 → −iXD. This is similar to the treatment of Grassman path integrals—we don’t have to take
them seriously as integrals, as long as they have certain key properties, most notably factorization (so we
can cut them open to get a Hamiltonian formalism) and the integral of a derivative vanishing (so we can
derive equations of motion).

10Of course there will be some global conditions that fix most or all of this residual invariance, as we will
discuss further later. This is not relevant now: we noted earlier that to derive Noether’s theorem and the
Ward identities we only need a symmetry transformation to be defined in a region.
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But there is one more point to deal with. The index µ on the oscillators (2.3.1) runs

over D values. A string stretched out in the X1-direction should by able to oscillation in the

D − 2 transverse directions µ = 2, . . . , D − 1, but oscillation along the X1-direction leaves

the world-sheet unchanged—according to the earlier discussion it is just an oscillation of the

parameterization σ. The same is true of oscillation in the X0-direction. It is essential that

this be true, because from the oscillator algebra we have the inner product

〈〈0, k|αµ
1α

ν
−1|0, k′〉 = (2π)DδD(k − k′)ηµν . (2.3.2)

The timelike oscillation αν
0 |0, k′〉 thus has a negative norm and so had better not be in the

Hilbert space of the theory.

The point is that when we fix gab we lose the equations of motion we get from varying

gab, and we have to restore them as constraints. Varying the metric gives

Tab = 0. (2.3.3)

In fact Tzz̄ vanishes as a consequence of the Xµ equation of motion, but Tzz and Tz̄z̄ do not.

The equation of motion does imply that if they vanish at one time they vanish for all times;

this is a general feature of such missing equations of motion. Classically, then, we impose

these equations on the initial values; quantum mechanically we impose them on the states.

In either case the constraint is then preserved by the dynamics.

Later we will discuss a general and powerful way to implement the constraints, the

BRST quantization, but it is useful to proceed first by a bit of trial and error (so-called old

covariant quantization [52]). Going to the Laurent modes, we could try to impose Ln|ψ〉 = 0

for all n. But this is inconsistent with the Virasoro algebra, since it would imply that

0 = [Lm, L−m]|ψ〉 = c
12

(m3 −m)|ψ〉. Instead we require physical states to satisfy

(L0 − a)|ψ〉 = (L̃0 − a)|ψ〉 = 0

Ln|ψ〉 = L̃n|ψ〉 = 0, n > 0 , (2.3.4)

allowing a possible ordering constant in the L0 condition, which will turn out to be necessary.

This implies that matrix elements of (2.3.3) between physical states vanish for all n,

〈ψ|(Ln − aδn,0)|ψ′〉 = 〈ψ|(L̃n − aδn,0)|ψ′〉 = 0, (2.3.5)

the n < 0 generators annihilating the bra since L−n = L†
n.
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There is one more provision. A state of the form

L−n|χ〉 + L̃−n|χ̃〉, n > 0 (2.3.6)

for any |χ〉, |χ̃〉 is orthogonal to all physical states and so is called spurious. A physical state

which is also spurious is called null. All physical amplitudes involving such a state vanish, so

it is physically equivalent to the zero state. Thus we define an equivalence relation between

physical states

|ψ〉 ∼= |ψ′〉 if |ψ′〉 − |ψ〉 = L−n|χ〉 + L̃−n|χ̃〉. (2.3.7)

The ‘observable’ Hilbert space is the set of equivalence classes, physical states modulo null

states.

Let us see how this works for some of the lowest levels. We focus on the open string

because it has only one set of modes. At the first level are the states |0, k〉, with all internal

oscillators in their ground states. The physical state conditions (2.3.4) for n > 0 all involve

lowering operators and so hold. There remains

0 = (L0 − a)|0, k〉 = (2k2 − a)|0, k〉. (2.3.8)

Thus we obtain a mass shell condition,

M2 = −k2 = −a
2

→ −a
2

2

α′ = − a

α′ . (2.3.9)

where we have restored α′ by dimensional analysis.

At the next level the states are

|e, k〉 = eµα
µ
−1|0, k〉. (2.3.10)

for some polarization vector eµ. The nontrivial physical state conditions are

0 = (L0 − a)|e, k〉 = (2k2 + α−1 · α1 − a)|e, k〉 = (2k2 + 1 − a)|e, k〉
0 = L1|e, k〉 = 2k · α1|e, k〉 = 2k · e|0, k〉. (2.3.11)

These give a mass shell condition and a transversality condition on e,

M2 = −k2 =
1 − a

α′ , k · e = 0. (2.3.12)

There is a spurious state,

L−1|0, k〉 = 2k · α−1|0, k〉. (2.3.13)
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Thus |e, k〉 is spurious for eµ ∝ kµ. According to the conditions (2.3.12), this is physical,

and so null, only if k · k = 0, which is the case only if a = 1.

There are now three cases:

i) If a < 1, the mass-squared is positive. Going to the rest frame, kµ = (m, 0, 0, . . . , 0), the

physical state condition k · e = 0 removes the negative norm timelike polarization and leaves

the D− 1 spacelike polarizations. There are no null states, and the spectrum consists of the

D − 1 positive-norm states of a massive vector particle.

ii) If a = 1, the mass-squared is zero. Going to a frame in which kµ = (ω, ω, 0, 0, . . . , 0), the

physical states are eµ ∝ kµ plus the D − 2 transverse polarizations µ = 2, . . . , D − 1. The

state eµ ∝ kµ is null, leaving the D − 2 positive-norm transverse states of a massless vector

particle.

iii) If a > 1, the mass-squared is negative and we can go to a frame kµ = (0, k1, 0, . . . , 0).

The physical state condition removes a positive-norm spacelike polarization. There is no null

state, so we are left with D− 2 positive-norm spacelike polarizations and one negative-norm

timelike polarization.

Case (iii) is obviously unacceptable, but either (i) or (ii) seem satisfactory so far. It is

case (ii) that agrees with the BRST quantization, and also with the light-cone quantization,

a different gauge in which the number of oscillators is reduced to D − 24 from the start. In

fact, there is no consistent way known to introduce interactions in case (i).

The result at the next level, states

fµα
µ
−2|0, k〉 + fµνα

µ
−1α

ν
−1|0, k〉, (2.3.14)

is quite interesting. It depends on the constant a and also on the spacetime dimension D.

If a > 1 or D > 26, there are negative-norm states. If a ≤ 1 and D ≤ 26 the OCQ spectrum

has positive norm. For the particular case a = 1 and D = 26 the observable spectrum is the

same as the BRST and light cone spectra; otherwise there are extra states. The derivation

is left to the reader.

This pattern persists at all higher levels as well: the observable spectrum has only positive

norm states provided a ≤ 1 and D ≤ 26, and if a = 1 and D = 26 it is the same as the

BRST and light cone spectra. This is the no-ghost theorem for the spectrum. This is our

first encounter with the critical dimension; later we will understand it more deeply.

For the value a = 1, the second level is a massless vector particle, a gauge boson. This

implies a spacetime gauge symmetry. In amplitudes this symmetry appears as spacetime (not
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world-sheet) Ward identities, to the effect that the unphysical polarization is not produced,

and the amplitudes for equivalent polarizations eµ ∼= eµ +ckµ are equal. We will see how this

works when we discuss interactions. Since null and unphysical states appear at all levels, this

means that ordinary gauge symmetry is only one piece of some much large gauge symmetry

in string theory. We will discuss the form of this later.

Notice also that for a = 1 the lowest state (2.3.9) is a tachyon, M2 = −1/α′. Since the

potential for a scalar field is 1
2
M2ϕ2, this means that the ground state is unstable. (One way

to think about this is as resulting from the negative Casimir energy of the Xµ’s.) We are

using the bosonic string only as a toy model, and are indeed expanding around an unstable

state. The superstring does not have a tachyon, though unfortunately time will not permit

me in these lectures to give a detailed treatment of this.

The closed string spectrum is just the tensor product of two copies of the above, one

right-moving and one left-moving. The lowest state |0, k〉 satisfies11

M2 = −4a

α′ . (2.3.15)

The next level

|e, k〉 = eµνα
µ
−1α̃

ν
−1|0, k〉 (2.3.16)

satisfies

M2 =
4(1 − a)

α′ , kµeµν = kνeµν = 0. (2.3.17)

The correct values are again a = 1, D = 26, so these states are massless, and there are null

states leading to the equivalence relation

eµν ∼ eµν + kµζν + ζ ′µkν (2.3.18)

with k · ζ = k · ζ ′ = 0. Again letting kµ = (ω, ω, 0, 0, . . . , 0), a complete set of (D − 2)2

observable states is obtained from transverse eµν , µ, ν ∈ 2, . . . , D − 1. This set can be de-

composed under the SO(D−2) transverse rotation group, into a traceless symmetric tensor,

antisymmetric tensor and invariant. These are respectively the graviton, antisymmetric ten-

sor, and dilaton. Again there are spacetime gauge invariances associated with the graviton

and antisymmetric tensor.

11I am using the same notation for open and closed string states. It should always be clear which is meant.
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2.4 The Weyl Anomaly

The fact that strings can be consistently quantized only in the critical dimension is due to

an anomaly, a quantum violation of the local world-sheet symmetries. To see the anomaly,

we will work in a more general gauge in which the gauge symmetry is used to fix the metric

to some general form gab(σ), not necessarily flat. The result should be independent of what

gab(σ) we choose; let us see if it is. I should warn you that the next lecture or so will get

steadily more technical, but then things will get better again. I will try to highlight the main

results that we will need later on.

We start by examining the path integral over Xµ in the fixed metric gab. The action

is diff × Weyl invariant, but we have to define the path integration. It is easy to preserve

the diff invariance. For example, expand Xµ(σ) in a complete set of eigenfunctions of the

invariant Laplacian ∇2, and put a cutoff on the eigenvalues. Any cutoff will refer to world-

sheet lengths, so the Weyl invariance is not automatically preserved and there may be a

Weyl anomaly [53, 49]. We must check the Weyl invariance by explicit calculation. This

is one virtue of the Polyakov action—any possible anomaly appears in the Weyl symmetry,

which is somewhat easier to work with than an anomaly in the diff invariance.

Let us expand around the flat metric in the plane, gab(σ) = δab + hab(σ). The variation

of the action with respect to the metric is the energy-momentum tensor, so to second order

in hz̄z̄ the path integral is

< 1 >
O(h2)
=

1

8π2

∫

d2z d2z′ hz̄z̄(z, z̄)hz̄z̄(z
′, z̄′) < Tzz(z)Tzz(z

′) > + local. (2.4.1)

The local term comes from the second order variation of the action; we will not need its

explicit form. The expectation value is evaluated on the flat world-sheet, and from the OPE

we know it to be

< Tzz(z)Tzz(z
′) > =

c

2(z − z′)4
= − c

12
∂4

z ln |z−z′|2 =
πc

6
∂4

z (∂z∂z̄)
−1δ2(z−z′, z̄−z̄′), (2.4.2)

where c = D for the X theory. Thus the second order term (2.4.1) becomes

< 1 >
O(h2)
=

c

48π

∫

d2z d2z′ ∂2hz̄z̄(z, z̄)
1

∂∂̄
∂2hz̄z̄(z

′, z̄′)

→ c

96π

∫

d2σ d2σ′ √gR(σ)
1

∇2
(σ, σ′)

√
gR(σ′) . (2.4.3)
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The second line, using the curvature scalar built from gab, is the unique coordinate invariant

form to order h2 with the given nonlocal (z−z′)−4 term. Now, under a Weyl transformation

g′ab = e2ωgab, the curvature changes

√

g′R′ =
√
gR− 2∇2ω. (2.4.4)

Thus

δWeyl < 1 >
O(h2)
=

c

24π
< 1 >

∫

d2σ
√
gRδω. (2.4.5)

Although derived to second order in the background, the result (2.4.5) is in fact the full

answer. Given that the Weyl variation must be local (since it comes from the violation of the

symmetry by the cutoff) and that the theory is conformally invariant on the flat world-sheet,

eq. (2.4.5) is the only possible form.12 This goes through for any CFT, so we have the result

that if we put a CFT on a curved world-sheet the Weyl-dependence is determined entirely

by the central charge of the flat world-sheet theory,

δWeyl ln < . . . > =
c

24π

∫

d2σ
√
gRδω, (2.4.6)

where as usual the transformation properties of the insertions ‘. . .’ are a separate issue. Also,

we can integrate the Weyl anomaly to give the full result13

< 1 > = exp
{

c

96π

∫ ∫

dσ dσ′R∇−2R
}

. (2.4.7)

To complete the determination of the Weyl anomaly we need to carry out the gauge

fixing carefully, taking into account the Fadeev-Popov determinant. That is, we write the

integral over metrics as in integral over the gauge group times a Jacobian, and divide by the

gauge volume. Under a small diff × Weyl transformation, the change in the metric is

δgab = −(∇aδσb + ∇bδσa − gab∇ · δσ) − gab(2δω + ∇ · δσ)

= −(P1δσ)ab − 2gabδω
′. (2.4.8)

12For example, terms with more derivatives would be suppressed by powers of the cutoff. A possible Weyl
variation

∫

d2σ
√

gδω can be removed by a counterterm
∫

d2σ
√

g in the action.
13But what if we have a CFT with c 6= c̃? Then we cannot extend the result as in the second line of

eq. (2.4.3) to a diff invariant: the h2
zz and h2

z̄z̄ terms are inconsistent. That is, there is in this case an
anomaly in the two-dimensional coordinate invariance [54]. The necessary and sufficient condition for this
to be absent is c = c̃.
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In the first line we have separated the variation into a traceless part and a part proportional

to the metric. In the second line we have defined the differential operator P1 taking vectors

to traceless symmetric tensors, and absorbed the ∇· δσ term in a shift of ω. Short circuiting

some formal steps that are parallel to the standard treatment of non-Abelian gauge theories,

we get
∫

[dg] → det(P1)Vdiff×Weyl . (2.4.9)

The δω′ part being purely local gives a trivial Jacobian, equivalent to local counterterms.

Thus,

1

Vdiff×Weyl

∫

[dX dg] e−SP[g] = det(P1)
∫

[dX] e−SP. (2.4.10)

In order to expose the general structure of amplitudes it is useful to rewrite the determi-

nant as a path integral over anticommuting Fadeev-Popov ghost fields. From the definition

of Grassman integration we have

∫

db dc e−bMc =
∫

db dc (1 − bMc) = M (2.4.11)

for two anticommuting variables b, c. This generalizes to

∫

∏

i(dbi dci) e
−biMijcj = detM , (2.4.12)

as is evident by diagonalizing M . This applies to functional determinants as well, so the

path integral (2.4.10) becomes
∫

[dX db dc] e−SP−Sg (2.4.13)

where

Sg =
1

2π

∫

d2σ
√
g bab(P1c)ab. (2.4.14)

To see the conformal transformation properties, consider a conformally flat metric

gab(σ) = eφ(σ)δab. (2.4.15)

The action (2.4.14) becomes

Sg =
1

2π

∫

d2z
{

bzz∂z̄c
z + bz̄z̄∂zc

z̄
}

. (2.4.16)
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We have used a convenient trick here. The metric (2.4.15) is not flat, so the covariant

derivatives are nontrivial. But for the special case of a z derivative acting on a tensor with

only z̄ indices, or vice versa, the covariant derivatives reduce to the ordinary ones. We have

raised and lowered indices so as to take advantage of this. In the form (2.4.16) it is evident

that the action is Weyl-invariant with cz, cz̄, bzz, and bz̄z̄ neutral under the Weyl transform.

The conformal transformation of these fields comes only from the coordinate transformation,

so cz is a (−1, 0) tensor, cz̄ a (0,−1) tensor, bzz a (2, 0) tensor, and bz̄z̄ a (0, 2) tensor.

The ghosts thus are a λ = 2 bc system. Referring back to the earlier result (1.6.13), the

ghost system has central charge −26. As we have seen, this determines the Weyl transfor-

mation properties, so for the combined X and ghost system we have

δWeyl ln < . . . > =
D − 26

24π

∫

d2σ
√
gRδω. (2.4.17)

So the Weyl invariance is anomalous except in the critical dimension D = 26 [49]!

Is there any possibility for making sense of the theory without Weyl invariance? One

possibility is to make some choice for the scale factor of the metric, but there is no natural

way to do this. For example, the rather natural choice
√
g = 1 is not diff invariant and just

moves the anomaly into that symmetry. The other possibility is to integrate over the scale

factor—that is, to treat the theory as one that has only coordinate invariance, and use this

to fix only two of the three components of the metric [49]. This is a rather large change in

the theory, introducing a new degree of freedom. Such ‘non-critical’ string theories are of

great interest, and we will return to them later.

For now, let us just point out the following. We can use the coordinate invariance to

bring the metric to the form

gab(σ) = eϕ(σ)ĝab(σ), (2.4.18)

where ϕ(σ) is to be integrated. Now, this theory has a ‘fake’ Weyl invariance, under which

gab is neutral but

ĝab(σ) → e2ω(σ)ĝab(σ), ϕ(σ) → ϕ(σ) − 2ω(σ). (2.4.19)

But this is indistinguishable from a theory in which ĝab is the ‘real’ metric and ϕ is another

field. So we can regard this as a Weyl-invariant theory with an extra degree of freedom.

Strominger and Verlinde will be interested in two-dimensional coordinate invariance without

Weyl invariance, and will make use of this trick to use techniques from CFT. It is interesting
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to apply this to a theory whose Weyl-variation comes only from the central charge. Inserting

the metric (2.4.18) into the action (2.4.3) and using the relation (2.4.4) gives the ϕ-dependent

c

96π

∫

d2σ
√

ĝ
{

ĝab∂aϕ∂bϕ+ 2R̂ϕ
}

. (2.4.20)

The first term is the same as the action for one of the coordinates X, so this looks like an

extra dimension. The second term is not translationally invariant, so it means that this

theory may have some cosmological interpretation, but is not relevant to the translationally

invariant surroundings that we find ourselves in.

It may seem odd that a theory without Weyl invariance can be regarded as having it.

This is the first example of a general theme which will arise again, both on the world-sheet

and in spacetime. This is that gauge invariance is in the end just a redundancy, though a

useful one. We can always add redundant fields and sometimes it is useful to do so, as here

where it will enable us to apply critical string methods to the noncritical string.

2.5 BRST Quantization

Representing the Fadeev-Popov determinant in terms of ghosts gives us an even larger Hilbert

space, and we need to identify the observable states. This leads us to BRST quantization,

which is a general method for quantizing systems with gauge symmetries and is indispensable

for understanding the general structure of string amplitudes.14 One way to motivate it is to

imagine some arbitrary small change in the gauge-fixing condition. Thus far we have taken

a gauge in which gab(σ) was fixed. That is, gab(σ) − gab(σ) = 0 for some fixed function

gab(σ). In the previous section we in effect checked that the result was invariant under a

Weyl transformation of gab. But we could imagine a much more general change of gauge

gab(σ) − gab(σ) − δFab(g,X) = 0 . (2.5.1)

For example, the ‘manifestly unitary’ light-cone gauge places conditions on X as well as

gab; to interpolate between the conformal and light-cone gauges one would have to consider

deformations of the form (2.5.1).

In order to derive the full invariance condition, it is useful to take a more general and

abstract point of view. Consider a path integral with a local symmetry. The path integral

14My treatment is similar to that in many modern field theory texts. For other points of view, see
refs. [55], [56].
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fields are denoted φi, which in the present case would be Xµ(σ) and gab(σ). Here we use

a very condensed notation where i labels the field, the component, and also the coordinate

σ. The gauge invariance is ǫαδα, where again α labels component and also coordinate.

By assumption the gauge parameters ǫα are real, since we can alway separate a complex

parameter into its real and imaginary parts. The gauge transformations satisfy an algebra15

[δα, δβ] = fαβ
γδγ. (2.5.2)

Now fix the gauge by conditions

FA(φ) = 0, (2.5.3)

where again A includes the coordinate. Following the usual Fadeev-Popov procedure, the

path integral becomes

∫

[dφi]

Vgauge
e−S1 →

∫

[dφi dBA dbA dc
α] e−S1−S2−S3 , (2.5.4)

where S1 is the original gauge invariant action, S2 is the gauge-fixing action

S2 = iBAF
A(φ), (2.5.5)

and S3 is the Fadeev-Popov action

S3 = bAc
αδαF

A(φ). (2.5.6)

We have introduced the field BA to produce an integral representation of the gauge-fixing

δ(FA).

There are two things to notice about this action. The first is that it is invariant under

the Becchi-Rouet-Stora-Tyupin (BRST) transformation [57],

δBφi = −iǫcαδαφi, δBBA = 0,

δBbA = −ǫBA, δBc
α = − i

2
ǫcβcγfβγ

α. (2.5.7)

Note that the transformation mixes commuting and anticommuting objects, so that ǫ must

be taken to be anticommuting. The original action S1 is invariant by itself, because the

action of δB on φi is just a gauge transformation with parameter cα. The variation of S2

15This is not the most general gauge symmetry possible, but is sufficient for our application to the string.
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cancels the variation of bA in S3, while the variations of δαF
A and cα in S3 cancel. The

second key property is that

δB(bAF
A) = −iǫ(S2 + S3). (2.5.8)

Now consider a small local change δF in the gauge-fixing condition. The change in the

gauge-fixing and ghost actions gives

ǫδ〈ψ|ψ′〉 = −i〈ψ|δB(bAδF
A)|ψ′〉 = 〈ψ|{QB, bAδF

A}|ψ′〉, (2.5.9)

where we have written the BRST variation as an anticommutator with the corresponding

conserved charge QB. For physical states the amplitude must be independent of the gauge

condition. In order that this hold for arbitrary δF , it must be that

QB|ψ〉 = QB|ψ′〉 = 0, (2.5.10)

with Q†
B = QB. This is the essential condition: physical states must be BRST invariant.

There is one more key idea. In order to move around in the space of gauge choices,

the BRST charge must remain conserved. Thus it must commute with the change in the

Hamiltonian,

0 = [QB, {QB, bAδF
A}]

= Q2
BbAδF

A −QBbAδF
AQB +QBbAδF

AQB − bAδF
AQ2

B

= [Q2
B, bAδF

A]. (2.5.11)

In order for this to vanish for general changes of gauge, we need

Q2
B = 0. (2.5.12)

That is, the BRST charge is nilpotent. You can check that acting twice with the BRST

transformation (2.5.7) does indeed leave all fields invariant.

The nilpotence of QB has an important consequence. A state of the form

QB|χ〉 (2.5.13)

will be annihilated by QB for any χ and so is physical. However, it is orthogonal to all

physical states including itself:

〈ψ|
(

QB|χ〉
)

=
(

〈ψ|QB

)

|χ〉 = 0 (2.5.14)
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if QB|ψ〉 = 0. All physical amplitudes involving such a null state thus vanish. Two physical

states which differ by a null state,

|ψ′〉 = |ψ〉 +QB|χ〉 (2.5.15)

will have the same inner products with all physical states and are therefore indistinguish-

able. So we again identify the observable Hilbert space as a set of equivalence classes, the

cohomology of QB. Following terminology from cohomology, a BRST-invariant state is also

called closed, and a null state exact.

Applying this to string theory [58] gives the BRST transformation16

δBX
µ = iǫ(c∂ + c̃∂̄)Xµ

δBc = iǫ(c∂ + c̃∂̄)c δB c̃ = iǫ(c∂ + c̃∂̄)c̃

δBb = iǫ(TX + T g) δBb̃ = ǫ(T̃X + T̃ g), (2.5.16)

where the energy-momentum tensor has been divided into matter and ghost parts. Noether’s

theorem gives the BRST current

jB = cTX +
1

2
:cT g := cTX+ :bc∂c :, (2.5.17)

and correspondingly for j̄B. (A total derivative can be added to make this a tensor.) This

form is rather general: the c-ghost times the matter gauge current plus half the ghost gauge

current.

Based on our previous experience, we expect that something will go wrong outside the

critical dimension. The problem is with Q2
B. We can calculate this from the jBjB OPE, but

the following gives a slight shortcut. The OPE

jB(z)b(0) ∼ − 1

z2
:bc(0) : +

1

z
(TX(0) + T g(0)) (2.5.18)

gives the commutator for the corresponding charge,

{QB, bm} = LX
m + Lg

m. (2.5.19)

16A few details are left to the student: we have kept only the ghosts associated with the coordinate
part, because the Weyl ghosts are auxiliary fields (no derivatives) and can be integrated out. And we have
implicitly integrated Bab to give the delta-function on the metric, so the equation of motion has been used
for Bab.
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Exercise: Using this anticommutator and the Jacobi identity, show that {[QB, L
X
m+Lg

m], bn}
vanishes if and only if the total central charge D − 26 vanishes. This implies in fact that

[QB, L
X
m + Lg

m] = 0, because by ghost number any term in the commutator would have to

contain at least one c mode. Now extend this to [{QB, QB}, bn]: it vanishes, and so also does

{QB, QB}, if and only if D = 26.

So the Weyl anomaly shows up as an anomaly in the nilpotence Q2
B = 0 [58], which is

necessary for the consistency of the formalism.

To see how all the formalism works, let us look again at the lowest levels of the open

string. There is one more condition that must be imposed on the states, namely

b0|ψ〉 = 0. (2.5.20)

The way I think about this is that when we work out the interactions later on we will find that

the string propagator always includes a factor b0, which projects onto states satisfying (2.5.20)

because b0b0 = 0. Recalling the notation (1.6.16), this means that we are interested in states

built with raising operators acting on the ghost vacuum |↓〉. The condition (2.5.20) implies

in turn that physical states satisfy

{QB, b0}|ψ〉 = (LX
0 + Lg

0)|ψ〉 = 0, (2.5.21)

where LX
0 + Lg

0 = 2k2 + L − 1, with L = LX + Lg the total ghost plus X excitation level,

while the total normal ordering constant is taken from the earlier result (1.6.17). The

condition (2.5.21) thus relates the mass of a string state to its level of excitation,

M2 =
L − 1

2
(2.5.22)

In terms of the modes,

QB =
∞
∑

n=−∞
cnL

X
−n +

∞
∑

m,n=−∞

(m− n)

2
(cmcnb−m−n)

CA
− c0 , (2.5.23)

where the subscript CA denotes creation-annihilation normal ordering. The c0 term comes

from the normal ordering constant in Lg
0, as follows from {QB, b0} = LX

0 + Lg
0.

At the lowest level, L = 0, the states are |↓, 0, k〉, denoting the ghost vacuum, X vacuum

and momentum. Then

0 = QB|↓, 0, k〉 = (2k2 − 1)c0|↓, 0, k〉, (2.5.24)
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giving the same mass shell condition as in the old covariant quantization. In this formalism,

the constant a = 1 is from the ghosts. There are there are no exact states at this level, so

we have the same tachyon states as before.

At the next level, N = 1, there are 26+2 states,

|ψ〉 = (e · α−1 + βb−1 + γc−1)|↓, 0, k〉, (2.5.25)

depending on a 26-vector eµ and two constants β and γ. The BRST condition is

0 = QB|ψ〉 = 2(k2c0 + k · ec−1 + βk · α−1)|↓, 0, k〉, (2.5.26)

so an invariant state satisfies k2 = 0 and k · e = β = 0. There are 26 linearly independent

states left. A general |χ〉 is of the same form (2.5.25) with constants e′µ, β ′, γ′, so the general

BRST-exact state at this level, with k2 = 0, is

QB|χ〉 = 2(k · e′c−1 + β ′k · α−1)|↓, 0, k〉. (2.5.27)

Thus the ghost state c−1|0; k〉 is BRST-exact, while the polarization is transverse with the

equivalence relation eµ
∼= eµ + 2β ′kµ. This leaves the 24 positive-norm states expected for a

massless vector particle.

Exercise: Do the first massive level.

This pattern is general: with the ghosts there are 26 + 2 oscillators at each level. The

BRST condition eliminates two of these, and two others are exact, leaving 26 − 2 oscilla-

tors. The BRST quantization is equivalent to the old covariant and light-cone quantiza-

tions [58], [59]. In fact, the BRST quantization reduces to the old covariant quantization if

we consider only states where the ghosts are in their ground state. The no-ghost theorem

states that every cohomology class includes a state of this form. The generalization to the

closed string is again straightforward, with kµ → kµ/2.

This derivation of the BRST formalism makes it look like a consequence of gauge fixing,

but should be thought of as more fundamental. It carries the full information of the original

gauge symmetry; in effect, we increase the redundancy of the theory by the addition of the

ghosts, but the BRST principle then singles out the physical observables. When we try to

generalize string theory, it is generally easiest to generalize it within the BRST formalism,

rather than the locally invariant formalism.

It is worth noting that in most familiar circumstances, Ward identities are important

but are only part of the story—one also has dynamics. But string theory has coordinate
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invariance, both on the world-sheet and in spacetime, so that time itself is a gauge degree of

freedom. As a consequence the dynamics becomes part of the constraints. As an example,

the mass shell condition (which is the Fourier transform of a Klein-Gordon equation in

spacetime) arose from the physical state condition.

2.6 Generalizations

We have developed the importance of the Weyl invariance, and its relation to the central

charge and the nilpotence of the BRST operator. Now we are in a position to state one

answer to the question, “What is the most general consistent string theory?” We will restrict

attention to theories for which the action for the embedding time takes the Polyakov form

− 1

8π

∫

d2σ
√
ggab∂aX

0∂bX
0 . (2.6.1)

That is, the theory is stationary, and (jumping ahead a bit) the spacetime metric has

G0µ = −δ0µ. Even in field theory, non-stationary situations are more complicated. There is

no longer a distinguished zero-particle vacuum state, and the meaning of a ‘particle’ becomes

ambiguous. This subject is much less developed in string theory, and I will avoid it here.

Now, the immediate problem is the one we have discussed, that the quantization of the

action (2.6.1) leads to negative norm states, and we need the observable spectrum to have a

positive norm. The general solution is simply stated: it depends only on the local symmetry,

or BRST invariance, being preserved. That is, the no-ghost theorem holds if we replace the

25 spatial Xµ fields with any (c, c̃) = (25, 25) unitary CFT. In particular, the calculation of

Q2
B goes precisely as before, with TX replaced by the T of the CFT. The unitary condition

is necessary because we do not want any other negative norm states besides those from X0.

Needless to say this generalization has something to do with the idea of compactifying some

of the spatial dimensions, but we will discuss this in section 3. We have not yet described

string interactions, but this is also the condition under which we can introduce consistent

interactions (the CFT must satisfy the two conditions discussed earlier, OPE associativity

and one-loop one-point modular invariance).

I should emphasize that all of these theories have tachyons. Whatever the spatial CFT is,

it contains the unit operator. The state |0, k0〉 from the X0 theory times |1〉 from the spatial

theory is in the physical spectrum for 1 = L0 = −1
2
(k0)2, which is unstable (tachyonic). To

eliminate the tachyon we have to generalize in a different way, enlarging the world-sheet gauge
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symmetry. Everything that we have done generalizes readily to the N = 1 superconformal

algebra [31], [32]. A simple N = 1-invariant extension of the bosonic string action uses D

copies of the theory (1.7.7),

S =
1

4π

∫

d2z
{

∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

}

. (2.6.2)

To be precise this is (1, 1) supersymmetric, with one analytic and one antianalytic supercur-

rent. To build a BRST charge we need a bc or βγ theory for each gauge current, with the b

or β ghost having the same weight and opposite statistics from the current. So in this case

we need a λ = 2 bc system and a λ = 3
2
βγ system. The BRST current follows the same

pattern as (2.5.17),

jB = cTX + γTX
F +

1

2
:(cT g + γT g

F ) : . (2.6.3)

This is nilpotent in the critical dimension, which is again where the total central charge

vanishes. The βγ ghosts contribute c = c̃ = 11, while each ψµ contributes 1
2
, for

c = c̃ =
3

2
D − 26 + 11 ⇒ Dcrit = 10. (2.6.4)

Both the ψ0 and α0 oscillators create negative norm states, which in the critical dimension

are removed by the constraints. The spectrum is equivalent to the light-cone gauge, in which

only D−2 transverse sets of modes remain. The same generalization as above can be made:

replace the 9 spatial Xψ theories with any (c, c̃) = (27
2
, 27

2
) unitary (1, 1) super-CFT.

The details of the spectrum—constraints from modular invariance, the GSO projection,

absence of tachyons, and spacetime supersymmetry—make a long story that we do not have

time for. Let me just mention that in the Ramond sector (integer modes) the Ramond

generator G0 is

G0 = kµψ
µ + . . . , (2.6.5)

terms with lowering operators being omitted, and

{ψµ
0 , ψ

ν
0} = ηµν . (2.6.6)

The algebra (2.6.6) is the same as that of the Dirac matrices, and its unique representation

is the 2D/2-dimensional Dirac spinor representation. The G0 constraint then gives the Dirac

equation, just as the L0 constraint gave the Klein-Gordon equation.
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The analytic and antianalytic constraint algebras need not be the same [60]. The (1, 0)

heterotic string combines an analytic N = 1 superconformal symmetry with antianalytic

conformal symmetry. The ghosts have central charge (c, c̃) = (−15,−26). For D = 10 the

action (2.6.2) with ψ̃ omitted has central charge (15, 10), so an additional (0, 16) is needed

from another unitary CFT. The constraints of modular invariance are strong, and the only

solutions are an E(8)×E(8) or SO(32) level 1 current algebra [60], [61]. The generalization is

to combine the (c, c̃) = (3
2
, 1) CFT from µ = 0 with the ghosts plus any (c, c̃) = (27

2
, 25) theory

with (1, 0) superconformal symmetry. This string is the most promising for a unified theory,

the superconformal side eliminating the tachyon and producing spacetime supersymmetry,

and the side with the current algebra giving rise to the gauge symmetries.

Moving on, the N = 2 superconformal algebra needs λ = 2 and λ = 1 bc systems plus two

λ = 3
2
βγ systems for total central charge −26−2+2 ·11 = −6. The basic free representation

consists of one complex X and one complex ψ (= two real) for c = 3, so the critical theory

has two such representations. As usual the constraints remove two sets of modes, leaving in

this case zero transverse dimensions. The only degree of freedom is a scalar from the center

of mass motion of the string. Nevertheless, there is some interesting structure [62].

Higher-N extended superconformal algebras have zero or negative critical dimension.

These are the only possibilities as long as we are restricted to half-integer spins ≤ 2. Both

the fractional case [63] and the higher spin case [64] (particularlyW3) are under investigation.

In the fractional case, the OPE has branch cuts so a projection is needed to get well-defined

amplitudes. For both cases the product of two representations is not a representation, owing

to the nonlocality in the fractional case and the nonlinearity in the W3 case. This has made

it hard to find theories with a spacetime interpretation, and also makes it hard to construct

the BRST operator (since the ghosts and matter do not separate). For W3, a theory with a

spacetime interpretation has been found and the BRST operator constructed, but the result

is disappointing: it turns out to be a special case of the bosonic string. So the theories

described above are for now the most general known.17

String theories are also distinguished by the world-sheet topologies allowed: closed only,

or with boundaries, and oriented only, or unoriented also. Boundaries must be consistent

with the constraint algebra, as in eq.(1.9.13) for the conformal case.18 In particular, the

17I have restricted attention to algebras which have nontrivial unitary representations, because this is
necessary to get a spacetime interpretation. This implicitly excludes topological string theories, about which
I have little to say.

18There are also additional conditions generalizing the OPE associativity and modular invariance [65].
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a) b)

Figure 12: a) World-sheet of closed string splitting. b) Time slices of this process.

constraint algebra must be left-right symmetric, so that boundaries are not possible in the

heterotic case. Unoriented surfaces are allowed only if the full world-sheet action is invariant

under world-sheet parity (exchange of z and z̄). Theories without boundaries have closed

strings only; theories with boundaries have both closed and open strings. There are no

string theories with open strings alone—a surface with boundary can be cut open along

a curve running from boundary to boundary, corresponding to open string intermediate

states, or along a closed curve, corresponding to closed string intermediate states. Inclusion

of unoriented surfaces has the effect of projecting the spectrum onto states of even parity.

2.7 Interactions

For composite strings, there are a variety of contact and long-range interactions. In the

fundamental string, such interactions cannot be introduced without spoiling the local sym-

metries, and are not possible.19 The only interactions that are possible are those that are

already contained in the sum over all surfaces. For example, fig. 12 shows a world-sheet in

which one closed string splits into two, or the time-reversed process in which two join into

one. Figure 13 shows two strings scattering by exchange of one or two strings. Since the

string spectrum includes the graviton, these amplitude include the gravitational processes

discussed earlier. But now there is no short-distance divergence because the interaction is

spread out. I will be describing in somewhat more detail how this works.

Now it is perhaps time to mention an additional term that can appear in the Polyakov

19For example, a contact interaction
∫

d2σ d2σ′
√

g(σ)
√

g(σ′)δ(X(σ) − X(σ′)) is not Weyl invariant
(Fourier transforming the delta function, one obtains exponentials with a continuum of weights.)
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a) b)

Figure 13: String analogs of fig. 10bc: closed strings scattering by exchange of one string (a)
or two strings (b).

action. This is Φ0χ, with Φ0 a parameter and

χ =
1

4π

∫ √
gR, (2.7.1)

R again being the world-sheet curvature. This is not merely diff × Weyl invariant, it is

topologically invariant. For a closed surface with h handles χ is the Euler number χ = 2−2h.

Adding a handle, as in going from the one-string to the two-string exchange in fig. 13, the

path-integral weight e−Φ0χ changes by e2Φ0 . So while this term does not affect anything local

like the world-sheet equations of motion, it does affect the relative weights of surfaces of

different topologies. Adding a handle is like adding two trilinear closed string interactions,

so the closed string coupling gc depends on Φ0 as eΦ0 . For world-sheets with boundaries, as

in open string theory, diff × Weyl invariance requires also a surface term

χ =
1

4π

∫

d2σ
√
gR+

1

2π

∫

boundary
ds k (2.7.2)
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where k is the geodesic curvature of the boundary; in terms of the tangent and normal

vectors, k = tanb∇at
b. Again this is purely topological, Φ0 times the Euler number. For a

compact surface with h handles and b boundaries the Euler number is 2 − 2h − b. For the

open string amplitudes analogous to fig. 13, with a pair of open strings exchanging one or

two open strings, adding a strip increases b by one and so the path integral weight changes

by eΦ0 . Thus the coupling go of three open strings goes as eΦ0/2. This will play an important

role at a later point, so let me emphasize it: in theories with both open and closed strings,

the couplings are related

gc ∼ g2
o. (2.7.3)

For both particle physicists and condensed matter physicists, the natural thing to try do

at this point is to calculate a Green’s function, a propagator. Since we are talking about

one-dimensional objects, this would be the amplitude to propagate from a given initial

configuration to a given final configuration, the sum over all surfaces bounded by these two

loops. However, while this seems like a very natural thing to do it is actually extremely

hard to carry out consistent with the diff × Weyl invariance. One already sees this in that

the physical state conditions require strings to be on-shell, k2 = −m2. Any local source in

spacetime would couple to all momenta, not just those on the mass shell. This should not be

a surprise, because this theory has spacetime gravity, so we have to have observables which

are spacetime coordinate-invariant. It is extremely clumsy to try to describe the position

and shape of a loop in a coordinate-invariant way.

What can be easily defined in an invariant way is the S-matrix, for scattering from some

set of incoming strings to some set of outgoing strings. Effectively the sources have been

taken to infinity. Each of the external strings is a semi-infinite cylinder in a world-sheet

coordinate w. We are familiar with the mapping z = e−iw which takes this to the interior

of the disk, with −i∞ mapped to the origin. As shown in fig. 14, this mapping leaves a

compact surface. It may seem that I am being careless in identifying a long cylinder in

spacetime with a long cylinder in the world-sheet coordinate, but we will see that long-

distance propagation in spacetime in fact comes from the latter. The source which creates

the incoming or outgoing string state is then a local operator, known as a vertex operator V.

We are already familiar with the mapping between states and operators. Thus, the tachyon

|0, k〉 with k2 = 2 is created by V = eik·X , the graviton, antisymmetric tensor, and dilaton

states αµ
−1α̃

ν
−1|0, k〉 with k2 = 0 are created by V = ∂Xµ∂̄Xνeik·X , and so on.

In order to make the vertex operator diff-invariant we need to integrate over the world-
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a) b)

Figure 14: a) 2 → 2 scattering process. b) Conformally equivalent picture, the cylinders
reduced to small holes.

sheet,

V = 2eΦ0

∫

d2σ
√
gV , (2.7.4)

where we have included the coupling constant. In flat gauge this becomes

eΦ0

∫

d2z V . (2.7.5)

Under conformal transformations the measure d2z transforms as a (−1,−1) tensor, so con-

formal invariance requires that V be a (1, 1) tensor.20 This is precisely the OCQ physical

state condition (2.3.4), which gives us a simple way to understand the value a = 1: it makes

V a (1,1) tensor.

20By the way, any vertex operator which is conformally invariant on the flat world-sheet can be made diff
× Weyl invariant by appropriate coupling to the metric.
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We are led to the following expression for the S-matrix,

S =
∑

compact

topologies

e(n−χ)Φ0

∫ [dX dg]

Vdiff×Weyl
e−SP

n
∏

i=1

∫

d2σi Vi . (2.7.6)

The product runs over the vertex operators incoming and outgoing states, these being dis-

tinguished only by the sign of k0. (For a general CFT SP is replaced by the appropriate

action). We now need to understand how gauge fixing works globally. Locally the number

of metric degrees of freedom (three) matches the number of gauge degrees of freedom, but

globally there is a small mismatch. In fact, the space of equivalence classes, metrics modulo

diff × Weyl, is identical to a space described earlier in these lectures, the space of Riemann

surfaces. Specifying the metric up to Weyl transformations singles out a family of complex

coordinates, namely those in which the metric is proportional to dzdz̄. This is the definition

of a Riemann surface. In the opposite direction, given a Riemann surface we can construct

a metric by taking dzdz̄ in each patch and smoothing between patches (this can always be

done). So this is an isomorphism.

For example, take for the torus the fixed coordinate region 0 ≤ σ1 ≤ 2π, 0 ≤ σ2 ≤ 2π with

periodic boundary conditions, so the metric is a doubly periodic function gab(σ1, σ2). Then

by coordinate transformations which preserve the periodicity and Weyl transformations we

can bring the metric to the form

ds2 = |dσ1 + τdσ2|2 . (2.7.7)

for some τ . These are the same metrics described earlier in terms of a fixed metric and
τ -dependent coordinate region. So after gauge-fixing we are left with an integral over the

moduli space of Riemann surfaces, of complex dimension 0 for h = 0, 1 for h = 1 and 3h− 3

for h ≥ 2. For h = 0, 1 there is the further complication of conformal Killing vectors, gauge

symmetries which remain after fixing the metric. These can be fixed by fixing the positions

of some vertex operators, 3 at h = 0 or 1 at h = 1. In all, if we have n vertex operators on

a genus h surface, the total number of complex moduli (for the metric and the positions) is

3h+ n− 3.

To carry out the Fadeev-Popov procedure we trade the original integral [dg]
∏

i d
2σi for

[dδσ dδω] d~t
∏′

i d
2σi where ~t are the moduli for the surface and the prime on the product

denotes the omission of any fixed vertex operators. The Fadeev-Popov procedure can be

carried out as before, giving a mixture of functional and finite-dimensional determinants,

which again can be expressed in terms of a path integral over ghosts. I will quote here only
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the result. The S-matrix for n external strings is given by a sum and path integral

S =
∑

compact

topologies

e(n−χ)Φ0

∫

[dX db dc] e−SP−Sg . . . . (2.7.8)

The insertions are of three types [19], [66], [8], [17]:

For each modulus (now divided into real parts tr), the b-ghost insertion

1

4π

∫

d2σ
√
gbab ∂gab

∂tr
. (2.7.9)

For each vertex operator which is fixed, the insertion

cc̃Vi . (2.7.10)

For each vertex operator which is integrated, the insertion

∫

d2σ
√
gVi . (2.7.11)

This can also be expressed in terms of the data which define the Riemann surface, the

transition functions. It is convenient to fix every vertex operator, put all the moduli in

the transition functions. The vertex operators are then cc̃Vi as above, while the b-ghost

insertions are

1

2πi

∑

(mn)

∫

Cmn

{

dzm
∂fnm

∂tr

∣

∣

∣

∣

zn

bzmzm
− dz̄m

∂f̄nm

∂tr

∣

∣

∣

∣

zn

bz̄mz̄m

}

, (2.7.12)

where the sum runs over all pairs of overlapping patches and the integral runs along any

curve separating the patches.

Notice that for OCQ-type vertex operators the ghosts are in their vacuum state | ↓↓〉,
which translates into cc̃. So it is the fixed vertex operators which are given by the state-

operator mapping. The integrated vertex operators can be understood as arising from the

b-ghost insertions for the position. The insertion for translating a little patch containing the

vertex operator is b̃−1b−1, giving

b̃−1b−1 · cc̃Vi = Vi , (2.7.13)

which is the integrated form. The rules in terms of Riemann surfaces, by the way, apply to

all BRST-invariant vertex operators, not just the OCQ-type.
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2.8 Trees and Loops

To conclude this subject I work out one example and discuss some general principles. For

four closed string tachyons on the sphere, fully fixing the gauge invariance leaves one position

integrated and three fixed,

S(k1, k2, k3, k4) = e2Φ0CS2

∫

d2z4 (2.8.1)

< c̃ceik1·X(z1, z̄1) c̃ce
ik2·X(z2, z̄2) c̃ce

ik3·X(z3, z̄3)e
ik4·X(z4, z̄4) >S2

,

where the integral runs over the complex plane, and CS2
is a numerical normalization factor

for the path integral on the sphere. The expectation value can be obtained from our earlier

results, giving21

S(k1, k2, k3, k4) = ie2Φ0CS2
(2π)26δ26(

∑

i ki)
∫

d2z4 |z12|2|z13|2|z23|2
∏

i<j

|zij|2ki·kj

→ ie2Φ0CS2
(2π)26δ26(

∑

i ki)
∫

d2z4 |z4|2k1·k4|1 − z4|2k2·k4. (2.8.2)

In the second line we have used the fact that the result is independent of the fixed positions

(as can be shown by a Möbius transformation) to move z1 → 0, z2 → 1, z3 → ∞. The

integral can be related to gamma functions with the result

S(k1, k2, k3, k4) = ie2Φ0CS2
(2π)26δ26(

∑

i ki) (2.8.3)

Γ(−s/2 − 1)Γ(−t/2 − 1)Γ(−u/2 − 1)

Γ(−s/2 − t/2 − 2)Γ(−t/2 − u/2 − 2)Γ(−u/2 − s/2 − 2)
,

where s = −(k1 + k2)
2, t = −(k1 + k3)

2, and u = −(k1 + k4)
2, and u+ t+ s = −8.

This is the Virasoro-Shapiro amplitude. It has a single pole when s, t, or u takes a value

−2, 0, 2, 4, . . . . These are the masses of string states and correspond to processes where two

of the external strings join into one; the coefficient of the pole is related to the square of the

three-point amplitude, which determines CS2
= 8π2. The massless pole, for example, has

the correct form expected from graviton plus dilaton exchange (the antisymmetric tensor

doesn’t contribute due to world-sheet parity symmetry).

21The factor of i, needed for unitarity, can be attributed to the analytic continuation needed to define the
X0 integral.
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Figure 15: One loop four-string amplitude.

The notable feature of this amplitude is its soft high-energy behavior. Using Stirling’s

approximation for the exponentials, one finds that at large s and fixed θ (and so fixed t/s,

u/s) it behaves as

e−sf(θ) (2.8.4)

This is in contrast to similar amplitudes in pointlike field theory, which fall as powers of s,

and arises from spread-out nature of the string (more on this later).

Now we turn to the one loop amplitude. The one-loop four-point amplitude shown in

fig. 15 contains the two-graviton exchange described earlier, which had the severe divergence

in field theory. Let us look at the integration over the momentum running around the loop.

From the earlier discussion (1.9.9), the path integral translates into a Hamiltonian expression

involving

e2πi(τL0−τ̄ L̃0) . (2.8.5)

For large loop momenta the dominant term here is

e−2πk2Im(τ) . (2.8.6)

After Wick rotation of k0, this is a convergent gaussian at fixed τ2. One might also worry

about a divergence from the sum over the string states running around the loop, but in

spite of the large number of states the sum is handily convergent at fixed τ owing to the

exponential suppression factor (2.8.5). The region Im(τ) → 0 is the potential danger, both

for the integral over momentum and for the sum over states. But here we run into the happy

circumstance that this is not in the range of integration, the moduli space of the torus,
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Figure 16: Three pictures of the same limit of moduli space. a) z4 → z1 on the sphere. b)
Annular region around z1,4 conformally transformed to a long cylinder. c) Long cylinder
conformally transformed to a pinched cylinder.

shown in fig. 6. There is a lower bound on Im(τ), so the integral over momenta is gaussian,

as would be expected from the high energy behavior (2.8.4). In contrast, in field theory one

could write the loop integral in a Schwinger parameterization,

∫ ∞

0
ds e−(k2+m2)s , (2.8.7)

with s being analogous to Im(τ), but here the integral does indeed run down to s = 0,

leading in the end to a divergent momentum integral. (Cutting off the s integral doesn’t

work, as I will explain shortly).

So in this example we see that the would-be ultraviolet region of moduli space is missing.

This is a general principle in string theory: all the limits of moduli space can be interpreted

as infrared limits. This can already be seen in the Virasoro-Shapiro amplitude. The moduli

space has three limits, z4 → z1, z4 → z2, or z4 → z3. The first is shown fig. 16a; it

is conformally equivalent to the long cylinder in the fig. 16b, and to the plumbing-fixture

construction in fig. 16c with q ∼ z4 − z1 → 0. In the last form we can use the sewing

formula (1.9.12) to express the asymptotics in terms of a sum over intermediate string states.
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The contribution of state i is proportional to

∫

0
d2q |q|k2+m2

i
−2. (2.8.8)

The integral runs over some neighborhood of the origin. The behavior as q → 0 is dominated

by the lightest states. The integral converges when k2 +m2
i is positive for all states and can

be defined elsewhere by analytic continuation.22 The result has a pole proportional to

1

k2 +m2
i

. (2.8.9)

This is the origin of the series of poles in the Virasoro-Shapiro amplitude. These poles

correspond to long-distance propagation in spacetime, so as in the discussion of fig. 14 this

comes from a degenerating (long) cylinder.

We could extract the asymptotics in this limit z4 → z1 directly from the OPE; the sewing

formula in this case reduces to the OPE. But the sewing formula is more general. The surface

formed by sewing general surfaces M1 and M2 is conformally equivalent to a small copy of

M1 inserted into M2 (and vice versa). The sewing formula related this to a sum of local

operators inserted in M2, generalizing the OPE.

All limits of moduli space are of the same type as this one, with one or more handles

degenerating.23 They can thus be analyzed by means of sewing in the same way.24 The

asymptotics are dominated by the lightest states, and the divergences all arise from inter-

mediate states being on the mass-shell. This corresponds to long-distance propagation in

spacetime, and so is an infrared effect. There are no short-distance divergences. As an exam-

ple, consider the limit of the one-loop four-point amplitude in which all the vertex operators

come together, fig. 17a. This looks as though it could produce a short-distance divergence.

But, in analogy to the previous fig. 16, this is conformal to fig. 17b in which the vertex

operators are at the end of a long cylinder, and to fig. 17c where a sphere and torus are

sewn together. There may indeed be a divergence, but it is an infrared effect, dominated by

the lightest states. The momentum flowing through the pinch must be zero by momentum

22The divergence for k2 +m2
i < 0 is uninteresting, an artifact of the Schwinger-like integral representation,

but the pole at k2 + m2

i = 0 is meaningful.
23Although this is well-known in the mathematics literature, I find the most useful discussion for the

purposes of physics to be that in section 6 of ref. [67], where moduli space is explicitly decomposed into a
Feynman diagram-like sum. We will return to ths in section 4.1.

24By the way, the b-ghost insertion for the moduli q and q̄ is b0b̃0. This projects onto states which are
annihilated by b0 and b̃0, as claimed in our discussion of the BRST cohomology.
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Figure 17: Three pictures of the another limit of moduli space. a) Four vertex operators
coming together on the torus. b) Annular region around operators conformally transformed
to a long cylinder. c) Long cylinder conformally transformed to a pinched cylinder.

conservation, so the pole (2.8.9) is 1/0 for any massless state. The interpretation is that

the one-loop one-point function produces a source for the massless field, so it is necessary

to expand around a solution to the loop-corrected equations. This cancels the divergence,

and is known as the Fischler-Susskind mechanism [68], [39]. More generally the principle is

that all divergences are from long distances and so, as in field theory, go away if one asks

the right questions.

Finally a few comments about the general structure of amplitudes. The interactions

must respect the BRST invariance. In particular, the amplitude for an exact state QB ·
Vχ must be zero—this is equivalent the the gravitational Ward identity, together with the

corresponding Ward identities for all the higher levels. To see the decoupling of the null

state, write QB as a contour integral around Vχ. Expand the contour C and contract it

down around the other insertions in the path integral. The other vertex operators are BRST

invariant and give zero. However, there is a nonzero residue at the b insertions, which by the

OPE (2.5.18) is T total. In either form (2.7.9) or (2.7.12), this gives a total derivative of the
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path integral with respect to the moduli. Upon integration over moduli space this becomes a

surface term[19], [66], [8], [69]. The surface term vanishes under the same condition that the

(analytically continued) integral is finite—that is, unless we are sitting on a pole (in which

case the Fischler-Susskind mechanism restores conformal invariance).

Notice that if we mutilate the theory by cutting out parts of moduli space, the total

derivative no longer integrates to zero and the theory is inconsistent. The same thing happens

in field theory if we try to cut off the Schwinger parameter integral (2.8.7). String theory

manages to cut off the modular integral while leaving a smooth moduli space without spurious

internal boundaries.

One can also arrive at the rules for the string S-matrix from considerations of BRST

invariance, rather than via gauge-fixing. First, as found in the exercise below eq. (1.9.4),

ghost number conservation requires the path integral to contain insertions with net Nb−Nc =

3h−3; our rules for the string S-matrix are consistent with this. These insertions are BRST

invariant only up to a total derivative with respect to the moduli, so the path integral must

be integrated over moduli space as found from gauge fixing. In trying to generalize string

theory it is often easiest to use this strategy directly to determine the form of the amplitudes,

rather than gauge-fixing from a locally-invariant form. For example, superstring amplitudes

can in this way be written as an integral over supermoduli space.

This concludes our survey of the current perturbative answer to the question, “what is

string theory?” In particular we have seen what are the ingredients that make the pertur-

bation theory consistent.

3 Vacua and Dualities

3.1 CFT’s and Vacua

In the last section we described the most general string theory as defined by the world-sheet

gauge algebra, by the world-sheet topologies allowed, and by the particular world-sheet CFT

or super-CFT.1 In this section we will try to get a better understanding of the nature of the

space of theories. The main theme is that what we have called different string theories are

in many (and possibly all) cases the same theory expanded around a different vacuum state.

Moreover, in some cases what appear to be different theories are in fact the same theory

1This was nicely laid out in the review article [70].
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in the same vacuum. Some of these connections are well-developed, while others are highly

conjectural.

Let us start by trying to understand better the idea of replacing the spatial Xµ’s with

a more general CFT. I will focus on the bosonic string, but the ideas all generalize to the

superstring. For example, replace the Polyakov action with the non-linear sigma model [22]-

[24]

SΣ =
1

8π

∫

d2σ
{

(√
ggabGµν(X) + iǫabBµν(X)

)

∂aX
µ∂bX

ν + 2
√
gRΦ(X)

}

, (3.1.1)

which is the most general coordinate invariant action we can make with two derivatives. This

is the same theory (1.6.27) that we have already discussed on a flat world-sheet, and when the

X-dependence is slow the theory can be studied perturbatively (this is now perturbatively

in the world-sheet couplings). This gives rise to a consistent string theory, to leading order

in the world-sheet perturbation theory, if2

2Rµν + 4∇µ∇νΦ − 1

2
HµλωHν

λω = 0

−∇ωHωµν + 2∇ωΦHωµν = 0

D − 26 − 6∇2Φ + 12∇ωΦ∇ωΦ − 1

2
HµνλH

µνλ = 0. (3.1.2)

This conformal field theory has an obvious interpretation. The functions Gµν(X), Bµν(X)

and Φ(X) correspond to nontrivial backgrounds of the string graviton, antisymmetric tensor

and dilaton. One might have expected something stringier-looking, since the graviton, etc.,

are supposed to be strings. But we found in our discussion of scattering amplitudes that

strings could be created by local vertex operators; the sigma model action can then be

thought of from exponentiating the vertex operators, corresponding to a coherent state of

strings.3 Notice in particular that different values of the string coupling eΦ0 are now seen as

corresponding to expanding around different backgrounds in a single theory, namely different

2To relate this to the flat world-sheet discussion, note that on the flat world-sheet the Φ term in the action
is trivial. However, it affects the energy-momentum tensor, which is given by a derivative with respect to
the metric. When the equations (3.1.2) are satisfied with a nontrivial Φ, Tzz̄ given by eq. (1.6.28) does not
vanish, but adding an ‘improvement term’ produces a conserved energy-momentum tensor with Tzz̄ = 0.
The last of line of eq.(3.1.2) is the perturbatively-corrected matter plus ghost central charge.

3The dilaton actually involves fluctuations both of Φ and the diagonal part of Gµν . The curvature term
in its vertex operator is of course not evident on the flat world-sheet, but arises on a curved world-sheet
when the operator is renormalized in a coordinate-invariant way.
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constant values of the dilaton field Φ. The field equations (3.1.2) arise from a spacetime

action

S =
1

2

∫

dDX
√
−Ge−2Φ

{

−(D − 26)

3
+ R − 1

12
HµνλH

µνλ + 4∇µΦ∇µΦ
}

. (3.1.3)

Higher orders in the world-sheet perturbation expansion produce terms with more derivatives

in the field equations and action.

Each static solution corresponds to a possible ground state. For example, a background

with four flat dimensions and the remainder curved on a sufficiently small distance scale lc

would look like what we see around us.4 Even before string theory this was a promising idea

for unification. It unites fields of different spins into a single higher-dimensional field (Kaluza-

Klein theory), and provides a natural origin for the fermion generations as states with the

same gauge quantum numbers but different wavefunctions in the compact dimensions. By

the way, we see from the loop correction to the central charge in the last line of eq. (3.1.2)

that the number of compact dimensions need not be 22. Actually the expansion which gives

rise to eqs. (3.1.2) breaks down when the corrections are of order 1, but exact CFT’s with

D 6= c are known. An example is the WZW model, correpsonding to strings propagating on

a group manifold [72], [27].

For more general CFT’s, the interpretation in terms of compactification is not so clearcut.

But given the many equivalences between two-dimensional field theories (the most familiar

being bosonization), it is quite possible that all can be understood in terms of background

fields, perhaps including massive string fields. As one example, the minimal models were first

constructed in an abstract way, but now several Lagrangian formulations are known. One in

particular, the Landau-Ginsburg theory, can be regarded as the string moving in a tachyon

background [73]. So the general assumption is that different CFT’s should be regarded as

different vacua.

Let us make a few general observations. Just as we have noted that the bosonic string

always has a tachyon, it also has a graviton, antisymmetric tensor, and dilaton. The vertex

operator eµν∂X
µ∂̄Xνeik·X , with eµν and kµ lying in the noncompact flat directions, is always

a (1, 1) vertex operator for k2 = 0. The (1, 1) and (1, 0) superstrings also always include the

graviton and tachyon.
4Direct experiment—the non-observation of the enormous number of states with nontrivial dependence

on the compact dimensions—requires lc to be less than 10−16cm. Other considerations, however, require it to
be right at the string scale 10−32cm. In particular, if there is a large hierarchy between the string and com-
pactification scales, the theory at intermediate scales is a D > 4 field theory; this is badly nonrenormalizable
and breaks down well before the string scale [71].
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If the compact theory has a current algebra, the vertex operator ∂Xµj̃aeik·X or ja∂̄Xµeik·X

is (1, 1) for k2 = 0 and corresponds to a gauge boson. So the spacetime gauge symmetries

are in one-to-one correspondence with the global symmetries (current algebras) of the com-

pact CFT. A similar result, a bit less straightforward to derive, is that there is spacetime

supersymmetry if and only if the N = 1 superconformal constraint algebra of the superstring

is embedded in a larger N = 2 symmetry of the CFT, with a quantization condition on the

U(1) charge of the N = 2 algebra [74].

The number of CFT’s or super-CFT’s of appropriate central charge is enormous, even

restricting to those with exactly four noncompact flat directions. We are now interpret-

ing these as different backgrounds within a single theory, but the effective four-dimensional

physics is different in each. The problem of finding the right theory is thus transmuted in

string theory into the dynamical problem of finding the right background. For backgrounds

with spacetime supersymmetry, it is a theorem that they remain stable to all orders of per-

turbation theory, but it is also known, from the understanding of supersymmetry breaking

in field theory, that most are destabilized by non-perturbative effects. Spacetime supersym-

metry of the effective field theory below the string scale gives a great deal of information

about the dynamics, a subject currently in active development. But it seems likely that

dynamics at the string scale will also play an important role. It may also be that there are

in the end many stable ground states of string theory, so that the choice between them will

be determined in part by the initial conditions.

3.2 Compactification on a Circle

A flat spacetime with one dimension periodic,

X1 ∼= X1 + 2πR (3.2.1)

is the simplest compactification of the bosonic string, but is quite instructive. (Equivalently,

let the periodicity be 2π but G11 = R2). The periodicity has two effects. The first is that

the string wavefunctions must respect it, so

k1 =
n

R
(3.2.2)

is quantized. This is the same as for a field theory on this space. The second effect is unique

to string theory: a string can be wound around the periodic dimension, so that

X1(2π) = X1(0) + 2πmR. (3.2.3)
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Referring back to our mode expansion (1.4.23) for the free scalar, we see that this means

that the eigenvalues k1
L,R of α0 and α̃0 are no longer equal, k1

L − k1
R = mR. The total

momentum (3.2.2) is 1
2
(k1

L + k1
R), so

k1
L =

mR

2
+
n

R
, k1

R = −mR
2

+
n

R
. (3.2.4)

Also from the expansion (1.4.23), the vertex operator for such a state will be proportional

to

eikLXL(z)+ikRXR(z̄). (3.2.5)

Although the XRXR and XLXL OPE’s contain branch cuts, the OPE of any two vertex

operators (3.2.5) in the spectrum (3.2.4) is single-valued.

The L0 ± L̃0 physical state conditions thus become

M2 = k2
0 −

25
∑

µ=2

k2
µ =

m2R2

4
+
n2

R2
+ L + L̃ − 2

mn+ L − L̃ = 0 . (3.2.6)

Looking at the massless spectrum, the states

αµ
−1α

ν
−1|0, m = n = 0〉, (3.2.7)

with no compact momentum or winding, remain massless. For µ and ν both in the range

0, 2 . . . , 25, these are just the graviton, dilaton, and antisymmetric tensor of the 25-dimen-

sional theory. When either µ = 1 or ν = 1 the state is a vector in the noncompact dimensions,

a gauge boson. The corresponding vertex operators are

(∂Xµ∂̄X1 ± ∂X1∂̄Xµ)eik·X . (3.2.8)

The plus sign comes from the 26-dimensional metric, the Kaluza-Klein mechanism. The

minus sign comes from the 26-dimensional antisymmetric tensor, a generalization of the

Kaluza-Klein mechanism; call this an H gauge boson. The operator product of the gauge

boson vertex operator (3.2.8) with a general vertex operator of momentum l is proportional to

lµ(l1L±l1R). The Kaluza-Klein andH gauge bosons thus couple to the compact momentum and

winding number respectively. Finally, the state (3.2.7) with µ = ν = 1 is a 25-dimensional

scalar, and is the metric component corresponding to the radius R of the compact dimension.

83



So far this is the same as would be found just from the low energy field theory (3.1.3),

but this simple theory has some interesting stringy physics. Consider the four sets of states

with |m| = |n| = 1 and L + L̃ = 1,

α̃µ
−1|0, m = n = ±1〉, αµ

−1|0, m = −n = ±1〉. (3.2.9)

Their masses are

M = |R2 − 2|/2R. (3.2.10)

Precisely at the radius R =
√

2 these states are massless, and so are gauge bosons. At this

radius, the spectrum (3.2.4) includes the four currents

:e±iX1
L
(z)

√
2 :, :e±iX1

R
(z̄)

√
2 : . (3.2.11)

Together with the two U(1) currents

∂X1(z), ∂̄X1(z̄), (3.2.12)

these form an analytic and an antianalytic SU(2) current algebra.5 This SU(2) × SU(2)

symmetry has nothing to do with the Lorentz invariance of the flat-spacetime theory. Its

emergence at the critical radius is an example of the large symmetry that is hidden in string

theory, almost completely broken. By the way, the mass of the gauge boson, as R moves

away from the critical value, comes from the ordinary Anderson-Higgs mechanism. The

vertex operator for a small change in R,

∂X1∂̄X1, (3.2.13)

is built out of the SU(2) currents (3.2.12), and so transforms as the z-component of a vector

under each SU(2), breaking SU(2) × SU(2) down to the Kaluza-Klein and H U(1) × U(1).

There is another stringy phenomenon here. As R → ∞, the states with m 6= 0 go to

infinite mass, while the states with m = 0, n 6= 0 form a continuum. This is simply because it

costs an energy of order R to wind around the large dimension, while the momentum in that

direction becomes continuous in the limit. This is all as in field theory. But look at R → 0.

States with n 6= 0 become very massive because of the large compact momentum, just as in

5This SU(2) is likely familiar to those in condensed matter physics who have looked at the Luttinger liquid

or other one-dimensional quantum systems. At general radii, these currents have dimension h + h̃ = 1 + M2

and spin h − h̃ = ±1, and are no longer conserved. See ref. [75] for a recent example of a (dirty) system

where R flows to
√

2 at long distance, producing an SU(2) symmetry in the long distance theory which is
not present in the underlying theory.
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field theory. But the states with n = 0, m 6= 0 are now forming a continuum, something

which has no analog in field theory. In fact, the spectrum is invariant under R-duality, also

known as T-duality,

R ↔ 2

R
, m↔ n, (3.2.14)

which interchanges large and small radius, and interchanges compact momentum with wind-

ing number [76]; for recent reviews see [2], [77].

This is not only a symmetry of the spectrum, but also of the interactions. R-duality

takes k1
L → k1

L, k1
R → −k1

R. If we extend this to

α1
m → α1

m, α̃1
m → −α̃1

m , (3.2.15)

so that

X1
L → X1

L, X1
R → −X1

R , (3.2.16)

it is a symmetry of the OPE, and so by the sewing principle holds for all Riemann sur-

faces. Finally, a transformation of the dilaton is needed to make the loop expansions the

same. After integrating the spacetime action (3.1.3) over X1, the effective 25-dimensional

action is weighted by 2πRe−2Φ(X). In order that this be invariant we need 2πR′e−2Φ′(X) =

2πRe−2Φ(X) [78],

Φ′(X) = Φ(X) − ln(R/
√

2). (3.2.17)

The R and 2/R theories are then physically identical.6

This can also be seen in a very different, and deeper, way [79]. Notice that the self-dual

radius is also the point of enlarged gauge symmetry. We have observed that the vertex

operator corresponding to a change in the radius transforms non-trivially under SU(2) ×
SU(2). In fact, a rotation by π around the x-axis of one of the SU(2)’s takes this operator

into minus itself. So increasing R is gauge-equivalent to decreasing it. This implies that

R-duality is a symmetry not only in perturbation theory (which is all that we can conclude

from the argument above) but is in fact an exact symmetry. We can say this, even though we

know nothing about non-perturbative string theory, because we do know that any violation

of gauge symmetry would make the low energy theory inconsistent. We can also say that

the R and 2/R vacua are not just identical states, they are the same state. This is not just

a semantic distinction. It means that there can exist defects in spacetime, such that as one

encircles them R changes continuously from its original value to the dual value.

6To restore units, the statement is that R′ = α′/R, where α′ is again of order 10−32cm.
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Duality is a striking indication that strings do not sense spacetime in the same way as

particles, and that our notions of spacetime geometry and even topology break down at short

distance.7 Thus, we want to think of X1(z, z̄) = X1
L(z)+X1

R(z̄) as the location of some world-

sheet point in spacetime, while the dual coordinate X1
d(z, z̄) = X1

L(z) − X1
R(z̄) is a much

more complicated and nonlocal object. Yet if the theory is compactified at some radius near
√

2 these are equally physical, with the R→ ∞ physics being simple in terms of X1, and the

R → 0 physics simple in terms of X1
d. Duality suggests that there is a minimum spacetime

length scale—we can restrict to R >
√

2.8 So if spacetime breaks down at the string scale,

what is to replace it? A given CFT may have many different Lagrangian representations,

each giving a different picture of spacetime. It is the OPE coefficients ckij which as we have

discussed are common to all representations of the theory, and which determine the string

amplitudes. But these seem to me rather abstract to be the fundamental description.

3.3 More on R-Duality

Duality has been a source of great fascination, and has many extensions, discussed in the

reviews [2], [77]. I will mention only a few. First, it can be extended to any transla-

tionally invariant direction [78]. Consider a world-sheet action involving fields Va, θ, and

X0, X2, . . .X25,

S =
1

4π

∫

d2z
{

G−1(X)V Ṽ + θ(∂Ṽ − ∂̄V ) + . . .
}

. (3.3.1)

Here, the ellipsis stands for terms involving the other world-sheet fields X but not θ or V ,

and G(X) is an arbitrary function. Integrating out V by completing the square leaves

S ′ =
1

4π

∫

d2z
{

G(X)∂θ∂̄θ + . . .
}

. (3.3.2)

On the other hand, integrating out θ forces ∂Ṽ − ∂̄V = 0, so Va is a gradient

V = ∂θd, Ṽ = ∂̄θd (3.3.3)

for some function θd. The action then becomes

S ′′ =
1

4π

∫

d2z
{

G−1(X)∂θd∂̄θd + . . .
}

. (3.3.4)

7We have already seen another example of this in the level 1 SU(2) WZW model, which can be described
in terms of three coordinates or in terms of one.

8Though see ref. [80] for a situation where it appears that some dimensions are actually becoming much
smaller than this.
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The two actions with reciprocal kinetic terms are thus equivalent. Noting that the equation

of motion for V is

V = −∂
(

G−1(X)θ
)

, Ṽ = ∂̄
(

G−1(X)θ
)

, (3.3.5)

this reduces for constant G(X) to the earlier duality transformation, with θ a constant times

X1. In particular, a careful treatment of the measure produces the transformation of the

dilaton, Φ′(X) = Φ(X) − ln
√

G(X). The above is readily extended to nonzero G1µ and

nonzero B1µ.9 In this form, duality can be applied to many interesting string backgrounds.

With more than one periodic dimension there is much more structure. I briefly summarize

the case of two compact directions X1 and X2 [81]. Let each be periodic with period 2π, with

G11, G12, G22, and B12 constants. Parameterize these four fields in terms of two complex

parameters τ = τ1 + iτ2 and ρ = ρ1 + iρ2 as

ds2 =
ρ2

τ2
|dX1 + τdX2|2

B12 = 2ρ1. (3.3.6)

There is a large discrete group of equivalences. The reparameterization

X1 = X1′d+X2′b, X2 = X1′c+X2′a (3.3.7)

for a, b, c, d integers such that ad − bc = 1 preserves the periodicity. The transformed

background is

τ ′ =
aτ + b

cτ + d
, ρ′ = ρ . (3.3.8)

Notice that this is exactly the same as the modular transformation (1.8.6) of the torus, but

now acting on spacetime rather than the world-sheet. This equivalence is just a change of

basis vectors for the spatial periodicity. It is not at all stringy—it also holds for a field theory

in this spacetime.

There are other, stringier, equivalences. Consider the term in the action involving B12,

B12

4π

∫

d2z
{

∂X1∂̄X2 − ∂̄X1∂X2
}

. (3.3.9)

9A loose end: the constraint from θ only forces Va to be a gradient locally, so around a closed curve θd

need not be single-valued. Thus we have related the θ theory at R = ∞ to the θd theory at R = 0. With
careful attention to surface terms one can extend this to finite R.
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The integrand is a total derivative, ∂(X1∂̄X2)− ∂̄(X1∂X2). This would seem to imply that

the theory is independent of B12, but we have to be careful because X1,2 need not be periodic

on the world-sheet. Consider a toroidal world-sheet wound once on the toroidal spacetime,

X1 = Re(z), X2 = Im(z)/Im(τw) (τw being the world-sheet modulus). The action (3.3.9)

becomes iπB12, so the path integral weight becomes eiπB12 . This is invariant under discrete

shift
B12 → B12 + 2 ⇒ ρ→ ρ+ 1 . (3.3.10)

In addition there is simultaneous duality on the X1 and X2. This takes Eµν = Gµν + iBµν

to its inverse. In terms of the parameterization (3.3.6) this is simply ρ→ −1/ρ. Again this

and the shift ρ→ ρ+ 1 generate the full SL(2, Z)

ρ′ =
aρ+ b

cρ+ d
, τ ′ = τ . (3.3.11)

There are a few other transformations. Duality on the separate axes takes (τ, ρ) → (ρ, τ).

Spacetime parity, X1 → −X1 takes (τ, ρ) → (−τ̄ ,−ρ̄), and world-sheet parity takes (τ, ρ) →
(τ,−ρ̄). (The last two are not symmetries of the heterotic string). In all, the full set of

dualities is SL(2, Z)×SL(2, Z), up to some Z2 factors. The space of backgrounds, which for

the single dimension was the half-line R ≥
√

2, is here given by two copies of the modular

region of the torus, with some additional Z2 identifications.

Besides duality, the other equivalence of CFT’s which has attracted a great deal of

attention is mirror symmetry [82]. This is an equivalence of N = 2 super-CFT’s arising from

compactification on smooth manifolds, with the distinguishing feature that it flips the sign

of the U(1) current of the N = 2 algebra.10 The equality of the Yukawa couplings (OPE

coefficients) on a manifold and its mirror give relations between previously unconnected

mathematical structures. The most interesting physical phenomenon is the existence of

examples where a continuous change in the background fields of one manifold (and so a

continuous change in the CFT) maps to its mirror passing through a singular configuration

and changing topology.

The open string cannot wind around a periodic dimension, so one does not expect it to

be dual [84]. The normal open string has the Neumann boundary condition na∂aX
µ = 0.

10Mirror symmetry is not the same as R-duality, except in special cases [83]. In general, the Lagrangians
of mirror-symmetric theories cannot be directly transformed into one another in the way we have done for
R-duality.
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The duality transformation is ∂aX
1 = ǫa

b∂bX
1
d, so the boundary condition is

naǫa
b∂bXd = tb∂bXd . (3.3.12)

The tangential derivative vanishes, so X1
d is constant along the boundary. Moreover if we

consider points p1 and p2 on two different boundaries, we have

X1
d(p1) −X1

d(p2) =
∫

C
(dz ∂X1

d + dz̄ ∂̄X1
d) =

∫

C
(dz ∂X1 − dz̄ ∂̄X1) = 4πk1 =

4πn

R
= 2πRdn.

(3.3.13)

Here C is any curve connecting p1 and p2. We can imagine cutting the path integral open

along C in terms of the open string Hilbert space. The mode expansion (1.9.16) then relates

this to the momentum k1 in the Neumann picture. The result is that the points differ by

precisely a multiple of the periodicity of the dual space—they are at the same point. It also

follows from the mode expansion (1.9.16) that flipping the sign of the right-moving part of

X converts Neumann to Dirichlet boundary conditions. Taking R → 0, and so R′ → ∞, we

have a space in which all string endpoints are constrained to move on a hyperplane of fixed

X1
d. Open strings are thus found only at this hyperplane, while the closed strings (which

as we have noted are present in any open string theory) are free to move everywhere. This

hyperplane is actually a dynamical object, the D(irichlet)-brane [84], [85]. The open string

state α1
−1|0〉 is a massless excitation along the D-brane, whose couplings are just those of a

transverse ripple of the hyperplane.

In the classification of string theories by CFT, world-sheet topology, and constraint al-

gebra, we have explored the idea that the first of these corresponds to the vacuum of the

theory. Different world-sheet topologies, however, would seem to be truly distinct theories.

Remarkably, duality suggests that this is not the case: translating the D-brane off to infinity,

one obtains in the limit a theory of closed strings only. A similar result holds for unoriented

theories—the dual theory has an extended object (the ‘orientifold’), away from which there

are only oriented world-sheets [84].

3.4 N = 0 in N = 1 in . . .?

The third part of the Schwarz classification is the world-sheet constraint algebra. A recent

argument of Berkovits and Vafa [86] suggests that this too is determined by the vacuum. Let

Tm be the c = 26 CFT for any bosonic string theory. Add in a λ = 3
2
bc system (b1, c1), which
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has central charge −11. Then the following energy-momentum tensor and supercurrent form

a c = 15 N = 1 super-CFT:

T = Tm− :b1∂c1 : −1

2
∂ :b1c1 : +

1

2
∂2(c1∂c1)

TF = b1 + c1T
m+ :c1∂c1b1 : +

5

2
∂2c1. (3.4.1)

This super-CFT can be used as the matter CFT for the N = 1 superstring. It is not in the

general class described in section 2.6 because the non-unitary part is not of the standard

X0ψ0 form (the b1c1 theory must be nonunitary because the central charge is negative). But

it might arise from backgrounds of fields with nontrivial time components.

Now, what seems remarkable is that the BRST cohomology of this N = 1 theory is

identical to that of the N = 0 theory based on Tm, the constraints from TF removing the

b1c1 degrees of freedom. Moreover, the amplitudes of the two theories are the same, the

b1c1 path integral canceling the β1γ1 path integral in a nontrivial way [86].11 So the bosonic

string theories would indeed seem to be vacua (in the broad sense of super-CFT’s) of the

N = 1 string.

This can be carried further—a general N = 1 string can in this way be embedded in

N = 2, which can be embedded inN = 3, and so on indefinitely [87]. It can also be embedded

in the W3 string and generalizations [88]. Another chain of embeddings is possible in a series

of linear higher spin algebras wN [89]. This is true even though the N > 2 superconformal

algebras and N > 2 wN algebras do not have flat spacetime realizations of the ordinary sort.

This begins to seem like too much of a good thing.

Indeed, the following example may help to put this in perspective. Consider a field theory

with some complex scalars φi(x) and a Lagrangian density L(φi) of no special symmetry.

We will make this look as though it has a local U(1) symmetry φi → eiqiθ(x)φi for arbitrary

choice of qi. First, add a scalar field χ(x) and define

L′(φi, χ) = L(φie
−iqiχ) − 1

2
∂µχ∂

µχ . (3.4.2)

This is invariant under the global symmetry

χ′(x) = χ(x) + θ, φ′
i(x) = eiqiθφi(x). (3.4.3)

11According to Distler (private communication) there may be a problem on higher-genus surfaces.
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Now add a gauge field Aµ without a kinetic term,

L′′(φi, χ) = L(φie
−iqiχ) − 1

2
(∂µχ−Aµ)(∂µχ−Aµ) . (3.4.4)

This is invariant under the local symmetry

χ′(x) = χ(x) + θ(x), φ′
i(x) = e−iqiθ(x)φi(x), A′

µ(x) = Aµ(x) + ∂µθ(x) (3.4.5)

But in fact L′′ describes the same theory as the original L. By the gauge choice θ(x) = −χ(x)

we can set χ′ = 0. Then A′
µ decouples and has a trivial gaussian path integral, leaving L.

One has to think that this symmetry does not mean anything, since it is completely

independent of the original theory. What we have done is to gauge a nonlinearly realized

symmetry. Non-linear in this context refers to the term θ(x) in the transformation of χ,

which is zeroth order in the fields; nonlinear terms of order field-squared and higher would

not have the same effect. We see that a gauged nonlinear symmetry is like no symmetry

at all. This is the second time (out of three) that we encounter this theme: that a gauge

symmetry is after all just a redundancy, though sometimes a very useful one, and we can

always be more redundant.

Supersymmetry also has nonlinear realizations (in fact they were discovered quite early

in the subject). Kunitomo [90] argues the above procedure for world-sheet supersymmetry,

applied to the bosonic string, gives the Berkovits-Vafa construction (there are some quantum

corrections in the currents (3.4.1) that have to be found by hand). Indeed, the linear b1 term

in TF means that the superconformal symmetry is nonlinearly realized on c1. It is then not

so surprising that one can make the bosonic string look like it has all these extra symmetries.

It is not clear what the moral is. This makes the embedding seem rather trivial, but it is

a reminder that the amount of gauge symmetry in a theory can be somewhat arbitrary, and

so the classification by gauge algebra is not so absolute. It would be telling if one could reach

the theory (3.4.1) by turning on background fields from some more familiar vacuum of the

superstring. By the way, it is somewhat odd to expect the N = 0 string as a ground state

of the N = 1 string, since the latter has fewer degrees of freedom (smaller matter central

charge), and even odder to get N = 1 from N = 2 since the latter has just a scalar. Earlier

attempts to go the other way, getting N = 1 as a ground state of N = 0, did not seem to

lead anywhere.
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3.5 S-Duality

The last equivalence we have to discuss is S-duality, a conjectured equivalence between

weakly coupled and strongly coupled string theory [91]. Since the string coupling is eΦ, this

is to say that the vacua Φ and Φ′ are actually the same state, where Φ′ runs from −∞ to

∞ as Φ does the reverse.

This idea is much more far-reaching than anything we have discussed thus far. All the

previous equivalences that we discussed held order-by-order in perturbation theory. S-duality

certainly does not hold order by order—it relates the perturbative expansion, around zero

coupling, to an expansion around infinite coupling. Thus it is a statement about the exact

amplitude, and involves nontrivial relations among all orders of perturbation theory. My

purpose in the second half of these lectures was to try to go beyond string perturbation

theory, and S-duality is our first example. It is a subject of great current interest, several

major papers having appeared just since I began writing these lectures. Unfortunately it

is a hard subject to present, because it is rather intricate and because it is not one I have

worked on in detail. So I will just try to summarize some of the main ideas.12

To begin, consider the free Maxwell equations,

∂µF
µν = 0

∂µF
µν
d = 0, (3.5.1)

where F µν
d = 1

2
ǫµναβFαβ . These are invariant under

F µν ↔ F µν
d , (3.5.2)

which interchanges the electric and magnetic fields. Note that the first equation is an equa-

tion of motion, derived from the action, while the second is a Bianchi identity, which follows

from Fµν = ∂µAν −∂νAµ independent of the action. One can instead write F µν
d as the curl of

a dual vector potential Adµ, and the equation of motion and Bianchi identity again change

roles.

The classical Maxwell equations remain invariant if we add both electric and magnetic

sources. This can be extended to the quantum theory provided the Dirac quantization

condition is satisfied [93]. That is, if a particle of electric and magnetic charge (Qe, Qm)

exists, and another of charges (Q′
e, Q

′
m), then

QeQ
′
m −QmQ

′
e ∈ 2πZ . (3.5.3)

12A recent review by Sen [92] and a seminar given by Jeff Harvey at UCSB were very helpful.
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The simplest solution to this is that states be restricted to the lattice

Qe = en1, Qm =
2π

e
n2 (3.5.4)

for integer n1 and n2. A theory with an electrically charged field (e, 0) and a magnetically

charged field (0, 2π/e) is thus invariant under the electric-magnetic duality (3.5.2) if we also

take e→ 2π/e, interchanging weak and strong coupling. Unfortunately this is rather formal,

because either the electric or magnetic coupling is always strong, and we do not know how

to make sense of the resulting quantum field theory.

The charge lattice (3.5.4) is not the most general solution to the Dirac quantization

condition. If a θ-parameter is added for the gauge field, the electric charges shift by an

amount proportional to the magnetic charge [94],

Qe = en1 + en2
θ

2π
, Qm =

2π

e
n2. (3.5.5)

This is invariant under θ → θ+2π, with n1 → n1−n2. Electric-magnetic duality generalizes

to nonzero θ. It is useful to form the combination

τ =
θ

2π
+ i

2π

e2
. (3.5.6)

Under electric-magnetic duality and θ → θ + 2π we have respectively

τ → −1

τ
, n1 ↔ n2

τ → τ + 1, n1 → n1 − n2, n2 → n2. (3.5.7)

These do not commute, and they generate the familiar SL(2, Z), found earlier as the modular

symmetry (1.8.6) of the torus and in section 3.3 as a duality symmetry with two compact

dimensions.

The allowed spectrum (3.5.5) is invariant under the SL(2, Z) duality, but it is a stronger

statement for the actual spectrum to be dual. In the example above, for example, only the

states (n1, n2) = (1, 0) and (0, 1) appeared and the spectrum was invariant under electric-

magnetic duality (in this Abelian example we are putting in fields by hand, but in the non-

Abelian case below the dynamics will determine the spectrum). Now consider what happens

to the magnetic state (0, 1) as we increase θ and so its electric charge. One scenario is that at
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θ = π, where its electric charge is 1
2
, it becomes degenerate with the state (n1, n2) = (−1, 1)

with charge −1
2
, and that at somewhat larger θ it is unstable to decay into the latter state

plus the (n1, n2) = (1, 0) electric state. The SL(2, Z), if a symmetry, relates the theory at

any τ to that at some τ in the standard fundamental region. In the case just described,

there are two stable states everywhere, but at the boundaries of the standard fundamental

region there is a phase transition in the spectrum and the quantum numbers of the stable

states change.

To be precise, the discussion assumed that the state (n1, n2) = (1, 0) was massless at

θ = π. If it is extremely light there is a narrow region where both magnetic states are stable,

and the phase transition separates into two. On the other hand, if it is heavy enough both

states are stable for all θ. In fact, in the supersymmetric case described below, the latter

situation holds and states cannot become unstable, at least for n1 and n2 relatively prime.

The states (n1, n2) = (0, 1) and (−1, 1) must both be stable everywhere, as well as a large

number of others related by further SL(2, Z) transformations—namely, all states with n1

and n2 relatively prime.

Now let us go on to the case of interest, the pure non-Abelian gauge theory. The gauge

field is itself electrically, not magnetically, charged, which seems to introduce an essential

asymmetry. This shows up in the field equations and Bianchi identities,

DµF
µν = 0

DµF
µν
d = 0, (3.5.8)

where Dµ is a covariant derivative, containing Aµ and not Adµ. These equations can no

longer be written in terms of a dual vector potential Adµ, and any attempt to rewrite the

action in terms of a dual vector potential seems to lead rapidly to a mess.

But maybe we just haven’t looked hard enough. Non-Abelian theories do have magnetic

monopole configurations, some of which become stable when the symmetry is spontaneously

broken to an Abelian group.13 There is some circumstantial evidence for duality, especially

in N = 4 supersymmetric gauge theories (and in some N = 2 theories with matter). Namely,

1. The lattice of allowed electric and magnetic charges is invariant under duality (or in some

cases is related to that of a dual gauge group) [95], [96].

Also, when the non-Abelian symmetry is spontaneously broken to an Abelian symmetry,

13As in the Ising model, duality would be expected to exchange such topological objects with the funda-
mental ones.
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2. The low energy (Abelian) theory is invariant under duality.

3. The spectrum of massive gauge bosons and massive monopoles is invariant under duality.

4. The long-ranged forces between electric and magnetic charges (from gauge fields and also

massless scalars) are invariant under duality.

It may seem remarkable that one can make such statements, since we know so little

about strongly coupled theories. Actually, point 1 is just based on topology and should not

depend on the interactions. Points 2 to 4 use the supersymmetry in an essential way. The low

energy theory consists of Abelian gauge bosons and neutral scalars (and their superpartners)

without any renormalizable interactions, so is free at low energy even though the underlying

theory is strongly coupled. Moreover its form is fixed by the N = 4 supersymmetry, so we

don’t need to solve the underlying theory to find it. What is left is the familiar Abelian

duality.

Points 3 and 4 use the supersymmetry in a richer way [97].14 Let us consider the following

algebra,

{Q1, Q
†
1} = H +Q, {Q2, Q

†
2} = H −Q

{Qi, Qj} = {Qi, H} = {Qi, Q} = {Q†
i , Q

†
j} = {Q†

i , H} = {Q†
i , Q} = 0. (3.5.9)

Here Qi are two supercharges, whose anticommutator includes the Hamiltonian H (as always

in supersymmetry) and also a conserved charge Q (as is often the case). You can think of

this example as living in zero space dimensions so that there is no momentum or spin to

worry about. Going to eigenspaces of H and Q with eigenvalues h and q, the supercharges

form two fermionic oscillators, with the standard representation in terms of 22 states,

Q1|↓↓〉 = Q2|↓↓〉 = 0, Q†
1|↓↓〉 =

√

h + q |↑↓〉, Q†
2|↓↓〉 =

√

h− q |↓↑〉, (3.5.10)

and so on, with the normalization factors h±q coming from the algebra. Note the inequality

h+ q = 〈ψ|{Q1, Q
†
1}|ψ〉 = ‖Q†

1|ψ〉‖2 + ‖Q1|ψ〉‖2 ≥ 0, (3.5.11)

and the same for h− q, so

h ≥ |q|. (3.5.12)

Now, when the inequality is saturated, one of the terms in (3.5.10) vanishes and a small

representation with 2 states becomes possible. This idea plays a key role throughout super-
14As an aside, spacetime supersymmetry and its breaking are key issues in nonperturbative string theory,

but ones that I will have to largely neglect because of restrictions of time and emphasis. This is the one
point where I will discuss supersymmetry in any detail.
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h

q

Figure 18: Allowed states in the h-q plane (shaded). Small representations occur on the
boundary.

symmetry. Now note that if we have a small representation and we make continuous changes

in the parameters in the Hamiltonian, the energy of the states cannot change—it must stay

at h = |q| because to move to h > |q| we would need four states.15

The N = 4 supersymmetry algebra has regular representations of 28 states and small

representations of 24 states. The masses, electric and magnetic charges satisfy the Bogo-

molńyi-Witten-Olive bound [97]

M2 ≥ v2(Q2
e +Q2

m), (3.5.13)

where v is the symmetry-breaking expectation value (this is for a single U(1) group). Small

representations saturate the bound. In the perturbative, small g, theory, both the charged

gauge bosons and the stable monopole solutions are in small representations, and moreover

one finds the same spin spectrum in each case. Now vary the coupling g. Small represen-

tations have to stay small, and saturate the bound, so by the time we get to g′ =
√

4π/g

the spin and mass spectrum is the same as we started with but with electric and magnetic

charges interchanged.

I have never known what to make of this—is it a simple consequence of supersymmetry

restricted to the Bogomolńyi sector, or is it evidence for a duality of the full theory? I have

always been skeptical, again because the duality seems to lead to a mess at the Lagrangian

15This would be possible if there happened to be another small representation, of opposite fermion number,
at the same value of q.
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level. However, notice that while the BWO bound determines the allowed spectrum of small

representations, but it is a further non-trivial fact that the actual spectrum found is dual [98].

The final bit of evidence for duality, the long-ranged force, is also a consequence of the BWO

bound.

Everything I have just said was known before 1980 for the electric-magnetic duality. Sen

recently observed that the SL(2, Z) would have additional implications ([92] and references

therein). In particular, it requires stable states of monopole charge n2 greater than one, which

must appear as bound states of the n2 = 1 states. Some of these have now been found [99].

Recently, long papers by Seiberg and Witten [100], [101] and Vafa and Witten [102] on

N = 2 and N = 4 supersymmetric gauge theories have appeared, which seem to present

further evidence for duality, though I have not absorbed these. All of this evidence refers in

a sense only to the Bogomolńyi sector of the spectrum, but so much is accumulating that it

is harder to believe that it is not a symmetry of the full spectrum.

Thus far the discussion has involved only field theory, N = 4 supersymmetric Yang-Mills.

For the heterotic string compactified on a six-torus (that is, µ = 4, . . . 9 periodic) the low

energy theory contains N = 4 Yang-Mills, and the conjecture is that this string theory also

is self-dual [91], [92].16 The circumstantial evidence is of the same type as the above. Let

me just note a few important differences. The coupling constant g2 is now a field, being

proportional to eΦ. But so also is the topological angle θ: it is proportional to the axion

field a obtained from the antisymmetric tensor.

Exercise: Show that for the two-index potential Bµν , if one interchanges the Bianchi identity

for the field strength (vanishing curl) with the equation of motion (vanishing gradient), in

four dimensions one obtains a massless scalar field. Show that in ten dimensions one obtains

a 7-index antisymmetric tensor field strength which is the curl of a 6-index potential, and

which is invariant under a 5-index gauge transformation.

The low energy field theory for the dilaton, axion, and gauge fields, and their supersymmetric

partners, is SL(2, Z) invariant.

The other difference is that the BWO sector, which in the field theory case consisted of

a few small representations, is now very much larger, with infinite numbers of electrically

charged string states and magnetically charged soliton states, of various types. The duality of

the allowed states follows from supersymmetry as above, but duality of the actual spectrum

implies much more, including ‘stringy’ monopoles which involve fields not in the low energy

16For the heterotic string theory on backgrounds of lower symmetry, S-duality might also change the
background.
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effective field theory. At this point it is much less clear whether the actual spectrum is

S-dual. Incidentally, Sen has also argued that S-duality, like R-duality, must be a gauge

symmetry in string theory.

Finally, another conjecture is that string theory is dual to a theory of fundamental five-

dimensional objects (ref. [103] and further references in ref. [92]). The evidence is of the

same type as the above—duality of the low energy field theory, and interchange of the

spectra of ‘fundamental’ objects and solitonic ones. These arguments are made even though

it is not known if it is possible to quantize the fundamental five-brane—the world-sheet

theory is a six-dimensional field theory and so non-renormalizable. They are made on the

basis of presumed low-energy field theory of the five-brane (it couples naturally to a six-index

antisymmetric tensor gauge field; see the above exercise), on its classical soliton solutions,

on scaling arguments based on the world-sheet and spacetime theories, and on the possible

winding states of a five-dimensional object. An interesting connection between this and

S-duality is that

Sstring = (5-brane → string)(R5-brane)(string → 5-brane) , (3.5.14)

so string/5-brane duality would imply S-duality, given the more straightforward R-duality.

4 String Field Theory or Not String Field Theory

Thus far, we have defined string theory only through its perturbation expansion, the analog

of Volume One of Bjorken and Drell. Now we would like to find Volume Two. We know that

in field theory there are many important phenomena that cannot be seen in perturbation

theory, and string theory will have all of these and probably more. Also, we have found

that string theory contains an enormous amount of spacetime gauge invariance, in the form

of spacetime Ward identities satisfied by the scattering amplitudes. But again, we know

from Yang-Mills theory and general relativity that this is a very clumsy way to think about

spacetime gauge invariance. These theories of course have a geometrical interpretation which

is essential to understanding the physics, and which is disguised in the perturbation theory

but is evident when they are written as field theories. So it seems that we should try

something similar in string theory, to introduce some sort of string field Ψ, to find an action

with the appropriate gauge symmetries, and then to recover the perturbation theory from a

gauge-fixed path integral. This section consists of a few assorted remarks about this idea,

focusing first on some very attractive features, and then on some indications that it may not

be quite the right thing to do.
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4.1 String Field Theory

A closed string field will create or destroy a string along some closed curve in spacetime,

so it is a functional Ψ[X] of such paths. An open string field will be a functional of open

curves. In the earlier discussion, the closed and open string wavefunctions ψ[X] were similarly

functionals of the configuration of the string in spacetime, so this is like second quantization,

‘promoting’ the one-particle wavefunction to an operator (or, in the path integral formalism,

to a variable of integration). It turns out that things work very much more nicely if one first

goes to the BRST-invariant form of the theory, and then second quantizes [104], [105].1 In

this form the wavefunction also includes the state of the ghosts. Since the b and c ghosts are

conjugate, we can for example regard b as the momentum and c are the coordinate, so the

wavefunction would be a functional ψ[X, c], and the corresponding field a functional Ψ[X, c].

Actually, it is still convenient to use the bra-ket notation, writing the string field as |Ψ〉,
which is just the abstract notation for the functional Ψ[X, c] = 〈X, c|Ψ〉. We would have to

use a different notation for the states of the theory, something like |Φ). That is, |Φ) is a

state with any number of strings, and Ψ[X, c] or |Ψ〉 act as an operators on these states.

We can think about this another way by expanding the functional |Ψ〉 in terms of a

complete set of such functionals. For the open string, for example,

|Ψ〉 =
∫

d26k

(2π)26

{

T (k)|0, k〉 + iAµ(k)αµ
−1|0, k〉 +B(k)b−1c0|0, k〉 + . . .

}

. (4.1.1)

The functions T (k), Aµ(k), B(k), . . . or their Fourier transforms T (X), Aµ(X), B(X), . . .

are the arbitrary coefficients in the expansion. There is an obvious interpretation of T (X)

as the spacetime tachyon field and Aµ(X) as the spacetime gauge field, while B(X) will turn

out to be an auxiliary field.2

Now we need an invariance principle. Since wavefunctions QB|χ〉 are equivalent to zero,

the natural guess is

|Ψ〉 → |Ψ〉 +QB|Υ〉 (4.1.2)

for any |Υ〉. Taking

|Υ〉 =
∫

d26k

(2π)26

{

λ(k)b−1|0, k〉 + . . .
}

, (4.1.3)

1String field theory is a large subject. I will make a few appropriate references, but the reader should
consult the reviews [106], [107], [67] for extensive references.

2In the expansion (4.1.1), I have for brevity kept only terms with the same ghost number as the ground
state; more on this later.

99



(so that QB|Υ〉 has the same ghost number as |Ψ〉) one finds from the expansion (2.5.23) of

QB that the invariance (4.1.2) becomes

δAµ(X) = −2∂µλ(X) (4.1.4)

which is indeed the linearized gauge invariance of electromagnetism.

There is an obvious free field equation,

QB|Ψ〉 = 0, (4.1.5)

which is invariant under (4.1.2) because Q2
B = 0. In components, this becomes

∂2T (X) = −1

2
T (X), B(X) = −∂µA

µ(X)

∂2Aµ(X) = −∂µB(X) = ∂µ∂νA
ν(X). (4.1.6)

We obtain the appropriate Klein-Gordon equation for the tachyon and the gauge-invariant

free Maxwell equation for Aµ. Note that the field equation (4.1.5) has the same form as the

physical state condition which earlier gave us the mass-shell conditions. The one difference

is that we required b0 to annihilate physical states, which at this level leads to B(X) = 0

and so ∂2Aµ(X) = 0. So the b0 condition is a stringy generalization of Feynman gauge.

We can readily write down an invariant free action as well. It is simply

Sopen =
1

2
〈Ψ|QB|Ψ〉. (4.1.7)

The ghost number works out so that the action for the fields (4.1.1) is non-zero. Writing

the inner product in terms of the path integral on the disk, the vertex operators VΨ each

have ghost number 1, as does QB, adding up to 3 as required by the same calculation (1.9.4)

as on the sphere. Not surprisingly, the action for Aµ is the free Maxwell action, after B is

integrated out. We have used the bilinear inner product 〈 | 〉, but in fact the string field

must satisfy a reality condition

〈Ψ| = 〈〈Ψ|. (4.1.8)

This is necessary for unitarity, generalizing the familiar fact that the metric and Yang-Mills

fields must be real.

This all seems very beautiful to me. The familiar spacetime gauge invariance is embed-

ded as the lowest component of a much larger symmetry acting on all higher levels of the
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string, and the BRST formalism allows this to be done in an extremely compact and elegant

way. In fact, the action (4.1.7) has the same structure as the Abelian Chern-Simons action
∫

d3X AdA [105], where QB is analogous to the exterior derivative d: note that both are

nilpotent. Incidentally, the components of other ghost number, not written in the expan-

sion (4.1.1), just play the role of Fadeev-Popov ghosts for the spacetime gauge symmetry

after the gauge is fixed, and one obtains a BRST-invariant string field theory. To be precise,

there are several complications relative to the earlier discussion of BRST symmetry on the

world-sheet, so a generalization of BRST, the Batalin-Vilkovisky formalism, emerges [106].

This all generalizes to the closed string, with a slight complication. It is necessary to

impose conditions (b0− b̃0)|Ψ〉 = (L0− L̃0)|Ψ〉 = 0 on the closed string field and on the gauge

parameter |Υ〉, and the action is

Sclosed =
1

2
〈Ψ|(c0 − c̃0)QB|Ψ〉. (4.1.9)

The ghost number is then correct. The invariance (4.1.2) is now an infinite-dimensional

generalization of linearized coordinate invariance.

Now the question is whether we can find an appropriate nonlinear generalization of the

string gauge symmetry and action. Let us transform this into a related question. After

gauge fixing, the path integral over the string field can be expanded perturbatively in terms

of Feynman diagrams built from string propagators and vertices. Is it possible to represent

the amplitudes, which were described earlier in terms of a sum over world-sheets, in this

way?

I am going to make a distinction here between what I will call an effective string field

theory and a bare string field theory, and describe the former first. What I am call an effective

string theory is described in ref. [67]. It is always possible by brute force to write the string

amplitudes in terms of Feynman diagrams. Let us introduce an arbitrary three-closed-string

vertex, as depicted in fig. 19a. Figure 19b shows a four-string amplitude built from two

such vertices. The propagators are cylinders, with lengths integrated from zero to infinity

(generalizing the Schwinger representation of the propagator in field theory). There are three

such graphs, from the three channels. Now recall from the Virasoro-Shapiro amplitude (2.8.1)

that this amplitude is supposed to be given by an integral of one vertex operator position z4
over the complex plane, the other three operators being fixed. The graphs of fig. 19b cover

three round regions centered on the three fixed positions, fig. 20a, but this inevitably leaves
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a) b)

Figure 19: a) Three-string vertex. b) Four string amplitude.

1
z4

a) b)

Figure 20: a) Graph of fig. 19b covers three round regions in the complex plane. b) Four-
string vertex needed to cover unshaded region in fig. 20a.

a region between uncovered.3 So it is necessary to introduce a four-string vertex as shown

in fig. 20b. An integration over shape in included in the definition of the vertex so as to

cover exactly the missing region of fig. 20a. Going on to higher amplitudes, one must further

introduce n-string vertices for all n. At tree level the vertices have the topology of spheres

3 It also could be that the round regions overlap and double-cover some part of the z4-plane; one can
avoid this by making the ‘stubs’ on the three-string vertex long enough. Also, by taking a more complicated
propagator it may be possible to cover the four-point amplitude correctly, but this will fail for the five-point
amplitude.
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with n holes. However, when one goes on to loop amplitudes, the tree level action again

does not cover moduli space, so it is necessary to add additional vertices containing internal

loops. This procedure can be carried out iteratively, and in the end the full perturbation

series is written in terms of Feynman graphs. Ref. [67] gives an explicit construction of one

possible set of vertices. All of this can also be applied to theories of open plus closed strings.

Now one can work backwards, writing the n-string vertex as a term in the action with a

product of n string fields. The resulting action does indeed have a non-linear generalization of

the string gauge symmetry. This is not surprising for the following reason. In the discussion

of spacetime Ward identities in section 2.7, I emphasized that these would hold if and only if

the integration ran over the correct moduli space. The iterative construction of the vertices

does this, so the spacetime Ward identities hold and a corresponding invariance should be

present in the action. The condition that moduli space be properly covered is equivalent to

a set of identities for the vertices, and these same identities imply the nonlinear invariance

of the action [67].

4.2 Not String Field Theory

I have called the above construction an effective string field theory because it is very similar

to a Wilsonian effective field theory. The long-distance physics is explicitly represented,

while the short-distance physics is already integrated out. (A similar analogy was made in

refs. [108]). In particular, we have seen that long-distance propagation in spacetime, pro-

ducing the poles in string amplitudes, comes from long cylinders or strips at the boundaries

of moduli space. In the effective string field theory, the vertices include an integration over

moduli, but only an interior region of moduli space, as in the example of fig. 20. The de-

generating cylinders appear explicitly as propagators. On the other hand, we will see at

two points later on that stringy physics comes from the interior of moduli space, which are

hidden inside the vertices.

Effective string field theory is very useful for some purposes. By describing explicitly the

boundaries of moduli space it is a useful tool for demonstrating the finiteness and unitarity

of string perturbation theory—see the discussion at the end of section 2. But it would not

seem to be the right tool for studying nonperturbative string theory, since the stringy physics

is already integrated out. Can we do better? For the open string we certainly can [105].

The simple Witten vertex shown in fig. 21, in which three open strings are joined by gluing

their halves together in pairs, exactly covers moduli space. The interacting action thus has
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Figure 21: Witten vertex for three open strings.

a nonlinear generalization of the string gauge invariance, and has the same structure as the

non-Abelian Chern-Simons action. I will call this a ‘bare string theory,’ since the action has

a closed form without corrections from all orders in the loop expansion.

The perturbative formulations of open and closed string theories were quite parallel. For

example, the spectrum of the closed string was essentially the tensor product of two copies of

the open string spectrum. But now we run into a real asymmetry, for there does not seem to

be any covariant closed string field theory simpler than the effective theory that I described

earlier.4 The existence of n-point tree level interactions would not have been surprising, since

general relativity is non-polynomial while Yang-Mills theory is polynomial. But the fact that

the action receives corrections from all orders in the quantum loop expansion means that a

great deal of non-trivial physics is already integrated out.

There is another, rather remarkable, asymmetry between open and closed strings. The

Witten open string theory covers the moduli space of Riemann surface with boundaries. But

as I have emphasized at the end of section 2.5, this will include processes with intermediate

closed strings. The simplest example of this is in fig. 22, the one loop vacuum amplitude,

with one propagator and no vertices. This has a modulus t, the ratio of the circumference to

the length, which runs from 0 to ∞. For large t, fig. 22a, this looks like a vacuum fluctuation

consisting of a pair of open strings. But for small t, fig. 22b, it looks like a single closed

string appearing and then disappearing. Indeed, the string graph contains both processes.

The same thing happens at for higher order open string amplitudes. While we can think of

the Witten theory as a path integral over open string fields, it contains the full open plus

4I exclude here the non-covariant light cone string field theory. Possibly this is the right approach, but
there are many things about it that I do not understand—subtleties with contact terms, and with the vacuum
structure. Also, there was some development of light-cone-like covariant string field theories, but these seem
to have had difficulties.
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a) b)

Figure 22: a) Annulus at large t. Cutting on dashed line gives an open string pair. b)
Annulus at small t. Cutting on dashed line gives a single closed string.

closed string physics [109].

It is not clear what the logical relation is between the closed and open strings here. It

is not that the closed strings are bound states of open strings—there are no interactions in

fig. 22. In some sense the closed strings are singular configurations of the open string field.

Siegel has suggested recently that the relationship is similar to bosonization, though I do

not grasp all his arguments [110]. Perhaps the lesson is that open string field theory is all we

need, with the closed string emerging as in fig. 22. This idea was pursued for a while, but

it is not clear where to go with it [111]. There is also the difficulty that the most promising

theory, the heterotic string, does not have an open string version.

The graph in fig. 22 is the same as the one-loop vacuum amplitude in field theory, with

t the Schwinger parameter, and it corresponds to summing 1
2
ω times the spacetime volume

over all open string modes. It is interesting to contrast this with closed string theory.

Figure 22 is obtained by taking an open string propagator, a strip of length/width= t,

gluing the ends and integrating over t. The analogous construction in closed string theory

would be to take a cylinder, gluing the ends, and integrating over lengths and also twist

angles. This would correspond to integrating over tori, with the modulus τ running over

the full region Re(τ) < 1
2
, Im(τ) > 0. This is not the integration region, fig. 6, for closed

string theory. So the closed string vacuum amplitude is not given by summing 1
2
ω over closed

string frequencies, a strong indication that closed string theory is not a field theory [112].

The open string vacuum amplitude is given by summing 1
2
ω over open string frequencies,
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though it includes also the closed string process of fig. 22b.

There is one more important non-field-theoretic property of closed strings, having to do

with the large-order behavior of the perturbation series. Consider a quantum field theory

where the coupling constant g appears only as an overall factor g−2 in the action, so that g2 is

the loop counting parameter. Rather generally, the large order behavior of the perturbation

series
∑∞

h=0 g
2hTh (reviewed in ref. [113]) is

Th ∼ h!hAC−h (4.2.1)

with A and C constants. The dominant factor here is the factorial. Generically this arises

simply because the number of Feynman graphs with h loops is of order h!—if one cuts off the

momentum integrations in the IR and UV the propagator and vertex factors just enter into

the constants A and C.5 The perturbation series is thus divergent. The ratio of successive

terms is

g2hTh

g2h−2Th−1
∼ hC−1g2, (4.2.2)

so the smallest term is for h̃ ∼ Cg−2. From Stirling’s approximation,

Ah̃ ∼ e−C/g2

. (4.2.3)

This is the smallest term, so represents the maximum accuracy of perturbation theory as an

asymptotic series. Indeed, many non-perturbative effects, effects which do not occur at any

order of perturbation theory, are of this magnitude, including confinement, chiral symmetry

breaking, supersymmetry breaking in supersymmetric gauge theories, instantons, even BCS

superconductivity.

Open string theory is much the same [114]. The Witten field theory represents moduli

space as a sum of Feynman graphs, so the factorial growth of the number of graphs im-

plies a factorial volume of moduli space. The integrand can be bounded in the interior of

moduli space, so again barring infrared divergences the same estimate (4.2.1) holds, and

nonperturbative effects of order e−C/g2
o are expected.

The same argument does not apply to closed string theory, because the effective string

field theory has complicated vertices containing integrals over moduli space. Shenker esti-

mates the large order behavior as follows [115]. He uses the fact that Witten’s open string

5But in some cases there are also contributions of order h! coming from the momentum integrations in a
small subset of graphs. I do not know if there is any deep reason why two such different sources give effects
of the same order.
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field theory generates the amplitudes of the full open plus closed string theory. He then

argues that the purely closed-string amplitudes are a non-negligible portion of the full am-

plitudes, so that the perturbation theory for them grows as rapidly. Nonperturbative effects

are then of order

e−C/g2
o = e−C/gc. (4.2.4)

In terms of the closed string perturbation theory, this translates into large order behavior

proportional to (2h)!, as had been discovered in the matrix models.

These e−C/gc effects have no analog in field theory, and their nature is not known. We

will see what they are in the matrix model, but it has been hard to guess how to generalize

the result. At small gc these stringy effects are larger than the familiar and important e−C/g2
c

nonperturbative effects in the low energy field theory. Moreover, they are likely to involve

phenomena which are unique to string theory. Of all the things I am covering in these

lectures, this is the one where I most wanted to be able to say something new. I have made

one observation [116], which is that if one includes boundaries with Dirichlet conditions,

Xµ =constant, these act as instantons but with a weight of the desired form e−C/gc . The

conjecture is that the stringy nonperturbative effects make their appearance as a sum over

various kinds of boundaries; I am trying to test this in the matrix model.

In lieu of anything solid to say, let me make a conjecture: that closed string field theory is

simply wrong nonperturbatively, and that closed strings themselves are collective excitations

of some other degrees of freedom, in terms of which the theory should be formulated. Let

me list some evidence for this.

• The rapid growth of perturbation theory, suggesting that the perturbative description

is rather far from the exact formulation.

• The fact that closed string field theory does not seem to work, except as an effective

theory with the stringy physics integrated out. Note that the rapid growth of pertur-

bation theory implies that the interior of moduli space, the part which does not look

like Feynman graphs and is integrated into the vertices, is very large.

• The appearance of closed strings in open string field theory.

• Matrix models, where closed strings are collective (bosonized) excitations of free fer-

mions.

• The closed string is almost the product of right- and left-moving theories, suggesting

that it might be useful to regard it as a bound state of right-moving and left-moving
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strings. In the flat space theory, there are two things which glue the two sides together.

The first is the equality of the zero modes eigenvalues, α0 = α̃0. The second is the global

structure of moduli space. Locally, the moduli space has a natural complex structure

corresponding to the right-left separation—for example, the modulus τ of the torus

appears as τL0 − τ̄ L̃0. But the region of integration is not any sort of product.

• Too much gauge symmetry. Here I am being contrary, since earlier I told you that it

was wonderful that string theory embedded the spacetime gauge symmetries in a much

larger structure. There I was following the usual particle theory paradigm that local

symmetry is holy, and that as one goes to higher and more fundamental energies one

expects to see more and more of it, as in SU(3)×U(1) ∈ SU(3)×SU(2)×U(1) ∈ SU(5)

of the Standard Model and GUTS. But this need not be the case. As I have tried
to emphasize, gauge symmetry is just a useful redundancy, and there are examples

where one emerges at low energy even though there is no sign of it in the underlying

theory. The familiar example from particle theory is the CP (n) sigma model [117].

In condensed matter physics, this has been proposed to occur in theories of strongly

coupled electrons, where the electron separates into a ‘spinon’ and ‘holon,’

ψe(x, t) = ψs(x, t)φ(x, t). (4.2.5)

This decomposition is redundant, the transformation

ψ′
s(x, t) = eiλ(x,t)ψs(x, t), φ′(x, t) = e−iλ(x,t)φ(x, t) (4.2.6)

leaving the physical field, the electron, invariant. It is plausible that under some

conditions this redundancy is elevated to a dynamical symmetry (for a review see

ref. [118]). As far as I know there is no reason in principle that this cannot happen.6 So

perhaps the short distance theory, rather than exhibiting an enormous gauge symmetry,

should be formulated entirely in terms of invariants.

Recall from the discussion in section 3.4 that one way to distinguish a useless from a

useful redundancy is to see whether the fields transform inhomogeneously. The string

gauge symmetry is

|Ψ〉 → |Ψ〉 +QB|Υ〉 +O(|Ψ〉) (4.2.7)

The linear term is as before, eq. (4.1.2). We do not know the higher terms in any

simple form but we do not need them, because it is precisely the term QB|Υ〉, of zeroth

6Ref. [119] shows that in some circumstances a global symmetry of the underlying theory cannot be pro-
moted to a local symmetry at long distance, but it imposes no restriction on the promotion of a redundancy,
which acts trivially in the underlying theory.
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order in |Ψ〉, that is relevant here. If this vanishes (at least for some momentum), the

gauge symmetry is real. So we are looking for solutions of

QB|Υ〉 = 0. (4.2.8)

This looks like the physical state condition, but it is different because the |Υ〉 have

ghost number one less than the states, so it is a different cohomology. In fact, the only

solutions for a flat background are Υ = ∂Xµc̃ or c∂̄Xµ, which are just the translations,

so the only ‘real’ gauge symmetries are those of the graviton and antisymmetric tensor.

But this need not be conclusive—there are other backgrounds where other parts of the

string gauge symmetry are unbroken, as we will see in section 5, so it may be that it

is useful to keep the full redundancy.

• The observation that holes in the world-sheet naturally give effects of order e−C/gc

[116], suggesting a breakdown of the world-sheet.

This is the set of ideas I play with, though it does not yet add up to anything coherent.

The idea that we should look for more fundamental degrees of freedom in string theory

was put forward in ref. [120], in a study of the high-temperature behavior of string theory.

This discusses a number of other non-field-theoretic properties of closed strings, and also

suggests breakdown of the world-sheet by way of holes. Another idea [121], [122] is that the

string should be thought of as a collection of bits; the string picture breaks down when the

density of bits becomes large. It may be that these ideas are connected, holes appearing in

the world-sheet because neighboring bits unbind.

4.3 High Energy and Temperature

In particle physics the traditional way to find out what things are made of is to bang them

together. I will briefly describe three different high-energy regimes, each of which gives a

different picture. We might hope that in one limit or another the theory will simplify enough

to allow us to go beyond perturbation theory.

The first limit is scattering at high center-of-mass energy, E = s1/2, and fixed angle.

This is where Rutherford found the atomic nucleus, and where SLAC found the partonic

constituents of hadrons, quarks and gluons. In relativistic field theory this process probes

distances of order E−1. We have already seen in the tree-level Virasoro-Shapiro amplitude
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that the amplitude is very soft in this limit. To get further insight[123] consider the path

integral over Xµ from which it was obtained,

∫

[dX] e−SP+i
∑4

i=1
ki·X(σi) , (4.3.1)

the second term in the exponent being from the tachyon vertex operators. The limit is

essentially obtained by scaling up the ki uniformly. The action SP is quadratic in X, so the

path integral is determined by a saddle point Xµ
cl ∝ E, and the amplitude is e−O(E2). This

same saddle point dominates if the tachyons are replaced with other states of the string; in

particular, the masses of the external states drop out in the limit. Also the z4 integral in

the resulting amplitude (2.8.2) is dominated by a saddle point, at

z4 =
k1 · k4

(k1 + k2) · k4

. (4.3.2)

Note that this is in the interior of moduli space, another example of the idea that stringy

behavior comes from the interior.

In contrast to field theory, the size of the interaction region grows with energy [123].

Combining the low energy field theoretic behavior with this high energy result, the effective

uncertainty is

∆X ∼ 1

E
+ α′E. (4.3.3)

This is further evidence for an effective minimum distance in string theory, as found earlier

from duality. It appears that the string can carry only of order one string unit of energy

per unit length, so to transfer a much larger energy E many bits are needed—the effective

number of partons is proportional to the energy.

Gross and Mende were able to find the dominant saddle point at every order of pertur-

bation theory. It is just an n-fold cover of the tree-level saddle point, scaled by a factor n−1,

with n−1 = h being the number of loops. The exponential in the scattering amplitude (2.8.4)

is suppressed by n,

cne
−sf(θ)/n (4.3.4)

so at large s high orders dominate. This can be interpreted in terms of dividing the scattering

into n softer scatterings of angle θ/n. There has been some discussion of the summation of

this series [124], and of a large symmetry in the high energy limit [125], assuming that it is

correct simply to sum the leading behavior from each order.7 It is interesting to contrast
7There has also been a complementary study, of the all-orders summation of small-angle scattering [126].
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this with the earlier discussion of the large-order behavior. The amplitude (4.3.4) comes

from a single saddle point in moduli space, so is unrelated to the large volume noted earlier.

However, it is enhanced by the kinematics and actually grows much faster than the volume

of moduli space, cn being proportional to (9h)!.

The second limit is soft scattering, high energy and small angle, holding fixed the mo-

mentum transfer q ∼ (−t)1/2. Whereas the hard scattering is an occasional rare process

where many bits of string move together, the soft scattering is a picture of the typical string

configuration. From Stirling’s approximation, the Virasoro-Shapiro amplitude is of order

AVS ∼ s2+tt−1 =
s2

t
e−q2(ln s). (4.3.5)

This is the gravitational amplitude s2/t modified by a form-factor which corresponds to an

object with a size of order
√

lnE [127]. There is another way to see this same result. Let us

calculate the root-mean-square size of the string ground state. The mode expansion gives

〈0|(X1(σ) −X1)2|0〉 =
∞
∑

m=1

1

m2
〈0|(αmα−m + α̃mα̃−m)|0〉 = 2

∞
∑

m=1

1

m
. (4.3.6)

This is divergent but has no direct physical significance. A measurement on a time-scale δt

is sensitive only up to modes of frequency less than δt−1, essentially mδt < 1. So the log

divergence becomes ln(δt−1), and the size is the square root of this [127]. This agrees with

the form factor, where the soft scattering probes time scales δt ∼ 1/E.

Just as the hard scattering (4.3.3) is interpreted as a stringy uncertainty principle,

Susskind interprets this root-log-E growth as a stringy Lorentz transformation, transverse

sizes not being constant as in classical physics. A similar calculation shows that the longitu-

dinal size of the string goes to a constant of order the string scale, not the usual contraction

as 1/E.

The square root of a logarithm is a very slow function, and ordinarily would be of little

importance. But there is one situation where enormous boosts are encountered—a black hole.

From Strominger and Verlinde you have heard two very different points of view on whether

short distance physics, such as string theory, can be relevant to the information problem.

What makes this so controversial is that in a black hole there are no large local invariants,

such as would ordinarily be needed for the low energy effective field theory to break down,

but there is a very large nonlocal invariant, the relative boost between an infalling and an

asymptotic observer. The external observer ‘sees’ the infalling observer slow down and sit
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forever (or until the hole decays) on the horizon. One tick of the infalling clock takes longer

and longer as seen from the outside, the ratio going as et/4M with M the mass of the hole

and t the time measured by the external observer. So the external observer is seeing the

internal motion of infalling strings slowed down, a fixed time scale δtext corresponding to

a time interval e−t/4Mδtext for the infalling object. As time goes on, the external observer

‘sees’ more and more of the modes of the string, and it appears to grow, as

√

ln(et/4Mδt−1
ext) ∝ t1/2. (4.3.7)

Before the black hole evaporates, the string grows to macroscopic sizes, and low energy field

theory no longer applies. Also, because of its longitudinal behavior the string, rather than

contracting closer and closer to the horizon, remains a finite thickness above it. Again, this

would have a profound effect on the Hawking radiation.

However, I have put ‘sees’ in quotes, because to see one needs light, and the black hole

is black. Of course there is Hawking radiation, but the conventional wisdom is that this

is produced outside the horizon—the relevant modes are in their ground states near the

horizon—and so cannot reveal all of the marvelous things that the string is doing, and the

string physics is irrelevant. At least, I have not been able to imagine a real dynamical

calculation which shows the stringy effects to be relevant. But this picture of the essentially

diffusive growth of the string is very simple and appealing [128], and the stringy properties do

dovetail very nicely with what would be needed to solve the information problem. It may be

that the low energy field theoretic treatment is internally consistent but not correct, because

the large nonlocal invariant makes string theory important even before the low energy field

theory breaks down internally due to a large local invariant. This would be a satisfying

resolution of the various points of view; the problem is to find the right calculation!

The previous limits involved two strings, each in a state of low excitation but with large

center of mass energy. The final limit I will discuss is that of a single string in a very high

state of excitation. The density of single-string states per unit energy n(ε) is related to the

free energy in the noninteracting limit,

βF (β) =
∫ ∞

0
dε n(ε)e−βε, (4.3.8)

where I have used the fact that e−βε will be much less than 1 for the relevant states. The

density of states grows exponentially, as eβcε, so the integral converges at low temperature but

diverges at β < βc. It is tempting to interpret this as a transition (the Hagedorn transition)
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to a phase where the conjectured fundamental degrees of freedom will be evident. As yet,

there is little understanding of the high-temperature phase.

There is a large literature on this subject, but here I just wish to note that there is a

very simple picture of the typical high-energy string state, which gives a surprisingly good

quantitative account of the density of states [129]-[132]. First let me tell you more precisely

what the density of states is. In the limit ε→ ∞, at fixed volume, it is

n(ε) =
1

ε
eβcε. (4.3.9)

This is true for any finite volume spatial background, such as a torus, or a group manifold.

If instead one takes the linear size to infinity faster than ε1/2, one finds

n(ε) =
V

ε(1+D)/2
eβcε. (4.3.10)

where D is the number of spacetime dimensions and V the volume.

The results (4.3.9) and (4.3.10) follow if one assumes that the typical highly excited string

is a random walk, with its length proportional to its energy. First, the exponential factor

comes from the fact that the number of steps is proportional to the length, with a choice to

be made at each step. The Hagedorn transition thus arises from a competition between the

energy and entropy of a long string. The power-law prefactor is important for the details

of the transition. In the density (4.3.10), the factor of V is counts the number of places a

random walk might start. We must then divide by the typical volume of the random walk,

because we can make a closed string only if the final point and initial point coincide; this

gives a factor of ε(1−D)/2. Finally, this overcounts by a factor of the length of the string, since

we can start at any point along the closed string, so we need an additional factor of ε−1,

giving the result (4.3.10). In finite volume, the random walk will eventually fill the space

so that its volume is just V , giving instead (4.3.9). Remarkably, the density of states is

completely independent of the size and shape of the space in this limit. With such a simple

picture of the free theory we might hope that the interacting theory will be tractable.

5 Matrix Models
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5.1 D = 2 String Theory

Returning to the theme of my introduction, one of the things I learned from Wilson’s lecture

is the extent to which he was influenced by the pion-nucleon static model. This is an

essentially one-dimensional free pion field in interaction with a static nucleon with some

internal states.1 In spite of having only one interacting degree of freedom, this model has

the essence of quantum field theory, a nontrivial renormalization group flow.

String theory has an enormous number of degrees of freedom and a rather rigid structure.

It is not easy to find models which are simple enough to deal with and yet retain the essential

features of the theory. In the previous section we mentioned various high energy limits where

things seem to simplify a bit, but as yet it has not been possible to do anything beyond

perturbation theory. The one limit which has turned out to be solvable is the limit of small

numbers of spacetime dimensions, 1 ≤ D ≤ 2 (for reviews see refs. [133], [134]).

A simple solution to the background field equations (3.1.2) for arbitrary D is [135]

Gµν = ηµν , Bµν = 0, Φ = QX1/2 (5.1.1)

with

Q2 =
26 −D

3
. (5.1.2)

The field equations (3.1.2) were derived in world-sheet perturbation theory and are generally

true only when the gradients of the background fields are small, but the solution (5.1.1) is a

special case because the path integral remains gaussian. In fact, we have already constructed

the CFT. On a flat world-sheet the world-sheet action reduces to the ordinary free Xµ, but

with energy-momentum tensor as in eq. (1.6.1),

T = −1

2
:∂Xµ∂Xµ : −1

2
Q∂2X1 (5.1.3)

giving c = D + 3Q2 = 26.

What is the physics of this background? Recall that eΦ plays the role of the string

coupling, so the coupling is position-dependent, as eQX1/2. For X1 → −∞ the coupling goes

to zero, but for X1 → ∞ the coupling diverges and string perturbation theory breaks down.

1To the condensed matter audience this will sound very similar to the Kondo model. In fact it was only
some time later that Wilson learned about the Kondo model and realized that his ideas would apply.
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Adding a tachyon background produces a theory in which string perturbation theory is valid.

The vertex operator eαX1

has weight

h = h̃ =
−(2α−Q)2 +Q2

8
, (5.1.4)

so forQ2 ≥ 8, which is D ≤ 2, there are two positive real solutions to the mass-shell condition

h = h̃ = 1. It is the lesser, α1 ≤ Q/2, which is appropriate,2

T (X1) ∼ eα1X1

. (5.1.5)

Adding this to the action gives

S =
1

8π

∫

d2σ
{√

ggabηµν∂aX
µ∂bX

ν +Q
√
gRX1 + µeαX1

}

. (5.1.6)

The X1 action is the Liouville theory. The tachyon background (‘Liouville wall’) suppresses

the path integral at large X1 where the coupling is strong, the exponential factor in the

acion dominating the linear factor from the growth of the coupling.

This string theory is solvable at D = 1 or 2, or for one Liouville dimension plus a

minimal model (recall from eq. (1.9.11) that the central charge counts the number of degrees

of freedom, so a minimal model is like less than one whole dimension). I will concentrate

on D = 2, which has the most physics. As we have discussed, the physical state conditions

remove two sets of oscillators, leaving in this case none. Only the center of mass motion, the

tachyon, remains.3 For real momentum the vertex operator (1.6.5) is eik·X+QX1/2. The factor

eQX1/2 we now recognize as the string coupling, which multiplies the tachyon wavefunction.

The weight, given that Q2 = 8 in D = 2, is 1 + 1
2
k2, so the mass-shell condition is k2 = 0.

The tachyon is misnamed in D = 2: it is massless!

Exercise: Show in the same way that M2 = − 1
12

(D − 2) in general D. This can be

interpreted as the negative Casimir energy of the D − 2 transverse modes.

2This is a subtle point [136], and I do not want to go off on this tangent, but I would like in this footnote
to state my understanding [137]. The tachyon has a second order field equation, and the background is
a linear combination of both solutions. At large X1, the nonlinearities due to the tachyon self-interaction
become large and the linearized solution no longer holds. The appropriate linear combination of the two
solutions is determined by a condition of nonsingularity in the nonlinear region. In the linear region, it is
the more slowly decaying solution, the lesser value of α1, which dominates. Incidentally, for D = 2 the two

roots are equal and the dominant term is X1eX1
√

2. The linear part is important in understanding details
of the amplitudes.

3Actually, this counting breaks down at discrete momenta, where there are extra physical states, an
important point to which I will return.
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Figure 23: Two dimensional spacetime with dilaton and tachyon backgrounds. The S-matrix
describes transitions from a state with m incoming tachyons to a state with n outgoing
tachyons.

The theory thus reduces to a massless scalar field moving in one time and one space

dimension. The spatial dimension is not translation-invariant. Rather, the coupling goes

to zero at X1 → −∞, and grows with X1 until we reach the ‘Liouville wall,’ the tachyon

background which cuts off further propagation [138]. The basic physics is to throw tachyons

in from −∞; near the wall they interact with each other and reflect back to −∞. This is

about as rich as throwing pions at a static nucleon. Just as the latter proved to contain the

essence of field theory, the D = 2 string has taught us at least one important lesson about

the full theory, the existence of the large nonperturbative effects. I will review the solution,

what has been learned, and what more we might hope to learn.
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5.2 The D = 1 Matrix Model

The method by which the D = 2 string theory was solved is completely orthogonal to what

we have discussed thus far. It begins with the quantum mechanics of an N ×N Hermitean

matrix M(t) [139]. The action is

S = βN
∫

dt
{

1

2
Tr (Ṁ2) + TrV (M)

}

. (5.2.1)

Here β is a parameter and V a general potential. You have already heard about this sort of

thing from one or more of Ambjorn, Ginsparg, and Moore, so I will go through the solution

without dwelling too much on the details. A graph with given numbers of propagators P ,

vertices V , and loops L will depends on β and N as βnV −nPNnV −nP +nL = β−nL(βN)χ, where

χ is Euler number of the surface we get by filling in the index loops in the graphs. Thus, for

any amplitude

A(β,N) =
∑

nL,χ

AnL,χβ
−nL(βN)χ, (5.2.2)

where AnL,χ is the contribution from graphs with given numbers of loops and given topology.

The Hamiltonian is

H = − 1

2βN

∑

i,j

∂

∂Mij

∂

∂Mji
+ βNTrV (M). (5.2.3)

The action is invariant under the U(N) which takes M → UMU−1. We will only be

interested in singlet states—when one cuts open a graph, the states will always be traces of

M’s, and so invariant. A singlet state is a function only of the eigenvalues λi. Acting on

such a state one finds (use first and second order perturbation theory to take the derivatives

of eigenvalues)

HΨ(λ) =
∑

k

{

− 1

2βN

∂2

∂λ2
k

+
1

βN

∑

l 6=k

1

λl − λk

∂

∂λk

+ βNV (λk)
}

Ψ(λ)

= ∆−1(λ)H ′∆(λ)Ψ(λ) (5.2.4)

where

H ′ = βN
∑

k

{

− 1

2β2N2

∂2

∂λ2
k

+ V (λk)
}

, (5.2.5)

and ∆(λ) =
∏

k<l(λk − λl). We will absorb the factor of ∆ into the wavefunction and work

with Υ(λ) = ∆(λ)Ψ(λ). The inner product works out in a simple way: after the angular
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integrations,
∫

dN2

MΨ∗(λ)Ψ(λ) ∝
∫

dNλΥ∗(λ)Υ(λ), (5.2.6)

so Υ is the probability amplitude for the eigenvalues.

The Hamiltonian (5.2.5) describes N decoupled coordinates. The factor of ∆ in Υ makes

the wavefunction antisymmetric, so this is a system of N free fermions [139]. It can also be

written in terms of a second-quantized spinless fermion field ζ(λ),

H ′ = βN
∫

dλ
{

1

2β2N2
∂λζ

†∂λζ + V (λ)ζ†ζ
}

. (5.2.7)

From the N -dependence (5.2.2), the N → ∞ limit is dominated by graphs of spherical

topology. This limit is easily taken in the free-fermion form. Although we set the original

h̄ to 1, we see that if we define H ′ = βNH ′′ then βN appears in H ′′ precisely the way 1/h̄

appears in the Hamiltonian for nonrelativistic quantum mechanics. The N → ∞ limit at

fixed β is then classical. Each fermion occupies a volume 2π‘h̄’ = 2π/βN in phase space.

Levels with single-particle energy E ′′ = 1
2
p2+V < εF are filled. The total number of fermions

is N , so

1

β
=

N

βN
=
∫

dp dλ

2π
θ
(

εF − p2

2
− V (λ)

)

. (5.2.8)

Now let us, to be specific, take

V (λ) =
1

4
λ2(2 − λ)2. (5.2.9)

For large β, the phase space integral (5.2.8) is small, and the fermions sit near the quadratic

minimum at λ = 0. One finds εF ∼ β−1/2. There are no fermions in the second minimum

at λ = 2: the Feynman rules represent perturbation theory around M = 0, and the second

minimum is invisible in perturbation theory. Figure 24 shows the potential, with occupied

states shaded. As β decreases, the occupied phase space volume grows. At some critical

value βc the Fermi level reaches the local maximum, εc = 1
4

at λ = 1, and there is a phase

transition (see [140] for a review). Quantities such as

〈0|H ′|0〉 = N2
∫ dp dλ

2π

{

p2

2
− V (λ)

}

θ
(

εF − p2

2
− V (λ)

)

(5.2.10)
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Figure 24: Potential energy for fermions, with filled states shaded.

are analytic for β > βc and have a singularity at βc.

Exercise: Show that in terms of δ = εc − εF ,

β − βc ∼ δ ln δ, 〈0|H|0〉 ∼ δ2 ln δ, (5.2.11)

up to terms analytic in δ [141]. This takes a bit of care, because the analytic terms in these

two quantities are larger than the singular ones, though they are irrelevant because they

do not come from large surfaces. Show from this that the contribution AnL,2 defined in

eq. (5.2.2) goes as n−3
L βnL

c for 〈0|H|0〉 at large nL.

Now recall, from the counting (5.2.2), that β−1 is the loop-counting parameter for per-

turbation theory. So for a potential with a local maximum, the perturbation series has a

finite radius of convergence, diverging beyond β−1 = β−1
c . The non-analyticity in β−βc then

arises from large orders of perturbation theory, large graphs. Here is where the connection

with string theory comes in. Assign a length a to each propagator. As nL → ∞, one might

hope to take a → 0 in such a way that the sum over graphs approaches a sum over smooth

surfaces, so the critical behavior in β − βc is given by a string theory [141]. There are other

possibilities—the typical graph might instead look like a branched polymer—which can arise

in the limit of large discrete surfaces. But in this case we are lucky, and the limit is a string

theory. We can verify this by comparing various quantities that can be calculated both in

the matrix model and in the continuum theory, and then use the matrix model to do many

calculations that we cannot yet do in the continuum.

We have taken the large N limit, so we have only surfaces of spherical topology. Thus,
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the ground state energy (5.2.10) is explicitly O(N2). We can do better [142]. Let us take

N → ∞ and β → βc together, holding fixed

µ = βN(εc − εF ). (5.2.12)

This is the double scaling limit.4 Since (βN)−1 plays the role of h̄, the splitting between

fermionic levels is of order 1/βN , and the ratio of this splitting to the distance εc − εF from

the critical Fermi level remains constant. The splitting thus remains non-negligible in the

double scaling limit. Since the splitting is a 1/N effect, vanishing in the spherical limit,

the double scaling limit is keeping nontrivial contributions from all topologies, with Euler

number χ being weighted by µχ. That is, each additional handle brings in µ−2.

The double-scaling limit is easily taken directly in the Hamiltonian. Define

λ− 1 = (βN)−1/2x, ζ = (βN)1/4ψ. (5.2.13)

Thus, for fixed x, the eigenvalue λ approaches the local maximum as N → ∞. Only the

quadratic behavior near the maximum survives in this limit. The Hamiltonian becomes

H ′ − βNεF =
∫

dx
{

1

2
∂xψ

†∂xψ − x2

2
ψ†ψ + µψ†ψ

}

. (5.2.14)

The result is simply a Fermi sea in an inverted oscillator potential.

5.3 Matrix Model ↔ String

What do we expect for the continuum string theory corresponding to this critical behavior?

The number of links separating two vertices gives a measure of distance, so we expect a

world-sheet metric gab(σ). And, each vertex occurs at some time t, so this should become a

world-sheet field t(σ) in the continuum limit. The most relevant action for these fields is

Snc =
∫

d2σ
√
g
{

−c1gab∂at∂bt+ c2 + c3R
}

. (5.3.1)

There is no reason to expect Weyl-invariance. Consequently the world-sheet cosmological

constant term c2 has been included. We have earlier discussed briefly the world-sheet theories

without Weyl invariance. We can go to the conformal gauge

gab(σ) = eϕ(σ)ĝab(σ), (5.3.2)
4This limit was carried out first for the D = 0 matrix model [143]. Although this theory has fewer degrees

of freedom, the solution and the double scaling limit are perhaps a bit more difficult.

120



in which the metric is reduced to the degree of freedom ϕ(σ). Taking into account the Fadeev-

Popov determinant and the Weyl anomaly from the t-integration, the action becomes [49]

∫

d2σ
√

ĝ
{

−c1ĝab∂at∂bt+ c2e
ϕ + c3R̂ +

25

96π
(ĝab∂aϕ∂bϕ + 2R̂ϕ)

}

. (5.3.3)

We started with one spacetime dimension, but as we have noted the Weyl factor in the

metric behaves very much like an extra embedding dimension. So we can think of this as a

non-critical string in one dimension with metric gab, or a critical string in two dimensions

with metric ĝab. The former is appropriate if one is interested in two-dimensional quantum

gravity on the world-sheet; the latter is appropriate if one is interested in two-dimensional

string theory in the embedding space. Ambjorn’s lectures focus on the former, and mine on

the latter. Although the theories are the same, one tends to ask different questions in the

two cases. In the former case, the focus is on various measures of the world-sheet geometry,

while in the latter it is on scattering processes in the embedding space.

Comparing the result (5.3.3) with our expectation (5.1.6), we see precisely the same

terms with ϕ ∝ X1, but the coefficients cannot be made to match up—the ‘25’ needs to be

‘24’ and the exponent in the cosmological term is wrong. This has a simple explanation.

The derivation of (5.3.3) implicitly defined the ϕ path integral using the metric gab, while

the latter used the metric ĝab, and the difference is accounted for by the corresponding

renormalization of the measure [144]. This is presumed now to be well-understood [145] and

is not something I want to dwell on, so I use the action in the form (5.1.6) with the relative

normalization of X0 (in the string theory) and t (in the matrix model) yet to be determined.

To summarize, we expect that the free fermion theory (5.2.14) is equivalent to D = 2

string theory in the dilaton and tachyon background (5.1.5). In the string theory we had

tachyons bouncing off a Liouville wall. In the matrix model we have fermions bouncing

off the inverted harmonic potential. So things look very close, the string theory being a

bosonization of the matrix model.

Let us carry out the bosonization in detail [146]-[148]. In the classical limit we can

describe the collective motions of the fermions in terms of a time dependent Fermi surface,

separating the filled and empty phase space regions. Fermions on the surface on the surface

move freely in the inverted harmonic potential,

Dtp = x, Dtx = p, (5.3.4)

where Dt denotes the co-moving derivative, following one phase-space point on the surface.
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The solution is

p = −a sinh(t− b), x = −a cosh(t− b) (5.3.5)

with integration constants a and b. In contrast, the position p of the Fermi surface at fixed

x satisfies ∂tp|x = Dtp − ∂xp|tDtx = x − ∂xp|tp. For perturbations that are not too large

(and we will return to these later), the Fermi sea can be described by the positions of its

upper lower surfaces at each time, p±(x, t), and each satisfies

∂tp±(x, t) = x− p±(x, t)∂xp±(x, t). (5.3.6)

For example, from the Hamiltonian (5.2.14) it follows that the static Fermi level is given by
1
2
(p2 − x2) + µ = 0 or

p±(x)static = ±
√

x2 − 2µ , (5.3.7)

which satisfies the equation of motion (5.3.6). The Hamiltonian in terms of p± is obtained

by integrating the single-particle energy over the Fermi sea,

H ′ =
1

2π

∫ ∞

−∞
dx
∫ p+

p−
dp

1

2
(p2 − x2)

=
1

2π

∫ ∞

−∞
dx
{

1

6
(p3

+ − p3
−) − x2

2
(p+ − p−)

}

. (5.3.8)

Also, from the equation of motion and the Hamiltonian one can deduce the commutator

[p±(x), p±(y)] = −2πi∂xδ(x− y), [p+(x), p−(y)] = 0. (5.3.9)

To write this in terms of a massless scalar, define the coordinate q = − ln(−x), which

runs from −∞ to ∞ as x runs from −∞ to 0, and define a scalar field S(q, t).

p±(x, t) = ∓x± 1

x
ǫ±(q, t)

π−1/2ǫ±(q, t) = ±πS(q, t) − ∂qS(q, t). (5.3.10)

The bar is to distinguish this scalar from a slightly different one to appear later. The

Hamiltonian takes the form

H ′ =
1

2

∫ ∞

−∞
dq
{

π2
S + (∂qS)2 + e2qO(S3

)
}

. (5.3.11)
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Figure 25: Fermi sea: filled states in the x-p plane are shaded. The state of the sea is given
by the upper and lower surfaces p±(x, t), shown at a representative value of x. Points on the
Fermi surface move along hyperbolic orbits.

The quadratic part is the canonically normalized free scalar Hamiltonian; the equation of

motion is (∂2
t − ∂2

q )S = e2qO(S2
).

The collective motion of the matrix model fermions has the same qualitative behavior

as the D = 2 string theory discussed earlier. Asymptotically it is a free massless scalar,

with interactions that grow exponentially. In the string theory, strings are reflected from

the Liouville wall before the coupling diverges, while in the matrix model they are reflected

from the end of the eigenvalue distribution. Thus, our guess that the D = 2 critical string

describes the critical behavior of theD = 1 matrix model appears to be correct. The coupling

goes as e
√

2X1

in string theory and e2q in the matrix model, which determines the relative

normalization of these. Also, the velocity is 1 in both the q-t and X1-X0 planes, so we have

X1 ∼ q
√

2, X0 ∼ t
√

2. (5.3.12)

We had earlier concluded that µ−2 is the loop-counting parameter, which would make µ−1

the three-string coupling. We can now check this. From the static distribution (5.3.7), the
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Figure 26: a) Incoming pulse on top of the static Fermi sea. For clarity the variable −ǫ+(q, t)
is shown. b) Later outgoing pulse, with shape distorted by dispersion. Fermions closer to
|p| = |x| travel more deeply into the potential and take longer to return.

turning point in the eigenvalue distribution is at xt ∝ µ1/2. The dominant interactions

occur at the Liouville wall xt, where the coupling gs goes as e2qt = x−2
t ∝ µ−1 as expected.

More detailed comparisons are possible as well, and in particular the relation between the

string coordinate X1 and the matrix model eigenvalue q is more subtle than the scaling

argument (5.3.12) suggests. We will return to this, after discussing some general issues.

Two asides before we go on. First, it is interesting to contrast the bosonization we have

just done with relativistic bosonization. The latter relates the collective motion of a free

massless relativistic fermion to a free massless boson. The difference is that the relativistic

fermion has a linear dispersion relation, ω ∝ k, while the matrix model fermions have

ω ∝ k2. Looking at the Hamiltonian, we see that the cubic scalar interaction comes from

the term quadratic in momentum. We can think about this as follows. Relativistic fermions

have no dispersion, the velocity ∂kω being a constant. A collective pulse propagates without

changing its shape. The matrix model fermions have a k-dependent velocity, so that a pulse

deforms as it propagates. This translates into interactions among the bosons.

Second, the endpoint of the distribution, where p+ − p− → 0, causes difficulties. At

this point the dynamics is determined not by the Hamiltonian but by the constraint that

the fermion density p+ − p− be positive. Further, perturbation theory in the collective

Hamiltonian suffers various divergences at the endpoint, which need to be appropriately

regulated. It is sometimes useful to work with the Fourier transformed fermion ψ̃(p, t), in

terms of which the Hamiltonian looks almost the same [149],

H ′ − βNεF =
∫

dp
{

−1

2
∂pψ̃

†∂̃pψ +
p2

2
ψ̃†ψ̃ + µψ̃†ψ̃

}

. (5.3.13)

The collective motion can now be described in terms of the surface x(p, t). In this variable
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the sea has only an upper edge, and there is no endpoint to worry about.

5.4 General Issues

So what does one learn from all this? The object of study is the amplitude for m incoming

strings of energies ω1, . . . , ωm to evolve into n outgoing strings of energies ω′
1, . . . , ω

′
n. The

matrix model allows the exact calculation of these amplitudes [150]. One starts with the

incoming strings, translates into an incoming fermion state using bosonization (asymptot-

ically we have noted that the bosons become free, so one can use the familiar relativistic

bosonization), evolve the free fermions in the inverted harmonic potential, and then trans-

late back using bosonization. The final closed form from combining all these steps is a

little complicated,5 but for given m and n one can follow through the steps and find the

exact answer, without resorting to expansion in the closed string coupling µ−1. The same

calculations remain exceedingly hard within the continuum string theory. One must in prin-

ciple carry out the path integral over Xµ, integrate over moduli space, and sum over genus.

Even the first of these is nontrivial, because the path integral is not gaussian, due to the

tachyon background. The path integral on the sphere has been carried out using difficult

analytic arguments, and for some amplitudes by taking advantage of the large symmetry of

the problem, to be developed later.

Undoubtedly the main physical lesson learned thus far is the discovery of the large non-

perturbative effects, which as we have seen turned out to be a general feature of string

theory [115]. In the matrix model, there is an obvious nonperturbative process, the tunneling

of a single fermion through the potential barrier. Now we have to consider an issue that we

have ignored so far, namely what is going on on the other side of the barrier. There are

many possibilities—that the other side is empty (so the state we are considering is unstable);

that it is filled to the same Fermi level as the first well; that the potential is modified, say

by an infinite barrier at some x ≥ 0. None of these would change the perturbation theory,

so they represent a nonperturbative ambiguity. Later we will examine the problem of the

nonperturbative definition of the theory, but for now we will just use this ambiguity to

estimate the inaccuracy of perturbation theory. The fermion tunneling amplitude is e−B

with B given in the WKB approximation by

B =
∫

√
2µ

−
√

2µ
dx
√

2µ− x2 = πµ. (5.4.1)

5The expressions do simplify in the leading order, string tree level. We will work this out later.
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So the tunneling amplitude is indeed e−O(µ) = e−O(g−1
s ). From the discussion in section 4,

one would expect this to be associated with a (2h)! growth of the perturbation theory. This

growth is indeed found when the amplitudes are expanded in powers of µ−2 [142].

In this case one can see what the nonperturbative effect associated with the large order

behavior is, namely single-fermion tunneling. The matrix model is an example of this picture

in which the strings are collective excitations of something simpler, the free fermions. The

bosonic collective Hamiltonian can presumably be used to generate all orders of perturbation

theory, but it is not at all clear that one can make sense of it non-perturbatively. The

description of the single-fermion tunneling in terms of the collective Hamiltonian is extremely

clumsy and ad hoc. More generally, the collective description seems to break down near the

end of the eigenvalue distribution, or for processes involving interference between two edges

of the Fermi surface. For example, the raising operators of the S field create a fermion-hole

pair. An operator with momentum greater than p+ − p− tries to create a hole below the

lower edge p− of the Fermi sea, which is impossible. So the algebra of the bosonic raising and

lowering operators—the enumeration of states—breaks down. A very similar thing happens

in the case of D = 2 Yang-Mills theory. The string representation can be obtained as a

bosonization of a non-relativistic free fermion representation just as here, and again the

enumeration of string states breaks down non-perturbatively, when the number of boxes in

a Young tableau column exceeds N .

One would of course like to use this to get some insight into the nature of the nonpertur-

bative effects and of the hypothetical fundamental degrees of freedom in higher dimensions.

One can try looking at limits in the higher dimensional theory as I have discussed, but an-

other avenue is to try to make as explicit as possible the connection between the free fermion

picture and the string picture here in the D = 2 theory. At present the connection is quite

roundabout, going through the matrix model and double scaling limit.6 In fact, the connec-

tion is rather subtle. The string theory tachyon is related in an obvious way to the collective

motion of the fermions, but in fact there is more in the string theory. The graviton-dilaton

sector of the D = 2 string theory is the same as the dilaton gravity theories discussed by

Strominger and Verlinde. So although there is no propagating graviton or dilaton, there are

6Something I have tried without success is to go directly from the string path integral to a spacetime
Hamiltonian by a good choice of gauge. Unfortunately, the obvious gauge choice, σ0 = X0 so as to identify
world-sheet and embedding times, does not seem to work even for the simpler problem of a relativistic
particle. The gauge choice assumes that X0 is a monotonic function of σ0, so that if the bath backtracks one
must build it by combining monotonic paths. Unfortunately, the typical relativistic particle path backtracks
an infinite number of times in the continuum limit. Light cone quantization avoids this backtracking problem
in flat spacetime, but has been rather hard to implement with the linear dilaton background [151]. Kawai
and collaborators have made some progress along slightly different lines [152].
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still physical effects from gravity, including a black hole solution. These are not evident in

the matrix model. It is important to clarify this, both to develop the matrix model ↔ string

connection, and because the gravitational effects are of interest in their own right.

We have been discussing the D = 1 (also called c = 1) matrix model. The D = 0 model,

based on a single matrix M without time, leads in a similar way to the D = 1 string (pure

world-sheet gravity = one Liouville dimension). Multi-matrix models Mi lead to 0 < c < 1,

the minimal models plus a Liouville dimension. Also, fine-tuned multicritical points in the

D = 0 matrix model lead to non-unitary minimal models plus the Liouville dimension. The

extension to c > 1 is problematic. The matrix model can no longer be reduced to eigenvalues,

and no solution is known. Also, as we have noted the tachyon really is tachyonic beyond

D > 2, so the vacuum is unstable and presumably does not correspond to an attractive fixed

point of the discrete theory.

Even at D ≤ 2 it would be useful to have a greater variety of models, so as to get

some perspective. The matrix model can be generalized to open plus closed strings [153] (a

different approach is given in ref. [154]). This reduces to a theory of interacting fermions. It is

similar to the U(N) Calogero-Sutherland model recently considered by Haldane and others,

but has not been solved. Even short of a full solution, it would be useful to understand in

the classical limit the connection between the collective excitations and the open and closed

strings. Another extension is spacetime supersymmetry. Supersymmetry breaking is after

all one of the most important non-perturbative phenomenon in string theory; spacetime

supersymmetry would also help with the tachyon instability of the c > 1 string. There is

nothing useful here yet. A straightforward supersymmetrization of the D = 1 matrix model

exists and has a double-scaling limit [155]. But Shyamoli Chaudhuri and I have recently

shown that the naive world-sheet theory is not conformally invariant, and the theory flows

to some exotic fixed point that does not seem to be connected with the string physics that

is of interest [156].

To conclude these lectures, I will first develop some details of the tree-level scattering

amplitudes. I will then discuss the gravitational physics of the D = 2 string, including the

black hole solution, as well as the generalization to higher string levels. Finally, I look for

the corresponding physics in the matrix model. I show how gravitational physics emerges

in the weak field limit, then look at physics in strong fields—an (as yet unsuccessful) search

for the black hole solution, some exotic strong-field physics that arises in the matrix model,

and the nonperturbative ambiguity.
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5.5 Tree-Level Scattering

Consider a small incoming pulse on top of the static solution p±,static, eq. (5.3.7). As we

have discussed, dispersion changes the shape of the pulse: higher points on the pulse travel

deeper into the potential and emerge later. Let us work this out at the classical level. The

equation of motion (5.3.4) implies that

v = (−x− p)e−t, w = (−x+ p)et (5.5.1)

are constant for a particle moving in the inverted harmonic potential. Then so also are the

integrals

vmn = e(n−m)t
∫

F−F0

dp dx

2π
(−x− p)m(−x+ p)n. (5.5.2)

The integral runs over the Fermi sea F , with the integral over the static Fermi sea F0

subtracted, so this will converge for a pulse of finite width. Evaluating this in the limits

t→ −∞ and t→ ∞ relates the incoming and outgoing pulses. As t→ −∞ points approach

the line p = −x, so

v → eq−tǫ+(q − t), w → 2e−q+t . (5.5.3)

I have used the expansion (5.3.10), with the free field equation of motion ǫ+(q, t) ∼ ǫ+(q− t)

for the incoming wave. Similarly, as t→ ∞,

v → 2e−q−t, w → eq+tǫ−(q + t) (5.5.4)

with ǫ− the outgoing wave. Thus,

vmn =
2n

2π(m+ 1)

∫ ∞

−∞
dt e(n−m)(t−q)

{

(ǫ+(t− q))m+1 − µm+1
}

=
2m

2π(n+ 1)

∫ ∞

−∞
dt e(n−m)(t+q)

{

(ǫ−(t+ q))n+1 − µn+1
}

. (5.5.5)

Applying this for m = 0, n = iω gives the Fourier transform of the incoming wave

as a nonlinear function of the outgoing wave [157], [158]. Expanding around the static

background, ǫ±(q∓) = µ+ δǫ±(q∓), gives

∫ ∞

−∞
dq− e

iωq−δǫ+(q−) = (2µ)iω
∫ ∞

−∞
dq+ e

−iωq+

∞
∑

k=1

µ1−k

k!

Γ(1 + iω)

Γ(2 − k + iω)
δǫ+(q+)k. (5.5.6)
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In terms of the Fourier modes,

ǫ±(q∓) = µ+
1√
2π

∫ ∞

−∞
dω α±(ω)e±iωq∓ (5.5.7)

this becomes

α+(ω) =
∞
∑

k=1

(
√

2πµ)1−k

k!

Γ(1 + iω)

Γ(2 − k + iω)
(5.5.8)

∫

dω1 . . . dωk α−(ω1) . . . α−(ωk)δ(ω1 + . . .+ ωk − ω) .

It is a useful fact that classical scattering is the same as tree level quantum scattering.

The quantum operators satisfy the same equation of motion as the classical field, so the

solution (5.5.8) also holds, except that we would have to be careful about operator ordering.

But commutators are of order h̄ and so do not matter to leading order. The modes have

been normalized to satisfy

[α±(ω), α±(ω′)] = −2πωδ(ω − ω′). (5.5.9)

Defining the in-states

|ω1, . . . , ωn; in〉 = α+(ω1) . . . α+(ωn)|0〉, ωi > 0, (5.5.10)

and similarly for the out-states, the classical S-matrix (5.5.8) plus the canonical commuta-

tor (5.5.9) give the tree level S-matrix. For example, the 1 → n amplitude is [157]

〈ω1, . . . , ωn; out|ω; in〉 =

(√
2π

µ

)n−1
Γ(1 + iω)

Γ(2 − n + iω)
2πδ(ω1 + . . .+ ωn − ω). (5.5.11)

This same calculation can also be done by string methods, but only with great effort

and ingenuity. The main complication is the exponential term in the string action, from

the tachyon background. Far from the Liouville wall this is small, so for so-called ‘bulk’

processes which happen far away from the wall we can use the free action or at least expand

in powers of µ. (One can think about using wavepackets to separate out the bulk processes,

as I will describe later). We then have a free-field string calculation of the type that gave the

Virasoro-Shapiro amplitude. In D > 2 this reduces to Γ-functions only for four particles, but

in D = 2 the kinematic restrictions make it possible to evaluate for any number. Also, an
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analytic continuation makes it possible to deduce the full amplitude from the bulk amplitude.

The result is almost the same as the matrix model result (5.5.11). That is, comparison of the

string and matrix model S-matrices shows that the latter is related to the former by [159]-

[161].

α+(ω) =
Γ(iω)

Γ(−iω)
α+(ω)

α−(ω) =
Γ(−iω)

Γ(iω)
α−(ω). (5.5.12)

The ratio of gamma functions, known as the ‘leg pole’ factor, is a pure phase for real frequen-

cies, so this is a unitary transformation on the states. Such a redefinition is not surprising.

The matrix model gives a discrete approximation to the local vertex operator eiq·X+X1
√

2.

One expects to find a renormalization for any such cutoff construction. Following this line

of thought one can, purely within the matrix model, deduce the poles and zeroes of the leg

pole factor.7

I will not pursue this, but simply take the leg pole factor from the comparison of ampli-

tudes. Although a pure phase, it will play an essential role soon.

5.6 Spacetime Gravity in the D = 2 String

Now let us take a closer look at the graviton, dilaton, and antisymmetric tensor states in

the D = 2 string,

|e, k〉 = eµνα
µ
−1α̃

ν
−1|0, k〉. (5.6.1)

Recall from section 1.6 the Virasoro generators

L0 =
1

2
k2 +

a2

2
+

∞
∑

n=1

α−n · αn

Lm =
1

2

∞
∑

n=−∞
αn · αm−n + i(m+ 1)a · αm, m 6= 0, (5.6.2)

7To be precise, the correspondence between the string and matrix model S-matrices has only been verified
explicitly at tree level. However, there is strong reason to believe that the leg pole factor is the same to all
orders of perturbation theory. The renormalization comes from small distances on the world sheet, and the
string coupling is a relevant interaction. That is, short distance is the free asymptotic region of the critical
string picture.
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where aµ = (0,
√

2). Also recall α0 = kµ− iaµ. Acting on the state (5.6.1), the physical state

conditions become (we use the convenient OCQ form)

L0, L̃0 : k2 = −a2

L1, L̃1 : (k + ia)µeµν = (k + ia)νeµν = 0. (5.6.3)

Also, acting with L−1 on the state fµα
µ
−1|0, k〉 and with L̃−1 on f̃να̃

ν
−1|0, k〉 we find the

following spurious states

spurious: eµν = (k − ia)µf̃ν + fµ(k − ia)ν (5.6.4)

for any f , f̃ .

The L1 and L̃1 conditions require eµν to be orthogonal to k + ia on both indices, or

eµν = nµnν where nµ is in the one-dimensional space orthogonal to k+ ia. The L0 conditions

gives (k + ia) · (k − ia) = 0, so n ∝ k − ia. But this means that eµν is spurious, so there

are no ‘observable’ states.

This is correct at generic momenta but breaks down at special points [160]. If k = −ia,
the L1 and L̃1 conditions are empty. States with polarizations proportional to aµ are null in

this case, so we can remove the spacelike polarizations and be left with the observable state

α0
−1α̃

0
−1|0,−ia〉 . (5.6.5)

If k = ia the spurious state vanishes. The physical state condition requires eµν to be

orthogonal to aµ, so the observable state is

α0
−1α̃

0
−1|0,+ia〉 . (5.6.6)

The corresponding vertex operators are respectively

:∂X0∂̄X0e2
√

2X1

: , :∂X0∂̄X0 : . (5.6.7)

What does this mean physically? The absence of observable states at general momenta

means that there are no particle-like states—one cannot make a wavepacket. The vertex

operator :∂X0∂̄X0 : has an obvious interpretation—it corresponds to an infinitesimal rescal-

ing of the flat metric G00, and can be absorbed into a rescaling of X0.8 The other operator
8We are considering X0 to be noncompact, so this rescaling has no effect. If X0 were periodic, it would

correspond to a change in the periodicity.
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is more problematic because it corresponds to δG00 ∝ e2
√

2X1

, diverging at infinity. In

fact, you have seen this before, in the talks by Strominger and Verlinde. The low energy

graviton-dilaton action for the D = 2 string,

S =
1

2

∫

dDX
√
−Ge−2Φ

{

−8 + R + 4∇µΦ∇µΦ
}

(5.6.8)

is the same as they considered. As they discussed, this has a black hole solution [162], [163],

which in one set of coordinates is

G11 = 1, G00 = − tanh2
(

X1
√

2 +
1

2
lnM

)

Φ = −1

2
ln(M/2) + ln cosh

(

X1
√

2 +
1

2
lnM

)

. (5.6.9)

As M → 0 this approaches the linear dilation vacuum (5.1.1). To first order in M it is just

the perturbation

δG00 ∝Me2
√

2X1

. (5.6.10)

We should note that, unlike the case of four dimensions where the size of the black

hole is proportional to M , here the size is independent of M . The mass appears in the

background (5.6.9) only as an additive term in Φ and as an additive shift of X1. The size is

set by the only other scale in the problem, the string scale. The spacetime action (5.6.8) is

only valid at scales long compared to the string scale, so the derivation of the solution (5.6.9)

is not strictly valid.9 However, an exact CFT corresponding to this solution, a variation of

the WZW theory, is known [162]. Also, because the scale of the geometry is of the same size

as the string itself, we cannot be sure that the string sees it as a black hole. For example,

we cannot make a clean causality argument in the information paradox, as we can do in

four dimensions. But the exact solution does appear to resemble a black hole—for example

in the Bogoliubov transformation between the asymptotic tachyon modes and those on the

horizon [164].

Now let me state the result for the observable Hilbert space at higher levels (I am following

here refs. [165]; see these for earlier references). Extra physical states (the discrete states) are

found at momenta (k0, k1) = (in
√

2,±is
√

2) for 2s and s− n integers such that |n| ≤ s− 1,

as shown in fig. 27. The corresponding operators are denoted W∓
s,n(z)W̃

±
s,n(z̄). The lines

9This comment does not apply to dilaton gravity as a field theory, where the scales are set by hand.
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Figure 27: Extra physical states in the (ik0, ik1) plane.

ik0 = ±ik1 correspond to (imaginary) tachyon momenta. The L0, L̃0 conditions imply that

the state (s, n) is at level s2 − n2.

Note also the conserved currents ∂X0 and ∂̄X0, closely related to the operatorW+
1,0W̃

+
1,0 =

∂X0∂̄X0. Actually, although these currents are separately conserved, their difference cou-

ples to the winding number in the X0 direction. For the non-compact theory that we are

concerned with this vanishes, so only one symmetry is nontrivial. At higher levels there

are additional symmetries As,n, in one-to-one correspondence with the W+
s,nW̃

+
s,n (recall the

result (4.1.2) that a spacetime symmetry corresponds to a BRST invariant operator of ap-

propriate ghost number).

So the D = 2 string theory does have a few graviton-dilaton states, and some interesting

physics associated with them. In addition it has a large number of similar states at higher

levels. The state W−
1,0W̃

−
1,0 corresponds to a black hole background. It seems likely that

the other W−
s,nW̃

−
s,n give rise to some infinite-parameter generalization of the black hole, but

little is known about this; a formal argument for the existence of these solutions is given in

ref. [166].

The tachyon state was obvious in the matrix model. So are the symmetries As,n—they
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are just the vmn introduced above for positive integer m,n [167]-[170],10

As,n ∝ vs+n,s−n. (5.6.11)

This identification is consistent with the (k0, k1) values. Also the linear term in the variation

of the tachyon field is known to be the same, as is the algebra

{vmn, vm′n′} = 2(m′n− n′m)vm+m′−1,n+n′−1. (5.6.12)

This is the same as the w∞ commutator (1.7.13), with 4V i
m ≡ vi+m+1,i−m+1. Only the range

of the indices differs.

However, the remainder of the physical states are not so evident. The W+
s,nW̃

+
s,n do mix

with the tachyons at the appropriate momenta and can be seen in matrix model correla-

tors (reviewed in chapter 6 of ref. [134]). The W−
s,nW̃

−
s,n are, like the black hole, singular

at large X1 and do not appear in the matrix model in any simple way [136]. In the next

section we will see that much of the physics of the discrete states is not contained within

the matrix model by itself but also involves the mapping between the matrix model and the

D = 2 string theory.

5.7 Spacetime Gravity in the Matrix Model

The results of the previous section seem quite exciting. The D = 2 string theory has black

hole solutions, and we have in the matrix model an exact quantum solution to this theory.

But things are not yet so rosy. First, we do not know how to describe the black hole in

the matrix model language—what deformation of the matrix model corresponds to nonzero

Schwarzchild mass M? Second, as we will discuss in section 5.8, we do not yet have the

exact solution to the theory, only its perturbation expansion.

To begin to study this issue, we will first ask a much more basic question [171]. How, in

the matrix model, do we see the gravitational interaction even between lumps of matter too

diffuse to form a black hole? I will phrase this as an S-matrix question. Imagine sending two

successive tachyon pulses in from the asymptotic region. The first pulse carries energy and

momentum, so the second pulse must feel its gravitational field. There will then be some

amplitude for the process shown in fig. 28a, in which part of the second pulse backscatters

from the gravitational field of the first pulse. But this does not happen in the matrix model!
10Incidentally, the vmn are well-defined for general m, n only if the sea is entirely in the quadrant x < |p|,

but for integer m, n they are always well-defined.
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Figure 28: a) Successive pulses moving in the t − q plane. Gravitational field (dotted) of
pulse 1 will cause part of pulse 2 to backscatter, producing an outgoing wave (dashed) which
precedes the main reflection from the wall. b) How the matrix model represents this process.
The initial wavefunction renormalization (I) produces a tail on pulse 2 which overlaps pulse 1;
the combined pulse reflects from the wall (II); and the final renormalization (III) produces
the outgoing wave.

The pulses consist of free fermions, which move independently in the inverted oscillator

potential.

This would seem to be a contradiction, because I have set this up as an S-matrix question,

and earlier I told you that the string and matrix model S-matrices agree. However, I also

told you that there is a renormalization of the states, the leg pole factor (5.5.12), and this

is in fact essential to seeing all of the physics. To see how the renormalization can have this

effect, let us write it in coordinate space, in terms of the asymptotic incoming and outgoing

tachyon fields:

(I) : S+(t− q) =
∫ ∞

−∞
dτ K(τ)S+(t− q − τ)

(III) : S−(t+ q) =
∫ ∞

−∞
dτ K(τ)S−(t+ q − τ). (5.7.1)
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Here, a bar is again used to distinguish the matrix model quantity from the corresponding

string quantity. The same kernel appears in both transformations,

K(τ) =
∫ ∞

−∞

dω

2π
eiωτ

(

π

2

)−iω/4 Γ(−iω)

Γ(iω)

= −z
2
J1(z), z = 2(2/π)1/8eτ/2. (5.7.2)

This has asymptotic behaviors

K(τ) ∼ −
(

π

2

)−1/4

eτ , τ → −∞

∼
(

π

2

)−1/16 eτ/4

√
π

cos(z + π/4), τ → ∞. (5.7.3)

To describe the scattering of an incoming (+) string tachyon pulse, one must (I) transform

to the matrix model tachyon field via (5.7.1), (II) evolve the pulse as described in section 5.5,

and (III) transform back. The transformation (5.7.1) is nonlocal, and it is the early-time

behavior that is important. Although this falls exponentially, so does the gravitational effect

(5.6.10) that we seek. As long as we use narrow enough pulses, gaussians, the exponential

tail can be discerned [172], [171].

The string amplitude I-II-III does indeed display the gravitational scattering. This works

as shown in fig. 28b. The transformation I on the incoming pulse 2 produces an early tail

that overlaps pulse 1.11 These propagate together through the turning point and interact

locally, and the transformation III produces the outgoing gravitationally scattered wave.

It will be useful for the later discussion to provide some details, but it is simpler for this

to look at the slightly simpler process of 2 → 1 bulk tachyon scattering. That is, as shown

in fig. 29a, a pair of tachyons in one pulse can interact and scatter into one outgoing tachyon

before reaching the wall. This occurs in the D = 2 string theory, from direct calculation of

the three string interaction, but it again does not occur in the matrix model because the

fermions are free—they travel on hyperbolic phase space orbits and so reach the turning

point of the potential. The leg pole transformation III is again responsible for the difference,

as shown in fig. 29b; the tail on transformation I is not important in this case. Explicitly,

lim
t+q→−∞

S−(t+ q) = −21/4π−1/4et
∫ ∞

t
dt′ e−t′S−(t′ + q)

11The amplitude of K grows at late times, but it oscillates so rapidly that it falls effectively to zero, at
least in all cases I have yet encountered.
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Figure 29: a) Two tachyons in an incoming pulse can backscatter into one (dashed line) at a
given point A. In the matrix model all tachyons pass through the turning region B. b) The
tail from transformation III produces the outgoing wave.

= −21/4π−1/4et
∫ ∞

−∞
dt′ e−t′S−(t′ + q)

= 2−3/4π1/4et+qv10. (5.7.4)

In the second line we have used the narrowness of the wavepacket to extend the range of

integration, and in the third we have noted that the result is simply proportional to the

conserved charge v10. Now expressing this in terms of the incoming field gives

lim
t+q→−∞

S−(t+ q) = 2−3/4π1/4et+q
∫ ∞

∞
dt′ e−t′+q

{

(∂tS+(t− q))2 + µ∂tS+(t− q)/
√
π
}

= 2−1/2et+q
∫ ∞

∞
dt′ e−t′+q(S+(t′ − q))2 + O(µ) . (5.7.5)

In the second line we have carried out the renormalization (5.7.1), leading to a simple re-

sult after integration by parts. The O(µ) term is from 1 → 1 scattering on the tachyon

background.

The result (5.7.5) is the correct bulk scattering, as found from a string theory or effective
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field theory calculation [171]. Note in particular the exponential factor et−t′+2q. At t = t′,

which is the point A in figure 29 where the incoming and outgoing rays meet, this is the

trilinear string coupling e2q.

In a sense, nothing here is new. In momentum space, we have simply found the graviton

pole. It is well-known that this pole is not present in the matrix model amplitude but comes

from the pole factors for the external legs [159]-[161], [173]-[175]. However, this coordinate

space analysis makes a number of things much clearer, and dispels some confusions in the

literature. One confusion is the frequent assertion that the leg pole factor is not relevant

for physics in Minkowski space (real ω), because it is a pure phase. We have seen that it is

indeed essential for important Minkowski space physics—this is possible because the phase

is a function of the momenta of the particles and so can be seen in interference. A second

confusion is an identification of the string tachyon field with the macroscopic loop amplitude.

This is not the same as the identification (5.7.1), and does not have the correct spacetime

physics.

The coordinate space calculation also provides a physical interpretation for the discrete

states in the cohomology. That is, they correspond to long-range forces not associated with

propagating degrees of freedom.12 The imaginary values of the momenta for the discrete

states correspond to exponential falloff of the forces in spacetime.

Let me emphasize that it is only the full string S-matrix I-II-III that is physical. That this

factorizes into three separate parts, the first and third being linear in terms of the bosons,

and the second being linear in terms of the fermions, is an accident of the D = 2 kinematics

and one should not give particular significance to the individual factors. Note also that the

matrix model, in spite of its qualitative resemblance to the string spacetime, misrepresents

the causal structure of the physics. The 2 → 1 bulk process actually occurs at the point A

in fig. 29a, before the pulse reaches the Liouville wall, but in the matrix model calculation

the information in the incoming pulse always travels through the turning region B.

The scattering calculations here become more tedious at higher orders in the gravitational

field and at higher levels. One would like to carry out the redefinition (5.7.1) directly in the

Hamiltonian, converting the known matrix model Hamiltonian into a string Hamiltonian,

with propagating tachyons plus long-ranged fields. The latter would presumably correspond

to some gauge-fixing of string field theory. But one must add to the linear transforma-

tion (5.7.1) appropriate nonlinear terms to bring the Hamiltonian to this form, and this is

12Although they fall exponentially, I use the term ‘long-range’ because they extend far enough to allow
them to be distinguished from the essential gaussian nonlocality of the string.
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does not seem to be simple.

5.8 Strong Nonlinearities

Now that we have detected weak field gravity, we would like to find the black hole solution.

The first thing that comes to mind is to keep the field while omitting the source pulse 1,

producing a source-free solution. But it is not evident how to do this, since the construction in

fig. 28a depends in an essential way on the direct interaction between the two pulses. Various

groups have proposed matrix model representations of the black hole background [176]. They

take points of view different from my own, so it is hard to make a direct comparison. Several

do emphasize the important point that the string theory is defined not by the matrix model

alone (step II) but also by the mapping between the matrix model and string theory (steps I

and III). But it is not clear that any of the proposal pass the test that they give the correct

scattering in the weak field, weak coupling region studied in the previous section.

Since we have a complete description of the scattering of incoming pulses, we might try to

make a black hole, by sending in a large enough pulse of matter. The perturbation (5.6.10)

of the metric is M/x4 in matrix model variables, so in order to form a black hole we need

at least for this to be of order 1. Consider now a pulse on the Fermi sea, of width ∆x and

height ∆p. The total energy M in the pulse is of order the number of fermions times the

height above the Fermi level, or ∆x∆p∆(p2). Now, ∆x<∼ x and ∆(p2) ∼ x∆p, so we need

(∆p)2 >∼ x2 (5.8.1)

to produce a gravitational effect of order 1. That is, the height of the pulse is comparable

to the height of the whole sea. The tachyon self-interaction is then also of order 1, since the

dispersion of the fermions in the pulse is large. In contrast to four dimensions, we cannot

get into a situation where the gravitational interaction dominates.13 It has a long enough

range to be detected, but not long enough to dominate. So we cannot be sure a priori that

it is possible to make a black hole. We will have to be experimentalists, throwing in pulses

with various properties and seeing if the result has any of the characteristic signatures of a

black hole.

In fact, two interesting qualitative behaviors are found with large pulses [147]. The

first is depicted in fig. 30a. For a sufficiently tall or steep pulse dispersion will cause it to

13The D = 2 string also differs from dilaton gravity, where the matter is introduced by hand and one may
take it to be free and conformally invariant.
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Figure 30: a) Outgoing pulse in which dispersion has produced a fold. At the indicated x,
the Fermi sea has two filled bands separated by an empty band. b) Incoming pulse extending
above the line p = −x. The fermions above the line pass over the potential barrier to x = ∞.

broaden past the vertical, producing an empty band in the Fermi sea and a double-valued

Fermi surface. What does this correspond to in bosonic language? There is a one-to-one

correspondence between single-valued Fermi surfaces and classical states of the bosonic field.

By a classical state I mean one for which 〈A2〉 = 〈A〉2 for any observable A, in the classical

limit where the fermions become a continuous fluid. The double-valued surface does not, in

this classical limit, correspond to a classical bosonic state. One can check this explicitly by

calculating in such a sea the one-point and two-point functions of the boson modes α(ω),

which are just the fermion currents. Even without calculation, a little thought will show that

by moving fermions down into the empty band one can reduce the energy 1
2

∫ {(∂tS)2+(∂qS)2
}

while keeping the expectation values of ∂tS and ∂qS fixed.

The double-valued surface is thus a bosonic state with a large amount of energy in

addition to that in the classical field—that is, a large amount of radiation. There is a

superficial resemblance here to formation of a black hole. In both cases, for incoming matter

below a threshold (to form a horizon or a fold respectively), the incoming energy comes out
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again in the classical field. Above the threshold a non-negligible fraction of the incoming

classical energy returns as radiation, Hawking radiation in the black hole and fold radiation

in the matrix model. But here the resemblance ends. The fold radiation comes out too

promptly, and it is too hot—typical energies of the quanta scale as h̄1/2 rather than h̄1.

It is not obvious how we would see the fold radiation if we had only the stringy, bosonic,

description and not the fermionic one. In bosonic language the fold corresponds to an

intersection of characteristics (null lines), which occurs because the velocity is a function of

the tachyon field. In most situations where such a thing occurs, there are higher-derivative

terms in the equation of motion which prevent double-valuedness and lead to formation of a

shock wave. But that is not the case here—it is evident in the free fermionic language that

pulse turns into a fold. So instead of a shock wave we get radiation, but I don’t know how

to see this purely from the bosonic Hamiltonian. One rather different possibility is that the

fold is a coordinate singularity, and that we need to unfold it by an appropriate coordinate

transformation in phase space, but I do not know how to make sense of this.

The second interesting behavior is shown in fig. 30b. This is a pulse which extends above

the line p = −x, so that some of the fermions pass over the barrier to the asymptotic region

on the right. This certainly sounds like a black hole—we throw matter in and it doesn’t all

come back out! But now we have to face a problem that we have deferred, the interpretation

the other side of the potential barrier. In fact there is an infinite number of ways to define

the matrix model, all of which give a unitary S-matrix and all of which have the same

perturbation expansion [150] (and presumably the same as that of the string). One class

of theories (type I in the terminology of ref. [150]) eliminates the second asymptotic region

by modifying the potential. For example, a sharp infinite barrier, V (x) = ∞ for x > A,

A ≥ 0, leaves the perturbation theory with fixed numbers of incoming strings unaffected

for any A ≥ 0. So does any other modification such that V (x) is −1
2
x2 for x < 0 and rises

to infinity as x → ∞. All incoming fermions eventually return ot x = −∞, so these are

unitary quantum theories within the Hilbert space of incoming and outgoing fermions in the

left asymptotic region (or the bosonized equivalent). The type II theory, on the other hand,

leaves the potential unmodified and and fills both sides of the barrier to the same level. It is

a unitary quantum theory but with two asymptotic Hilbert spaces. So there appears to be

an infinite number of consistent nonperturbative definitions of the matrix model. Note that

the ambiguity appears not only in the nonperturbative single-fermion tunneling amplitudes,

but also in the large-field classical behavior. This is because a large incoming pulse can

propagate into the strongly coupled region.
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Our study of gravitational and bulk scattering now pays an unexpected bonus, for we

have a new consistency condition which must be satisfied. Suppose we modify the potential

by an infinite barrier at x = A ≥ 0. A fermion reaching this barrier will jump suddenly

from phase space point (x, p) = (A, p) to (A,−p). The quantities v = (−x − p)e−t and

w = (−x + p)et are no longer conserved, and neither will be the vmn. Eq. (5.7.5) no longer

holds and we get the wrong bulk amplitude. This violates causality—the bulk scattering

occurs at the point A of fig. 29a, where string perturbation theory is valid and the incoming

wave weak; the nonlinearity becomes large only later, at point B. A further acausality will be

a nonconservation of gravitational mass in the process of fig. 28. This same argument applies

to all modifications of type I, even if the potential rises more smoothly. Since (−x− p)e−t is

negative for incoming fermions with p > −x but positive on all outgoing trajectories on the

left side, it can never be conserved. So all theories of type I are inconsistent. One can also

see this another way—the vmn correspond to unbroken spacetime gauge symmetries and one

would expect these to be conserved exactly.

The type II theory with unmodified potential conserves the vmn, but it still gives rise to

an inconsistent string theory, at least with the natural interpretation that the two asymptotic

regions of the matrix model correspond to two asymptotic regions of spacetime. The point

is that part of the conserved vmn passes over the barrier, so the first equality in eq. (5.7.5),

relating v10 to the outgoing field on the left only, no longer holds.

So I am saying that in spite of the substantial effort that went into matrix models no

consistent nonperturbative construction of the D = 2 string has yet been given. I think

that this is much better than the previous situation of an infinite number of theories. The

study of the bulk and gravitational scattering in coordinate space has not only dispels some

confusions and clarifies the nature of the discrete states, but also provides a criterion for

selecting among the possible nonperturbative definitions of the theory. The next step is

to search for a solution to the consistency conditions, considering modification both of the

matrix model itself and of the mapping between the matrix model and string theory. This

is an important problem, bearing directly on the e−C/gc behavior, and I am optimistic that

progress can be made.

5.9 Conclusion

In conclusion, let me say again that I think it likely that string theory will involve rich

new dynamics that play an essential role in determining the ground state. Sometimes I
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feel that the tools I have described, such as the matrix model and the various high energy

limits, are crude and unsophisticated. This is why I found the parallels with Wilson’s lecture

so encouraging—both the feeling of clutching at straws, and the resemblance between his

models and the matrix model. So perhaps the same method of attack that was so successful

in quantum field theory will be useful again.
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